WO2020062154A1 - 检测科研用动物行为的方法和*** - Google Patents

检测科研用动物行为的方法和*** Download PDF

Info

Publication number
WO2020062154A1
WO2020062154A1 PCT/CN2018/108698 CN2018108698W WO2020062154A1 WO 2020062154 A1 WO2020062154 A1 WO 2020062154A1 CN 2018108698 W CN2018108698 W CN 2018108698W WO 2020062154 A1 WO2020062154 A1 WO 2020062154A1
Authority
WO
WIPO (PCT)
Prior art keywords
scientific research
animal
behavior
detection frame
position information
Prior art date
Application number
PCT/CN2018/108698
Other languages
English (en)
French (fr)
Inventor
杨星
刘清晴
***
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Priority to PCT/CN2018/108698 priority Critical patent/WO2020062154A1/zh
Publication of WO2020062154A1 publication Critical patent/WO2020062154A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K29/00Other apparatus for animal husbandry

Definitions

  • the present application belongs to the field of scientific research equipment manufacturing, and particularly relates to a method and system for detecting behaviors of scientific research animals.
  • AD Alzheimer Disease
  • a degenerative disease of the central nervous system The onset is hidden and the course of disease is chronically progressive.
  • the main clinical manifestations are memory impairment, cognition Comprehensive dementia such as dysfunction, language disorder, behavior and personality change, seriously affects the patient's social, occupation and life, the cause is temporarily unknown.
  • AD is the sixth leading cause of death in the United States (3.6% of all causes of death).
  • AD Alzheimer's disease
  • the diagnosis of AD usually comes from the detection of neuropathological changes in the brain of the patient after death.
  • the analysis of clinical results and pathological characteristics that is, the correlation between clinical pathology, has suggested the relationship between pathological processes and cognitive status.
  • preclinical animal models especially mouse models, are widely used to detect the pathophysiology of AD and predict the effect of drug intervention on AD. Because no one zoology model can fully reproduce all the characteristics of human AD, it is necessary to use multiple zoology models for research.
  • AD mouse models There are currently no less than 11 AD mouse models commonly used (ie PDAPP, TG2576, APP23, TgCRND8, J20, APP / PS1, TG2576 + PS1 (M146L), APP / PS1 KI, 5 ⁇ FAD, 3 ⁇ Tg-AD and Tg4-42); people use multiple behavioral paradigms to assess cognitive impairment in mouse models, including spatial memory testing (Morris water maze, eight-arm water maze, and Barnes maze), joint learning paradigm (passive Avoidance and fear conditioning), selection tasks (Y maze and T maze), new object recognition, attention paradigm (3 or 5 selection sequence response test), task switching, and reverse learning.
  • spatial memory testing Meris water maze, eight-arm water maze, and Barnes maze
  • joint learning paradigm Passive Avoidance and fear conditioning
  • selection tasks Y maze and T maze
  • new object recognition attention paradigm (3 or 5 selection sequence response test)
  • attention paradigm 3 or 5 selection sequence response test
  • a behavior detection system for scientific research animals detects animals' behaviors by mounting sensors on the animals, which mainly uses motion sensors to collect the motion data of the animals to be detected in real time; according to the collected motion data, analyzes the motion of the animals to be detected Vector direction and action trend; when it is analyzed that the continuous and consistent action trend of the animal to be detected reaches a preset number of times and the corresponding motion vector direction is consistent, it is confirmed that there is a periodic action trend; the characteristic data of the periodic action trend and the preset The characteristic data of the movement trend is compared to obtain the matching degree between the periodic movement trend and the preset movement trend; if the matching degree is within a preset threshold range, the continuous action generated by the animal to be detected during the duration of the periodic movement trend The number of actions is counted, and the continuous action behavior is a continuous movement trend.
  • the above-mentioned method or system for detecting animal behaviors by mounting sensors on the animals requires the installation of specific sensors on these small animals. This process often causes discomfort to the animals, which affects the behavior of the animals and reduces the collection. Reliability of behavioral data, and the sensor is at risk of being damaged by experimental animals. To reduce this risk, higher requirements are placed on the installation of the sensor (for example, implanted under the skin of an animal).
  • sensors are generally powered by batteries, and the batteries need to be replaced or recharged after a period of time. Therefore, the time for a single recording of animal behavior will be limited.
  • the purpose of this application is to provide a method and system for detecting the behavior of scientific research animals, so as to detect the behavior of scientific research animals at low cost without interfering with the behavior of scientific research animals.
  • the first aspect of the present application provides a method for detecting the behavior of an animal for scientific research, which is applied to a system including a detection frame, a computing device, and a cabinet.
  • the method includes:
  • the wireless signal transceiver deployed on the detection frame detects the position information of the scientific animal in the detection frame in the detection frame by transmitting and receiving wireless signals, and transmits the position information to the computing device.
  • the detection frame Fixed in the box;
  • the computing device displays position information of the scientific research animal in the detection frame
  • the computing device evaluates the behavior of the scientific research animal according to the position information of the scientific research animal within the detection frame.
  • a second aspect of the present application provides a system for detecting the behavior of animals for scientific research.
  • the system includes a detection frame, a computing device, and a case.
  • the detection frame is fixed in the case, and a wireless signal transceiver is disposed on the detection frame.
  • the computing device includes a display module and an evaluation module;
  • the detection frame is used by the wireless signal transceiver to detect the position information of the scientific research animal in the detection frame in the detection frame by transmitting and receiving wireless signals and transmitting the position information to the computing device;
  • the display module is configured to display position information of the scientific research animal in the detection frame
  • the evaluation module is configured to evaluate the behavior of the scientific research animal according to the position information of the scientific research animal in the detection frame.
  • the wireless signal transceiver detects the position information of the scientific animal in the detection frame by transmitting and receiving the wireless signal, it does not need to implant the sensor device as in the prior art. Under the skin of the animal, therefore, the technical solution provided in this application does not interfere with the behavior of the animal itself, and therefore does not interfere with the detection of the behavior of the animal; on the other hand, the wireless signal transceiver deployed on the detection frame may be an existing The commonly used components have low cost. Therefore, the technical solution provided by this application is low in cost when detecting the behavior of scientific research animals, which can greatly save scientific research funds.
  • FIG. 1 is a schematic diagram of an implementation process of a method for detecting an animal behavior for scientific research according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of a detection frame and a box in a system for detecting animal behavior for scientific research according to an embodiment of the present application;
  • FIG. 3 is a schematic structural diagram of a system for detecting animal behaviors for scientific research according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a system for detecting behaviors of scientific research animals according to another embodiment of the present application.
  • FIG. 5-a is a schematic structural diagram of a system for detecting an animal behavior for scientific research according to another embodiment of the present application.
  • FIG. 5-b is a schematic structural diagram of a system for detecting an animal behavior for scientific research according to another embodiment of the present application.
  • FIG. 1 is a schematic flowchart of an implementation of a method for detecting animal behavior for scientific research according to an embodiment of the present application. The method is applied to a system including a detection frame, a computing device, and a cabinet. The method illustrated in FIG. 1 mainly includes the following steps S101 to S103, which are described in detail as follows:
  • the wireless signal transceiver deployed on the detection frame detects and transmits the position information of the scientific animal in the detection frame to the computing device by transmitting and receiving the wireless signal, and the position information is fixed to the cabinet.
  • the wireless signal transceiver may be an infrared detector, a radar, or a sound wave detector.
  • the wireless signal may be an infrared light, a radar wave, or a sound wave, that is, the wireless signal sent by the infrared detector is infrared, radar. Radar waves are emitted, sound waves are emitted by sound wave detectors, and animals for scientific research can be mice, rats, etc. used in scientific research tasks (eg, establishing preclinical animal models, etc.) mentioned in the background of this application.
  • step S101 uses the wireless signal transceiver as an infrared detector as an example to explain the technical solution of step S101 as follows:
  • the detection frame is composed of an infrared detector that is an infrared detector mounted on the outer frame and an infrared reception sensing element (for convenience of description, this type of detection frame is hereinafter referred to as an infrared touch detection frame)
  • an infrared touch detection frame these infrared detectors form a horizontal and vertical infrared detection network in the infrared touch detection frame when receiving and transmitting infrared rays.
  • an animal for scientific research for example, a mouse
  • enters the infrared detection network and blocks infrared reception somewhere the intensity of the infrared rays received by the infrared receiving and sensing elements at this point and the vertical direction will change.
  • the infrared touch detection frame can interpolate the data of each point, which can reach a resolution of 4096 ⁇ 4096; at any moment when the infrared touch detection frame works, there is only a pair of infrared emitting sensations.
  • the measuring element and the infrared receiving sensing element (referring to an infrared emitting sensing element and an infrared receiving sensing element corresponding to the physical location) are responding, and the circuit realizes rapid response by collecting high-frequency data from the infrared detector. (Response speed ⁇ 15ms).
  • the infrared touch detection frame can use a conventional infrared touch screen on the market (without glass), and the size ranges from 15 inches to 300 inches, and can also be customized according to needs.
  • the infrared touch detection frame is connected to a computing device, such as a personal computer, a smart phone, etc., via a USB interface.
  • a computing device such as a personal computer, a smart phone, etc.
  • the real-time position coordinates of the scientific research animal measured by the aforementioned method are transmitted to the computing device.
  • Any touch-enabled operating system can directly process the real-time position coordinates.
  • information such as real-time position coordinates and response time is stored in the data of the TOUCHINUPT structure and can be called directly through interface commands provided by Windows.
  • the computing device displays position information of the scientific research animal in the detection frame.
  • the control software in the computing device can not only display the position information of the scientific research animal in the detection frame to the user, but also The position information in the detection frame is used to draw real-time trajectories of scientific research animals. These real-time trajectories can also be displayed to the user through the user interface of the control software.
  • the computing device evaluates the behavior of the scientific research animal according to the position information of the scientific research animal in the detection frame.
  • control software in the computing device may calculate the direction and / or rate of movement of the scientific research animal and / or the projection size of the x-axis and y-axis directions according to the position information of the scientific research animal in the detection frame, and according to the calculated scientific research application,
  • the direction and / or rate of animal movement and / or the projection size of the x-axis and y-axis directions and a set threshold determine the behavior of animals for scientific research. For example, according to the calculated direction and / or rate of movement of scientific animals, if these directions and / or rates are greater than a set direction and / or rate threshold, it indicates that the scientific animals are in motion. Further, if this The duration of the exercise is greater than a set time threshold, which indicates that the scientific animal is very active, has a strong vitality, and so on.
  • the computing device may also trigger the behavioral stimulation device to send a stimulus signal to the scientific research animal according to the preset conditions and the evaluated behavior of the scientific research animal, wherein the behavioral stimulation device includes a device capable of emitting Electronic devices with light, electrical or sound signals, such as speakers, lasers, video players, foot shockers, etc., may also include devices that emit mechanical stimulation signals, such as high-power electric fans and so on.
  • the control software of the computing device triggers the behavioral stimulation device to send a stimulus signal to the scientific animal, such as sound, strong light, and so on.
  • the detection frame is fixed in the box, which provides and limits the range of activities of the scientific research animal.
  • the inner wall of the box is preferably flush with the inner wall of the detection frame, that is, the detection frame is embedded in the box, and in the entire system, there must be no objects other than scientific research animals.
  • the detection frame forms an occlusion.
  • the wireless signal transceivers deployed on the detection frame for example, the infrared emission sensing element-infrared receiving sensing element, should be as far as possible from the bottom of the box to the height of the scientific research animal on the back and ventral sides. The midpoint is flush.
  • the height of the wireless signal transceiver from the bottom plate of the cabinet can be designed as 15mm, as shown in FIG. 2.
  • These deployed wireless signal transceivers send and receive the three-dimensional position information of the scientific research animals in the wireless signal detection box in the detection frame, and the projection size in the x-axis, y-axis, and z-axis directions.
  • the infrared touch detection frame is used to directly detect the behavior of animals for scientific research, and the cost is low.
  • the process of locating these scientific animals in real time through the infrared touch detection frame is very fast, can reach 60Hz, and the detection accuracy is high, which can reach 4096 ⁇ 4096.
  • the infrared touch detection frame is driven by a standard touch screen, so it directly passes the USB interface
  • a computing device such as a personal computer can report the position of the animal for scientific research to the computing device, which is very convenient to install and use.
  • the control software of the computing device can directly read the position of scientific research animals without additional calculation process, it can control other hardware (such as display screen, speaker, laser, etc.) to stimulate these scientific research animals in real time.
  • the wireless signal transceiver detects the position information of the scientific animals in the detection frame by receiving and transmitting wireless signals, it does not need to be as existing
  • the sensor device is implanted under the skin of the animal. Therefore, the technical solution provided in this application will not interfere with the behavior of the animal itself, and therefore will not interfere with the detection of the behavior of the animal.
  • the signal transceiver can be an existing relatively commonly used component, and the cost itself is not high. Therefore, the technical solution provided by the present application is low in cost when detecting the behavior of scientific research animals, and can greatly save scientific research funds.
  • FIG. 3 is a schematic diagram of a system for detecting animal behavior for scientific research according to an embodiment of the present application. For ease of explanation, only necessary parts of the device are shown.
  • the device illustrated in FIG. 3 mainly includes a detection frame 302, a computing device 301, and a box 303.
  • the detection frame 302 is fixed in the box 303.
  • a wireless signal transceiver is disposed on the detection frame 302.
  • the computing device 301 includes a display module 304 and an evaluation module 305. As detailed below:
  • a detection frame 302 is configured for the wireless signal transceiver to detect the position information of the scientific research animal in the detection frame 302 by transmitting and receiving the wireless signal and transmit the position information to the computing device 301.
  • a display module 304 configured to display position information of the scientific research animal in the detection frame 302;
  • the evaluation module 305 is configured to evaluate the behavior of the scientific research animal according to the position information of the scientific research animal within the detection frame 302.
  • the evaluation module 305 illustrated in FIG. 3 may include a calculation unit 401 and a behavior determination unit 402, such as a system for detecting animal behaviors for scientific research as illustrated in FIG. 4, wherein:
  • a calculation unit 401 configured to calculate the direction and / or rate of movement of the scientific research animal and / or the projection size of the x-axis and y-axis directions according to the position information of the scientific research animal within the detection frame 302;
  • the behavior determining unit 402 is configured to determine the behavior of the scientific research animal according to the direction and / or rate of movement of the scientific research animal and / or the projection size of the x-axis and y-axis directions and the set threshold.
  • the above-mentioned system for detecting animal behaviors for scientific research illustrated in FIG. 3 or 4 may further include a behavior stimulation device 502, and the computing device 301 may further include a trigger module 501, as shown in FIG. 5-a or FIG. 5-b.
  • the triggering module 501 is configured to trigger a behavioral stimulation device 502 to send a stimulus signal to a research animal according to a preset condition and the behavior of the research animal.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Catching Or Destruction (AREA)

Abstract

一种检测科研用动物行为的方法和***,所述方法包括:检测框上部署的无线信号收发器通过收发无线信号检测检测框内科研用动物在检测框内的位置信息并将所述位置信息传输至所述计算设备(S101);计算设备显示科研用动物在检测框内的位置信息(S102);计算设备根据科研用动物在检测框内的位置信息评估科研用动物的行为(S103)。所述方法一方面不会对动物的行为本身产生干扰,因此也不会干扰对动物行为的检测;另一方面,检测框上部署的无线信号收发器可以是现有的比较常用的元器件,本身的成本不高,因此,在检测科研用动物行为时成本低廉,能够大幅度节省科研资金。

Description

检测科研用动物行为的方法和*** 技术领域
本申请属于科研设备制造领域,尤其涉及一种检测科研用动物行为的方法和***。
背景技术
动物模型被广泛应用于研究精神疾病(例如成瘾、抑郁或人格障碍等)和神经退行性疾病(例如,阿尔茨海默病、帕金森症、肌萎缩性侧索硬化症等),而动物行为是研究病理以及评估治疗手段的重要指标。以阿尔茨海默病为例,阿尔茨海默病(Alzheimer Disease,AD)是一种中枢神经***退行性疾病,起病隐匿,病程呈慢性进行性发展,主要临床表现为记忆障碍、认知功能障碍、语言障碍及行为和人格改变等全面性痴呆,严重影响患者社交、职业与生活,病因暂时不明。在美国,AD是第六大死亡原因(占所有死因的3.6%),截止至2015年,有530万人患有AD,AD和其它痴呆症患者的治疗和护理费用高达2260亿美元。随着我国人口老龄化加剧,AD患病率逐年上升,据统计,我国老年人群AD患病人口已经超过600万,预计到2050年患病人口将超过2000万,是世界上AD患病人口最多、增长速度最快的地区,给患者、家庭、社会和医疗带来沉重负担。
对AD的确诊通常来自对患者死后大脑的神经病理学改变的检测。通过对临床结果与病理特征的分析,即临床病理相关性研究提示了病理过程与认知状态之间的关系。作为对人类病患研究的必要补充,临床前动物模型,尤其是小鼠模型被广泛用于检测AD的病理生理学机制以及预测对AD进行药物干预的效果。由于没有一种动物学模型能够完整复现人类AD的所有特征,因此需要采用多种动物学模型进行研究。目前常用的AD小鼠模型就有不下11种(即PDAPP、TG2576、APP23、TgCRND8、J20、APP/PS1、TG2576+PS1(M146L)、APP/PS1 KI、5×FAD、3×Tg-AD和Tg4-42);人们采用了多种行为学范式去评估小鼠模型中的认知损伤情况,包括空间记忆检测(Morris水迷宫、八臂水迷宫和巴恩斯迷宫)、联合学习范式(被动躲避和恐惧条件化)、选择任务(Y迷宫与T迷宫)、新物体识别、注意力范式(3或5选择序列反应测试)、任务切换以及逆向学习。为了***高效的研究AD的病理生理学机制,开发有效的治疗手段,需要大规模的动物实验;为了提高研究效率,对科研用小型动物的行为检测***不可或缺。
目前,一种对科研用动物的行为检测***是通过在动物身上搭载传感器来检测动物行为,其主要采用运动传感器实时采集待检测动物的运动数据;根据采集的运动数据,分析待检测动物的运动矢量方向和动作走势;当分析出待检测动物的连续一致的动作走势达到预置次数且对应的运动矢量方向一致时,确认出现周期性动作趋势;将周期性动作趋势的特征数据与预设的动作趋势的特征数据进行比较,得到周期性动作趋势与预设的动作趋势的匹配度;若匹配度在预设阈值范围之内,则对待检测动物在周期性动作趋势持续期间内产生的连续动作行为的个数进行统计,连续动作行为为连续产生的动作走势。
然而,上述通过在动物身上搭载传感器来检测动物行为的方法或***需要在这些小型动物身上装上特定的传感器,这个过程往往会引起动物的不适感,从而对动物的行为造成影响,降低所采集行为数据的可靠性,而且,传感器有被实验动物损坏的风险。为了降低这个风险,对传感器的安装提出了较高的要求(例如,植入到动物皮下)。然而,传感器一般由电池提供能量,隔一段时间就需要更换电池或重新充电,因此,单次记录动物行为的时间会受到限制。
技术问题
本申请的目的在于提供一种检测科研用动物行为的方法和***,以在不对科研用动物的行为产生干扰的前提下,低成本地对科研用动物行为进行检测。
技术解决方案
本申请第一方面提供一种检测科研用动物行为的方法,应用于包括检测框、计算设备和箱体的***,所述方法包括:
所述检测框上部署的无线信号收发器通过收发无线信号检测所述检测框内科研用动物在所述检测框内的位置信息并将所述位置信息传输至所述计算设备,所述检测框固定于所述箱体内;
所述计算设备显示所述科研用动物在所述检测框内的位置信息;
所述计算设备根据所述科研用动物在所述检测框内的位置信息评估所述科研用动物的行为。
本申请第二方面提供一种检测科研用动物行为的***,所述***包括检测框、计算设备和箱体,所述检测框固定于所述箱体内,所述检测框上部署无线信号收发器,所述计算设备包括显示模块和评估模块;
所述检测框,用于所述无线信号收发器通过收发无线信号检测所述检测框内科研用动物在所述检测框内的位置信息并将所述位置信息传输至所述计算设备;
所述显示模块,用于显示所述科研用动物在所述检测框内的位置信息;
所述评估模块,用于根据所述科研用动物在所述检测框内的位置信息评估所述科研用动物的行为。
有益效果
从上述本申请技术方案可知,一方面,由于是无线信号收发器通过收发无线信号检测检测框内科研用动物在检测框内的位置信息,并不需要如现有技术一样,将传感器件植入动物皮下,因此,本申请提供的技术方案不会对动物的行为本身产生干扰,因此也不会干扰对动物行为的检测;另一方面,检测框上部署的无线信号收发器可以是现有的比较常用的元器件,本身的成本不高,因此,本申请提供的技术方案在检测科研用动物行为时成本低廉,能够大幅度节省科研资金。
附图说明
图1是本申请实施例提供的检测科研用动物行为的方法的实现流程示意图;
图2本申请实施例提供的检测科研用动物行为的***中检测框和箱体示意图;
图3是本申请实施例提供的检测科研用动物行为的***的结构示意图;
图4是本申请另一实施例提供的检测科研用动物行为的***的结构示意图;
图5-a是本申请另一实施例提供的检测科研用动物行为的***的结构示意图;
图5-b是本申请另一实施例提供的检测科研用动物行为的***的结构示意图。
本发明的实施方式
为了使本申请的目的、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
以下描述中,为了说明而不是为了限定,提出了诸如特定***结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的***、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
附图1是本申请实施例提供的检测科研用动物行为的方法的实现流程示意图,该方法应用于包括检测框、计算设备和箱体的***。附图1示例的方法主要包括以下步骤S101至S103,详细说明如下:
S101,检测框上部署的无线信号收发器通过收发无线信号检测检测框内科研用动物在检测框内的位置信息并将所述位置信息传输至计算设备,其中,检测框固定于箱体内。
在本申请的实施例中,无线信号收发器可以是红外探测器、雷达或声波探测器,相应地,无线信号可以是红外线、雷达波或声波,即红外探测器发出的无线信号是红外线,雷达发出雷达波,声波探测器发出的是声波,而科研用动物可以是本申请背景技术提及的用于科研任务(例如,建立临床前动物模型等等)的小鼠、大鼠等等。
以下以无线信号收发器是红外探测器为例,说明步骤S101的技术方案如下:
在本申请一个实施例中,检测框由装在外框上的红外探测器即红外线发射感测元件与红外线接收感测元件构成(为了描述方便,以下称这种检测框为红外触控检测框),这些红外探测器在收发红外线时在红外触控检测框内形成横竖交叉的红外线探测网。当有科研用动物(例如,小鼠)进入红外线探测网,阻挡住某处的红外线接收时,此点的纵横两个方向的红外线接收感测元件接收到的红外线的强弱就会发生变化,这种变化被转化为科研用动物在红外触控检测框内的坐标。通过对硬件的设计和软件的编程,红外触控检测框可以对各点数据进行插值计算,能够达到4096×4096的分辨率;在红外触控检测框工作的任意瞬间,只有一对红外线发射感测元件与红外线接收感测元件(指物理位置相对应的一只红外线发射感测元件与一只红外线接收感测元件)在进行应答,电路通过对红外探测器高频率的数据采集来实现迅速响应(响应速度≤15ms)。需要说明的是,红外触控检测框可采用市场上常规的红外触摸屏(可以不用玻璃),大小从15寸到300寸不等,也可根据需要自行定制大小。
红外触控检测框通过USB接口连接至计算设备,例如,个人电脑、智能手机等。当科研用动物在红外触控检测框内活动时,用前述方法测得的科研用动物的实时位置坐标被传递至计算设备,任何支持触控的操作***都可直接处理实时位置坐标,以windows为例,实时位置坐标和响应时间等信息储存在TOUCHINUPT结构的数据中,可以通过windows提供的接口命令直接调用。
S102,计算设备显示科研用动物在检测框内的位置信息。
计算设备在收到检测框内科研用动物在检测框内的位置信息后,计算设备中的控制软件不仅能够向用户显示科研用动物在检测框内的位置信息,而且还可以根据科研用动物在检测框内的位置信息,绘制科研用动物的实时轨迹,这些实时轨迹也可以通过控制软件的用户界面向用户显示出来。
S103,计算设备根据科研用动物在检测框内的位置信息评估科研用动物的行为。
具体地,计算设备中的控制软件可以根据科研用动物在检测框内的位置信息计算科研用动物运动的方向和/或速率和/或x轴和y轴方向投影大小,根据计算出来的科研用动物运动的方向和/或速率和/或x轴和y轴方向投影大小以及设定的阈值,确定科研用动物的行为。例如,根据计算出来的科研用动物运动的方向和/或速率,若这些方向和/或速率大于某个设定的方向和/或速率阈值,表明该科研用动物在运动,进一步地,若这个运动持续的时间大于某个设定的时间阈值,表明该科研用动物非常活跃,生命力强盛,等等。
在评估出科研用动物的行为后,计算设备还可以根据预设条件和所述评估出来的科研用动物的行为,触发行为刺激设备对科研用动物发出刺激信号,其中,行为刺激设备包括能够发出光、电或声音信号的电子设备,例如,喇叭、激光器、视频播放器、足底电击器等等,也可以包括发出机械刺激信号的设备,例如,大功率电风扇等等。当评估出来的科研用动物的行为对应的值达到预设条件,计算设备的控制软件触发行为刺激设备对科研用动物发出刺激信号,例如,声音、强光等等。
需要说明的是,检测框是固定于箱体内的,该箱体提供并限定了科研用动物的活动范围。为了防止科研用动物离开检测框的检测范围,箱体内壁最好与检测框内壁平齐,即检测框内嵌在箱体内,并且整个***中,除了科研用动物之外,不能有其它物体对检测框形成遮挡。为保证检测灵敏性,检测框上部署的无线信号收发器,例如,红外线发射感测元件-红外线接收感测元件对距离箱体底板的高度尽量与科研用动物四肢着地时背侧与腹侧的中点平齐。以科研用动物小鼠为例,无线信号收发器距离箱体底板的高度可以设计为15mm,如附图2所示。当然,若是要获取大型科研动物的坐标,可以将检测框定制到较大的尺寸,或者,还可以在箱体的四周、顶部和底部都部署无线信号收发器,通过箱体四周、顶部和底部部署的这些无线信号收发器收发无线信号检测箱体内科研用动物在所述检测框内的三维位置信息,以及x轴、y轴和z轴方向投影大小。
从上述实施例可知,直接采用红外触控检测框检测科研用动物行为,成本较低。通过红外触控检测框实时定位这些科研用动物的过程非常迅速,能达到60Hz,检测精度较高,能达到4096×4096;此外,红外触控检测框采用标准的触摸屏驱动,因此直接通过USB接口连上个人电脑等计算设备即可向计算设备报告科研用动物的位置,安装使用非常便利。由于计算设备的控制软件可直接读取科研用动物的位置,无需额外的计算过程,因此可以实时控制其它硬件(例如显示屏、喇叭、激光器等)对这些科研用动物进行刺激。
从上述附图1示例的检测科研用动物行为的方法可知,一方面,由于是无线信号收发器通过收发无线信号检测检测框内科研用动物在检测框内的位置信息,并不需要如现有技术一样,将传感器件植入动物皮下,因此,本申请提供的技术方案不会对动物的行为本身产生干扰,因此也不会干扰对动物行为的检测;另一方面,检测框上部署的无线信号收发器可以是现有的比较常用的元器件,本身的成本不高,因此,本申请提供的技术方案在检测科研用动物行为时成本低廉,能够大幅度节省科研资金。
图3是本申请实施例提供的检测科研用动物行为的***的示意图。为了便于说明,仅仅示出了装置的必要部分。图3示例的装置主要包括检测框302、计算设备301和箱体303,检测框302固定于箱体303内,检测框302上部署无线信号收发器,计算设备301包括显示模块304和评估模块305,详细说明如下:
检测框302,用于无线信号收发器通过收发无线信号检测检测框302内科研用动物在检测框302内的位置信息并将所述位置信息传输至计算设备301;
显示模块304,用于显示科研用动物在检测框302内的位置信息;
评估模块305,用于根据科研用动物在检测框302内的位置信息评估科研用动物的行为。
需要说明的是,本申请实施例提供的装置,由于与本申请方法实施例基于同一构思,其带来的技术效果与本申请方法实施例相同,具体内容可参见本申请方法实施例中的叙述,此处不再赘述。
附图3示例的评估模块305可以包括计算单元401和行为确定单元402,如附图4示例的检测科研用动物行为的***,其中:
计算单元401,用于根据科研用动物在检测框302内的位置信息计算科研用动物运动的方向和/或速率和/或x轴和y轴方向投影大小;
行为确定单元402,用于根据科研用动物运动的方向和/或速率和/或x轴和y轴方向投影大小以及设定的阈值,确定科研用动物的行为。
上述附图3或4示例的检测科研用动物行为的***还可以包括行为刺激设备502,计算设备301还可以包括触发模块501,如附图5-a或附图5-b所示检测科研用动物行为的***。触发模块501用于根据预设条件和评估出来的科研用动物的行为,触发行为刺激设备502对科研用动物发出刺激信号。
以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种检测科研用动物行为的方法,应用于包括检测框、计算设备和箱体的***,其特征在于,所述方法包括:
    所述检测框上部署的无线信号收发器通过收发无线信号检测所述检测框内科研用动物在所述检测框内的位置信息并将所述位置信息传输至所述计算设备,所述检测框固定于所述箱体内;
    所述计算设备显示所述科研用动物在所述检测框内的位置信息;
    所述计算设备根据所述科研用动物在所述检测框内的位置信息评估所述科研用动物的行为。
  2. 如权利要求1所述的检测科研用动物行为的方法,其特征在于,所述计算设备根据所述科研用动物在所述检测框内的位置信息评估所述科研用动物的行为,包括:
    根据所述科研用动物在所述检测框内的位置信息计算所述科研用动物运动的方向和/或速率和/或x轴和y轴方向投影大小;
    根据所述科研用动物运动的方向和/或速率和/或x轴和y轴方向投影大小以及设定的阈值,确定所述科研用动物的行为。
  3. 如权利要求1或2所述的检测科研用动物行为的方法,其特征在于,所述方法还包括:
    所述计算设备根据预设条件和所述评估出来的科研用动物的行为,触发行为刺激设备对所述科研用动物发出刺激信号。
  4. 如权利要求3所述的检测科研用动物行为的方法,其特征在于,所述行为刺激设备包括能够发出光、电或声音信号的电子设备。
  5. 如权利要求1或2所述的检测科研用动物行为的方法,其特征在于,所述方法还包括:
    所述计算设备根据所述科研用动物在所述检测框内的位置信息,绘制所述科研用动物的实时轨迹。
  6. 如权利要求1至5任意一项所述的检测科研用动物行为的方法,其特征在于,所述无线信号收发器为红外探测器、雷达或声波探测器,所述无线信号包括红外线、雷达波或声波。
  7. 一种检测科研用动物行为的***,其特征在于,所述***包括检测框、计算设备和箱体,所述检测框固定于所述箱体内,所述检测框上部署无线信号收发器,所述计算设备包括显示模块和评估模块;
    所述检测框,用于所述无线信号收发器通过收发无线信号检测所述检测框内科研用动物在所述检测框内的位置信息并将所述位置信息传输至所述计算设备;
    所述显示模块,用于显示所述科研用动物在所述检测框内的位置信息;
    所述评估模块,用于根据所述科研用动物在所述检测框内的位置信息评估所述科研用动物的行为。
  8. 如权利要求7所述的检测科研用动物行为的***,其特征在于,所述评估模块包括:
    计算单元,用于根据所述科研用动物在所述检测框内的位置信息计算所述科研用动物运动的方向和/或速率和/或x轴和y轴方向投影大小;
    行为确定单元,用于根据所述科研用动物运动的方向和/或速率和/或x轴和y轴方向投影大小以及设定的阈值,确定所述科研用动物的行为。
  9. 如权利要求7或8所述的检测科研用动物行为的***,其特征在于,所述***还包括行为刺激设备,所述计算设备还包括:
    触发模块,用于根据预设条件和所述评估出来的科研用动物的行为,触发所述行为刺激设备对所述科研用动物发出刺激信号。
  10. 如权利要求9所述的检测科研用动物行为的***,其特征在于,所述行为刺激设备包括能够发出光、电或声音信号的电子设备。
PCT/CN2018/108698 2018-09-29 2018-09-29 检测科研用动物行为的方法和*** WO2020062154A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/108698 WO2020062154A1 (zh) 2018-09-29 2018-09-29 检测科研用动物行为的方法和***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/108698 WO2020062154A1 (zh) 2018-09-29 2018-09-29 检测科研用动物行为的方法和***

Publications (1)

Publication Number Publication Date
WO2020062154A1 true WO2020062154A1 (zh) 2020-04-02

Family

ID=69950225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/108698 WO2020062154A1 (zh) 2018-09-29 2018-09-29 检测科研用动物行为的方法和***

Country Status (1)

Country Link
WO (1) WO2020062154A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101222842A (zh) * 2005-05-24 2008-07-16 联邦科学和工业研究组织 动物管理***
WO2015120495A1 (de) * 2014-02-14 2015-08-20 Mkw Electronics Gmbh Verfahren für die ortung von tieren
CN105759238A (zh) * 2016-04-19 2016-07-13 福州市佳璞电子商务有限公司 基于rfid定位的智能养殖舍
CN106614071A (zh) * 2016-09-28 2017-05-10 南京农业大学 一种母猪产前行为监测***以及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101222842A (zh) * 2005-05-24 2008-07-16 联邦科学和工业研究组织 动物管理***
WO2015120495A1 (de) * 2014-02-14 2015-08-20 Mkw Electronics Gmbh Verfahren für die ortung von tieren
CN105759238A (zh) * 2016-04-19 2016-07-13 福州市佳璞电子商务有限公司 基于rfid定位的智能养殖舍
CN106614071A (zh) * 2016-09-28 2017-05-10 南京农业大学 一种母猪产前行为监测***以及方法

Similar Documents

Publication Publication Date Title
RU2672684C2 (ru) Сенсорные стимулы для повышения точности оценки определения стадий сна
JP6503347B2 (ja) 電界脳波を含む脳の電気的活動測定用のセンサアセンブリ
WO2020253162A1 (zh) 机器人及其控制方法、智能家居控制***
JP2016526972A5 (zh)
CN109936999A (zh) 使用家庭睡眠***进行睡眠评估
CN103519794A (zh) 测量装置、测量方法、程序、存储介质和测量***
CN107405080A (zh) 利用可穿戴设备远程地监测用户的健康的***、设备和方法
TWI478691B (zh) 睡意偵測方法及其裝置
JP2016529966A (ja) 咳の検知用、分析用および通信用のプラットフォーム
US20230346285A1 (en) Localized collection of biological signals, cursor control in speech assistance interface based on biological electrical signals and arousal detection based on biological electrical signals
Pasquet et al. Wireless inertial measurement of head kinematics in freely-moving rats
US20180317789A1 (en) Devices and Methods for Remote Monitoring of Heart Activity
CN113397520A (zh) 室内对象的信息检测方法及装置、存储介质和处理器
AU2021203409A1 (en) Respiratory disease monitoring wearable apparatus
CN108882853B (zh) 使用视觉情境来及时触发测量生理参数
US20230078479A1 (en) Real-time monitoring device for human body
US10957430B2 (en) Crowdsourcing intraoral information
CN203789906U (zh) 蓝牙手环
Ishtiaq et al. Fall detection, wearable sensors & artificial intelligence: A short review
WO2020062154A1 (zh) 检测科研用动物行为的方法和***
KR102171742B1 (ko) 노인 케어 시스템 및 그 방법
CN104754301A (zh) 具近端看护功能及云端传送的自动监视***
CN106999102A (zh) 咀嚼检测装置
US20230397891A1 (en) Ear-wearable devices for detecting, monitoring, or preventing head injuries
US20170112412A1 (en) Detecting air pressure and respiratory conditions using a device touch sensitive surface (tss) subsystem and other built in sensors subsystems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934938

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18934938

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 07.09.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18934938

Country of ref document: EP

Kind code of ref document: A1