WO2020062102A1 - 数据传输方法、设备及***、存储介质 - Google Patents

数据传输方法、设备及***、存储介质 Download PDF

Info

Publication number
WO2020062102A1
WO2020062102A1 PCT/CN2018/108488 CN2018108488W WO2020062102A1 WO 2020062102 A1 WO2020062102 A1 WO 2020062102A1 CN 2018108488 W CN2018108488 W CN 2018108488W WO 2020062102 A1 WO2020062102 A1 WO 2020062102A1
Authority
WO
WIPO (PCT)
Prior art keywords
interval threshold
interval
downlink control
parameter
transmission
Prior art date
Application number
PCT/CN2018/108488
Other languages
English (en)
French (fr)
Inventor
罗之虎
李军
铁晓磊
金哲
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2018/108488 priority Critical patent/WO2020062102A1/zh
Priority to CN201880097174.0A priority patent/CN112640348B/zh
Priority to EP18935390.7A priority patent/EP3849122A4/en
Publication of WO2020062102A1 publication Critical patent/WO2020062102A1/zh
Priority to US17/212,183 priority patent/US11844070B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • Embodiments of the present application relate to the field of Internet of Things communications, and in particular, to a data transmission method, device, system, and storage medium.
  • a narrowband Internet of Things (NB-IoT) system is a typical Internet of Things (IoT) system, which includes multiple terminal devices and network devices that provide communication services for the multiple terminal devices.
  • IoT Internet of Things
  • the NB-IoT system needs to support a larger coverage area.
  • Network devices have different coverage conditions for terminal devices in different deployment environments. For terminal devices under different coverage conditions, the number of repetitions (that is, the number of repeated transmissions) required for downlink transmission is different.
  • the coverage condition is related to the wireless channel quality of the terminal device and the distance between the terminal device and the network device.
  • the NB-IoT system defines two types of downlink physical channels: narrowband physical downlink control channel (NPDCCH) and narrowband physical downlink shared channel (NPDSCH).
  • NPDCCH narrowband physical downlink control channel
  • NPDSCH narrowband physical downlink shared channel
  • NPDSCH corresponding to different terminal devices is transmitted in a time division multiplexing (TDM) manner, and NPDCCH and NPDSCH are also transmitted in a TDM manner.
  • TDM time division multiplexing
  • NPDCCH and NPDSCH are also transmitted in a TDM manner.
  • TDM time division multiplexing
  • the network device determines the time period for the downlink transmission of the terminal device.
  • the network device determines whether there is a gap in the GAP. If there is a gap, the network device does not perform downlink transmission with the terminal device in the gap, and continues to perform downlink transmission with the terminal device after the gap.
  • the terminal device determines whether there is a gap in the time period used for downlink transmission. If there is a gap, the terminal device does not receive downlink transmission in the gap, and continues to receive downlink transmission after the gap. This processing of network equipment and terminal equipment is also called delayed transmission.
  • Downlink transmission includes transmission of NPDCCH and transmission of NPDSCH.
  • the maximum number of repetitions R max of the NPDCCH search space is usually compared with the interval threshold N gap, threshold configured by the NB-IoT system to determine whether there is a gap in the NPDCCH transmission. If R max is greater than or equal to N gap, threshold , There is a gap in the transmission of the NPDCCH. If R max is less than N gap, threshold , there is no gap in the transmission of the NPDCCH.
  • a manner of determining whether there is a gap in the transmission of NPDSCH is the same as a manner of determining whether there is a gap in the transmission of NPDCCH. Wherein, whether there is gap in NPDCCH transmission refers to whether there is gap in the time period used for NPDCCH transmission, and whether there is gap in NPDSCH transmission refers to whether there is gap in the time period used for NPDSCH transmission.
  • Downlink data is transmitted in the form of a transport block (TB) during actual transmission.
  • the downlink data may be split into multiple TBs for transmission. .
  • the TB is carried on the NPDSCH for transmission.
  • the subsequent evolution of NB-IoT Specification 13 has evolved from supporting only one DCI to schedule one TB to supporting one DCI to schedule multiple TBs.
  • R max is less than N gap, threshold , there is no gap in the time period used for downlink transmission, so the downlink transmission will not be delayed.
  • the total duration of NPDSCH transmissions carrying multiple TBs may be large, which results in the NPDSCH transmissions carrying multiple TBs occupying the downlink channel for a long time, which results in the downlink channel being blocked and affecting the downlink transmission of other terminal equipment. Therefore, a new gap determination method is urgently needed to avoid continuous downlink transmission for a long duration to a terminal device, thereby preventing the downlink channel from being blocked.
  • the embodiments of the present application provide a data transmission method, device, system, and storage medium, which can avoid continuous downlink transmission for a terminal device with a long duration, thereby preventing the downlink channel from being blocked.
  • the technical solutions of the embodiments of the present application are as follows:
  • a data transmission method includes:
  • the first parameter and the second parameter are different, and the first interval threshold and the second interval threshold are the same; or
  • the first parameter is the same as the second parameter, and the first interval threshold is different from the second interval threshold;
  • the first parameter and the second parameter are different, and the first interval threshold and the second interval threshold are different.
  • the first parameter, the second parameter, the first interval threshold, and the second interval threshold are such that the number of intervals included in the same time period for sending the downlink data channel is not less than The number of intervals included in the same time period for sending the downlink control channel.
  • a data transmission method includes:
  • the first parameter and the second parameter are different, and the first interval threshold and the second interval threshold are the same; or
  • the first parameter and the second parameter are the same, and the first interval threshold and the second interval threshold are different; or
  • the first parameter and the second parameter are different, and the first interval threshold and the second interval threshold are different.
  • the first parameter, the second parameter, the first interval threshold, and the second interval threshold are such that the number of intervals included in the same time period for receiving the downlink data channel is not less than The number of intervals included in the same time period for receiving the downlink control channel.
  • the first parameter is the same as the second parameter, and the first parameter is a maximum number of repetitions of a search space of a physical downlink control channel,
  • the determining whether there is an interval in transmission of the downlink control channel according to the first parameter and the first interval threshold includes:
  • the determining whether there is an interval in transmission of the downlink data channel according to the second parameter and the second interval threshold includes:
  • the first interval threshold and the second interval threshold are configured by the system; or
  • the first interval threshold is configured by the system, and the second interval threshold is determined according to the number of transmission blocks scheduled by the first interval threshold and the downlink control information; or,
  • the first interval threshold is configured by the system, and the second interval threshold is determined according to the maximum number of transport blocks that can be scheduled by the first interval threshold and the downlink control information.
  • the first parameter is a maximum number of repetitions of a search space of a physical downlink control channel
  • the second parameter is a first valid subframe number
  • the determining whether there is an interval in transmission of the downlink control channel according to the first parameter and the first interval threshold includes:
  • the determining whether there is an interval in transmission of the downlink data channel according to the second parameter and the second interval threshold includes:
  • the first interval threshold and the second interval threshold are configured by the system; or
  • the first interval threshold is configured by the system, the second interval threshold is determined according to the first interval threshold and a preset constant, and the preset constant is an integer greater than or equal to 1 and less than or equal to 10; or ,
  • the first interval threshold is configured by the system
  • the second interval threshold is determined according to the first interval threshold and a third interval threshold
  • the third interval threshold is configured by the system.
  • the first effective subframe number is occupied by a physical downlink shared channel of a first transport block among a plurality of transport blocks carrying the downlink control information scheduling.
  • the first effective subframe number is the effective subframe number occupied by a physical downlink shared channel of any one of a plurality of transmission blocks carrying the downlink control information scheduling; or,
  • the first effective subframe number is an effective subframe number occupied by a physical downlink shared channel of a plurality of transport blocks carrying the downlink control information scheduling.
  • a network device includes at least one module, and the at least one module is configured to implement the data transmission method provided by the first aspect or any optional manner of the first aspect.
  • a terminal device includes at least one module, and the at least one module is configured to implement the data transmission method provided in the second aspect or any optional manner of the second aspect.
  • a network device includes a processor, a memory, and a transceiver.
  • the transceiver is used for the network device to communicate with the terminal device;
  • Memory for storing instructions
  • the processor is configured to execute instructions stored in the memory to implement the data transmission method provided by the first aspect or any optional manner of the first aspect.
  • the network device further includes: a network interface.
  • the processor, the transceiver, the memory, and the network interface are connected by a bus.
  • the processor includes one or more processing cores.
  • the processor executes software programs and units to execute various operations. This type of functional applications and data processing; there can be multiple network interfaces, the network interface is used for the network device to communicate with other storage devices or terminal devices.
  • a terminal device includes a processor, a memory, and a transceiver.
  • the transceiver is used for the terminal device to communicate with the network device;
  • Memory for storing instructions
  • the processor is configured to execute instructions stored in the memory to implement the data transmission method provided in the second aspect or any optional manner of the second aspect.
  • the terminal device further includes a network interface.
  • the processor, the transceiver, the memory, and the network interface are connected by a bus.
  • the processor includes one or more processing cores.
  • the processor runs software programs and units to execute each There are multiple functional applications and data processing; there may be multiple network interfaces, and the network interface is used for the terminal device to communicate with other storage devices or network devices.
  • a data transmission system includes the network device according to the third aspect and the terminal device according to the fourth aspect; or the data transmission system includes the network according to the fifth aspect.
  • a computer-readable storage medium stores instructions, and when the instructions run on a processing component of a computer, the processing component is caused to execute the first aspect or the first aspect.
  • the data transmission method according to any optional aspect of the aspect.
  • a computer-readable storage medium stores instructions, and when the instructions run on a processing component of a computer, the processing component is caused to execute the second aspect or the second aspect
  • the data transmission method according to any optional aspect of the aspect.
  • a computer program product containing instructions is provided, when the computer program product is run on a computer, the computer is caused to execute the data transmission method according to the first aspect or any optional manner of the first aspect .
  • a computer program product containing instructions is provided, when the computer program product is run on a computer, the computer is caused to perform the data transmission according to the second aspect or any one of the optional aspects of the second aspect method.
  • a chip is provided, and the chip includes a programmable logic circuit and / or a program instruction, and is used to implement the data described in the first aspect or any optional manner of the first aspect when the chip is running. Transmission method.
  • a chip is provided, and the chip includes a programmable logic circuit and / or a program instruction, and is used to implement the data described in the second aspect or any optional manner of the second aspect when the chip is running. Transmission method.
  • a processing device includes at least one circuit, and the at least one circuit is configured to execute the data transmission method according to the first aspect or any optional manner of the first aspect.
  • a processing device includes at least one circuit, and the at least one circuit is configured to execute the data transmission method according to the second aspect or any optional manner of the second aspect.
  • a processing device is provided, and the processing device is configured to implement the data transmission method according to the first aspect or any optional manner of the first aspect.
  • a seventeenth aspect provides a processing device, where the processing device is configured to implement the data transmission method according to the second aspect or any one of the optional aspects of the second aspect.
  • a data transmission method includes:
  • the type of the terminal device is a first type or a second type
  • the first type of terminal device For the first type of terminal device, determining whether there is an interval in transmission of the downlink control channel according to the first parameter and the first interval threshold, and according to a determination result of whether there is an interval in transmission of the downlink control channel, Sending downlink control information to the first type of terminal device through the downlink control channel, and for the first type of terminal device, determining the transmission of the downlink data channel according to the first parameter and the first interval threshold Whether there is a gap, according to a determination result of whether there is a gap in transmission of the downlink data channel, sending a transport block to the first type of terminal device through the downlink data channel, and the downlink control information is used to schedule the A transport block
  • determining whether there is an interval in transmission of the downlink control channel according to the second parameter and the second interval threshold, and according to a determination result of whether there is an interval in transmission of the downlink control channel Sending downlink control information to the second type of terminal device through the downlink control channel, and for the second type of terminal device, determining the transmission of the downlink data channel according to the second parameter and the second interval threshold Whether there is a gap, according to a determination result of whether there is a gap in transmission of the downlink data channel, sending a plurality of transmission blocks to the second type of terminal device through the downlink data channel, and the downlink control information is used to schedule Mentioned multiple transport blocks;
  • the first parameter and the second parameter are different, and the first interval threshold and the second interval threshold are the same; or
  • the first parameter is the same as the second parameter, and the first interval threshold is different from the second interval threshold;
  • the first parameter and the second parameter are different, and the first interval threshold and the second interval threshold are different.
  • the first parameter, the second parameter, the first interval threshold, and the second interval threshold are included in the same time period for sending the downlink data channel to the same terminal device.
  • the number of intervals is not less than the number of intervals included in the same time period for sending the downlink control channel.
  • a data transmission method includes:
  • the type of the terminal device is a first type or a second type
  • the terminal device determines whether there is an interval in the transmission of the downlink control channel according to the first parameter and the first interval threshold, and whether or not there is an interval in the transmission of the downlink control channel. As a result of the interval determination, downlink control information is received from a network device through the downlink control channel.
  • the terminal device is the first type of terminal device, it is determined according to the first parameter and the first interval threshold. Whether there is a gap in the transmission of the downlink data channel, and according to a determination result of whether there is a gap in the transmission of the downlink data channel, a transport block is received from the network device through the downlink data channel, and the downlink control information is used for scheduling The one transmission block;
  • the terminal device determines whether there is an interval in the transmission of the downlink control channel according to the second parameter and the second interval threshold, and whether or not there is an interval in the transmission of the downlink control channel. As a result of the interval determination, downlink control information is received from a network device through the downlink control channel.
  • the terminal device is the second type of terminal device, it is determined according to the second parameter and the second interval threshold. Whether there is a gap in the transmission of the downlink data channel, and according to a determination result of whether there is a gap in the transmission of the downlink data channel, receiving multiple transmission blocks from the network device through the downlink data channel, the downlink control information is used for Scheduling the plurality of transmission blocks;
  • the first parameter and the second parameter are different, and the first interval threshold and the second interval threshold are the same; or
  • the first parameter is the same as the second parameter, and the first interval threshold is different from the second interval threshold;
  • the first parameter and the second parameter are different, and the first interval threshold and the second interval threshold are different.
  • the first parameter, the second parameter, the first interval threshold, and the second interval threshold are included in the same time period for receiving the downlink data channel for the same terminal device.
  • the number of intervals is not less than the number of intervals included in the same time period for receiving the downlink control channel.
  • the first parameter is the same as the second parameter, and the first parameter is a maximum number of repetitions of a search space of a physical downlink control channel,
  • determining whether there is an interval in transmission of a downlink control channel according to the first parameter and the first interval threshold includes:
  • determining whether there is an interval in transmission of a downlink data channel according to the first parameter and the first interval threshold includes:
  • determining whether there is an interval in transmission of a downlink control channel according to the second parameter and the second interval threshold includes:
  • determining whether there is an interval in transmission of a downlink data channel according to the second parameter and the second interval threshold includes:
  • the first interval threshold and the second interval threshold are configured by the system, and the first interval threshold is different from the second interval threshold; or,
  • the first interval threshold is configured by the system, and the second interval threshold is determined according to the maximum number of transport blocks that can be scheduled by the first interval threshold and the downlink control information.
  • the first parameter is different from the second parameter, the first parameter is a first number of repetitions, and the first number of repetitions is the The maximum number of repetitions of the search space of the physical downlink control channel used by the first type of terminal device, the second parameter is the second number of repetitions, and the second number of repetitions is the physical downlink used by the second type of terminal device The maximum number of repetitions of the search space of the control channel,
  • determining whether there is an interval in transmission of a downlink control channel according to the first parameter and the first interval threshold includes:
  • determining whether there is an interval in transmission of a downlink data channel according to the first parameter and the first interval threshold includes:
  • determining whether there is an interval in transmission of a downlink control channel according to the second parameter and the second interval threshold includes:
  • determining whether there is an interval in transmission of a downlink data channel according to the second parameter and the second interval threshold includes:
  • the first interval threshold and the second interval threshold are configured by the system, and the first interval threshold is different from the second interval threshold; or,
  • the first interval threshold is configured by the system, and the second interval threshold is determined according to the maximum number of transport blocks that can be scheduled by the first interval threshold and the downlink control information.
  • a network device in a twentieth aspect, includes: at least one module, the at least one module is configured to implement the data transmission method provided in the eighteenth aspect or any one of the eighteenth optional aspects .
  • a terminal device includes at least one module, and the at least one module is configured to implement data transmission provided by the nineteenth aspect or any one of the nineteenth aspects. method.
  • a network device in a twenty-second aspect, includes a processor, a memory, and a transceiver.
  • the transceiver is used for the network device to communicate with the terminal device;
  • Memory for storing instructions
  • the processor is configured to execute instructions stored in the memory to implement the data transmission method provided by the eighteenth aspect or any one of the eighteenth optional aspects.
  • the network device further includes: a network interface.
  • the processor, the transceiver, the memory, and the network interface are connected by a bus.
  • the processor includes one or more processing cores.
  • the processor executes software programs and units to execute various operations. This type of functional applications and data processing; there can be multiple network interfaces, the network interface is used for the network device to communicate with other storage devices or terminal devices.
  • a terminal device includes a processor, a memory, and a transceiver.
  • the transceiver is used for the terminal device to communicate with the network device;
  • Memory for storing instructions
  • the processor is configured to execute instructions stored in the memory to implement the data transmission method provided by the nineteenth aspect or any one of the optional aspects of the nineteenth aspect.
  • the terminal device further includes a network interface.
  • the processor, the transceiver, the memory, and the network interface are connected by a bus.
  • the processor includes one or more processing cores.
  • the processor runs software programs and units to execute each There are multiple functional applications and data processing; there may be multiple network interfaces, and the network interface is used for the terminal device to communicate with other storage devices or network devices.
  • a data transmission system includes the network device according to the twentieth aspect and the terminal device according to the twenty-first aspect; or the data transmission system includes: a second The network equipment according to the twelfth aspect and the terminal equipment according to the twenty-third aspect.
  • a computer-readable storage medium stores instructions, and when the instructions are run on a processing component of a computer, the processing component is caused to execute the eighteenth aspect Or the data transmission method according to any one of the eighteenth aspects.
  • a computer-readable storage medium stores instructions, and when the instructions are run on a processing component of a computer, the processing component is caused to execute the nineteenth aspect Or the data transmission method according to any one of the nineteenth aspects.
  • a computer program product containing instructions is provided, when the computer program product runs on a computer, causing the computer to execute the eighteenth aspect or any optional manner of the eighteenth aspect Data transmission method.
  • a computer program product containing instructions is provided, when the computer program product runs on a computer, causing the computer to execute the nineteenth aspect or any optional manner of the nineteenth aspect Data transmission method.
  • a chip in a twenty-ninth aspect, includes a programmable logic circuit and / or a program instruction, and is used to implement the eighteenth aspect or any optional manner of the eighteenth aspect when the chip is running.
  • a chip is provided, and the chip includes a programmable logic circuit and / or a program instruction, and the chip is used to implement the nineteenth aspect or any optional manner of the nineteenth aspect when the chip is running. Data transmission method.
  • a processing device includes at least one circuit, and the at least one circuit is configured to execute the data transmission method according to the eighteenth aspect or any optional aspect of the eighteenth aspect. .
  • a processing device configured to execute the data transmission method according to the nineteenth aspect or any optional aspect of the nineteenth aspect.
  • a processing device configured to implement the eighteenth aspect or the data transmission method described in any one of the eighteenth aspects.
  • a processing device is provided, and the processing device is configured to implement the data transmission method according to the nineteenth aspect or any optional aspect of the nineteenth aspect.
  • the data transmission method, device, system, and storage medium provided in the embodiments of the present application.
  • the network device determines whether there is an interval in the transmission of the downlink control channel according to the first parameter and the first interval threshold, and determines whether there is an interval in the transmission of the downlink control channel. Determine the result, send downlink control information to the terminal device through the downlink control channel, and determine whether there is a gap in the transmission of the downlink data channel according to the second parameter and the second interval threshold.
  • the downlink data channel sends one or more transport blocks to the terminal device, the first parameter and the second parameter are different and the first interval threshold and the second interval threshold are the same, or the first parameter and the second parameter are the same and the first interval threshold and The second interval threshold is different, or the first parameter and the second parameter are different and the first interval threshold and the second interval threshold are different.
  • the number of intervals included in the same time period for sending the downlink control channel may specifically enable the number of intervals included in the same time period for sending the downlink data channel to be not less than the number of intervals included in the same time period for the downlink control channel.
  • the number of intervals to include Therefore, compared to the current gap determination method, the gap determination method provided in the embodiments of the present application can make the transmission of downlink data channels have more intervals, so it can be better in the scenario where one DCI schedules multiple TBs. Avoid continuous downlink data transmission for a long duration to a terminal device, thereby better preventing the downlink channel from being blocked.
  • FIG. 1 is a schematic diagram of an NPDCCH scheduling NPDSCH according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of an NPDCCH candidate according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a downlink channel transmission according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a DCI scheduling multiple TBs provided by related technologies
  • FIG. 5 is a schematic diagram of an implementation environment involved in each of the embodiments of the present application.
  • FIG. 6 is a method flowchart of a data transmission method according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a logical structure of a network device according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a logical structure of a terminal device according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a hardware structure of a communication device according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a logical structure of another network device according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a logical structure of another terminal device according to an embodiment of the present application.
  • MTC Machine type communication
  • M2M machine-to-machine
  • IoT Internet-to-machine
  • MTC may cover smart meter reading, medical detection monitoring, logistics detection monitoring, industrial detection monitoring, automotive networking, smart communities, and wearable device communications.
  • the Internet of Things industry structured around MTC is considered to be the fourth wave in the information industry after computers, the Internet, and mobile communications networks, and is the future direction of wireless networks.
  • the MTC system based on the cellular network infrastructure is an important type of MTC system.
  • This type of MTC system is often called a Cellular MTC system or a Cellular IoT (CIoT) system.
  • the 3rd Generation Partnership Project (3rd Generation Partnership Project) (3GPP) standards organization has always paid attention to the development of the Cellular MTC system and actively carried out the standardization of related technologies.
  • the Cellular MTC system includes network equipment and terminal equipment.
  • Network equipment can be MTC base stations
  • terminal equipment can be MTC equipment
  • MTC equipment is also called M2M equipment or IoT equipment.
  • the requirements of the Cellular MTC system for network equipment and terminal equipment include the following four aspects:
  • the first aspect network equipment has a large coverage area: MTC services require network equipment to support a large coverage area. Specifically, it is required that the network equipment has a strong coverage enhancement technology and can provide communication services for terminal equipment with a large penetration loss (for example, a penetration loss of 20 dB). For example, terminal devices in smart home and smart meter reading services such as smart water meters and smart meters are usually deployed indoors or in the basement. The Cellular MTC system requires network equipment to provide robust communication services for terminal devices deployed in the indoor and basement.
  • network devices have a very high number of connections: network devices may be deployed on a large scale (more than tens of thousands or even hundreds of thousands) with terminal devices such as smart homes, smart communities, surveillance, automobiles, and wearable devices. Network devices need to provide communication services for large-scale deployed terminal devices while preventing network congestion.
  • the terminal equipment has a low cost (low cost): the cost of the terminal equipment needs to be lower than the cost of existing mobile terminals to meet the conditions that the terminal equipment can be deployed on a large scale.
  • terminal equipment has low power consumption (low power consumption): due to the diversity of terminal equipment and the diversity of the deployment environment of terminal equipment, terminal equipment is generally battery-powered, and it will be expensive to replace batteries for a large number of terminal equipment Extremely high labor cost and time cost, therefore, each functional device of the terminal device is required to have extremely low power consumption. In this way, the terminal device can have a longer standby time to reduce the number of battery replacements.
  • MTC system is also called M2M system or IoT system.
  • NB-IoT system is a typical IoT system.
  • network devices In NB-IoT system, network devices have different coverage conditions for terminal devices in different deployment environments. Network devices are based on coverage conditions. Use different scheduling strategies to schedule terminal devices deployed in different environments. Among them, the coverage condition is related to the wireless channel quality of the terminal device and the distance between the terminal device and the network device. For example, the wireless channel quality of the terminal equipment in the center of the cell is better, and the coverage conditions of these terminal equipment by the network equipment are better.
  • the network equipment can establish a reliable communication link with these terminal equipment using a small transmission power, so Network devices can use large code blocks, high-order modulation, and carrier bonding to quickly complete data transmission with these terminal devices; for example, the wireless channel quality of terminal devices at the cell edge or basement is poor, and network devices The coverage conditions of these terminal devices are poor. Network devices use large transmit power to establish communication links with these terminal devices. Therefore, network devices need to use technologies such as small code blocks, low-order modulation, repeated transmission, and spreading. Means to complete the data transmission with these terminal equipment.
  • the NB-IoT system introduces the concept of coverage level to distinguish terminal devices with different coverage conditions.
  • each terminal device corresponds to a coverage level.
  • the coverage conditions of terminal devices at the same coverage level are the same or similar.
  • Network devices can use the same or similar scheduling parameters to schedule terminal devices at the same coverage level.
  • the coverage level introduced by the NB-IoT system includes three coverage levels: “ordinary coverage”, “edge coverage” and “extended coverage”.
  • the coverage level of terminal devices closer to the network device may be “ordinary coverage”.
  • the number of repetitions may be non-repeating; the coverage level of the terminal device far from the network device may be "edge coverage", and the network device repeats when transmitting data with these terminal devices.
  • the number of times can be medium; the coverage level of the terminal equipment in the deployment environment such as the basement is "extended coverage”.
  • the number of repetitions may be hundreds or even thousands of times.
  • the number of repetitions refers to the number of repeated transmissions.
  • the terminal device can select an appropriate number of repetitions for data transmission according to its corresponding coverage level to reduce unnecessary repeated transmissions and reduce power overhead.
  • the NB-IoT system defines two types of downlink physical channels, namely NPDCCH and NPDSCH.
  • NPDCCH is used to carry DCI
  • NPDSCH is used to carry downlink data.
  • Downlink data is usually transmitted in the form of TB.
  • NPDSCH is used to carry downlink data, which is NPDSCH.
  • NPDCCH is used to schedule NPDSCH (that is, DCI is used to schedule TB).
  • the system bandwidth of the NB-IoT system is 180 kilohertz (kHz), the bandwidth occupied by NPDSCH transmission is 180 kHz, and the bandwidth occupied by NPDCCH transmission is 90 kHz or 180 kHz.
  • the NPDCCH and NPDSCH corresponding to the same terminal device are transmitted in TDM, the NPDSCH corresponding to different terminal devices are transmitted in TDM, and the NPDCCH corresponding to different terminal devices is transmitted in TDM or frequency division multiplexing (FDM).
  • FIG. 1 shows a schematic diagram of NPDCCH scheduling for NPDSCH according to an embodiment of the present application.
  • the meaning of the arrow is that the NPDSCH pointed by the arrow is scheduled by the NPDCCH without the arrow.
  • This FIG. 1 uses terminal equipment as a user equipment (User Equipment, UE) for illustration.
  • UE User Equipment
  • the NPDCCH corresponding to UE1 and the NPDSCH corresponding to UE1 are transmitted in TDM
  • the NPDCCH corresponding to UE2 and the NPDSCH corresponding to UE2 are transmitted in TDM
  • the NPDCCH corresponding to UE3 and the NPDSCH corresponding to UE3 are transmitted in TDM
  • UE1 The corresponding NPDCCH and the NPDCCH corresponding to UE2 are transmitted in TDM
  • the NPDCCH corresponding to UE1 and the NPDCCH corresponding to UE3 are transmitted in TDM
  • the NPDCCH corresponding to UE2 and the NPDCCH corresponding to UE3 are transmitted in FDM
  • the NPDSCH and UE2 corresponding to UE1 are transmitted.
  • the corresponding NPDSCH is transmitted in a TDM manner
  • the NPDSCH corresponding to UE1 and the NPDSCH corresponding to UE3 are transmitted in a TDM manner
  • the NPDSCH corresponding to UE2 and the NPDSCH corresponding to UE3 are transmitted in a TDM manner.
  • the terminal device needs to monitor an NPDCCH candidate set to obtain DCI.
  • the NPDCCH candidate set is called an NPDCCH search space (SS), and resources of the search space are periodically distributed.
  • the network device may indicate to the terminal device the period of the search space (that is, the length of the period of the search space in the time domain) and the search space within each period by using a system message or radio resource control (RRC) signaling.
  • RRC radio resource control
  • the terminal device blindly detects the NPDCCH in the search space according to the instruction of the network device.
  • the system message or RRC signaling carries parameters R max , G, and ⁇ offset .
  • R max represents the maximum number of repetitions of the NPDCCH search space.
  • the terminal device After receiving the system message or RRC signaling, the terminal device multiplies the product of R max and G by Determine the period of the search space, determine R max as the duration of the search space in the period of each search space, and determine the product of R max , G, and ⁇ offset as the starting position of the period of the search space and search The interval of the starting position of the space in the time domain.
  • G * R max * ⁇ offset represents the length of the G * R max * ⁇ offset offset from the starting position of the period of the search space in the time domain.
  • the cycle search space is G * R max
  • the interval between the start position of the search space period and the start position of the search space in the time domain is G * R max * ⁇ offset .
  • each candidate in the time domain is equal to R max / 8 (that is, R max of 8) effective subframes, and the length of each candidate in the 8th to 11th candidates in the time domain Equal to R max / 4 (ie, R max 1/4) effective sub-frames, and the length of each candidate in the 12th to 13th candidates in the time domain is equal to R max / 2 (that is, 2/2 R max ) effective subframes, and the length of the 14th candidate in the time domain is equal to R max effective subframes.
  • the downlink transmission of a terminal device with poor coverage conditions needs to be repeated hundreds or even thousands of times, so the downlink transmission of a terminal device with poor coverage conditions takes a long time.
  • the NPDSCH corresponding to different terminal equipment can only be transmitted in TDM mode, if the downlink transmission of the terminal equipment with poor coverage conditions occupies the channel, the downlink transmission of the terminal equipment with better coverage conditions must wait until the downlink of the terminal equipment with poor coverage conditions The transmission can only be performed after the end of the transmission. Therefore, the downlink transmission of the terminal equipment with poor coverage conditions will block the downlink transmission of the terminal equipment with poor coverage conditions.
  • NB-IoTRel-13 introduced the concept of gap.
  • the network device determines whether there is a gap in the time period used for the downlink transmission of the terminal device. If there is a gap, the network device does not include the gap in the gap. Perform downlink transmission with the terminal device, and continue to perform downlink transmission with the terminal device after the gap. The terminal device determines whether there is a gap in the time period used for downlink transmission. If there is a gap, the terminal device does not receive downlink transmission in the gap, and continues to receive downlink transmission after the gap.
  • Downlink transmission includes transmission of NPDCCH and transmission of NPDSCH.
  • the maximum number of repetitions R max of the NPDCCH search space is usually compared with the interval threshold N gap, threshold configured by the NB-IoT system to determine whether there is a gap in the NPDCCH transmission. If R max is greater than or equal to N gap, threshold , There is a gap in the transmission of the NPDCCH. If R max is less than N gap, threshold , there is no gap in the transmission of the NPDCCH.
  • a manner of determining whether there is a gap in the transmission of NPDSCH is the same as a manner of determining whether there is a gap in the transmission of NPDCCH. Among them, the gap is distributed periodically.
  • the network device can configure gap configuration parameters.
  • the gap configuration parameters include gap interval threshold N gap, threshold , gap period N gap, period, and gap duration factor N gap, coff .
  • the gap can also be called downlink (DL) gap.
  • Network devices can configure the interval threshold N gap, threshold by the parameter dl-GapThreshold, and configure the gap period N gap, period of the gap by the parameter dl-GapPeriodicity.
  • GapDurationCoeff configures gap duration factors N gap, coff , N gap, threshold , N gap, period, and N gap, coff . The range of values is shown in Table 1 below:
  • the maximum number of repetitions R max1 search space NPDCCH hypotheses corresponding to the UE1 is greater than or equal to the interval threshold N gap, threshold, UE2 of NPDCCH search space maximum
  • the number of repetitions R max2 is less than the interval threshold N gap, threshold , then there is a gap in the transmission of NPDCCH and NPDSCH corresponding to UE1, and there is no gap in the transmission of NPDCCH and NPDSCH corresponding to UE2.
  • An intuitive understanding can be seen: UE1 can see gap, and the gap is transparent to UE2 (that is, the gap cannot be seen by UE2).
  • the NPDCCH transmission and NPDSCH transmission corresponding to UE1 need a high number of repetitions, and the NPDCCH transmission and NPDSCH transmission corresponding to UE2 need a small number of repetitions or No repetition is needed.
  • the transmission of the NPDSCH corresponding to UE1 includes the first part and the second part. Because the resources of the second part overlap with the resources of the gap, the second part is postponed to be transmitted after the gap.
  • the NPDCCH and NPDSCH corresponding to UE2 can be transmitted within the gap without waiting for the transmission of UE1 to complete. Since the NPDCCH and NPDSCH corresponding to UE2 can be transmitted within the gap without waiting for the transmission of UE1 to complete, the introduction of gaps can avoid the downlink channel being blocked .
  • downlink data may be split into multiple TBs for transmission based on the amount of business data and the TB size limit imposed by the NB-IoT system.
  • the subsequent evolution of NB-IoT Rel-13 evolved from supporting only one DCI to scheduling one TB to supporting one DCI to schedule multiple TBs.
  • the maximum repetition number R max of the search space of the NPDCCH corresponding to the terminal device is less than the interval threshold N gap, threshold . According to the existing gap determination method, there is no gap in the NPDCCH transmission and NPDSCH transmission corresponding to the terminal device.
  • FIG. 4 is a schematic diagram of scheduling multiple TBs by one DCI provided in the related art. Referring to FIG. 4, one DCI schedules four TBs, and the total duration of NPDSCH transmission carrying the four TBs is large.
  • this embodiment of the present application provides a new gap determination method that can schedule multiple TBs in a DCI.
  • the transmission of NPDSCH carrying multiple TBs is prevented from occupying the downlink channel for a long time, thereby avoiding continuous downlink transmission with a long duration to a terminal device, preventing the downlink channel from being blocked, and improving system resource utilization efficiency.
  • the physical downlink control channel may be the NPDCCH in the NB-IoT system
  • the physical downlink data channel may be the NPDSCH in the NB-IoT system
  • the maximum number of repetitions of the search space of the physical downlink control channel may be the NPDCCH
  • the downlink control information may be DCI.
  • the system configuration may be a contract or protocol definition, or it may be a network device through system messages, RRC signaling, or a media access control control entity. MAC CE) and other signaling configurations.
  • the first interval threshold may be the same as the interval threshold Ngap, threshold in the related art, and of course, the first interval threshold may be different from the interval threshold Ngap, threshold in the related technology.
  • the specific number of the multiple transport blocks may be indicated by downlink control information, or by a system message, or by RRC signaling.
  • the specific number may be Is 1 and can be greater than 1.
  • the specific number of the multiple transport blocks may be indicated by downlink control information.
  • SC-MCCH single cell multicast control channel
  • SC-MTCH single cell multicast control channel
  • the specific number of the multiple transport blocks may be indicated by the SC-MCCH.
  • the solutions provided in the embodiments of the present application can be applied to a wireless communication network, which is also referred to as a wireless communication system.
  • the wireless communication system can be a long term evolution (LTE) system, an advanced long term evolution (LTE-advanced, LTE- A) The system or any communication system in which an entity can send and receive messages over a wireless network.
  • LTE long term evolution
  • LTE-advanced LTE-advanced
  • FIG. 5 is a schematic diagram of an implementation environment involved in various embodiments of the embodiments of the present application.
  • the implementation environment provides a wireless communication system, and the wireless communication system may be an IoT system, such as an NB-IoT system.
  • the wireless communication system includes a network device 001 and multiple terminal devices.
  • the multiple terminal devices include terminal devices 002 to 007.
  • the terminal devices 002 to 007 can be deployed in different environments, for example, the terminal device 002 and the terminal device 003. Deployed indoors, terminal equipment 004 is deployed outdoors, and terminal equipments 005-007 are deployed in the basement.
  • Network device 001 is an entity used to send or receive signals on the network side.
  • Network device 001 usually serves as an access device to provide communication services for terminal devices 002 to 007.
  • Network device 001 has a certain service coverage area (also known as a cell or cell, as shown by the large oval area in FIG. 5). Terminal devices within the service coverage area of network device 001 can communicate with network device 001 through wireless signals. Communication to accept the communication service provided by the network device 001.
  • the network device 001 may be a base station, and depending on the wireless communication technology used, the base station may also be referred to as a Node B (evolved Node B, eNodeB), or an access point (AP).
  • Node B evolved Node B
  • AP access point
  • the base station can be further divided into a macro base station for providing a macro cell, a micro base station for providing a pico cell, and a femto cell for providing a femto cell. Femto base station and so on. With the continuous evolution of wireless communication technology, future base stations may also adopt other names.
  • any one of the terminal devices 002 to 007 may be a communication device having a wireless communication function.
  • the communication device having a wireless communication function may be an IoT device.
  • the IoT device is also referred to as an MTC device or an M2M device.
  • IoT devices can be home appliances, smart homes, vehicles, tool equipment, service equipment, service facilities, or wearable devices. IoT devices such as but not limited to: smart refrigerators, smart washing machines, smart water meters, smart meters, smart cars, vehicles Devices or wearables, etc.
  • the terminal devices 002 to 007 are all in the service coverage area of the network device 001.
  • the network device 001 can communicate with any of the terminal devices 002 to 007, and the terminal device 007 can communicate with the terminal devices 005 to 006. Communication.
  • various wireless communication technologies can be used for communication between the network device 001 and any terminal device, and between the terminal device 007 and the terminal devices 005 to 006.
  • the wireless communication technology such as, but not limited to, time division multiple access (time division multiple access) access (TDMA) technology, frequency division multiple access (FDMA) technology, code division multiple access (CDMA) technology, time division synchronization-synchronous code division multiple access, (TD-SCDMA) technology, orthogonal frequency division multiple access (OFDMA) technology, single carrier frequency division multiple access (SC-FDMA) technology, space division multiple access (SDMA) technology
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • CDMA code division multiple access
  • TD-SCDMA time division synchronization-synchronous code division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • SDMA space division multiple access
  • Wireless communication systems can Including but not limited to Global System for Mobile Communication (GSM), CDMA2000, Wideband CDMA (WCDMA), wireless-fidelity (WiFi) defined in the 802.22 series of standards, and global interoperable microwave storage (Worldwide interoperability for microwave access, WiMAX), LTE, LTE-A, future 5th generation (5G) systems, new wireless (newradio, NR) systems, and evolved systems of these wireless communication systems.
  • GSM Global System for Mobile Communication
  • WCDMA Wideband CDMA
  • WiFi wireless-fidelity
  • WiMAX global interoperable microwave storage
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • 5G new wireless
  • NR new radio, NR
  • the wireless communication network shown in FIG. 5 is only used as an example, and is not used to limit the technical solutions of the embodiments of the present application. Those skilled in the art should understand that in a specific implementation process, the wireless communication network may also include other devices, and at the same time, the number of network devices and the number of terminal devices may be configured as required.
  • FIG. 6 shows a method flowchart of a data transmission method according to an embodiment of the present application.
  • the data transmission method may be used in the implementation environment shown in FIG. 5.
  • the method includes:
  • Step 601 The network device determines a first parameter, a second parameter, a first interval threshold, and a second interval threshold.
  • the relationship between the first parameter, the second parameter relationship, the first interval threshold, and the second interval threshold includes the following three possible implementation modes:
  • the first implementation manner the first parameter and the second parameter are different, and the first interval threshold and the second interval threshold are the same.
  • the second implementation manner the first parameter and the second parameter are the same, and the first interval threshold and the second interval threshold are different.
  • a third implementation manner the first parameter and the second parameter are different, and the first interval threshold and the second interval threshold are different.
  • the network device determining the first parameter, the second parameter, the first interval threshold, and the second interval threshold may include the following three possible implementation manners:
  • the first implementation manner the first parameter and the second parameter are the same, and the first interval threshold and the second interval threshold are different.
  • the first parameter is the maximum number of repetitions of the search space of the physical downlink control channel.
  • the first interval threshold and the second interval threshold are configured by the system.
  • the first interval threshold is different from the second interval threshold, or the first interval threshold is the system configuration.
  • the second interval threshold is determined according to the number of transmission blocks scheduled by the first interval threshold and downlink control information, or the first interval threshold is configured by the system, and the second interval threshold can be scheduled according to the first interval threshold and downlink control information.
  • the maximum number of transport blocks is determined.
  • the network device determining the first parameter, the second parameter, the first interval threshold, and the second interval threshold may include the following three possible situations:
  • the first case the first parameter is the same as the second parameter, the first interval threshold is different from the second interval threshold, the first parameter is the maximum number of repetitions of the search space of the physical downlink control channel, the first interval threshold and the second interval threshold It is configured by the system.
  • R max and the maximum number of repetitions may be determined intervals parameters of the search space of physical downlink control channel of the network equipment, the maximum number of repetitions R max search space of a physical downlink control channel is determined as the first and second parameters, the parameters can be spaced Including the first interval threshold N gap, threshold1 and the second interval threshold N gap, threshold2 of the system configuration, the first interval threshold N gap, threshold1 and the second interval threshold N gap, threshold2 are different.
  • the second case the first parameter is the same as the second parameter, the first interval threshold is different from the second interval threshold, the first parameter is the maximum number of repetitions of the search space of the physical downlink control channel, and the first interval threshold is configured by the system.
  • the second interval threshold is determined according to the first interval threshold and the number of transport blocks scheduled by the downlink control information.
  • the network device may determine the maximum repetition number R max of the search space of the physical downlink control channel, the interval configuration parameter, and the number of transmission blocks N TB scheduled by the downlink control information, and determine the maximum repetition number R max of the search space of the physical downlink control channel as The first parameter and the second parameter.
  • the interval configuration parameter may include a first interval threshold N gap, threshold1 configured by the system. The network device determines the first interval threshold N gap, threshold1 and the number of transmission blocks N TB scheduled by the downlink control information. Two interval thresholds.
  • the network device determines the quotient of the first gap threshold N gap, threshold1 and the number of transmission blocks N TB scheduled by the downlink control information as the second gap threshold, that is, the network device sets N gap, threshold 1 / N TB Determined as the second interval threshold.
  • the network device may also determine the sum, difference, or product of the first interval threshold N gap, threshold 1 and the number of transmission blocks N TB scheduled by the downlink control information as the second interval threshold. This embodiment of the present application does not address this. Be limited. It should be noted that, in this second case, because the first interval threshold is different from the second interval threshold, the second interval threshold is N gap, threshold1 / N TB. Therefore, the number of transmission blocks scheduled by the downlink control information N TB It is not equal to 1, in other words, the number of transmission blocks N TB scheduled by the downlink control information is greater than 1.
  • the third case the first parameter is the same as the second parameter, the first interval threshold is different from the second interval threshold, the first parameter is the maximum number of repetitions of the search space of the physical downlink control channel, and the first interval threshold is configured by the system.
  • the second interval threshold is determined according to the first interval threshold and the maximum number of transport blocks that can be scheduled by the downlink control information.
  • the network device can determine the maximum number of repetitions of the search space of the physical downlink control channel, R max , the interval configuration parameter, and the maximum number of transport blocks that can be scheduled by the downlink control information , N TB, max , and the maximum number of repetitions of the search space of the physical downlink control channel.
  • R max is determined to be the first parameter and the second parameter.
  • the interval configuration parameter may include a first interval threshold N gap, threshold1 configured by the system.
  • the network device can schedule a transmission block that can be scheduled according to the first interval threshold N gap, threshold1 and downlink control information.
  • the maximum number N TB, max determines the second interval threshold.
  • the network device determines the quotient of the first interval threshold N gap, threshold1 and the maximum number of transmission blocks N TB, max that can be scheduled by the downlink control information as the second interval threshold, that is, the network device determines the N gap, threshold1 / N TB, max is determined as the second interval threshold.
  • the network device may also determine the first interval threshold N gap, threshold1 and the maximum number of transmission blocks N TB, max that can be scheduled by the downlink control information as the second interval threshold. The implementation of this application Examples do not limit this.
  • the transmission block for downlink control information scheduling The maximum number N TB, max is not equal to 1, in other words, the maximum number N TB, max of transmission blocks scheduled for downlink control information is greater than 1.
  • a second implementation manner The first parameter and the second parameter are different, and the first interval threshold and the second interval threshold are the same.
  • the first parameter is the maximum number of repetitions of the search space of the physical downlink control channel
  • the second parameter is the first effective subframe number
  • the first interval threshold and the second interval threshold are configured by the system
  • the first interval threshold is the system configuration
  • the second interval threshold is determined according to the first interval threshold and a preset constant.
  • the preset constant is an integer greater than or equal to 1 and less than or equal to 10.
  • the first interval threshold is configured by the system
  • the second interval threshold is determined according to The first interval threshold and the third interval threshold are determined, and the third interval threshold is configured by the system.
  • the first effective subframe number is the effective subframe number occupied by the physical downlink shared channel of the first transmission block of the plurality of transmission blocks carrying the downlink control information scheduling; or, the first effective subframe number is the bearer downlink control information
  • the network device determining the first parameter, the second parameter, the first interval threshold, and the second interval threshold may include the following three possible situations:
  • the first case the first parameter is different from the second parameter, the first interval threshold is the same as the second interval threshold, the first parameter is the maximum number of repetitions of the search space of the physical downlink control channel, and the second parameter is the first valid subframe
  • the first interval threshold and the second interval threshold are configured by the system.
  • the network device may determine the maximum repetition number R max of the search space of the physical downlink control channel, the interval configuration parameter, and the first effective subframe number, determine the maximum repetition number R max of the search space of the physical downlink control channel as the first parameter, and The number of first effective subframes is determined as a second parameter.
  • the interval configuration parameter may include a first interval threshold N gap, threshold1 and a second interval threshold N gap, threshold2 configured by the system, a first interval threshold N gap, threshold1, and a second interval.
  • the thresholds N gap and threshold2 are the same.
  • the second case the first parameter is different from the second parameter, the first interval threshold is the same as the second interval threshold, the first parameter is the maximum number of repetitions of the search space of the physical downlink control channel, and the second parameter is the first valid subframe
  • the first interval threshold is configured by the system.
  • the second interval threshold is determined according to the first interval threshold and a preset constant.
  • the preset constant is an integer greater than or equal to 1 and less than or equal to 10.
  • the network device can determine the maximum number of repetitions R max of the search space of the physical downlink control channel, the first effective subframe number of the interval configuration parameter, and a preset constant Determining the maximum number of repetitions R max of the search space of the physical downlink control channel as the first parameter, determining the first effective subframe number as the second parameter, and the interval configuration parameter may include a first interval threshold N gap, threshold1 configured by the system, The network device according to the first interval threshold N gap, threshold1 and a preset constant Determine the second interval threshold.
  • the network device compares the first interval threshold N gap, threshold1 and a preset constant
  • the product is determined as the second interval threshold. That is: the network device will Determined as the second interval threshold.
  • the network device may also set the first interval threshold N gap, threshold1 and a preset constant
  • the sum, difference, or quotient is determined as the second interval threshold, which is not limited in the embodiment of the present application. It should be noted that when the network device sets the first interval threshold N gap, threshold1 and a preset constant
  • the preset constant Is equal to 1.
  • the third case the first parameter is different from the second parameter, the first interval threshold is the same as the second interval threshold, the first parameter is the maximum number of repetitions of the search space of the physical downlink control channel, and the second parameter is the first valid subframe
  • the first interval threshold is configured by the system
  • the second interval threshold is determined according to the first interval threshold and the third interval threshold
  • the third interval threshold is configured by the system.
  • the network device may determine the maximum repetition number R max of the search space of the physical downlink control channel, the interval configuration parameter, and the first effective subframe number, determine the maximum repetition number R max of the search space of the physical downlink control channel as the first parameter, and The number of first effective subframes is determined as a second parameter.
  • the interval configuration parameter may include a first interval threshold N gap, threshold1 and a third interval threshold N gap, threshold 3 configured by the system.
  • the network device may determine the first interval threshold N gap, threshold 1 and The third interval threshold N gap, threshold3 determines the second interval threshold.
  • the network device determines the product of the first interval threshold N gap, threshold1 and the third interval threshold N gap, threshold 3 as the second interval threshold. That is, the network device determines N gap, threshold1 ⁇ N gap, threshold 3 as the second interval threshold.
  • the network device may also determine the sum, difference, or quotient of the first interval threshold N gap, threshold1 and the third interval threshold N gap, threshold 3 as the second interval threshold, which is not limited in this embodiment of the present application.
  • the value range of the first interval threshold N gap, threshold1 may be ⁇ 1,2,3,4,5,6,8,10 ⁇ or ⁇ 1,2,3,4,5,6 , 8,10 ⁇
  • the range of the third interval threshold N gap, threshold3 may be a subset of the range of the first interval threshold N gap, threshold1 , for example, the range of the third interval threshold N gap, threshold3 Are ⁇ 1,2,3,4 ⁇ , ⁇ 2,3,4,5 ⁇ , ⁇ 3,4,5,6 ⁇ , ⁇ 4,5,6,8 ⁇ , ⁇ 5,6,8,10 ⁇ , ⁇ 1,2 ⁇ , ⁇ 2,3 ⁇ , ⁇ 3,4 ⁇ , ⁇ 4,5 ⁇ , ⁇ 5,6 ⁇ , ⁇ 6,8 ⁇ , or ⁇ 8,10 ⁇ , etc. No restrictions.
  • the network device determines the product of the first gap threshold N gap, threshold1 and the third gap threshold N gap, threshold3 as the second gap threshold, because the first gap threshold N gap, threshold1 is the same as the second gap threshold , the third The interval threshold N gap, threshold3 is equal to 1.
  • the network device maps a transmission block in a subframe for transmission, and the transmission block is carried by a physical downlink data channel, and the physical downlink data channel may be a physical downlink shared channel.
  • the first effective subframe number may include the following three cases:
  • the first effective subframe number is an effective subframe number N first, sf, NPDSCH occupied by a physical downlink shared channel of a first transport block among a plurality of transport blocks carrying downlink control information scheduling.
  • the first effective subframe number is an effective subframe number N any, sf, NPDSCH occupied by a physical downlink shared channel of any one of a plurality of transport blocks carrying downlink control information scheduling.
  • the first effective subframe number is an effective subframe number N total, sf, NPDSCH occupied by a physical downlink shared channel of multiple transport blocks carrying downlink control information scheduling.
  • N TB represents the number of multiple transport blocks scheduled by the downlink control information
  • N sf represents the number of repetitions of the ith transport block in the plurality of transport blocks scheduled by the downlink control information
  • N sf represents the number of subframes mapped by the ith transport block in the plurality of transport blocks scheduled by the downlink control information
  • N TB represents the number of multiple transport blocks scheduled by the downlink control information
  • Max represents the maximum number of multiple transport blocks scheduled by the downlink control information.
  • N sf represents the maximum, minimum, or average number of subframes mapped by multiple transport blocks of downlink control information scheduling .
  • a third implementation manner the first parameter and the second parameter are different, and the first interval threshold and the second interval threshold are different.
  • the first parameter is the maximum number of repetitions of the search space of the physical downlink control channel
  • the second parameter is the first effective subframe number
  • the first interval threshold and the second interval threshold are configured by the system
  • the first interval threshold is the system configuration
  • the second interval threshold is determined according to the first interval threshold and a preset constant.
  • the preset constant is an integer greater than or equal to 1 and less than or equal to 10.
  • the first interval threshold is configured by the system and the second interval threshold is determined according to The first interval threshold and the third interval threshold are determined, and the third interval threshold is configured by the system.
  • the first effective subframe number is the effective subframe number occupied by the physical downlink shared channel of the first transmission block of the plurality of transmission blocks carrying the downlink control information scheduling; or, the first effective subframe number is the bearer downlink control information
  • the network device determining the first parameter, the second parameter, the first interval threshold, and the second interval threshold may include the following three possible situations:
  • the first case the first parameter is different from the second parameter, the first interval threshold is different from the second interval threshold, the first parameter is the maximum number of repetitions of the search space of the physical downlink control channel, and the second parameter is the first valid subframe
  • the first interval threshold and the second interval threshold are configured by the system.
  • the network device may determine the maximum repetition number R max of the search space of the physical downlink control channel, the interval configuration parameter, and the first effective subframe number, determine the maximum repetition number R max of the search space of the physical downlink control channel as the first parameter, and The number of first effective subframes is determined as a second parameter.
  • the interval configuration parameter may include a first interval threshold N gap, threshold1 and a second interval threshold N gap, threshold2 configured by the system, a first interval threshold N gap, threshold1, and a second interval. The thresholds N gap and threshold2 are different.
  • the second case the first parameter is different from the second parameter, the first interval threshold is different from the second interval threshold, the first parameter is the maximum number of repetitions of the search space of the physical downlink control channel, and the second parameter is the first valid subframe
  • the first interval threshold is configured by the system.
  • the second interval threshold is determined according to the first interval threshold and a preset constant.
  • the preset constant is an integer greater than or equal to 1 and less than or equal to 10.
  • the network device can determine the maximum number of repetitions R max of the search space of the physical downlink control channel, the first effective subframe number of the interval configuration parameter, and a preset constant Determining the maximum number of repetitions R max of the search space of the physical downlink control channel as the first parameter, determining the first effective subframe number as the second parameter, and the interval configuration parameter may include a first interval threshold N gap, threshold1 configured by the system, The network device according to the first interval threshold N gap, threshold1 and a preset constant Determine the second interval threshold.
  • the network device compares the first interval threshold N gap, threshold1 and a preset constant
  • the product is determined as the second interval threshold. That is: the network device will Determined as the second interval threshold.
  • the network device may also set the first interval threshold N gap, threshold1 and a preset constant
  • the sum, difference, or quotient is determined as the second interval threshold, which is not limited in the embodiment of the present application. It should be noted that when the network device sets the first interval threshold N gap, threshold1 and a preset constant
  • the preset constant Is not equal to 1.
  • the first parameter is different from the second parameter
  • the first interval threshold is different from the second interval threshold
  • the first parameter is the maximum number of repetitions of the search space of the physical downlink control channel
  • the second parameter is the first valid subframe
  • the first interval threshold is configured by the system
  • the second interval threshold is determined according to the first interval threshold and the third interval threshold
  • the third interval threshold is configured by the system.
  • the network device may determine the maximum repetition number R max of the search space of the physical downlink control channel, the interval configuration parameter, and the first effective subframe number, determine the maximum repetition number R max of the search space of the physical downlink control channel as the first parameter, and The number of first effective subframes is determined as a second parameter.
  • the interval configuration parameter may include a first interval threshold N gap, threshold1 and a third interval threshold N gap, threshold 3 configured by the system.
  • the network device may determine the first interval threshold N gap, threshold 1 and The third interval threshold N gap, threshold3 determines the second interval threshold.
  • the network device determines the product of the first interval threshold N gap, threshold1 and the third interval threshold N gap, threshold 3 as the second interval threshold. That is, the network device determines N gap, threshold1 ⁇ N gap, threshold 3 as the second interval threshold.
  • the network device may also determine the sum, difference, or quotient of the first interval threshold N gap, threshold1 and the third interval threshold N gap, threshold 3 as the second interval threshold, which is not limited in this embodiment of the present application.
  • the value range of the first interval threshold N gap, threshold1 may be ⁇ 1,2,3,4,5,6,8,10 ⁇ or ⁇ 1,2,3,4,5,6 , 8,10 ⁇
  • the range of the third interval threshold N gap, threshold3 may be a subset of the range of the first interval threshold N gap, threshold1 , for example, the range of the third interval threshold N gap, threshold3 Are ⁇ 1,2,3,4 ⁇ , ⁇ 2,3,4,5 ⁇ , ⁇ 3,4,5,6 ⁇ , ⁇ 4,5,6,8 ⁇ , ⁇ 5,6,8,10 ⁇ , ⁇ 1,2 ⁇ , ⁇ 2,3 ⁇ , ⁇ 3,4 ⁇ , ⁇ 4,5 ⁇ , ⁇ 5,6 ⁇ , ⁇ 6,8 ⁇ , or ⁇ 8,10 ⁇ , etc. No restrictions.
  • the network device determines the product of the first interval threshold N gap, threshold1 and the third interval threshold N gap, threshold3 as the second interval threshold, because the first interval threshold N gap, threshold1 and the second interval threshold are different, the third interval The interval threshold N gap, threshold3 is not equal to 1.
  • the first effective subframe number is an effective subframe number occupied by a physical downlink shared channel of a first transport block among a plurality of transport blocks carrying downlink control information scheduling.
  • N first, sf, NPDSCH the first effective subframe number is the effective subframe number N any, sf, NPDSCH occupied by a physical downlink shared channel of any one of a plurality of transport blocks carrying downlink control information scheduling.
  • the first effective subframe number is an effective subframe number N total, sf, NPDSCH occupied by a physical downlink shared channel of a plurality of transport blocks carrying downlink control information scheduling.
  • the interval configuration parameters may also include the interval period N gap, period and the interval duration factor N gap, coff .
  • the interval threshold (the first interval threshold, the second interval) The threshold or the third interval threshold) is configured by the network device.
  • the network device can send the interval configuration parameters to the terminal device through a system message or RRC signaling. If the interval threshold (the first interval threshold, the second interval threshold, or the third interval threshold) It is agreed or defined by the network device.
  • the network device may send the interval period N gap, period and the interval duration factor N gap, coff to the terminal device through a system message or RRC signaling.
  • the network device may also send the maximum number of transmission blocks N TB, max that can be scheduled by the downlink control information to the terminal device through downlink control information, RRC signaling, system messages, or MAC CE signaling.
  • Step 602 The network device determines whether there is an interval in transmission of the downlink control channel according to the first parameter and the first interval threshold.
  • the first parameter is the maximum number of repetitions of the search space of the physical downlink control channel R max
  • the first interval threshold is N gap, threshold1
  • the network device can control the physical downlink.
  • the maximum number of repetitions of the search space of the channel, R max is compared with the first gap threshold N gap, threshold1 to determine whether there is a gap in the transmission of the downlink control channel.
  • the network device determines that there is a gap in the transmission of the downlink control channel; when the maximum repetition of the search space of the physical downlink control channel When the number of times R max is less than the first gap threshold N gap, threshold1 , the network device determines that there is no gap in the transmission of the downlink control channel.
  • the downlink control channel is an NPDCCH as an example.
  • the relationship between R max , N gap, threshold 1 and whether there is a gap in the NPDCCH transmission can be expressed in Table 2 below.
  • threshold1 Is there a gap in NPDCCH transmission R max ⁇ N gap, threshold1 Spaced R max ⁇ N gap, threshold1 No interval
  • Step 603 The network device sends downlink control information to the terminal device through the downlink control channel according to a determination result of whether there is an interval in transmission of the downlink control channel, and the downlink control information is used to schedule one or more transmission blocks.
  • the network device may carry the downlink control information in the downlink control channel according to the determination result of whether there is an interval in the transmission of the downlink control channel, and then send the downlink control information to the terminal device through the downlink control channel.
  • the downlink control information is used to schedule one or Multiple transport blocks.
  • n f is a radio frame number or a system frame number
  • n s is a slot number
  • mod represents a remainder or modulus operation, Represents rounding operations.
  • the downlink control information may indicate the number of transmission blocks N TB scheduled by the downlink control information.
  • an independent field of the downlink control information may be used to indicate the number of transmission blocks N TB scheduled by the downlink control information.
  • the downlink control information may also be used together with other scheduling information to indicate the number of transmission blocks N TB scheduled by the downlink control information, which is not limited in this embodiment of the present application.
  • the downlink control information may also indicate scheduling information of downlink data channels of N TB transport blocks carrying downlink control information scheduling.
  • the downlink control information includes scheduling information of a downlink data channel of a first transport block among N TB transport blocks carrying downlink control information scheduling, and scheduling information of a downlink data channel carrying subsequent N TB -1 transport blocks passes The system message or the RRC signaling indication, or the downlink control information includes scheduling information of the downlink data channel of the first transport block of N TB transport blocks carrying downlink control information scheduling, and the network equipment and the terminal equipment agree to carry the subsequent N
  • the scheduling information of the downlink data channel of the TB -1 transport block is the same as the scheduling information of the downlink data channel carrying the first transport block, or the downlink control information includes scheduling information of the downlink data channel carrying the N TB transport blocks,
  • the scheduling information includes the number of repetitions of the transport block and the number of subframes to which the transport block is mapped, which is not limited in this embodiment of the present application.
  • Step 604 The network device determines whether there is an interval in the transmission of the downlink data channel according to the second parameter and the second interval threshold.
  • the second parameter may be the maximum repetition number R max of the search space of the physical downlink control channel, or may be the number of first effective subframes.
  • the network device determines whether there is an interval in the transmission of the downlink data channel according to the second parameter and the second interval threshold. : The network device compares the maximum number of repetitions of the search space of the physical downlink control channel R max with a second interval threshold to determine whether there is an interval in the transmission of the downlink data channel.
  • the network device determines that there is an interval in the transmission of the downlink data channel.
  • the network device determines the transmission of the downlink data channel. There are no gaps.
  • the network device determining whether there is an interval in transmission of the downlink data channel according to the second parameter and the second interval threshold may include: the network device compares the first effective subframe number with the second interval The thresholds are compared to determine whether there is a gap in the transmission of the downlink data channel.
  • the network device determines that there is a gap in the transmission of the downlink data channel. When it is less than the second interval threshold, the network device determines that there is no interval in the transmission of the downlink data channel.
  • step 604 may include the following three possible implementation manners.
  • the second parameter is the maximum repetition number R max of the search space of the physical downlink control channel
  • the second interval threshold is configured by the system, or the second interval threshold is scheduled according to the first interval threshold and the downlink control information.
  • the number of transmission blocks is determined, or the second interval threshold is determined according to the first interval threshold and the maximum number of transmission blocks that can be scheduled by the downlink control information.
  • the second interval threshold is configured by the system, and the second interval threshold may be N gap, threshold2 .
  • the network device determines There is a gap in the transmission of the downlink data channel.
  • the network device determines that there is no gap in the transmission of the downlink data channel.
  • the second interval threshold is determined according to the number of transmission blocks scheduled by the first interval threshold and downlink control information.
  • the second interval threshold may be N gap, threshold 1 / N TB .
  • the maximum repetition of the search space of the physical downlink control channel is When the number of times R max is greater than or equal to N gap, threshold 1 / N TB , the network device determines that there is a gap in the transmission of the downlink data channel.
  • the maximum number of repetitions of the search space of the physical downlink control channel R max is less than N gap, threshold 1 / N TB The network device determines that there is no gap in the transmission of the downlink data channel.
  • the second interval threshold is determined according to the maximum number of transmission blocks that can be scheduled by the first interval threshold and downlink control information.
  • the second interval threshold may be N gap, threshold 1 / N TB, max .
  • the network device determines that there is a gap in the transmission of the downlink data channel.
  • the maximum number of repetitions of the search space of the physical downlink control channel R max is less than N gap
  • threshold1 / N TB, max the network device determines that there is no gap in the transmission of the downlink data channel.
  • the following data channel is NPDSCH as an example.
  • the relationship between R max , the second interval threshold, and whether there is an interval in the transmission of NPDSCH can be shown in Table 3 below:
  • the second parameter is the first effective subframe number
  • the second interval threshold is configured by the system, or the second interval threshold is determined according to the first interval threshold and a preset constant, and the preset constant is greater than or equal to 1, and an integer less than or equal to 10, or the second interval threshold is determined according to the first interval threshold and the third interval threshold.
  • the second interval threshold is configured by the system, and the second interval threshold may be N gap, threshold2 .
  • the network device determines that there is a transmission in the downlink data channel. Interval.
  • the network device determines that there is no interval in the transmission of the downlink data channel.
  • the second interval threshold is determined according to the first interval threshold and a preset constant, and the second interval threshold may be When the number of first valid subframes is greater than or equal to When the network device determines that there is a gap in the transmission of the downlink data channel, when the number of first valid subframes is less than At this time, the network device determines that there is no gap in the transmission of the downlink data channel.
  • the second interval threshold is determined according to the first interval threshold and the third interval threshold.
  • the second interval threshold may be N gap, threshold1 ⁇ N gap, threshold3 , and when the number of first valid subframes is greater than or equal to N gap, threshold1 When ⁇ N gap, threshold3 , the network device determines that there is a gap in the transmission of the downlink data channel. When the number of first valid subframes is less than N gap, threshold1 ⁇ N gap, threshold3 , the network device determines that there is no gap in the transmission of the downlink data channel.
  • the first effective subframe number is an effective subframe number N first, sf, NPDSCH occupied by a physical downlink shared channel of a first transport block among a plurality of transport blocks carrying downlink control information scheduling.
  • the first effective subframe number is the effective subframe number N any, sf, NPDSCH occupied by a physical downlink shared channel of any one of a plurality of transport blocks carrying downlink control information scheduling.
  • the first effective subframe number is an effective subframe number N total, sf, NPDSCH occupied by a physical downlink shared channel of a plurality of transport blocks carrying downlink control information scheduling.
  • the following data channel is NPDSCH as an example.
  • the relationship between the number of first effective subframes, the second interval threshold, and whether there is an interval in the transmission of NPDSCH can be adopted.
  • the following table 4 indicates:
  • the second parameter is the number of first valid subframes, and the second interval threshold is configured by the system; or, the second interval threshold is determined according to the first interval threshold and a preset constant, and the preset constant is greater than or equal to 1, and an integer less than or equal to 10; or, the second interval threshold is determined according to the first interval threshold and the third interval threshold, and the third interval threshold is configured by the system.
  • This third implementation manner is the same as the second implementation manner in step 604, which is not repeated in the embodiment of the present application.
  • Step 605 The network device sends one or more transport blocks to the terminal device through the downlink data channel according to a determination result of whether there is an interval in transmission of the downlink data channel.
  • the network device may carry one or more transport blocks in the downlink data channel according to the determination result of whether there is an interval in the transmission of the downlink data channel, and then send the one or more transport blocks to the terminal device through the downlink data channel.
  • the first parameter, the second parameter, the first interval threshold, and the second interval threshold are such that the number of intervals included in the same time period for sending downlink data channels is not less than the interval included in the same time period for sending downlink control channels. number.
  • the first parameter is the maximum repetition number R max of the search space of the physical downlink control channel, and the first interval threshold N gap, threshold1 and the second interval threshold N gap, threshold 2 are configured by the system.
  • the maximum repetition number R max of the search space of the physical downlink control channel is 16, the first interval threshold N gap, threshold1 is configured as 32, and the second interval threshold N gap, threshold 2 is configured as 8. Since the first parameter R max is smaller than the first gap threshold N gap, threshold1 , there is no gap in the transmission of the downlink control channel.
  • the second parameter R max is greater than the second gap threshold N gap, threshold2 , there is a gap in the transmission of the downlink data channel. Intervals occur periodically. If you count the intervals in a certain period of time, in this example, there is a gap in the transmission of the downlink data channel, and there is no gap in the transmission of the downlink control channel. Therefore, the first parameter, the second parameter, the first parameter, The interval threshold and the second interval threshold are such that the number of intervals included in the same period of time for sending a downlink data channel is not less than the number of intervals included in the same period of time for sending a downlink control channel.
  • n f is a radio frame number or a system frame number
  • n s is a slot number
  • mod represents a remainder or modulus operation, Represents rounding operations.
  • Step 606 The terminal device obtains a first parameter, a second parameter, a first interval threshold, and a second interval threshold.
  • the terminal device acquiring the first parameter, the second parameter, the first interval threshold, and the second interval threshold may include three possible implementation manners:
  • the first implementation manner (corresponding to the first implementation manner in step 601): the first parameter and the second parameter are the same, and the first interval threshold and the second interval threshold are different.
  • the first parameter is the maximum number of repetitions of the search space of the physical downlink control channel.
  • the first interval threshold and the second interval threshold are configured by the system.
  • the first interval threshold is different from the second interval threshold, or the first interval threshold is the system configuration.
  • the second interval threshold is determined according to the number of transmission blocks scheduled by the first interval threshold and downlink control information, or the first interval threshold is configured by the system, and the second interval threshold can be scheduled according to the first interval threshold and downlink control information.
  • the maximum number of transport blocks is determined.
  • the first parameter, the second parameter, the first interval threshold, and the second interval threshold of the terminal device may include the following three possible situations:
  • the first case the first parameter is the same as the second parameter, the first interval threshold is different from the second interval threshold, the first parameter is the maximum number of repetitions of the search space of the physical downlink control channel, the first interval threshold and the second interval threshold It is configured by the system.
  • the terminal device can receive system messages or RRC signaling sent by the network device. If the first interval threshold N gap, threshold1 and the second interval threshold N gap, threshold 2 are configured by the network device, the system message or RRC signaling carries physical downlink control. Maximum number of repetitions of channel search space R max and interval configuration parameters.
  • the interval configuration parameters include a first interval threshold N gap, threshold1 and a second interval threshold N gap, threshold2 , a first interval threshold N gap, threshold1, and a second interval threshold. Different from N gap and threshold 2 , the terminal device can obtain the first parameter, the second parameter, the first interval threshold N gap, threshold 1 and the second interval threshold N gap, threshold 2 after receiving a system message or RRC signaling.
  • the first interval threshold N gap, threshold1 and the second interval threshold N gap, threshold2 are agreed or defined by the agreement, the first interval threshold N gap, threshold1 and the second interval threshold N gap, threshold2 are for the terminal device.
  • the system message or RRC signaling carries the maximum number of repetitions of the search space of the physical downlink control channel R max and the interval configuration parameter.
  • the interval configuration parameter may not include the first interval threshold N gap, threshold1 and the second interval threshold N.
  • the terminal device obtains the first parameter and the second parameter by receiving a system message or RRC signaling.
  • the second case the first parameter is the same as the second parameter, the first interval threshold is different from the second interval threshold, the first parameter is the maximum number of repetitions of the search space of the physical downlink control channel, and the first interval threshold is configured by the system.
  • the second interval threshold is determined according to the first interval threshold and the number of transport blocks scheduled by the downlink control information.
  • the terminal device can receive the system message or RRC signaling sent by the network device. If the first interval threshold N gap, threshold1 is configured by the network device, the system message or RRC signaling carries the maximum number of repetitions of the search space of the physical downlink control channel R max and interval configuration parameters.
  • the interval configuration parameters include the first interval threshold N gap, threshold1 .
  • the terminal device can obtain the first parameter, the second parameter, and the first interval threshold N gap, threshold1 after receiving a system message or RRC signaling.
  • the terminal device The second interval threshold is determined according to the first interval threshold N gap, threshold1 and the number of transmission blocks N TB scheduled by the downlink control information.
  • the first interval threshold N gap, threshold1 is agreed or defined, the first interval threshold N gap, threshold1 is known to the terminal device, and the system message or RRC signaling carries a search for the physical downlink control channel.
  • the interval configuration parameter may not include the first interval threshold N gap, threshold1 .
  • the terminal device obtains the first parameter and the second parameter by receiving a system message or RRC signaling.
  • a gap threshold N gap, threshold1 and the number of transmission blocks N TB scheduled by the downlink control information determine a second gap threshold.
  • the process for the terminal device to determine the second interval threshold according to the first interval threshold N gap, threshold1 and the number of transmission blocks N TB scheduled by the downlink control information may refer to the network device according to the first interval threshold N gap, threshold 1 and the downlink control information in step 601.
  • the process of determining the second interval threshold by the number of scheduled transmission blocks N TB is not described in this embodiment.
  • the terminal device may perform the following step 608 according to the first interval threshold N gap, threshold1
  • the number N TB of transmission blocks scheduled with downlink control information determines the second interval threshold.
  • the terminal device may In 606, the second interval threshold is determined according to the first interval threshold N gap, threshold1 and the number of transmission blocks N TB scheduled by the downlink control information, which is not limited in this embodiment of the present application.
  • the third case the first parameter is the same as the second parameter, the first interval threshold is different from the second interval threshold, the first parameter is the maximum number of repetitions of the search space of the physical downlink control channel, and the first interval threshold is configured by the system.
  • the second interval threshold is determined according to the first interval threshold and the maximum number of transport blocks that can be scheduled by the downlink control information.
  • the terminal device can receive the system message or RRC signaling sent by the network device. If the first interval threshold N gap, threshold1 is configured by the network device, the system message or RRC signaling carries the maximum number of repetitions of the search space of the physical downlink control channel R max and interval configuration parameters.
  • the interval configuration parameters include the first interval threshold N gap, threshold1 .
  • the terminal device can obtain the first parameter, the second parameter, and the first interval threshold N gap, threshold1 after receiving a system message or RRC signaling.
  • the terminal device The second interval threshold is determined according to the first interval threshold N gap, threshold1 and the maximum number of transmission blocks N TB, max that the downlink control information can schedule.
  • the first interval threshold N gap, threshold1 is agreed or defined, the first interval threshold N gap, threshold1 is known to the terminal device, and the system message or RRC signaling carries a search for the physical downlink control channel.
  • the interval configuration parameter may not include the first interval threshold N gap, threshold1 .
  • the terminal device obtains the first parameter and the second parameter by receiving a system message or RRC signaling.
  • a gap threshold N gap, threshold1 and the maximum number of transmission blocks N TB, max that can be scheduled by the downlink control information determine a second gap threshold.
  • the terminal device can obtain the maximum number of transmission blocks N TB, max that can be scheduled by the downlink control information by receiving downlink control information, RRC signaling, system messages, or MAC CE signaling sent by the network device.
  • the maximum number of transmission blocks N TB, max that can be scheduled with the downlink control information determines the second interval threshold.
  • the terminal device can determine the second interval threshold according to the first interval threshold N gap, threshold1 and the maximum number of transmission blocks N TB, max that can be scheduled by the downlink control information.
  • the process of determining the second interval threshold by the parameter in step 601 is based on the first interval threshold N gap, threshold1.
  • the process of determining the second interval threshold with the maximum number of transmission blocks N TB, max that can be scheduled with the downlink control information is not described in this embodiment.
  • the second implementation manner (corresponding to the second implementation manner in step 601): the first parameter and the second parameter are different, and the first interval threshold and the second interval threshold are the same.
  • the first parameter is the maximum number of repetitions of the search space of the physical downlink control channel
  • the second parameter is the first effective subframe number
  • the first interval threshold and the second interval threshold are configured by the system; or
  • the first interval threshold is the system configuration
  • the second interval threshold is determined according to the first interval threshold and a preset constant.
  • the preset constant is an integer greater than or equal to 1 and less than or equal to 10.
  • the first interval threshold is configured by the system and the second interval threshold is determined according to The first interval threshold and the third interval threshold are determined, and the third interval threshold is configured by the system.
  • the first effective subframe number is the effective subframe number occupied by the physical downlink shared channel of the first transmission block of the plurality of transmission blocks carrying the downlink control information scheduling; or, the first effective subframe number is the bearer downlink control information
  • acquiring the first parameter, the second parameter, the first interval threshold, and the second interval threshold by the terminal device may include the following three possible situations:
  • the first case the first parameter is different from the second parameter, the first interval threshold is the same as the second interval threshold, the first parameter is the maximum number of repetitions of the search space of the physical downlink control channel, and the second parameter is the first valid subframe
  • the first interval threshold and the second interval threshold are configured by the system.
  • the terminal device can receive system messages or RRC signaling sent by the network device. If the first interval threshold N gap, threshold1 and the second interval threshold N gap, threshold 2 are configured by the network device, the system message or RRC signaling carries physical downlink control. Maximum number of repetitions of channel search space R max and interval configuration parameters.
  • the interval configuration parameters include a first interval threshold N gap, threshold1 and a second interval threshold N gap, threshold2 , a first interval threshold N gap, threshold1, and a second interval threshold.
  • N gap and threshold 2 are the same, and the terminal device can obtain the first parameter, the first interval threshold N gap, threshold 1 and the second interval threshold N gap, threshold 2 after receiving the system message or RRC signaling.
  • the first interval threshold N gap, threshold1 and the second interval threshold N gap, threshold2 are agreed or defined by the agreement, the first interval threshold N gap, threshold1 and the second interval threshold N gap, threshold2 are for the terminal device.
  • the system message or RRC signaling carries the maximum number of repetitions of the search space of the physical downlink control channel R max and the interval configuration parameter.
  • the interval configuration parameter may not include the first interval threshold N gap, threshold1 and the second interval threshold N.
  • the terminal device obtains the first parameter by receiving a system message or RRC signaling.
  • the second case the first parameter is different from the second parameter, the first interval threshold is the same as the second interval threshold, the first parameter is the maximum number of repetitions of the search space of the physical downlink control channel, and the second parameter is the first valid subframe
  • the first interval threshold is configured by the system.
  • the second interval threshold is determined according to the first interval threshold and a preset constant.
  • the preset constant is an integer greater than or equal to 1 and less than or equal to 10.
  • the terminal device can receive the system message or RRC signaling sent by the network device. If the first interval threshold N gap, threshold1 is configured by the network device, the system message or RRC signaling carries the maximum number of repetitions of the search space of the physical downlink control channel R max and interval configuration parameters.
  • the interval configuration parameters include the first interval threshold N gap, threshold1 .
  • the terminal device can obtain the first parameter and the first interval threshold N gap, threshold1 by receiving a system message or RRC signaling. The terminal device is based on the first interval. Thresholds N gap, threshold1 and preset constants Determine the second interval threshold.
  • the first interval threshold N gap, threshold1 is agreed or defined, the first interval threshold N gap, threshold1 is known to the terminal device, and the system message or RRC signaling carries a search for the physical downlink control channel.
  • the interval configuration parameter may not include the first interval threshold N gap, threshold1 .
  • the terminal device obtains the first parameter by receiving a system message or RRC signaling.
  • the terminal device according to the first interval threshold N gap, threshold1 and preset constants Determine the second interval threshold. Terminal equipment according to the first interval threshold N gap, threshold1 and preset constants For the process of determining the second interval threshold, refer to the network device in step 601 according to the first interval threshold N gap, threshold1, and a preset constant. The process of determining the second interval threshold is not repeatedly described in this embodiment.
  • the third case the first parameter is different from the second parameter, the first interval threshold is the same as the second interval threshold, the first parameter is the maximum number of repetitions of the search space of the physical downlink control channel, and the second parameter is the first valid subframe
  • the first interval threshold is configured by the system
  • the second interval threshold is determined according to the first interval threshold and the third interval threshold
  • the third interval threshold is configured by the system.
  • the terminal device can receive system messages or RRC signaling sent by the network device. If the first interval threshold N gap, threshold1 and the third interval threshold N gap, threshold 3 are configured by the network device, the system message or RRC signaling carries physical downlink control. The maximum number of repetitions of the channel's search space, R max, and the interval configuration parameters.
  • the interval configuration parameters include the first interval threshold N gap, threshold1 and the third interval threshold N gap, threshold 3.
  • the terminal device can obtain the first message after receiving the system message or RRC signaling.
  • a parameter, the first interval threshold N gap, threshold1 and the third interval threshold N gap, threshold3 The terminal device determines the second interval threshold according to the first interval threshold N gap, threshold1, and the third interval threshold N gap, threshold3 .
  • the first interval threshold N gap, threshold1 and the third interval threshold N gap, threshold3 are agreed or defined by the agreement, the first interval threshold N gap, threshold1 and the third interval threshold N gap, threshold3 are for the terminal device. It is known that the maximum repetition number R max of the search space of the physical downlink control channel and the interval configuration parameter are carried in the system message or RRC signaling.
  • the interval configuration parameter may not include the first interval threshold N gap, threshold1 and the third interval threshold N.
  • the terminal device obtains the first parameter by receiving a system message or RRC signaling, and the terminal device determines the second gap threshold according to the first gap threshold N gap, threshold1 and the third gap threshold N gap, threshold3 .
  • the process for the terminal device to determine the second interval threshold according to the first interval threshold N gap, threshold1 and the third interval threshold N gap, threshold3 can refer to the network device according to step 601 according to the first interval threshold N gap, threshold1 and the third interval threshold N gap. , threshold3 determination process of the second threshold interval, the present embodiment is not repeated herein.
  • the terminal device may determine the first effective subframe number (that is, the second parameter) according to the scheduling information of the downlink data channel carrying the N TB transport blocks scheduled by the downlink control information. ).
  • the terminal device may determine the first effective subframe number (that is, the second parameter) according to the scheduling information of the downlink data channel carrying the N TB transport blocks scheduled by the downlink control information. ).
  • the terminal device may be after the following step 608 Obtain the first valid subframe number.
  • the terminal device can obtain the step 606
  • the number of first valid subframes is not limited in this embodiment of the present application.
  • a third implementation manner (corresponding to the third implementation manner in step 601): the first parameter and the second parameter are different, and the first interval threshold and the second interval threshold are different.
  • the first parameter is the maximum number of repetitions of the search space of the physical downlink control channel
  • the second parameter is the first effective subframe number
  • the first interval threshold and the second interval threshold are configured by the system; or, the first interval threshold is the system configuration
  • the second interval threshold is determined according to the first interval threshold and a preset constant.
  • the preset constant is an integer greater than or equal to 1 and less than or equal to 10.
  • the first interval threshold is configured by the system and the second interval threshold is determined according to The first interval threshold and the third interval threshold are determined, and the third interval threshold is configured by the system.
  • the first effective subframe number is the effective subframe number occupied by the physical downlink shared channel of the first transmission block of the plurality of transmission blocks carrying the downlink control information scheduling; or, the first effective subframe number is the bearer downlink control information
  • Step 607 The terminal device determines whether there is an interval in the transmission of the downlink control channel according to the first parameter and the first interval threshold.
  • step 607 reference may be made to the process in which the network device determines whether there is an interval in the transmission of the downlink control channel according to the first parameter and the first interval threshold in step 602, which is not described in this embodiment.
  • Step 608 The terminal device receives downlink control information from the network device through the downlink control channel according to a determination result of whether there is an interval in transmission of the downlink control channel, and the downlink control information is used to schedule one or more transmission blocks.
  • the terminal device may receive downlink control information from the network device through the downlink control channel according to a determination result of whether there is an interval in transmission of the downlink control channel.
  • the downlink control channel is blindly spaced in the search space after the interval to receive downlink control information from the network device.
  • n f is a radio frame number or a system frame number
  • n s is a slot number
  • mod represents a remainder or modulus operation, Represents rounding operations.
  • the downlink control information may indicate the number of transmission blocks N TB scheduled by the downlink control information, and scheduling information of downlink data channels carrying N TB transport blocks scheduled by the downlink control information.
  • the terminal device may determine the number of transmission blocks scheduled by the downlink control information N TB according to the downlink control information, and then determine the second interval threshold according to the first interval threshold N gap, threshold1 and the number of transmission blocks scheduled by the downlink control information N TB . This may be a process in which the terminal device acquires the second interval threshold in the second case of the first implementation manner in step 606.
  • the terminal device may determine the scheduling information of the downlink data channel of the N TB transport blocks carrying the downlink control information scheduling according to the downlink control information, and determine the first valid according to the scheduling information of the downlink data channel of the N TB transport blocks carrying the downlink control information scheduling.
  • the number of subframes This process may be a process in which the terminal device obtains the first effective number of subframes (that is, the second parameter) in the second and third implementation manners in step 606.
  • Step 609 The terminal device determines whether there is an interval in the transmission of the downlink data channel according to the second parameter and the second interval threshold.
  • step 609 reference may be made to the process in which the network device determines whether there is an interval in the transmission of the downlink data channel according to the second parameter and the second interval threshold in step 604, which is not described in this embodiment.
  • Step 610 The terminal device receives one or more transport blocks from the network device through the downlink data channel according to a determination result of whether there is an interval in the transmission of the downlink data channel.
  • the terminal device receives one or more transport blocks from the network device through the downlink data channel according to the determination result of whether there is an interval in the transmission of the downlink data channel.
  • the first parameter, the second parameter, the first interval threshold, and the second interval threshold are such that the number of intervals included in the same time period for receiving the downlink data channel is not less than the interval included in the same time period for receiving the downlink control channel number.
  • the first parameter is the maximum repetition number R max of the search space of the physical downlink control channel, and the first interval threshold N gap, threshold1 and the second interval threshold N gap, threshold 2 are configured by the system.
  • the maximum repetition number R max of the search space of the physical downlink control channel is 16, the first interval threshold N gap, threshold1 is configured as 32, and the second interval threshold N gap, threshold 2 is configured as 8. Since the first parameter R max is smaller than the first gap threshold N gap, threshold1 , there is no gap in the transmission of the downlink control channel.
  • the second parameter R max is greater than the second gap threshold N gap, threshold2 , there is a gap in the transmission of the downlink data channel. Intervals occur periodically. If you count the intervals in a certain period of time, in this example, there is a gap in the transmission of the downlink data channel, and there is no gap in the transmission of the downlink control channel. Therefore, the first parameter, the second parameter, the first parameter, The interval threshold and the second interval threshold are such that the number of intervals included in the same time period for receiving the downlink data channel is not less than the number of intervals included in the same time period for receiving the downlink control channel.
  • n f is a radio frame number or a system frame number
  • n s is a slot number
  • mod represents a remainder or modulus operation, Represents rounding operations.
  • the network device can determine whether the data transmission between the network device and the terminal device satisfies a preset condition. If the data transmission between the network device and the terminal device satisfies The preset condition determines whether there is a gap in the downlink transmission according to the gap determination method in the data transmission method provided in the embodiment of the present application, and performs downlink transmission according to the determination result. If the data transmission between the network device and the terminal device does not meet the pre- If conditions are set, it is determined whether there is a gap in the downlink transmission according to the gap determination method provided by the related technology, and downlink transmission is performed according to the determination result.
  • the preset condition may include that a preset value of the scheduling delay is less than or equal to a preset time threshold, and the preset value of the scheduling delay is a maximum value, a minimum value, or an average value of the scheduling delay, and a maximum value of the scheduling delay.
  • the maximum value of multiple time differences between the end time of transmission of downlink control information and the transmission start times of multiple transmission blocks scheduled by downlink control information, and the minimum value of the scheduling delay is the end time of transmission of downlink control information
  • the minimum value of the time difference between multiple transmission start times of multiple transmission blocks scheduled by the downlink control information, and the average value of the scheduling delay is the transmission end time of the downlink control information and the multiple transmission blocks scheduled by the downlink control information.
  • the terminal device in this embodiment is a terminal device that supports one downlink control information to schedule multiple transport blocks. For a terminal device that does not support one downlink control information to schedule multiple transport blocks, it can be determined according to the gap determination method provided by the related technology. Whether there is a gap in the downlink transmission and the downlink transmission is performed according to the judgment result is not limited in this embodiment of the present application.
  • the data transmission method provided in the embodiment of the present application determines whether there is an interval in the transmission of the downlink control channel according to the first parameter and the first interval threshold. According to the determination result of whether there is an interval in the transmission of the downlink control channel, The downlink control channel and the terminal device transmit downlink control information, and determine whether there is an interval in the transmission of the downlink data channel according to the second parameter and the second interval threshold.
  • the downlink data channel is used to communicate with The terminal device transmits one or more transmission blocks, the first parameter and the second parameter are different and the first interval threshold and the second interval threshold are the same, or the first parameter and the second parameter are the same and the first interval threshold and the second interval threshold are the same Different, or the first parameter and the second parameter are different and the first interval threshold and the second interval threshold are different.
  • the solutions provided in the embodiments of the present application make it possible to use different judgment methods for whether there is an interval between the transmission of the downlink control channel and the downlink data channel, so that the number of intervals included in the same period of time for transmitting the downlink data channel can be different from that.
  • the number of intervals included in the same time period for sending the downlink control channel may specifically enable the number of intervals included in the same time period for sending the downlink data channel to be not less than the number of intervals included in the same time period for the downlink control channel.
  • the data transmission method provided in the embodiment of the present application determines whether there is an interval in the transmission of the downlink data channel by setting a second interval threshold. Compared with the related art, the interval determination method is more flexible.
  • FIG. 7 shows a schematic diagram of a logical structure of a network device 700 according to an embodiment of the present application.
  • the network device 700 may be a base station, and may specifically be an MTC base station.
  • the network device 700 includes:
  • a first determining module 710 configured to determine a first parameter, a second parameter, a first interval threshold, and a second interval threshold;
  • a second determining module 720 configured to determine whether there is an interval in transmission of the downlink control channel according to the first parameter and the first interval threshold;
  • a first sending module 730 configured to send downlink control information to a terminal device through a downlink control channel according to a determination result of whether there is an interval in transmission of the downlink control channel;
  • a third determining module 740 configured to determine whether there is an interval in transmission of the downlink data channel according to the second parameter and the second interval threshold;
  • a second sending module 750 configured to send one or more transport blocks to the terminal device through the downlink data channel according to a determination result of whether there is an interval in transmission of the downlink data channel, and the downlink control information is used to schedule one or more transport blocks;
  • the first parameter and the second parameter are different, and the first interval threshold and the second interval threshold are the same; or
  • the first parameter and the second parameter are the same, and the first interval threshold and the second interval threshold are different; or,
  • the first parameter and the second parameter are different, and the first interval threshold and the second interval threshold are different.
  • the first parameter, the second parameter, the first interval threshold, and the second interval threshold are such that the number of intervals included in the same time period for sending downlink data channels is not less than the same time period for sending downlink control channels. The number of intervals included.
  • the first parameter is the same as the second parameter, and the first parameter is a maximum number of repetitions of a search space of a physical downlink control channel,
  • the second determining module 720 is configured to: when the maximum repetition number of the search space of the physical downlink control channel is greater than or equal to the first interval threshold, determine that there is an interval in the transmission of the downlink control channel; when the maximum search space of the physical downlink control channel is maximum When the number of repetitions is less than the first interval threshold, it is determined that there is no interval in the transmission of the downlink control channel;
  • the third determining module 740 is configured to: when the maximum number of repetitions of the search space of the physical downlink control channel is greater than or equal to the second interval threshold, determine that there is an interval in the transmission of the downlink data channel; When the number of repetitions is less than the second interval threshold, it is determined that there is no interval in the transmission of the downlink data channel;
  • the first interval threshold and the second interval threshold are configured by the system, and the first interval threshold is different from the second interval threshold.
  • the first interval threshold is configured by the system, and the second interval threshold is controlled according to the first interval threshold and the downlink.
  • the number of information scheduling transmission blocks is determined; or, the first interval threshold is configured by the system, and the second interval threshold is determined according to the first interval threshold and the maximum number of transmission blocks that can be scheduled by the downlink control information.
  • the first parameter is the maximum number of repetitions of the search space of the physical downlink control channel
  • the second parameter is the first effective subframe number
  • the second determining module 720 is configured to: when the maximum repetition number of the search space of the physical downlink control channel is greater than or equal to the first interval threshold, determine that there is an interval in the transmission of the downlink control channel; when the maximum search space of the physical downlink control channel is maximum When the number of repetitions is less than the first interval threshold, it is determined that there is no interval in the transmission of the downlink control channel;
  • the third determining module 740 is configured to: when the number of first valid subframes is greater than or equal to the second interval threshold, determine that there is a gap in transmission of the downlink data channel; when the number of first valid subframes is less than the second interval threshold, determine There is no interval in the transmission of the downlink data channel;
  • the first interval threshold and the second interval threshold are configured by the system; or, the first interval threshold is configured by the system, and the second interval threshold is determined according to the first interval threshold and a preset constant, and the preset constant is greater than or equal to 1 And an integer less than or equal to 10; or the first interval threshold is configured by the system, the second interval threshold is determined according to the first interval threshold and the third interval threshold, and the third interval threshold is configured by the system.
  • the first effective subframe number is an effective subframe number occupied by a physical downlink shared channel of a first transport block among a plurality of transport blocks carrying downlink control information scheduling; or,
  • the first effective subframe number is an effective subframe number occupied by a physical downlink shared channel of any one of a plurality of transport blocks carrying downlink control information scheduling; or,
  • the first effective subframe number is the effective subframe number occupied by the physical downlink shared channel of the plurality of transport blocks carrying the downlink control information scheduling.
  • the first determining module 710 is configured to perform step 601 in the embodiment shown in FIG. 6, the second determining module 720 is configured to perform step 602 in the embodiment shown in FIG. 6, and the first sending module 730 is configured to Step 603 in the embodiment shown in FIG. 6 is performed.
  • the third determination module 740 is used to perform step 604 in the embodiment shown in FIG. 6.
  • the second sending module 750 is used to perform step 605 in the embodiment shown in FIG. 6.
  • the first determining module 710, the second determining module 720, and the third determining module 740 may be the same determining module or different determining modules.
  • the first sending module 730 and the second sending module 750 may be the same.
  • the sending module may also be a different sending module, which is not limited in the embodiment of the present application.
  • the foregoing several determining modules may also be one processing module, and the several sending modules may be one sending module. That is, the processing module performs steps such as determination in the above steps, and the sending module performs steps such as sending.
  • the processing module may also include multiple sub-processing modules.
  • the network device determines whether there is an interval in the transmission of the downlink control channel according to the first parameter and the first interval threshold, and determines whether there is an interval in the transmission of the downlink control channel through the downlink.
  • the control channel sends downlink control information to the terminal device, and determines whether there is a gap in the transmission of the downlink data channel according to the second parameter and the second interval threshold.
  • the device sends one or more transmission blocks, the first parameter and the second parameter are different and the first interval threshold and the second interval threshold are the same, or the first parameter and the second parameter are the same and the first interval threshold and the second interval threshold are different Or, the first parameter and the second parameter are different and the first interval threshold and the second interval threshold are different.
  • the solutions provided in the embodiments of the present application make it possible to use different judgment methods for whether there is an interval between the transmission of the downlink control channel and the downlink data channel, so that the number of intervals included in the same period of time for transmitting the downlink data channel can be different from that.
  • the number of intervals included in the same time period for sending the downlink control channel may specifically enable the number of intervals included in the same time period for sending the downlink data channel to be not less than the number of intervals included in the same time period for the downlink control channel.
  • the number of intervals to include.
  • the gap determination method provided in the embodiments of the present application can make the transmission of downlink data channels have more intervals, so it can be better in the scenario where one DCI schedules multiple TBs. Avoid continuous downlink data transmission for a terminal device with a long duration, so as to better prevent the downlink channel from being blocked and improve system resource utilization efficiency.
  • FIG. 8 shows a schematic diagram of a logical structure of a terminal device 800 according to an embodiment of the present application.
  • the terminal device 800 may be a user device, and may specifically be an MTC device. Referring to FIG. :
  • An obtaining module 810 configured to obtain a first parameter, a second parameter, a first interval threshold, and a second interval threshold;
  • a first determining module 820 configured to determine whether there is an interval in transmission of a downlink control channel according to a first parameter and a first interval threshold;
  • a first receiving module 830 configured to receive downlink control information from a network device through a downlink control channel according to a determination result of whether there is an interval in transmission of the downlink control channel;
  • a second determining module 840 configured to determine whether there is an interval in transmission of the downlink data channel according to the second parameter and the second interval threshold;
  • a second receiving module 850 configured to receive one or more transport blocks from a network device through a downlink data channel according to a determination result of whether there is an interval in transmission of the downlink data channel, and downlink control information is used to schedule one or more transport blocks;
  • the first parameter and the second parameter are different, and the first interval threshold and the second interval threshold are the same; or
  • the first parameter and the second parameter are the same, and the first interval threshold and the second interval threshold are different; or,
  • the first parameter and the second parameter are different, and the first interval threshold and the second interval threshold are different.
  • the first parameter, the second parameter, the first interval threshold, and the second interval threshold are such that the number of intervals included in the same time period for receiving the downlink data channel is not less than when the same time period is used for receiving the downlink control channel. The number of intervals included.
  • the first parameter is the same as the second parameter, and the first parameter is a maximum number of repetitions of a search space of a physical downlink control channel,
  • the first determining module 820 is configured to: when the maximum number of repetitions of the search space of the physical downlink control channel is greater than or equal to the first interval threshold, determine that there is an interval in the transmission of the downlink control channel; When the number of repetitions is less than the first interval threshold, it is determined that there is no interval in the transmission of the downlink control channel;
  • a second determining module 840 configured to: when the maximum number of repetitions of the search space of the physical downlink control channel is greater than or equal to the second interval threshold, determine that there is an interval in the transmission of the downlink data channel; When the number of repetitions is less than the second interval threshold, it is determined that there is no interval in the transmission of the downlink data channel;
  • the first interval threshold and the second interval threshold are configured by the system; or the first interval threshold is configured by the system, and the second interval threshold is determined according to the number of transmission blocks scheduled by the first interval threshold and downlink control information; or, The first interval threshold is configured by the system, and the second interval threshold is determined according to the first interval threshold and the maximum number of transmission blocks that can be scheduled by the downlink control information.
  • the first parameter is the maximum number of repetitions of the search space of the physical downlink control channel
  • the second parameter is the first effective subframe number
  • the first determining module 820 is configured to: when the maximum number of repetitions of the search space of the physical downlink control channel is greater than or equal to the first interval threshold, determine that there is an interval in the transmission of the downlink control channel; when the maximum search space of the physical downlink control channel is maximum When the number of repetitions is less than the first interval threshold, it is determined that there is no interval in the transmission of the downlink control channel;
  • the second determining module 840 is configured to determine that there is a gap in the transmission of the downlink data channel when the number of the first valid subframes is greater than or equal to the second interval threshold; and determine when the number of the first valid subframes is less than the second interval threshold. There is no interval in the transmission of the downlink data channel;
  • the first interval threshold and the second interval threshold are configured by the system; or, the first interval threshold is configured by the system, and the second interval threshold is determined according to the first interval threshold and a preset constant, and the preset constant is greater than or equal to 1 And an integer less than or equal to 10; or the first interval threshold is configured by the system, the second interval threshold is determined according to the first interval threshold and the third interval threshold, and the third interval threshold is configured by the system.
  • the first effective subframe number is an effective subframe number occupied by a physical downlink shared channel of a first transport block among a plurality of transport blocks carrying downlink control information scheduling; or,
  • the first effective subframe number is an effective subframe number occupied by a physical downlink shared channel of any one of a plurality of transport blocks carrying downlink control information scheduling; or,
  • the first effective subframe number is the effective subframe number occupied by the physical downlink shared channel of the plurality of transport blocks carrying the downlink control information scheduling.
  • the obtaining module 810 is configured to perform step 606 in the embodiment shown in FIG. 6, the first determining module 820 is configured to perform step 607 in the embodiment shown in FIG. 6, and the first receiving module 830 is configured to execute In step 608 in the embodiment shown in FIG. 6, the second determination module 840 is configured to perform step 608 in the embodiment shown in FIG. 6, and the second receiving module 850 is used to perform step 610 in the embodiment shown in FIG.
  • the first determining module 820 and the second determining module 840 may be the same determining module or different determining modules.
  • the first receiving module 830 and the second receiving module 850 may be the same receiving module or It is a different receiving module, which is not limited in the embodiment of the present application.
  • the foregoing determination modules and acquisition modules on the terminal device side may also be one processing module, and several receiving modules may be one receiving module. That is, the processing module performs steps such as determination, acquisition, and the like in the above steps, and the receiving module performs steps such as receiving.
  • the processing module may also include multiple sub-processing modules.
  • the terminal device determines whether there is an interval in the transmission of the downlink control channel according to the first parameter and the first interval threshold, and determines whether there is an interval in the transmission of the downlink control channel through the downlink.
  • the control channel receives downlink control information sent by the network device, determines whether there is a gap in the transmission of the downlink data channel according to the second parameter and the second interval threshold, and receives the downlink data channel according to the determination result of whether there is a gap in the transmission of the downlink data channel.
  • One or more transmission blocks sent by the network device, the first parameter and the second parameter are different and the first interval threshold and the second interval threshold are the same, or the first parameter and the second parameter are the same and the first interval threshold and the second interval are the same
  • the thresholds are different, or the first parameter and the second parameter are different and the first interval threshold and the second interval threshold are different.
  • the number of intervals included in the same time period for sending the downlink control channel may specifically enable the number of intervals included in the same time period for sending the downlink data channel to be not less than the number of intervals included in the same time period for the downlink control channel.
  • the number of intervals to include Therefore, compared to the current gap determination method, the gap determination method provided in the embodiments of the present application can make the transmission of downlink data channels have more intervals, so it can be better in the scenario where one DCI schedules multiple TBs. Avoid continuous downlink data transmission for a terminal device with a long duration, so as to better prevent the downlink channel from being blocked and improve system resource utilization efficiency.
  • FIG. 9 shows a schematic diagram of a hardware structure of a communication device 900 according to an embodiment of the present application.
  • the communication device 900 may be a network device or a terminal device, the network device may be an MTC base station, and the terminal device may be an MTC device.
  • the communication device 900 includes a processor 902, a transceiver 904, multiple antennas 906, a memory 908, an input / output (I / O) interface 910, and a bus 912.
  • the processor 902 and the transceiver 904 The memory 908 and the I / O interface 910 are communicatively connected to each other through a bus 912, and a plurality of antennas 906 are connected to the transceiver 904.
  • connection manner between the processor 902, the transceiver 904, the memory 908, and the I / O interface 910 shown in FIG. 9 is merely exemplary.
  • the processor 902, the transceiver 904, The memory 908 and the I / O interface 910 may also be connected to each other in a communication manner other than the bus 912.
  • the memory 908 may be used to store instructions 9082 and data 9084.
  • the processor 902 may be a general-purpose processor, and the general-purpose processor may be a processor that executes specific steps and / or operations by reading and executing instructions (for example, instructions 9082) stored in a memory (for example, the memory 908).
  • the data (for example, data 9084) stored in the memory (for example, the memory 908) may be used in performing the above steps and / or operations.
  • the general-purpose processor may be, for example, but not limited to, a central processing unit (CPU).
  • the processor 902 may also be a special-purpose processor.
  • the special-purpose processor may be a processor specifically designed to perform specific steps and / or operations.
  • the special-purpose processor may be, for example, but not limited to, a digital signal processor ( digital signal processor (DSP), application specific integrated circuit (ASIC) and field programmable gate array (FPGA).
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the processor 902 may also be a combination of multiple processors, such as a multi-core processor.
  • the processor 902 may include at least one circuit to perform all or part of the steps of the data transmission method provided by the foregoing embodiments.
  • the transceiver 904 is used for transmitting and receiving signals.
  • the transceiver 904 transmits and receives signals through at least one of the multiple antennas 906.
  • the transceiver 904 is used for the communication device 900 to communicate with other communication devices.
  • the communication device 900 is a network device
  • the other communication devices may be terminal devices.
  • the other communication devices may be network devices.
  • the memory 908 may be various types of storage media, such as random access memory (RAM), ROM, non-volatile RAM (NVRAM), programmable ROM (PROM), Erasable PROM (erasable PROM, EPROM), electrically erasable PROM (electrically erasable PROM, EEPROM), flash memory, optical memory and registers, etc.
  • RAM random access memory
  • ROM read-only memory
  • NVRAM non-volatile RAM
  • PROM programmable ROM
  • EPROM programmable ROM
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable PROM
  • EEPROM electrically erasable PROM
  • flash memory optical memory and registers, etc.
  • the memory 908 is specifically configured to store instructions 9082 and data 9084.
  • the processor 902 is a general-purpose processor, the processor 902 can read and execute the instructions 9082 stored in the memory 908 to perform specific steps and / or operations.
  • Data 9084 may be
  • the I / O interface 910 is used to receive instructions and / or data from a peripheral device and output instructions and / or data to the peripheral device.
  • the processor 902 may be used to perform, for example, but not limited to, baseband related processing, and the transceiver 904 may be used to perform, for example, but not limited to, radio frequency transceiver.
  • the above devices may be provided on separate chips, or at least partly or entirely on the same chip.
  • the processor 902 may be further divided into an analog baseband processor and a digital baseband processor.
  • the analog baseband processor and the transceiver 904 may be integrated on the same chip, and the digital baseband processor may be provided on a separate chip. With the continuous development of integrated circuit technology, more and more devices can be integrated on the same chip.
  • digital baseband processors can be used with multiple application processors (such as, but not limited to, graphics processors, multimedia processors, etc.) Integrated on the same chip.
  • application processors such as, but not limited to, graphics processors, multimedia processors, etc.
  • Such a chip may be referred to as a system chip. Whether each device is independently set on a different chip or integrated on one or more chips often depends on the specific needs of the product design. The embodiment of the present application does not limit the specific implementation form of the device.
  • the communication device 900 shown in FIG. 9 is only exemplary. In a specific implementation process, the communication device 900 may further include other hardware devices, which will not be enumerated here one by one.
  • the data transmission system includes: a network device 700 provided in the embodiment shown in FIG. 7 and a terminal device 800 provided in the embodiment shown in FIG. 8; in another possible implementation manner, the data transmission system The data transmission system includes a network device and a terminal device. Any one or both of the network device and the terminal device may be a communication device provided in the embodiment shown in FIG. 9.
  • An embodiment of the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores instructions.
  • the processing component is caused to execute data provided by the embodiment shown in FIG. 6. Steps 601 to 605 of the transmission method, or cause the processing component to execute steps 606 to 610 of the data transmission method provided by the embodiment shown in FIG. 6.
  • the embodiment of the present application provides a computer program product containing instructions, and when the computer program product runs on a computer, the computer is caused to execute steps 601 to 605 of the data transmission method provided in the embodiment shown in FIG. 6, or The computer executes steps 606 to 610 of the data transmission method provided in the embodiment shown in FIG. 6.
  • An embodiment of the present application provides a chip, which includes a programmable logic circuit and / or program instructions, and is used to implement steps 601 to 605 of the data transmission method provided by the embodiment shown in FIG. 6 when the chip is running, or , Steps 606 to 610 of the data transmission method provided by the embodiment shown in FIG. 6 are implemented.
  • An embodiment of the present application provides a processing device.
  • the processing device includes at least one circuit, and the at least one circuit is configured to execute steps 601 to 605 of the data transmission method provided in the embodiment shown in FIG. 6, or the at least one circuit For performing steps 606 to 610 of the data transmission method provided by the embodiment shown in FIG. 6.
  • An embodiment of the present application provides a processing device, which is configured to implement a data transmission method provided by the embodiment shown in FIG. 6.
  • FIG. 10 shows a method flowchart of a data transmission method provided by an embodiment of the present application.
  • the data transmission method may be used in the implementation environment shown in FIG. 5.
  • the method includes:
  • Step 1001 The network device determines a first parameter, a second parameter, a first interval threshold, and a second interval threshold.
  • the network device determining the first parameter, the second parameter, the first interval threshold, and the second interval threshold may include the following two possible implementation manners:
  • the first implementation manner the first parameter and the second parameter are the same, and the first interval threshold and the second interval threshold are different.
  • the first parameter is the maximum number of repetitions of the search space of the physical downlink control channel.
  • the first interval threshold and the second interval threshold are configured by the system.
  • the first interval threshold is different from the second interval threshold, or the first interval threshold is the system configuration.
  • the second interval threshold is determined according to the first interval threshold and the maximum number of transport blocks that can be scheduled by the downlink control information.
  • the network device determining the first parameter, the second parameter, the first interval threshold, and the second interval threshold may include the following two possible situations:
  • the first case the first parameter and the second parameter are the same, and the first interval threshold and the second interval threshold are different.
  • the first parameter is the maximum number of repetitions of the search space of the physical downlink control channel, and the first interval threshold and the second interval threshold are configured by the system.
  • the second case the first parameter is the same as the second parameter, the first interval threshold is different from the second interval threshold, the first parameter is the maximum number of repetitions of the search space of the physical downlink control channel, and the first interval threshold is configured by the system.
  • the second interval threshold is determined according to the first interval threshold and the maximum number of transport blocks that can be scheduled by the downlink control information.
  • the maximum number of repetitions of the search space of the physical downlink control channel may be the maximum number of repetitions of the search space of the physical downlink control channel used by the first type of terminal device. It may also be the maximum number of repetitions of the search space of the physical downlink control channel used by the second type of terminal equipment, or the maximum number of repetitions of the physical downlink control channel used by the first type of terminal equipment and the second type of terminal equipment is used. The maximum value of the maximum number of repetitions of the search space of the physical downlink control channel is not limited in this embodiment.
  • a second implementation manner The first parameter and the second parameter are different, and the first interval threshold and the second interval threshold are the same, or the first interval threshold and the second interval threshold are different.
  • the first parameter is the first number of repetitions
  • the first number of repetitions is the maximum number of repetitions of the search space of the physical downlink control channel used by the first type of terminal device
  • the second parameter is the second number of repetitions
  • the second number of repetitions is the second The maximum number of repetitions of the search space of the physical downlink control channel used by the terminal device of the type
  • the first interval threshold and the second interval threshold are configured by the system
  • the first interval threshold is configured by the system
  • the second interval threshold is based on the first The interval threshold and the maximum number of transport blocks that the downlink control information can schedule are determined.
  • the network device determining the first parameter, the second parameter, the first interval threshold, and the second interval threshold may include the following two possible situations:
  • the network device can determine the maximum number of repetitions of the search space of the physical downlink control channel used by the first type of terminal device R max1 , the maximum number of repetitions of the search space of the physical downlink control channel used by the second type of terminal device, R max2, and the interval configuration
  • a parameter that determines the maximum number of repetitions of the search space of the physical downlink control channel used by the first type of terminal device R max1 as the first parameter and determines the maximum number of repetitions of the search space of the physical downlink control channel used by the second type of terminal device R max2 is determined as the second parameter
  • the interval configuration parameter may include a first interval threshold N gap, threshold1 and a second interval threshold N gap, threshold2 configured by the system, a first interval threshold N gap, threshold1, and a second interval threshold N gap, threshold2 is the same or different.
  • the first parameter is different from the second parameter
  • the first interval threshold is the same as the second interval threshold, or the first interval threshold is different from the second interval threshold
  • the first parameter is the first number of repetitions
  • the second parameter For the second number of repetitions, the first interval threshold is configured by the system, and the second interval threshold is determined according to the first interval threshold and the maximum number of transport blocks that can be scheduled by the downlink control information.
  • the network device can determine the maximum number of repetitions of the search space of the physical downlink control channel used by the first type of terminal device R max1 , the maximum number of repetitions of the search space of the physical downlink control channel used by the second type of terminal device R max2 , and the interval configuration
  • the maximum number of repetitions R max1 of the search space of the physical downlink control channel used by the first type of terminal device is determined as the first parameter, and the second type is determined.
  • the maximum number of repetitions R max2 of the search space of the physical downlink control channel used by the terminal device is determined as the second parameter, and the interval configuration parameter may include a first interval threshold N gap, threshold1 configured by the system , and the network device according to the first interval threshold N gap Threshold1 and the maximum number of transmission blocks N TB, max that can be scheduled by the downlink control information determine the second interval threshold.
  • the network device determines N gap, threshold 1 / N TB, max as the second interval threshold, the maximum number of transmission blocks N TB, max when the downlink control information can be scheduled is equal to At 1, the first interval threshold and the second interval threshold are the same.
  • the maximum number of transmission blocks N TB, max that the downlink control information can schedule is not equal to 1, the first interval threshold and the second interval threshold are different.
  • Step 1002 The network device determines the type of the terminal device, and the type of the terminal device is the first type or the second type.
  • the terminal device may report the type of the terminal device to the network device, and the network device may receive the type reported by the terminal device, and determine the type of the terminal device according to the type reported by the terminal device.
  • the type of the terminal device is the first type or the second type.
  • the first type of terminal device supports one downlink control information to schedule one transmission block, or does not support one downlink control information to schedule multiple transmission blocks, or does not support scheduling enhancement.
  • the second type of terminal device supports one downlink control information to schedule multiple transport blocks, or supports scheduling enhancement.
  • Step 1003 For the first type of terminal device, the network device determines whether there is an interval in the transmission of the downlink control channel according to the first parameter and the first interval threshold.
  • the first parameter may be the maximum number of repetitions of the search space of the physical downlink control channel, or may be the first number of repetitions.
  • the network device determines the transmission of the downlink control channel for the first type of terminal device according to the first parameter and the first interval threshold. Whether there is a gap in the network may include: the network device compares the maximum repetition number R max of the search space of the physical downlink control channel with the first interval threshold to determine whether there is a gap in the transmission of the downlink control channel.
  • the network device determines that there is an interval in the transmission of the downlink control channel; when the maximum number of repetitions of the search space of the physical downlink control channel R max is less than the first interval threshold, the network device Make sure that there is no gap in the transmission of the downlink control channel.
  • the first parameter is the first number of repetitions
  • the network device determines whether there is an interval in the transmission of the downlink control channel according to the first parameter and the first interval threshold for the first type of terminal device.
  • the network device may include the first number of repetitions. Compare with the first interval threshold to determine whether there is an interval in the transmission of the downlink control channel.
  • the network device determines that there is an interval in the transmission of the downlink control channel; When it is less than the first interval threshold, the network device determines that there is no interval in the transmission of the downlink control channel.
  • this step 1003 may include the following two possible implementations.
  • the first parameter is a maximum repetition number R max of the search space of the physical downlink control channel, and the first interval threshold is configured by the system.
  • the first interval threshold is configured by the system.
  • the first interval threshold may be N gap, threshold1 .
  • the network device determines There is a gap in the transmission of the downlink control channel.
  • the maximum repetition number R max of the search space of the physical downlink control channel is less than N gap, threshold1 , the network device determines that there is no gap in the transmission of the downlink control channel.
  • the following row of the control channel is the NPDCCH as an example, then the relationship between the first parameter R max , the first interval threshold N gap, threshold1, and whether there is a gap in the transmission of the NPDCCH can be expressed in the following Table 5:
  • threshold1 Is there a gap in NPDCCH transmission R max ⁇ N gap, threshold1 Spaced R max ⁇ N gap, threshold1 No interval
  • the second implementation manner the first parameter is the first number of repetitions, and the first interval threshold is configured by the system.
  • the first parameter is the first number of repetitions, and the first number of repetitions is the maximum number of repetitions of the physical downlink control channel search space R max1 used by the first type of terminal device.
  • the first interval threshold is configured by the system, and the first interval threshold may be N gap, threshold1 .
  • the network device determines that there is a gap in the transmission of the downlink control channel.
  • the maximum repetition number R max1 of the search space of the physical downlink control channel used by the first type of terminal device is less than N gap, threshold1 , the network device determines that there is no gap in the transmission of the downlink control channel.
  • the following row of the control channel is the NPDCCH as an example, then the relationship between the first parameter R max1 , the first interval threshold N gap, threshold1, and whether there is an interval in the NPDCCH transmission can be expressed by the following table 6:
  • threshold1 Is there a gap in NPDCCH transmission R max1 ⁇ N gap, threshold1 Spaced R max1 ⁇ N gap, threshold1 No interval
  • Step 1004 The network device sends downlink control information to the first terminal device through the downlink control channel according to a determination result of whether there is an interval in transmission of the downlink control channel, and the type of the first terminal device is the first type.
  • step 1004 For the implementation of this step 1004, reference may be made to step 603 of the embodiment shown in FIG. 6, which is not repeated in this embodiment.
  • Step 1005 The network device determines whether there is an interval in the transmission of the downlink data channel according to the first parameter and the first interval threshold for the first type of terminal device.
  • the first parameter may be the maximum number of repetitions of the search space of the physical downlink control channel, or may be the first number of repetitions.
  • the network device determines the transmission of the downlink data channel for the first type of terminal device according to the first parameter and the first interval threshold. Whether there is a gap in the network may include: the network device compares the maximum repetition number R max of the search space of the physical downlink control channel with the first interval threshold to determine whether there is a gap in the transmission of the downlink data channel.
  • the network device determines that there is an interval in the transmission of the downlink data channel; when the maximum repetition number R max of the search space of the physical downlink control channel is less than the first interval threshold, the network device Make sure that there is no gap in the transmission of the downlink data channel.
  • the first parameter is the first number of repetitions
  • the network device determines whether there is an interval in the transmission of the downlink data channel according to the first parameter and the first interval threshold for the first type of terminal device.
  • the network device may include: Compare with the first interval threshold to determine whether there is an interval in the transmission of the downlink data channel.
  • the network device determines that there is an interval in the transmission of the downlink data channel; When it is less than the first interval threshold, the network device determines that there is no interval in the transmission of the downlink data channel.
  • step 1005 For a specific implementation process of step 1005, reference may be made to step 1003, which is not repeated in this embodiment. It should be noted that in this step 1005, the data channel of the lower row is NPDSCH as an example, then the relationship between the first parameter R max , the first interval threshold N gap, threshold 1 and whether there is a gap in the transmission of NPDSCH can use the following Table 7 Means:
  • threshold1 Is there a gap in the transmission of NPDSCH R max ⁇ N gap, threshold1 Spaced R max ⁇ N gap, threshold1 No interval
  • threshold1 Is there a gap in the transmission of NPDSCH R max1 ⁇ N gap, threshold1 Spaced R max1 ⁇ N gap, threshold1 No interval
  • Step 1006 The network device sends a transport block to the first terminal device through the downlink data channel according to a determination result of whether there is an interval in transmission of the downlink data channel, and the downlink control information is used to schedule a transport block.
  • the type of the first terminal device is the first type, and the network device sends a transmission block to the first terminal device through the downlink data channel according to the determination result in step 1005.
  • the network device sends a transmission block to the first terminal device through the downlink data channel according to the determination result in step 1005.
  • step 1006 reference may be made to step 605 of the embodiment shown in FIG. 6, which is not described in this embodiment.
  • Step 1007 The network device determines whether there is an interval in the transmission of the downlink control channel according to the second parameter and the second interval threshold for the second type of terminal device.
  • the second parameter may be the maximum number of repetitions of the search space of the physical downlink control channel, or may be the second number of repetitions.
  • the network device determines the transmission of the downlink control channel for the second type of terminal device according to the second parameter and the second interval threshold. Whether there is a gap in the network may include: the network device compares the maximum repetition number R max of the search space of the physical downlink control channel with a second interval threshold to determine whether there is a gap in the transmission of the downlink control channel.
  • the network device determines that there is an interval in the transmission of the downlink control channel; when the maximum number of repetitions of the search space of the physical downlink control channel R max is less than the second interval threshold, the network device Make sure that there is no gap in the transmission of the downlink control channel.
  • the second parameter is the second number of repetitions
  • the network device determines whether there is an interval in the transmission of the downlink control channel according to the second parameter and the second interval threshold for the second type of terminal device.
  • the network device may include the second number of repetitions. Compare with the second interval threshold to determine whether there is an interval in the transmission of the downlink control channel.
  • the network device determines that there is an interval in the transmission of the downlink control channel; When it is less than the second interval threshold, the network device determines that there is no interval in the transmission of the downlink control channel.
  • this step 1007 may include the following two possible implementations.
  • the second parameter is the maximum number of repetitions of the search space of the physical downlink control channel, R max , and the second interval threshold is configured by the system, or the second interval threshold can be scheduled according to the first interval threshold and the downlink control information.
  • the maximum number of transport blocks is determined.
  • the second interval threshold is configured by the system, and the second interval threshold may be N gap, threshold2 .
  • the network device determines There is a gap in the transmission of the downlink control channel.
  • the network device determines that there is no gap in the transmission of the downlink control channel.
  • the second interval threshold is determined according to the maximum number of transmission blocks that can be scheduled by the first interval threshold and downlink control information.
  • the second interval threshold may be N gap, threshold 1 / N TB, max .
  • the network device determines that there is a gap in the transmission of the downlink control channel.
  • the maximum number of repetitions of the search space of the physical downlink control channel R max is less than N gap
  • threshold1 / N TB, max the network device determines that there is no gap in the transmission of the downlink control channel.
  • the following row of the control channel is the NPDCCH as an example.
  • the relationship between the second parameter R max , the second interval threshold, and whether there is an interval in the NPDCCH transmission can be expressed in the following table 9:
  • the second parameter is the second number of repetitions, and the second interval threshold is configured by the system, or the second interval threshold is determined according to the first interval threshold and the maximum number of transmission blocks that can be scheduled by the downlink control information.
  • the second parameter is a second number of repetitions, and the second number of repetitions is a maximum number of repetitions R max2 of a search space of a physical downlink control channel used by the second type of terminal device.
  • the second interval threshold is configured by the system, and the second interval threshold may be N gap, threshold2 .
  • the network device determines that there is a gap in the transmission of the downlink control channel.
  • the network device determines the downlink There are no gaps in the transmission of the control channel.
  • the second interval threshold is determined according to the maximum number of transmission blocks that can be scheduled by the first interval threshold and downlink control information.
  • the second interval threshold may be N gap, threshold 1 / N TB, max .
  • the network device determines that there is a gap in the transmission of the downlink control channel.
  • the maximum repetition number R max2 of the search space of the physical downlink control channel is smaller than N gap, threshold 1 / N TB, max , the network device determines that there is no gap in the transmission of the downlink control channel.
  • the following row of the control channel is the NPDCCH as an example, then the relationship between the second parameter R max2 , the second interval threshold N gap, threshold2, and whether there is a gap in the transmission of the NPDCCH can be expressed in the following table 10:
  • R max1 and N gap Relationship between R max1 and N gap, threshold1 Is there a gap in NPDCCH transmission R max2 ⁇ N gap, threshold2 Spaced R max2 ⁇ N gap, threshold2 No interval R max2 ⁇ N gap, threshold1 / N TB, max Spaced R max2 ⁇ N gap, threshold1 / N TB, max No interval
  • Step 1008 The network device sends downlink control information to the second terminal device through the downlink control channel according to a determination result of whether there is an interval in the transmission of the downlink control channel.
  • the type of the second terminal device is the second type.
  • step 1008 reference may be made to step 603 of the embodiment shown in FIG. 6, which is not described in this embodiment.
  • Step 1009 The network device determines whether there is an interval in the transmission of the downlink data channel according to the second parameter and the second interval threshold for the second type of terminal device.
  • the second parameter may be the maximum number of repetitions of the search space of the physical downlink control channel, or may be the second number of repetitions.
  • the network device determines the transmission of the downlink data channel for the second type of terminal device according to the second parameter and the second interval threshold. Whether there is a gap in the network may include: the network device compares the maximum repetition number R max of the search space of the physical downlink control channel with a second gap threshold to determine whether there is a gap in the transmission of the downlink data channel.
  • the network device determines that there is an interval in the transmission of the downlink data channel; when the maximum number of repetitions R max of the search space of the physical downlink control channel is less than the second interval threshold, the network device Make sure that there is no gap in the transmission of the downlink data channel.
  • the second parameter is the second number of repetitions
  • the network device determines whether there is an interval in the transmission of the downlink data channel according to the second parameter and the second interval threshold for the second type of terminal equipment.
  • the network device may include the second number of repetitions. Compare with the second interval threshold to determine whether there is an interval in the transmission of the downlink data channel.
  • the network device determines that there is an interval in the transmission of the downlink data channel; When it is less than the second interval threshold, the network device determines that there is no interval in the transmission of the downlink data channel.
  • step 1009 For a specific implementation process of step 1009, reference may be made to step 1007, which is not repeatedly described in this embodiment. It should be noted that, in this step 1009, the data channel of the lower row is NPDSCH as an example. According to the difference of the second interval threshold, whether there is a relationship between the second parameter R max , the second interval threshold, and the transmission of NPDSCH may be The following table 11 is used:
  • threshold2 Is there a gap in the transmission of NPDSCH R max ⁇ N gap, threshold2 Spaced R max ⁇ N gap, threshold2 No interval R max ⁇ N gap, threshold1 / N TB, max Spaced
  • threshold1 Is there a gap in the transmission of NPDSCH R max2 ⁇ N gap, threshold2 Spaced R max2 ⁇ N gap, threshold2 No interval R max2 ⁇ N gap, threshold1 / N TB, max Spaced R max2 ⁇ N gap, threshold1 / N TB, max No interval
  • Step 1010 The network device sends multiple transport blocks to the second terminal device through the downlink data channel according to a determination result of whether there is an interval in transmission of the downlink data channel, and the downlink control information is used to schedule the multiple transport blocks.
  • the type of the second terminal device is the second type, and the network device sends multiple transmission blocks to the second terminal device through the downlink data channel according to the determination result in step 1009.
  • step 1010 reference may be made to step 605 of the embodiment shown in FIG. 6, which is not repeated in this embodiment.
  • Step 1011 The first terminal device acquires a first parameter and a first interval threshold.
  • the type of the first terminal device is a first type.
  • the first terminal device acquiring the first parameter and the first interval threshold may include two possible implementation manners:
  • the first implementation manner (corresponding to the first implementation manner in step 1001): the first parameter is the maximum number of repetitions of the search space of the physical downlink control channel, and the first interval threshold is configured by the system.
  • the first terminal device can receive a system message or RRC signaling sent by a network device. If the first gap threshold N gap, threshold1 is configured by the network device, the maximum repetition of the search space carrying the physical downlink control channel in the system message or RRC signaling The number of times R max and the interval configuration parameter.
  • the interval configuration parameter includes a first interval threshold N gap, threshold1 .
  • the first terminal device can obtain the first parameter and the first interval threshold N gap, threshold 1 by receiving a system message or RRC signaling. If the first interval threshold N gap, threshold1 is agreed or defined by the protocol, the first interval threshold N gap, threshold1 and the first interval threshold are known to the first terminal device, and the system message or RRC signaling carries physical downlink control. The maximum number of repetitions of the channel search space R max and the interval configuration parameter.
  • the interval configuration parameter may not include the first interval threshold N gap, threshold1 .
  • the terminal device obtains the first parameter by receiving a system message or RRC signaling.
  • the maximum number of repetitions of the search space of the physical downlink control channel R max may be the maximum repetition of the search space of the physical downlink control channel used by the first type of terminal device.
  • the number of times may also be the maximum number of repetitions of the search space of the physical downlink control channel used by the second type of terminal equipment, or the maximum number of repetitions of the physical downlink control channel used by the first type of terminal equipment and the second type of terminal.
  • the maximum value of the maximum repetition times of the search space of the physical downlink control channel used by the device is not limited in this embodiment.
  • the second implementation manner (corresponding to the second implementation manner in step 1001): the first parameter is the first repetition number, and the first interval threshold is configured by the system.
  • the first terminal device can receive a system message or RRC signaling sent by the network device. If the first gap threshold N gap, threshold1 is configured by the network device, the system message or RRC signaling carries the physical downlink used by the first type of terminal device. The maximum number of repetitions of the search space of the control channel R max1 and the interval configuration parameter.
  • the interval configuration parameter includes a first interval threshold N gap, threshold1 . The first terminal device can obtain the first parameter and the first interval after receiving a system message or RRC signaling. Threshold N gap, threshold1 .
  • the first interval threshold N gap, threshold1 is agreed or defined by the protocol
  • the first interval threshold N gap, threshold1 is known to the first terminal device
  • the system message or RRC signaling carries the first type
  • the interval configuration parameter may not include the first gap threshold N gap, threshold1 , and the first terminal device obtains it by receiving a system message or RRC signaling.
  • Step 1012 The first terminal device determines whether there is an interval in the transmission of the downlink control channel according to the first parameter and the first interval threshold. For the implementation of step 1012, reference may be made to step 1003, which is not repeated in this embodiment.
  • Step 1013 The first terminal device receives downlink control information from the network device through the downlink control channel according to a determination result of whether there is an interval in transmission of the downlink control channel.
  • the downlink control information is used to schedule a transport block.
  • step 1013 reference may be made to step 608 of the embodiment shown in FIG. 6, which is not repeated in this embodiment.
  • Step 1014 The first terminal device determines whether there is an interval in the transmission of the downlink data channel according to the first parameter and the first interval threshold. For the implementation of step 1014, reference may be made to step 1005, which is not repeated in this embodiment.
  • Step 1015 The first terminal device receives a transport block from the network device through the downlink data channel according to a determination result of whether there is an interval in the transmission of the downlink data channel, and the downlink control information is used to schedule a transport block.
  • step 1015 reference may be made to step 610 of the embodiment shown in FIG. 6, which is not repeated in this embodiment.
  • Step 1016 The second terminal device obtains a second parameter and a second interval threshold.
  • the type of the second terminal device is a second type.
  • the second terminal device acquiring the second parameter and the second interval threshold may include two possible implementation manners:
  • the first implementation (corresponding to the first implementation in step 1001): the second parameter is the maximum number of repetitions of the search space of the physical downlink control channel, and the second interval threshold is configured by the system, or the second interval threshold It is determined according to the first interval threshold and the maximum number of transport blocks that can be scheduled by the downlink control information, and the first interval threshold is configured by the system.
  • the second terminal device acquiring the second parameter and the second interval threshold may include the following two possible situations:
  • the second parameter is the maximum repetition number R max of the search space of the physical downlink control channel, and the second interval threshold is configured by the system.
  • the second terminal device can receive the system message or RRC signaling sent by the network device. If the second gap threshold N gap, threshold2 is configured by the network device, the maximum repetition of the search space carrying the physical downlink control channel in the system message or RRC signaling The number of times R max and the interval configuration parameter.
  • the interval configuration parameter includes the second interval threshold N gap, threshold 2.
  • the second terminal device can obtain the second parameter and the second interval threshold N gap, threshold 2 after receiving a system message or RRC signaling. If the second interval threshold N gap, threshold2 is agreed or defined by the protocol, then the second interval threshold N gap, threshold 2 is known to the second terminal device, and a physical downlink control channel is carried in the system message or RRC signaling The maximum number of repetitions of the search space R max and the interval configuration parameter.
  • the interval configuration parameter may not include the second interval threshold N gap, threshold 2.
  • the terminal device obtains the second parameter by receiving a system message or RRC signaling.
  • the second parameter is the maximum repetition number R max of the search space of the physical downlink control channel
  • the second interval threshold is determined according to the first interval threshold and the maximum number of transmission blocks that can be scheduled by the downlink control information.
  • the first interval threshold It is configured by the system.
  • the second terminal device can receive the system message or RRC signaling sent by the network device. If the first gap threshold N gap, threshold1 is configured by the network device, the system message or RRC signaling carries the maximum repetition of the search space of the physical downlink control channel. The number of times R max and the interval configuration parameter.
  • the interval configuration parameter includes the first interval threshold N gap, threshold1 .
  • the second terminal device can obtain the second parameter and the first interval threshold N gap, threshold1 by receiving a system message or RRC signaling.
  • the terminal device determines the second interval threshold according to the first interval threshold N gap, threshold1 and the maximum number of transmission blocks N TB, max that can be scheduled by the downlink control information.
  • the first interval threshold N gap, threshold1 is agreed or defined, the first interval threshold N gap, threshold1 is known to the second terminal device, and a physical downlink control channel is carried in the system message or RRC signaling The maximum number of repetitions of the search space R max and the interval configuration parameter.
  • the interval configuration parameter may not include the first interval threshold N gap, threshold1 .
  • the terminal device obtains the second parameter by receiving a system message or RRC signaling.
  • a gap threshold N gap, threshold1 and the maximum number of transmission blocks N TB, max that can be scheduled by the downlink control information determine a second gap threshold.
  • the maximum number of repetitions of the search space of the physical downlink control channel R max may be the maximum repetition of the search space of the physical downlink control channel used by the second type of terminal device.
  • the number of times may also be the maximum number of repetitions of the search space of the physical downlink control channel used by the second type of terminal device, or the maximum number of repetitions of the physical downlink control channel used by the second type of terminal device and the second type of terminal.
  • the maximum value of the maximum repetition times of the search space of the physical downlink control channel used by the device is not limited in this embodiment.
  • the second implementation (corresponding to the second implementation in step 1001): the second parameter is the second number of repetitions, the second interval threshold is configured by the system, or the second interval threshold is based on the first interval threshold and the downlink
  • the maximum number of transmission blocks that control information can schedule is determined, and the first interval threshold is configured by the system.
  • obtaining the second parameter and the second interval threshold by the second terminal device may include the following two possible situations:
  • the second terminal device can receive the system message or RRC signaling sent by the network device. If the second gap threshold N gap, threshold2 is configured by the network device, the system message or RRC signaling carries the physical downlink used by the second type of terminal device. The maximum number of repetitions of the search space of the control channel R max2 and the interval configuration parameters.
  • the interval configuration parameters include the second interval threshold N gap, threshold2 .
  • the second terminal device can obtain the second parameter and the second interval after receiving a system message or RRC signaling. Threshold N gap, threshold2 .
  • the second interval threshold N gap, threshold2 is agreed or defined by the protocol, then the second interval threshold N gap, threshold 2 is known to the second terminal device, and the system message or RRC signaling carries a second type of The maximum number of repetitions of the search space of the physical downlink control channel used by the terminal device R max2 and the interval configuration parameter.
  • the interval configuration parameter may not include the second interval threshold N gap, threshold2 , and the second terminal device obtains it by receiving a system message or RRC signaling. The second parameter.
  • the second parameter is the second number of repetitions.
  • the second interval threshold is determined according to the first interval threshold and the maximum number of transmission blocks that can be scheduled by the downlink control information.
  • the first interval threshold is configured by the system.
  • the second terminal device can receive the system message or RRC signaling sent by the network device. If the first gap threshold N gap, threshold1 is configured by the network device, the system message or RRC signaling carries the physical downlink used by the second type of terminal device. The maximum number of repetitions of the search space of the control channel R max2 and the interval configuration parameter.
  • the interval configuration parameter includes the first interval threshold N gap, threshold1 .
  • the second terminal device can obtain the second parameter and the first interval after receiving a system message or RRC signaling.
  • the threshold N gap, threshold1 , and the second terminal device determines the second interval threshold according to the first interval threshold N gap, threshold1 and the maximum number of transmission blocks N TB, max that can be scheduled by the downlink control information.
  • the first interval threshold N gap, threshold1 is agreed or defined by the protocol
  • the first interval threshold N gap, threshold1 is known to the second terminal device
  • the system message or RRC signaling carries a second type of The maximum number of repetitions of the search space of the physical downlink control channel used by the terminal device R max2 and the interval configuration parameter.
  • the interval configuration parameter may not include the first interval threshold N gap, threshold1 , and the second terminal device obtains it by receiving a system message or RRC signaling.
  • the second parameter is that the second terminal device determines the second interval threshold according to the first interval threshold N gap, threshold1 and a maximum number of transmission blocks N TB, max that can be scheduled by the downlink control information.
  • the second terminal device determines the second interval threshold according to the first interval threshold N gap, threshold1 and the maximum number of transmission blocks N TB, max that can be scheduled by the downlink control information.
  • Step 601 of the embodiment shown in FIG. 6 is not repeatedly described in this embodiment.
  • the second terminal device determines N gap, threshold 1 / N TB, max as the second interval threshold, when the maximum number of transmission blocks N TB, max that the downlink control information can schedule is equal to 1, the The one interval threshold is the same as the second interval threshold.
  • the maximum number of transmission blocks N TB, max that the downlink control information can schedule is not equal to 1, the first interval threshold and the second interval threshold are different.
  • Step 1017 The second terminal device determines whether there is an interval in the transmission of the downlink control channel according to the second parameter and the second interval threshold. For the implementation of step 1017, reference may be made to step 1003, which is not repeated in this embodiment.
  • Step 1018 The second terminal device receives downlink control information from the network device through the downlink control channel according to a determination result of whether there is an interval in transmission of the downlink control channel.
  • the downlink control information is used to schedule multiple transport blocks.
  • step 1013 reference may be made to step 608 of the embodiment shown in FIG. 6, which is not repeated in this embodiment.
  • Step 1019 The second terminal device determines whether there is an interval in the transmission of the downlink data channel according to the second parameter and the second interval threshold. For the implementation of step 1014, reference may be made to step 1005, which is not repeated in this embodiment.
  • Step 1020 The second terminal device receives multiple transport blocks from the network device through the downlink data channel according to a determination result of whether there is an interval in transmission of the downlink data channel, and the downlink control information is used to schedule the multiple transport blocks.
  • step 1020 reference may be made to step 610 of the embodiment shown in FIG. 6, which is not described in this embodiment.
  • the data transmission method provided in the embodiment of the present application is directed to the first type of terminal device, and determines whether there is an interval in downlink transmission according to the first parameter and the first interval threshold.
  • the device performs downlink transmission.
  • For a terminal device of the second type it is determined whether there is an interval in the downlink transmission according to the second parameter and the second interval threshold, and downlink transmission is performed with the terminal device of the second type according to the determination result. Therefore, the embodiment of the present application
  • the provided solution can determine whether there is an interval for downlink transmission for the terminal device according to the type of the terminal device, and avoid continuous downlink transmission for a long duration for a terminal device in a scenario where multiple downlink transmission blocks are scheduled for one downlink control information. Avoid obstruction of the downlink channel and improve system resource utilization efficiency.
  • FIG. 11 shows a schematic diagram of a logical structure of another network device 1100 according to an embodiment of the present application.
  • the network device 1100 may be a base station, and may specifically be an MTC base station.
  • the network device 1100 includes:
  • a first determining module 1101, configured to determine a first parameter, a second parameter, a first interval threshold, and a second interval threshold;
  • a second determining module 1102 configured to determine a type of the terminal device, and the type of the terminal device is the first type or the second type;
  • a third determining module 1103 is configured to determine whether there is a gap in the transmission of the downlink control channel according to the first parameter and the first interval threshold for the first type of terminal device.
  • the first sending module 1104 is configured to transmit according to the downlink control channel. Whether there is an interval in the determination result, the downlink control information is sent to the first type of terminal device through the downlink control channel.
  • the fourth determination module 1105 determines the downlink data for the first type of terminal device according to the first parameter and the first interval threshold. Whether there is a gap in the transmission of the channel.
  • the second sending module 1106 is configured to send a transmission block to the first type of terminal device through the downlink data channel according to the determination result of the gap in the transmission of the downlink data channel.
  • the downlink control information is used for For scheduling a transport block;
  • a fifth determining module 1107 is configured to determine whether there is an interval in the transmission of the downlink control channel according to the second parameter and the second interval threshold for the second type of terminal equipment.
  • a third sending module 1108 is configured to transmit according to the downlink control channel. Whether there is a gap in the determination result, sending downlink control information to the second type of terminal device through the downlink control channel, and a sixth determination module 1109 is configured to determine the second type of terminal device according to the second parameter and the second interval threshold Whether there is a gap in the transmission of the downlink data channel.
  • the fourth sending module 1110 is configured to send multiple transport blocks to the second type of terminal device through the downlink data channel according to the determination result of the gap in the transmission of the downlink data channel. Control information is used to schedule multiple transport blocks;
  • the first parameter and the second parameter are different, and the first interval threshold and the second interval threshold are the same; or the first parameter and the second parameter are the same, and the first interval threshold and the second interval threshold are different; or The parameter is different from the second parameter, and the first interval threshold and the second interval threshold are different.
  • the first parameter, the second parameter, the first interval threshold, and the second interval threshold are such that, for the same terminal device, the number of intervals included in the same time period for sending the downlink data channel is not less than the same time period for The number of intervals included in sending the downlink control channel.
  • the first parameter is the same as the second parameter, and the first parameter is a maximum number of repetitions of a search space of a physical downlink control channel,
  • the third determining module 1103 is configured to determine that there is an interval in the transmission of the downlink control channel when the maximum number of repetitions of the search space of the physical downlink control channel is greater than or equal to the first interval threshold; When the number of repetitions is less than the first interval threshold, it is determined that there is no interval in the transmission of the downlink control channel;
  • the fourth determining module 1105 is configured to: when the maximum number of repetitions of the search space of the physical downlink control channel is greater than or equal to the first interval threshold, determine that there is an interval in the transmission of the downlink data channel; when the maximum search space of the physical downlink control channel is maximum When the number of repetitions is less than the first interval threshold, it is determined that there is no interval in the transmission of the downlink data channel;
  • a fifth determining module 1107 is configured to: when the maximum number of repetitions of the search space of the physical downlink control channel is greater than or equal to the second interval threshold, determine that there is a gap in the transmission of the downlink control channel; when the maximum search space of the physical downlink control channel is maximum When the number of repetitions is less than the second interval threshold, it is determined that there is no interval in the transmission of the downlink control channel;
  • a sixth determining module 1109 is configured to: when the maximum number of repetitions of the search space of the physical downlink control channel is greater than or equal to the second interval threshold, determine that there is a gap in the transmission of the downlink data channel; When the number of repetitions is less than the second interval threshold, it is determined that there is no interval in the transmission of the downlink data channel;
  • the first interval threshold and the second interval threshold are configured by the system, and the first interval threshold is different from the second interval threshold.
  • the first interval threshold is configured by the system, and the second interval threshold is controlled according to the first interval threshold and the downlink. The maximum number of transport blocks for which information can be scheduled is determined.
  • the first parameter is different from the second parameter, the first parameter is a first number of repetitions, the first number of repetitions is a maximum number of repetitions of a search space of a physical downlink control channel used by the first type of terminal device, and the second parameter Is the second number of repetitions, and the second number of repetitions is the maximum number of repetitions of the search space of the physical downlink control channel used by the second type of terminal device,
  • the third determining module 1103 is configured to determine that there is an interval in the transmission of the downlink control channel when the first repetition number is greater than or equal to the first interval threshold; when the first repetition number is less than the first interval threshold, determine the downlink control channel No gaps in transmission;
  • a fourth determining module 1105 is configured to: when the first repetition number is greater than or equal to the first interval threshold, determine that there is an interval in the transmission of the downlink data channel; when the first repetition number is less than the first interval threshold, determine the downlink data channel No gaps in transmission;
  • a fifth determining module 1107 is configured to: when the second repetition number is greater than or equal to the second interval threshold, determine that there is an interval in transmission of the downlink control channel; when the second repetition number is less than the second interval threshold, determine the downlink control channel No gaps in transmission;
  • the sixth determining module 1109 is configured to: when the second repetition number is greater than or equal to the second interval threshold, determine that there is a gap in the transmission of the downlink data channel; when the second repetition number is less than the second interval threshold, determine the downlink data channel No gaps in transmission;
  • the first interval threshold and the second interval threshold are configured by the system, and the first interval threshold is different from the second interval threshold.
  • the first interval threshold is configured by the system, and the second interval threshold is controlled according to the first interval threshold and the downlink. The maximum number of transport blocks for which information can be scheduled is determined.
  • the first determination module 1101 is configured to perform step 1001 in the embodiment shown in FIG. 10
  • the second determination module 1102 is configured to perform step 1002 in the embodiment shown in FIG. 10
  • the third determination module 1103 is used to Step 1003 in the embodiment shown in FIG. 10 is performed.
  • the first sending module 1104 is used to perform step 1004 in the embodiment shown in FIG. 10, and the fourth determination module 1105 is used to perform step 1005 in the embodiment shown in FIG.
  • the second sending module 1106 is used to execute step 1006 in the embodiment shown in FIG. 10
  • the fifth determining module 1107 is used to execute step 1007 in the embodiment shown in FIG. 10
  • the third sending module 1108 is used to execute FIG.
  • the sixth determining module 1109 is configured to perform step 1009 in the embodiment shown in FIG. 10, and the fourth sending module 1110 is configured to perform step 1010 in the embodiment shown in FIG. 10.
  • the above-mentioned first determination module 1101, second determination module 1102, third determination module 1103, fourth determination module 1105, fifth determination module 1107, and sixth determination module 1009 may be the same determination module, or they may be different The determining module.
  • the first sending module 1104, the second sending module 1106, the third sending module 1108, and the fourth sending module 1110 may be the same sending module, or may be different sending modules. This embodiment does not do this. limited.
  • the foregoing several determining modules may also be one processing module, and the several sending modules may be one sending module. That is, the processing module performs steps such as determination in the above steps, and the sending module performs steps such as sending.
  • the processing module may also include multiple sub-processing modules.
  • the network equipment provided in the embodiment of the present application determines whether there is a gap in downlink transmission according to the first parameter and the first interval threshold for the first type of terminal equipment, and the first type of terminal equipment is determined according to the determination result. Perform downlink transmission. For a second type of terminal device, determine whether there is an interval in the downlink transmission according to the second parameter and the second interval threshold, and perform downlink transmission with the second type of terminal device according to the determination result. Therefore, the embodiments of this application provide The solution can determine whether there is an interval for downlink transmission to the terminal device according to the type of the terminal device, and avoid continuous downlink transmission for a long duration for one terminal device in a scenario where multiple downlink transmission blocks are scheduled for one downlink control information. Downlink channels are blocked, improving system resource utilization efficiency.
  • FIG. 12 shows a schematic diagram of a logical structure of another terminal device 1200 according to an embodiment of the present application.
  • the terminal device 1200 may be a user device, and may specifically be an MTC device.
  • the terminal device 1200 include:
  • An obtaining module 1201 configured to obtain a first parameter, a second parameter, a first interval threshold, and a second interval threshold;
  • a first determining module 1202 configured to determine a type of the terminal device, where the type of the terminal device is the first type or the second type;
  • the second determining module 1203 is configured to determine whether there is an interval in the transmission of the downlink control channel according to the first parameter and the first interval threshold when the terminal device is a first type of terminal device.
  • the first receiving module 1204 is configured to The result of determining whether there is an interval in the transmission of the control channel, and receiving downlink control information from the network device through the downlink control channel.
  • a third determining module 1205 is configured to, when the terminal device is a first type of terminal device, according to the first parameter and the first parameter
  • a gap threshold determines whether there is a gap in the transmission of the downlink data channel.
  • the second receiving module 1206 is configured to receive a transmission block from the network device through the downlink data channel according to the determination result of the gap in the downlink data channel transmission.
  • the downlink control Information is used to schedule a transport block;
  • a fourth determining module 1207 is configured to determine whether there is an interval in the transmission of the downlink control channel according to the second parameter and the second interval threshold when the terminal device is a second type of terminal device.
  • a third receiving module 1208 is configured to A determination result of whether there is an interval in the transmission of the control channel, and receiving downlink control information from the network device through the downlink control channel.
  • a fifth determination module 1209 is configured to, when the terminal device is a first type terminal device, according to the second parameter and the first parameter The second interval threshold determines whether there is an interval in the transmission of the downlink data channel.
  • the fourth receiving module 1210 is configured to receive multiple transmission blocks from the network device through the downlink data channel according to the determination result of whether there is an interval in the transmission of the downlink data channel. Control information is used to schedule multiple transport blocks;
  • the first parameter and the second parameter are different, and the first interval threshold and the second interval threshold are the same; or the first parameter and the second parameter are the same, and the first interval threshold and the second interval threshold are different; or The parameter is different from the second parameter, and the first interval threshold and the second interval threshold are different.
  • the first parameter, the second parameter, the first interval threshold, and the second interval threshold are such that, for the same terminal device, the number of intervals included in the same time period for receiving the downlink data channel is not less than the same time period. The number of intervals included in receiving the downlink control channel.
  • the first parameter is the same as the second parameter
  • the first parameter is the maximum number of repetitions of the search space of the physical downlink control channel
  • the second determination module 1203 is configured to: when the maximum number of repetitions of the search space of the physical downlink control channel is When it is greater than or equal to the first interval threshold, it is determined that there is an interval in transmission of the downlink control channel; when the maximum number of repetitions of the search space of the physical downlink control channel is less than the first interval threshold, it is determined that there is no interval in the transmission of the downlink control channel;
  • the third determining module 1205 is configured to: when the maximum number of repetitions of the search space of the physical downlink control channel is greater than or equal to the first interval threshold, determine that there is a gap in the transmission of the downlink data channel; when the maximum search space of the physical downlink control channel is maximum When the number of repetitions is less than the first interval threshold, it is determined that there is no interval in the transmission of the downlink data channel;
  • the fourth determining module 1207 is configured to: when the maximum number of repetitions of the search space of the physical downlink control channel is greater than or equal to the second interval threshold, determine that there is an interval in the transmission of the downlink control channel; when the maximum search space of the physical downlink control channel is maximum When the number of repetitions is less than the second interval threshold, it is determined that there is no interval in the transmission of the downlink control channel;
  • a fifth determining module 1209 is configured to: when the maximum number of repetitions of the search space of the physical downlink control channel is greater than or equal to the second interval threshold, determine that there is an interval in the transmission of the downlink data channel; when the maximum search space of the physical downlink control channel is maximum When the number of repetitions is less than the second interval threshold, it is determined that there is no interval in the transmission of the downlink data channel;
  • the first interval threshold and the second interval threshold are configured by the system, and the first interval threshold is different from the second interval threshold.
  • the first interval threshold is configured by the system, and the second interval threshold is controlled according to the first interval threshold and the downlink. The maximum number of transport blocks for which information can be scheduled is determined.
  • the first parameter is different from the second parameter, the first parameter is a first repetition number, the first repetition number is a maximum repetition number of a search space of a physical downlink control channel used by the first type of terminal device, and the second The parameter is the second number of repetitions, and the second number of repetitions is the maximum number of repetitions of the search space of the physical downlink control channel used by the second type of terminal device.
  • the second determining module 1203 is configured to: when the first repetition number is greater than or equal to the first interval threshold, determine that there is an interval in transmission of the downlink control channel; when the first repetition number is less than the first interval threshold, determine the downlink control channel No gaps in transmission;
  • the third determining module 1205 is configured to: when the first repetition number is greater than or equal to the first interval threshold, determine that there is an interval in transmission of the downlink data channel; when the first repetition number is less than the first interval threshold, determine the downlink data channel No gaps in transmission;
  • a fourth determining module 1207 is configured to: when the second repetition number is greater than or equal to the second interval threshold, determine that there is an interval in transmission of the downlink control channel; when the second repetition number is less than the second interval threshold, determine the downlink control channel No gaps in transmission;
  • a fifth determining module 1209 is configured to: when the second repetition number is greater than or equal to the second interval threshold, determine that there is a gap in the transmission of the downlink data channel; when the second repetition number is less than the second interval threshold, determine the downlink data channel No gaps in transmission;
  • the first interval threshold and the second interval threshold are configured by the system, and the first interval threshold is different from the second interval threshold.
  • the first interval threshold is configured by the system, and the second interval threshold can be scheduled for transmission according to downlink control information.
  • the maximum number of blocks is determined.
  • the obtaining module 1201 is configured to execute step 1001 and / or step 1016 in the embodiment shown in FIG. 10, and the second determining module 1203 is used to execute step 1012 in the embodiment shown in FIG. 10 and the first receiving module 1204 is used to execute step 1013 in the embodiment shown in FIG. 10, the third determination module 1205 is used to execute step 1014 in the embodiment shown in FIG. 10, and the second receiving module 1206 is used to execute the step shown in FIG. 10 In step 1015, the fourth determining module 1207 is configured to perform step 1017 in the embodiment shown in FIG. 10, the third receiving module 1208 is configured to perform step 1018 in the embodiment shown in FIG. 10, and the fifth determining module 1209 is configured to execute FIG. In step 1019 in the embodiment shown in FIG.
  • the fourth receiving module 1210 is configured to execute step 1020 in the embodiment shown in FIG.
  • the second determining module 1203 and the third determining module 1205 may be the same determining module or different determining modules.
  • the first receiving module 1204 and the second receiving module 1206 may be the same receiving module.
  • the fourth determining module 1207 and the fifth determining module 1209 may be the same determining module or different determining modules.
  • the third receiving module 1208 and the fourth receiving module 1210 may be the same receiving module.
  • the module may also be a different receiving module, which is not limited in the embodiment of the present application.
  • the foregoing determination modules and acquisition modules on the terminal device side may also be one processing module, and several receiving modules may be one receiving module. That is, the processing module performs steps such as determination, acquisition, and the like in the above steps, and the receiving module performs steps such as receiving.
  • the processing module may also include multiple sub-processing modules.
  • the terminal device when the terminal device is a first type of terminal device, determines whether there is an interval in downlink transmission according to the first parameter and the first interval threshold, and communicates with the network device according to the determination result. Perform downlink transmission.
  • the terminal device is a second type of terminal device, determine whether there is an interval in the downlink transmission according to the second parameter and the second interval threshold, and perform downlink transmission with the network device according to the determination result. Therefore, the embodiment of the present application provides The solution can determine whether there is an interval for downlink transmission to the terminal device according to the type of the terminal device, and avoid continuous downlink transmission for a long duration for one terminal device in a scenario where multiple downlink transmission blocks are scheduled for one downlink control information. Downlink channels are blocked, improving system resource utilization efficiency.
  • An embodiment of the present application further provides a communication device.
  • the hardware structure of the communication device is shown in FIG. 9.
  • the communication device may be a network device or a terminal device.
  • the network device may be an MTC base station.
  • the terminal device may be an MTC device.
  • the communication device is configured to perform all or part of the steps in the embodiment shown in FIG. 10.
  • the data transmission system includes: a network device 1100 provided in the embodiment shown in FIG. 11 and a terminal device 1200 provided in the embodiment shown in FIG. 12; in another possible implementation manner, the data transmission system The data transmission system includes a network device and a terminal device. Any one or both of the network device and the terminal device may be a communication device provided in the embodiment shown in FIG. 9.
  • An embodiment of the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores instructions.
  • the processing component is caused to execute data provided by the embodiment shown in FIG. 10. All or part of the transfer method.
  • the embodiment of the present application provides a computer program product including instructions.
  • the computer program product runs on a computer, the computer transmits the data transmission method provided by the embodiment shown in FIG. 10 in whole or in part.
  • An embodiment of the present application provides a chip that includes a programmable logic circuit and / or program instructions. When the chip runs, the chip is used to implement all or part of the steps of the data transmission method provided by the embodiment shown in FIG. 10.
  • An embodiment of the present application provides a processing device.
  • the processing device includes at least one circuit, and the at least one circuit is configured to perform all or part of the steps of the data transmission method provided by the embodiment shown in FIG. 10.
  • An embodiment of the present application provides a processing device, which is configured to implement a data transmission method provided by the embodiment shown in FIG. 10.
  • the program may be stored in a computer-readable storage medium.
  • the storage medium mentioned may be a read-only memory, a magnetic disk or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种数据传输方法、设备及***、存储介质,涉及物联网通信领域,该方法包括:确定第一参数、第二参数、第一间隔门限和第二间隔门限;根据第一参数和第一间隔门限确定下行控制信道的传输中是否有间隔;根据确定结果通过下行控制信道发送下行控制信息;根据第二参数和第二间隔门限确定下行数据信道的传输中是否有间隔;根据确定结果通过下行数据信道发送传输块;第一参数和第二参数不同且第一间隔门限和第二间隔门限相同;或,第一参数和第二参数相同且第一间隔门限和第二间隔门限不同;或,第一参数和第二参数不同且第一间隔门限和第二间隔门限不同。可以更好地避免针对一个终端设备持续时间较长的连续下行数据传输。

Description

数据传输方法、设备及***、存储介质 技术领域
本申请实施例涉及物联网通信领域,特别涉及一种数据传输方法、设备及***、存储介质。
背景技术
窄带物联网(narrowband internet of things,NB-IoT)***是一种典型的物联网(internet of things,IoT)***,其包括多个终端设备和为该多个终端设备提供通信服务的网络设备。考虑终端设备的不同部署环境,比如室外,室内和地下室等部署环境,NB-IoT***需要支持较大的覆盖范围。网络设备对不同部署环境中的终端设备的覆盖条件不同,对于不同覆盖条件下的终端设备,在进行下行传输时所需要的重复次数(也即是重复传输的次数)不同。其中,覆盖条件和终端设备的无线信道质量以及终端设备与网络设备之间的距离有关。
NB-IoT***定义了两种下行物理信道,分别为窄带物理下行控制信道(narrowband physical downlink control channel,NPDCCH)和窄带物理下行共享信道(narrowband physical downlink shared channel,NPDSCH),NPDCCH用于承载下行控制信息(downlink control information,DCI),NPDSCH用于承载下行数据。
在NB-IoT***中,不同终端设备对应的NPDSCH以时分复用(time division multiplexing,TDM)的方式传输,NPDCCH和NPDSCH也以TDM的方式传输。对于覆盖条件较差(例如无线信道质量较差)的终端设备,为了保证传输的可靠性,在进行下行传输时需要较多的重复次数,从而该覆盖条件较差的终端设备的下行传输会长时间占用下行信道,导致下行信道受阻。为此,NB-IoT规范13引入间隔(gap)的概念,网络设备与终端设备进行下行传输的过程中,针对该终端设备的下行传输,网络设备确定用于该终端设备的下行传输的时间段中是否有gap,若有gap,则网络设备在该gap中不与该终端设备进行下行传输,且在该gap后继续与该终端设备进行下行传输。终端设备确定用于下行传输的时间段中是否有gap,若有gap,则该终端设备在该gap中不进行下行传输的接收,且在该gap后继续进行下行传输的接收。网络设备和终端设备的这种处理也被称为推迟传输。
下行传输包括NPDCCH的传输和NPDSCH的传输。目前,通常是将NPDCCH的搜索空间的最大重复次数R max与NB-IoT***配置的间隔门限N gap,threshold进行比较来确定NPDCCH的传输中是否有gap,如果R max大于或者等于N gap,threshold,则NPDCCH的传输中有gap,如果R max小于N gap,threshold,则NPDCCH的传输中没有gap。NPDSCH的传输中是否有gap的确定方式与NPDCCH的传输中是否有gap的确定方式相同。其中,NPDCCH的传输中是否有gap指的是用于NPDCCH传输的时间段中是否有gap,NPDSCH的传输中是否有gap指的是用于NPDSCH传输的时间段中是否有gap。
下行数据在实际传输时是按照传输块(transportblock,TB)的方式传输的,根据业务数据量的大小以及NB-IoT***对TB大小的限制,可能会将下行数据拆分成多个TB进行 传输。其中,TB承载在NPDSCH上进行传输。NB-IoT规范13后续演进版本从只支持一个DCI调度一个TB发展到支持一个DCI调度多个TB。在一个DCI调度多个TB的场景下,按照现有的gap确定方式,如果R max小于N gap,threshold,则用于下行传输的时间段中没有gap,因此不会推迟下行传输。但是承载多个TB的NPDSCH传输的总时长可能较大,导致承载多个TB的NPDSCH传输长时间占用下行信道,从而导致下行信道受阻,影响其它终端设备的下行传输。因此亟需一种新的gap确定方式,以避免针对一个终端设备持续时间较长的连续下行传输,进而避免下行信道受阻。
发明内容
本申请实施例提供了一种数据传输方法、设备及***、存储介质,能够避免针对一个终端设备持续时间较长的连续下行传输,从而避免下行信道受阻。本申请各实施例的技术方案如下:
第一方面,提供一种数据传输方法,所述方法包括:
确定第一参数、第二参数、第一间隔门限和第二间隔门限;
根据所述第一参数和所述第一间隔门限确定下行控制信道的传输中是否有间隔;
根据所述下行控制信道的传输中是否有间隔的确定结果,通过所述下行控制信道向终端设备发送下行控制信息;
根据所述第二参数和所述第二间隔门限确定下行数据信道的传输中是否有间隔;
根据所述下行数据信道的传输中是否有间隔的确定结果,通过所述下行数据信道向所述终端设备发送一个或多个传输块,所述下行控制信息用于调度所述一个或多个传输块;
其中,所述第一参数和所述第二参数不同,且所述第一间隔门限和所述第二间隔门限相同;或者,
所述第一参数和所述第二参数相同,且所述第一间隔门限和所述第二间隔门限不同;或者,
所述第一参数和所述第二参数不同,且所述第一间隔门限和所述第二间隔门限不同。
可选地,所述第一参数、所述第二参数、所述第一间隔门限和所述第二间隔门限使得相同时间段用于发送所述下行数据信道时所包括的间隔数不少于所述相同时间段用于发送所述下行控制信道时所包括的间隔数。
第二方面,提供一种数据传输方法,所述方法包括:
获取第一参数、第二参数、第一间隔门限和第二间隔门限;
根据所述第一参数和所述第一间隔门限确定下行控制信道的传输中是否有间隔;
根据所述下行控制信道的传输中是否有间隔的确定结果,通过所述下行控制信道从网络设备接收下行控制信息;
根据所述第二参数和所述第二间隔门限确定下行数据信道的传输中是否有间隔;
根据所述下行数据信道的传输中是否有间隔的确定结果,通过所述下行数据信道从所述网络设备接收一个或多个传输块,所述下行控制信息用于调度所述一个多个传输块;
其中,所述第一参数和所述第二参数不同,且所述第一间隔门限和所述第二间隔门限相同;或者,
所述第一参数和所述第二参数相同,且所述第一间隔门限和所述第二间隔门限不同; 或者,
所述第一参数和所述第二参数不同,且所述第一间隔门限和所述第二间隔门限不同。
可选地,所述第一参数、所述第二参数、所述第一间隔门限和所述第二间隔门限使得相同时间段用于接收所述下行数据信道时所包括的间隔数不少于所述相同时间段用于接收所述下行控制信道时所包括的间隔数。
可选地,在上述第一方面和第二方面中,所述第一参数和所述第二参数相同,所述第一参数为物理下行控制信道的搜索空间的最大重复次数,
所述根据所述第一参数和所述第一间隔门限确定下行控制信道的传输中是否有间隔,包括:
当所述物理下行控制信道的搜索空间的最大重复次数大于或者等于所述第一间隔门限时,确定所述下行控制信道的传输中有间隔;
当所述物理下行控制信道的搜索空间的最大重复次数小于所述第一间隔门限时,确定所述下行控制信道的传输中没有间隔;
所述根据所述第二参数和所述第二间隔门限确定下行数据信道的传输中是否有间隔,包括:
当所述物理下行控制信道的搜索空间的最大重复次数大于或者等于所述第二间隔门限时,确定所述下行数据信道的传输中有间隔;
当所述物理下行控制信道的搜索空间的最大重复次数小于所述第二间隔门限时,确定所述下行数据信道的传输中没有间隔;
其中,所述第一间隔门限和所述第二间隔门限是***配置的;或者,
所述第一间隔门限是***配置的,所述第二间隔门限根据所述第一间隔门限与所述下行控制信息调度的传输块的数量确定;或者,
所述第一间隔门限是***配置的,所述第二间隔门限根据所述第一间隔门限与所述下行控制信息能够调度的传输块的最大数量确定。
可选地,在上述第一方面和第二方面中,所述第一参数为物理下行控制信道的搜索空间的最大重复次数,所述第二参数为第一有效子帧数,
所述根据所述第一参数和所述第一间隔门限确定下行控制信道的传输中是否有间隔,包括:
当所述物理下行控制信道的搜索空间的最大重复次数大于或者等于所述第一间隔门限时,确定所述下行控制信道的传输中有间隔;
当所述物理下行控制信道的搜索空间的最大重复次数小于所述第一间隔门限时,确定所述下行控制信道的传输中没有间隔;
所述根据所述第二参数和所述第二间隔门限确定下行数据信道的传输中是否有间隔,包括:
当所述第一有效子帧数大于或者等于所述第二间隔门限时,确定所述下行数据信道的传输中有间隔;
当所述第一有效子帧数小于所述第二间隔门限时,确定所述下行数据信道的传输中没有间隔;
其中,所述第一间隔门限和所述第二间隔门限是***配置的;或者,
所述第一间隔门限是***配置的,所述第二间隔门限根据所述第一间隔门限与预设常数确定,所述预设常数为大于或者等于1,且小于或者等于10的整数;或者,
所述第一间隔门限是***配置的,所述第二间隔门限根据所述第一间隔门限与第三间隔门限确定,所述第三间隔门限是***配置的。
可选地,在上述第一方面和第二方面中,所述第一有效子帧数为承载所述下行控制信息调度的多个传输块中的第一个传输块的物理下行共享信道所占用的有效子帧数;或者,
所述第一有效子帧数为承载所述下行控制信息调度的多个传输块中的任意一个传输块的物理下行共享信道所占用的有效子帧数;或者,
所述第一有效子帧数为承载所述下行控制信息调度的多个传输块的物理下行共享信道所占用的有效子帧数。
第三方面,提供一种网络设备,该网络设备包括:至少一个模块,该至少一个模块用于实现上述第一方面或第一方面的任一可选方式所提供的数据传输方法。
第四方面,提供一种终端设备,该终端设备包括:至少一个模块,该至少一个模块用于实现上述第二方面或第二方面的任一可选方式所提供的数据传输方法。
第五方面,提供一种网络设备,该网络设备包括:处理器、存储器和收发器,
收发器用于该网络设备与终端设备通信;
存储器用于存储指令;
处理器被配置为执行存储器中存储的指令来实现上述第一方面或第一方面的任一可选方式所提供的数据传输方法。
可选地,网络设备还包括:网络接口,处理器、收发器、存储器和网络接口之间通过总线连接,处理器包括一个或者一个以上处理核心,处理器通过运行软件程序以及单元,从而执行各种功能应用以及数据处理;网络接口可以为多个,该网络接口用于该网络设备与其它存储设备或者终端设备进行通信。
第六方面,提供一种终端设备,该终端设备包括:处理器、存储器和收发器,
收发器用于该终端设备与网络设备通信;
存储器用于存储指令;
处理器被配置为执行存储器中存储的指令来实现上述第二方面或第二方面的任一可选方式所提供的数据传输方法。
可选地,终端设备还包括:网络接口,处理器、收发器、存储器和网络接口之间通过总线连接,处理器包括一个或者一个以上处理核心,处理器通过运行软件程序以及单元,从而执行各种功能应用以及数据处理;网络接口可以为多个,该网络接口用于该终端设备与其它存储设备或者网络设备进行通信。
第七方面,提供一种数据传输***,该数据传输***包括:第三方面所述的网络设备和第四方面所述的终端设备;或者,该数据传输***包括:第五方面所述的网络设备和第六方面所述的终端设备。
第八方面,提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在计算机的处理组件上运行时,使得所述处理组件执行第一方面或第一方面的任一可选方式所述的数据传输方法。
第九方面,提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令, 当所述指令在计算机的处理组件上运行时,使得所述处理组件执行第二方面或第二方面的任一可选方式所述的数据传输方法。
第十方面,提供一种包含指令的计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行第一方面或第一方面的任一可选方式所述的数据传输方法。
第十一方面,提供一种包含指令的计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行第二方面或第二方面的任一可选方式所述的数据传输方法。
第十二方面,提供一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时用于实现第一方面或第一方面的任一可选方式所述的数据传输方法。
第十三方面,提供一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时用于实现第二方面或第二方面的任一可选方式所述的数据传输方法。
第十四方面,提供一种处理装置,所述处理装置包括至少一个电路,所述至少一个电路用于执行第一方面或第一方面的任一可选方式所述的数据传输方法。
第十五方面,提供一种处理装置,所述处理装置包括至少一个电路,所述至少一个电路用于执行第二方面或第二方面的任一可选方式所述的数据传输方法。
第十六方面,提供一种处理装置,所述处理装置用于实现第一方面或第一方面的任一可选方式所述的数据传输方法。
第十七方面,提供一种处理装置,所述处理装置用于实现第二方面或第二方面的任一可选方式所述的数据传输方法。
第十八方面,提供一种数据传输方法,所述方法包括:
确定第一参数、第二参数、第一间隔门限和第二间隔门限;
确定终端设备的类型,所述终端设备的类型为第一类型或第二类型;
针对所述第一类型的终端设备,根据所述第一参数和所述第一间隔门限确定下行控制信道的传输中是否有间隔,根据所述下行控制信道的传输中是否有间隔的确定结果,通过所述下行控制信道向所述第一类型的终端设备发送下行控制信息,针对所述第一类型的终端设备,根据所述第一参数和所述第一间隔门限确定下行数据信道的传输中是否有间隔,根据所述下行数据信道的传输中是否有间隔的确定结果,通过所述下行数据信道向所述第一类型的终端设备发送一个传输块,所述下行控制信息用于调度所述一个传输块;
针对所述第二类型的终端设备,根据所述第二参数和所述第二间隔门限确定下行控制信道的传输中是否有间隔,根据所述下行控制信道的传输中是否有间隔的确定结果,通过所述下行控制信道向所述第二类型的终端设备发送下行控制信息,针对所述第二类型的终端设备,根据所述第二参数和所述第二间隔门限确定下行数据信道的传输中是否有间隔,根据所述下行数据信道的传输中是否有间隔的确定结果,通过所述下行数据信道向所述第二类型的终端设备发送多个传输块,所述下行控制信息用于调度所述多个传输块;
其中,所述第一参数和所述第二参数不同,且所述第一间隔门限和所述第二间隔门限相同;或者,
所述第一参数和所述第二参数相同,且所述第一间隔门限和所述第二间隔门限不同;或者,
所述第一参数和所述第二参数不同,且所述第一间隔门限和所述第二间隔门限不同。
可选地,所述第一参数、所述第二参数、所述第一间隔门限和所述第二间隔门限使得 针对同一终端设备,相同时间段用于发送所述下行数据信道时所包括的间隔数不少于所述相同时间段用于发送所述下行控制信道时所包括的间隔数。
第十九方面,提供一种数据传输方法,所述方法包括:
获取第一参数、第二参数、第一间隔门限和第二间隔门限;
确定终端设备的类型,所述终端设备的类型为第一类型或第二类型;
当所述终端设备为所述第一类型的终端设备时,根据所述第一参数和所述第一间隔门限确定下行控制信道的传输中是否有间隔,根据所述下行控制信道的传输中是否有间隔的确定结果,通过所述下行控制信道从网络设备接收下行控制信息,当所述终端设备为所述第一类型的终端设备时,根据所述第一参数和所述第一间隔门限确定下行数据信道的传输中是否有间隔,根据所述下行数据信道的传输中是否有间隔的确定结果,通过所述下行数据信道从所述网络设备接收一个传输块,所述下行控制信息用于调度所述一个传输块;
当所述终端设备为所述第二类型的终端设备时,根据所述第二参数和所述第二间隔门限确定下行控制信道的传输中是否有间隔,根据所述下行控制信道的传输中是否有间隔的确定结果,通过所述下行控制信道从网络设备接收下行控制信息,当所述终端设备为所述第二类型的终端设备时,根据所述第二参数和所述第二间隔门限确定下行数据信道的传输中是否有间隔,根据所述下行数据信道的传输中是否有间隔的确定结果,通过所述下行数据信道从所述网络设备接收多个传输块,所述下行控制信息用于调度所述多个传输块;
其中,所述第一参数和所述第二参数不同,且所述第一间隔门限和所述第二间隔门限相同;或者,
所述第一参数和所述第二参数相同,且所述第一间隔门限和所述第二间隔门限不同;或者,
所述第一参数和所述第二参数不同,且所述第一间隔门限和所述第二间隔门限不同。
可选地,所述第一参数、所述第二参数、所述第一间隔门限和所述第二间隔门限使得针对同一终端设备,相同时间段用于接收所述下行数据信道时所包括的间隔数不少于所述相同时间段用于接收所述下行控制信道时所包括的间隔数。
可选地,在上述第十八方面和第十九方面中,所述第一参数和所述第二参数相同,所述第一参数为物理下行控制信道的搜索空间的最大重复次数,
当所述终端设备为所述第一类型的终端设备时,所述根据所述第一参数和所述第一间隔门限确定下行控制信道的传输中是否有间隔,包括:
当所述物理下行控制信道的搜索空间的最大重复次数大于或者等于所述第一间隔门限时,确定所述下行控制信道的传输中有间隔;
当所述物理下行控制信道的搜索空间的最大重复次数小于所述第一间隔门限时,确定所述下行控制信道的传输中没有间隔;
当所述终端设备为所述第一类型的终端设备时,所述根据所述第一参数和所述第一间隔门限确定下行数据信道的传输中是否有间隔,包括:
当所述物理下行控制信道的搜索空间的最大重复次数大于或者等于所述第一间隔门限时,确定所述下行数据信道的传输中有间隔;
当所述物理下行控制信道的搜索空间的最大重复次数小于所述第一间隔门限时,确定所述下行数据信道的传输中没有间隔;
当所述终端设备为所述第二类型的终端设备时,所述根据所述第二参数和所述第二间隔门限确定下行控制信道的传输中是否有间隔,包括:
当所述物理下行控制信道的搜索空间的最大重复次数大于或者等于所述第二间隔门限时,确定所述下行控制信道的传输中有间隔;
当所述物理下行控制信道的搜索空间的最大重复次数小于所述第二间隔门限时,确定所述下行控制信道的传输中没有间隔;
当所述终端设备为所述第二类型的终端设备时,所述根据所述第二参数和所述第二间隔门限确定下行数据信道的传输中是否有间隔,包括:
当所述物理下行控制信道的搜索空间的最大重复次数大于或者等于所述第二间隔门限时,确定所述下行数据信道的传输中有间隔;
当所述物理下行控制信道的搜索空间的最大重复次数小于所述第二间隔门限时,确定所述下行数据信道的传输中没有间隔;
其中,所述第一间隔门限和所述第二间隔门限是***配置的,所述第一间隔门限与所述第二间隔门限不同;或者,
所述第一间隔门限是***配置的,所述第二间隔门限根据所述第一间隔门限与所述下行控制信息能够调度的传输块的最大数量确定。
可选地,在上述第十八方面和第十九方面中,所述第一参数和所述第二参数不同,所述第一参数为第一重复次数,所述第一重复次数为所述第一类型的终端设备使用的物理下行控制信道的搜索空间的最大重复次数,所述第二参数为第二重复次数,所述第二重复次数为所述第二类型的终端设备使用的物理下行控制信道的搜索空间的最大重复次数,
当所述终端设备为所述第一类型的终端设备时,所述根据所述第一参数和所述第一间隔门限确定下行控制信道的传输中是否有间隔,包括:
当所述第一重复次数大于或者等于所述第一间隔门限时,确定所述下行控制信道的传输中有间隔;
当所述第一重复次数小于所述第一间隔门限时,确定所述下行控制信道的传输中没有间隔;
当所述终端设备为所述第一类型的终端设备时,所述根据所述第一参数和所述第一间隔门限确定下行数据信道的传输中是否有间隔,包括:
当所述第一重复次数大于或者等于所述第一间隔门限时,确定所述下行数据信道的传输中有间隔;
当所述第一重复次数小于所述第一间隔门限时,确定所述下行数据信道的传输中没有间隔;
当所述终端设备为所述第二类型的终端设备时,所述根据所述第二参数和所述第二间隔门限确定下行控制信道的传输中是否有间隔,包括:
当所述第二重复次数大于或者等于所述第二间隔门限时,确定所述下行控制信道的传输中有间隔;
当所述第二重复次数小于所述第二间隔门限时,确定所述下行控制信道的传输中没有间隔;
当所述终端设备为所述第二类型的终端设备时,所述根据所述第二参数和所述第二间 隔门限确定下行数据信道的传输中是否有间隔,包括:
当所述第二重复次数大于或者等于所述第二间隔门限时,确定所述下行数据信道的传输中有间隔;
当所述第二重复次数小于所述第二间隔门限时,确定所述下行数据信道的传输中没有间隔;
其中,所述第一间隔门限和所述第二间隔门限是***配置的,所述第一间隔门限与所述第二间隔门限不同;或者,
所述第一间隔门限是***配置的,所述第二间隔门限根据所述第一间隔门限与所述下行控制信息能够调度的传输块的最大数量确定。
第二十方面,提供一种网络设备,所述网络设备包括:至少一个模块,该至少一个模块用于实现上述第十八方面或第十八方面的任一可选方式所提供的数据传输方法。
第二十一方面,提供一种终端设备,所述终端设备包括:至少一个模块,该至少一个模块用于实现上述第十九方面或第十九方面的任一可选方式所提供的数据传输方法。
第二十二方面,提供一种网络设备,该网络设备包括:处理器、存储器和收发器,
收发器用于该网络设备与终端设备通信;
存储器用于存储指令;
处理器被配置为执行存储器中存储的指令来实现上述第十八方面或第十八方面的任一可选方式所提供的数据传输方法。
可选地,网络设备还包括:网络接口,处理器、收发器、存储器和网络接口之间通过总线连接,处理器包括一个或者一个以上处理核心,处理器通过运行软件程序以及单元,从而执行各种功能应用以及数据处理;网络接口可以为多个,该网络接口用于该网络设备与其它存储设备或者终端设备进行通信。
第二十三方面,提供一种终端设备,该终端设备包括:处理器、存储器和收发器,
收发器用于该终端设备与网络设备通信;
存储器用于存储指令;
处理器被配置为执行存储器中存储的指令来实现上述第十九方面或第十九方面的任一可选方式所提供的数据传输方法。
可选地,终端设备还包括:网络接口,处理器、收发器、存储器和网络接口之间通过总线连接,处理器包括一个或者一个以上处理核心,处理器通过运行软件程序以及单元,从而执行各种功能应用以及数据处理;网络接口可以为多个,该网络接口用于该终端设备与其它存储设备或者网络设备进行通信。
第二十四方面,提供一种数据传输***,该数据传输***包括:第二十方面所述的网络设备和第二十一方面所述的终端设备;或者,该数据传输***包括:第二十二方面所述的网络设备和第二十三面所述的终端设备。
第二十五方面,提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在计算机的处理组件上运行时,使得所述处理组件执行第十八方面或第十八方面的任一可选方式所述的数据传输方法。
第二十六方面,提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在计算机的处理组件上运行时,使得所述处理组件执行第十九方面或第十 九方面的任一可选方式所述的数据传输方法。
第二十七方面,提供一种包含指令的计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行第十八方面或第十八方面的任一可选方式所述的数据传输方法。
第二十八方面,提供一种包含指令的计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行第十九方面或第十九方面的任一可选方式所述的数据传输方法。
第二十九方面,提供一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时用于实现第十八方面或第十八方面的任一可选方式所述的数据传输方法。
第三十方面,提供一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时用于实现第十九方面或第十九方面的任一可选方式所述的数据传输方法。
第三十一方面,提供一种处理装置,所述处理装置包括至少一个电路,所述至少一个电路用于执行第十八方面或第十八方面的任一可选方式所述的数据传输方法。
第三十二方面,提供一种处理装置,所述处理装置包括至少一个电路,所述至少一个电路用于执行第十九方面或第十九方面的任一可选方式所述的数据传输方法。
第三十三方面,提供一种处理装置,所述处理装置用于实现第十八方面或第十八方面的任一可选方式所述的数据传输方法。
第三十四方面,提供一种处理装置,所述处理装置用于实现第十九方面或第十九方面的任一可选方式所述的数据传输方法。
本申请实施例提供的技术方案的有益效果是:
本申请实施例提供的数据传输方法、设备及***、存储介质,网络设备根据第一参数和第一间隔门限确定下行控制信道的传输中是否有间隔,根据下行控制信道的传输中是否有间隔的确定结果,通过下行控制信道向终端设备发送下行控制信息,根据第二参数和第二间隔门限确定下行数据信道的传输中是否有间隔,根据下行数据信道的传输中是否有间隔的确定结果,通过下行数据信道向终端设备发送一个或多个传输块,第一参数和第二参数不同且第一间隔门限和第二间隔门限相同,或者,第一参数和第二参数相同且第一间隔门限和第二间隔门限不同,或者,第一参数和第二参数不同且第一间隔门限和第二间隔门限不同。本申请实施例提供的方案使得针对下行控制信道和下行数据信道的传输是否有间隔,可以采用不同的判断方式,从而使得相同时间段用于发送下行数据信道时所包括的间隔数能够不同于该相同时间段用于发送下行控制信道时所包括的间隔数,具体可以使得相同时间段用于发送下行数据信道时所包括的间隔数能够不少于该相同时间段用于发送下行控制信道时所包括的间隔数。从而,相比于目前的gap确定方式,本申请实施例提供的gap确定方式能够使得下行数据信道的传输中具有更多的间隔,因此在一个DCI调度多个TB的场景下,可以更好地避免针对一个终端设备持续时间较长的连续下行数据传输,从而更好地避免下行信道受阻。
附图说明
图1是本申请实施例所涉及的一种NPDCCH调度NPDSCH的示意图;
图2是本申请实施例所涉及的一种NPDCCH候选的示意图;
图3是本申请实施例所涉及的一种下行信道的传输示意图;
图4是相关技术提供的一种一个DCI调度多个TB的示意图;
图5是本申请实施例各个实施例所涉及的一种实施环境的示意图;
图6是本申请实施例提供的一种数据传输方法的方法流程图;
图7是本申请实施例提供的一种网络设备的逻辑结构示意图;
图8是本申请实施例提供的一种终端设备的逻辑结构示意图;
图9是本申请实施例提供的一种通信设备的硬件结构示意图;
图10是本申请实施例提供的另一种数据传输方法的方法流程图;
图11是本申请实施例提供的另一种网络设备的逻辑结构示意图;
图12是本申请实施例提供的另一种终端设备的逻辑结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例实施方式作进一步地详细描述。
机器类型通信(machine type communication,MTC)又称为机器间(machine to machine,M2M)通信或者IoT通信,将是未来通信领域的一项重要应用。未来MTC可能涵盖智能抄表、医疗检测监控、物流检测监控、工业检测监控、汽车联网、智能社区以及可穿戴设备通信等。围绕MTC构造的物联网产业被认为是信息产业中,继计算机、互联网和移动通信网之后的第四次浪潮,是未来无线网络的发展方向。
基于蜂窝网络基础架构的MTC***是一类重要的MTC***,这一类MTC***通常称为Cellular MTC***或者Cellular IoT(CIoT)***。第三代合作伙伴计划(3rd generation partnership project,3GPP)标准组织一直关注Cellular MTC***的发展,并积极开展相关技术的标准化。Cellular MTC***包括网络设备和终端设备,网络设备可以为MTC基站,终端设备可以为MTC设备,MTC设备又称为M2M设备或IoT设备。目前,Cellular MTC***对网络设备和终端设备的需求包括以下四个方面:
第一方面:网络设备具有较大的覆盖范围:MTC业务需要网络设备能够支持较大的覆盖范围。具体地,需要网络设备具有较强的覆盖增强技术,能够为较大穿透损耗(例如穿透损耗为20分贝)的终端设备提供通信服务。例如,诸如智能水表、智能电表等的智能家居、智能抄表服务中的终端设备通常部署在室内或地下室,Cellular MTC***要求网络设备能够为部署在室内和地下室的终端设备提供稳健的通信服务。
第二方面:网络设备具有极高的连接数:网络设备下可能大规模的部署(超过数万个甚至数十万个)有智能家居、智能社区、监控、汽车和可穿戴设备等终端设备,网络设备需要在防止网络拥塞的前提下,同时为大规模部署的终端设备提供通信服务。
第三方面:终端设备具有较低的成本(low cost):终端设备的成本需要低于现有的移动终端的成本,以满足终端设备能够大规模部署的条件。
第四方面:终端设备具有较低的功耗(low power consumption):由于终端设备的多样性以及终端设备的部署环境的多样性,终端设备一般采用电池供电,为大量的终端设备更换电池会耗费极高的人力成本和时间成本,因此要求终端设备的各功能器件具有极低的功耗,这样一来,终端设备可以有更长的待机时间,以减少更换电池的次数。
MTC***又称为M2M***或者IoT***,NB-IoT***是一种典型的IoT***,在NB-IoT***中,网络设备对不同部署环境中的终端设备的覆盖条件不同,网络设备基于覆盖条件使用不同的调度策略对部署在不同环境中的终端设备进行调度。其中,覆盖条件和终端设备的无线信道质量以及终端设备与网络设备之间的距离有关。例如,处于小区中心位置的终端设备的无线信道质量较好,网络设备对这些终端设备的覆盖条件较好,网络设备使用较小的发送功率就能与这些终端设备建立可靠的通信链路,因此网络设备可以使用大码块、高阶调制和载波绑定等技术手段快速完成与这些终端设备之间的数据传输;又例如,处于小区边缘或者地下室的终端设备的无线信道质量较差,网络设备对这些终端设备的覆盖条件较差,网络设备使用较大的发送功率才能与这些终端设备建立通信链路,因此网络设备需要使用小码块、低阶调制、多次重复发送和扩频等技术手段才能完成与这些终端设备之间的数据传输。
为了保证通信的可靠性,节省发送功率,NB-IoT***引入覆盖等级的概念对不同覆盖条件的终端设备进行区分。在NB-IoT***中,每个终端设备对应一个覆盖等级,处于同一覆盖等级的终端设备的覆盖条件相同或相似,网络设备可以采用相同或相似的调度参数对处于同一覆盖等级的终端设备进行调度。示例地,NB-IoT***引入的覆盖等级包括“普通覆盖”、“边缘覆盖”和“扩展覆盖”这三个覆盖等级,距离网络设备较近的终端设备的覆盖等级可以为“普通覆盖”,网络设备在与这些终端设备进行数据传输时,重复次数可以为不重复;距离网络设备较远的终端设备的覆盖等级可以为“边缘覆盖”,网络设备在与这些终端设备进行数据传输时,重复次数可以为中等;处于地下室等部署环境的终端设备的覆盖等级为“扩展覆盖”,网络设备在与这些终端设备进行数据传输时,重复次数可能高达几百次甚至上千次。其中,重复次数指的是重复传输的次数,终端设备可以根据自身对应的覆盖等级选择合适的重复次数进行数据传输,以降低不必要的重复传输,减少功率开销。
NB-IoT***定义了两种下行物理信道,分别为NPDCCH和NPDSCH,NPDCCH用于承载DCI,NPDSCH用于承载下行数据,下行数据通常以TB的形式传输,NPDSCH用于承载下行数据也即是NPDSCH用于承载TB,NPDCCH用于调度NPDSCH(也即是DCI用于调度TB)。NB-IoT***的***带宽为180千赫兹(kHz),NPDSCH的传输占用的带宽为180kHz,NPDCCH的传输占用的带宽为90kHz或者180kHz。同一终端设备对应的NPDCCH和NPDSCH以TDM的方式传输,不同终端设备对应的NPDSCH以TDM的方式传输,不同终端设备对应的NPDCCH以TDM或频分复用(frequency division multiplexing,FDM)的方式传输。请参考图1,其示出了本申请实施例所涉及的一种NPDCCH调度NPDSCH的示意图,箭头所代表的含义为:箭头指向的NPDSCH是由无箭头一端的NPDCCH调度的。该图1以终端设备为用户设备(User Equipment,UE)进行说明。参见图1,UE1对应的NPDCCH与UE1对应的NPDSCH以TDM的方式传输,UE2对应的NPDCCH与UE2对应的NPDSCH以TDM的方式传输,UE3对应的NPDCCH与UE3对应的NPDSCH以TDM的方式传输,UE1对应的NPDCCH与UE2对应的NPDCCH以TDM的方式传输,UE1对应的NPDCCH与UE3对应的NPDCCH以TDM的方式传输,UE2对应的NPDCCH与UE3对应的NPDCCH以FDM的方式传输,UE1对应的NPDSCH与UE2对应的NPDSCH以TDM的方式传输,UE1对应的NPDSCH与UE3对应的NPDSCH以TDM的方式传输, UE2对应的NPDSCH与UE3对应的NPDSCH以TDM的方式传输。
终端设备需要监听一个NPDCCH候选集合以获取DCI,该NPDCCH候选集合称为NPDCCH搜索空间(search space,SS),搜索空间的资源周期性分布。网络设备可以通过***消息或者无线资源控制(radio resource control,RRC)信令向终端设备指示搜索空间的周期(也即是搜索空间的周期在时域上的长度)和搜索空间在每个周期内的起始位置,终端设备根据网络设备的指示在搜索空间内盲检测NPDCCH。其中,***消息或者RRC信令中携带参数R max、G和α offset,R max表示NPDCCH的搜索空间的最大重复次数,终端设备接收到***消息或者RRC信令后,将R max和G的乘积确定为搜索空间的周期,将R max确定为搜索空间在每个搜索空间的周期内的持续时长,将R max、G和α offset三者的乘积确定为搜索空间的周期的起始位置与搜索空间的起始位置在时域上的间隔,G*R maxoffset表示在时域上从搜索空间的周期的起始位置向后偏移G*R maxoffset长度。一个搜索空间的周期内可以有多个NPDCCH候选。请参考图2,其示例出了本申请实施例所涉及的一种NPDCCH候选的示意图,搜索空间的周期为G*R max,搜索空间在G*R max内的持续时长为R max个有效子帧,搜索空间的周期的起始位置与搜索空间的起始位置在时域上的间隔为G*R maxoffset,一个搜索空间的周期内有15个NPDCCH候选,第0至第7个候选中的每个候选在时域上的长度等于R max/8(也即是8分之R max)个有效子帧,第8至第11个候选中的每个候选在时域上的长度等于R max/4(也即是4分之R max)个有效子帧,第12至第13个候选中的每个候选在时域上的长度等于R max/2(也即是2分之R max)个有效子帧,第14个候选在时域上的长度等于R max个有效子帧。
在NB-IoT***中,覆盖条件较差的终端设备的下行传输需要高达几百次甚至上千次的重复,从而覆盖条件较差的终端设备的下行传输需要较长的时间。由于不同终端设备对应的NPDSCH只能以TDM的方式传输,如果覆盖条件较差的终端设备的下行传输占用信道,覆盖条件较好的终端设备的下行传输要等到覆盖条件较差的终端设备的下行传输结束之后才能进行,因此,覆盖条件较差的终端设备的下行传输会阻塞覆盖条件较差好的终端设备的下行传输。为此,NB-IoTRel-13引入gap的概念。网络设备与终端设备进行下行传输的过程中,针对该终端设备的下行传输,网络设备确定用于该终端设备下行传输的时间段中是否有gap,若有gap,则网络设备在该gap中不与该终端设备进行下行传输,且在该gap后继续与该终端设备进行下行传输。终端设备确定用于下行传输的时间段中是否有gap,若有gap,则该终端设备在该gap中不进行下行传输的接收,且在该gap后继续进行下行传输的接收。
下行传输包括NPDCCH的传输和NPDSCH的传输。目前,通常是将NPDCCH的搜索空间的最大重复次数R max与NB-IoT***配置的间隔门限N gap,threshold进行比较来确定NPDCCH的传输中是否有gap,如果R max大于或者等于N gap,threshold,则NPDCCH的传输中有gap,如果R max小于N gap,threshold,则NPDCCH的传输中没有gap。NPDSCH的传输中是否有gap的确定方式与NPDCCH的传输中是否有gap的确定方式相同。其中,gap是周期性分布的,网络设备可以配置gap配置参数,gap配置参数包括gap的间隔门限N gap,threshold、gap的周期N gap,period和gap的持续时长因子N gap,coff,在下行传输中,gap也可以称为下行(downlink,DL)gap,网络设备可以通过参数dl-GapThreshold配置间隔门限N gap,threshold,通过参数dl-GapPeriodicity配置gap的周期N gap,period,通过参数dl-GapDurationCoeff配置gap 的持续时长因子N gap,coff,N gap,threshold、N gap,period和N gap,coff的取值范围如下表1所示:
表1
配置参数 取值范围
N gap,threshold {32,64,128,256}
N gap,period {64,128,256,512}
N gap,coff {1/8,1/4,3/8,1/2}
每个gap的周期内,gap的起始无线帧和起始子帧根据公式
Figure PCTCN2018108488-appb-000001
确定,gap的持续时长根据公式N gap,duration=N gap,coff×N gap,period确定,其中,n f为无线帧号或***帧号,n s为时隙号,mod表示取余或者取模运算,
Figure PCTCN2018108488-appb-000002
表示取整运算。
图3是本申请实施例所涉及的一种下行信道的传输示意图,假设UE1对应的NPDCCH的搜索空间的最大重复次数R max1大于或等于间隔门限N gap,threshold,UE2的NPDCCH的搜索空间的最大重复次数R max2小于间隔门限N gap,threshold,则UE1对应的NPDCCH的传输和NPDSCH的传输中有gap,UE2对应的NPDCCH的传输和NPDSCH的传输中没有gap,直观的理解可以是:UE1可以看见gap,而gap对于UE2来说是透明的(也即是UE2看不见gap)。假设UE1的覆盖条件较差,UE2的覆盖条件较好,则UE1对应的NPDCCH的传输和NPDSCH的传输需要较高的重复次数,UE2对应的NPDCCH的传输和NPDSCH的传输需要较少的重复次数或者不需要重复,如图3所示,UE1对应的NPDSCH的传输包括第一部分和第二部分,由于第二部分的资源与gap的资源重叠,因此第二部分推迟(postpone)至gap之后传输。UE2对应的NPDCCH和NPDSCH可以在gap内传输,而不需要等待UE1传输完成,由于UE2对应的NPDCCH和NPDSCH可以在gap内传输,而不需要等待UE1传输完成,因此,引入gap可以避免下行信道受阻。
实际应用中,根据业务数据量的大小以及NB-IoT***对TB大小的限制,可能会将下行数据拆分成多个TB进行传输。为了提高调度效率,降低DCI开销,NB-IoT Rel-13后续演进版本从只支持一个DCI调度一个TB发展到支持一个DCI调度多个TB,在一个DCI调度多个TB的场景中,假设某一终端设备对应的NPDCCH的搜索空间的最大重复次数R max小于间隔门限N gap,threshold,按照现有的gap确定方式,该终端设备对应的NPDCCH的传输和NPDSCH的传输中都没有gap,对于一个DCI调度多个TB的场景,承载每个TB的NPDSCH的传输时长较短,但是承载多个TB的NPDSCH传输的总时长较大,导致承载多个TB的NPDSCH的传输长时间占用下行信道,影响其它终端设备的下行传输。例如,图4是相关技术提供的一种一个DCI调度多个TB的示意图,参见图4,一个DCI调度4个TB,承载该4个TB的NPDSCH的传输的总时长较大。
针对一个DCI调度多个TB的场景中,承载多个TB的NPDSCH的传输长时间占用下行信道的问题,本申请实施例提供了一种新的gap确定方式,可以在一个DCI调度多个TB的场景中,避免承载多个TB的NPDSCH的传输长时间占用下行信道,进而避免针对一个终端设备持续时间较长的连续下行传输,避免下行信道受阻,提高***资源利用效率。本申请实施例的详细方案请参考下述实施例。
在对本申请实施例进行详细描述之前,先对本申请实施例中涉及的几个词语进行声明。在本申请实施例中,物理下行控制信道可以是NB-IoT***中的NPDCCH,物理下行数据信道可以是NB-IoT***中的NPDSCH,物理下行控制信道的搜索空间的最大重复次数可以是NPDCCH的搜索空间的最大重复次数R max,下行控制信息可以是DCI,***配置可以是约定或协议定义,也可以是网络设备通过***消息、RRC信令或者媒体访问控制控制实体(media access control control entity,MAC CE)等信令配置。第一间隔门限可以与相关技术中的间隔门限Ngap,threshold相同,当然,第一间隔门限也可以与相关技术中的间隔门限Ngap,threshold不同。对于下行控制信息调度的多个传输块,该多个传输块的具体数量可以是通过下行控制信息进行指示,也可以是通过***消息进行指示,也可以是通过RRC信令进行指示,具体数量可以为1,可以大于1。例如对于单播,该多个传输块的具体数量可以是通过下行控制信息进行指示,对于单小区组播控制信道(single cell multicast control channel SC-MCCH),该多个传输块的具体数量可以是通过***消息进行指示,对于单小区组播控制信道(single cell multicast transport channel,SC-MTCH),该多个传输块的具体数量可以是通过SC-MCCH进行指示。
本申请实施例提供的方案可以应用于无线通信网络,无线通信网络又称为无线通信***,无线通信***可以是长期演进(long term evolution,LTE)***、高级的长期演进(LTE advanced,LTE-A)***或任何存在实体可以通过无线网络发送和接收消息的通信***。
图5是本申请实施例各个实施例所涉及一种实施环境的示意图,该实施环境提供一种无线通信***,该无线通信***可以为IoT***,例如可以是NB-IoT***。参见图5,该无线通信***包括网络设备001和多个终端设备,多个终端设备包括终端设备002~007,终端设备002~007可以部署在不同环境中,例如,终端设备002和终端设备003部署在室内,终端设备004部署在室外,终端设备005~007部署在地下室。
网络设备001是网络侧的一种用来发送或接收信号的实体,网络设备001通常作为接入设备为终端设备002~007提供通信服务。网络设备001具有一定的服务覆盖区域(又可以称为蜂窝或小区,如图5中的大椭圆区域所示),处于网络设备001的服务覆盖区域内的终端设备可以通过无线信号与网络设备001通信,以此来接受网络设备001提供的通信服务。网络设备001可以是基站,依赖于所使用的无线通信技术,基站又可以称为节点B(NodeB)、演进节点B(evolved NodeB,eNodeB)或接入点(access point,AP)等。此外,根据服务覆盖区域的大小,基站又可以分为用于提供宏蜂窝(macro cell)的宏基站、用于提供微蜂窝(pico cell)的微基站和用于提供毫微微蜂窝(femto cell)的毫微微基站等。随着无线通信技术的不断演进,未来的基站也可以采用其他的名称。
终端设备002~007中的任一终端设备可以是具备无线通信功能的通信设备,该具备无线通信功能的通信设备可以是IoT设备,IoT设备又称为MTC设备或M2M设备。IoT设备可以是家用电器、智能家居、交通工具、工具设备、服务设备、服务设施或可穿戴设备等,IoT设备例如但不限于:智能冰箱、智能洗衣机、智能水表、智能电表、智能汽车、车载设备或可穿戴设备等等。
如图5所示,终端设备002~007均处于网络设备001的服务覆盖区域内,网络设备001可以与终端设备002~007中的任一终端设备通信,终端设备007可以与终端设备005~006通信。其中,网络设备001与任一终端设备之间,以及终端设备007与终端设备005~006 之间可以采用各种无线通信技术进行通信,无线通信技术例如但不限于:时分多址(time division multiple access,TDMA)技术、频分多址(frequency division multiple access,FDMA)技术、码分多址(code division multiple access,CDMA)技术、时分同步码分多址(time division-synchronous code division multiple access,TD-SCDMA)技术、正交频分多址(orthogonal FDMA,OFDMA)技术、单载波频分多址(single carrier FDMA,SC-FDMA)技术、空分多址(space division multiple access,SDMA)技术以及这些技术的演进及衍生技术等。上述无线通信技术作为无线接入技术(radio access technology,RAT)被众多无线通信标准所采纳,从而构建出了在今天广为人们所熟知的各种无线通信***(或者网络),无线通信***可以包括但不限于全球移动通信***(global system for mobile communications,GSM)、CDMA2000、宽带CDMA(wideband CDMA,WCDMA)、802.22系列标准中定义的无线保真(wireless-fidelity,WiFi)、全球互通微波存取(worldwide interoperability for microwave access,WiMAX)、LTE、LTE-A、未来的第五代(5th generation,5G)***、新无线(newradio,NR)***以及这些无线通信***的演进***等。如无特别说明,本申请实施例提供的技术方案可以应用于上述各种无线通信技术和无线通信***。此外,术语“***”和“网络”可以相互替换。
需要指出的是,图5所示的无线通信网络仅用于举例,并非用于限制本申请实施例的技术方案。本领域的技术人员应当明白,在具体实现过程中,无线通信网络还可能包括其他设备,同时也可以根据需要来配置网络设备的数量和终端设备的数量。
请参考图6,其示出了本申请实施例提供的一种数据传输方法的方法流程图,该数据传输方法可以用于图5所示实施环境,参见图6,该方法包括:
步骤601、网络设备确定第一参数、第二参数、第一间隔门限和第二间隔门限。
在本申请实施例中,第一参数、第二参数的关系、第一间隔门限以及第二间隔门限这四者的关系包括以下三种实现可能的方式:
第一种实现方式:第一参数和第二参数不同,且第一间隔门限和第二间隔门限相同。
第二种实现方式:第一参数和第二参数相同,且第一间隔门限和第二间隔门限不同。
第三种实现方式:第一参数和第二参数不同,且第一间隔门限和第二间隔门限不同。
针对上述三种可能的实现方式,该步骤601中,网络设备确定第一参数、第二参数、第一间隔门限和第二间隔门限可以包括以下三种可能的实现方式:
第一种实现方式:第一参数和第二参数相同,第一间隔门限和第二间隔门限不同。第一参数为物理下行控制信道的搜索空间的最大重复次数,第一间隔门限和第二间隔门限是***配置的,第一间隔门限与第二间隔门限不同,或者,第一间隔门限是***配置的,第二间隔门限根据第一间隔门限与下行控制信息调度的传输块的数量确定,或者,第一间隔门限是***配置的,第二间隔门限根据第一间隔门限与下行控制信息能够调度的传输块的最大数量确定。
在该第一种实现方式中,网络设备确定第一参数、第二参数、第一间隔门限和第二间隔门限可以包括以下三种可能的情况:
第一种情况:第一参数和第二参数相同,第一间隔门限和第二间隔门限不同,第一参数为物理下行控制信道的搜索空间的最大重复次数,第一间隔门限和第二间隔门限是*** 配置的。
网络设备可以确定物理下行控制信道的搜索空间的最大重复次数R max和间隔配置参数,将物理下行控制信道的搜索空间的最大重复次数R max确定为第一参数和第二参数,间隔配置参数可以包括***配置的第一间隔门限N gap,threshold1和第二间隔门限N gap,threshold2,第一间隔门限N gap,threshold1与第二间隔门限N gap,threshold2不同。
第二种情况:第一参数和第二参数相同,第一间隔门限和第二间隔门限不同,第一参数为物理下行控制信道的搜索空间的最大重复次数,第一间隔门限是***配置的,第二间隔门限根据第一间隔门限与下行控制信息调度的传输块的数量确定。
网络设备可以确定物理下行控制信道的搜索空间的最大重复次数R max、间隔配置参数和下行控制信息调度的传输块的数量N TB,将物理下行控制信道的搜索空间的最大重复次数R max确定为第一参数和第二参数,间隔配置参数可以包括***配置的第一间隔门限N gap,threshold1,网络设备根据第一间隔门限N gap,threshold1与下行控制信息调度的传输块的数量N TB确定第二间隔门限。
可选地,网络设备将第一间隔门限N gap,threshold1与下行控制信息调度的传输块的数量N TB之商确定为第二间隔门限,也即是:网络设备将N gap,threshold1/N TB确定为第二间隔门限。当然,网络设备也可以将第一间隔门限N gap,threshold1与下行控制信息调度的传输块的数量N TB之和、之差或之积等确定为第二间隔门限,本申请实施例对此不做限定。需要说明的是,在该第二种情况中,由于第一间隔门限和第二间隔门限不同,第二间隔门限为N gap,threshold1/N TB因此,下行控制信息调度的传输块的数量N TB不等于1,换句话来讲,下行控制信息调度的传输块的数量N TB大于1。
第三种情况:第一参数和第二参数相同,第一间隔门限和第二间隔门限不同,第一参数为物理下行控制信道的搜索空间的最大重复次数,第一间隔门限是***配置的,第二间隔门限根据第一间隔门限与下行控制信息能够调度的传输块的最大数量确定。
网络设备可以确定物理下行控制信道的搜索空间的最大重复次数R max、间隔配置参数和下行控制信息能够调度的传输块的最大数量N TB,max,将物理下行控制信道的搜索空间的最大重复次数R max确定为第一参数和第二参数,间隔配置参数可以包括***配置的第一间隔门限N gap,threshold1,网络设备根据第一间隔门限N gap,threshold1与下行控制信息能够调度的传输块的最大数量N TB,max确定第二间隔门限。
可选地,网络设备将第一间隔门限N gap,threshold1与下行控制信息能够调度的传输块的最大数量N TB,max之商确定为第二间隔门限,也即是:网络设备将N gap,threshold1/N TB,max确定为第二间隔门限。当然,网络设备也可以将第一间隔门限N gap,threshold1与下行控制信息能够调度的传输块的最大数量N TB,max之和、之差或之积等确定为第二间隔门限,本申请实施例对此不做限定。需要说明的是,在该第三种情况中,由于第一间隔门限和第二间隔门限不同,且第二间隔门限为N gap,threshold1/N TB,max,因此,下行控制信息调度的传输块的最大数量N TB,max不等于1,换句话来讲,下行控制信息调度的传输块的最大数量N TB,max大于1。
第二种实现方式:第一参数和第二参数不同,第一间隔门限和第二间隔门限相同。第一参数为物理下行控制信道的搜索空间的最大重复次数,第二参数为第一有效子帧数,第一间隔门限和第二间隔门限是***配置的;或者,第一间隔门限是***配置的,第二间隔门限根据第一间隔门限与预设常数确定,预设常数为大于或者等于1,且小于或者等于10 的整数;或者,第一间隔门限是***配置的,第二间隔门限根据第一间隔门限与第三间隔门限确定,第三间隔门限是***配置的。第一有效子帧数为承载下行控制信息调度的多个传输块中的第一个传输块的物理下行共享信道所占用的有效子帧数;或者,第一有效子帧数为承载下行控制信息调度的多个传输块中的任意一个传输块的物理下行共享信道所占用的有效子帧数;或者,第一有效子帧数为承载下行控制信息调度的多个传输块的物理下行共享信道所占用的有效子帧数。
在该第二种实现方式中,网络设备确定第一参数、第二参数、第一间隔门限和第二间隔门限可以包括以下三种可能的情况:
第一种情况:第一参数和第二参数不同,第一间隔门限和第二间隔门限相同,第一参数为物理下行控制信道的搜索空间的最大重复次数,第二参数为第一有效子帧数,第一间隔门限和第二间隔门限是***配置的。
网络设备可以确定物理下行控制信道的搜索空间的最大重复次数R max、间隔配置参数和第一有效子帧数,将物理下行控制信道的搜索空间的最大重复次数R max确定为第一参数,将第一有效子帧数确定为第二参数,间隔配置参数可以包括***配置的第一间隔门限N gap,threshold1和第二间隔门限N gap,threshold2,第一间隔门限N gap,threshold1和第二间隔门限N gap,threshold2相同。
第二种情况:第一参数和第二参数不同,第一间隔门限和第二间隔门限相同,第一参数为物理下行控制信道的搜索空间的最大重复次数,第二参数为第一有效子帧数,第一间隔门限是***配置的,第二间隔门限根据第一间隔门限与预设常数确定,预设常数为大于或者等于1,且小于或者等于10的整数。
网络设备可以确定物理下行控制信道的搜索空间的最大重复次数R max、间隔配置参数第一有效子帧数和预设常数
Figure PCTCN2018108488-appb-000003
将物理下行控制信道的搜索空间的最大重复次数R max确定为第一参数,将第一有效子帧数确定为第二参数,间隔配置参数可以包括***配置的第一间隔门限N gap,threshold1,网络设备根据第一间隔门限N gap,threshold1与预设常数
Figure PCTCN2018108488-appb-000004
确定第二间隔门限。其中,预设常数
Figure PCTCN2018108488-appb-000005
为大于或者等于1,且小于或者等于10的整数,例如,预设常数
Figure PCTCN2018108488-appb-000006
的取值可以为6、8或10。
可选地,网络设备将第一间隔门限N gap,threshold1与预设常数
Figure PCTCN2018108488-appb-000007
之积确定为第二间隔门限。也即是:网络设备将
Figure PCTCN2018108488-appb-000008
确定为第二间隔门限。当然,网络设备也可以将第一间隔门限N gap,threshold1与预设常数
Figure PCTCN2018108488-appb-000009
之和、之差或之商等确定为第二间隔门限,本申请实施例对此不做限定。需要说明的是,当网络设备将第一间隔门限N gap,threshold1与预设常数
Figure PCTCN2018108488-appb-000010
之积确定为第二间隔门限时,由于第一间隔门限N gap,threshold1与第二间隔门限相同,因此该预设常数
Figure PCTCN2018108488-appb-000011
等于1。
第三种情况:第一参数和第二参数不同,第一间隔门限和第二间隔门限相同,第一参数为物理下行控制信道的搜索空间的最大重复次数,第二参数为第一有效子帧数,第一间隔门限是***配置的,第二间隔门限根据第一间隔门限与第三间隔门限确定,第三间隔门限是***配置的。
网络设备可以确定物理下行控制信道的搜索空间的最大重复次数R max、间隔配置参数和第一有效子帧数,将物理下行控制信道的搜索空间的最大重复次数R max确定为第一参数,将第一有效子帧数确定为第二参数,间隔配置参数可以包括***配置的第一间隔门限 N gap,threshold1和第三间隔门限N gap,threshold3,网络设备根据第一间隔门限N gap,threshold1与第三间隔门限N gap,threshold3确定第二间隔门限。
可选地,网络设备将第一间隔门限N gap,threshold1与第三间隔门限N gap,threshold3之积确定为第二间隔门限。也即是:网络设备将N gap,threshold1×N gap,threshold3确定为第二间隔门限。当然,网络设备也可以将第一间隔门限N gap,threshold1与第三间隔门限N gap,threshold3之和、之差或之商等确定为第二间隔门限,本申请实施例对此不做限定。
在申请实施例中,第一间隔门限N gap,threshold1的取值范围可以为{1,2,3,4,5,6,8,10}或者{1,2,3,4,5,6,8,10},第三间隔门限N gap,threshold3的取值范围可以为第一间隔门限N gap,threshold1的取值范围的子集,例如,第三间隔门限N gap,threshold3的取值范围为{1,2,3,4}、{2,3,4,5}、{3,4,5,6}、{4,5,6,8}、{5,6,8,10}、{1,2}、{2,3}、{3,4}、{4,5}、{5,6}、{6,8}或者{8,10}等,本申请实施例对此不做限定。当网络设备将第一间隔门限N gap,threshold1与第三间隔门限N gap,threshold3之积确定为第二间隔门限时,由于第一间隔门限N gap,threshold1与第二间隔门限相同,因此第三间隔门限N gap,threshold3等于1。
需要说明的是,在本申请实施例中,网络设备将传输块映射在子帧中进行传输,且传输块由物理下行数据信道承载,物理下行数据信道可以是物理下行共享信道。在该第二种实现方式中,第一有效子帧数可以包括以下三种情况:
第(1)种情况:第一有效子帧数为承载下行控制信息调度的多个传输块中的第一个传输块的物理下行共享信道所占用的有效子帧数N first,sf,NPDSCH
Figure PCTCN2018108488-appb-000012
其中,
Figure PCTCN2018108488-appb-000013
表示下行控制信息调度的多个传输块中的第一个传输块的重复次数,N sf,first表示下行控制信息调度的多个传输块中的第一个传输块映射的子帧数。
第(2)种情况:第一有效子帧数为承载下行控制信息调度的多个传输块中的任意一个传输块的物理下行共享信道所占用的有效子帧数N any,sf,NPDSCH
Figure PCTCN2018108488-appb-000014
其中,当下行控制信息调度的多个传输块中任意两个传输块的重复次数相等时,
Figure PCTCN2018108488-appb-000015
表示下行控制信息调度的多个传输块中的任一传输块的重复次数,N sf表示下行控制信息调度的多个传输块中的任一传输块映射的子帧数;当下行控制信息调度的多个传输块的重复次数不相等时,
Figure PCTCN2018108488-appb-000016
表示下行控制信息调度的多个传输块的重复次数中的最大值、最小值或平均值,N sf表示下行控制信息调度的多个传输块映射的子帧数中的最大值、最小值或平均值。
第(3)种情况:第一有效子帧数为承载下行控制信息调度的多个传输块的物理下行共享信道所占用的有效子帧数N total,sf,NPDSCH
Figure PCTCN2018108488-appb-000017
或者,
Figure PCTCN2018108488-appb-000018
或者,
Figure PCTCN2018108488-appb-000019
或者,
Figure PCTCN2018108488-appb-000020
其中,N TB表示下行控制信息调度的多个传输块的数量,
Figure PCTCN2018108488-appb-000021
表示下行控制信息调度的多个传输块中的第i个传输块的重复次数,N sf,i表示下行控制信息调度的多个传输块中的第i个传输块映射的子帧数,N TB,max表示下行控制信息调度的多个传输块的最大数量,当下行控制信息调度的多个传输块中任意两个传输块的重复次数相等时,
Figure PCTCN2018108488-appb-000022
表示下行控制信息调度的多个传输块中的任一传输块的重复次数,N sf表示下行控制信息调度的多个传输块中的任一传输块映射的子帧数,当下行控制信息调度的多个传输块中任意两个传输块的重复次数不相等时,
Figure PCTCN2018108488-appb-000023
表示下行控制信息调度的多个传输块的重复次数中的最大值、最小值或平均值,N sf表示下行控制信息调度的多个传输块映射的子帧数的最大值、最小值或平均值。
第三种实现方式:第一参数和第二参数不同,第一间隔门限和第二间隔门限不同。第一参数为物理下行控制信道的搜索空间的最大重复次数,第二参数为第一有效子帧数,第一间隔门限和第二间隔门限是***配置的;或者,第一间隔门限是***配置的,第二间隔门限根据第一间隔门限与预设常数确定,预设常数为大于或者等于1,且小于或者等于10的整数;或者,第一间隔门限是***配置的,第二间隔门限根据第一间隔门限与第三间隔门限确定,第三间隔门限是***配置的。第一有效子帧数为承载下行控制信息调度的多个传输块中的第一个传输块的物理下行共享信道所占用的有效子帧数;或者,第一有效子帧数为承载下行控制信息调度的多个传输块中的任意一个传输块的物理下行共享信道所占用的有效子帧数;或者,第一有效子帧数为承载下行控制信息调度的多个传输块的物理下行共享信道所占用的有效子帧数。
在该第三种实现方式中,网络设备确定第一参数、第二参数、第一间隔门限和第二间隔门限可以包括以下三种可能的情况:
第一种情况:第一参数和第二参数不同,第一间隔门限和第二间隔门限不同,第一参数为物理下行控制信道的搜索空间的最大重复次数,第二参数为第一有效子帧数,第一间隔门限和第二间隔门限是***配置的。
网络设备可以确定物理下行控制信道的搜索空间的最大重复次数R max、间隔配置参数和第一有效子帧数,将物理下行控制信道的搜索空间的最大重复次数R max确定为第一参数,将第一有效子帧数确定为第二参数,间隔配置参数可以包括***配置的第一间隔门限N gap,threshold1和第二间隔门限N gap,threshold2,第一间隔门限N gap,threshold1和第二间隔门限N gap,threshold2不同。
第二种情况:第一参数和第二参数不同,第一间隔门限和第二间隔门限不同,第一参数为物理下行控制信道的搜索空间的最大重复次数,第二参数为第一有效子帧数,第一间隔门限是***配置的,第二间隔门限根据第一间隔门限与预设常数确定,预设常数为大于或者等于1,且小于或者等于10的整数。
网络设备可以确定物理下行控制信道的搜索空间的最大重复次数R max、间隔配置参数第一有效子帧数和预设常数
Figure PCTCN2018108488-appb-000024
将物理下行控制信道的搜索空间的最大重复次数R max确定为第一参数,将第一有效子帧数确定为第二参数,间隔配置参数可以包括***配置的第一间隔门限N gap,threshold1,网络设备根据第一间隔门限N gap,threshold1与预设常数
Figure PCTCN2018108488-appb-000025
确定第二间隔门限。其中,预设常数
Figure PCTCN2018108488-appb-000026
为大于或者等于1,且小于或者等于10的整数,例如,预设常数
Figure PCTCN2018108488-appb-000027
的取值可以为6、8或10。
可选地,网络设备将第一间隔门限N gap,threshold1与预设常数
Figure PCTCN2018108488-appb-000028
之积确定为第二间隔门限。也即是:网络设备将
Figure PCTCN2018108488-appb-000029
确定为第二间隔门限。当然,网络设备也可以将第一间隔门限N gap,threshold1与预设常数
Figure PCTCN2018108488-appb-000030
之和、之差或之商等确定为第二间隔门限,本申请实施例对此不做限定。需要说明的是,当网络设备将第一间隔门限N gap,threshold1与预设常数
Figure PCTCN2018108488-appb-000031
之积确定为第二间隔门限时,由于第一间隔门限N gap,threshold1与第二间隔门限不同,因此该预设常数
Figure PCTCN2018108488-appb-000032
不等于1。
第三种情况:第一参数和第二参数不同,第一间隔门限和第二间隔门限不同,第一参数为物理下行控制信道的搜索空间的最大重复次数,第二参数为第一有效子帧数,第一间隔门限是***配置的,第二间隔门限根据第一间隔门限与第三间隔门限确定,第三间隔门限是***配置的。
网络设备可以确定物理下行控制信道的搜索空间的最大重复次数R max、间隔配置参数和第一有效子帧数,将物理下行控制信道的搜索空间的最大重复次数R max确定为第一参数,将第一有效子帧数确定为第二参数,间隔配置参数可以包括***配置的第一间隔门限N gap,threshold1和第三间隔门限N gap,threshold3,网络设备根据第一间隔门限N gap,threshold1与第三间隔门限N gap,threshold3确定第二间隔门限。
可选地,网络设备将第一间隔门限N gap,threshold1与第三间隔门限N gap,threshold3之积确定为第二间隔门限。也即是:网络设备将N gap,threshold1×N gap,threshold3确定为第二间隔门限。当然,网络设备也可以将第一间隔门限N gap,threshold1与第三间隔门限N gap,threshold3之和、之差或之商等确定为第二间隔门限,本申请实施例对此不做限定。
在申请实施例中,第一间隔门限N gap,threshold1的取值范围可以为{1,2,3,4,5,6,8,10}或者{1,2,3,4,5,6,8,10},第三间隔门限N gap,threshold3的取值范围可以为第一间隔门限N gap,threshold1的取值范围的子集,例如,第三间隔门限N gap,threshold3的取值范围为{1,2,3,4}、{2,3,4,5}、{3,4,5,6}、{4,5,6,8}、{5,6,8,10}、{1,2}、{2,3}、{3,4}、{4,5}、{5,6}、{6,8}或者{8,10}等,本申请实施例对此不做限定。当网络设备将第一间隔门限N gap,threshold1与第三间隔门限N gap,threshold3之积确定为第二间隔门限时,由于第一间隔门限N gap,threshold1与第二间隔门限不同,因此第三间隔门限N gap,threshold3不等于1。
需要说明的是,在该第三种实现方式中,第一有效子帧数为承载下行控制信息调度的多个传输块中的第一个传输块的物理下行共享信道所占用的有效子帧数N first,sf,NPDSCH。或者,第一有效子帧数为承载下行控制信息调度的多个传输块中的任意一个传输块的物理下行共享信道所占用的有效子帧数N any,sf,NPDSCH。或者,第一有效子帧数为承载下行控制信息调度的多个传输块的物理下行共享信道所占用的有效子帧数N total,sf,NPDSCH。第一有效子帧数的确定过程可以参考上述第二种实现方式,本申请实施例在此不再赘述。
还需要说明的是,间隔配置参数还可以包括间隔周期N gap,period和间隔的持续时长因子N gap,coff,网络设备在确定间隔配置参数之后,如果间隔门限(第一间隔门限、第二间隔门限或第三间隔门限)由网络设备配置,网络设备可以通过***消息或RRC信令将间隔配置参数发送给终端设备,如果间隔门限(第一间隔门限、第二间隔门限或第三间隔门限)是约定的或者协议定义的,网络设备可以通过***消息或RRC信令将间隔周期N gap,period和间隔的持续时长因子N gap,coff发送给终端设备。此外,网络设备还可以通过下行控制信息、RRC信令、***消息或MAC CE信令将下行控制信息能够调度的传输块的最大数量N TB,max发送 给终端设备。
步骤602、网络设备根据第一参数和第一间隔门限确定下行控制信道的传输中是否有间隔。
根据步骤601的描述可知,无论在哪种实现方式中,第一参数为物理下行控制信道的搜索空间的最大重复次数R max,第一间隔门限为N gap,threshold1,网络设备可以将物理下行控制信道的搜索空间的最大重复次数R max与第一间隔门限N gap,threshold1进行比较来确定下行控制信道的传输中是否有间隔。当物理下行控制信道的搜索空间的最大重复次数R max大于或者等于第一间隔门限N gap,threshold1时,网络设备确定下行控制信道的传输中有间隔;当物理下行控制信道的搜索空间的最大重复次数R max小于第一间隔门限N gap,threshold1时,网络设备确定下行控制信道的传输中没有间隔。
以下行控制信道为NPDCCH为例,则R max、N gap,threshold1以及NPDCCH的传输中是否有间隔的关系可以采用下表2表示;
表2
R max与N gap,threshold1的关系 NPDCCH的传输中是否有间隔
R max≥N gap,threshold1 有间隔
R max<N gap,threshold1 没有间隔
步骤603、网络设备根据下行控制信道的传输中是否有间隔的确定结果,通过下行控制信道向终端设备发送下行控制信息,下行控制信息用于调度一个或多个传输块。
网络设备可以根据下行控制信道的传输中是否有间隔的确定结果,将下行控制信息承载在下行控制信道中,然后通过下行控制信道向终端设备发送下行控制信息,该下行控制信息用于调度一个或多个传输块。可选地,如果下行控制信道的传输中有间隔,网络设备根据公式
Figure PCTCN2018108488-appb-000033
确定间隔的起始无线帧和起始子帧,根据公式N gap,duration=N gap,coff×N gap,periodf确定间隔在每个周期内的持续时长,然后根据间隔的无线帧(或***帧)、时隙以及间隔在每个周期内的持续时长,将下行控制信道传输推迟至间隔后传输。其中,n f为无线帧号或***帧号,n s为时隙号,mod表示取余或者取模运算,
Figure PCTCN2018108488-appb-000034
表示取整运算。如果下行控制信道的传输中没有间隔,则下行控制信道可以在连续的有效子帧传输,网络设备可以通过该连续的有效子帧向终端设备发送下行控制信息。
可选地,下行控制信息可以指示下行控制信息调度的传输块的数量N TB,在本申请实施例中,可以采用下行控制信息的一个独立字段来指示下行控制信息调度的传输块的数量N TB,也可以将下行控制信息与其它的调度信息一起联合指示下行控制信息调度的传输块的数量N TB,本申请实施例对此不做限定。此外,下行控制信息还可以指示承载下行控制信息调度的N TB个传输块的下行数据信道的调度信息。例如,下行控制信息中包括承载下行控制信息调度的N TB个传输块中的第一个传输块的下行数据信道的调度信息,承载后续N TB-1个传输块的下行数据信道的调度信息通过***消息或者RRC信令指示,或者,下行控制信息中包括承载下行控制信息调度的N TB个传输块中的第一个传输块的下行数据信道的调度信息,网络设备和终端设备约定承载后续N TB-1个传输块的下行数据信道的调度信息与承载第一个传输块的下行数据信道的调度信息相同,或者,下行控制信息中包括承载N TB个传输块的下行数据信道的调度信息,该调度信息包括传输块的重复次数以及传输块映射的子 帧数等,本申请实施例对此不做限定。
步骤604、网络设备根据第二参数和第二间隔门限确定下行数据信道的传输中是否有间隔。
根据步骤601的描述可知,第二参数可以为物理下行控制信道的搜索空间的最大重复次数R max,也可以为第一有效子帧数。在本申请实施例中,当第二参数为物理下行控制信道的搜索空间的最大重复次数R max时,网络设备根据第二参数和第二间隔门限确定下行数据信道的传输中是否有间隔可以包括:网络设备将物理下行控制信道的搜索空间的最大重复次数R max与第二间隔门限进行比较来确定下行数据信道的传输中是否有间隔,当物理下行控制信道的搜索空间的最大重复次数R max大于或者等于第二间隔门限时,网络设备确定下行数据信道的传输中有间隔,当物理下行控制信道的搜索空间的最大重复次数R max小于第二间隔门限时,网络设备确定下行数据信道的传输中没有间隔。当第二参数为第一有效子帧数时,网络设备根据第二参数和第二间隔门限确定下行数据信道的传输中是否有间隔可以包括:网络设备将第一有效子帧数与第二间隔门限进行比较来确定下行数据信道的传输中是否有间隔,当第一有效子帧数大于或者等于第二间隔门限时,网络设备确定下行数据信道的传输中有间隔;当第一有效子帧数小于第二间隔门限时,网络设备确定下行数据信道的传输中没有间隔。
针对步骤601中三种可能的实现方式,该步骤604可以包括以下三种可能的实现方式。
第一种实现方式:第二参数为物理下行控制信道的搜索空间的最大重复次数R max,第二间隔门限是***配置的,或者,第二间隔门限根据第一间隔门限与下行控制信息调度的传输块的数量确定,或者,第二间隔门限根据第一间隔门限与下行控制信息能够调度的传输块的最大数量确定。
可选地,第二间隔门限是***配置的,第二间隔门限可以为N gap,threshold2,当物理下行控制信道的搜索空间的最大重复次数R max大于或者等于N gap,threshold2时,网络设备确定下行数据信道的传输中有间隔,当物理下行控制信道的搜索空间的最大重复次数R max小于N gap,threshold2时,网络设备确定下行数据信道的传输中没有间隔。
可选地,第二间隔门限根据第一间隔门限与下行控制信息调度的传输块的数量确定,第二间隔门限可以为N gap,threshold1/N TB,当物理下行控制信道的搜索空间的最大重复次数R max大于或者等于N gap,threshold1/N TB时,网络设备确定下行数据信道的传输中有间隔,当物理下行控制信道的搜索空间的最大重复次数R max小于N gap,threshold1/N TB时,网络设备确定下行数据信道的传输中没有间隔。
可选地,第二间隔门限根据第一间隔门限与下行控制信息能够调度的传输块的最大数量确定,第二间隔门限可以为N gap,threshold1/N TB,max,当物理下行控制信道的搜索空间的最大重复次数R max大于或者等于N gap,threshold1/N TB,max时,网络设备确定下行数据信道的传输中有间隔,当物理下行控制信道的搜索空间的最大重复次数R max小于N gap,threshold1/N TB,max时,网络设备确定下行数据信道的传输中没有间隔。
以下行数据信道为NPDSCH为例,则根据第二间隔门限的不同,R max、第二间隔门限以及NPDSCH的传输中是否有间隔的关系可以采用下表3表示:
表3
R max与第二间隔门限(N gap,threshold2 NPDSCH的传输中是否有间隔
N gap,threshold1/N TB或N gap,threshold1/N TB,max)的关系
R max≥N gap,threshold2 有间隔
R max<N gap,threshold2 没有间隔
R max≥N gap,threshold1/N TB 有间隔
R max<N gap,threshold1/N TB 没有间隔
R max≥N gap,threshold1/N TB,max 有间隔
R max<N gap,threshold1/N TB,max 没有间隔
第二种实现方式:第二参数为第一有效子帧数,第二间隔门限是***配置的,或者,第二间隔门限根据第一间隔门限与预设常数确定,预设常数为大于或者等于1,且小于或者等于10的整数,或者,第二间隔门限根据第一间隔门限与第三间隔门限确定。
可选地,第二间隔门限是***配置的,第二间隔门限可以为N gap,threshold2,当第一有效子帧数大于或者等于N gap,threshold2时,网络设备确定下行数据信道的传输中有间隔,当第一有效子帧数小于N gap,threshold2时,网络设备确定下行数据信道的传输中没有间隔。
可选地,第二间隔门限根据第一间隔门限与预设常数确定,第二间隔门限可以为
Figure PCTCN2018108488-appb-000035
当第一有效子帧数大于或者等于
Figure PCTCN2018108488-appb-000036
时,网络设备确定下行数据信道的传输中有间隔,当第一有效子帧数小于
Figure PCTCN2018108488-appb-000037
时,网络设备确定下行数据信道的传输中没有间隔。
可选地,第二间隔门限根据第一间隔门限与第三间隔门限确定,第二间隔门限可以为N gap,threshold1×N gap,threshold3,当第一有效子帧数大于或者等于N gap,threshold1×N gap,threshold3时,网络设备确定下行数据信道的传输中有间隔,当第一有效子帧数小于N gap,threshold1×N gap,threshold3时,网络设备确定下行数据信道的传输中没有间隔。
其中,第一有效子帧数为承载下行控制信息调度的多个传输块中的第一个传输块的物理下行共享信道所占用的有效子帧数N first,sf,NPDSCH。或者,第一有效子帧数为承载下行控制信息调度的多个传输块中的任意一个传输块的物理下行共享信道所占用的有效子帧数N any,sf,NPDSCH。或者,第一有效子帧数为承载下行控制信息调度的多个传输块的物理下行共享信道所占用的有效子帧数N total,sf,NPDSCH
以下行数据信道为NPDSCH为例,则根据第一有效子帧数的不同,第二间隔门限的不同,第一有效子帧数、第二间隔门限以及NPDSCH的传输中是否有间隔的关系可以采用下表4表示:
表4
Figure PCTCN2018108488-appb-000038
Figure PCTCN2018108488-appb-000039
第三种实现方式:第二参数为第一有效子帧数,第二间隔门限是***配置的;或者,第二间隔门限根据第一间隔门限与预设常数确定,预设常数为大于或者等于1,且小于或者等于10的整数;或者,第二间隔门限根据第一间隔门限与第三间隔门限确定,第三间隔门限是***配置的。
该第三种实现方式与步骤604中的第二种实现方式相同,本申请实施例在此不再赘述。
步骤605、网络设备根据下行数据信道的传输中是否有间隔的确定结果,通过下行数据信道向终端设备发送一个或多个传输块。
网络设备可以根据下行数据信道的传输中是否有间隔的确定结果,将一个或多个传输块承载在下行数据信道中,然后通过下行数据信道向终端设备发送该一个或多个传输块。第一参数、第二参数、第一间隔门限和第二间隔门限使得相同时间段用于发送下行数据信道时所包括的间隔数不少于相同时间段用于发送下行控制信道时所包括的间隔数。
在本实施例中,假设第一参数和第二参数相同,第一间隔门限N gap,threshold1和第二间隔门限N gap,threshold2不同。第一参数为物理下行控制信道的搜索空间的最大重复次数R max,第一间隔门限N gap,threshold1和第二间隔门限N gap,threshold2是***配置的。物理下行控制信道的搜索空间的最大重复次数R max为16,第一间隔门限N gap,threshold1配置为32,第二间隔门限N gap,threshold2配置为8。由于第一参数R max小于第一间隔门限N gap,threshold1,因此下行控制信道的传输中没有间隔。由于第二参数R max大于第二间隔门限N gap,threshold2,因此下行数据信道的传输中有间隔。间隔是周期性出现的,如果对一定时间段的间隔进行计数,在本例中下行数据信道的传输中有间隔,下行控制信道的传输中没有间隔,因此第一参数、第二参数、第一间隔门限和第二间隔门限使得相同时间段用于发送下行数据信道时所包括的间隔数不少于相同时间段用于发送下行控制信道时所包括的间隔数。
可选地,如果下行数据信道的传输中有间隔,则网络设备根据公式
Figure PCTCN2018108488-appb-000040
确定间隔的起始无线帧和起始子帧,根据公式N gap,duration=N gap,coff×N gap,periodf确定间隔在每个周期内的持续时长,根据间隔的无线帧(或***帧)、时隙、间隔在每个周期内的持续时长以及下行控制信息指示的承载下行控制信息调度的N TB个传输块的下行数据信道的调度信息,将一个或多个传输块推迟至间隔之后向终端设备发送。其中,n f为无线帧号或***帧号,n s为时隙号,mod表示取余或者取模运算,
Figure PCTCN2018108488-appb-000041
表示取整运算。如果下行数据信道的传输中没有间隔,则下行数据信道可以在连续的有效子帧上传输,网络设备可以通过该连续的有效子帧向终端设备发送一个或多个传输块。需要说明的是:如果在下行数据信道的传输中有间隔,将下行数据信道推迟到间隔之后传输,由于一个或者多个传输块由下行数据信道承载,因此,可以理解为将该一个或多个传输块推迟至间隔之后向终端设备发送。
步骤606、终端设备获取第一参数、第二参数、第一间隔门限和第二间隔门限。
在本申请实施例中,与步骤601对应,终端设备获取第一参数、第二参数、第一间隔门限和第二间隔门限可以包括三种可能的实现方式:
第一种实现方式(与步骤601中的第一种实现方式对应):第一参数和第二参数相同,第一间隔门限和第二间隔门限不同。第一参数为物理下行控制信道的搜索空间的最大重复次数,第一间隔门限和第二间隔门限是***配置的,第一间隔门限与第二间隔门限不同,或者,第一间隔门限是***配置的,第二间隔门限根据第一间隔门限与下行控制信息调度的传输块的数量确定,或者,第一间隔门限是***配置的,第二间隔门限根据第一间隔门限与下行控制信息能够调度的传输块的最大数量确定。
在该第一种实现方式中,终端设备第一参数、第二参数、第一间隔门限和第二间隔门限可以包括以下三种可能的情况:
第一种情况:第一参数和第二参数相同,第一间隔门限和第二间隔门限不同,第一参数为物理下行控制信道的搜索空间的最大重复次数,第一间隔门限和第二间隔门限是***配置的。
终端设备可以接收网络设备发送的***消息或RRC信令,如果第一间隔门限N gap,threshold1和第二间隔门限N gap,threshold2由网络设备配置,则***消息或RRC信令中携带物理下行控制信道的搜索空间的最大重复次数R max和间隔配置参数,间隔配置参数包括第一间隔门限N gap,threshold1和第二间隔门限N gap,threshold2,第一间隔门限N gap,threshold1和第二间隔门限N gap,threshold2不同,终端设备接收***消息或RRC信令就可以获取第一参数、第二参数、第一间隔门限N gap,threshold1和第二间隔门限N gap,threshold2。如果第一间隔门限N gap,threshold1和第二间隔门限N gap,threshold2是约定的或者协议定义的,则第一间隔门限N gap,threshold1和第二间隔门限N gap,threshold2对于终端设备来说是已知的,***消息或RRC信令中携带物理下行控制信道的搜索空间的最大重复次数R max和间隔配置参数,间隔配置参数可以不包括第一间隔门限N gap,threshold1和第二间隔门限N gap,threshold2,终端设备通过接收***消息或RRC信令获取第一参数和第二参数。
第二种情况:第一参数和第二参数相同,第一间隔门限和第二间隔门限不同,第一参数为物理下行控制信道的搜索空间的最大重复次数,第一间隔门限是***配置的,第二间隔门限根据第一间隔门限与下行控制信息调度的传输块的数量确定。
终端设备可以接收网络设备发送的***消息或RRC信令,如果第一间隔门限N gap,threshold1 由网络设备配置,则***消息或RRC信令中携带物理下行控制信道的搜索空间的最大重复次数R max和间隔配置参数,间隔配置参数包括第一间隔门限N gap,threshold1,终端设备接收***消息或RRC信令就可以获取第一参数、第二参数和第一间隔门限N gap,threshold1,终端设备根据第一间隔门限N gap,threshold1与下行控制信息调度的传输块的数量N TB确定第二间隔门限。如果第一间隔门限N gap,threshold1是约定的或者协议定义的,则第一间隔门限N gap,threshold1对于终端设备来说是已知的,***消息或RRC信令中携带物理下行控制信道的搜索空间的最大重复次数R max和间隔配置参数,间隔配置参数可以不包括第一间隔门限N gap,threshold1,终端设备通过接收***消息或RRC信令获取第一参数和第二参数,终端设备根据第一间隔门限N gap,threshold1与下行控制信息调度的传输块的数量N TB确定第二间隔门限。终端设备根据第一间隔门限N gap,threshold1与下行控制信息调度的传输块的数量N TB确定第二间隔门限的过程可以参考步骤601中网络设备根据第一间隔门限N gap,threshold1与下行控制信息调度的传输块的数量N TB确定第二间隔门限的过程,本实施例在此不再赘述。
需要说明的是,下行控制信息调度的传输块的数量N TB通常由下行控制信息指示,因此,在该第二种情况中,终端设备可以在下述步骤608之后根据第一间隔门限N gap,threshold1与下行控制信息调度的传输块的数量N TB确定第二间隔门限,当然,如果在步骤606之前,下行控制信息调度的传输块的数量N TB能够被终端设备获知,则终端设备可以在该步骤606中,根据第一间隔门限N gap,threshold1与下行控制信息调度的传输块的数量N TB确定第二间隔门限,本申请实施例对此不做限定。
第三种情况:第一参数和第二参数相同,第一间隔门限和第二间隔门限不同,第一参数为物理下行控制信道的搜索空间的最大重复次数,第一间隔门限是***配置的,第二间隔门限根据第一间隔门限与下行控制信息能够调度的传输块的最大数量确定。
终端设备可以接收网络设备发送的***消息或RRC信令,如果第一间隔门限N gap,threshold1由网络设备配置,则***消息或RRC信令中携带物理下行控制信道的搜索空间的最大重复次数R max和间隔配置参数,间隔配置参数包括第一间隔门限N gap,threshold1,终端设备接收***消息或RRC信令就可以获取第一参数、第二参数和第一间隔门限N gap,threshold1,终端设备根据第一间隔门限N gap,threshold1与下行控制信息能够调度的传输块的最大数量N TB,max确定第二间隔门限。如果第一间隔门限N gap,threshold1是约定的或者协议定义的,则第一间隔门限N gap,threshold1对于终端设备来说是已知的,***消息或RRC信令中携带物理下行控制信道的搜索空间的最大重复次数R max和间隔配置参数,间隔配置参数可以不包括第一间隔门限N gap,threshold1,终端设备通过接收***消息或RRC信令获取第一参数和第二参数,终端设备根据第一间隔门限N gap,threshold1与下行控制信息能够调度的传输块的最大数量N TB,max确定第二间隔门限。
终端设备可以通过接收网络设备发送的下行控制信息、RRC信令、***消息或MAC CE信令获取下行控制信息能够调度的传输块的最大数量N TB,max,根据第一间隔门限N gap,threshold1与下行控制信息能够调度的传输块的最大数量N TB,max确定第二间隔门限。终端设备根据第一间隔门限N gap,threshold1与下行控制信息能够调度的传输块的最大数量N TB,max确定第二间隔门限的过程可以参数步骤601中网络设备根据第一间隔门限N gap,threshold1与下行控制信息能够调度的传输块的最大数量N TB,max确定第二间隔门限的过程,本实施例在此不再赘述。
第二种实现方式(与步骤601中的第二种实现方式对应):第一参数和第二参数不同, 第一间隔门限和第二间隔门限相同。第一参数为物理下行控制信道的搜索空间的最大重复次数,第二参数为第一有效子帧数,第一间隔门限和第二间隔门限是***配置的;或者,第一间隔门限是***配置的,第二间隔门限根据第一间隔门限与预设常数确定,预设常数为大于或者等于1,且小于或者等于10的整数;或者,第一间隔门限是***配置的,第二间隔门限根据第一间隔门限与第三间隔门限确定,第三间隔门限是***配置的。第一有效子帧数为承载下行控制信息调度的多个传输块中的第一个传输块的物理下行共享信道所占用的有效子帧数;或者,第一有效子帧数为承载下行控制信息调度的多个传输块中的任意一个传输块的物理下行共享信道所占用的有效子帧数;或者,第一有效子帧数为承载下行控制信息调度的多个传输块的物理下行共享信道所占用的有效子帧数。
在该第二种实现方式中,终端设备获取第一参数、第二参数、第一间隔门限和第二间隔门限可以包括以下三种可能的情况:
第一种情况:第一参数和第二参数不同,第一间隔门限和第二间隔门限相同,第一参数为物理下行控制信道的搜索空间的最大重复次数,第二参数为第一有效子帧数,第一间隔门限和第二间隔门限是***配置的。
终端设备可以接收网络设备发送的***消息或RRC信令,如果第一间隔门限N gap,threshold1和第二间隔门限N gap,threshold2由网络设备配置,则***消息或RRC信令中携带物理下行控制信道的搜索空间的最大重复次数R max和间隔配置参数,间隔配置参数包括第一间隔门限N gap,threshold1和第二间隔门限N gap,threshold2,第一间隔门限N gap,threshold1和第二间隔门限N gap,threshold2相同,终端设备接收***消息或RRC信令就可以获取第一参数、第一间隔门限N gap,threshold1和第二间隔门限N gap,threshold2。如果第一间隔门限N gap,threshold1和第二间隔门限N gap,threshold2是约定的或者协议定义的,则第一间隔门限N gap,threshold1和第二间隔门限N gap,threshold2对于终端设备来说是已知的,***消息或RRC信令中携带物理下行控制信道的搜索空间的最大重复次数R max和间隔配置参数,间隔配置参数可以不包括第一间隔门限N gap,threshold1和第二间隔门限N gap,threshold2,终端设备通过接收***消息或RRC信令获取第一参数。
第二种情况:第一参数和第二参数不同,第一间隔门限和第二间隔门限相同,第一参数为物理下行控制信道的搜索空间的最大重复次数,第二参数为第一有效子帧数,第一间隔门限是***配置的,第二间隔门限根据第一间隔门限与预设常数确定,预设常数为大于或者等于1,且小于或者等于10的整数。
终端设备可以接收网络设备发送的***消息或RRC信令,如果第一间隔门限N gap,threshold1由网络设备配置,则***消息或RRC信令中携带物理下行控制信道的搜索空间的最大重复次数R max和间隔配置参数,间隔配置参数包括第一间隔门限N gap,threshold1,终端设备接收***消息或RRC信令就可以获取第一参数和第一间隔门限N gap,threshold1,终端设备根据第一间隔门限N gap,threshold1和预设常数
Figure PCTCN2018108488-appb-000042
确定第二间隔门限。如果第一间隔门限N gap,threshold1是约定的或者协议定义的,则第一间隔门限N gap,threshold1对于终端设备来说是已知的,***消息或RRC信令中携带物理下行控制信道的搜索空间的最大重复次数R max和间隔配置参数,间隔配置参数可以不包括第一间隔门限N gap,threshold1,终端设备通过接收***消息或RRC信令获取第一参数,终端设备根据第一间隔门限N gap,threshold1和预设常数
Figure PCTCN2018108488-appb-000043
确定第二间隔门限。终端设备根据第一间隔门限N gap,threshold1和预设常数
Figure PCTCN2018108488-appb-000044
确定第二间隔门限的过程可以参考步骤601中网络设备根据第一间隔门限N gap,threshold1和预设常数
Figure PCTCN2018108488-appb-000045
确定第二间隔门限的过程, 本实施例在此不再赘述。
第三种情况:第一参数和第二参数不同,第一间隔门限和第二间隔门限相同,第一参数为物理下行控制信道的搜索空间的最大重复次数,第二参数为第一有效子帧数,第一间隔门限是***配置的,第二间隔门限根据第一间隔门限与第三间隔门限确定,第三间隔门限是***配置的。
终端设备可以接收网络设备发送的***消息或RRC信令,如果第一间隔门限N gap,threshold1和第三间隔门限N gap,threshold3由网络设备配置,则***消息或RRC信令中携带物理下行控制信道的搜索空间的最大重复次数R max和间隔配置参数,间隔配置参数包括第一间隔门限N gap,threshold1和第三间隔门限N gap,threshold3,终端设备接收***消息或RRC信令就可以获取第一参数、第一间隔门限N gap,threshold1和第三间隔门限N gap,threshold3,终端设备根据第一间隔门限N gap,threshold1和第三间隔门限N gap,threshold3确定第二间隔门限。如果第一间隔门限N gap,threshold1和第三间隔门限N gap,threshold3是约定的或者协议定义的,则第一间隔门限N gap,threshold1和第三间隔门限N gap,threshold3对于终端设备来说是已知的,***消息或RRC信令中携带物理下行控制信道的搜索空间的最大重复次数R max和间隔配置参数,间隔配置参数可以不包括第一间隔门限N gap,threshold1和第三间隔门限N gap,threshold3,终端设备通过接收***消息或RRC信令获取第一参数,终端设备根据第一间隔门限N gap,threshold1和第三间隔门限N gap,threshold3确定第二间隔门限。终端设备根据第一间隔门限N gap,threshold1和第三间隔门限N gap,threshold3确定第二间隔门限的过程可以参考步骤601中网络设备根据第一间隔门限N gap,threshold1和第三间隔门限N gap,threshold3确定第二间隔门限的过程,本实施例在此不再赘述。
需要说明的是,在该第二种实现方式中,终端设备可以根据承载下行控制信息调度的N TB个传输块的下行数据信道的调度信息确定第一有效子帧数(也即是第二参数),终端设备获取第一有效子帧数的实现过程可以参考上述步骤601中终端设备获取第一有效子帧数的过程,本实施例在此不再赘述。需要说明的是,由于承载下行控制信息调度的N TB个传输块的下行数据信道的调度信息通常由下行控制信息指示,因此,在该第二种实现方式中,终端设备可以在下述步骤608之后获取第一有效子帧数,当然,如果在步骤606之前,承载下行控制信息调度的N TB个传输块的下行数据信道的调度信息可以被终端设备获知,则终端设备可以在该步骤606中获取第一有效子帧数,本申请实施例对此不做限定。
第三种实现方式(与步骤601中的第三种实现方式对应):第一参数和第二参数不同,第一间隔门限和第二间隔门限不同。第一参数为物理下行控制信道的搜索空间的最大重复次数,第二参数为第一有效子帧数,第一间隔门限和第二间隔门限是***配置的;或者,第一间隔门限是***配置的,第二间隔门限根据第一间隔门限与预设常数确定,预设常数为大于或者等于1,且小于或者等于10的整数;或者,第一间隔门限是***配置的,第二间隔门限根据第一间隔门限与第三间隔门限确定,第三间隔门限是***配置的。第一有效子帧数为承载下行控制信息调度的多个传输块中的第一个传输块的物理下行共享信道所占用的有效子帧数;或者,第一有效子帧数为承载下行控制信息调度的多个传输块中的任意一个传输块的物理下行共享信道所占用的有效子帧数;或者,第一有效子帧数为承载下行控制信息调度的多个传输块的物理下行共享信道所占用的有效子帧数。
该第三种实现方式的过程可以参考该步骤606的第二种实现方式以及步骤601的第三种实现方式,本实施例在此不再赘述。
步骤607、终端设备根据第一参数和第一间隔门限确定下行控制信道的传输中是否有间隔。
该步骤607的实现过程可以参考上述步骤602中网络设备根据第一参数和第一间隔门限确定下行控制信道的传输中是否有间隔的过程,本实施例在此不再赘述。
步骤608、终端设备根据下行控制信道的传输中是否有间隔的确定结果,通过下行控制信道从网络设备接收下行控制信息,下行控制信息用于调度一个多个传输块。
终端设备可以根据下行控制信道的传输中是否有间隔的确定结果,通过下行控制信道从网络设备接收下行控制信息。可选地,如果下行控制信道的传输中有间隔,则终端设备根据根据公式
Figure PCTCN2018108488-appb-000046
确定间隔的起始无线帧和起始子帧,根据公式N gap,duration=N gap,coff×N gap,periodf确定间隔在每个周期内的持续时长,然后根据间隔的无线帧(或***帧)、时隙以及间隔在每个周期内的持续时长,在间隔之后的搜索空间中盲间隔下行控制信道,以从网络设备接收下行控制信息。其中,n f为无线帧号或***帧号,n s为时隙号,mod表示取余或者取模运算,
Figure PCTCN2018108488-appb-000047
表示取整运算。如果下行控制信道的传输中没有间隔,则下行控制信道可以在连续的有效子帧上传输,终端设备可以在该连续的有效子帧上从网络设备接收下行控制信息。
需要说明的是,下行控制信息可以指示下行控制信息调度的传输块的数量N TB,以及,承载下行控制信息调度的N TB个传输块的下行数据信道的调度信息。终端设备可以根据下行控制信息确定下行控制信息调度的传输块的数量N TB,然后根据第一间隔门限N gap,threshold1与下行控制信息调度的传输块的数量N TB确定第二间隔门限,该过程可以为步骤606中,第一种实现方式的第二种情况下终端设备获取第二间隔门限的过程。终端设备可以根据下行控制信息确定承载下行控制信息调度的N TB个传输块的下行数据信道的调度信息,根据承载下行控制信息调度的N TB个传输块的下行数据信道的调度信息确定第一有效子帧数,该过程可以为步骤606中的第二和第三种实现方式中,终端设备获取第一有效子帧数(也即是第二参数)的过程。
步骤609、终端设备根据第二参数和第二间隔门限确定下行数据信道的传输中是否有间隔。
该步骤609的实现过程可以参考上述步骤604中网络设备根据第二参数和第二间隔门限确定下行数据信道的传输中是否有间隔的过程,本实施例在此不再赘述。
步骤610、终端设备根据下行数据信道的传输中是否有间隔的确定结果,通过下行数据信道从网络设备接收一个或多个传输块。
终端设备根据下行数据信道的传输中是否有间隔的确定结果,通过下行数据信道从网络设备接收一个或多个传输块。第一参数、第二参数、第一间隔门限和第二间隔门限使得相同时间段用于接收下行数据信道时所包括的间隔数不少于相同时间段用于接收下行控制信道时所包括的间隔数。
在本实施例中,假设第一参数和第二参数相同,第一间隔门限N gap,threshold1和第二间隔门限N gap,threshold2不同。第一参数为物理下行控制信道的搜索空间的最大重复次数R max,第一间隔门限N gap,threshold1和第二间隔门限N gap,threshold2是***配置的。物理下行控制信道的搜索空间的最大重复次数R max为16,第一间隔门限N gap,threshold1配置为32,第二间隔门限N gap,threshold2配置为8。由于第一参数R max小于第一间隔门限N gap,threshold1,因此下行控制信道 的传输中没有间隔。由于第二参数R max大于第二间隔门限N gap,threshold2,因此下行数据信道的传输中有间隔。间隔是周期性出现的,如果对一定时间段的间隔进行计数,在本例中下行数据信道的传输中有间隔,下行控制信道的传输中没有间隔,因此第一参数、第二参数、第一间隔门限和第二间隔门限使得相同时间段用于接收下行数据信道时所包括的间隔数不少于相同时间段用于接收下行控制信道时所包括的间隔数。
可选地,如果下行数据信道的传输中有间隔,则终端设备根据公式
Figure PCTCN2018108488-appb-000048
确定间隔的起始无线帧和起始子帧,根据公式N gap,duration=N gap,coff×N gap,periodf确定间隔在每个周期内的持续时长,根据间隔的无线帧(或***帧)、时隙、间隔在每个周期内的持续时长以及下行控制信息指示的承载下行控制信息调度的N TB个传输块的下行数据信道的调度信息,在间隔之后通过下行数据信道从网络设备接收一个或多个传输块。其中,n f为无线帧号或***帧号,n s为时隙号,mod表示取余或者取模运算,
Figure PCTCN2018108488-appb-000049
表示取整运算。如果下行数据信道的传输中没有间隔,则下行数据信道可以在连续的有效子帧上传输,终端设备可以通过该连续的有效子帧接收一个或多个传输块。需要说明的是:如果在下行数据信道的传输中有间隔,将下行数据信道推迟到间隔之后传输,由于一个或者多个传输块由下行数据信道承载,因此,可以理解为将该一个或多个传输块推迟至间隔之后从网络设备接收。
需要说明的是,在执行本申请实施例提供的数据传输方法之前,网络设备可以判断网络设备与终端设备之间的数据传输是否满足预设条件,如果网络设备与终端设备之间的数据传输满足预设条件,则按照本申请实施例提供的数据传输方法中的gap确定方式确定下行传输中是否有gap,并根据确定结果进行下行传输,如果网络设备与终端设备之间的数据传输不满足预设条件,则根据相关技术提供的gap确定方式确定下行传输中是否有gap,并根据确定结果进行下行传输。其中,预设条件可以包括调度时延的预设值小于或等于预设时间阈值,该调度时延的预设值为调度时延的最大值、最小值或平均值,调度时延的最大值为下行控制信息的传输结束时刻与下行控制信息调度的多个传输块的多个传输起始时刻之间的多个时间差中的最大值,调度时延的最小值为下行控制信息的传输结束时刻与下行控制信息调度的多个传输块的多个传输起始时刻之间的时间差中的最小值,调度时延的平均值为下行控制信息的传输结束时刻与下行控制信息调度的多个传输块的多个传输起始时刻之间的多个时间差的平均值;或者,预设条件包括:下行控制信息调度的多个传输块中相邻的两个传输块之间的传输时延的预设值小于或等于预设时间阈值,传输时延的预设值为传输时延的最大值、最小值或平均值。此外,本实施例中的终端设备为支持一个下行控制信息调度多个传输块的终端设备,对于不支持一个下行控制信息调度多个传输块的终端设备,可以按照相关技术提供的gap确定方式确定下行传输中是否有gap,并根据判断结果进行下行传输,本申请实施例对此不做限定。
还需要说明的是,本申请实施例提供的数据传输方法步骤的先后顺序可以进行适当调整,步骤也可以根据情况进行相应增减,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本申请实施例的保护范围之内,因此不再赘述。
综上所述,本申请实施例提供的数据传输方法,根据第一参数和第一间隔门限确定下行控制信道的传输中是否有间隔,根据下行控制信道的传输中是否有间隔的确定结果,通 过下行控制信道与终端设备传输下行控制信息,根据第二参数和第二间隔门限确定下行数据信道的传输中是否有间隔,根据下行数据信道的传输中是否有间隔的确定结果,通过下行数据信道与终端设备传输一个或多个传输块,第一参数和第二参数不同且第一间隔门限和第二间隔门限相同,或者,第一参数和第二参数相同且第一间隔门限和第二间隔门限不同,或者,第一参数和第二参数不同且第一间隔门限和第二间隔门限不同。本申请实施例提供的方案使得针对下行控制信道和下行数据信道的传输是否有间隔,可以采用不同的判断方式,从而使得相同时间段用于发送下行数据信道时所包括的间隔数能够不同于该相同时间段用于发送下行控制信道时所包括的间隔数,具体可以使得相同时间段用于发送下行数据信道时所包括的间隔数能够不少于该相同时间段用于发送下行控制信道时所包括的间隔数。从而,相比于目前的gap确定方式,本申请实施例提供的gap确定方式能够使得下行数据信道的传输中具有更多的间隔,因此在一个DCI调度多个TB的场景下,可以更好地避免针对一个终端设备持续时间较长的连续下行数据传输,从而更好地避免下行信道受阻,提高***资源利用效率。此外,本申请实施例提供的数据传输方法,通过设置第二间隔门限来确定下行数据信道的传输中是否有间隔,相比于相关技术,该间隔确定方式更为灵活。
下述为本申请的装置实施例,可以用于执行本申请的方法实施例。对于本申请装置实施例中未披露的细节,请参照本申请方法实施例。
请参考图7,其示出了本申请实施例提供的一种网络设备700的逻辑结构示意图,该网络设备700可以为基站,且具体可以是MTC基站。参见图7,该网络设备700包括:
第一确定模块710,用于确定第一参数、第二参数、第一间隔门限和第二间隔门限;
第二确定模块720,用于根据第一参数和第一间隔门限确定下行控制信道的传输中是否有间隔;
第一发送模块730,用于根据下行控制信道的传输中是否有间隔的确定结果,通过下行控制信道向终端设备发送下行控制信息;
第三确定模块740,用于根据第二参数和第二间隔门限确定下行数据信道的传输中是否有间隔;
第二发送模块750,用于根据下行数据信道的传输中是否有间隔的确定结果,通过下行数据信道向终端设备发送一个或多个传输块,下行控制信息用于调度一个或多个传输块;
其中,第一参数和第二参数不同,且第一间隔门限和第二间隔门限相同;或者,
第一参数和第二参数相同,且第一间隔门限和第二间隔门限不同;或者,
第一参数和第二参数不同,且第一间隔门限和第二间隔门限不同。
可选地,第一参数、第二参数、第一间隔门限和第二间隔门限使得相同时间段用于发送下行数据信道时所包括的间隔数不少于相同时间段用于发送下行控制信道时所包括的间隔数。
可选地,第一参数和第二参数相同,第一参数为物理下行控制信道的搜索空间的最大重复次数,
第二确定模块720,用于:当物理下行控制信道的搜索空间的最大重复次数大于或者等于第一间隔门限时,确定下行控制信道的传输中有间隔;当物理下行控制信道的搜索空间的最大重复次数小于第一间隔门限时,确定下行控制信道的传输中没有间隔;
第三确定模块740,用于:当物理下行控制信道的搜索空间的最大重复次数大于或者等于第二间隔门限时,确定下行数据信道的传输中有间隔;当物理下行控制信道的搜索空间的最大重复次数小于第二间隔门限时,确定下行数据信道的传输中没有间隔;
其中,第一间隔门限和第二间隔门限是***配置的,第一间隔门限与第二间隔门限不同;或者,第一间隔门限是***配置的,第二间隔门限根据第一间隔门限与下行控制信息调度的传输块的数量确定;或者,第一间隔门限是***配置的,第二间隔门限根据第一间隔门限与下行控制信息能够调度的传输块的最大数量确定。
可选地,第一参数为物理下行控制信道的搜索空间的最大重复次数,第二参数为第一有效子帧数,
第二确定模块720,用于:当物理下行控制信道的搜索空间的最大重复次数大于或者等于第一间隔门限时,确定下行控制信道的传输中有间隔;当物理下行控制信道的搜索空间的最大重复次数小于第一间隔门限时,确定下行控制信道的传输中没有间隔;
第三确定模块740,用于:当第一有效子帧数大于或者等于第二间隔门限时,确定下行数据信道的传输中有间隔;当第一有效子帧数小于第二间隔门限时,确定下行数据信道的传输中没有间隔;
其中,第一间隔门限和第二间隔门限是***配置的;或者,第一间隔门限是***配置的,第二间隔门限根据第一间隔门限与预设常数确定,预设常数为大于或者等于1,且小于或者等于10的整数;或者,第一间隔门限是***配置的,第二间隔门限根据第一间隔门限与第三间隔门限确定,第三间隔门限是***配置的。
可选地,第一有效子帧数为承载下行控制信息调度的多个传输块中的第一个传输块的物理下行共享信道所占用的有效子帧数;或者,
第一有效子帧数为承载下行控制信息调度的多个传输块中的任意一个传输块的物理下行共享信道所占用的有效子帧数;或者,
第一有效子帧数为承载下行控制信息调度的多个传输块的物理下行共享信道所占用的有效子帧数。
需要说明的是,第一确定模块710用于执行图6所示实施例中的步骤601,第二确定模块720用于执行图6所示实施例中的步骤602,第一发送模块730用于执行图6所示实施例中的步骤603,第三确定模块740用于执行图6所示实施例中的步骤604,第二发送模块750用于执行图6所示实施例中的步骤605。此外,上述第一确定模块710、第二确定模块720和第三确定模块740可以是相同的确定模块,也可以是不同的确定模块,上述第一发送模块730和第二发送模块750可以是相同的发送模块,也可以是不同的发送模块,本申请实施例对此不做限定。
可选地,上述这几个确定模块也可以是一个处理模块,几个发送模块可以是一个发送模块。也即该处理模块执行上述步骤中的确定等步骤,该发送模块执行发送等步骤。该处理模块也可以包括多个子处理模块。
综上所述,本申请实施例提供的网络设备,根据第一参数和第一间隔门限确定下行控制信道的传输中是否有间隔,根据下行控制信道的传输中是否有间隔的确定结果,通过下行控制信道向终端设备发送下行控制信息,根据第二参数和第二间隔门限确定下行数据信道的传输中是否有间隔,根据下行数据信道的传输中是否有间隔的确定结果,通过下行数 据信道向终端设备发送一个或多个传输块,第一参数和第二参数不同且第一间隔门限和第二间隔门限相同,或者,第一参数和第二参数相同且第一间隔门限和第二间隔门限不同,或者,第一参数和第二参数不同且第一间隔门限和第二间隔门限不同。本申请实施例提供的方案使得针对下行控制信道和下行数据信道的传输是否有间隔,可以采用不同的判断方式,从而使得相同时间段用于发送下行数据信道时所包括的间隔数能够不同于该相同时间段用于发送下行控制信道时所包括的间隔数,具体可以使得相同时间段用于发送下行数据信道时所包括的间隔数能够不少于该相同时间段用于发送下行控制信道时所包括的间隔数。从而,相比于目前的gap确定方式,本申请实施例提供的gap确定方式能够使得下行数据信道的传输中具有更多的间隔,因此在一个DCI调度多个TB的场景下,可以更好地避免针对一个终端设备持续时间较长的连续下行数据传输,从而更好地避免下行信道受阻,提高***资源利用效率。
请参考图8,其示出了本申请实施例提供的一种终端设备800的逻辑结构示意图,该终端设备800可以为用户设备,且具体可以是MTC设备,参见图8,该终端设备800包括:
获取模块810,用于获取第一参数、第二参数、第一间隔门限和第二间隔门限;
第一确定模块820,用于根据第一参数和第一间隔门限确定下行控制信道的传输中是否有间隔;
第一接收模块830,用于根据下行控制信道的传输中是否有间隔的确定结果,通过下行控制信道从网络设备接收下行控制信息;
第二确定模块840,用于根据第二参数和第二间隔门限确定下行数据信道的传输中是否有间隔;
第二接收模块850,用于根据下行数据信道的传输中是否有间隔的确定结果,通过下行数据信道从网络设备接收一个或多个传输块,下行控制信息用于调度一个多个传输块;
其中,第一参数和第二参数不同,且第一间隔门限和第二间隔门限相同;或者,
第一参数和第二参数相同,且第一间隔门限和第二间隔门限不同;或者,
第一参数和第二参数不同,且第一间隔门限和第二间隔门限不同。
可选地,第一参数、第二参数、第一间隔门限和第二间隔门限使得相同时间段用于接收下行数据信道时所包括的间隔数不少于相同时间段用于接收下行控制信道时所包括的间隔数。
可选地,第一参数和第二参数相同,第一参数为物理下行控制信道的搜索空间的最大重复次数,
第一确定模块820,用于:当物理下行控制信道的搜索空间的最大重复次数大于或者等于第一间隔门限时,确定下行控制信道的传输中有间隔;当物理下行控制信道的搜索空间的最大重复次数小于第一间隔门限时,确定下行控制信道的传输中没有间隔;
第二确定模块840,用于:当物理下行控制信道的搜索空间的最大重复次数大于或者等于第二间隔门限时,确定下行数据信道的传输中有间隔;当物理下行控制信道的搜索空间的最大重复次数小于第二间隔门限时,确定下行数据信道的传输中没有间隔;
其中,第一间隔门限和第二间隔门限是***配置的;或者,第一间隔门限是***配置的,第二间隔门限根据第一间隔门限与下行控制信息调度的传输块的数量确定;或者,第 一间隔门限是***配置的,第二间隔门限根据第一间隔门限与下行控制信息能够调度的传输块的最大数量确定。
可选地,第一参数为物理下行控制信道的搜索空间的最大重复次数,第二参数为第一有效子帧数,
第一确定模块820,用于:当物理下行控制信道的搜索空间的最大重复次数大于或者等于第一间隔门限时,确定下行控制信道的传输中有间隔;当物理下行控制信道的搜索空间的最大重复次数小于第一间隔门限时,确定下行控制信道的传输中没有间隔;
第二确定模块840,用于:当第一有效子帧数大于或者等于第二间隔门限时,确定下行数据信道的传输中有间隔;当第一有效子帧数小于第二间隔门限时,确定下行数据信道的传输中没有间隔;
其中,第一间隔门限和第二间隔门限是***配置的;或者,第一间隔门限是***配置的,第二间隔门限根据第一间隔门限与预设常数确定,预设常数为大于或者等于1,且小于或者等于10的整数;或者,第一间隔门限是***配置的,第二间隔门限根据第一间隔门限与第三间隔门限确定,第三间隔门限是***配置的。
可选地,第一有效子帧数为承载下行控制信息调度的多个传输块中的第一个传输块的物理下行共享信道所占用的有效子帧数;或者,
第一有效子帧数为承载下行控制信息调度的多个传输块中的任意一个传输块的物理下行共享信道所占用的有效子帧数;或者,
第一有效子帧数为承载下行控制信息调度的多个传输块的物理下行共享信道所占用的有效子帧数。
需要说明的是,获取模块810用于执行图6所示实施例中的步骤606,第一确定模块820用于执行图6所示实施例中的步骤607,第一接收模块830用于执行图6所示实施例中的步骤608,第二确定模块840用于执行图6所示实施例中的步骤608,第二接收模块850用于执行图6所示实施例中的步骤610。此外,上述第一确定模块820和第二确定模块840可以是相同的确定模块,也可以是不同的确定模块,上述第一接收模块830和第二接收模块850可以是相同的接收模块,也可以是不同的接收模块,本申请实施例对此不做限定。
可选地,与网络设备侧类似,终端设备侧的上述这几个确定模块和获取模块也可以是一个处理模块,几个接收模块可以是一个接收模块。也即该处理模块执行上述步骤中的确定、获取等步骤,该接收模块执行接收等步骤。该处理模块也可以包括多个子处理模块。
综上所述,本申请实施例提供的终端设备,根据第一参数和第一间隔门限确定下行控制信道的传输中是否有间隔,根据下行控制信道的传输中是否有间隔的确定结果,通过下行控制信道接收网络设备发送的下行控制信息,根据第二参数和第二间隔门限确定下行数据信道的传输中是否有间隔,根据下行数据信道的传输中是否有间隔的确定结果,通过下行数据信道接收网络设备发送的一个或多个传输块,第一参数和第二参数不同且第一间隔门限和第二间隔门限相同,或者,第一参数和第二参数相同且第一间隔门限和第二间隔门限不同,或者,第一参数和第二参数不同且第一间隔门限和第二间隔门限不同。本申请实施例提供的方案使得针对下行控制信道和下行数据信道的传输是否有间隔,可以采用不同的判断方式,从而使得相同时间段用于发送下行数据信道时所包括的间隔数能够不同于该相同时间段用于发送下行控制信道时所包括的间隔数,具体可以使得相同时间段用于发送 下行数据信道时所包括的间隔数能够不少于该相同时间段用于发送下行控制信道时所包括的间隔数。从而,相比于目前的gap确定方式,本申请实施例提供的gap确定方式能够使得下行数据信道的传输中具有更多的间隔,因此在一个DCI调度多个TB的场景下,可以更好地避免针对一个终端设备持续时间较长的连续下行数据传输,从而更好地避免下行信道受阻,提高***资源利用效率。
请参考图9,其示出了本申请实施例提供的一种通信设备900的硬件结构示意图。该通信设备900可以为网络设备或终端设备,网络设备可以为MTC基站,终端设备可以为MTC设备。参见图9,该通信设备900包括处理器902、收发器904、多根天线906,存储器908、输入/输出(input/output,I/O)接口910和总线912,处理器902、收发器904、存储器908和I/O接口910通过总线912彼此通信连接,多根天线906与收发器904相连。需要说明的是,图9所示的处理器902、收发器904、存储器908和I/O接口910之间的连接方式仅仅是示例性的,在实现过程中,处理器902、收发器904、存储器908和I/O接口910也可以采用除了总线912之外的其他连接方式彼此通信连接。
存储器908可以用于存储指令9082和数据9084。处理器902可以是通用处理器,通用处理器可以是通过读取并执行存储器(例如存储器908)中存储的指令(例如指令9082)来执行特定步骤和/或操作的处理器,通用处理器在执行上述步骤和/或操作的过程中可能用到存储在存储器(例如存储器908)中的数据(例如数据9084)。通用处理器可以是,例如但不限于,中央处理器(central processing unit,CPU)。此外,处理器902也可以是专用处理器,专用处理器可以是专门设计的用于执行特定步骤和/或操作的处理器,该专用处理器可以是,例如但不限于,数字信号处理器(digital signal processor,DSP)、应用专用集成电路(application specific integrated circuit,ASIC)和现场可编程门阵列(field programmable gate array,FPGA)等。此外,处理器902还可以是多个处理器的组合,例如多核处理器。处理器902可以包括至少一个电路,以执行上述实施例提供的数据传输方法的全部或部分步骤。
收发器904用于收发信号。可选地,收发器904通过多根天线906中的至少一根天线来收发信号。收发器904用于通信设备900与其他通信设备通信,当通信设备900为网络设备时,其他通信设备可以为终端设备,当通信设备900为终端设备时,其他通信设备可以为网络设备。
存储器908可以是各种类型的存储介质,例如随机存取存储器(random access memory,RAM)、ROM、非易失性RAM(non-volatile RAM,NVRAM)、可编程ROM(programmable ROM,PROM)、可擦除PROM(erasable PROM,EPROM)、电可擦除PROM(electrically erasable PROM,EEPROM)、闪存、光存储器和寄存器等。存储器908具体用于存储指令9082和数据9084,当处理器902为通用处理器时,处理器902可以通过读取并执行存储器908中存储的指令9082,来执行特定步骤和/或操作,在执行上述步骤和/或操作的过程中可能需要用到数据9084。
I/O接口910用于接收来自***设备的指令和/或数据,以及向***设备输出指令和/或数据。
在具体实现过程中,处理器902可以用于进行,例如但不限于,基带相关处理,收发 器904可以用于进行,例如但不限于,射频收发。上述器件可以分别设置在彼此独立的芯片上,也可以至少部分的或者全部的设置在同一块芯片上。例如,处理器902可以进一步划分为模拟基带处理器和数字基带处理器,其中模拟基带处理器可以与收发器904集成在同一块芯片上,数字基带处理器可以设置在独立的芯片上。随着集成电路技术的不断发展,可以在同一块芯片上集成的器件越来越多,例如,数字基带处理器可以与多种应用处理器(例如但不限于图形处理器,多媒体处理器等)集成在同一块芯片之上。这样的芯片可以称为***芯片(system on chip)。将各个器件独立设置在不同的芯片上,还是整合设置在一个或者多个芯片上,往往取决于产品设计的具体需要。本申请实施例对上述器件的具体实现形式不做限定。
需要说明的是,图9所示的通信设备900仅仅是示例性的,在具体实现过程中,通信设备900还可以包括其他硬件器件,本文不再一一列举。
本申请实施例提供了一种数据传输***。在一种可能的实现方式中,该数据传输***包括:图7所示实施例提供的网络设备700和图8所示实施例提供的终端设备800;在另一种可能的实现方式中,该数据传输***包括网络设备和终端设备,网络设备和终端设备中的任一设备或二者可以为图9所示实施例提供的通信设备。
本申请实施例提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机的处理组件上运行时,使得处理组件执行图6所示实施例提供的数据传输方法的步骤601至步骤605,或,使得处理组件执行图6所示实施例提供的数据传输方法的步骤606至步骤610。
本申请实施例提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行图6所示实施例提供的数据传输方法的步骤601至步骤605,或,使得计算机执行图6所示实施例提供的数据传输方法的步骤606至步骤610。
本申请实施例提供了一种芯片,该芯片包括可编程逻辑电路和/或程序指令,当该芯片运行时用于实现图6所示实施例提供的数据传输方法的步骤601至步骤605,或,实现图6所示实施例提供的数据传输方法的步骤606至步骤610。
本申请实施例提供了一种处理装置,该处理装置包括至少一个电路,该至少一个电路用于执行图6所示实施例提供的数据传输方法的步骤601至步骤605,或,该至少一个电路用于执行图6所示实施例提供的数据传输方法的步骤606至步骤610。
本申请实施例提供了一种处理装置,该处理装置用于实现图6所示实施例提供的数据传输方法。
请参考图10,其示出了本申请实施例提供的一种数据传输方法的方法流程图,该数据传输方法可以用于图5所示实施环境,参见图10,该方法包括:
步骤1001、网络设备确定第一参数、第二参数、第一间隔门限和第二间隔门限。
与步骤601同理,在本实施例中,网络设备确定第一参数、第二参数、第一间隔门限和第二间隔门限可以包括以下两种可能的实现方式:
第一种实现方式:第一参数和第二参数相同,第一间隔门限和第二间隔门限不同。第一参数为物理下行控制信道的搜索空间的最大重复次数,第一间隔门限和第二间隔门限是***配置的,第一间隔门限与第二间隔门限不同,或者,第一间隔门限是***配置的,第二间隔门限根据第一间隔门限与下行控制信息能够调度的传输块的最大数量确定。
在该第一种实现方式中,网络设备确定第一参数、第二参数、第一间隔门限和第二间隔门限可以包括以下两种可能的情况:
第一种情况:第一参数和第二参数相同,第一间隔门限和第二间隔门限不同。第一参数为物理下行控制信道的搜索空间的最大重复次数,第一间隔门限和第二间隔门限是***配置的。该第一种情况可以参考步骤601中的第一种实现方式中的第一种情况,本实施例在此不再赘述。
第二种情况:第一参数和第二参数相同,第一间隔门限和第二间隔门限不同,第一参数为物理下行控制信道的搜索空间的最大重复次数,第一间隔门限是***配置的,第二间隔门限根据第一间隔门限与下行控制信息能够调度的传输块的最大数量确定。该第二种情况可以参考步骤601中的第一种实现方式中的第三种情况,本实施例在此不再赘述。
需要说明的是,在该步骤1001的第一种实现方式中,物理下行控制信道的搜索空间的最大重复次数可以是第一类型的终端设备使用的物理下行控制信道的搜索空间的最大重复次数,也可以是第二类型的终端设备使用的物理下行控制信道的搜索空间的最大重复次数,还可以是第一类型的终端设备使用的物理下行控制信道的最大重复次数和第二类型的终端设备使用的物理下行控制信道的搜索空间的最大重复次数中的最大值,本实施例对此不做限定。
第二种实现方式:第一参数和第二参数不同,第一间隔门限和第二间隔门限相同,或者,第一间隔门限和第二间隔门限不同。第一参数为第一重复次数,第一重复次数为第一类型的终端设备使用的物理下行控制信道的搜索空间的最大重复次数,第二参数为第二重复次数,第二重复次数为第二类型的终端设备使用的物理下行控制信道的搜索空间的最大重复次数,第一间隔门限和第二间隔门限是***配置的;或者,第一间隔门限是***配置的,第二间隔门限根据第一间隔门限与下行控制信息能够调度的传输块的最大数量确定。
在该第二种实现方式中,网络设备确定第一参数、第二参数、第一间隔门限和第二间隔门限可以包括以下两种可能的情况:
第一种情况:第一参数和第二参数不同,第一间隔门限和第二间隔门限相同,或者,第一间隔门限和第二间隔门限不同,第一参数为第一重复次数,第二参数为第二重复次数,第一间隔门限和第二间隔门限是***配置的。
网络设备可以确定第一类型的终端设备使用的物理下行控制信道的搜索空间的最大重复次数R max1、第二类型的终端设备使用的物理下行控制信道的搜索空间的最大重复次数R max2和间隔配置参数,将第一类型的终端设备使用的物理下行控制信道的搜索空间的最大重复次数R max1确定为第一参数,将第二类型的终端设备使用的物理下行控制信道的搜索空间的最大重复次数R max2确定为第二参数,间隔配置参数可以包括***配置的第一间隔门限 N gap,threshold1和第二间隔门限N gap,threshold2,第一间隔门限N gap,threshold1和第二间隔门限N gap,threshold2相同或不同。
第二种情况:第一参数和第二参数不同,第一间隔门限和第二间隔门限相同,或者,第一间隔门限和第二间隔门限不同,第一参数为第一重复次数,第二参数为第二重复次数,第一间隔门限是***配置的,第二间隔门限根据第一间隔门限与下行控制信息能够调度的传输块的最大数量确定。
网络设备可以确定第一类型的终端设备使用的物理下行控制信道的搜索空间的最大重复次数R max1、第二类型的终端设备使用的物理下行控制信道的搜索空间的最大重复次数R max2、间隔配置参数和下行控制信息能够调度的传输块的最大数量N TB,max,将第一类型的终端设备使用的物理下行控制信道的搜索空间的最大重复次数R max1确定为第一参数,将第二类型的终端设备使用的物理下行控制信道的搜索空间的最大重复次数R max2确定为第二参数,间隔配置参数可以包括***配置的第一间隔门限N gap,threshold1,网络设备根据第一间隔门限N gap,threshold1与下行控制信息能够调度的传输块的最大数量N TB,max确定第二间隔门限。
网络设备根据第一间隔门限N gap,threshold1与下行控制信息能够调度的传输块的最大数量N TB,max确定第二间隔门限的过程可以参考图6所示实施例的步骤601,本实施例在此不再赘述。但是需要说明的是,在该步骤1001中,若网络设备将N gap,threshold1/N TB,max确定为第二间隔门限,则当下行控制信息能够调度的传输块的最大数量N TB,max等于1时,第一间隔门限和第二间隔门限相同,当下行控制信息能够调度的传输块的最大数量N TB,max不等于1时,第一间隔门限和第二间隔门限不同。
步骤1002、网络设备确定终端设备的类型,终端设备的类型为第一类型或第二类型。
终端设备可以向网络设备上报终端设备的类型,网络设备可以接收终端设备上报的类型,根据终端设备上报的类型,确定终端设备的类型。其中,终端设备的类型为第一类型或第二类型,第一类型的终端设备支持一个下行控制信息调度一个传输块,或者不支持一个下行控制信息调度多个传输块,或者不支持调度增强,第二类型的终端设备支持一个下行控制信息调度多个传输块,或者支持调度增强。
步骤1003、网络设备针对第一类型的终端设备,根据第一参数和第一间隔门限确定下行控制信道的传输中是否有间隔。
根据步骤1001的描述可知,第一参数可以为物理下行控制信道的搜索空间的最大重复次数,也可以为第一重复次数。在本申请实施例中,当第一参数为物理下行控制信道的搜索空间的最大重复次数时,网络设备针对第一类型的终端设备,根据第一参数和第一间隔门限确定下行控制信道的传输中是否有间隔可以包括:网络设备将物理下行控制信道的搜索空间的最大重复次数R max与第一间隔门限进行比较来确定下行控制信道的传输中是否有间隔,当物理下行控制信道的搜索空间的最大重复次数R max大于或者等于第一间隔门限时,网络设备确定下行控制信道的传输中有间隔;当物理下行控制信道的搜索空间的最大重复次数R max小于第一间隔门限时,网络设备确定下行控制信道的传输中没有间隔。当第一参数为第一重复次数时,网络设备针对第一类型的终端设备,根据第一参数和第一间隔门限确定下行控制信道的传输中是否有间隔可以包括:网络设备将第一重复次数与第一间隔门限进行比较来确定下行控制信道的传输中是否有间隔,当第一重复次数大于或者等于第一间隔门限时,网络设备确定下行控制信道的传输中有间隔;当第一重复次数小于第一间隔 门限时,网络设备确定下行控制信道的传输中没有间隔。
针对步骤1001中的两种可能的实现方式,该步骤1003可以包括以下两种可能的实现方式。
第一种实现方式:第一参数为物理下行控制信道的搜索空间的最大重复次数R max,第一间隔门限是***配置的。
可选地,第一间隔门限是***配置的,第一间隔门限可以为N gap,threshold1,当物理下行控制信道的搜索空间的最大重复次数R max大于或者等于N gap,threshold1时,网络设备确定下行控制信道的传输中有间隔,当物理下行控制信道的搜索空间的最大重复次数R max小于N gap,threshold1时,网络设备确定下行控制信道的传输中没有间隔。
以下行控制信道为NPDCCH为例,则第一参数R max、第一间隔门限N gap,threshold1以及NPDCCH的传输中是否有间隔的关系可以采用下表5表示:
表5
R max与N gap,threshold1的关系 NPDCCH的传输中是否有间隔
R max≥N gap,threshold1 有间隔
R max<N gap,threshold1 没有间隔
第二种实现方式:第一参数为第一重复次数,第一间隔门限是***配置的。
第一参数为第一重复次数,第一重复次数为第一类型的终端设备使用的物理下行控制信道的搜索空间的最大重复次数R max1,第一间隔门限是***配置的,第一间隔门限可以为N gap,threshold1,当第一类型的终端设备使用的物理下行控制信道的搜索空间的最大重复次数R max1大于或者等于N gap,threshold1时,网络设备确定下行控制信道的传输中有间隔,当第一类型的终端设备使用的物理下行控制信道的搜索空间的最大重复次数R max1小于N gap,threshold1时,网络设备确定下行控制信道的传输中没有间隔。
以下行控制信道为NPDCCH为例,则第一参数R max1、第一间隔门限N gap,threshold1以及NPDCCH的传输中是否有间隔的关系可以采用下表6表示:
表6
R max1与N gap,threshold1的关系 NPDCCH的传输中是否有间隔
R max1≥N gap,threshold1 有间隔
R max1<N gap,threshold1 没有间隔
步骤1004、网络设备根据下行控制信道的传输中是否有间隔的确定结果,通过下行控制信道向第一终端设备发送下行控制信息,第一终端设备的类型为第一类型。
该步骤1004的实现过程可以参考图6所示实施例的步骤603,本实施例在此不再赘述。
步骤1005、网络设备针对第一类型的终端设备,根据第一参数和第一间隔门限确定下行数据信道的传输中是否有间隔。
根据步骤1001的描述可知,第一参数可以为物理下行控制信道的搜索空间的最大重复次数,也可以为第一重复次数。在本申请实施例中,当第一参数为物理下行控制信道的搜索空间的最大重复次数时,网络设备针对第一类型的终端设备,根据第一参数和第一间隔门限确定下行数据信道的传输中是否有间隔可以包括:网络设备将物理下行控制信道的搜索空间的最大重复次数R max与第一间隔门限进行比较来确定下行数据信道的传输中是否有 间隔,当物理下行控制信道的搜索空间的最大重复次数R max大于或者等于第一间隔门限时,网络设备确定下行数据信道的传输中有间隔;当物理下行控制信道的搜索空间的最大重复次数R max小于第一间隔门限时,网络设备确定下行数据信道的传输中没有间隔。当第一参数为第一重复次数时,网络设备针对第一类型的终端设备,根据第一参数和第一间隔门限确定下行数据信道的传输中是否有间隔可以包括:网络设备将第一重复次数与第一间隔门限进行比较来确定下行数据信道的传输中是否有间隔,当第一重复次数大于或者等于第一间隔门限时,网络设备确定下行数据信道的传输中有间隔;当第一重复次数小于第一间隔门限时,网络设备确定下行数据信道的传输中没有间隔。
该步骤1005的具体实现过程可以参考步骤1003,本实施例在此不再赘述。需要说明的是,在该步骤1005中,以下行数据信道为NPDSCH为例,则第一参数R max、第一间隔门限N gap,threshold1以及NPDSCH的传输中是否有间隔的关系可以采用下表7表示:
表7
R max与N gap,threshold1的关系 NPDSCH的传输中是否有间隔
R max≥N gap,threshold1 有间隔
R max<N gap,threshold1 没有间隔
第一参数R max1、第一间隔门限N gap,threshold1以及NPDSCH的传输中是否有间隔的关系可以采用下表8表示:
表8
R max与N gap,threshold1的关系 NPDSCH的传输中是否有间隔
R max1≥N gap,threshold1 有间隔
R max1<N gap,threshold1 没有间隔
步骤1006、网络设备根据下行数据信道的传输中是否有间隔的确定结果,通过下行数据信道向第一终端设备发送一个传输块,下行控制信息用于调度一个传输块。
其中,第一终端设备的类型为第一类型,网络设备根据步骤1005的确定结果,通过下行数据信道向第一终端设备发送一个传输块。该步骤1006的实现过程可以参考图6所示实施例的步骤605,本实施例在此不再赘述。
步骤1007、网络设备针对第二类型的终端设备,根据第二参数和第二间隔门限确定下行控制信道的传输中是否有间隔。
根据步骤1001的描述可知,第二参数可以为物理下行控制信道的搜索空间的最大重复次数,也可以为第二重复次数。在本申请实施例中,当第二参数为物理下行控制信道的搜索空间的最大重复次数时,网络设备针对第二类型的终端设备,根据第二参数和第二间隔门限确定下行控制信道的传输中是否有间隔可以包括:网络设备将物理下行控制信道的搜索空间的最大重复次数R max与第二间隔门限进行比较来确定下行控制信道的传输中是否有间隔,当物理下行控制信道的搜索空间的最大重复次数R max大于或者等于第二间隔门限时,网络设备确定下行控制信道的传输中有间隔;当物理下行控制信道的搜索空间的最大重复次数R max小于第二间隔门限时,网络设备确定下行控制信道的传输中没有间隔。当第二参数为第二重复次数时,网络设备针对第二类型的终端设备,根据第二参数和第二间隔门限 确定下行控制信道的传输中是否有间隔可以包括:网络设备将第二重复次数与第二间隔门限进行比较来确定下行控制信道的传输中是否有间隔,当第二重复次数大于或者等于第二间隔门限时,网络设备确定下行控制信道的传输中有间隔;当第二重复次数小于第二间隔门限时,网络设备确定下行控制信道的传输中没有间隔。
针对步骤1001中的两种可能的实现方式,该步骤1007可以包括以下两种可能的实现方式。
第一种实现方式:第二参数为物理下行控制信道的搜索空间的最大重复次数R max,第二间隔门限是***配置的,或者,第二间隔门限根据第一间隔门限与下行控制信息能够调度的传输块的最大数量确定。
可选地,第二间隔门限是***配置的,第二间隔门限可以为N gap,threshold2,当物理下行控制信道的搜索空间的最大重复次数R max大于或者等于N gap,threshold2时,网络设备确定下行控制信道的传输中有间隔,当物理下行控制信道的搜索空间的最大重复次数R max小于N gap,threshold2时,网络设备确定下行控制信道的传输中没有间隔。
可选地,第二间隔门限根据第一间隔门限与下行控制信息能够调度的传输块的最大数量确定,第二间隔门限可以为N gap,threshold1/N TB,max,当物理下行控制信道的搜索空间的最大重复次数R max大于或者等于N gap,threshold1/N TB,max时,网络设备确定下行控制信道的传输中有间隔,当物理下行控制信道的搜索空间的最大重复次数R max小于N gap,threshold1/N TB,max时,网络设备确定下行控制信道的传输中没有间隔。
以下行控制信道为NPDCCH为例,则根据第二间隔门限的不同,第二参数R max、第二间隔门限以及NPDCCH的传输中是否有间隔的关系可以采用下表9表示:
表9
R max与N gap,threshold2的关系 NPDCCH的传输中是否有间隔
R max≥N gap,threshold2 有间隔
R max<N gap,threshold2 没有间隔
R max≥N gap,threshold1/N TB,max 有间隔
R max<N gap,threshold1/N TB,max 没有间隔
第二种实现方式:第二参数为第二重复次数,第二间隔门限是***配置的,或者,第二间隔门限根据第一间隔门限与下行控制信息能够调度的传输块的最大数量确定。
第二参数为第二重复次数,第二重复次数为第二类型的终端设备使用的物理下行控制信道的搜索空间的最大重复次数R max2
可选地,第二间隔门限是***配置的,第二间隔门限可以为N gap,threshold2,当第二类型的终端设备使用的物理下行控制信道的搜索空间的最大重复次数R max2大于或者等于N gap,threshold2时,网络设备确定下行控制信道的传输中有间隔,当第二类型的终端设备使用的物理下行控制信道的搜索空间的最大重复次数R max2小于N gap,threshold2时,网络设备确定下行控制信道的传输中没有间隔。
可选地,第二间隔门限根据第一间隔门限与下行控制信息能够调度的传输块的最大数量确定,第二间隔门限可以为N gap,threshold1/N TB,max,当第二类型的终端设备使用的物理下行控制信道的搜索空间的最大重复次数R max2大于或者等于N gap,threshold1/N TB,max时,网络设备确定 下行控制信道的传输中有间隔,当第二类型的终端设备使用的物理下行控制信道的搜索空间的最大重复次数R max2小于N gap,threshold1/N TB,max时,网络设备确定下行控制信道的传输中没有间隔。
以下行控制信道为NPDCCH为例,则第二参数R max2、第二间隔门限N gap,threshold2以及NPDCCH的传输中是否有间隔的关系可以采用下表10表示:
表10
R max1与N gap,threshold1的关系 NPDCCH的传输中是否有间隔
R max2≥N gap,threshold2 有间隔
R max2<N gap,threshold2 没有间隔
R max2≥N gap,threshold1/N TB,max 有间隔
R max2<N gap,threshold1/N TB,max 没有间隔
步骤1008、网络设备根据下行控制信道的传输中是否有间隔的确定结果,通过下行控制信道向第二终端设备发送下行控制信息,第二终端设备的类型为第二类型。
该步骤1008的实现过程可以参考图6所示实施例的步骤603,本实施例在此不再赘述。
步骤1009、网络设备针对第二类型的终端设备,根据第二参数和第二间隔门限确定下行数据信道的传输中是否有间隔。
根据步骤1001的描述可知,第二参数可以为物理下行控制信道的搜索空间的最大重复次数,也可以为第二重复次数。在本申请实施例中,当第二参数为物理下行控制信道的搜索空间的最大重复次数时,网络设备针对第二类型的终端设备,根据第二参数和第二间隔门限确定下行数据信道的传输中是否有间隔可以包括:网络设备将物理下行控制信道的搜索空间的最大重复次数R max与第二间隔门限进行比较来确定下行数据信道的传输中是否有间隔,当物理下行控制信道的搜索空间的最大重复次数R max大于或者等于第二间隔门限时,网络设备确定下行数据信道的传输中有间隔;当物理下行控制信道的搜索空间的最大重复次数R max小于第二间隔门限时,网络设备确定下行数据信道的传输中没有间隔。当第二参数为第二重复次数时,网络设备针对第二类型的终端设备,根据第二参数和第二间隔门限确定下行数据信道的传输中是否有间隔可以包括:网络设备将第二重复次数与第二间隔门限进行比较来确定下行数据信道的传输中是否有间隔,当第二重复次数大于或者等于第二间隔门限时,网络设备确定下行数据信道的传输中有间隔;当第二重复次数小于第二间隔门限时,网络设备确定下行数据信道的传输中没有间隔。
该步骤1009的具体实现过程可以参考步骤1007,本实施例在此不再赘述。需要说明的是,在该步骤1009中,以下行数据信道为NPDSCH为例,则根据第二间隔门限的不同,第二参数R max、第二间隔门限以及NPDSCH的传输中是否有间隔的关系可以采用下表11表示:
表11
R max与N gap,threshold2的关系 NPDSCH的传输中是否有间隔
R max≥N gap,threshold2 有间隔
R max<N gap,threshold2 没有间隔
R max≥N gap,threshold1/N TB,max 有间隔
R max<N gap,threshold1/N TB,max 没有间隔
第二参数R max2、第二间隔门限以及NPDSCH的传输中是否有间隔的关系可以采用下表12表示:
表12
R max与N gap,threshold1的关系 NPDSCH的传输中是否有间隔
R max2≥N gap,threshold2 有间隔
R max2<N gap,threshold2 没有间隔
R max2≥N gap,threshold1/N TB,max 有间隔
R max2<N gap,threshold1/N TB,max 没有间隔
步骤1010、网络设备根据下行数据信道的传输中是否有间隔的确定结果,通过下行数据信道向第二终端设备发送多个传输块,下行控制信息用于调度多个传输块。
其中,第二终端设备的类型为第二类型,网络设备根据步骤1009的确定结果,通过下行数据信道向第二终端设备发送多个传输块。该步骤1010的实现过程可以参考图6所示实施例的步骤605,本实施例在此不再赘述。
步骤1011、第一终端设备获取第一参数和第一间隔门限。
其中,第一终端设备的类型为第一类型。在本申请实施例中,与步骤1001对应,第一终端设备获取第一参数和第一间隔门限可以包括两种可能的实现方式:
第一种实现方式(与步骤1001中的第一种实现方式对应):第一参数为物理下行控制信道的搜索空间的最大重复次数,第一间隔门限是***配置的。
第一终端设备可以接收网络设备发送的***消息或RRC信令,如果第一间隔门限N gap,threshold1由网络设备配置,则***消息或RRC信令中携带物理下行控制信道的搜索空间的最大重复次数R max和间隔配置参数,间隔配置参数包括第一间隔门限N gap,threshold1,第一终端设备接收***消息或RRC信令就可以获取第一参数和第一间隔门限N gap,threshold1。如果第一间隔门限N gap,threshold1是约定的或者协议定义的,则第一间隔门限N gap,threshold1和对于第一终端设备来说是已知的,***消息或RRC信令中携带物理下行控制信道的搜索空间的最大重复次数R max和间隔配置参数,间隔配置参数可以不包括第一间隔门限N gap,threshold1,终端设备通过接收***消息或RRC信令获取第一参数。
需要说明的是,在该步骤1011的第一种实现方式中,物理下行控制信道的搜索空间的最大重复次数R max可以是第一类型的终端设备使用的物理下行控制信道的搜索空间的最大重复次数,也可以是第二类型的终端设备使用的物理下行控制信道的搜索空间的最大重复次数,还可以是第一类型的终端设备使用的物理下行控制信道的最大重复次数和第二类型的终端设备使用的物理下行控制信道的搜索空间的最大重复次数中的最大值,本实施例对此不做限定。
第二种实现方式(与步骤1001中的第二种实现方式对应):第一参数为第一重复次数,第一间隔门限是***配置的。
第一终端设备可以接收网络设备发送的***消息或RRC信令,如果第一间隔门限N gap,threshold1由网络设备配置,则***消息或RRC信令中携带第一类型的终端设备使用的物 理下行控制信道的搜索空间的最大重复次数R max1和间隔配置参数,间隔配置参数包括第一间隔门限N gap,threshold1,第一终端设备接收***消息或RRC信令就可以获取第一参数和第一间隔门限N gap,threshold1。如果第一间隔门限N gap,threshold1是约定的或者协议定义的,则第一间隔门限N gap,threshold1对于第一终端设备来说是已知的,***消息或RRC信令中携带第一类型的终端设备使用的物理下行控制信道的搜索空间的最大重复次数R max1和间隔配置参数,间隔配置参数可以不包括第一间隔门限N gap,threshold1,第一终端设备通过接收***消息或RRC信令获取第一参数。
步骤1012、第一终端设备根据第一参数和第一间隔门限确定下行控制信道的传输中是否有间隔。该步骤1012的实现过程可以参考步骤1003,本实施例在此不再赘述。
步骤1013、第一终端设备根据下行控制信道的传输中是否有间隔的确定结果,通过下行控制信道从网络设备接收下行控制信息。该下行控制信息用于调度一个传输块。该步骤1013的实现过程可以参考图6所示实施例的步骤608,本实施例在此不再赘述。
步骤1014、第一终端设备根据第一参数和第一间隔门限确定下行数据信道的传输中是否有间隔。该步骤1014的实现过程可以参考步骤1005,本实施例在此不再赘述。
步骤1015、第一终端设备根据下行数据信道的传输中是否有间隔的确定结果,通过下行数据信道从网络设备接收一个传输块,下行控制信息用于调度一个传输块。该步骤1015的实现过程可以参考图6所示实施例的步骤610,本实施例在此不再赘述。
步骤1016、第二终端设备获取第二参数和第二间隔门限。
其中,第二终端设备的类型为第二类型。在本申请实施例中,与步骤1001对应,第二终端设备获取第二参数和第二间隔门限可以包括两种可能的实现方式:
第一种实现方式(与步骤1001中的第一种实现方式对应):第二参数为物理下行控制信道的搜索空间的最大重复次数,第二间隔门限是***配置的,或者,第二间隔门限根据第一间隔门限与下行控制信息能够调度的传输块的最大数量确定,第一间隔门限是***配置的。
在该第一种实现方式中,第二终端设备获取第二参数和第二间隔门限可以包括以下两种可能的情况:
第一种情况:第二参数为物理下行控制信道的搜索空间的最大重复次数R max,第二间隔门限是***配置的。
第二终端设备可以接收网络设备发送的***消息或RRC信令,如果第二间隔门限N gap,threshold2由网络设备配置,则***消息或RRC信令中携带物理下行控制信道的搜索空间的最大重复次数R max和间隔配置参数,间隔配置参数包括第二间隔门限N gap,threshold2,第二终端设备接收***消息或RRC信令就可以获取第二参数和第二间隔门限N gap,threshold2。如果第二间隔门限N gap,threshold2是约定的或者协议定义的,则第二间隔门限N gap,threshold2对于第二终端设备来说是已知的,***消息或RRC信令中携带物理下行控制信道的搜索空间的最大重复次数R max和间隔配置参数,间隔配置参数可以不包括第二间隔门限N gap,threshold2,终端设备通过接收***消息或RRC信令获取第二参数。
第二种情况:第二参数为物理下行控制信道的搜索空间的最大重复次数R max,第二间隔门限根据第一间隔门限与下行控制信息能够调度的传输块的最大数量确定,第一间隔门限是***配置的。
第二终端设备可以接收网络设备发送的***消息或RRC信令,如果第一间隔门限N gap,threshold1由网络设备配置,则***消息或RRC信令中携带物理下行控制信道的搜索空间的最大重复次数R max和间隔配置参数,间隔配置参数包括第一间隔门限N gap,threshold1,第二终端设备接收***消息或RRC信令就可以获取第二参数和第一间隔门限N gap,threshold1,第二终端设备根据第一间隔门限N gap,threshold1与下行控制信息能够调度的传输块的最大数量N TB,max确定第二间隔门限。如果第一间隔门限N gap,threshold1是约定的或者协议定义的,则第一间隔门限N gap,threshold1对于第二终端设备来说是已知的,***消息或RRC信令中携带物理下行控制信道的搜索空间的最大重复次数R max和间隔配置参数,间隔配置参数可以不包括第一间隔门限N gap,threshold1,终端设备通过接收***消息或RRC信令获取第二参数,第二终端设备根据第一间隔门限N gap,threshold1与下行控制信息能够调度的传输块的最大数量N TB,max确定第二间隔门限。
需要说明的是,在该步骤1016的第一种实现方式中,物理下行控制信道的搜索空间的最大重复次数R max可以是第二类型的终端设备使用的物理下行控制信道的搜索空间的最大重复次数,也可以是第二类型的终端设备使用的物理下行控制信道的搜索空间的最大重复次数,还可以是第二类型的终端设备使用的物理下行控制信道的最大重复次数和第二类型的终端设备使用的物理下行控制信道的搜索空间的最大重复次数中的最大值,本实施例对此不做限定。
第二种实现方式(与步骤1001中的第二种实现方式对应):第二参数为第二重复次数,第二间隔门限是***配置的,或者,第二间隔门限根据第一间隔门限与下行控制信息能够调度的传输块的最大数量确定,第一间隔门限是***配置的。
在该第二种实现方式中,第二终端设备获取第二参数和第二间隔门限可以包括以下两种可能的情况:
第一种情况:第二参数为第二重复次数,第二间隔门限是***配置的。
第二终端设备可以接收网络设备发送的***消息或RRC信令,如果第二间隔门限N gap,threshold2由网络设备配置,则***消息或RRC信令中携带第二类型的终端设备使用的物理下行控制信道的搜索空间的最大重复次数R max2和间隔配置参数,间隔配置参数包括第二间隔门限N gap,threshold2,第二终端设备接收***消息或RRC信令就可以获取第二参数和第二间隔门限N gap,threshold2。如果第二间隔门限N gap,threshold2是约定的或者协议定义的,则第二间隔门限N gap,threshold2对于第二终端设备来说是已知的,***消息或RRC信令中携带第二类型的终端设备使用的物理下行控制信道的搜索空间的最大重复次数R max2和间隔配置参数,间隔配置参数可以不包括第二间隔门限N gap,threshold2,第二终端设备通过接收***消息或RRC信令获取第二参数。
第二种情况:第二参数为第二重复次数,第二间隔门限根据第一间隔门限与下行控制信息能够调度的传输块的最大数量确定,第一间隔门限是***配置的。
第二终端设备可以接收网络设备发送的***消息或RRC信令,如果第一间隔门限N gap,threshold1由网络设备配置,则***消息或RRC信令中携带第二类型的终端设备使用的物理下行控制信道的搜索空间的最大重复次数R max2和间隔配置参数,间隔配置参数包括第一间隔门限N gap,threshold1,第二终端设备接收***消息或RRC信令就可以获取第二参数和第一间隔门限N gap,threshold1,第二终端设备根据第一间隔门限N gap,threshold1与下行控制信息能够调度 的传输块的最大数量N TB,max确定第二间隔门限。如果第一间隔门限N gap,threshold1是约定的或者协议定义的,则第一间隔门限N gap,threshold1对于第二终端设备来说是已知的,***消息或RRC信令中携带第二类型的终端设备使用的物理下行控制信道的搜索空间的最大重复次数R max2和间隔配置参数,间隔配置参数可以不包括第一间隔门限N gap,threshold1,第二终端设备通过接收***消息或RRC信令获取第二参数,第二终端设备根据第一间隔门限N gap,threshold1与下行控制信息能够调度的传输块的最大数量N TB,max确定第二间隔门限。
需要说明的是,在该步骤1016中,第二终端设备根据第一间隔门限N gap,threshold1与下行控制信息能够调度的传输块的最大数量N TB,max确定第二间隔门限的过程可以参考图6所示实施例的步骤601,本实施例在此不再赘述。但是需要说明的是,若第二终端设备将N gap,threshold1/N TB,max确定为第二间隔门限,则当下行控制信息能够调度的传输块的最大数量N TB,max等于1时,第一间隔门限和第二间隔门限相同,当下行控制信息能够调度的传输块的最大数量N TB,max不等于1时,第一间隔门限和第二间隔门限不同。
步骤1017、第二终端设备根据第二参数和第二间隔门限确定下行控制信道的传输中是否有间隔。该步骤1017的实现过程可以参考步骤1003,本实施例在此不再赘述。
步骤1018、第二终端设备根据下行控制信道的传输中是否有间隔的确定结果,通过下行控制信道从网络设备接收下行控制信息。该下行控制信息用于调度多个传输块。该步骤1013的实现过程可以参考图6所示实施例的步骤608,本实施例在此不再赘述。
步骤1019、第二终端设备根据第二参数和第二间隔门限确定下行数据信道的传输中是否有间隔。该步骤1014的实现过程可以参考步骤1005,本实施例在此不再赘述。
步骤1020、第二终端设备根据下行数据信道的传输中是否有间隔的确定结果,通过下行数据信道从网络设备接收多个传输块,下行控制信息用于调度多个传输块。该步骤1020的实现过程可以参考图6所示实施例的步骤610,本实施例在此不再赘述。
需要说明的是,本申请实施例提供的数据传输方法步骤的先后顺序可以进行适当调整,步骤也可以根据情况进行相应增减,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本申请实施例的保护范围之内,因此不再赘述。
综上所述,本申请实施例提供的数据传输方法,由于针对第一类型的终端设备,根据第一参数和第一间隔门限确定下行传输中是否有间隔,根据确定结果与第一类型的终端设备进行下行传输,针对第二类型的终端设备,根据第二参数和第二间隔门限确定下行传输中是否有间隔,根据确定结果与第二类型的终端设备进行下行传输,因此,本申请实施例提供的方案能够根据终端设备的类型确定针对该终端设备的下行传输是否有间隔,避免在一个下行控制信息调度多个传输块的场景下,针对一个终端设备持续时间较长的连续下行传输,从而避免下行信道受阻,提高***资源利用效率。
请参考图11,其示出了本申请实施例提供的另一种网络设备1100的逻辑结构示意图,该网络设备1100可以为基站,且具体可以是MTC基站。参见图11,该网络设备1100包括:
第一确定模块1101,用于确定第一参数、第二参数、第一间隔门限和第二间隔门限;
第二确定模块1102,用于确定终端设备的类型,终端设备的类型为第一类型或第二类型;
第三确定模块1103,用于针对第一类型的终端设备,根据第一参数和第一间隔门限确定下行控制信道的传输中是否有间隔,第一发送模块1104,用于根据下行控制信道的传输中是否有间隔的确定结果,通过下行控制信道向第一类型的终端设备发送下行控制信息,第四确定模块1105,针对第一类型的终端设备,根据第一参数和第一间隔门限确定下行数据信道的传输中是否有间隔,第二发送模块1106,用于根据下行数据信道的传输中是否有间隔的确定结果,通过下行数据信道向第一类型的终端设备发送一个传输块,下行控制信息用于调度一个传输块;
第五确定模块1107,用于针对第二类型的终端设备,根据第二参数和第二间隔门限确定下行控制信道的传输中是否有间隔,第三发送模块1108,用于根据下行控制信道的传输中是否有间隔的确定结果,通过下行控制信道向第二类型的终端设备发送下行控制信息,第六确定模块1109,用于针对第二类型的终端设备,根据第二参数和第二间隔门限确定下行数据信道的传输中是否有间隔,第四发送模块1110,根据下行数据信道的传输中是否有间隔的确定结果,用于通过下行数据信道向第二类型的终端设备发送多个传输块,下行控制信息用于调度多个传输块;
其中,第一参数和第二参数不同,且第一间隔门限和第二间隔门限相同;或者,第一参数和第二参数相同,且第一间隔门限和第二间隔门限不同;或者,第一参数和第二参数不同,且第一间隔门限和第二间隔门限不同。
可选地,第一参数、第二参数、第一间隔门限和第二间隔门限使得针对同一终端设备,相同时间段用于发送下行数据信道时所包括的间隔数不少于相同时间段用于发送下行控制信道时所包括的间隔数。
可选地,第一参数和第二参数相同,第一参数为物理下行控制信道的搜索空间的最大重复次数,
第三确定模块1103,用于:当物理下行控制信道的搜索空间的最大重复次数大于或者等于第一间隔门限时,确定下行控制信道的传输中有间隔;当物理下行控制信道的搜索空间的最大重复次数小于第一间隔门限时,确定下行控制信道的传输中没有间隔;
第四确定模块1105,用于:当物理下行控制信道的搜索空间的最大重复次数大于或者等于第一间隔门限时,确定下行数据信道的传输中有间隔;当物理下行控制信道的搜索空间的最大重复次数小于第一间隔门限时,确定下行数据信道的传输中没有间隔;
第五确定模块1107,用于:当物理下行控制信道的搜索空间的最大重复次数大于或者等于第二间隔门限时,确定下行控制信道的传输中有间隔;当物理下行控制信道的搜索空间的最大重复次数小于第二间隔门限时,确定下行控制信道的传输中没有间隔;
第六确定模块1109,用于:当物理下行控制信道的搜索空间的最大重复次数大于或者等于第二间隔门限时,确定下行数据信道的传输中有间隔;当物理下行控制信道的搜索空间的最大重复次数小于第二间隔门限时,确定下行数据信道的传输中没有间隔;
其中,第一间隔门限和第二间隔门限是***配置的,第一间隔门限与第二间隔门限不同;或者,第一间隔门限是***配置的,第二间隔门限根据第一间隔门限与下行控制信息能够调度的传输块的最大数量确定。
可选地,第一参数和第二参数不同,第一参数为第一重复次数,第一重复次数为第一类型的终端设备使用的物理下行控制信道的搜索空间的最大重复次数,第二参数为第二重 复次数,第二重复次数为第二类型的终端设备使用的物理下行控制信道的搜索空间的最大重复次数,
第三确定模块1103,用于:当第一重复次数大于或者等于第一间隔门限时,确定下行控制信道的传输中有间隔;当第一重复次数小于第一间隔门限时,确定下行控制信道的传输中没有间隔;
第四确定模块1105,用于:当第一重复次数大于或者等于第一间隔门限时,确定下行数据信道的传输中有间隔;当第一重复次数小于第一间隔门限时,确定下行数据信道的传输中没有间隔;
第五确定模块1107,用于:当第二重复次数大于或者等于第二间隔门限时,确定下行控制信道的传输中有间隔;当第二重复次数小于第二间隔门限时,确定下行控制信道的传输中没有间隔;
第六确定模块1109,用于:当第二重复次数大于或者等于第二间隔门限时,确定下行数据信道的传输中有间隔;当第二重复次数小于第二间隔门限时,确定下行数据信道的传输中没有间隔;
其中,第一间隔门限和第二间隔门限是***配置的,第一间隔门限与第二间隔门限不同;或者,第一间隔门限是***配置的,第二间隔门限根据第一间隔门限与下行控制信息能够调度的传输块的最大数量确定。
需要说明的是,第一确定模块1101用于执行图10所示实施例中的步骤1001,第二确定模块1102用于执行图10所示实施例中的步骤1002,第三确定模块1103用于执行图10所示实施例中的步骤1003,第一发送模块1104用于执行图10所示实施例中的步骤1004,第四确定模块1105用于执行图10所示实施例中的步骤1005,第二发送模块1106用于执行图10所示实施例中的步骤1006,第五确定模块1107用于执行图10所示实施例中的步骤1007,第三发送模块1108用于执行图10所示实施例中的步骤1008,第六确定模块1109用于执行图10所示实施例中的步骤1009,第四发送模块1110用于执行图10所示实施例中的步骤1010。此外,上述第一确定模块1101、第二确定模块1102、第三确定模块1103、第四确定模块1105、第五确定模块1107和第六确定模块1009可以是相同的确定模块,也可以是不同的确定模块,上述第一发送模块1104、第二发送模块1106、第三发送模块1108和第四发送模块1110可以是相同的发送模块,也可以是不同的发送模块,本申请实施例对此不做限定。
可选地,上述这几个确定模块也可以是一个处理模块,几个发送模块可以是一个发送模块。也即该处理模块执行上述步骤中的确定等步骤,该发送模块执行发送等步骤。该处理模块也可以包括多个子处理模块。
综上所述,本申请实施例提供的网络设备,由于针对第一类型的终端设备,根据第一参数和第一间隔门限确定下行传输中是否有间隔,根据确定结果与第一类型的终端设备进行下行传输,针对第二类型的终端设备,根据第二参数和第二间隔门限确定下行传输中是否有间隔,根据确定结果与第二类型的终端设备进行下行传输,因此,本申请实施例提供的方案能够根据终端设备的类型确定针对该终端设备的下行传输是否有间隔,避免在一个下行控制信息调度多个传输块的场景下,针对一个终端设备持续时间较长的连续下行传输,从而避免下行信道受阻,提高***资源利用效率。
请参考图12,其示出了本申请实施例提供的另一种终端设备1200的逻辑结构示意图,该终端设备1200可以为用户设备,且具体可以是MTC设备,参见图12,该终端设备1200包括:
获取模块1201,用于获取第一参数、第二参数、第一间隔门限和第二间隔门限;
第一确定模块1202,用于确定终端设备的类型,终端设备的类型为第一类型或第二类型;
第二确定模块1203,用于当终端设备为第一类型的终端设备时,根据第一参数和第一间隔门限确定下行控制信道的传输中是否有间隔,第一接收模块1204,用于根据下行控制信道的传输中是否有间隔的确定结果,通过下行控制信道从网络设备接收下行控制信息,第三确定模块1205,用于当终端设备为第一类型的终端设备时,根据第一参数和第一间隔门限确定下行数据信道的传输中是否有间隔,第二接收模块1206,用于根据下行数据信道的传输中是否有间隔的确定结果,通过下行数据信道从网络设备接收一个传输块,下行控制信息用于调度一个传输块;
第四确定模块1207,用于当终端设备为第二类型的终端设备时,根据第二参数和第二间隔门限确定下行控制信道的传输中是否有间隔,第三接收模块1208,用于根据下行控制信道的传输中是否有间隔的确定结果,通过下行控制信道从网络设备接收下行控制信息,第五确定模块1209,用于当终端设备为第一类型的终端设备时,根据第二参数和第二间隔门限确定下行数据信道的传输中是否有间隔,第四接收模块1210,用于根据下行数据信道的传输中是否有间隔的确定结果,通过下行数据信道从网络设备接收多个传输块,下行控制信息用于调度多个传输块;
其中,第一参数和第二参数不同,且第一间隔门限和第二间隔门限相同;或者,第一参数和第二参数相同,且第一间隔门限和第二间隔门限不同;或者,第一参数和第二参数不同,且第一间隔门限和第二间隔门限不同。
可选地,第一参数、第二参数、第一间隔门限和第二间隔门限使得,针对同一终端设备,相同时间段用于接收下行数据信道时所包括的间隔数不少于相同时间段用于接收下行控制信道时所包括的间隔数。
可选地,第一参数和第二参数相同,第一参数为物理下行控制信道的搜索空间的最大重复次数,第二确定模块1203,用于:当物理下行控制信道的搜索空间的最大重复次数大于或者等于第一间隔门限时,确定下行控制信道的传输中有间隔;当物理下行控制信道的搜索空间的最大重复次数小于第一间隔门限时,确定下行控制信道的传输中没有间隔;
第三确定模块1205,用于:当物理下行控制信道的搜索空间的最大重复次数大于或者等于第一间隔门限时,确定下行数据信道的传输中有间隔;当物理下行控制信道的搜索空间的最大重复次数小于第一间隔门限时,确定下行数据信道的传输中没有间隔;
第四确定模块1207,用于:当物理下行控制信道的搜索空间的最大重复次数大于或者等于第二间隔门限时,确定下行控制信道的传输中有间隔;当物理下行控制信道的搜索空间的最大重复次数小于第二间隔门限时,确定下行控制信道的传输中没有间隔;
第五确定模块1209,用于:当物理下行控制信道的搜索空间的最大重复次数大于或者等于第二间隔门限时,确定下行数据信道的传输中有间隔;当物理下行控制信道的搜索空 间的最大重复次数小于第二间隔门限时,确定下行数据信道的传输中没有间隔;
其中,第一间隔门限和第二间隔门限是***配置的,第一间隔门限与第二间隔门限不同;或者,第一间隔门限是***配置的,第二间隔门限根据第一间隔门限与下行控制信息能够调度的传输块的最大数量确定。
可选地,第一参数和第二参数不同,第一参数为为第一重复次数,第一重复次数为第一类型的终端设备使用的物理下行控制信道的搜索空间的最大重复次数,第二参数为第二重复次数,第二重复次数为第二类型的终端设备使用的物理下行控制信道的搜索空间的最大重复次数,
第二确定模块1203,用于:当第一重复次数大于或者等于第一间隔门限时,确定下行控制信道的传输中有间隔;当第一重复次数小于第一间隔门限时,确定下行控制信道的传输中没有间隔;
第三确定模块1205,用于:当第一重复次数大于或者等于第一间隔门限时,确定下行数据信道的传输中有间隔;当第一重复次数小于第一间隔门限时,确定下行数据信道的传输中没有间隔;
第四确定模块1207,用于:当第二重复次数大于或者等于第二间隔门限时,确定下行控制信道的传输中有间隔;当第二重复次数小于第二间隔门限时,确定下行控制信道的传输中没有间隔;
第五确定模块1209,用于:当第二重复次数大于或者等于第二间隔门限时,确定下行数据信道的传输中有间隔;当第二重复次数小于第二间隔门限时,确定下行数据信道的传输中没有间隔;
其中,第一间隔门限和第二间隔门限是***配置的,第一间隔门限与第二间隔门限不同;或者,第一间隔门限是***配置的,第二间隔门限根据下行控制信息能够调度的传输块的最大数量确定。
需要说明的是,获取模块1201用于执行图10所示实施例中的步骤1001和/或步骤1016,第二确定模块1203用于执行图10所示实施例中的步骤1012,第一接收模块1204用于执行图10所示实施例中的步骤1013,第三确定模块1205用于执行图10所示实施例中的步骤1014,第二接收模块1206用于执行图10所示实施例中的步骤1015,第四确定模块1207用于执行图10所示实施例中的步骤1017,第三接收模块1208用于执行图10所示实施例中的步骤1018,第五确定模块1209用于执行图10所示实施例中的步骤1019,第四接收模块1210用于执行图10所示实施例中的步骤1020。此外,上述第二确定模块1203和第三确定模块1205可以是相同的确定模块,也可以是不同的确定模块,上述第一接收模块1204和第二接收模块1206可以是相同的接收模块,也可以是不同的接收模块,上述第四确定模块1207和第五确定模块1209可以是相同的确定模块,也可以是不同的确定模块,上述第三接收模块1208和第四接收模块1210可以是相同的接收模块,也可以是不同的接收模块,本申请实施例对此不做限定。
可选地,与网络设备侧类似,终端设备侧的上述这几个确定模块和获取模块也可以是一个处理模块,几个接收模块可以是一个接收模块。也即该处理模块执行上述步骤中的确定、获取等步骤,该接收模块执行接收等步骤。该处理模块也可以包括多个子处理模块。
综上所述,本申请实施例提供的终端设备,由于当终端设备为第一类型的终端设备时, 根据第一参数和第一间隔门限确定下行传输中是否有间隔,根据确定结果与网络设备进行下行传输,当终端设备为第二类型的终端设备时,根据第二参数和第二间隔门限确定下行传输中是否有间隔,根据确定结果与网络设备进行下行传输,因此,本申请实施例提供的方案能够根据终端设备的类型确定针对该终端设备的下行传输是否有间隔,避免在一个下行控制信息调度多个传输块的场景下,针对一个终端设备持续时间较长的连续下行传输,从而避免下行信道受阻,提高***资源利用效率。
本申请实施例还提供了一种通信设备,该通信设备的硬件结构如图9所示,该通信设备可以为网络设备或终端设备,网络设备可以为MTC基站,终端设备可以为MTC设备,该通信设备用于执行图10所示实施例的全部或者部分步骤。
本申请实施例提供了一种数据传输***。在一种可能的实现方式中,该数据传输***包括:图11所示实施例提供的网络设备1100和图12所示实施例提供的终端设备1200;在另一种可能的实现方式中,该数据传输***包括网络设备和终端设备,网络设备和终端设备中的任一设备或二者可以为图9所示实施例提供的通信设备。
本申请实施例提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机的处理组件上运行时,使得处理组件执行图10所示实施例提供的数据传输方法全部或部分步骤。
本申请实施例提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机图10所示实施例提供的数据传输方法全部或部分步骤。
本申请实施例提供了一种芯片,该芯片包括可编程逻辑电路和/或程序指令,当该芯片运行时用于实现图10所示实施例提供的数据传输方法全部或部分步骤。
本申请实施例提供了一种处理装置,该处理装置包括至少一个电路,该至少一个电路用于执行图10所示实施例提供的数据传输方法全部或部分步骤。
本申请实施例提供了一种处理装置,该处理装置用于实现图10所示实施例提供的数据传输方法。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请实施例的可选实施例,并不用以限制本申请实施例,凡在本申请实施例的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请实施例的保护范围之内。

Claims (21)

  1. 一种数据传输方法,其特征在于,所述方法包括:
    确定第一参数、第二参数、第一间隔门限和第二间隔门限;
    根据所述第一参数和所述第一间隔门限确定下行控制信道的传输中是否有间隔;
    根据所述下行控制信道的传输中是否有间隔的确定结果,通过所述下行控制信道向终端设备发送下行控制信息;
    根据所述第二参数和所述第二间隔门限确定下行数据信道的传输中是否有间隔;
    根据所述下行数据信道的传输中是否有间隔的确定结果,通过所述下行数据信道向所述终端设备发送一个或多个传输块,所述下行控制信息用于调度所述一个或多个传输块;
    其中,所述第一参数和所述第二参数不同,且所述第一间隔门限和所述第二间隔门限相同;或者,
    所述第一参数和所述第二参数相同,且所述第一间隔门限和所述第二间隔门限不同;或者,
    所述第一参数和所述第二参数不同,且所述第一间隔门限和所述第二间隔门限不同。
  2. 根据权利要求1所述的方法,其特征在于,所述第一参数、所述第二参数、所述第一间隔门限和所述第二间隔门限使得相同时间段用于发送所述下行数据信道时所包括的间隔数不少于所述相同时间段用于发送所述下行控制信道时所包括的间隔数。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一参数和所述第二参数相同,所述第一参数为物理下行控制信道的搜索空间的最大重复次数,
    所述根据所述第一参数和所述第一间隔门限确定下行控制信道的传输中是否有间隔,包括:
    当所述物理下行控制信道的搜索空间的最大重复次数大于或者等于所述第一间隔门限时,确定所述下行控制信道的传输中有间隔;
    当所述物理下行控制信道的搜索空间的最大重复次数小于所述第一间隔门限时,确定所述下行控制信道的传输中没有间隔;
    所述根据所述第二参数和所述第二间隔门限确定下行数据信道的传输中是否有间隔,包括:
    当所述物理下行控制信道的搜索空间的最大重复次数大于或者等于所述第二间隔门限时,确定所述下行数据信道的传输中有间隔;
    当所述物理下行控制信道的搜索空间的最大重复次数小于所述第二间隔门限时,确定所述下行数据信道的传输中没有间隔;
    其中,所述第一间隔门限和所述第二间隔门限是***配置的,所述第一间隔门限与所述第二间隔门限不同;或者,
    所述第一间隔门限是***配置的,所述第二间隔门限根据所述第一间隔门限与所述下行控制信息调度的传输块的数量确定;或者,
    所述第一间隔门限是***配置的,所述第二间隔门限根据所述第一间隔门限与所述下行 控制信息能够调度的传输块的最大数量确定。
  4. 根据权利要求1或2所述的方法,其特征在于,所述第一参数为物理下行控制信道的搜索空间的最大重复次数,所述第二参数为第一有效子帧数,
    所述根据所述第一参数和所述第一间隔门限确定下行控制信道的传输中是否有间隔,包括:
    当所述物理下行控制信道的搜索空间的最大重复次数大于或者等于所述第一间隔门限时,确定所述下行控制信道的传输中有间隔;
    当所述物理下行控制信道的搜索空间的最大重复次数小于所述第一间隔门限时,确定所述下行控制信道的传输中没有间隔;
    所述根据所述第二参数和所述第二间隔门限确定下行数据信道的传输中是否有间隔,包括:
    当所述第一有效子帧数大于或者等于所述第二间隔门限时,确定所述下行数据信道的传输中有间隔;
    当所述第一有效子帧数小于所述第二间隔门限时,确定所述下行数据信道的传输中没有间隔;
    其中,所述第一间隔门限和所述第二间隔门限是***配置的;或者,
    所述第一间隔门限是***配置的,所述第二间隔门限根据所述第一间隔门限与预设常数确定,所述预设常数为大于或者等于1,且小于或者等于10的整数;或者,
    所述第一间隔门限是***配置的,所述第二间隔门限根据所述第一间隔门限与第三间隔门限确定,所述第三间隔门限是***配置的。
  5. 根据权利要求4所述的方法,其特征在于,
    所述第一有效子帧数为承载所述下行控制信息调度的多个传输块中的第一个传输块的物理下行共享信道所占用的有效子帧数;或者,
    所述第一有效子帧数为承载所述下行控制信息调度的多个传输块中的任意一个传输块的物理下行共享信道所占用的有效子帧数;或者,
    所述第一有效子帧数为承载所述下行控制信息调度的多个传输块的物理下行共享信道所占用的有效子帧数。
  6. 一种数据传输方法,其特征在于,所述方法包括:
    获取第一参数、第二参数、第一间隔门限和第二间隔门限;
    根据所述第一参数和所述第一间隔门限确定下行控制信道的传输中是否有间隔;
    根据所述下行控制信道的传输中是否有间隔的确定结果,通过所述下行控制信道从网络设备接收下行控制信息;
    根据所述第二参数和所述第二间隔门限确定下行数据信道的传输中是否有间隔;
    根据所述下行数据信道的传输中是否有间隔的确定结果,通过所述下行数据信道从所述网络设备接收一个或多个传输块,所述下行控制信息用于调度所述一个多个传输块;
    其中,所述第一参数和所述第二参数不同,且所述第一间隔门限和所述第二间隔门限相同;或者,
    所述第一参数和所述第二参数相同,且所述第一间隔门限和所述第二间隔门限不同;或者,
    所述第一参数和所述第二参数不同,且所述第一间隔门限和所述第二间隔门限不同。
  7. 根据权利要求6所述的方法,其特征在于,所述第一参数、所述第二参数、所述第一间隔门限和所述第二间隔门限使得相同时间段用于接收所述下行数据信道时所包括的间隔数不少于所述相同时间段用于接收所述下行控制信道时所包括的间隔数。
  8. 根据权利要求6或7所述的方法,其特征在于,所述第一参数和所述第二参数相同,所述第一参数为物理下行控制信道的搜索空间的最大重复次数,
    所述根据所述第一参数和所述第一间隔门限确定下行控制信道的传输中是否有间隔,包括:
    当所述物理下行控制信道的搜索空间的最大重复次数大于或者等于所述第一间隔门限时,确定所述下行控制信道的传输中有间隔;
    当所述物理下行控制信道的搜索空间的最大重复次数小于所述第一间隔门限时,确定所述下行控制信道的传输中没有间隔;
    所述根据所述第二参数和所述第二间隔门限确定下行数据信道的传输中是否有间隔,包括:
    当所述物理下行控制信道的搜索空间的最大重复次数大于或者等于所述第二间隔门限时,确定所述下行数据信道的传输中有间隔;
    当所述物理下行控制信道的搜索空间的最大重复次数小于所述第二间隔门限时,确定所述下行数据信道的传输中没有间隔;
    其中,所述第一间隔门限和所述第二间隔门限是***配置的;或者,
    所述第一间隔门限是***配置的,所述第二间隔门限根据所述第一间隔门限与所述下行控制信息调度的传输块的数量确定;或者,
    所述第一间隔门限是***配置的,所述第二间隔门限根据所述第一间隔门限与所述下行控制信息能够调度的传输块的最大数量确定。
  9. 根据权利要求6或7所述的方法,其特征在于,所述第一参数为物理下行控制信道的搜索空间的最大重复次数,所述第二参数为第一有效子帧数,
    所述根据所述第一参数和所述第一间隔门限确定下行控制信道的传输中是否有间隔,包括:
    当所述物理下行控制信道的搜索空间的最大重复次数大于或者等于所述第一间隔门限时,确定所述下行控制信道的传输中有间隔;
    当所述物理下行控制信道的搜索空间的最大重复次数小于所述第一间隔门限时,确定所述下行控制信道的传输中没有间隔;
    所述根据所述第二参数和所述第二间隔门限确定下行数据信道的传输中是否有间隔,包括:
    当所述第一有效子帧数大于或者等于所述第二间隔门限时,确定所述下行数据信道的传 输中有间隔;
    当所述第一有效子帧数小于所述第二间隔门限时,确定所述下行数据信道的传输中没有间隔;
    其中,所述第一间隔门限和所述第二间隔门限是***配置的;或者,
    所述第一间隔门限是***配置的,所述第二间隔门限根据所述第一间隔门限与预设常数确定,所述预设常数为大于或者等于1,且小于或者等于10的整数;或者,
    所述第一间隔门限是***配置的,所述第二间隔门限根据所述第一间隔门限与第三间隔门限确定,所述第三间隔门限是***配置的。
  10. 根据权利要求9所述的方法,其特征在于,
    所述第一有效子帧数为承载所述下行控制信息调度的多个传输块中的第一个传输块的物理下行共享信道所占用的有效子帧数;或者,
    所述第一有效子帧数为承载所述下行控制信息调度的多个传输块中的任意一个传输块的物理下行共享信道所占用的有效子帧数;或者,
    所述第一有效子帧数为承载所述下行控制信息调度的多个传输块的物理下行共享信道所占用的有效子帧数。
  11. 一种网络设备,其特征在于,所述网络设备包括:
    处理模块,用于确定第一参数、第二参数、第一间隔门限和第二间隔门限;用于根据所述第一参数和所述第一间隔门限确定下行控制信道的传输中是否有间隔,以及用于根据所述下行控制信道的传输中是否有间隔的确定结果,使用发送模块通过所述下行控制信道向终端设备发送下行控制信息;用于根据所述第二参数和所述第二间隔门限确定下行数据信道的传输中是否有间隔,以及用于根据所述下行数据信道的传输中是否有间隔的确定结果,使用所述发送模块通过所述下行数据信道向所述终端设备发送一个或多个传输块,所述下行控制信息用于调度所述一个或多个传输块;
    其中,所述第一参数和所述第二参数不同,且所述第一间隔门限和所述第二间隔门限相同;或者,
    所述第一参数和所述第二参数相同,且所述第一间隔门限和所述第二间隔门限不同;或者,
    所述第一参数和所述第二参数不同,且所述第一间隔门限和所述第二间隔门限不同。
  12. 根据权利要求11所述的网络设备,其特征在于,所述第一参数、所述第二参数、所述第一间隔门限和所述第二间隔门限使得相同时间段用于发送所述下行数据信道时所包括的间隔数不少于所述相同时间段用于发送所述下行控制信道时所包括的间隔数。
  13. 根据权利要求11或12所述的网络设备,其特征在于,所述第一参数和所述第二参数相同,所述第一参数为物理下行控制信道的搜索空间的最大重复次数,
    所述处理模块用于确定所述下行控制信道的传输中是否有间隔包括:
    当所述物理下行控制信道的搜索空间的最大重复次数大于或者等于所述第一间隔门限 时,确定所述下行控制信道的传输中有间隔;
    当所述物理下行控制信道的搜索空间的最大重复次数小于所述第一间隔门限时,确定所述下行控制信道的传输中没有间隔;
    所述处理模块用于确定所述下行数据信道的传输中是否有间隔包括:
    当所述物理下行控制信道的搜索空间的最大重复次数大于或者等于所述第二间隔门限时,确定所述下行数据信道的传输中有间隔;
    当所述物理下行控制信道的搜索空间的最大重复次数小于所述第二间隔门限时,确定所述下行数据信道的传输中没有间隔;
    其中,所述第一间隔门限和所述第二间隔门限是***配置的,所述第一间隔门限与所述第二间隔门限不同;或者,
    所述第一间隔门限是***配置的,所述第二间隔门限根据所述第一间隔门限与所述下行控制信息调度的传输块的数量确定;或者,
    所述第一间隔门限是***配置的,所述第二间隔门限根据所述第一间隔门限与所述下行控制信息能够调度的传输块的最大数量确定。
  14. 根据权利要求11或12所述的网络设备,其特征在于,所述第一参数为物理下行控制信道的搜索空间的最大重复次数,所述第二参数为第一有效子帧数,
    所述处理模块用于确定所述下行控制信道的传输中是否有间隔包括:
    当所述物理下行控制信道的搜索空间的最大重复次数大于或者等于所述第一间隔门限时,确定所述下行控制信道的传输中有间隔;
    当所述物理下行控制信道的搜索空间的最大重复次数小于所述第一间隔门限时,确定所述下行控制信道的传输中没有间隔;
    所述处理模块用于确定所述下行数据信道的传输中是否有间隔包括:
    当所述第一有效子帧数大于或者等于所述第二间隔门限时,确定所述下行数据信道的传输中有间隔;
    当所述第一有效子帧数小于所述第二间隔门限时,确定所述下行数据信道的传输中没有间隔;
    其中,所述第一间隔门限和所述第二间隔门限是***配置的;或者,
    所述第一间隔门限是***配置的,所述第二间隔门限根据所述第一间隔门限与预设常数确定,所述预设常数为大于或者等于1,且小于或者等于10的整数;或者,
    所述第一间隔门限是***配置的,所述第二间隔门限根据所述第一间隔门限与第三间隔门限确定,所述第三间隔门限是***配置的。
  15. 根据权利要求14所述的网络设备,其特征在于,
    所述第一有效子帧数为承载所述下行控制信息调度的多个传输块中的第一个传输块的物理下行共享信道所占用的有效子帧数;或者,
    所述第一有效子帧数为承载所述下行控制信息调度的多个传输块中的任意一个传输块的物理下行共享信道所占用的有效子帧数;或者,
    所述第一有效子帧数为承载所述下行控制信息调度的多个传输块的物理下行共享信道所 占用的有效子帧数。
  16. 一种终端设备,其特征在于,所述终端设备包括:
    处理模块,用于获取第一参数、第二参数、第一间隔门限和第二间隔门限;用于根据所述第一参数和所述第一间隔门限确定下行控制信道的传输中是否有间隔,以及用于根据所述下行控制信道的传输中是否有间隔的确定结果,使用接收模块通过所述下行控制信道从网络设备接收下行控制信息;用于根据所述第二参数和所述第二间隔门限确定下行数据信道的传输中是否有间隔,以及用于根据所述下行数据信道的传输中是否有间隔的确定结果,使用所述接收模块通过所述下行数据信道从所述网络设备接收一个或多个传输块,所述下行控制信息用于调度所述一个多个传输块;
    其中,所述第一参数和所述第二参数不同,且所述第一间隔门限和所述第二间隔门限相同;或者,
    所述第一参数和所述第二参数相同,且所述第一间隔门限和所述第二间隔门限不同;或者,
    所述第一参数和所述第二参数不同,且所述第一间隔门限和所述第二间隔门限不同。
  17. 根据权利要求16所述的终端设备,其特征在于,所述第一参数、所述第二参数、所述第一间隔门限和所述第二间隔门限使得相同时间段用于接收所述下行数据信道时所包括的间隔数不少于所述相同时间段用于接收所述下行控制信道时所包括的间隔数。
  18. 根据权利要求16或17所述的终端设备,其特征在于,所述第一参数和所述第二参数相同,所述第一参数为物理下行控制信道的搜索空间的最大重复次数,
    所述处理模块用于确定所述下行控制信道的传输中是否有间隔包括:
    当所述物理下行控制信道的搜索空间的最大重复次数大于或者等于所述第一间隔门限时,确定所述下行控制信道的传输中有间隔;
    当所述物理下行控制信道的搜索空间的最大重复次数小于所述第一间隔门限时,确定所述下行控制信道的传输中没有间隔;
    所述处理模块用于确定所述下行数据信道的传输中是否有间隔包括:
    当所述物理下行控制信道的搜索空间的最大重复次数大于或者等于所述第二间隔门限时,确定所述下行数据信道的传输中有间隔;
    当所述物理下行控制信道的搜索空间的最大重复次数小于所述第二间隔门限时,确定所述下行数据信道的传输中没有间隔;
    其中,所述第一间隔门限和所述第二间隔门限是***配置的;或者,
    所述第一间隔门限是***配置的,所述第二间隔门限根据所述第一间隔门限与所述下行控制信息调度的传输块的数量确定;或者,
    所述第一间隔门限是***配置的,所述第二间隔门限根据所述第一间隔门限与所述下行控制信息能够调度的传输块的最大数量确定。
  19. 根据权利要求16或17所述的终端设备,其特征在于,所述第一参数为物理下行控制信道的搜索空间的最大重复次数,所述第二参数为第一有效子帧数,
    所述处理模块用于确定所述下行控制信道的传输中是否有间隔包括:
    当所述物理下行控制信道的搜索空间的最大重复次数大于或者等于所述第一间隔门限时,确定所述下行控制信道的传输中有间隔;
    当所述物理下行控制信道的搜索空间的最大重复次数小于所述第一间隔门限时,确定所述下行控制信道的传输中没有间隔;
    所述处理模块用于确定所述下行数据信道的传输中是否有间隔包括:
    当所述第一有效子帧数大于或者等于所述第二间隔门限时,确定所述下行数据信道的传输中有间隔;
    当所述第一有效子帧数小于所述第二间隔门限时,确定所述下行数据信道的传输中没有间隔;
    其中,所述第一间隔门限和所述第二间隔门限是***配置的;或者,
    所述第一间隔门限是***配置的,所述第二间隔门限根据所述第一间隔门限与预设常数确定,所述预设常数为大于或者等于1,且小于或者等于10的整数;或者,
    所述第一间隔门限是***配置的,所述第二间隔门限根据所述第一间隔门限与第三间隔门限确定,所述第三间隔门限是***配置的。
  20. 根据权利要求19所述的终端设备,其特征在于,
    所述第一有效子帧数为承载所述下行控制信息调度的多个传输块中的第一个传输块的物理下行共享信道所占用的有效子帧数;或者,
    所述第一有效子帧数为承载所述下行控制信息调度的多个传输块中的任意一个传输块的物理下行共享信道所占用的有效子帧数;或者,
    所述第一有效子帧数为承载所述下行控制信息调度的多个传输块的物理下行共享信道所占用的有效子帧数。
  21. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当所述指令在计算机的处理组件上运行时,使得所述处理组件执行权利要求1至10任一所述的数据传输方法。
PCT/CN2018/108488 2018-09-28 2018-09-28 数据传输方法、设备及***、存储介质 WO2020062102A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2018/108488 WO2020062102A1 (zh) 2018-09-28 2018-09-28 数据传输方法、设备及***、存储介质
CN201880097174.0A CN112640348B (zh) 2018-09-28 2018-09-28 数据传输方法、设备及***、存储介质
EP18935390.7A EP3849122A4 (en) 2018-09-28 2018-09-28 DATA TRANSMISSION PROCESS, DEVICE AND SYSTEM, AND STORAGE MEDIA
US17/212,183 US11844070B2 (en) 2018-09-28 2021-03-25 Data transmission method, device, and system, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/108488 WO2020062102A1 (zh) 2018-09-28 2018-09-28 数据传输方法、设备及***、存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/212,183 Continuation US11844070B2 (en) 2018-09-28 2021-03-25 Data transmission method, device, and system, and storage medium

Publications (1)

Publication Number Publication Date
WO2020062102A1 true WO2020062102A1 (zh) 2020-04-02

Family

ID=69950287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/108488 WO2020062102A1 (zh) 2018-09-28 2018-09-28 数据传输方法、设备及***、存储介质

Country Status (4)

Country Link
US (1) US11844070B2 (zh)
EP (1) EP3849122A4 (zh)
CN (1) CN112640348B (zh)
WO (1) WO2020062102A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114040513A (zh) * 2021-12-13 2022-02-11 哲库科技(北京)有限公司 链路建立方法、装置、终端设备和计算机可读存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102401124B1 (ko) * 2019-02-27 2022-05-23 엘지전자 주식회사 사이드링크 통신을 수행하는 장치의 장치 능력 보고
US11937260B2 (en) * 2020-10-14 2024-03-19 Lg Electronics Inc. Method and apparatus for transmitting/receiving wireless signal in wireless communication system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107046722A (zh) * 2016-02-05 2017-08-15 中兴通讯股份有限公司 调度定时间隔的确定方法及装置
WO2018030848A1 (en) * 2016-08-12 2018-02-15 Innovative Technology Lab Co., Ltd. Method and apparatus for transmitting/receiving positioning reference signal
CN108541359A (zh) * 2016-02-05 2018-09-14 英特尔Ip公司 用于nb-iot***中的针对npdcch和npdsch的灵活时域资源映射的***和方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014021649A1 (ko) * 2012-08-01 2014-02-06 엘지전자 주식회사 데이터 송신 및 수신 방법 및 장치
CN107204825B (zh) * 2016-03-16 2019-07-12 华为技术有限公司 数据发送方法、数据接收方法、发送端设备及接收端设备
US10917875B2 (en) * 2016-06-06 2021-02-09 Qualcomm Incorporated Multicast and/or broadcast for enhanced machine type communications and/or narrowband internet-of-things
WO2020050696A1 (ko) * 2018-09-07 2020-03-12 엘지전자 주식회사 무선 통신 시스템에서 릴레이 단말의 신호 송수신 방법 및 그 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107046722A (zh) * 2016-02-05 2017-08-15 中兴通讯股份有限公司 调度定时间隔的确定方法及装置
CN108541359A (zh) * 2016-02-05 2018-09-14 英特尔Ip公司 用于nb-iot***中的针对npdcch和npdsch的灵活时域资源映射的***和方法
WO2018030848A1 (en) * 2016-08-12 2018-02-15 Innovative Technology Lab Co., Ltd. Method and apparatus for transmitting/receiving positioning reference signal

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC: "Detail on scheduling delay for PDSCH and PUSCH", 3GPP TSG RAN WGI MEETING #84BIS R1-163260, 6 April 2016 (2016-04-06), XP051080749 *
See also references of EP3849122A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114040513A (zh) * 2021-12-13 2022-02-11 哲库科技(北京)有限公司 链路建立方法、装置、终端设备和计算机可读存储介质
CN114040513B (zh) * 2021-12-13 2023-08-11 哲库科技(北京)有限公司 链路建立方法、装置、终端设备和计算机可读存储介质

Also Published As

Publication number Publication date
EP3849122A4 (en) 2021-08-18
US20210212095A1 (en) 2021-07-08
US11844070B2 (en) 2023-12-12
CN112640348A (zh) 2021-04-09
CN112640348B (zh) 2022-12-06
EP3849122A1 (en) 2021-07-14

Similar Documents

Publication Publication Date Title
US11350354B2 (en) Discovery signal transmission/reception method and apparatus for use in mobile communication system
RU2682861C2 (ru) Способы, обеспечивающие принцип &#34;слушай, прежде чем сказать&#34;, и связанные с ними ue и сетевые узлы
CN111133814B (zh) 用于传输控制信息的方法和装置
EP3498006B1 (en) Selection of a carrier in a multi-carrier operation system
EP3780765A1 (en) Paging method, base station, and user equipment
US11323998B2 (en) Hidden node detection in LTE licensed assisted access
CN110572877B (zh) 一种信息发送、接收的方法及装置
US20200275409A1 (en) Schemes for ssb to paging coreset mapping in nr
US11737036B2 (en) Method and apparatus for using indication information of time domain resource allocation
JP2022528893A (ja) 物理ダウンリンク制御チャネル(pdcch)ベースのウェイクアップ信号(wus)設定のための方法
US8848547B2 (en) Apparatus and method for signaling between a user equipment and a wireless network
US11844070B2 (en) Data transmission method, device, and system, and storage medium
WO2017113085A1 (zh) 用于随机接入的方法和装置
JP2020506577A (ja) タイマ設定を決定するための方法および装置
US11044701B2 (en) Communication method and communication apparatus
US11115844B2 (en) Method for managing enhanced physical downlink control channel, wireless communication network, computer programs and computer program products
WO2020143053A1 (en) Method, device and computer readable medium for measuring sidelink received signal strength
WO2019041261A1 (zh) 一种通信方法及设备
JP2023536236A (ja) 無線通信におけるシステム情報のスケジューリングおよび伝送のための方法、装置、およびシステム。
WO2020062105A1 (zh) 一种通信方法及装置
WO2023065874A1 (zh) 一种调度方法及装置
WO2023123383A1 (zh) 一种资源的指示方法及终端设备、网络设备
US11533124B2 (en) Method and a device for sharing resource
KR20240090685A (ko) 신호 송신 방법 및 장치, 및 정보 송신 방법 및 장치
US20220330274A1 (en) Methods and Devices for Wireless Communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018935390

Country of ref document: EP

Effective date: 20210409