WO2020060372A1 - 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 - Google Patents

무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 Download PDF

Info

Publication number
WO2020060372A1
WO2020060372A1 PCT/KR2019/012361 KR2019012361W WO2020060372A1 WO 2020060372 A1 WO2020060372 A1 WO 2020060372A1 KR 2019012361 W KR2019012361 W KR 2019012361W WO 2020060372 A1 WO2020060372 A1 WO 2020060372A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
feedback
dci
slot
dai
Prior art date
Application number
PCT/KR2019/012361
Other languages
English (en)
French (fr)
Inventor
양석철
김선욱
안준기
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to CN201980061608.6A priority Critical patent/CN112740591B/zh
Priority to US17/278,118 priority patent/US11963228B2/en
Priority to DE112019004744.2T priority patent/DE112019004744T5/de
Publication of WO2020060372A1 publication Critical patent/WO2020060372A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1685Details of the supervisory signal the supervisory signal being transmitted in response to a specific request, e.g. to a polling signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1858Transmission or retransmission of more than one copy of acknowledgement message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L2001/125Arrangements for preventing errors in the return channel

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method and apparatus for transmitting and receiving wireless signals.
  • a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • Examples of the multiple access system include a code division multiple access (CDMA) system, a frequency division multiple access (FDMA) system, a time division multiple access (TDMA) system, an orthogonal frequency division multiple access (OFDMA) system, and a single carrier frequency (SC-FDMA). division multiple access) system.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • An object of the present invention is to provide a method and an apparatus therefor for efficiently performing a wireless signal transmission and reception process.
  • a method of transmitting a signal by a wireless device in a wireless communication system comprising: performing a random access channel (RACH) process for initial access; Receiving information on an acknowledgment / negative acknowledgment (A / N) feedback method from a base station based on the RACH process; And performing an A / N feedback process based on the information on the A / N feedback method, wherein the A / N feedback process receives a plurality of data from a plurality of slot groups, The first information on A / N feedback is received through a first DCI for uplink scheduling, and based on the first information, A / N information for at least one slot group among the first and second slot groups is received.
  • PUSCH Physical Uplink Shared Channel
  • a wireless device used in a wireless communication system comprising: a memory; And a processor, wherein the processor performs a random access channel (RACH) process for initial access, and receives information on an acknowledgment / negative acknowledgment (A / N) feedback method from a base station based on the RACH process. And, based on the information on the A / N feedback method, there is provided a wireless device configured to perform an A / N feedback process including the following steps, wherein the A / N feedback process comprises a plurality of slots in a plurality of slot groups.
  • RACH random access channel
  • a / N acknowledgment / negative acknowledgment
  • Receives data receives first information on A / N feedback through a first DCI for uplink scheduling, and based on the first information, for at least one slot group among the first and second slot groups And transmitting A / N information on a Physical Uplink Shared Channel (PUSCH).
  • PUSCH Physical Uplink Shared Channel
  • the first scheduling information for scheduling the first data, and receiving the second scheduling information for scheduling the second data, wherein the first scheduling information and the second scheduling information are different slot groups It may include information indicating the index of the.
  • the first information regarding the A / N feedback may include the following information:
  • total-DAI represents the total number of scheduling in the slot group.
  • the first information regarding the A / N feedback may include the following information:
  • the first information on the A / N feedback further includes New Feedback Indicator (NFI) information on a slot group for which A / N feedback is required, and based on the value of the NFI information, for the slot group Previous A / N information or current A / N information may be transmitted through the PUSCH.
  • NFI New Feedback Indicator
  • the total-DAI information on the slot group for which the A / N feedback is required may be obtained through the second DCI for downlink scheduling detected before the first DCI.
  • the PUSCH can be transmitted on a U-band (unlicensed band).
  • the wireless device may include at least a terminal, a network, and an autonomous vehicle that can communicate with other autonomous vehicles other than the wireless device.
  • wireless signal transmission and reception can be efficiently performed in a wireless communication system.
  • 3GPP system which is an example of a wireless communication system, and a general signal transmission method using them.
  • FIG. 2 illustrates the structure of a radio frame.
  • 3 illustrates a resource grid of slots.
  • FIG. 5 shows an example in which a physical channel is mapped in a self-completion slot.
  • PUSCH Physical Uplink Shared Channel
  • FIG. 9 illustrates a wireless communication system supporting unlicensed bands.
  • FIG. 10 illustrates a method of occupying resources within an unlicensed band.
  • FIG. 11 is a flowchart of a Type 1 CAP operation of a terminal for uplink signal transmission.
  • FIG 17 illustrates a DRX (Discontinuous Reception) operation that can be applied to the present invention.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented by radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented with wireless technologies such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, and Evolved UTRA (E-UTRA).
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) is part of Evolved UMTS (E-UMTS) using E-UTRA
  • LTE-A Advanced
  • 3GPP NR New Radio or New Radio Access Technology
  • 3GPP LTE / LTE-A is an evolved version of 3GPP LTE / LTE-A.
  • next-generation communication As more communication devices require a larger communication capacity, a need for an improved mobile broadband communication has emerged compared to a conventional radio access technology (RAT).
  • massive MTC Machine Type Communications
  • massive MTC Machine Type Communications
  • design of a communication system considering services / terminals sensitive to reliability and latency is being discussed.
  • next-generation RAT considering eMBB (enhanced Mobile BroadBand Communication), massive MTC, and URL-LC (Ultra-Reliable and Low Latency Communication) is being discussed, and in the present invention, for convenience, the technology is NR (New Radio or New RAT). It is called.
  • 3GPP NR is mainly described, but the technical spirit of the present invention is not limited thereto.
  • a terminal receives information through a downlink (DL) from a base station, and the terminal transmits information through an uplink (UL) to the base station.
  • the information transmitted and received by the base station and the terminal includes data and various control information, and various physical channels exist according to the type / use of the information they transmit and receive.
  • 1 is a diagram for explaining physical channels used in a 3GPP NR system and a general signal transmission method using them.
  • an initial cell search operation such as synchronizing with the base station is performed.
  • the terminal receives an SSB (Synchronization Signal Block) from the base station.
  • the SSB includes a Primary Synchronization Signal (PSS), a Secondary Synchronization Signal (SSS), and a Physical Broadcast Channel (PBCH).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • the terminal synchronizes with the base station based on the PSS / SSS, and acquires information such as cell identity (cell identity).
  • the terminal may acquire intra-cell broadcast information based on the PBCH.
  • the UE may check a downlink channel state by receiving a downlink reference signal (DL RS) in an initial cell search step.
  • DL RS downlink reference signal
  • the UE Upon completion of the initial cell search, the UE receives the physical downlink control channel (PDCCH) according to the physical downlink control channel (PDCCH) and the physical downlink control channel information in step S102, and more specific System information can be obtained.
  • PDCCH physical downlink control channel
  • the terminal may perform a random access procedure (Random Access Procedure) such as steps S103 to S106 to complete the access to the base station.
  • a random access procedure such as steps S103 to S106 to complete the access to the base station.
  • the UE transmits a preamble through a physical random access channel (PRACH) (S103), and a response message for the preamble through a physical downlink control channel and a corresponding physical downlink shared channel. It may be received (S104).
  • PRACH physical random access channel
  • S104 contention resolution procedures
  • contention resolution procedures such as transmission of additional physical random access channels (S105) and physical downlink control channels and corresponding physical downlink shared channel reception (S106) ).
  • the UE that has performed the above-described procedure is a general uplink / downlink signal transmission procedure, and then receives a physical downlink control channel / physical downlink shared channel (S107) and a physical uplink shared channel (PUSCH) / A physical uplink control channel (PUCCH) transmission (S108) may be performed.
  • the control information transmitted by the terminal to the base station is collectively referred to as uplink control information (UCI).
  • UCI includes HARQ ACK / NACK (Hybrid Automatic Repeat and reQuest Acknowledgement / Negative-ACK), SR (Scheduling Request), CSI (Channel State Information), and the like.
  • CSI includes Channel Quality Indicator (CQI), Precoding Matrix Indicator (PMI), and Rank Indication (RI).
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • RI Rank Indication
  • UCI is generally transmitted through PUCCH, but can be transmitted through PUSCH when control information and traffic data should be simultaneously transmitted. In addition, UCI may be aperiodically transmitted through PUSCH by a network request / instruction.
  • each radio frame has a length of 10 ms, and is divided into two 5 ms half-frames (HFs). Each half-frame is divided into 5 1ms subframes (Subframe, SF). The subframe is divided into one or more slots, and the number of slots in the subframe depends on SCS (Subcarrier Spacing).
  • Each slot includes 12 or 14 orthogonal frequency division multiplexing (OFDM) symbols according to a cyclic prefix (CP). When a normal CP is used, each slot contains 14 OFDM symbols. When an extended CP is used, each slot includes 12 OFDM symbols.
  • OFDM orthogonal frequency division multiplexing
  • Table 1 illustrates that when a CP is normally used, the number of symbols for each slot, the number of slots for each frame, and the number of slots for each subframe vary according to SCS.
  • Table 2 illustrates that when an extended CP is used, the number of symbols for each slot, the number of slots for each frame, and the number of slots for each subframe vary according to the SCS.
  • the structure of the frame is only an example, and the number of subframes, the number of slots, and the number of symbols in the frame can be variously changed.
  • OFDM numerology eg, SCS
  • a (absolute time) section of a time resource eg, SF, slot, or TTI
  • a time unit e.g. a time unit (TU)
  • the symbol may include an OFDM symbol (or CP-OFDM symbol), an SC-FDMA symbol (or a Discrete Fourier Transform-spread-OFDM, DFT-s-OFDM symbol).
  • a slot contains multiple symbols in the time domain. For example, in the case of a normal CP, one slot includes 14 symbols, but in the case of an extended CP, one slot includes 12 symbols.
  • the carrier wave includes a plurality of subcarriers in the frequency domain.
  • RB Resource Block
  • the bandwidth part (BWP) is defined as a plurality of consecutive physical RBs (PRBs) in the frequency domain, and may correspond to one numerology (eg, SCS, CP length, etc.).
  • the carrier may include up to N (eg, 5) BWPs. Data communication is performed through the activated BWP, and only one BWP can be activated for one terminal.
  • Each element in the resource grid is referred to as a resource element (RE), and one complex symbol may be mapped.
  • RE resource element
  • a frame is characterized by a self-contained structure in which a DL control channel, DL or UL data, UL control channel, etc. can all be included in one slot.
  • a DL control channel hereinafter, DL control region
  • the last M symbols in the slot can be used to transmit the UL control channel (hereinafter, UL control region).
  • N and M are each an integer of 0 or more.
  • the resource region hereinafter referred to as a data region
  • a time gap for DL-to-UL or UL-to-DL switching may exist between the control region and the data region.
  • Each section was listed in chronological order.
  • the PDCCH may be transmitted in the DL control region, and the PDSCH may be transmitted in the DL data region.
  • PUCCH may be transmitted in the UL control region, and PUSCH may be transmitted in the UL data region.
  • the GP provides a time gap in the process of the base station and the terminal switching from the transmission mode to the reception mode or the process from the reception mode to the transmission mode. In a subframe, some symbols at a time point of switching from DL to UL may be set to GP.
  • the PDCCH carries DCI (Downlink Control Information).
  • DCI Downlink Control Information
  • DL-SCH downlink shared channel
  • UL-SCH uplink shared channel
  • PCH paging information for a paging channel
  • It carries system information on DL-SCH, resource allocation information for upper layer control messages such as random access response transmitted on PDSCH, transmission power control command, activation / release of CS (Configured Scheduling), and the like.
  • DCI includes a cyclic redundancy check (CRC), and the CRC is masked / scrambled with various identifiers (eg, Radio Network Temporary Identifier, RNTI) according to the owner or usage of the PDCCH.
  • RNTI Radio Network Temporary Identifier
  • the CRC is masked with a terminal identifier (eg, Cell-RNTI, C-RNTI).
  • P-RNTI Paging-RNTI
  • SIB System Information Block
  • SI-RNTI System Information RNTI
  • SI-RNTI System Information RNTI
  • the PDCCH is about a random access response, the CRC is masked with RA-RNTI (Random Access-RNTI).
  • the PDCCH is composed of 1, 2, 4, 8, and 16 control channel elements (CCEs) according to an aggregation level (AL).
  • CCE is a logical allocation unit used to provide a PDCCH of a predetermined code rate according to a radio channel condition.
  • CCE consists of six Resource Element Groups (REGs).
  • REG is defined by one OFDM symbol and one (P) RB.
  • the PDCCH is transmitted through CORESET (Control Resource Set).
  • CORESET is defined as a set of REGs with a given pneumonology (eg, SCS, CP length, etc.). Multiple CORESETs for one UE may overlap in the time / frequency domain.
  • CORESET may be set through system information (eg, Master Information Block, MIB) or UE-specific upper layer (eg, Radio Resource Control, RRC, layer) signaling. Specifically, the number of RBs and the number of OFDM symbols (up to 3) constituting the CORESET may be set by higher layer signaling.
  • system information eg, Master Information Block, MIB
  • UE-specific upper layer eg, Radio Resource Control, RRC, layer
  • RRC Radio Resource Control
  • the number of RBs and the number of OFDM symbols (up to 3) constituting the CORESET may be set by higher layer signaling.
  • the UE monitors PDCCH candidates.
  • the PDCCH candidate indicates CCE (s) that the UE should monitor for PDCCH detection.
  • Each PDCCH candidate is defined as 1, 2, 4, 8, 16 CCEs according to AL.
  • Monitoring includes (blind) decoding of PDCCH candidates.
  • the set of PDCCH candidates monitored by the terminal is defined as a PDCCH search space (SS).
  • the search space includes a common search space (CSS) or a UE-specific search space (USS).
  • the UE may acquire DCI by monitoring PDCCH candidates in one or more search spaces set by MIB or higher layer signaling.
  • Each CORESET is associated with one or more search spaces, and each search space is associated with one COREST.
  • the search space can be defined based on the following parameters.
  • -controlResourceSetId indicates CORESET related to the search space
  • -monitoringSymbolsWithinSlot indicates the PDCCH monitoring symbol in the slot (eg, the first symbol (s) of CORESET)
  • PDCCH monitoring
  • One or more PDCCH (monitoring) opportunities may be configured within a slot.
  • Table 3 illustrates features by search space type.
  • Type Search Space RNTI Use Case Type0-PDCCH Common SI-RNTI on a primary cell SIB Decoding Type0A-PDCCH Common SI-RNTI on a primary cell SIB Decoding Type1-PDCCH Common RA-RNTI or TC-RNTI on a primary cell Msg2, Msg4 decoding in RACH Type2-PDCCH Common P-RNTI on a primary cell Paging Decoding Type3-PDCCH Common INT-RNTI, SFI-RNTI, TPC-PUSCH-RNTI, TPC-PUCCH-RNTI, TPC-SRS-RNTI, C-RNTI, MCS-C-RNTI, or CS-RNTI (s) UE Specific C-RNTI, or MCS-C-RNTI, or CS-RNTI (s) User specific PDSCH decoding
  • Table 4 illustrates DCI formats transmitted on the PDCCH.
  • DCI format 0_0 is used to schedule TB-based (or TB-level) PUSCH
  • DCI format 0_1 is TB-based (or TB-level) PUSCH or CBG (Code Block Group) -based (or CBG-level) PUSCH It can be used to schedule.
  • DCI format 1_0 is used to schedule the TB-based (or TB-level) PDSCH
  • DCI format 1_1 is used to schedule the TB-based (or TB-level) PDSCH or CBG-based (or CBG-level) PDSCH (DL grant DCI).
  • DCI format 0_0 / 0_1 may be referred to as UL grant DCI or UL scheduling information
  • DCI format 1_0 / 1_1 may be referred to as DL grant DCI or UL scheduling information
  • DCI format 2_0 is used to deliver dynamic slot format information (eg, dynamic SFI) to the terminal
  • DCI format 2_1 is used to deliver downlink pre-Emption information to the terminal.
  • DCI format 2_0 and / or DCI format 2_1 may be delivered to UEs in a corresponding group through a group common PDCCH (PDCCH), which is a PDCCH delivered to UEs defined as one group.
  • PDCH group common PDCCH
  • DCI format 0_0 and DCI format 1_0 may be referred to as a fallback DCI format
  • DCI format 0_1 and DCI format 1_1 may be referred to as a non-fallback DCI format.
  • the DCI size / field configuration remains the same regardless of the terminal setting.
  • the non-fallback DCI format the DCI size / field configuration is changed according to a terminal setting.
  • PDSCH carries downlink data (eg, DL-SCH transport block, DL-SCH TB), and modulation methods such as QPSK (Quadrature Phase Shift Keying), 16 QAM (Quadrature Amplitude Modulation), 64 QAM, and 256 QAM are applied. do.
  • a codeword is generated by encoding TB.
  • PDSCH can carry up to two codewords. Scrambling and modulation mapping are performed for each codeword, and modulation symbols generated from each codeword may be mapped to one or more layers. Each layer is mapped to a resource together with a DMRS (Demodulation Reference Signal) and is generated as an OFDM symbol signal and transmitted through a corresponding antenna port.
  • DMRS Demodulation Reference Signal
  • UCI Uplink Control Information
  • UCI includes:
  • SR Service Request: Information used to request UL-SCH resources.
  • HARQ-ACK Hybrid Automatic Repeat reQuest
  • Acknowledgement This is a response to a downlink data packet (eg, codeword) on the PDSCH. Indicates whether a downlink data packet has been successfully received.
  • HARQ-ACK 1 bit may be transmitted in response to a single codeword, and HARQ-ACK 2 bits may be transmitted in response to two codewords.
  • the HARQ-ACK response includes positive ACK (simply, ACK), negative ACK (NACK), DTX or NACK / DTX.
  • HARQ-ACK is mixed with HARQ ACK / NACK and ACK / NACK.
  • MIMO Multiple input multiple output
  • PMI Precoding Matrix Indicator
  • Table 5 illustrates PUCCH formats. It can be divided into Short PUCCH (format 0, 2) and Long PUCCH (format 1, 3, 4) according to the PUCCH transmission length.
  • PUCCH format 0 carries UCI with a size of up to 2 bits and is mapped and transmitted based on a sequence. Specifically, the terminal transmits a specific UCI to the base station by transmitting one of a plurality of sequences through PUCCH in PUCCH format 0. The UE transmits a PUCCH in PUCCH format 0 in PUCCH resource for setting a corresponding SR only when transmitting a positive SR.
  • PUCCH format 1 carries UCI of up to 2 bits in size, and the modulation symbol is spread in the time domain by an orthogonal cover code (OCC) (which is set differently depending on whether frequency hopping is performed).
  • OCC orthogonal cover code
  • DMRS is transmitted on a symbol in which a modulation symbol is not transmitted (ie, time division multiplexing (TDM)).
  • PUCCH format 2 carries a UCI having a bit size larger than 2 bits, and a modulation symbol is transmitted through DMRS and FDM (Frequency Division Multiplexing).
  • DM-RS is located at symbol indices # 1, # 4, # 7, and # 10 in a given resource block at a density of 1/3.
  • PN Pulseudo Noise sequence is used for the DM_RS sequence.
  • frequency hopping may be activated.
  • PUCCH format 3 does not perform terminal multiplexing in the same physical resource blocks, and carries a UCI having a bit size larger than 2 bits.
  • PUCCH resources in PUCCH format 3 do not include orthogonal cover codes.
  • the modulation symbol is transmitted through DMRS and Time Division Multiplexing (TDM).
  • PUCCH format 4 supports multiplexing up to 4 UEs in the same physical resource block, and carries UCI having a bit size larger than 2 bits.
  • PUCCH resource of PUCCH format 3 includes an orthogonal cover code.
  • the modulation symbol is transmitted through DMRS and Time Division Multiplexing (TDM).
  • PUSCH carries uplink data (eg, UL-SCH transport block, UL-SCH TB) and / or uplink control information (UCI), and CP-OFDM (Cyclic Prefix-Orthogonal Frequency Division Multiplexing) waveform or It is transmitted based on a DFT-s-OFDM (Discrete Fourier Transform-spread-Orthogonal Frequency Division Multiplexing) waveform.
  • DFT-s-OFDM Discrete Fourier Transform-spread-Orthogonal Frequency Division Multiplexing
  • the UE when transform precoding is not possible (eg, transform precoding is disabled), the UE transmits a PUSCH based on the CP-OFDM waveform, and when transform precoding is possible (eg, transform precoding is enabled), the UE is CP- PUSCH may be transmitted based on an OFDM waveform or a DFT-s-OFDM waveform.
  • PUSCH transmission is dynamically scheduled by UL grant in DCI, or semi-static based on upper layer (eg, RRC) signaling (and / or Layer 1 (L1) signaling (eg, PDCCH)). Can be scheduled (configured grant).
  • PUSCH transmission may be performed on a codebook basis or a non-codebook basis.
  • the UE can detect the PDCCH in slot #n.
  • the PDCCH includes downlink scheduling information (eg, DCI formats 1_0 and 1_1), and the PDCCH indicates DL assignment-to-PDSCH offset (K0) and PDSCH-HARQ-ACK reporting offset (K1).
  • DCI formats 1_0 and 1_1 may include the following information.
  • -Frequency domain resource assignment indicates the RB set allocated to the PDSCH
  • K0 indicating the starting position (eg, OFDM symbol index) and length (eg, the number of OFDM symbols) of the PDSCH in the slot.
  • -HARQ process number (4 bits): indicates the HARQ process ID (Identity) for data (eg, PDSCH, TB)
  • the UE may transmit UCI through PUCCH in slot # (n + K1).
  • the UCI includes an HARQ-ACK response to the PDSCH.
  • the HARQ-ACK response may be composed of 1-bit.
  • the HARQ-ACK response may consist of 2-bits when spatial bundling is not configured and 1-bits when spatial bundling is configured.
  • the HARQ-ACK transmission time for a plurality of PDSCHs is designated as slot # (n + K1)
  • the UCI transmitted in slot # (n + K1) includes an HARQ-ACK response for a plurality of PDSCHs.
  • a plurality of parallel DL HARQ processes exist for DL transmission in the base station / terminal.
  • a plurality of parallel HARQ processes allow DL transmission to be continuously performed while waiting for HARQ feedback for success or unsuccessful reception of the previous DL transmission.
  • Each HARQ process is associated with a medium access control (MAC) layer HARQ buffer.
  • MAC medium access control
  • Each DL HARQ process manages state variables related to the number of transmissions of a MAC PDU (Physical Data Block) in the buffer, HARQ feedback for the MAC PDU in the buffer, and the current redundancy version.
  • Each HARQ process is distinguished by an HARQ process ID.
  • the UE can detect the PDCCH in slot #n.
  • the PDCCH includes uplink scheduling information (eg, DCI formats 0_0 and 0_1).
  • DCI formats 0_0 and 0_1 may include the following information.
  • -Frequency domain resource assignment indicates the RB set allocated to PUSCH
  • -Time domain resource assignment indicates the slot offset K2, the starting position (eg, symbol index) and length (eg, the number of OFDM symbols) of the PUSCH in the slot.
  • the start symbol and length may be indicated through SLIV (Start and Length Indicator Value), or may be indicated respectively.
  • the UE may transmit the PUSCH in slot # (n + K2) according to the scheduling information of slot #n.
  • PUSCH includes UL-SCH TB.
  • UCI may be transmitted through PUSCH as illustrated (UCI piggyback or PUSCH piggyback). 8 illustrates a case in which HARQ-ACK and CSI are carried on PUSCH resources.
  • a cell operating in a license band (hereinafter, L-band) is defined as an LCell, and a carrier of the LCell is defined as a (DL / UL) licensed component carrier (LCC).
  • L-band license band
  • U-band unlicensed band
  • UCells cells operating in an unlicensed band
  • U-band carriers of UCells
  • UCCs Unlicensed Component Carriers
  • the carrier of the cell may mean the operating frequency (eg, center frequency) of the cell.
  • Cell / carrier eg, Component Carrier, CC
  • Cell / carrier eg, Component Carrier, CC
  • CC Component Carrier
  • one terminal can transmit and receive signals to and from a base station through a plurality of merged cells / carriers.
  • one CC may be set as a primary CC (PCC), and the other CC may be set as a secondary CC (SCC).
  • the specific control information / channel eg, CSS PDCCH, PUCCH
  • PCC Physical channels Control Channel
  • LCC may be set to PCC and UCC may be set to SCC.
  • one specific LCC may be set as PCC and the other LCC may be set as SCC.
  • 9 (a) corresponds to LAA of a 3GPP LTE system.
  • 9 (b) illustrates a case in which a terminal and a base station transmit and receive signals through one or more UCCs without an LCC (standalone (SA) mode). in this case.
  • SA standalone
  • One of the UCCs can be set to PCC and the other UCC can be set to SCC.
  • PUCCH, PUSCH, and PRACH transmission may be supported in NR UCell. In the unlicensed band of the 3GPP NR system, both NSA mode and SA mode can be supported.
  • a communication node in an unlicensed band must determine whether a channel of another communication node (s) is used before transmitting a signal. Specifically, the communication node may check whether other communication node (s) are transmitting the signal by performing CS (Carrier Sensing) before transmitting the signal. When it is determined that other communication node (s) do not transmit a signal, it is defined that a clear channel assessment (CCA) has been confirmed.
  • CS Carrier Sensing
  • the communication node determines the channel state as busy when energy higher than the CCA threshold is detected in the channel, otherwise the channel state Can be judged as children.
  • the CCA threshold is specified as -62dBm for a non-Wi-Fi signal and -82dBm for a Wi-Fi signal. If it is determined that the channel status is idle, the communication node can start signal transmission from UCell.
  • LBT List-Before-Talk
  • CAP Channel Access Procedure
  • FBE Frame Based Equipment
  • LBE Load Based Equipment
  • FBE is a channel occupancy time (eg, 1 to 10 ms), which means the time at which a communication node can continue transmission when a channel is successfully connected, and an idle period corresponding to at least 5% of the channel occupancy time. (idle period) constitutes one fixed frame
  • CCA is defined as the operation of observing the channel during the CCA slot (at least 20 ⁇ s) at the end of the idle period.
  • the communication node periodically performs CCA on a fixed frame basis, transmits data during the channel occupancy time when the channel is in an unoccupied state, and holds transmission when the channel is occupied and holds the next cycle. Wait for the CCA slot.
  • the communication node first q ⁇ ⁇ 4, 5,... , After setting the value of 32 ⁇ , perform CCA for one CCA slot. If the channel is not occupied in the first CCA slot, data can be transmitted by securing a time of up to (13/32) q ms length. If the channel is occupied in the first CCA slot, the communication node randomly generates N ⁇ ⁇ 1, 2,... , q ⁇ is selected and stored as the initial value of the counter. Subsequently, when the channel is not occupied in the CCA slot unit while sensing the channel status in the CCA slot unit, the value stored in the counter is decreased by one. When the counter value becomes 0, the communication node can secure a time of maximum (13/32) q ms length and transmit data.
  • a plurality of CAP Types can be defined for uplink transmission in an unlicensed band.
  • Type 1 or Type 2 CAP may be defined for uplink transmission.
  • the terminal may perform a CAP (eg, Type 1 or Type 2) set / instructed by the base station for transmission of the uplink signal.
  • FIG. 11 is a flowchart of a Type 1 CAP operation of a terminal for uplink signal transmission.
  • the terminal may initiate a CAP for signal transmission through the unlicensed band (S1510).
  • the terminal may arbitrarily select the backoff counter N in the contention window CW according to step 1.
  • the N value is set to the initial value N init (S1520).
  • N init is selected as any value between 0 and CW p .
  • the terminal ends the CAP process (S1532).
  • the UE may perform Tx burst transmission (S1534).
  • the terminal decreases the backoff counter value by 1 according to step 2 (S1540).
  • the UE checks whether the channel of UCell (s) is in the idle state (S1550), and if the channel is in the idle state (S1550; Y), checks whether the backoff counter value is 0 (S1530). Conversely, if the channel is not in the idle state in step S1550, that is, if the channel is busy (S1550; N), the terminal according to step 5, the delay time longer than the slot time (eg, 9us) (defer duration T d ; 25usec or more) During the process, it is checked whether the corresponding channel is in an idle state (S1560). If the channel is in the idle state during the delay period (S1570; Y), the UE can resume the CAP process again.
  • the delay time longer than the slot time eg, 9us
  • the delay period may be composed of 16usec intervals and m p consecutive slot times immediately following (eg, 9us).
  • the terminal performs step S1560 again to check whether the channel is idle during the new delay period.
  • Table 6 shows m p , minimum CW (CW min, p ), maximum CW (CW max, p ), and maximum channel occupancy time (MCOT) applied to the CAP according to the channel access priority class (p). (T ulmcot, p ) and the allowed CW sizes are illustrated.
  • the CW size (CWS) applied to the Type 1 CAP can be determined based on various methods. For example, the CWS may be adjusted based on whether to toggle the New Data Indicator (NDI) value for at least one HARQ processor associated with HARQ_ID_ref, which is the HARQ process ID of the UL-SCH in a certain time interval (eg, reference TU).
  • NDI New Data Indicator
  • the UE performs signal transmission using the Type 1 CAP associated with the channel access priority class p on the carrier, the UE receives all priority classes p ⁇ ⁇ 1 when NDI values for at least one HARQ process associated with HARQ_ID_ref are toggled.
  • Set CW p CW min, p in, 2,3,4 ⁇ , otherwise set CW p to next higher allowed value in all priority classes p ⁇ ⁇ 1,2,3,4 ⁇ (next higher allowed value).
  • the reference subframe n ref (or reference slot n ref ) is determined as follows.
  • the UE receives the UL grant in the subframe (or slot) n g , and starts from the subframe (or slot) n 0 within the subframe (or slot) n 0 , n 1 , ... n w and has no gap
  • the reference subframe (or slot) n ref is a subframe (or slot) n 0 .
  • T short_ul 25us
  • the UE may perform uplink transmission (eg, PUSCH) in the unlicensed band immediately after sensing is finished (immediately after).
  • HARQ-ACK feedback operation based on U-band PUCCH / PUSCH transmission of the UE may be necessary (hereinafter, HARQ) -ACK is commonly referred to as A / N for convenience).
  • PUCCH / PUSCH indicates PUCCH or PUSCH.
  • the base station schedules DL data transmission to a UE through a Channel Occupancy Time (COT) obtained by performing an LBT (CCA) operation, and HARQ-ACK for receiving the DL data from the UE through the same COT period
  • COT Channel Occupancy Time
  • CCA LBT
  • HARQ-ACK feedback for DL data reception scheduled / transmitted through a specific COT interval is different after the corresponding COT.
  • the process of instructing to transmit through the COT section may also be considered.
  • this specification proposes a method for configuring / transmitting HARQ-ACK feedback (hereinafter, A / N) in a U-band.
  • a / N configuration / transmission method may be performed in consideration of LBT operation and COT configuration.
  • the matters proposed in this specification are not limited to the HARQ-ACK feedback transmission method through PUCCH / PUSCH, and similarly may be applied to other UCI (eg, CSI, SR) transmission methods through PUCCH / PUSCH.
  • the matters proposed in the present specification are not limited to LBT-based U-band operation, and can be similarly applied to L-band (or U-band) operation without LBT.
  • a plurality of CCs are replaced by a plurality of BWPs (indexes) configured in one (or more) CC / (serving) cells, or a plurality of CC / (serving) cells composed of a plurality of BWPs ( That is, the combination of CC (index) and BWP (index)).
  • UCI refers to control information that the UE transmits through UL.
  • the UCI includes various types of control information (ie, UCI type).
  • UCI includes HARQ-ACK, SR, CSI.
  • -HARQ-ACK indicates whether DL data on PDSCH (eg, transport block (TB), codeword (CW)) has been successfully received.
  • HARQ-ACK 1 bit may be transmitted in response to single DL data
  • HARQ-ACK 2 bits may be transmitted in response to two DL data.
  • HARQ-ACK response / result includes positive ACK (ACK), negative ACK (NACK), DTX or NACK / DTX.
  • HARQ-ACK is mixed with ACK / NACK, A / N, and AN.
  • -HARQ process number / ID represents the number or identifier of the HARQ process.
  • the HARQ process manages state variables related to the number of transmissions of the MAC PDU in the buffer, HARQ feedback for the MAC PDU in the buffer, and the current redundancy version.
  • PUCCH means a physical layer UL channel for UCI transmission.
  • PUCCH resources set by the base station and / or indicating transmission are respectively referred to as A / N PUCCH resources, SR PUCCH resources, and CSI PUCCH resources.
  • PUSCH means a physical layer UL channel for UL data transmission.
  • -Slot means a basic time unit (TU), or time interval, for data scheduling.
  • the slot includes a plurality of symbols.
  • the symbol includes an OFDM-based symbol (eg, CP-OFDM symbol, DFT-s-OFDM symbol).
  • symbols, OFDM-based symbols, OFDM symbols, CP-OFDM symbols, and DFT-s-OFDM symbols may be replaced with each other.
  • the A / N triggering DCI includes at least DL grant DCI, and may further include a specific DCI that does not schedule UL grant DCI and / or PDSCH / PUSCH transmission (in addition to DL grant DCI).
  • the base station may instruct one of the plurality of candidate HARQ timings via (DL grant) DCI.
  • the UE operates to transmit A / N feedback for (multiple) PDSCH reception in a plurality of slots (or slot sets; for convenience, a bundling window) corresponding to the entire candidate HARQ timing set through the indicated HARQ timing. can do.
  • HARQ timing means PDSCH-to-A / N timing / interval.
  • HARQ timing may be expressed in units of slots.
  • the A / N information may include response information for PDSCH reception in slot # (m-i).
  • slot # (m-i) corresponds to a slot corresponding to the candidate HARQ timing.
  • / Can be transmitted ie, A / N feedback for all 4 slots).
  • the A / N response to PDSCH reception in slot # n + 1 / # n + 3 may be processed as a NACK.
  • (DL grant) cI-DAI (counter Downlink Assignment Index) and / or t-DAI (total-DAI) may be signaled through DCI.
  • the c-DAI may indicate the number of PDSCHs corresponding to the (DL grant) DCI.
  • the t-DAI may report the total number of PDSCHs (or the total number of slots in which the PDSCHs are present) scheduled to the current (slot). Accordingly, the UE may operate to transmit A / N for the PDSCH corresponding to the c-DAI values from the initial value of c-DAI to the last t-DAI value (received) through the indicated HARQ timing.
  • c-DAI and t-DAI may have the same meaning. Accordingly, t-DAI may be included in the DCI (DL grant) only when the number of serving cells is plural.
  • c-DAI is first counted in the cell-domain and then the scheduling order of the PDSCH counted in the time-domain (or the order of (serving cell, slot) in which the PDSCH is present). I can tell you.
  • the t-DAI can report the total number of PDSCHs (or the total number of (serving cells, slots)) in which PDSCHs are currently scheduled until (slot).
  • c-DAI / t-DAI may be defined based on PDCCH.
  • the PDSCH is replaced with a PDCCH
  • a slot in which the PDCCH is present may be replaced with a PDCCH monitoring opportunity in which a PDCCH (or DCI) associated with the PDCCH is present.
  • c-DAI / t-DAI may be indicated using 2-bit values, respectively.
  • a number greater than 4 can be indicated as follows using modulo operation.
  • n represents an integer of 0 or more.
  • FIG. 12 (b) illustrates a case in which DAI is signaled through DCI (DL grant) in the same situation as in FIG. 12 (a).
  • DL grant DCI an operation of delaying (pending / deferring) A / N feedback transmission for a corresponding PDSCH may be indicated.
  • DCI Downlink Control Channel
  • all DL HARQ process IDs, or a specific partial DL HARQ process ID (s) can be instructed to transmit A / N feedback for a PDSCH corresponding to (pooling).
  • a / N feedback may be transmitted through set / instructed timing based on a specific signal (eg, RRC or DCI signaling).
  • a / N pooling may be indicated through a DL grant (eg, DCI format 1_0 / 1_1), UL grant (eg, DCI format 0_0 / 0_1), or other DCI (eg, UE (group) common DCI).
  • DCI indicating A / N pooling is referred to as pooling DCI.
  • the HARQ process ID to be pooled may be preset / defined or may be indicated through the pooling DCI.
  • a / N pooling may be indicated in units of all / group / individual HARQ process IDs.
  • HpIDs HARQ process IDs assigned to each PDSCH may be 0, 3, and 2.
  • the UE may transmit A / N
  • a / N pooling corresponds to HARQ process ID (indicated through pooling DCI) It can be defined as pooling the A / N transmission for the PDSCH or the A / N transmission for the PDSCH corresponding to the t-DAI value (indicated through the pooling DCI). In the latter case, the UE may transmit A / N information for PDSCH reception corresponding to the initial value of c-DAI to t-DAI at a time.
  • timing-A indicating an actual A / N transmission timing
  • a reference corresponding to a (DL PDSCH) slot group targeted for A / N feedback may be signaled.
  • the terminal may operate to transmit A / N feedback for a slot group corresponding to timing-D (receiving PDSCH through it) through a timing indicated by timing-A.
  • the A / N payload may be mapped (eg, ordered) in the slot index order belonging to the corresponding slot group.
  • the UE may operate to transmit A / N feedback for a slot group (ie, PDSCH reception through it) corresponding to slot # (n + K-L) through slot # (n + K).
  • the UE may operate to transmit A / N feedback for a slot group (receiving PDSCH through this) corresponding to slot # (n + K-L) through slot # (n + K).
  • the terminal 1) through the timing indicated by timing-A) timing- Combining A / N feedback for a bundling window corresponding to A (receiving PDSCH through it) and 2) A / N feedback for a slot group corresponding to timing-D (receiving PDSCH through this) (at the same time, for example For example, it may operate to transmit (via one PUCCH / PUSCH).
  • timing-D a specific value (eg, 0) is set, it may indicate that there is no corresponding slot group (A / N feedback request therefor).
  • a specific part of the slots belonging to a bundling window corresponding to timing-A (or a group of slots corresponding to timing-D) through DCI e.g., when A / N triggering DCI is the same as DL grant DCI
  • it is possible to instruct to send A / N feedback only for the first or last slot e.g, through a timing-D indication field.
  • a structure of signaling triggering of A / N feedback transmission for timing-A / timing-D and a corresponding slot group may be considered through a terminal (group) -common DCI.
  • the reference A / N timing indicated by timing-D (the corresponding A / N feedback target slot group) may be limited.
  • a / N feedback for PDSCH reception corresponding to all or some (pre-specified) specific HARQ process IDs (not a specific slot group) is transmitted through a specific state of the timing-D indication field. You can instruct it.
  • a / N transmission PUCCH / PUSCH resources (sets) may be set differently for each timing-D value.
  • a / N transmission PUCCH / PUSCH resources (sets) may be set differently for each slot group corresponding to each timing-D value.
  • a timing-D value corresponding to each A / N transmission PUCCH / PUSCH resource (set) (eg, corresponding to an A / N feedback target slot group to the corresponding PUCCH / PUSCH resource (set)) may be set differently. You can.
  • a slot group corresponding to each PUCCH / PUSCH resource (set) is set differently, and accordingly, a timing-D value may be set differently.
  • one slot group size (eg, the number N of slots in a single slot group, or the maximum number N of PDSCHs that can be scheduled in a single slot group) is set in advance, 1) applicable through DL grant DCI
  • the current-ID (c-ID) indicating the slot group ID to which the slot in which the DCI or the corresponding PDSCH is transmitted belongs is signaled, and 2) the (DL PDSCH) slot for A / N feedback through the A / N triggering DCI Feedback-ID (f-ID) indicating the group ID may be signaled.
  • the UE may transmit A / N feedback for a slot group (receiving PDSCH through it) corresponding to feedback-ID through a time point (eg, a slot) indicated by A / N transmission timing.
  • a time point eg, a slot
  • the current-ID having the same value as the feedback-ID was previously signaled / received, that is, the current-ID having the same value as the feedback-ID through the DL grant DCI is signaled / Contains the received slot.
  • the A / N payload is received through DL grant DCI (eg, 1 to N) for a slot group corresponding to feedback-ID (with counter-DAI signaled through DL grant DCI). ) It can be ordered in the order of counter-DAI values.
  • counter-DAI may be determined / signaled to have a continuous value (starting from an initial value (eg, 1)) in one slot group ID, as shown in FIG. 12 (b). That is, counter-DAI values can be determined / signaled independently between different slot groups.
  • the slot group may be defined in the form of a DAI sequence consisting of counter-DAI values from 1 to N corresponding to the same slot group ID value (indicated through DCI). In this case, the slot group may be composed of discontinuous slots based on the received / detected counter-DAI.
  • the slot group ID and the DAI sequence ID may be replaced / compatible with each other.
  • the terminal is through timing indicated by timing-A, 1) timing A / N feedback for a bundle group corresponding to -A or a slot group corresponding to current-ID (receiving PDSCH through it), and 2) A / N for a slot group corresponding to feedback-ID (receiving PDSCH through this) N feedback may be operated to combine (eg, concatenate) and transmit (concurrently, for example, through one PUCCH / PUSCH).
  • feedback-ID is signaled / instructed through A / N triggering DCI (eg, DL grant DCI, UL grant DCI), which is the total target of A / N feedback transmission / request through the DCI.
  • PDSCH triggering DCI
  • a total-ID indicating the number of slot groups (IDs) is signaled and a specific slot group ID determined from total-ID and current-ID is applied as a feedback-ID.
  • feedback- ID can be determined / applied to X (which is the same value as current-ID).
  • total-DAI and / or NFI for feedback-ID (the corresponding (PDSCH) slot group) signaled / directed through A / N triggering DCI (eg, DL grant DCI, UL grant DCI) New Feedback Indicator) means total-DAI and / or NFI for feedback-ID determined according to Method 1, or other- having a different value from current-ID (regardless of the value indicated as total-ID). It may mean total-DAI and / or NFI for ID (the corresponding slot group).
  • Method 2 The method for determining other-ID and applying total-DAI / NFI is referred to as “Method 2” for convenience.
  • the NFI is 1-bit information
  • the A / N feedback (hereinafter referred to as the previous A / N feedback) transmitted at a previous (eg, recent) time point is (a) properly detected / received by the base station, (b) the base station Whether detection / reception has failed may be signaled.
  • the UE configures the updated A / N feedback by processing the rest of the part except for the A / N corresponding to the PDSCH scheduled after the previous A / N transmission by NACK or DTX (feedback configuration / transmission omitted). / Can transmit.
  • the UE may configure / transmit A / N feedback by maintaining the rest except the A / N corresponding to the PDSCH scheduled after the previous A / N transmission.
  • the NFI value toggled from the NFI value received through the previous DCI is indicated through the current DCI.
  • the NFI value that is not toggled from the NFI value received through the previous DCI may be indicated through the current DCI.
  • feedback-ID (or other-ID) and / or the corresponding slot group (A / N feedback request therefor) via DCI (eg, if A / N triggering DCI is the same as DL grant DCI) None can be indicated (eg, via a feedback-ID (or total-ID) indication field). For example, when the feedback-ID is indicated with the same value as the current-ID (or the total-ID value is 1), the UE configures A / N feedback only for the (one) slot group corresponding to the current-ID. / Can operate to send.
  • the current-ID is signaled through the terminal (group) -common DCI # 1 and / or the feedback-ID and triggering of A / N feedback transmission for the corresponding slot group is the terminal (group) -common DCI #
  • the signaling structure through 2 can also be considered.
  • the terminal (group) -common DCI # 1 and # 2 may be DCIs separate from each other, or may be configured with the same DCI.
  • total-DAI is signaled through A / N triggering DCI, and the UE is assigned to a slot group corresponding to feedback-ID (or a bundling window corresponding to timing-A or a slot group corresponding to current-ID).
  • About (1 to) counter-DAI value (s) from total-DAI value to A / N feedback can be configured / transmitted. That is, A / N feedback can be configured / transmitted only for slot (s) (PDSCHs scheduled through this) corresponding to counter-DAI value (s) from 1 to total-DAI value.
  • the total-DAI may be signaled for a slot group corresponding to feedback-ID (or other-ID) and a slot group corresponding to current-ID (or a bundling window corresponding to timing-A) through DCI, respectively.
  • the terminal may operate to configure / transmit A / N feedback based on total-DAI for each slot group.
  • information related to A / N feedback configuration indicated through DL grant DCI includes at least (i) current-ID, (ii) counter / total for a slot group (PDSCHs scheduled through this) corresponding to current-ID. -DAI, and (iii) feedback-ID (or total-ID).
  • the total-DAI for the slot group (PDSCHs scheduled through this) corresponding to the feedback-ID (or other-ID) may be further included in the DL grant DCI (ie, information related to A / N feedback configuration).
  • current-ID (i) current-ID, (ii) total-DAI for slot groups corresponding to current-ID (PDSCHs scheduled through this), (iii) feedback-ID (or total- ID), (iv) total-DAI for a slot group corresponding to feedback-ID (or other-ID) may be indicated.
  • current-ID and feedback-ID can be defined / generated as two feedback-IDs # 1 and # 2.
  • the UE may operate to transmit A / N feedback for the slot groups corresponding to feedback-ID # 1 and # 2 (PUCCH or) through PUSCH (eg, in the form of UCI piggyback).
  • the current-ID (and / or feedback-ID (or total-ID)) may not be included in the UL grant DCI. That is, signaling through the UL grant DCI of current-ID (and / or feedback-ID (or total-ID)) may be omitted.
  • the UE may operate to configure / transmit A / N feedback (on the PUSCH) based on current-ID (and / or feedback-ID (or total-ID)) information received through the DL grant DCI. .
  • it may be indicated through a specific field that there is no A / N feedback transmission request (eg, A / N feedback target slot group) through the UL grant DCI.
  • the specific field is, for example, feedback-ID (or total-ID) and / or current-ID (and / or feedback-ID (or other-ID) and / or total-DAI corresponding to current-ID) It may include an indication field.
  • current-ID and starting-ID may be indicated through A / N triggering DCI (eg, DL grant DCI, UL grant DCI).
  • the UE configures / transmits A / N feedback for slot group set A (receiving PDSCH through it) corresponding to (multiple) consecutive slot group ID (s) from starting-ID to current-ID. It can work.
  • the terminal may operate to configure / transmit A / N feedback only for the (one) slot group corresponding to the current-ID.
  • current-ID can be defined / generated as ending-ID.
  • information related to A / N feedback configuration indicated through DL grant DCI includes at least (i) current-ID, (ii) counter / total for a slot group (PDSCHs scheduled through this) corresponding to current-ID. -DAI, (iii) starting-ID.
  • DL grant DCI ie, A / N
  • Feedback configuration related information is DL grant DCI (ie, A / N) Feedback configuration related information).
  • the UE may operate to transmit A / N feedback for a set of slot groups corresponding to starting-ID to current-ID (PUCCH or) through PUSCH (eg, in the form of UCI piggyback).
  • current-ID may not be included in the UL grant DCI. That is, signaling through the UL grant DCI of current-ID (and / or starting-ID) may be omitted.
  • the UE may operate to configure / transmit A / N feedback (on PUSCH) based on current-ID (and / or starting-ID) information received through DL grant DCI.
  • a / N feedback transmission request eg, A / N feedback target slot group
  • the specific field may include, for example, a starting-ID and / or current-ID (and / or corresponding total-DAI) indication field.
  • the number of slot groups to be configured for (single) A / N feedback transmission simultaneously when applying the above-described method or any other method can be changed dynamically.
  • a / N triggering DCI eg, DL grant DCI
  • / or UL grant DCI may be applied to each of a plurality of slot groups (excluding slot groups corresponding to current-ID) to be configured for A / N feedback.
  • Commonly applied (single) total-DAI can be indicated.
  • the slot group ID (a corresponding A / N feedback target slot group) indicated by current-ID / feedback-ID (or total-ID).
  • current-ID / feedback-ID or total-ID
  • the specific state of the current-ID / feedback-ID (or total-ID) indication field corresponding to all (not specified slot group) or specific (partially specified) HARQ process IDs It may be instructed to transmit A / N feedback for PDSCH reception.
  • the A / N transmission PUCCH / PUSCH resource (set) for each slot group ID value (for the slot group corresponding to the ID) is set differently, or corresponds to each A / N transmission PUCCH / PUSCH resource (set)
  • the slot group ID value (eg, A / N feedback target to the corresponding PUCCH / PUSCH resource (set)) may be set differently.
  • the slot group ID is Opt 1-1) for all multiple carriers at the same time (eg, slot timing) or time interval.
  • the same slot group ID is indicated / regulated, or the Opt 1-2) frequency (carrier) -first time (slot group) -second (second) sequence indicates the slot group ID individually for each carrier Can be.
  • the counter-DAI is: 1) frequency (carrier) -first time within one slot group (ID) (with Opt 1-1 applied); Slot)-PDSCH scheduling counter value is determined / indicated in second order, or 2) PDSCH scheduling counter value is independently determined / indicated within one slot group (ID) for each carrier (with Opt 1-2 applied) Can be.
  • a / N feedback configuration / transmission and related basic operation methods will be described as follows.
  • the tA / N method and the pA / N method are substantially the same as those described with reference to FIGS. 12 to 13, and are described again below to classify the A / N feedback configuration / transmission method (or A / N codebook method). .
  • Timing-based A / N feedback method (t-A / N method)
  • the base station may instruct one of the plurality of candidate HARQ timings via (DL grant) DCI.
  • the UE may operate to transmit A / N feedback for (multiple) PDSCH reception in a plurality of slots (or slot sets; bundling windows) corresponding to the entire candidate HARQ timing set through the indicated HARQ timing.
  • HARQ timing means PDSCH-to-A / N timing / interval.
  • HARQ timing may be expressed in units of slots.
  • the above-described method is referred to as a Type-1 A / N codebook.
  • (DL grant) cI-DAI (counter Downlink Assignment Index) and / or t-DAI (total-DAI) may be signaled through DCI.
  • the c-DAI may indicate the number of PDSCHs corresponding to the (DL grant) DCI.
  • the t-DAI may report the total number of PDSCHs (or the total number of slots in which the PDSCHs are present) scheduled to the current (slot). Accordingly, the UE may operate to transmit A / N for the PDSCH corresponding to the c-DAI values from the initial value of c-DAI to the last t-DAI value (received) through the indicated HARQ timing.
  • the above-described method is referred to as a Type-2 A / N codebook.
  • the current-ID may be signaled through the DL grant DCI, and the feedback-ID may be signaled through the A / N triggering DCI.
  • current-ID is used to indicate the slot group ID to which the slot to which the DL grant DCI or the corresponding PDSCH is transmitted belongs.
  • the feedback-ID is used to indicate the (DL PDSCH) slot group ID that is the A / N feedback target.
  • total-ID is signaled through DCI, and feedback-ID can be inferred from total-ID based on Method 1.
  • the UE may transmit A / N feedback for a slot group (receiving PDSCH through this) corresponding to feedback-ID through a time point indicated by A / N transmission timing.
  • the UE may perform a time point indicated by timing-A. , 1) A / N feedback for a bundling window corresponding to timing-A or a slot group corresponding to current-ID (receiving PDSCH through it), and 2) slot group corresponding to feedback-ID (receiving PDSCH through this) It is operable to combine A / N feedback for and transmit (at the same time, for example, through one PUCCH / PUSCH).
  • DL grant DCI an operation of delaying (pending / deferring) A / N feedback transmission for a corresponding PDSCH may be indicated.
  • DCI Downlink Control Channel
  • all DL HARQ process IDs, or a specific partial DL HARQ process ID (s) can be instructed to transmit A / N feedback for a PDSCH corresponding to (pooling).
  • a / N feedback may be transmitted through set / instructed timing based on a specific signal (eg, RRC or DCI signaling).
  • a specific signal eg, RRC or DCI signaling
  • a / N pooling corresponds to HARQ process ID (indicated through pooling DCI) It can be defined as pooling the A / N transmission for the PDSCH or the A / N transmission for the PDSCH corresponding to the t-DAI value (indicated through the pooling DCI). In the latter case, the UE may transmit A / N information for PDSCH reception corresponding to the initial value of c-DAI to t-DAI at a time.
  • switching between a t-A / N method and a p-A / N method may be indicated through the DL grant DCI. That is, it is possible to instruct whether to configure / transmit A / N feedback by applying a t-A / N method or a p-A / N method through DL grant DCI.
  • a / N pending and A / N pooling for the p-A / N scheme may be indicated through the same DL grant DCI. For example, when the DL grant DCI indicates the p-A / N scheme, the DL grant DCI may further indicate whether to pending A / N feedback transmission or to indicate pooling.
  • switching between the A / N pending operation for applying the t-A / N method and the p-A / N method may be indicated through the DL grant DCI. That is, it is possible to indicate whether to apply the t-A / N method through the DL grant DCI or to pending A / N feedback transmission for the p-A / N method.
  • the A / N pulling operation for the p-A / N scheme may be indicated through UL grant DCI or (terminal (group)) common DCI.
  • switching between t-A / N scheme and A / N pending for p-A / N may be indicated through DL grant DCI including PDSCH scheduling. That is, it is possible to indicate whether to apply t-A / N through DL grant DCI or to Pending A / N transmission for p-A / N scheme.
  • a / N pooling for the p-A / N scheme may be indicated through DL grant DCI that does not include PDSCH scheduling.
  • a DCN that triggers A / N feedback transmission (eg, DL grant or UL grant) for the purpose of / N PUCCH (Contention Window Size (CWS) update for LBT operation accompanying UL transmission such as PUSCH).
  • CWS Contention Window Size
  • 1-bit NFI can be signaled through.
  • the NFI may indicate the following information in the form of a toggle.
  • the UE configures the updated A / N feedback by processing the rest of the part except for the A / N corresponding to the PDSCH scheduled after the previous A / N transmission by NACK or DTX (feedback configuration / transmission omitted). / Can transmit.
  • the UE may configure / transmit A / N feedback by maintaining the rest except the A / N corresponding to the PDSCH scheduled after the previous A / N transmission.
  • the NFI value toggled from the NFI value received through the previous DCI is indicated through the current DCI.
  • the NFI value that is not toggled from the NFI value received through the previous DCI may be indicated through the current DCI.
  • the UE resets the CWS for A / N PUCCH (and / or PUSCH) transmission to a minimum value when receiving the toggled NFI, while increasing the CWS value (in a certain unit) when the non-toggled NFI is received. Can operate.
  • DCI (format) DCI (format) that is configurable (that is, changeable) in a field configuration and each field size in the DCI format is referred to as a non-fallback DCI, and DCI field configuration and each size are configured.
  • a DCI (format) that is not possible (ie, fixed) is called a fallback DCI.
  • a DCI not specifically referred to as a fallback DCI in this specification may mean a non-fallback DCI.
  • A Basically, the following information can be included (for convenience, basic information).
  • total-ID is signaled through DCI, and feedback-ID information can be determined based on Method 1
  • NFI information for A / N feedback corresponding to current-ID ie, NFI for current-ID
  • Type-3 codebook eg, CTI (Codebook Type Indicator) signaling indicating which A / N codebook is configured / transmitted from Type-2a and Type-3
  • NFI information ie, NFI for Type-3 codebook-based A / N feedback may be additionally signaled through DCI.
  • CTI information may be explicitly signaled using a dedicated 1-bit or implicitly signaled in the following manner.
  • NFI for feedback-ID (or NFI for other-ID) bit / CTI information can be signaled through a field.
  • Type-3 is indicated through CTI, the HARQ process ID group to be A / N feedback target and / or through counter-DAI, total-DAI bit / field, and / or NFI for current-ID bit / field, and / or CC / cell group may be indicated (in CA situation) and / or NFI for Type-3 information may be signaled
  • the fallback DCI format can include / signal only current-ID information and / or counter-DAI information (related to (PDSCH) slot group corresponding to the ID) among the above-described basic information (for convenience, Case 1 )
  • the fallback DCI format may include / signal all the basic information except total-DAI for current-ID.
  • the terminal is the information most recently detected / received through the non-fallback DL DCI (eg, feedback-ID (or, total-ID), NFI, CTI) Based on the A / N codebook (payload) can be configured / transmitted.
  • the non-fallback DL DCI associated with the recently detected / received information is only the DCI indicated as the HARQ-ACK (PUCCH) transmission time point (slot) indicated through the fallback DL DCI as the HARQ-ACK (PUCCH) transmission time point. May be limited.
  • the UE configures A / N feedback only for the slot group corresponding to the current-ID according to Case 1 / Transmit and operate assuming / applying in the toggled form (or non-toggled form) for NFI for current-ID (compared to the previous A / N feedback or compared to the previously received (ie, recent) NFI bit) Yes.
  • the terminal can operate by assuming / applying that the CTI is indicated as a Type-2a codebook.
  • total-DAI for feedback-ID (or total-DAI for other-ID) information corresponds to A / N sub-codebook corresponding to TB unit transmission and CBG unit transmission. Can be individually signaled for A / N sub-codebook
  • A Basically, the following information can be included (for convenience, basic information).
  • first-ID Total-DAI information for the first (PDSCH) slot group ID
  • Second-ID Total-DAI information for the second (PDSCH) slot group ID
  • first-ID and second-ID may correspond to slot group index 0 and 1, respectively.
  • first-ID and second-ID can be set / replaced with current-ID and feedback-ID (or other-ID), respectively.
  • additional current-ID information and feedback-ID (or total-ID) information may be further signaled through DCI.
  • other-ID can be determined as the slot group ID having a different value from the current-ID based on Method 2.
  • the UL grant DCI may not include slot group ID / index-related information / signaling.
  • the UE may operate to configure / transmit the A / N codebook (payload) based on the slot group ID / index information most recently detected / received through the DL grant DCI.
  • the DL grant DCI associated with the slot group ID / index may be limited to only the DCI indicating the PUSCH transmission time (slot) scheduled through the UL grant DCI as the HARQ-ACK transmission time for the PDSCH.
  • a / N feedback transmission (via PUSCH) may be indicated to the UE without additional DL (PDSCH) scheduling / transmission from the base station.
  • the UL grant DCI may not include NFI information for A / N feedback.
  • the UE may operate to configure / transmit an A / N codebook (payload) based on the most recently detected / received NFI information through DL grant DCI (for each (PDSCH) slot group).
  • the DL grant DCI associated with the NFI information may be limited to only the DCI indicating the PUSCH transmission time (slot) scheduled through the UL grant DCI as the HARQ-ACK transmission time for the PDSCH.
  • NFI information for Type-3 codebook-based A / N feedback may be additionally signaled through DCI.
  • the fallback DCI format may be in a form (omitted) in which all of the basic information is not included / signaled.
  • the fallback DCI format may include / signal all basic information.
  • the UE For information that is not included / signaled in the UL grant DCI, the UE A / N codebook based on the most recently detected / received information (eg, slot group ID / index, NFI, CTI) through DL grant DCI ( Payload).
  • the DL grant DCI associated with the recently detected / received information may be limited to only DCI indicating a PUSCH transmission time (slot) scheduled through UL grant DCI as a HARQ-ACK transmission time for PDSCH.
  • the UE transmits the most through DL grant DCI. It can operate to configure / transmit an A / N codebook (payload) based on recently detected / received information (eg, slot group ID / index, total-DAI, NFI, CTI).
  • the DL grant DCI associated with the recently detected / received information may be limited to only DCI indicating a CG-PUSCH transmission time (slot) as a HARQ-ACK transmission time for PDSCH.
  • total-DAI eg, total-DAI for first-ID and total-DAI for second-ID
  • the base station instructs / recognizes that there is no A / N feedback to be transmitted due to piggyback on the PUSCH. You may need a way to do it. For this, the following DCI signaling and operation may be considered.
  • the total-DAI bit in the UL grant DCI is indicated as '11' (or the total-DAI value is 4), and a bundling window period corresponding to a PUSCH transmission time point (or previous (eg, recent) A / N feedback
  • a bundling window period corresponding to a PUSCH transmission time point or previous (eg, recent) A / N feedback
  • the NFI bit indicated through the UL grant DCI is compared with or before the previous A / N feedback.
  • the UE may operate such that no A / N is piggybacked on the PUSCH.
  • This method can be applied to a structure for signaling NFI information through UL grant DCI.
  • the DCI information check and the corresponding terminal operation may be performed independently / individually for each (PDSCH) slot group (ID).
  • One of the states signaled by the total-DAI field in the UL grant DCI can be defined as indicating "no A / N feedback" (to be piggybacked into PUSCH).
  • the UE may operate so that no A / N is piggybacked on the PUSCH.
  • This method can be applied to a structure without NFI information signaling through UL grant DCI.
  • the DCI information check and the corresponding terminal operation may be performed independently / individually for each (PDSCH) slot group (ID).
  • Only one (PDSCH) slot group (eg, first-ID) is indicated through the first-ID and second-ID (or current-ID and feedback-ID (or total-ID)) bits / fields in the UL grant DCI. Can be.
  • a specific total-DAI field eg, total-DAI field for second-ID
  • 1) A / N feedback piggyback to PUSCH
  • the indicated slot group eg, first-ID
  • a / N to be piggybacked with PUSCH for the indicated slot group (eg, first-ID) (ie, for all slot groups (first-ID and second-ID)) May indicate no feedback.
  • the slot group ID information includes first-ID and second-ID (or current-ID and feedback-ID (or total-ID)) information)
  • PUSCH resource in the first slot ie, first-slot PUSCH
  • first PUSCH resource ie, first PUSCH
  • the first PUSCH resource composed of a specific number of symbols (or number of non-DMRS symbols) and / or a specific number of RBs (or number of REs or non-DMRS REs)
  • the first slot in which PUSCH transmission is indicated.
  • the first PUSCH resource ie, the first full-PUSCH having the same symbol duration as the slot duration (eg, a specific one of the plurality of resources) 2) (a) first-slot PUSCH, (b) first PUSCH, or (c) first full-PUSCH only, or 3) ( a) A / N feedback is applied only to the first-slot PUSCH, (b) first PUSCH, or (c) first full-PUSCH transmitted in a piggybacked form.
  • a / N codebook (payload) may be configured / transmitted based on the indication information, pended A / N presence indication information, and / or b) assumption / application of a specific (eg, default) value for the information have.
  • the DL grant DCI associated with the recently detected / received information may be limited to only the DCI indicating the PUSCH transmission time (slot) as the HARQ-ACK transmission time for the PDSCH.
  • the DL grant DCI associated with the recently detected / received information may be limited to only the DCI indicating the PUSCH transmission time (slot) as the HARQ-ACK transmission time for the PDSCH.
  • A Basically, the following information may be included (for convenience, basic information).
  • the information may indicate whether only one fallback DCI scheduling PCell (PDSCH transmission through it) is transmitted during one bundling window period.
  • the above information can be configured / signed with only 1-bit
  • Type-3 codebook eg, CTI signaling indicating which A / N codebook is configured / transmitted between Type-1 and Type-3
  • NFI information for Type-3 codebook-based A / N feedback may be additionally signaled through DCI.
  • the above information further includes A / N (that is, pended A / N) in which pending is indicated in the A / N payload configured based on the Type-1 codebook (last time), and finally A / N. Can indicate whether to configure feedback
  • the DCI format (corresponding to at least PCell / PSCell) may include / signal the basic information.
  • the fallback DCI format corresponding to the SCell may include a form in which the basic information is not included / signaled.
  • the pended A / N payload is the maximum (transmittable) CBG number set in all cells / CCs, that is, It can be determined based on the maximum value among the (transmittable) CBG numbers set for each cell / CC.
  • the pended A / N payload is the maximum number of (transmittable) TBs set in all cells / CCs, that is, set by cell / CC (Transfer possible) Can be determined based on the maximum value among TB numbers
  • A Basically, the following information may be included (for convenience, basic information).
  • NFI information for Type-3 codebook-based A / N feedback may be additionally signaled through DCI.
  • the above information further includes A / N (that is, pended A / N) in which pending is indicated in the A / N payload configured based on the Type-1 codebook (last time), and finally A / N. Can indicate whether to configure feedback
  • the fallback DCI format may include a form in which the basic information is not included / signaled.
  • the UE For information that is not included / signaled in the UL grant DCI, the UE is based on the most recently detected / received information (eg, fallback A / N status indication information, CTI, pended A / N presence indication information) through the DL grant DCI. Can operate to configure / transfer A / N codebook (payload).
  • the DL grant DCI related to the recently detected / received information may be limited to only the DCI indicating the PUSCH transmission time (slot) scheduled through the UL grant DCI as the HARQ-ACK transmission time for the PDSCH.
  • a / N can be piggybacked and transmitted through CG-PUSCH transmitted without DCI in the form of Configured Grant (CG), rather than scheduling involving dynamic grant DCI transmission.
  • the terminal uses the A / N codebook (payload) based on the most recently detected / received information (eg, fallback A / N indication information, CTI, pended A / N presence indication information) through DL grant DCI.
  • the most recently detected / received information eg, fallback A / N indication information, CTI, pended A / N presence indication information
  • Configurable / transmittable The DL grant DCI associated with the recently detected / received information may be limited to only the DCI indicating the CG-PUSCH transmission time (slot) as the HARQ-ACK transmission time for the PDSCH.
  • the pended A / N payload can be determined based on the maximum (transmittable) CBG number or TB number set in all cells / CCs.
  • DL / UL grant DCI information configuration and signaling operation (according to Type-2a or Type-1 A / N codebook setting and accordingly), PUCCH cell / CC (eg PCell or PSCell) configured to perform PUCCH transmission in CA situation ) Is a cell / CC operating on a U-band.
  • DL / UL grant DCIs corresponding to all CA / cells may be configured according to the proposed method.
  • the PUCCH cell / CC is a cell / CC operating on the L-band (with the existing Type-1 or Type-2 A / N codebook set)
  • the same DL / UL grant DCI information configuration and signaling operation as before can be applied.
  • DL / UL grant DCI corresponding to all merged cells / CCs may be configured in the same way as before.
  • the Type-2a or Type-1 A / N codebook setting and the configuration / signaling of the DL / UL grant DCI information accordingly are multi-carrier, that is, a U-band in a multi-carrier / CC set of multiple cells / CCs set as a CA to the UE. It may be limited to the case that includes a cell / CC operating on. In this case, DL / UL grant DCI corresponding to all merged cells / CCs may be configured as the above-described proposed method.
  • the existing Type-1 or Type-2 A / N codebook setting and configuration / signaling of the existing DL / UL grant DCI information may be applied.
  • DL / UL grant DCI corresponding to all merged cells / CCs may be configured in the same way as before.
  • the UE may perform an RACH process for initial access (S1502). Based on the RACH process, the terminal may receive information on the A / N feedback method from the base station (S1504). For example, as part of the RRC connection process, information on A / N information configuration / feedback scheme, slot configuration information, PUCCH resource set for A / N transmission, etc. may be received through an upper layer (eg, RRC) signal. have. After the initial connection, the terminal may perform an A / N feedback process based on the information on the A / N feedback method.
  • RRC upper layer
  • the A / N feedback process receives a plurality of data in a plurality of slot groups, receives first information on A / N feedback through a first DCI for uplink scheduling, and based on the first information, It may include transmitting A / N information for at least one slot group among the first and second slot groups on a PUSCH.
  • PUSCH may be transmitted on a U-band (eg, UCell).
  • the terminal includes receiving first scheduling information for scheduling the first data, receiving second scheduling information for scheduling the second data, and the first scheduling information and the second scheduling information of different slot groups It may include information indicating the index.
  • the first information regarding A / N feedback may include various information according to the method proposed in this specification.
  • the first information regarding A / N feedback may include the following information:
  • total-DAI represents the total number of scheduling in the slot group.
  • the first information regarding A / N feedback may include the following information:
  • the first information on A / N feedback further includes NFI information on a slot group for which A / N feedback is required, and previous A / N information or current A on the slot group based on the value of NFI information.
  • / N information may be transmitted through the PUSCH.
  • some information eg, total-DAI information about a slot group for which A / N feedback is required may be obtained through a second DCI for downlink scheduling previously detected in the first DCI.
  • the A / N transmission time indicated by the second DCI may be limited to the same DCI as the PUSCH transmission time.
  • the terminal may perform a network access process to perform the above-described / suggested procedures and / or methods.
  • the system information and configuration information eg, A / N information configuration / feedback method, slot required for performing the above-described / suggested procedures and / or methods
  • a network eg, a base station
  • Configuration information necessary for the present invention may be received through upper layer (eg, RRC layer; Medium Access Control, MAC, layer, etc.) signaling.
  • a physical channel and a reference signal may be transmitted using beam-forming.
  • a beam management process may be performed to align beams between a base station and a terminal.
  • the signal proposed in the present invention can be transmitted / received using beam-forming.
  • RRC radio resource control
  • beam alignment may be performed based on SSB.
  • beam alignment in RRC CONNECTED mode may be performed based on CSI-RS (in DL) and SRS (in UL).
  • CSI-RS in DL
  • SRS in UL
  • a base station may periodically transmit an SSB (S702).
  • the SSB includes PSS / SSS / PBCH.
  • SSB can be transmitted using beam sweeping.
  • the base station may transmit Remaining Minimum System Information (RMSI) and Other System Information (OSI) (S704).
  • RMSI may include information necessary for the UE to initially access the base station (eg, PRACH configuration information). Meanwhile, the terminal performs SSB detection and then identifies the best SSB.
  • the UE may transmit the RACH preamble (Message 1, Msg1) to the base station using the PRACH resource linked / corresponding to the index (ie, beam) of the best SSB (S706).
  • the beam direction of the RACH preamble is associated with PRACH resources.
  • the association between the PRACH resource (and / or RACH preamble) and the SSB (index) may be established through system information (eg, RMSI).
  • the base station transmits a random access response (RAR) (Msg2) in response to the RACH preamble (S708), and the terminal uses Msg3 (eg, RRC Connection Request) using the UL grant in the RAR.
  • RAR random access response
  • Msg4 eg, RRC Connection Request
  • Msg4 may include RRC Connection Setup.
  • subsequent beam alignment may be performed based on SSB / CSI-RS (in DL) and SRS (in UL).
  • the terminal may receive SSB / CSI-RS (S714).
  • SSB / CSI-RS can be used by the UE to generate a beam / CSI report.
  • the base station may request the beam / CSI report to the UE through DCI (S716).
  • the UE may generate a beam / CSI report based on the SSB / CSI-RS, and transmit the generated beam / CSI report to the base station through PUSCH / PUCCH (S718).
  • the beam / CSI report may include beam measurement results, preferred beam information, and the like.
  • the base station and the terminal can switch the beam based on the beam / CSI report (S720a, S720b).
  • the terminal and the base station may perform the procedures and / or methods described / proposed above.
  • the UE and the base station have configuration information (eg, A / N information configuration / feedback method, slot configuration information, A / N) obtained from a network access process (eg, system information acquisition process, RRC connection process through RACH, etc.).
  • a network access process eg, system information acquisition process, RRC connection process through RACH, etc.
  • the information in the memory can be processed according to the proposal of the present invention to transmit a radio signal, or the received radio signal can be processed and stored in memory ( Yes, the proposed operation / method with reference to FIGS. 12-15).
  • the radio signal may include at least one of PDCCH, PDSCH, and RS (Reference Signal) for downlink, and at least one of PUCCH, PUSCH, and SRS for uplink.
  • the terminal may perform the DRX operation while performing the above-described / suggested procedures and / or methods.
  • a terminal in which DRX is set may lower power consumption by discontinuously receiving a DL signal.
  • DRX may be performed in a Radio Resource Control (RRC) _IDLE state, an RRC_INACTIVE state, or an RRC_CONNECTED state.
  • RRC_IDLE state and RRC_INACTIVE state DRX is used to discontinuously receive the paging signal.
  • RRC_CONNECTED DRX DRX performed in the RRC_CONNECTED state will be described (RRC_CONNECTED DRX).
  • the DRX cycle is composed of On Duration and Opportunity for DRX.
  • the DRX cycle defines a time interval in which On Duration is periodically repeated.
  • On Duration indicates a time period that the UE monitors to receive the PDCCH.
  • the UE performs PDCCH monitoring for On Duration.
  • the terminal operates an inactivity timer and maintains an awake state.
  • the terminal enters a sleep state after the On Duration is over. Accordingly, when DRX is set, PDCCH monitoring / reception may be discontinuously performed in the time domain in performing the above-described / suggested procedures and / or methods.
  • the PDCCH reception opportunity (eg, a slot having a PDCCH search space) may be set discontinuously according to the DRX setting.
  • PDCCH monitoring / reception may be continuously performed in the time domain in performing the above-described / suggested procedures and / or methods.
  • PDCCH reception opportunities eg, slots having a PDCCH search space
  • PDCCH monitoring may be limited in a time interval set as a measurement gap.
  • Table 7 shows the process of the terminal associated with the DRX (RRC_CONNECTED state).
  • DRX configuration information is received through higher layer (eg, RRC) signaling, and whether DRX ON / OFF is controlled by the DRX command of the MAC layer.
  • RRC higher layer
  • the UE may discontinuously perform PDCCH monitoring in performing the procedures and / or methods described / suggested in the present invention, as illustrated in FIG. 16.
  • Type of signals UE procedure 1 st step RRC signaling (MAC-CellGroupConfig) -Receive DRX configuration information 2 nd Step MAC CE ((Long) DRX command MAC CE) -Receive DRX command 3 rd Step - -Monitor a PDCCH during an on-duration of a DRX cycle
  • MAC-CellGroupConfig includes configuration information necessary to set a medium access control (MAC) parameter for a cell group.
  • MAC-CellGroupConfig may also include configuration information about DRX.
  • MAC-CellGroupConfig defines DRX and may include information as follows.
  • -Value of drx-InactivityTimer Defines the length of time period in which the UE remains awake after the PDCCH opportunity where the PDCCH indicating the initial UL or DL data is detected.
  • -Value of drx-HARQ-RTT-TimerDL Defines the length of the maximum time interval from receiving the DL initial transmission to receiving the DL retransmission.
  • -Value of drx-HARQ-RTT-TimerDL Defines the length of the maximum time interval from when the grant for UL initial transmission is received until the grant for UL retransmission is received.
  • the UE maintains the awake state and performs PDCCH monitoring at every PDCCH opportunity.
  • the communication system 1 applied to the present invention includes a wireless device, a base station and a network.
  • the wireless device means a device that performs communication using a wireless access technology (eg, 5G NR (New RAT), Long Term Evolution (LTE)), and may be referred to as a communication / wireless / 5G device.
  • a wireless access technology eg, 5G NR (New RAT), Long Term Evolution (LTE)
  • LTE Long Term Evolution
  • the wireless device includes a robot 100a, a vehicle 100b-1, 100b-2, an XR (eXtended Reality) device 100c, a hand-held device 100d, and a home appliance 100e. ), An Internet of Thing (IoT) device 100f, and an AI device / server 400.
  • IoT Internet of Thing
  • the vehicle may include a vehicle equipped with a wireless communication function, an autonomous driving vehicle, a vehicle capable of performing inter-vehicle communication, and the like.
  • the vehicle may include a UAV (Unmanned Aerial Vehicle) (eg, a drone).
  • XR devices include Augmented Reality (AR) / Virtual Reality (VR) / Mixed Reality (MR) devices, Head-Mounted Device (HMD), Head-Up Display (HUD) provided in vehicles, televisions, smartphones, It may be implemented in the form of a computer, wearable device, home appliance, digital signage, vehicle, robot, or the like.
  • the mobile device may include a smart phone, a smart pad, a wearable device (eg, a smart watch, smart glasses), a computer (eg, a notebook, etc.).
  • Household appliances may include a TV, a refrigerator, and a washing machine.
  • IoT devices may include sensors, smart meters, and the like.
  • the base station and the network may also be implemented as wireless devices, and the specific wireless device 200a may operate as a base station / network node to other wireless devices.
  • the wireless devices 100a to 100f may be connected to the network 300 through the base station 200.
  • AI Artificial Intelligence
  • the network 300 may be configured using a 3G network, a 4G (eg, LTE) network, or a 5G (eg, NR) network.
  • the wireless devices 100a to 100f may communicate with each other through the base station 200 / network 300, but may directly communicate (e.g. sidelink communication) without going through the base station / network.
  • the vehicles 100b-1 and 100b-2 may perform direct communication (e.g. Vehicle to Vehicle (V2V) / Vehicle to everything (V2X) communication).
  • the IoT device eg, sensor
  • the IoT device may directly communicate with other IoT devices (eg, sensors) or other wireless devices 100a to 100f.
  • Wireless communication / connections 150a, 150b, and 150c may be achieved between the wireless devices 100a to 100f / base station 200 and the base station 200 / base station 200.
  • the wireless communication / connection is various wireless access such as uplink / downlink communication 150a and sidelink communication 150b (or D2D communication), base station communication 150c (eg relay, IAB (Integrated Access Backhaul)). It can be achieved through technology (eg, 5G NR), and wireless devices / base stations / wireless devices, base stations and base stations can transmit / receive radio signals to each other through wireless communication / connections 150a, 150b, 150c.
  • the wireless communication / connections 150a, 150b, 150c can transmit / receive signals through various physical channels.
  • various signal processing processes eg, channel encoding / decoding, modulation / demodulation, resource mapping / demapping, etc.
  • resource allocation processes e.g., resource allocation processes, and the like.
  • FIG. 19 illustrates a wireless device that can be applied to the present invention.
  • the first wireless device 100 and the second wireless device 200 may transmit and receive wireless signals through various wireless access technologies (eg, LTE and NR).
  • ⁇ the first wireless device 100, the second wireless device 200 ⁇ is ⁇ wireless device 100x, base station 200 ⁇ and / or ⁇ wireless device 100x), wireless device 100x in FIG. ⁇ .
  • the first wireless device 100 includes one or more processors 102 and one or more memories 104, and may further include one or more transceivers 106 and / or one or more antennas 108.
  • the processor 102 controls the memory 104 and / or transceiver 106 and may be configured to implement the descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein.
  • the processor 102 may process information in the memory 104 to generate the first information / signal, and then transmit the wireless signal including the first information / signal through the transceiver 106.
  • the processor 102 may receive the wireless signal including the second information / signal through the transceiver 106 and store the information obtained from the signal processing of the second information / signal in the memory 104.
  • the memory 104 may be connected to the processor 102 and may store various information related to the operation of the processor 102.
  • the memory 104 is an instruction to perform some or all of the processes controlled by the processor 102, or to perform the descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein. You can store software code that includes
  • the processor 102 and the memory 104 may be part of a communication modem / circuit / chip designed to implement wireless communication technology (eg, LTE, NR).
  • the transceiver 106 can be coupled to the processor 102 and can transmit and / or receive wireless signals through one or more antennas 108.
  • the transceiver 106 may include a transmitter and / or receiver.
  • the transceiver 106 may be mixed with a radio frequency (RF) unit.
  • the wireless device may mean a communication modem / circuit / chip.
  • the second wireless device 200 includes one or more processors 202, one or more memories 204, and may further include one or more transceivers 206 and / or one or more antennas 208.
  • Processor 202 controls memory 204 and / or transceiver 206 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and / or operational flowcharts disclosed herein.
  • the processor 202 may process information in the memory 204 to generate third information / signal, and then transmit a wireless signal including the third information / signal through the transceiver 206.
  • the processor 202 may receive the wireless signal including the fourth information / signal through the transceiver 206 and store the information obtained from the signal processing of the fourth information / signal in the memory 204.
  • the memory 204 may be connected to the processor 202, and may store various information related to the operation of the processor 202.
  • the memory 204 is an instruction to perform some or all of the processes controlled by the processor 202, or to perform the descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein. You can store software code that includes
  • the processor 202 and the memory 204 may be part of a communication modem / circuit / chip designed to implement wireless communication technology (eg, LTE, NR).
  • the transceiver 206 can be coupled to the processor 202 and can transmit and / or receive wireless signals through one or more antennas 208.
  • Transceiver 206 may include a transmitter and / or receiver.
  • Transceiver 206 may be mixed with an RF unit.
  • the wireless device may mean a communication modem / circuit / chip.
  • one or more protocol layers may be implemented by one or more processors 102 and 202.
  • one or more processors 102, 202 may implement one or more layers (eg, functional layers such as PHY, MAC, RLC, PDCP, RRC, SDAP).
  • the one or more processors 102 and 202 may include one or more Protocol Data Units (PDUs) and / or one or more Service Data Units (SDUs) according to the descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein. Can be created.
  • PDUs Protocol Data Units
  • SDUs Service Data Units
  • the one or more processors 102, 202 may generate messages, control information, data or information according to the descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein.
  • the one or more processors 102, 202 generate signals (eg, baseband signals) including PDUs, SDUs, messages, control information, data or information according to the functions, procedures, suggestions and / or methods disclosed herein. , To one or more transceivers 106, 206.
  • One or more processors 102, 202 may receive signals (eg, baseband signals) from one or more transceivers 106, 206, and descriptions, functions, procedures, suggestions, methods and / or operational flow diagrams disclosed herein PDUs, SDUs, messages, control information, data or information may be obtained according to the fields.
  • signals eg, baseband signals
  • One or more processors 102, 202 may be referred to as a controller, microcontroller, microprocessor, or microcomputer.
  • the one or more processors 102, 202 may be implemented by hardware, firmware, software, or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gate Arrays
  • Descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed in this document may be implemented using firmware or software, and firmware or software may be implemented to include modules, procedures, functions, and the like.
  • the descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein are either firmware or software set to perform or are stored in one or more processors 102, 202, or stored in one or more memories 104, 204. It can be driven by the above processors (102, 202).
  • the descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein can be implemented using firmware or software in the form of code, instructions and / or instructions.
  • One or more memories 104, 204 may be coupled to one or more processors 102, 202, and may store various types of data, signals, messages, information, programs, codes, instructions, and / or instructions.
  • the one or more memories 104, 204 may be comprised of ROM, RAM, EPROM, flash memory, hard drive, register, cache memory, computer readable storage medium and / or combinations thereof.
  • the one or more memories 104, 204 may be located inside and / or outside of the one or more processors 102, 202. Also, the one or more memories 104 and 204 may be connected to the one or more processors 102 and 202 through various technologies such as a wired or wireless connection.
  • the one or more transceivers 106 and 206 may transmit user data, control information, radio signals / channels, and the like referred to in the methods and / or operational flowcharts of the present document to one or more other devices.
  • the one or more transceivers 106, 206 may receive user data, control information, radio signals / channels, and the like referred to in the descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein from one or more other devices. have.
  • one or more transceivers 106, 206 may be coupled to one or more processors 102, 202, and may transmit and receive wireless signals.
  • one or more processors 102, 202 can control one or more transceivers 106, 206 to transmit user data, control information, or wireless signals to one or more other devices. Additionally, the one or more processors 102, 202 may control one or more transceivers 106, 206 to receive user data, control information, or wireless signals from one or more other devices. In addition, one or more transceivers 106, 206 may be coupled to one or more antennas 108, 208, and one or more transceivers 106, 206 may be described, functions described herein through one or more antennas 108, 208.
  • the one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (eg, antenna ports).
  • the one or more transceivers 106 and 206 process the received user data, control information, radio signals / channels, etc. using one or more processors 102, 202, and receive radio signals / channels from the RF band signal. It can be converted to a baseband signal.
  • the one or more transceivers 106 and 206 may convert user data, control information, and radio signals / channels processed using one or more processors 102 and 202 from a baseband signal to an RF band signal.
  • the one or more transceivers 106, 206 may include (analog) oscillators and / or filters.
  • the wireless device 20 shows another example of a wireless device applied to the present invention.
  • the wireless device may be implemented in various forms according to use-example / service (see FIG. 18).
  • the wireless devices 100 and 200 correspond to the wireless devices 100 and 200 of FIG. 19, and various elements, components, units / units, and / or modules ).
  • the wireless devices 100 and 200 may include a communication unit 110, a control unit 120, a memory unit 130, and additional elements 140.
  • the communication unit may include a communication circuit 112 and a transceiver (s) 114.
  • the communication circuit 112 can include one or more processors 102,202 and / or one or more memories 104,204 of FIG.
  • the transceiver (s) 114 may include one or more transceivers 106,206 and / or one or more antennas 108,208 of FIG. 19.
  • the control unit 120 is electrically connected to the communication unit 110, the memory unit 130, and the additional element 140, and controls various operations of the wireless device. For example, the controller 120 may control the electrical / mechanical operation of the wireless device based on the program / code / command / information stored in the memory unit 130. In addition, the control unit 120 transmits information stored in the memory unit 130 to the outside (eg, another communication device) through the wireless / wired interface through the communication unit 110, or externally (eg, through the communication unit 110) Information received through a wireless / wired interface from another communication device) may be stored in the memory unit 130.
  • the outside eg, another communication device
  • Information received through a wireless / wired interface from another communication device may be stored in the memory unit 130.
  • the additional element 140 may be variously configured according to the type of wireless device.
  • the additional element 140 may include at least one of a power unit / battery, an input / output unit (I / O unit), a driving unit, and a computing unit.
  • wireless devices include robots (FIGS. 16, 100A), vehicles (FIGS. 18, 100B-1, 100B-2), XR devices (FIGS. 18, 100C), portable devices (FIGS. 18, 100D), and household appliances. (Fig. 18, 100e), IoT device (Fig.
  • digital broadcasting terminal digital broadcasting terminal
  • hologram device public safety device
  • MTC device medical device
  • fintech device or financial device
  • security device climate / environment device
  • It may be implemented in the form of an AI server / device (FIGS. 18 and 400), a base station (FIGS. 18 and 200), a network node, and the like.
  • the wireless device may be movable or used in a fixed place depending on the use-example / service.
  • various elements, components, units / parts, and / or modules in the wireless devices 100 and 200 may be connected to each other through a wired interface, or at least some of them may be connected wirelessly through the communication unit 110.
  • the control unit 120 and the communication unit 110 are connected by wire, and the control unit 120 and the first unit (eg, 130 and 140) are connected through the communication unit 110. It can be connected wirelessly.
  • each element, component, unit / unit, and / or module in the wireless devices 100 and 200 may further include one or more elements.
  • the controller 120 may be composed of one or more processor sets.
  • control unit 120 may include a set of communication control processor, application processor, electronic control unit (ECU), graphic processing processor, and memory control processor.
  • memory unit 130 includes random access memory (RAM), dynamic RAM (DRAM), read only memory (ROM), flash memory, volatile memory, and non-volatile memory (non- volatile memory) and / or combinations thereof.
  • Vehicles or autonomous vehicles can be implemented as mobile robots, vehicles, trains, aerial vehicles (AVs), ships, and the like.
  • the vehicle or autonomous vehicle 100 includes an antenna unit 108, a communication unit 110, a control unit 120, a driving unit 140a, a power supply unit 140b, a sensor unit 140c, and autonomous driving. It may include a portion (140d).
  • the antenna unit 108 may be configured as a part of the communication unit 110.
  • Blocks 110/130 / 140a to 140d correspond to blocks 110/130/140 in FIG. 20, respectively.
  • the communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with external devices such as other vehicles, a base station (e.g. base station, road side unit, etc.) and a server.
  • the controller 120 may perform various operations by controlling elements of the vehicle or the autonomous vehicle 100.
  • the controller 120 may include an electronic control unit (ECU).
  • the driving unit 140a may cause the vehicle or the autonomous vehicle 100 to travel on the ground.
  • the driving unit 140a may include an engine, a motor, a power train, wheels, brakes, and steering devices.
  • the power supply unit 140b supplies power to the vehicle or the autonomous vehicle 100 and may include a wired / wireless charging circuit, a battery, and the like.
  • the sensor unit 140c may obtain vehicle status, surrounding environment information, user information, and the like.
  • the sensor unit 140c includes an inertial measurement unit (IMU) sensor, a collision sensor, a wheel sensor, a speed sensor, an inclination sensor, a weight sensor, a heading sensor, a position module, and a vehicle forward / Reverse sensor, battery sensor, fuel sensor, tire sensor, steering sensor, temperature sensor, humidity sensor, ultrasonic sensor, illumination sensor, pedal position sensor, and the like.
  • the autonomous driving unit 140d maintains a driving lane, automatically adjusts speed, such as adaptive cruise control, and automatically moves along a predetermined route, and automatically sets a route when a destination is set. Technology, etc. can be implemented.
  • the communication unit 110 may receive map data, traffic information data, and the like from an external server.
  • the autonomous driving unit 140d may generate an autonomous driving route and a driving plan based on the acquired data.
  • the controller 120 may control the driving unit 140a such that the vehicle or the autonomous vehicle 100 moves along the autonomous driving path according to a driving plan (eg, speed / direction adjustment).
  • a driving plan eg, speed / direction adjustment.
  • the communication unit 110 may acquire the latest traffic information data non-periodically from an external server, and acquire surrounding traffic information data from nearby vehicles.
  • the sensor unit 140c may acquire vehicle status and surrounding environment information.
  • the autonomous driving unit 140d may update the autonomous driving route and driving plan based on newly acquired data / information.
  • the communication unit 110 may transmit information regarding a vehicle location, an autonomous driving route, and a driving plan to an external server.
  • the external server may predict traffic information data in advance using AI technology or the like based on the information collected from the vehicle or autonomous vehicles, and provide the predicted traffic information data to the vehicle or autonomous vehicles.
  • the present invention can be used in a terminal, a base station, or other equipment of a wireless mobile communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은 무선 통신 시스템에 관한 것으로서, 구체적으로 초기 접속을 위해 RACH 과정을 수행하는 단계; 상기 RACH 과정에 기반하여, A/N 피드백 방식에 대한 정보를 기지국으로부터 수신하는 단계; 및 상기 A/N 피드백 방식에 대한 정보에 기반하여, A/N 피드백 과정을 수행하는 단계를 포함하는 방법 및 이를 위한 장치에 관한 것이다.

Description

무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
본 발명은 무선 통신 시스템에 관한 것으로, 보다 상세하게는 무선 신호 송수신 방법 및 장치에 관한 것이다.
무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선통신 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템 등이 있다.
본 발명의 목적은 무선 신호 송수신 과정을 효율적으로 수행하는 방법 및 이를 위한 장치를 제공하는데 있다.
본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 양상으로, 무선 통신 시스템에서 무선 장치가 신호를 전송하는 방법에 있어서, 초기 접속을 위해 RACH(Random Access Channel) 과정을 수행하는 단계; 상기 RACH 과정에 기반하여, A/N(Acknowledgement/Negative acknowledgement) 피드백 방식에 대한 정보를 기지국으로부터 수신하는 단계; 및 상기 A/N 피드백 방식에 대한 정보에 기반하여, A/N 피드백 과정을 수행하는 단계를 포함하는 방법이 제공되며, 상기 A/N 피드백 과정은 복수의 슬롯 그룹에서 복수의 데이터를 수신하고, A/N 피드백에 관한 제1 정보를 상향링크 스케줄링을 위한 제1 DCI를 통해 수신하고, 제1 정보에 기반하여, 상기 제1 및 제2 슬롯 그룹 중 적어도 한 슬롯 그룹에 대한 A/N 정보를 PUSCH(Physical Uplink Shared Channel) 상에서 전송하는 것을 포함한다.
본 발명의 다른 양상으로, 무선 통신 시스템에 사용되는 무선 장치에 있어서, 메모리; 및 프로세서를 포함하고, 상기 프로세서는, 초기 접속을 위해 RACH(Random Access Channel) 과정을 수행하고, 상기 RACH 과정에 기반하여, A/N(Acknowledgement/Negative acknowledgement) 피드백 방식에 대한 정보를 기지국으로부터 수신하며, 상기 A/N 피드백 방식에 대한 정보에 기반하여, 하기 단계를 포함하는 A/N 피드백 과정을 수행하도록 구성되는 무선 장치가 제공되며, 상기 A/N 피드백 과정은 복수의 슬롯 그룹에서 복수의 데이터를 수신하고, A/N 피드백에 관한 제1 정보를 상향링크 스케줄링을 위한 제1 DCI를 통해 수신하고, 제1 정보에 기반하여, 상기 제1 및 제2 슬롯 그룹 중 적어도 한 슬롯 그룹에 대한 A/N 정보를 PUSCH(Physical Uplink Shared Channel) 상에서 전송하는 것을 포함한다.
바람직하게, 제1 데이터를 스케줄링 하는 제1 스케줄링 정보를 수신하고, 제2 데이터를 스케줄링 하는 제2 스케줄링 정보를 수신하는 것을 포함하고, 상기 제1 스케줄링 정보와 상기 제2 스케줄링 정보는 서로 다른 슬롯 그룹의 인덱스를 지시하는 정보를 포함할 수 있다.
바람직하게, 상기 A/N 피드백에 관한 제1 정보는 하기 정보를 포함할 수 있다:
- A/N 피드백이 요구되는 슬롯 그룹의 인덱스와 관련된 정보, 및
- 상기 슬롯 그룹에 대한 total-DAI(Downlink Assignment Index),
여기서, total-DAI는 슬롯 그룹 내 총 스케줄링 개수를 나타낸다.
바람직하게, 상기 A/N 피드백에 관한 제1 정보는 하기 정보를 포함할 수 있다:
- A/N 피드백이 요구되는 복수의 슬롯 그룹의 인덱스와 관련된 정보, 및
- 각 슬롯 그룹에 대한 개별 total-DAI.
바람직하게, 상기 A/N 피드백에 관한 제1 정보는 A/N 피드백이 요구되는 슬롯 그룹에 관한 NFI(New Feedback Indicator) 정보를 더 포함하고, 상기 NFI 정보의 값에 기반하여 상기 슬롯 그룹에 대한 이전 A/N 정보 또는 현재 A/N 정보가 상기 PUSCH를 통해 전송될 수 있다.
바람직하게, 상기 A/N 피드백이 요구되는 슬롯 그룹에 관한 total-DAI 정보는 상기 제1 DCI의 이전에 검출된 하향링크 스케줄링을 위한 제2 DCI를 통해 획득될 수 있다.
바람직하게, 상기 PUSCH는 U-밴드(unlicensed band) 상에서 전송될 수 있다.
바람직하게, 상기 무선 장치는 적어도 단말, 네트워크 및 상기 무선 장치 외의 다른 자율 주행 차량과 통신할 수 있는 자율 주행 차량을 포함할 수 있다.
본 발명에 의하면, 무선 통신 시스템에서 무선 신호 송수신을 효율적으로 수행할 수 있다.
본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 무선 통신 시스템의 일례인 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 예시한다.
도 2는 무선 프레임(radio frame)의 구조를 예시한다.
도 3은 슬롯의 자원 그리드(resource grid)를 예시한다.
도 4는 자기-완비(self-contained) 슬롯의 구조를 예시한다.
도 5는 자기-완비 슬롯 내에 물리 채널이 매핑되는 예를 도시한다.
도 6은 ACK/NACK 전송 과정을 예시한다.
도 7은 PUSCH(Physical Uplink Shared Channel) 전송 과정을 예시한다.
도 8은 제어 정보를 PUSCH에 다중화하는 예를 나타낸다.
도 9는 비면허 대역을 지원하는 무선 통신 시스템을 예시한다.
도 10은 비면허 밴드 내에서 자원을 점유하는 방법을 예시한다.
도 11은 상향링크 신호 전송을 위한 단말의 Type 1 CAP 동작 흐름도이다.
도 12~15는 본 발명의 예에 따른 신호 전송을 예시한다.
도 16은 본 발명에 적용될 수 있는 초기 접속 과정을 예시한다.
도 17은 본 발명에 적용될 수 있는 DRX(Discontinuous Reception) 동작을 예시한다.
도 18~21은 본 발명에 적용되는 통신 시스템(1)과 무선 기기를 예시한다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부이고 LTE-A(Advanced)는 3GPP LTE의 진화된 버전이다. 3GPP NR(New Radio or New Radio Access Technology)는 3GPP LTE/LTE-A의 진화된 버전이다.
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 RAT(Radio Access Technology)에 비해 향상된 모바일 브로드밴드 통신에 대한 필요성이 대두되고 있다. 또한, 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 massive MTC(Machine Type Communications)도 차세대 통신에서 고려될 주요 이슈 중 하나이다. 또한, 신뢰도(reliability) 및 지연(latency)에 민감한 서비스/단말을 고려한 통신 시스템 디자인이 논의되고 있다. 이와 같이 eMBB(enhanced Mobile BroadBand Communication), massive MTC, URLLC (Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 RAT의 도입이 논의되고 있으며, 본 발명에서는 편의상 해당 기술을 NR(New Radio 또는 New RAT)이라고 부른다.
설명을 명확하게 하기 위해, 3GPP NR을 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
무선 통신 시스템에서 단말은 기지국으로부터 하향링크(Downlink, DL)를 통해 정보를 수신하고, 단말은 기지국으로 상향링크(Uplink, UL)를 통해 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 데이터 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.
도 1은 3GPP NR 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 단말은 단계 S101에서 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다. 이를 위해 단말은 기지국으로부터 SSB(Synchronization Signal Block)를 수신한다. SSB는 PSS(Primary Synchronization Signal), SSS(Secondary Synchronization Signal) 및 PBCH(Physical Broadcast Channel)를 포함한다. 단말은 PSS/SSS에 기반하여 기지국과 동기를 맞추고, 셀 ID(cell identity) 등의 정보를 획득한다. 또한, 단말은 PBCH에 기반하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal, DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 단계 S102에서 물리 하향링크 제어 채널(Physical Downlink Control Channel, PDCCH) 및 물리 하향링크 제어 채널 정보에 따른 물리 하향링크 공유 채널(Physical Downlink Control Channel, PDSCH)을 수신하여 좀더 구체적인 시스템 정보를 획득할 수 있다.
이후, 단말은 기지국에 접속을 완료하기 위해 단계 S103 내지 단계 S106과 같은 임의 접속 과정(Random Access Procedure)을 수행할 수 있다. 이를 위해 단말은 물리 임의 접속 채널(Physical Random Access Channel, PRACH)을 통해 프리앰블(preamble)을 전송하고(S103), 물리 하향링크 제어 채널 및 이에 대응하는 물리 하향링크 공유 채널을 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S104). 경쟁 기반 임의 접속(Contention based random access)의 경우 추가적인 물리 임의 접속 채널의 전송(S105) 및 물리 하향링크 제어 채널 및 이에 대응하는 물리 하향링크 공유 채널 수신(S106)과 같은 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상향/하향링크 신호 전송 절차로서 물리 하향링크 제어 채널/물리 하향링크 공유 채널 수신(S107) 및 물리 상향링크 공유 채널(Physical Uplink Shared Channel, PUSCH)/물리 상향링크 제어 채널(Physical Uplink Control Channel, PUCCH) 전송(S108)을 수행할 수 있다. 단말이 기지국으로 전송하는 제어 정보를 통칭하여 상향링크 제어 정보(Uplink Control Information, UCI)라고 지칭한다. UCI는 HARQ ACK/NACK(Hybrid Automatic Repeat and reQuest Acknowledgement/Negative-ACK), SR(Scheduling Request), CSI(Channel State Information) 등을 포함한다. CSI는 CQI(Channel Quality Indicator), PMI(Precoding Matrix Indicator), RI(Rank Indication) 등을 포함한다. UCI는 일반적으로 PUCCH를 통해 전송되지만, 제어 정보와 트래픽 데이터가 동시에 전송되어야 할 경우 PUSCH를 통해 전송될 수 있다. 또한, 네트워크의 요청/지시에 의해 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다.
도 2는 무선 프레임(radio frame)의 구조를 예시한다. NR에서 상향링크 및 하향링크 전송은 프레임으로 구성된다. 각 무선 프레임은 10ms의 길이를 가지며, 두 개의 5ms 하프-프레임(Half-Frame, HF)으로 분할된다. 각 하프-프레임은 5개의 1ms 서브프레임(Subframe, SF)으로 분할된다. 서브프레임은 하나 이상의 슬롯으로 분할되며, 서브프레임 내 슬롯 개수는 SCS(Subcarrier Spacing)에 의존한다. 각 슬롯은 CP(cyclic prefix)에 따라 12개 또는 14개의 OFDM(Orthogonal Frequency Division Multiplexing) 심볼을 포함한다. 보통(normal) CP가 사용되는 경우, 각 슬롯은 14개의 OFDM 심볼을 포함한다. 확장(extended) CP가 사용되는 경우, 각 슬롯은 12개의 OFDM 심볼을 포함한다.
표 1은 보통 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수가 달라지는 것을 예시한다.
SCS (15*2^u) N slot symb N frame,u slot N subframe,u slot
15KHz (u=0) 14 10 1
30KHz (u=1) 14 20 2
60KHz (u=2) 14 40 4
120KHz (u=3) 14 80 8
240KHz (u=4) 14 160 16
* N slot symb: 슬롯 내 심볼의 개수
* N frame,u slot: 프레임 내 슬롯의 개수
* N subframe,u slot: 서브프레임 내 슬롯의 개수
표 2는 확장 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수가 달라지는 것을 예시한다.
SCS (15*2^u) N slot symb N frame,u slot N subframe,u slot
60KHz (u=2) 12 40 4
프레임의 구조는 예시에 불과하고, 프레임에서 서브프레임의 수, 슬롯의 수, 심볼의 수는 다양하게 변경될 수 있다.
NR 시스템에서는 하나의 단말에게 병합되는 복수의 셀들간에 OFDM 뉴모놀로지(numerology)(예, SCS)가 상이하게 설정될 수 있다. 이에 따라, 동일한 개수의 심볼로 구성된 시간 자원(예, SF, 슬롯 또는 TTI)(편의상, TU(Time Unit)로 통칭)의 (절대 시간) 구간이 병합된 셀들간에 상이하게 설정될 수 있다. 여기서, 심볼은 OFDM 심볼 (혹은, CP-OFDM 심볼), SC-FDMA 심볼 (혹은, Discrete Fourier Transform-spread-OFDM, DFT-s-OFDM 심볼)을 포함할 수 있다.
도 3은 슬롯의 자원 그리드(resource grid)를 예시한다. 슬롯은 시간 도메인에서 복수의 심볼을 포함한다. 예를 들어, 보통 CP의 경우 하나의 슬롯이 14개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 12개의 심볼을 포함한다. 반송파는 주파수 도메인에서 복수의 부반송파를 포함한다. RB(Resource Block)는 주파수 도메인에서 복수(예, 12)의 연속한 부반송파로 정의된다. BWP(Bandwidth Part)는 주파수 도메인에서 복수의 연속한 PRB(Physical RB)로 정의되며, 하나의 뉴모놀로지(numerology)(예, SCS, CP 길이 등)에 대응될 수 있다. 반송파는 최대 N개(예, 5개)의 BWP를 포함할 수 있다. 데이터 통신은 활성화된 BWP를 통해서 수행되며, 하나의 단말한테는 하나의 BWP만 활성화 될 수 있다. 자원 그리드에서 각각의 요소는 자원요소(Resource Element, RE)로 지칭되며, 하나의 복소 심볼이 매핑될 수 있다.
도 4는 자기-완비(self-contained) 슬롯의 구조를 예시한다. NR 시스템에서 프레임은 하나의 슬롯 내에 DL 제어 채널, DL 또는 UL 데이터, UL 제어 채널 등이 모두 포함될 수 있는 자기-완비 구조를 특징으로 한다. 예를 들어, 슬롯 내의 처음 N개의 심볼은 DL 제어 채널을 전송하는데 사용되고(이하, DL 제어 영역), 슬롯 내의 마지막 M개의 심볼은 UL 제어 채널을 전송하는데 사용될 수 있다(이하, UL 제어 영역). N과 M은 각각 0 이상의 정수이다. DL 제어 영역과 UL 제어 영역의 사이에 있는 자원 영역(이하, 데이터 영역)은 DL 데이터 전송을 위해 사용되거나, UL 데이터 전송을 위해 사용될 수 있다. 제어 영역과 데이터 영역 사이에는 DL-to-UL 혹은 UL-to-DL 스위칭을 위한 시간 갭이 존재할 수 있다. 일 예로, 다음의 구성을 고려할 수 있다. 각 구간은 시간 순서대로 나열되었다.
1. DL only 구성
2. UL only 구성
3. Mixed UL-DL 구성
- DL 영역 + GP(Guard Period) + UL 제어 영역
- DL 제어 영역 + GP + UL 영역
* DL 영역: (i) DL 데이터 영역, (ii) DL 제어 영역 + DL 데이터 영역
* UL 영역: (i) UL 데이터 영역, (ii) UL 데이터 영역 + UL 제어 영역
도 5는 자기-완비 슬롯 내에 물리 채널이 매핑되는 예를 도시한다. DL 제어 영역에서는 PDCCH가 전송될 수 있고, DL 데이터 영역에서는 PDSCH가 전송될 수 있다. UL 제어 영역에서는 PUCCH가 전송될 수 있고, UL 데이터 영역에서는 PUSCH가 전송될 수 있다. GP는 기지국과 단말이 송신 모드에서 수신 모드로 전환하는 과정 또는 수신 모드에서 송신 모드로 전환하는 과정에서 시간 갭을 제공한다. 서브프레임 내에서 DL에서 UL로 전환되는 시점의 일부 심볼이 GP로 설정될 수 있다.
이하, 각각의 물리 채널에 대해 보다 자세히 설명한다.
PDCCH는 DCI(Downlink Control Information)를 운반한다. 예를 들어, PCCCH (즉, DCI)는 DL-SCH(downlink shared channel)의 전송 포맷 및 자원 할당, UL-SCH(uplink shared channel)에 대한 자원 할당 정보, PCH(paging channel)에 대한 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상에서 전송되는 랜덤 접속 응답과 같은 상위 계층 제어 메시지에 대한 자원 할당 정보, 전송 전력 제어 명령, CS(Configured Scheduling)의 활성화/해제 등을 나른다. DCI는 CRC(cyclic redundancy check)를 포함하며, CRC는 PDCCH의 소유자 또는 사용 용도에 따라 다양한 식별자(예, Radio Network Temporary Identifier, RNTI)로 마스킹/스크램블 된다. 예를 들어, PDCCH가 특정 단말을 위한 것이면, CRC는 단말 식별자(예, Cell-RNTI, C-RNTI)로 마스킹 된다. PDCCH가 페이징에 관한 것이면, CRC는 P-RNTI(Paging-RNTI)로 마스킹 된다. PDCCH가 시스템 정보(예, System Information Block, SIB)에 관한 것이면, CRC는 SI-RNTI(System Information RNTI)로 마스킹 된다. PDCCH가 랜덤 접속 응답에 관한 것이면, CRC는 RA-RNTI(Random Access-RNTI)로 마스킹 된다.
PDCCH는 AL(Aggregation Level)에 따라 1, 2, 4, 8, 16개의 CCE(Control Channel Element)로 구성된다. CCE는 무선 채널 상태에 따라 소정 부호율의 PDCCH를 제공하기 위해 사용되는 논리적 할당 단위이다. CCE는 6개의 REG(Resource Element Group)로 구성된다. REG는 하나의 OFDM 심볼과 하나의 (P)RB로 정의된다. PDCCH는 CORESET(Control Resource Set)를 통해 전송된다. CORESET는 주어진 뉴모놀로지(예, SCS, CP 길이 등)를 갖는 REG 세트로 정의된다. 하나의 단말을 위한 복수의 CORESET는 시간/주파수 도메인에서 중첩될 수 있다. CORESET는 시스템 정보(예, Master Information Block, MIB) 또는 단말-특정(UE-specific) 상위 계층(예, Radio Resource Control, RRC, layer) 시그널링을 통해 설정될 수 있다. 구체적으로, CORESET을 구성하는 RB 개수 및 OFDM 심볼 개수(최대 3개)가 상위 계층 시그널링에 의해 설정될 수 있다.
PDCCH 수신/검출을 위해, 단말은 PDCCH 후보들을 모니터링 한다. PDCCH 후보는 PDCCH 검출을 위해 단말이 모니터링 해야 하는 CCE(들)을 나타낸다. 각 PDCCH 후보는 AL에 따라 1, 2, 4, 8, 16개의 CCE로 정의된다. 모니터링은 PDCCH 후보들을 (블라인드) 디코딩 하는 것을 포함한다. 단말이 모니터링 하는 PDCCH 후보들의 세트를 PDCCH 검색 공간(Search Space, SS)이라고 정의한다. 검색 공간은 공통 검색 공간(Common Search Space, CSS) 또는 단말-특정 검색 공간(UE-specific search space, USS)을 포함한다. 단말은 MIB 또는 상위 계층 시그널링에 의해 설정된 하나 이상의 검색 공간에서 PDCCH 후보를 모니터링 하여 DCI를 획득할 수 있다. 각각의 CORESET는 하나 이상의 검색 공간과 연관되고, 각 검색 공간은 하나의 COREST과 연관된다. 검색 공간은 다음의 파라미터들에 기초하여 정의될 수 있다.
- controlResourceSetId: 검색 공간과 관련된 CORESET를 나타냄
- monitoringSlotPeriodicityAndOffset: PDCCH 모니터링 주기 (슬롯 단위) 및 PDCCH 모니터링 구간 오프셋 (슬롯 단위)을 나타냄
- monitoringSymbolsWithinSlot: 슬롯 내 PDCCH 모니터링 심볼을 나타냄(예, CORESET의 첫 번째 심볼(들)을 나타냄)
- nrofCandidates: AL={1, 2, 4, 8, 16} 별 PDCCH 후보의 수 (0, 1, 2, 3, 4, 5, 6, 8 중 하나의 값)를 나타냄
* PDCCH 후보들을 모니터링을 해야 하는 기회(occasion)(예, 시간/주파수 자원)을 PDCCH (모니터링) 기회라고 정의된다. 슬롯 내에 하나 이상의 PDCCH (모니터링) 기회가 구성될 수 있다.
표 3은 검색 공간 타입별 특징을 예시한다.
Type Search Space RNTI Use Case
Type0-PDCCH Common SI-RNTI on a primary cell SIB Decoding
Type0A-PDCCH Common SI-RNTI on a primary cell SIB Decoding
Type1-PDCCH Common RA-RNTI or TC-RNTI on a primary cell Msg2, Msg4 decoding in RACH
Type2-PDCCH Common P-RNTI on a primary cell Paging Decoding
Type3-PDCCH Common INT-RNTI, SFI-RNTI, TPC-PUSCH-RNTI, TPC-PUCCH-RNTI, TPC-SRS-RNTI, C-RNTI, MCS-C-RNTI, or CS-RNTI(s)
UE Specific C-RNTI, or MCS-C-RNTI, or CS-RNTI(s) User specific PDSCH decoding
표 4는 PDCCH를 통해 전송되는 DCI 포맷들을 예시한다.
DCI format Usage
0_0 Scheduling of PUSCH in one cell
0_1 Scheduling of PUSCH in one cell
1_0 Scheduling of PDSCH in one cell
1_1 Scheduling of PDSCH in one cell
2_0 Notifying a group of UEs of the slot format
2_1 Notifying a group of UEs of the PRB(s) and OFDM symbol(s) where UE may assume no transmission is intended for the UE
2_2 Transmission of TPC commands for PUCCH and PUSCH
2_3 Transmission of a group of TPC commands for SRS transmissions by one or more UEs
DCI 포맷 0_0은 TB-기반 (또는 TB-level) PUSCH를 스케줄링 하기 위해 사용되고, DCI 포맷 0_1은 TB-기반 (또는 TB-level) PUSCH 또는 CBG(Code Block Group)-기반 (또는 CBG-level) PUSCH를 스케줄링 하기 위해 사용될 수 있다. DCI 포맷 1_0은 TB-기반 (또는 TB-level) PDSCH를 스케줄링 하기 위해 사용되고, DCI 포맷 1_1은 TB-기반 (또는 TB-level) PDSCH 또는 CBG-기반 (또는 CBG-level) PDSCH를 스케줄링 하기 위해 사용될 수 있다(DL grant DCI). DCI 포맷 0_0/0_1은 UL grant DCI 또는 UL 스케줄링 정보로 지칭되고, DCI 포맷 1_0/1_1은 DL grant DCI 또는 UL 스케줄링 정보로 지칭될 수 있다. DCI 포맷 2_0은 동적 슬롯 포맷 정보 (예, dynamic SFI)를 단말에게 전달하기 위해 사용되고, DCI 포맷 2_1은 하향링크 선취 (pre-Emption) 정보를 단말에게 전달하기 위해 사용된다. DCI 포맷 2_0 및/또는 DCI 포맷 2_1은 하나의 그룹으로 정의된 단말들에게 전달되는 PDCCH인 그룹 공통 PDCCH (Group common PDCCH)를 통해 해당 그룹 내 단말들에게 전달될 수 있다.
DCI 포맷 0_0과 DCI 포맷 1_0은 폴백(fallback) DCI 포맷으로 지칭되고, DCI 포맷 0_1과 DCI 포맷 1_1은 논-폴백 DCI 포맷으로 지칭될 수 있다. 폴백 DCI 포맷은 단말 설정과 관계없이 DCI 사이즈/필드 구성이 동일하게 유지된다. 반면, 논-폴백 DCI 포맷은 단말 설정에 따라 DCI 사이즈/필드 구성이 달라진다.
PDSCH는 하향링크 데이터(예, DL-SCH transport block, DL-SCH TB)를 운반하고, QPSK(Quadrature Phase Shift Keying), 16 QAM(Quadrature Amplitude Modulation), 64 QAM, 256 QAM 등의 변조 방법이 적용된다. TB를 인코딩하여 코드워드(codeword)가 생성된다. PDSCH는 최대 2개의 코드워드를 나를 수 있다. 코드워드 별로 스크램블링(scrambling) 및 변조 매핑(modulation mapping)이 수행되고, 각 코드워드로부터 생성된 변조 심볼들은 하나 이상의 레이어로 매핑될 수 있다. 각 레이어는 DMRS(Demodulation Reference Signal)과 함께 자원에 매핑되어 OFDM 심볼 신호로 생성되고, 해당 안테나 포트를 통해 전송된다.
PUCCH는 UCI(Uplink Control Information)를 나른다. UCI는 다음을 포함한다.
- SR(Scheduling Request): UL-SCH 자원을 요청하는데 사용되는 정보이다.
- HARQ(Hybrid Automatic Repeat reQuest)-ACK(Acknowledgement): PDSCH 상의 하향링크 데이터 패킷(예, 코드워드)에 대한 응답이다. 하향링크 데이터 패킷이 성공적으로 수신되었는지 여부를 나타낸다. 단일 코드워드에 대한 응답으로 HARQ-ACK 1비트가 전송되고, 두 개의 코드워드에 대한 응답으로 HARQ-ACK 2비트가 전송될 수 있다. HARQ-ACK 응답은 포지티브 ACK(간단히, ACK), 네거티브 ACK(NACK), DTX 또는 NACK/DTX를 포함한다. 여기서, HARQ-ACK은 HARQ ACK/NACK, ACK/NACK과 혼용된다.
- CSI(Channel State Information): 하향링크 채널에 대한 피드백 정보이다. MIMO(Multiple Input Multiple Output)-관련 피드백 정보는 RI(Rank Indicator) 및 PMI(Precoding Matrix Indicator)를 포함한다.
표 5는 PUCCH 포맷들을 예시한다. PUCCH 전송 길이에 따라 Short PUCCH (포맷 0, 2) 및 Long PUCCH (포맷 1, 3, 4)로 구분될 수 있다.
PUCCH format Length in OFDM symbols N PUCCH symb Number of bits Usage Etc
0 1 - 2 ≤2 HARQ, SR Sequence selection
1 4 - 14 ≤2 HARQ, [SR] Sequence modulation
2 1 - 2 >2 HARQ, CSI, [SR] CP-OFDM
3 4 - 14 >2 HARQ, CSI, [SR] DFT-s-OFDM(no UE multiplexing)
4 4 - 14 >2 HARQ, CSI, [SR] DFT-s-OFDM(Pre DFT OCC)
PUCCH 포맷 0는 최대 2 비트 크기의 UCI를 운반하고, 시퀀스 기반으로 매핑되어 전송된다. 구체적으로, 단말은 복수 개의 시퀀스들 중 하나의 시퀀스를 PUCCH 포맷 0인 PUCCH을 통해 전송하여 특정 UCI를 기지국으로 전송한다. 단말은 긍정 (positive) SR을 전송하는 경우에만 대응하는 SR 설정을 위한 PUCCH 자원 내에서 PUCCH 포맷 0인 PUCCH를 전송한다.
PUCCH 포맷 1은 최대 2 비트 크기의 UCI를 운반하고, 변조 심볼은 시간 영역에서 (주파수 호핑 여부에 따라 달리 설정되는) 직교 커버 코드(OCC)에 의해 확산된다. DMRS는 변조 심볼이 전송되지 않는 심볼에서 전송된다(즉, TDM(Time Division Multiplexing)되어 전송된다).
PUCCH 포맷 2는 2 비트보다 큰 비트 크기의 UCI를 운반하고, 변조 심볼은 DMRS와 FDM(Frequency Division Multiplexing)되어 전송된다. DM-RS는 1/3의 밀도로 주어진 자원 블록 내 심볼 인덱스 #1, #4, #7 및 #10에 위치한다. PN (Pseudo Noise) 시퀀스가 DM_RS 시퀀스를 위해 사용된다. 2 심볼 PUCCH 포맷 2를 위해 주파수 호핑은 활성화될 수 있다.
PUCCH 포맷 3은 동일 물리 자원 블록들 내 단말 다중화가 되지 않으며, 2 비트보다 큰 비트 크기의 UCI를 운반한다. 다시 말해, PUCCH 포맷 3의 PUCCH 자원은 직교 커버 코드를 포함하지 않는다. 변조 심볼은 DMRS와 TDM(Time Division Multiplexing)되어 전송된다.
PUCCH 포맷 4는 동일 물리 자원 블록들 내에 최대 4개 단말까지 다중화가 지원되며, 2 비트보다 큰 비트 크기의 UCI를 운반한다. 다시 말해, PUCCH 포맷 3의 PUCCH 자원은 직교 커버 코드를 포함한다. 변조 심볼은 DMRS와 TDM(Time Division Multiplexing)되어 전송된다.
PUSCH는 상향링크 데이터(예, UL-SCH transport block, UL-SCH TB) 및/또는 상향링크 제어 정보(UCI)를 운반하고, CP-OFDM(Cyclic Prefix - Orthogonal Frequency Division Multiplexing) 파형(waveform) 또는 DFT-s-OFDM(Discrete Fourier Transform - spread - Orthogonal Frequency Division Multiplexing) 파형에 기초하여 전송된다. PUSCH가 DFT-s-OFDM 파형에 기초하여 전송되는 경우, 단말은 변환 프리코딩(transform precoding)을 적용하여 PUSCH를 전송한다. 일 예로, 변환 프리코딩이 불가능한 경우(예, transform precoding is disabled) 단말은 CP-OFDM 파형에 기초하여 PUSCH를 전송하고, 변환 프리코딩이 가능한 경우(예, transform precoding is enabled), 단말은 CP-OFDM 파형 또는 DFT-s-OFDM 파형에 기초하여 PUSCH를 전송할 수 있다. PUSCH 전송은 DCI 내 UL 그랜트에 의해 동적으로 스케줄링 되거나, 상위 계층(예, RRC) 시그널링 (및/또는 Layer 1(L1) 시그널링(예, PDCCH))에 기초하여 반-정적(semi-static)으로 스케줄링 될 수 있다(configured grant). PUSCH 전송은 코드북 기반 또는 비-코드북 기반으로 수행될 수 있다.
도 6은 ACK/NACK 전송 과정을 예시한다. 도 6참조하면, 단말은 슬롯 #n에서 PDCCH를 검출할 수 있다. 여기서, PDCCH는 하향링크 스케줄링 정보(예, DCI 포맷 1_0, 1_1)를 포함하며, PDCCH는 DL assignment-to-PDSCH offset (K0)과 PDSCH-HARQ-ACK reporting offset (K1)를 나타낸다. 예를 들어, DCI 포맷 1_0, 1_1은 다음의 정보를 포함할 수 있다.
- Frequency domain resource assignment: PDSCH에 할당된 RB 세트를 나타냄
- Time domain resource assignment: K0, 슬롯 내의 PDSCH의 시작 위치(예, OFDM 심볼 인덱스) 및 길이(예 OFDM 심볼 개수)를 나타냄
- PDSCH-to-HARQ_feedback timing indicator: K1를 나타냄
- HARQ process number (4비트): 데이터(예, PDSCH, TB)에 대한 HARQ process ID(Identity)를 나타냄
이후, 단말은 슬롯 #n의 스케줄링 정보에 따라 슬롯 #(n+K0)에서 PDSCH를 수신한 뒤, 슬롯 #(n+K1)에서 PUCCH를 통해 UCI를 전송할 수 있다. 여기서, UCI는 PDSCH에 대한 HARQ-ACK 응답을 포함한다. PDSCH가 최대 1개 TB를 전송하도록 구성된 경우, HARQ-ACK 응답은 1-비트로 구성될 수 있다. PDSCH가 최대 2개의 TB를 전송하도록 구성된 경우, HARQ-ACK 응답은 공간(spatial) 번들링이 구성되지 않은 경우 2-비트로 구성되고, 공간 번들링이 구성된 경우 1-비트로 구성될 수 있다. 복수의 PDSCH에 대한 HARQ-ACK 전송 시점이 슬롯 #(n+K1)로 지정된 경우, 슬롯 #(n+K1)에서 전송되는 UCI는 복수의 PDSCH에 대한 HARQ-ACK 응답을 포함한다.
기지국/단말에는 DL 전송을 위해 복수의 병렬 DL HARQ 프로세스가 존재한다. 복수의 병렬 HARQ 프로세스는 이전 DL 전송에 대한 성공 또는 비성공 수신에 대한 HARQ 피드백을 기다리는 동안 DL 전송이 연속적으로 수행되게 한다. 각각의 HARQ 프로세스는 MAC(Medium Access Control) 계층의 HARQ 버퍼와 연관된다. 각각의 DL HARQ 프로세스는 버퍼 내의 MAC PDU(Physical Data Block)의 전송 횟수, 버퍼 내의 MAC PDU에 대한 HARQ 피드백, 현재 리던던시 버전(redundancy version) 등에 관한 상태 변수를 관리한다. 각각의 HARQ 프로세스는 HARQ 프로세스 ID에 의해 구별된다.
도 7은 PUSCH 전송 과정을 예시한다. 도 7을 참조하면, 단말은 슬롯 #n에서 PDCCH를 검출할 수 있다. 여기서, PDCCH는 상향링크 스케줄링 정보(예, DCI 포맷 0_0, 0_1)를 포함한다. DCI 포맷 0_0, 0_1은 다음의 정보를 포함할 수 있다.
- Frequency domain resource assignment: PUSCH에 할당된 RB 세트를 나타냄
- Time domain resource assignment: 슬롯 오프셋 K2, 슬롯 내의 PUSCH의 시작 위치(예, 심볼 인덱스) 및 길이(예 OFDM 심볼 개수)를 나타냄. 시작 심볼과 길이는 SLIV(Start and Length Indicator Value)를 통해 지시되거나, 각각 지시될 수 있음.
이후, 단말은 슬롯 #n의 스케줄링 정보에 따라 슬롯 #(n+K2)에서 PUSCH를 전송할 수 있다. 여기서, PUSCH는 UL-SCH TB를 포함한다.
도 8은 UCI를 PUSCH에 다중화 하는 예를 나타낸다. 슬롯 내에 복수의 PUCCH 자원과 PUSCH 자원이 중첩되고, PUCCH-PUSCH 동시 전송이 설정되지 않은 경우, UCI는 도시된 바와 같이 PUSCH를 통해 전송될 수 있다(UCI 피기백 또는 PUSCH 피기백). 도 8은 HARQ-ACK과 CSI가 PUSCH 자원에 실리는 경우를 예시한다.
도 9는 비면허 대역을 지원하는 무선 통신 시스템을 예시한다. 편의상, 면허 대역(이하, L-밴드)에서 동작하는 셀을 LCell로 정의하고, LCell의 캐리어를 (DL/UL) LCC(Licensed Component Carrier)로 정의한다. 또한, 비면허 대역(이하, U-밴드)에서 동작하는 셀을 UCell로 정의하고, UCell의 캐리어를 (DL/UL) UCC(Unlicensed Component Carrier)로 정의한다. 셀의 캐리어는 셀의 동작 주파수(예, 중심 주파수)를 의미할 수 있다. 셀/캐리어(예, Component Carrier, CC)는 셀로 통칭될 수 있다.
캐리어 병합(Carrier Aggregation, CA)이 지원되는 경우, 하나의 단말은 병합된 복수의 셀/캐리어를 통해 기지국과 신호를 송수신할 수 있다. 하나의 단말에게 복수의 CC가 구성된 경우, 하나의 CC는 PCC(Primary CC)로 설정되고, 나머지 CC는 SCC(Secondary CC)로 설정될 수 있다. 특정 제어 정보/채널(예, CSS PDCCH, PUCCH)은 PCC를 통해서만 송수신 되도록 설정될 수 있다. 데이터는 PCC/SCC를 통해 송수신 될 수 있다. 도 9(a)는 단말과 기지국은 LCC 및 UCC를 통해 신호를 송수신 하는 경우를 예시한다(NSA(non-standalone) 모드). 이 경우, LCC는 PCC로 설정되고 UCC는 SCC로 설정될 수 있다. 단말에게 복수의 LCC가 구성된 경우, 하나의 특정 LCC는 PCC로 설정되고 나머지 LCC는 SCC로 설정될 수 있다. 도 9(a)는 3GPP LTE 시스템의 LAA에 해당한다. 도 9(b)는 단말과 기지국은 LCC 없이 하나 이상의 UCC를 통해 신호를 송수신 하는 경우를 예시한다(SA(standalone) 모드). 이 경우. UCC들 중 하나는 PCC로 설정되고 나머지 UCC는 SCC로 설정될 수 있다. 이에 따라, NR UCell에서는 PUCCH, PUSCH, PRACH 전송 등이 지원될 수 있다. 3GPP NR 시스템의 비면허 대역에서는 NSA 모드와 SA 모드가 모두 지원될 수 있다.
도 10은 비면허 대역에서 자원을 점유하는 방법을 예시한다. 비면허 대역에 대한 지역별 규제(regulation)에 따르면, 비면허 대역 내의 통신 노드는 신호 전송 전에 다른 통신 노드(들)의 채널 사용 여부를 판단해야 한다. 구체적으로, 통신 노드는 신호 전송 전에 먼저 CS(Carrier Sensing)를 수행하여 다른 통신 노드(들)이 신호 전송을 하는지 여부를 확인할 수 있다. 다른 통신 노드(들)이 신호 전송을 하지 않는다고 판단된 경우를 CCA(Clear Channel Assessment)가 확인됐다고 정의한다. 기-정의된 혹은 상위계층(예, RRC) 시그널링에 의해 설정된 CCA 임계치가 있는 경우, 통신 노드는 CCA 임계치보다 높은 에너지가 채널에서 검출되면 채널 상태를 비지(busy)로 판단하고, 그렇지 않으면 채널 상태를 아이들(idle)로 판단할 수 있다. 참고로, Wi-Fi 표준(802.11ac)에서 CCA 임계치는 non Wi-Fi 신호에 대하여 -62dBm, Wi-Fi 신호에 대하여 -82dBm으로 규정되어 있다. 채널 상태가 아이들이라고 판단되면, 통신 노드는 UCell에서 신호 전송을 시작할 수 있다. 상술한 일련의 과정은 LBT(Listen-Before-Talk) 또는 CAP(Channel Access Procedure)로 지칭될 수 있다. LBT와 CAP는 혼용될 수 있다.
유럽에서는 FBE(Frame Based Equipment)와 LBE(Load Based Equipment)로 명명되는 2가지의 LBT 동작을 예시하고 있다. FBE는 통신 노드가 채널 접속에 성공했을 때 송신을 지속할 수 있는 시간을 의미하는 채널 점유 시간(channel occupancy time)(예, 1~10ms)과 상기 채널 점유 시간의 최소 5%에 해당되는 아이들 기간(idle period)이 하나의 고정(fixed) 프레임을 구성하며, CCA는 아이들 기간 내 끝 부분에 CCA 슬롯 (최소 20μs) 동안 채널을 관측하는 동작으로 정의된다. 통신 노드는 고정 프레임 단위로 주기적으로 CCA를 수행하고, 채널이 비점유(unoccupied) 상태인 경우에는 채널 점유 시간 동안 데이터를 송신하고 채널이 점유(occupied) 상태인 경우에는 전송을 보류하고 다음 주기의 CCA 슬롯까지 기다린다.
한편, LBE의 경우, 통신 노드는 먼저 q∈{4, 5, … , 32}의 값을 설정한 후 1개 CCA 슬롯에 대한 CCA를 수행하고. 첫 번째 CCA 슬롯에서 채널이 비점유 상태이면, 최대 (13/32)q ms 길이의 시간을 확보하여 데이터를 송신할 수 있다. 첫 번째 CCA 슬롯에서 채널이 점유 상태이면 통신 노드는 랜덤하게 N∈{1, 2, … , q}의 값을 골라 카운터의 초기값으로 저장하고, 이후 CCA 슬롯 단위로 채널 상태를 센싱하면서 CCA 슬롯 단위로 채널이 비점유 상태이면 카운터에 저장된 값을 1개씩 줄여나간다. 카운터 값이 0이 되면, 통신 노드는 최대 (13/32)q ms 길이의 시간을 확보하여 데이터를 송신할 수 있다.
구체적으로, 비면허 대역에서의 상향링크 전송을 위해 복수의 CAP Type (즉, LBT Type)이 정의될 수 있다. 예를 들어, 상향링크 전송을 위해 Type 1 또는 Type 2 CAP가 정의될 수 있다. 단말은 상향링크 신호 전송을 위해 기지국이 설정/지시한 CAP(예, Type 1 또는 Type 2)를 수행할 수 있다.
(1) Type 1 상향링크 CAP 방법
도 11은 상향링크 신호 전송을 위한 단말의 Type 1 CAP 동작 흐름도이다.
단말은 비면허 대역을 통한 신호 전송을 위해 CAP를 개시할 수 있다(S1510). 단말은 스텝 1에 따라 경쟁 윈도우(CW) 내에서 백오프 카운터 N을 임의로 선택할 수 있다. 이때, N 값은 초기 값 N init으로 설정된다(S1520). N init은 0 내지 CW p 사이의 값 중 임의의 값으로 선택된다. 이어서, 스텝 4에 따라 백오프 카운터 값(N)이 0이면(S1530; Y), 단말은 CAP 과정을 종료한다(S1532). 이후, 단말은 Tx 버스트 전송을 수행할 수 있다(S1534). 반면, 백오프 카운터 값이 0이 아니면(S1530; N), 단말은 스텝 2에 따라 백오프 카운터 값을 1만큼 줄인다(S1540). 이후, 단말은 UCell(s)의 채널이 아이들 상태인지 확인하고(S1550), 채널이 아이들 상태이면(S1550; Y) 백오프 카운터 값이 0인지 확인한다(S1530). 반대로, S1550 단계에서 채널이 아이들 상태가 아니면 즉, 채널이 비지 상태이면(S1550; N), 단말은 스텝 5에 따라 슬롯 시간(예, 9us)보다 긴 지연 기간(defer duration T d; 25usec 이상) 동안 해당 채널이 아이들 상태인지 확인한다(S1560). 지연 기간 동안 채널이 아이들 상태이면(S1570; Y), 단말은 다시 CAP 과정을 재개할 수 있다. 여기서, 지연 기간은 16usec 구간 및 바로 뒤따르는 m p개의 연속하는 슬롯 시간(예, 9us)으로 구성될 수 있다. 반면, 지연 기간 동안 채널이 비지 상태이면(S1570; N), 단말은 S1560 단계를 재수행하여 새로운 지연 기간 동안 채널이 아이들 상태인지 다시 확인한다.
표 6은 채널 접속 우선 순위 클래스(p)에 따라 CAP에 적용되는 m p, 최소 CW(CW min,p), 최대 CW(CW max,p), 최대 채널 점유 시간(Maximum Channel Occupancy Time, MCOT)(T ulmcot,p) 및 허용된 CW 크기(allowed CW sizes)가 달라지는 것을 예시한다.
Channel Access Priority Class (p) m p CW min,p CW max,p T ulmcot,p allowed CWp sizes
1 2 3 7 2 ms {3,7}
2 2 7 15 4 ms {7,15}
3 3 15 1023 6ms or 10 ms {15,31,63,127,255,511,1023}
4 7 15 1023 6ms or 10 ms {15,31,63,127,255,511,1023}
Type 1 CAP에 적용되는 CW 사이즈(CWS)는 다양한 방법에 기초하여 결정될 수 있다. 일 예로, CWS는 일정 시간 구간(예, 참조 TU) 내 UL-SCH의 HARQ 프로세스 ID인 HARQ_ID_ref와 관련된 적어도 하나의 HARQ 프로세서를 위한 NDI(New Data Indicator) 값의 토글 여부에 기초하여 조정될 수 있다. 단말이 반송파 상에서 채널 접속 우선순위 클래스 p와 관련된 Type 1 CAP를 이용하여 신호 전송을 수행하는 경우, 단말은 HARQ_ID_ref와 관련된 적어도 하나의 HARQ 프로세스를 위한 NDI 값이 토글되면 모든 우선순위 클래스 p∈{1,2,3,4}에서 CW p=CW min,p로 설정하고, 아닌 경우, 모든 우선순위 클래스 p∈{1,2,3,4}에서 CW p를 다음으로 높은 허락된 값(next higher allowed value)로 증가시킨다.
참조 서브프레임 n ref (또는 참조 슬롯 n ref)는 다음과 같이 결정된다.
단말이 서브프레임 (또는 슬롯) n g에서 UL 그랜트를 수신하고 서브프레임 (또는 슬롯) n 0,n 1,...n w내에서 서브프레임 (또는 슬롯) n 0부터 시작하고 갭이 없는 UL-SCH를 포함한 전송을 수행하는 경우, 참조 서브프레임 (또는 슬롯) n ref는 서브프레임 (또는 슬롯) n 0이다.
(2) Type 2 상향링크 CAP 방법
적어도 센싱 구간 T short_ul=25us 동안 채널이 아이들이라고 센싱되면, 단말은 센싱이 종료된 바로 직후(immediately after)부터 비면허 대역에서 상향링크 전송(예, PUSCH)을 할 수 있다. T short_ul은 T sl (=9us) + T f (=16us)로 구성될 수 있다.
실시예: U-밴드에서의 HARQ-ACK 피드백
U-밴드에서의 스탠드-얼론 동작을 지원하기 위해, DL 데이터(예, PDSCH) 수신에 대해서, 단말의 U-밴드 PUCCH/PUSCH 전송에 기반한 HARQ-ACK 피드백 동작이 필수적일 수 있다(이하, HARQ-ACK을 편의상 A/N으로 통칭함). PUCCH/PUSCH는 PUCCH 또는 PUSCH를 나타낸다. 일 예로, 기지국은 LBT (CCA) 동작을 수행하여 확보한 COT(Channel Occupancy Time) 구간을 통해 단말에게 DL 데이터 전송을 스케줄링하고, 동일한 COT 구간을 통해 해당 단말로부터 해당 DL 데이터 수신에 대한 HARQ-ACK 피드백이 전송되도록 지시하는 과정이 고려될 수 있다(이하, LBT 또는 CCA를 편의상 LBT로 통칭함). 다른 예로, DL 데이터 신호의 디코딩 및 대응되는 HARQ-ACK 신호의 인코딩에 수반되는 단말 프로세싱 시간으로 인해, 특정 COT 구간을 통해 스케줄링/전송된 DL 데이터 수신에 대한 HARQ-ACK 피드백을 해당 COT 이후의 다른 COT 구간을 통해 전송하도록 지시하는 과정도 고려될 수 있다.
이하, 본 명세서에서는 U-밴드에서의 HARQ-ACK 피드백(이하, A/N) 구성/전송 방법에 대해 제안한다. 여기서, A/N 구성/전송 방법은 LBT 동작, COT 구성 등을 고려하여 수행될 수 있다. 본 명세서에서 제안된 사항은 PUCCH/PUSCH를 통한 HARQ-ACK 피드백 전송 방법에만 국한되지 않으며, PUCCH/PUSCH를 통한 다른 UCI(예, CSI, SR) 전송 방법에도 유사하게 적용될 수 있다. 또한, 본 명세서에서 제안된 사항은 LBT 기반의 U-밴드 동작에만 국한되지 않으며, LBT를 수반하지 않는 L-밴드 (또는, U-밴드) 동작에도 유사하게 적용될 수 있다. 또한, 이하의 설명에서 복수의 CC (인덱스)는 하나 (이상)의 CC/(서빙) 셀 내에 구성된 복수의 BWP (인덱스)으로 대체되거나, 복수의 BWP로 구성된 복수의 CC/(서빙) 셀(즉, CC (인덱스)와 BWP (인덱스)의 조합)로 대체될 수 있다.
먼저, 다음과 같이 용어를 정의한다.
- UCI: 단말이 UL 전송하는 제어 정보를 의미한다. UCI는 여러 타입의 제어 정보(즉, UCI 타입)를 포함한다. 예를 들어, UCI는 HARQ-ACK, SR, CSI를 포함한다.
- HARQ-ACK: PDSCH 상의 DL 데이터(예, 전송블록(TB), 코드워드(CW))가 성공적으로 수신됐는지 여부를 나타낸다. 단일 DL 데이터에 대한 응답으로 HARQ-ACK 1비트가 전송되고, 두 개의 DL 데이터에 대한 응답으로 HARQ-ACK 2비트가 전송될 수 있다. HARQ-ACK 응답/결과는 포지티브 ACK(ACK), 네거티브 ACK(NACK), DTX 또는 NACK/DTX를 포함한다. 여기서, HARQ-ACK은 ACK/NACK, A/N, AN과 혼용된다.
- HARQ 프로세스 번호/ID: HARQ 프로세스의 번호 또는 식별자를 나타낸다. HARQ 프로세스는 버퍼 내의 MAC PDU의 전송 횟수, 버퍼 내의 MAC PDU에 대한 HARQ 피드백, 현재 리던던시 버전 등에 관한 상태 변수를 관리한다.
- PUCCH: UCI 전송을 위한 물리계층 UL 채널을 의미한다. 편의상, A/N, SR, CSI 전송을 위해, 기지국이 설정한 및/또는 전송을 지시한 PUCCH 자원을 각각 A/N PUCCH 자원, SR PUCCH 자원, CSI PUCCH 자원으로 명명한다.
- PUSCH: UL 데이터 전송을 위한 물리계층 UL 채널을 의미한다.
- 슬롯: 데이터 스케줄링을 위한 기본 시간 단위(time unit (TU), 또는 time interval)를 의미한다. 슬롯은 복수의 심볼을 포함한다. 여기서, 심볼은 OFDM-기반 심볼(예, CP-OFDM 심볼, DFT-s-OFDM 심볼)을 포함한다. 본 명세서에서 심볼, OFDM-기반 심볼, OFDM 심볼, CP-OFDM 심볼 및 DFT-s-OFDM 심볼은 서로 대체될 수 있다.
아래에서 설명하는 각 제안 방안은 다른 제안 방안들과 상호 배치되지 않는 한 결합되어 함께 적용될 수 있다.
(1) 기본 동작 방식
본 명세서에서 제안하는 A/N 피드백 구성/전송 방법을 위한 기본 동작 방식들에 대하여 설명하면 다음과 같다. 본 명세서에서 A/N 트리거링 DCI는 적어도 DL 그랜트 DCI를 포함하며, (DL 그랜트 DCI에 추가로) UL 그랜트 DCI 및/또는 PDSCH/PUSCH 전송을 스케줄링 하지 않는 특정 DCI를 더 포함할 수 있다.
1) 타이밍 기반의 A/N 피드백 방식(이하, t-A/N 방식)(도 12)
A. 사전에 RRC 시그널링을 통해 복수의 후보 HARQ 타이밍을 설정한 뒤, 기지국은 (DL 그랜트) DCI를 통해 복수의 후보 HARQ 타이밍 중 하나를 단말에게 지시할 수 있다. 이 경우, 단말은 전체 후보 HARQ 타이밍 세트에 대응되는 복수 슬롯(혹은, 슬롯 집합; 편의상, 번들링 윈도우)에서의 (복수) PDSCH 수신에 대한 A/N 피드백을, 지시된 HARQ 타이밍을 통해 전송하도록 동작할 수 있다. 여기서, HARQ 타이밍은 PDSCH-to-A/N 타이밍/간격을 의미한다. HARQ 타이밍은 슬롯 단위로 표현될 수 있다.
예를 들어, A/N 전송이 슬롯 #m에서 지시된 경우, A/N 정보는 슬롯 #(m-i)에서의 PDSCH 수신에 대한 응답 정보를 포함할 수 있다. 여기서, 슬롯 #(m-i)는 후보 HARQ 타이밍에 대응하는 슬롯에 해당한다. 도 12(a)는 후보 HARQ 타이밍이 i={2, 3, 4, 5}로 설정된 경우를 예시한다. 이 경우, A/N 전송 시점이 #(n+5)(=m)로 지시되면, 단말은 슬롯 #n~#(n+3)(=m-i)의 PDSCH 수신에 대한 A/N 정보를 생성/전송할 수 있다(즉, 4개 슬롯 모두에 대해 A/N 피드백). 여기서, 슬롯 #n+1/#n+3의 PDSCH 수신에 대한 A/N 응답은 NACK으로 처리될 수 있다.
B. HARQ 타이밍 지시에 추가하여, (DL 그랜트) DCI를 통해 c-DAI(counter Downlink Assignment Index) 및/또는 t-DAI(total-DAI)가 함께 시그널링 될 수 있다. c-DAI는 (DL 그랜트) DCI에 대응되는 PDSCH가 몇 번째로 스케줄링된 것인지 알려줄 수 있다. t-DAI는 현재 (슬롯)까지 스케줄링된 PDSCH의 총 개수 (또는, PDSCH가 존재하는 슬롯의 총 개수)를 알려줄 수 있다. 이에 따라, 단말은 c-DAI 초기값부터 (수신된) 마지막 t-DAI 값까지의 c-DAI 값들에 대응되는 PDSCH에 대한 A/N을 지시된 HARQ 타이밍을 통해 전송하도록 동작할 수 있다. 단말에게 구성된 서빙 셀의 개수가 하나인 경우, c-DAI와 t-DAI는 동일한 의미를 가질 수 있다. 따라서, t-DAI는 서빙 셀의 개수가 복수인 경우에만 (DL 그랜트) DCI에 포함될 수 있다. 단말에게 복수의 서빙 셀이 구성된 경우, c-DAI는 셀-도메인에서 먼저 계수된 뒤, 시간-도메인에서 계수된 PDSCH의 스케줄링 순서 (또는, PDSCH가 존재하는 (서빙 셀, 슬롯)의 순서)를 알려줄 수 있다. 유사하게, t-DAI는 현재 (슬롯)까지 스케줄링된 PDSCH의 총 개수 (또는, PDSCH가 존재하는 (서빙 셀, 슬롯)의 총 개수)를 알려줄 수 있다. 여기서, c-DAI/t-DAI는 PDCCH를 기준으로 정의될 수도 있다. 이 경우, 앞의 설명에서 PDSCH는 PDCCH로 대체되고, PDCCH가 존재하는 슬롯은 상기 PDCCH와 관련된 PDCCH (혹은, DCI)가 존재하는 PDCCH 모니터링 기회로 대체될 수 있다.
c-DAI/t-DAI는 각각 2-비트 값을 이용하여 지시될 수 있다. 4보다 큰 수는 modulo 연산을 이용하여 다음과 같이 지시될 수 있다.
- DAI 비트가 00 (예, DAI 값=1)인 경우: 4n+1을 지시 (즉, 1, 5, 9, ...)
- DAI 비트가 01 (예, DAI 값=2)인 경우: 4n+2을 지시 (즉, 2, 6, 10, ...)
- DAI 비트가 10 (예, DAI 값=3)인 경우: 4n+3을 지시 (즉, 3, 7, 11, ...)
- DAI 비트가 11 (예, DAI 값=4)인 경우: 4n+4를 지시 (즉, 4, 8, 12, ...)
* n은 0 이상의 정수를 나타낸다.
도 12(b)는 도 12(a)와 동일한 상황에서 (DL 그랜트) DCI를 통해 DAI가 시그널링 되는 경우를 예시한다. 도 12(b)를 참조하면, 슬롯 #n에서 DAI=00을 갖는 DCI에 의해 스케줄링된 PDSCH가 수신되고, 슬롯 #(n+2)에서 DAI=10을 갖는 DCI에 의해 스케줄링된 PDSCH가 수신될 수 있다. 이 경우, 단말은 연속된 DAI 값(즉, DAI=00/01/11)(이하, DAI 시퀀스)에 해당하는 3개의 PDSCH 수신에 대해서만 A/N 정보를 생성/전송할 수 있다. 여기서, DAI=01에 대응하는 PDSCH 수신에 대한 A/N 응답은 NACK으로 처리될 수 있다.
2) 풀링(pooling) 기반의 A/N 피드백 방식(이하, p-A/N 방식)(도 13)
A. DL 그랜트 DCI를 통해, 대응되는 PDSCH에 대한 A/N 피드백 전송을 연기 (pending/deferring)시키는 동작을 지시할 수 있다. 이후, DCI를 통해, (i) 전체 DL HARQ 프로세스 ID들, 혹은 (ii) 특정 일부 DL HARQ 프로세스 ID(들)에 대응되는 PDSCH에 대한 A/N 피드백의 전송을 지시할 수 있다(pooling). A/N 피드백은 특정 신호(예, RRC 또는 DCI 시그널링)를 기반으로 설정/지시된 타이밍을 통해 전송될 수 있다. A/N 풀링은 DL 그랜트(예, DCI 포맷 1_0/1_1), UL 그랜트(예, DCI 포맷 0_0/0_1) 또는 다른 DCI(예, 단말 (그룹) 공통 DCI)를 통해 지시될 수 있다. 편의상, A/N 풀링을 지시하는 DCI를 풀링 DCI라고 지칭한다. 풀링 대상이 되는 HARQ 프로세스 ID는 미리 설정/정의되어 있거나, 풀링 DCI를 통해 지시될 수 있다. A/N 풀링은 전체/그룹/개별 HARQ 프로세스 ID 단위로 지시될 수 있다.
예를 들어, 도 13을 참조하면, 단말은 기지국으로부터 3개의 PDSCH를 수신할 수 있고, 각각의 PDSCH에 할당된 HARQ 프로세스 ID(HpID)는 0, 3 및 2일 수 있다. 또한, 각각의 DL 그랜트 DCI를 통해 3개의 PDSCH에 대해 A/N 펜딩(AN=pe)이 지시될 수 있다. 이 경우, 단말은 HpID=0/3/2에 대응하는 PDSCH 수신에 대한 A/N 전송을 연기한다. 이후, 기지국으로부터 풀링 DCI(AN=pooling)를 수신하면, 단말은 전체 HpID 혹은 일부 HpID에 대응하는 PDSCH 수신에 대한 A/N을 한 번에 전송할 수 있다.
B. t-A/N 방식에 c-/t-DAI 시그널링이 설정된 경우(예, DL 그랜트 DCI를 통해 DAI가 시그널링 되는 경우), A/N 풀링은 (풀링 DCI를 통해 지시된) HARQ 프로세스 ID에 대응되는 PDSCH에 대한 A/N 전송을 풀링하거나, (풀링 DCI를 통해 지시된) t-DAI 값에 대응되는 PDSCH에 대한 A/N 전송을 풀링하는 것으로 정의될 수 있다. 후자의 경우, 단말은 c-DAI 초기 값 ~ t-DAI 값에 대응하는 PDSCH 수신에 대한 A/N 정보를 한 번에 전송할 수 있다.
(2) 제안 방법 1
제안 방법 1의 경우, A/N 트리거링 DCI를 통해 1) 실제 A/N 전송 타이밍을 지시하는 타이밍-A와, 2) A/N 피드백 대상이 되는 (DL PDSCH) 슬롯 그룹에 대응되는 기준(reference) A/N 타이밍을 지시하는 타이밍-D가 시그널링 될 수 있다.
이를 기반으로, 단말은 타이밍-A로 지시된 시점을 통해 타이밍-D에 대응되는 슬롯 그룹 (이를 통한 PDSCH 수신)에 대한 A/N 피드백을 전송하도록 동작할 수 있다. 이 경우, A/N 페이로드는 해당 슬롯 그룹에 속한 슬롯 인덱스 순서로 매핑(예, ordering)될 수 있다.
일 예로, A/N 트리거링 DCI (혹은, A/N 트리거링 DCI가 DL 그랜트 DCI인 경우, 대응되는 PDSCH)가 슬롯 #n을 통해 전송/검출되고, 해당 DCI를 통하여 타이밍-A = K와 타이밍-D = L이 지시될 수 있다. 이 경우, 단말은 슬롯 #(n + K - L)에 대응되는 슬롯 그룹 (즉, 이를 통한 PDSCH 수신)에 대한 A/N 피드백을 슬롯 #(n + K)를 통해 전송하도록 동작할 수 있다. 여기서, 슬롯 그룹은 복수(예, M개)의 후보 타이밍 값 D_m (m = 0, 1, ..., M-1)들로 구성된 타이밍 세트로 규정될 수 있다. 예를 들어, 슬롯 #n에 대응되는 슬롯 그룹은 슬롯 #(n - D_m) 또는 슬롯 #(n + D_m) (m = 0, 1, ..., M-1)에 해당하는 M개의 슬롯들로 구성/정의될 수 있다. 이 경우, 슬롯 #(n + K - L)에 대응되는 슬롯 그룹은 슬롯 #(n + K - L - Dm) 또는 슬롯 #( n + K - L + D_m) (m = 0, 1, ..., M-1)로 구성/정의될 수 있다.
한편, 슬롯 그룹을 규정하는 타이밍 세트는 타이밍-A로 지시 가능한 후보 타이밍-A 값들의 집합(예, K_m; m = 0, 1, ..., M-1)과 동일하게 설정되거나, 독립적으로 (상이하게) 설정될 수 있다. 예를 들어, 슬롯 #n에 대응되는 번들링 윈도우는 슬롯 #(n - K_m)으로 구성되며, 슬롯 #n에 대응되는 슬롯 그룹도 K_m (m = 0, 1, ..., M-1)으로 구성된 타이밍 세트에 의해 규정될 수 있다. 일 예로, A/N 트리거링 DCI (혹은, A/N 트리거링 DCI가 DL 그랜트 DCI인 경우, 대응되는 PDSCH)가 슬롯 #n을 통해 전송/검출되고, 해당 DCI를 통하여 타이밍-A = K와 타이밍-D = L이 지시될 수 있다. 이 경우, 단말은 슬롯 #(n + K - L)에 대응하는 슬롯 그룹 (이를 통한 PDSCH 수신)에 대한 A/N 피드백을 슬롯 #(n + K)를 통해 전송하도록 동작할 수 있다. 여기서, 슬롯 #(n + K - L)에 대응하는 슬롯 그룹은 슬롯 #(n + K - (K_m + L)) (m = 0, 1, ..., M-1)로 구성될 수 있다.
한편, A/N 트리거링 DCI가 DL 그랜트 DCI와 동일한 경우(즉, 타이밍-A와 타이밍-D가 모두 DL 그랜트 DCI를 통해 시그널링됨), 단말은 타이밍-A로 지시된 시점을 통해 1) 타이밍-A에 대응되는 번들링 윈도우 (이를 통한 PDSCH 수신)에 대한 A/N 피드백과, 2) 타이밍-D에 대응되는 슬롯 그룹 (이를 통한 PDSCH 수신)에 대한 A/N 피드백을 결합하여 (동시에, 예를 들어 하나의 PUCCH/PUSCH를 통해) 전송하도록 동작할 수 있다.
일 예로, DL 그랜트 DCI 혹은 대응되는 PDSCH가 슬롯 #n을 통해 전송/검출되고 해당 DCI를 통하여 타이밍-A = K와 타이밍-D = L이 지시된 경우, 단말은 1) 슬롯 #(n + K)에 대응되는 번들링 윈도우 (이를 통한 PDSCH 수신)에 대한 A/N 피드백과, 2) 슬롯 #(n + K - L)에 대응되는 슬롯 그룹 (이를 통한 PDSCH 수신)에 대한 A/N 피드백을 결합하여, 슬롯 #(n + K)를 통해 전송하도록 동작할 수 있다. 여기서, 슬롯 #(n + K - L)에 대응되는 슬롯 그룹은 (i) 슬롯 #(n + K - L - Dm) 또는 슬롯 #(n + K - L + D_m) (m = 0, 1, ..., M-1)로 구성/정의되거나, (ii) 슬롯 #(n + K - (K_m + L)) (m = 0, 1, ..., M-1)로 구성/정의될 수 있다.
추가적으로, (예를 들어, A/N 트리거링 DCI가 DL 그랜트 DCI와 동일한 경우) DCI를 통해 타이밍-D 및/또는 이에 대응되는 슬롯 그룹 (이에 대한 A/N 피드백 요청)이 없음을 지시할 수 있다. 예를 들어, 타이밍-D = 특정 값(예, 0)으로 설정된 경우, 대응되는 슬롯 그룹 (이에 대한 A/N 피드백 요청)이 없음을 지시할 수 있다.
추가적으로, (예를 들어, A/N 트리거링 DCI가 DL 그랜트 DCI와 동일한 경우) DCI를 통해 타이밍-A에 대응되는 번들링 윈도우 (혹은 타이밍-D에 대응되는 슬롯 그룹)에 속한 슬롯들 중에서 특정 일부(예, 최초 혹은 마지막 슬롯)에 대해서만 A/N 피드백을 전송하도록 (예, 타이밍-D 지시 필드를 통해) 지시할 수 있다.
또 다른 방법으로, 타이밍-A/타이밍-D 및 이에 대응되는 슬롯 그룹(예, 번들링 윈도우)에 대한 A/N 피드백 전송 트리거링을 단말 (그룹)-공통 DCI를 통해 시그널링하는 구조도 고려할 수 있다.
한편, 제한된 DCI 필드 사이즈/비트 수로 인해, 타이밍-D로 지시 가능한 기준 A/N 타이밍 (이에 대응되는 A/N 피드백 대상 슬롯 그룹)은 한계가 있을 수 있다. 이를 고려하여, 타이밍-D 지시 필드의 특정 상태(state)를 통해 (특정 슬롯 그룹이 아닌) 전체 혹은 (사전에 지정된) 특정 일부 HARQ 프로세스 ID들에 대응되는 PDSCH 수신에 대한 A/N 피드백을 전송하도록 지시할 수 있다.
한편, 타이밍-D 값 별로 A/N 전송 PUCCH/PUSCH 자원 (세트)이 상이하게 설정될 수 있다. 예를 들어, 각각의 타이밍-D 값에 대응되는 슬롯 그룹 별로 A/N 전송 PUCCH/PUSCH 자원 (세트)이 상이하게 설정될 수 있다. 또한, 각각의 A/N 전송 PUCCH/PUSCH 자원 (세트) 별로 대응되는 (예, 해당 PUCCH/PUSCH 자원 (세트)로의 A/N 피드백 대상 슬롯 그룹에 대응되는) 타이밍-D 값이 상이하게 설정될 수 있다. 예를 들어, PUCCH/PUSCH 자원 (세트) 별로 대응되는 슬롯 그룹이 상이하게 설정되고, 그에 따라 타이밍-D 값도 상이하게 설정될 수 있다.
(3) 제안 방법 2
제안 방법 2의 경우, 하나의 슬롯 그룹 사이즈 (예, 단일 슬롯 그룹 내 슬롯 개수 N, 혹은 단일 슬롯 그룹 내 스케줄링 가능한 최대 PDSCH 수 N)가 사전에 미리 설정된 상태에서, 1) DL 그랜트 DCI를 통해 해당 DCI 혹은 대응되는 PDSCH가 전송된 슬롯이 속한 슬롯 그룹 ID를 지시하는 current-ID (c-ID)가 시그널링 되고, 2) A/N 트리거링 DCI를 통해 A/N 피드백 대상이 되는 (DL PDSCH) 슬롯 그룹 ID를 지시하는 feedback-ID (f-ID)가 시그널링 될 수 있다.
이를 기반으로, 단말은 A/N 전송 타이밍으로 지시된 시점(예, 슬롯)을 통해, feedback-ID에 대응되는 슬롯 그룹 (이를 통한 PDSCH 수신)에 대한 A/N 피드백을 전송할 수 있다. 여기서, feedback-ID에 대응되는 슬롯 그룹은, 이전에 feedback-ID와 동일한 값의 current-ID가 시그널링/수신된 슬롯, 즉 DL 그랜트 DCI를 통해 feedback-ID와 동일한 값의 current-ID가 시그널링/수신된 슬롯을 포함한다.
이때, A/N 페이로드는 (DL 그랜트 DCI를 통해 counter-DAI가 시그널링되도록 설정된 상태에서) feedback-ID에 대응되는 슬롯 그룹에 대해, DL 그랜트 DCI를 통해 수신된 (예, 1부터 N까지의) counter-DAI 값 순서로 매핑(ordering)될 수 있다.
일 예로, 도 14를 참조하면, A/N 트리거링 DCI (혹은, A/N 트리거링 DCI가 DL 그랜트 DCI인 경우, 대응되는 PDSCH)가 슬롯 #n을 통해 전송/검출되고, 해당 DCI를 통하여 타이밍-A (T-A) = K와 feedback-ID (f-ID) = X가 지시될 수 있다. 이 경우, 단말은 슬롯 그룹 ID = X에 대응되는 (즉, DL 그랜트 DCI를 통해 current-ID (c-ID) = X로 수신된) 슬롯 그룹에서의 PDSCH 수신에 대한 A/N 피드백을 슬롯 #(n + K)에서 전송할 수 있다.
한편, counter-DAI는 도 12(b)와 같이 하나의 슬롯 그룹 (ID) 내에서 (초기 값(예, 1)부터 시작하여) 연속하는 값을 가지도록 결정/시그널링 될 수 있다. 즉, 서로 다른 슬롯 그룹간에 counter-DAI 값은 독립적으로 결정/시그널링 될 수 있다. 또한, 슬롯 그룹은 (DCI를 통해 지시되는) 동일한 슬롯 그룹 ID 값에 대응되는 1부터 N까지의 counter-DAI 값들로 구성된 DAI 시퀀스 형태로 규정될 수 있다. 이 경우, 슬롯 그룹은 수신/검출된 counter-DAI에 기반해 불연속 슬롯들로 구성될 수 있다. 본 명세서에서 슬롯 그룹 ID와 DAI 시퀀스 ID는 서로 대체/호환될 수 있다.
한편, A/N 트리거링 DCI가 DL 그랜트 DCI와 동일한 경우(즉, current-ID와 feedback-ID가 모두 DL 그랜트 DCI를 통해 시그널링됨), 단말은 타이밍-A로 지시된 시점을 통해, 1) 타이밍-A에 대응되는 번들링 윈도우 혹은 current-ID에 대응되는 슬롯 그룹 (이를 통한 PDSCH 수신)에 대한 A/N 피드백과, 2) feedback-ID에 대응되는 슬롯 그룹 (이를 통한 PDSCH 수신)에 대한 A/N 피드백을 결합하여(예, concatenate) (동시, 예를 들어 하나의 PUCCH/PUSCH를 통해) 전송하도록 동작할 수 있다.
한편, 본 명세서에서 A/N 트리거링 DCI (예, DL 그랜트 DCI, UL 그랜트 DCI)를 통해 feedback-ID가 시그널링/지시된다 함은, 해당 DCI를 통해서는 A/N 피드백 전송/요청 대상이 되는 총 (PDSCH) 슬롯 그룹 (ID) 수를 지시하는 total-ID가 시그널링되고, total-ID와 current-ID로부터 결정되는 특정 슬롯 그룹 ID를 feedback-ID로 적용함을 의미할 수 있다. 일 예로, 최대 2개의 (PDSCH) 슬롯 그룹 ID (예, ID=0 또는 ID=1)가 설정/구성된 상태에서, current-ID가 X로 지시되고 total-ID가 1로 지시된 경우, feedback-ID는 (current-ID와 동일한 값인) X로 결정/적용될 수 있다. 다른 예로, 최대 2개의 (PDSCH) 슬롯 그룹 ID (예, ID=0 또는 ID=1)가 설정/구성된 상태에서, current-ID가 X로 지시되고 total-ID가 2로 지시된 경우, feedback-ID는 (current-ID와 다른 값인) Y로 결정/적용될 수 있다. 이 경우, X와 Y는 서로 다른 값으로 결정될 수 있다(예, X=0이면 Y=1, 또는 X=1이면 Y=0). 이러한 feedback-ID 결정 방법을, 편의상 "Method 1"로 칭한다.
일 예로, DL 그랜트 DCI 혹은 대응되는 PDSCH가 슬롯 #n을 통해 전송/검출되고 해당 DCI를 통해 타이밍-A = K, current-ID = X, 및 feedback-ID = Y (또는 total-ID = 2로)가 지시될 수 있다. 이 경우, 단말은 1) 슬롯 #(n + K)에 대응되는 번들링 윈도우 혹은 ID = X에 대응되는 슬롯 그룹 (이를 통한 PDSCH 수신)에 대한 A/N 피드백과, 2) ID = Y에 대응되는 슬롯 그룹 (이를 통한 PDSCH 수신)에 대한 A/N 피드백을 결합하여, 슬롯 #(n + K)를 통해 전송할 수 있다.
한편, 본 명세서에서 A/N 트리거링 DCI (예, DL 그랜트 DCI, UL 그랜트 DCI)를 통해 시그널링/지시되는 feedback-ID (이에 대응되는 (PDSCH) 슬롯 그룹)에 대한 total-DAI 및/또는 NFI(New Feedback Indicator)는, Method 1에 따라 결정되는 feedback-ID에 대한 total-DAI 및/또는 NFI를 의미하거나, (total-ID로 지시된 값에 관계없이) current-ID와 다른 값을 가지는 other-ID (이에 대응되는 슬롯 그룹)에 대한 total-DAI 및/또는 NFI를 의미할 수 있다. 후자의 예로, 최대 2개의 (PDSCH) 슬롯 그룹 ID (예, ID=0 또는 ID=1)가 설정/구성된 상태에서, current-ID = X로 지시된 경우, "feedback-ID에 대한 total-DAI 및/또는 NFI"는 other-ID = Y에 대응되는 슬롯 그룹에 대한 total-DAI 및/또는 NFI를 의미할 수 있다. 이 경우, X와 Y는 서로 다른 값으로 결정될 수 있다(예, X=0이면 Y=1, 또는 X=1이면 Y=0). 이러한 other-ID 결정 및 total-DAI/NFI 적용 방법을, 편의상 "Method 2"로 칭한다.
여기서, NFI는 1-비트 정보로서, 이전(예, 최근) 시점에 전송했던 A/N 피드백(이하, 이전 A/N 피드백)이 (a) 기지국에서 제대로 검출/수신되었는지, (b) 기지국이 검출/수신에 실패했는지 여부가 시그널링 할 수 있다. (a)의 경우, 단말은 이전 A/N 전송 이후에 스케줄링된 PDSCH에 대응되는 A/N을 제외한 나머지 부분을 NACK 또는 DTX (피드백 구성/전송 생략)로 처리하여 업데이트된 A/N 피드백을 구성/전송할 수 있다. (b)의 경우, 단말은 이전 A/N 전송 이후에 스케줄링된 PDSCH에 대응되는 A/N을 제외한 나머지 부분을 그대로 유지하여 A/N 피드백을 구성/전송할 수 있다. (a)의 경우 이전 DCI를 통해 수신된 NFI 값에서 토글링된 NFI 값이 현재 DCI를 통해 지시된다. (b)의 경우 이전 DCI를 통해 수신된 NFI 값에서 토글링되지 않은 NFI 값이 현재 DCI를 통해 지시될 수 있다.
추가적으로, (예를 들어, A/N 트리거링 DCI가 DL 그랜트 DCI와 동일한 경우) DCI를 통해 feedback-ID (또는 other-ID) 및/또는 이에 대응되는 슬롯 그룹 (이에 대한 A/N 피드백 요청)이 없음을 (예, feedback-ID (또는 total-ID) 지시 필드를 통해) 지시할 수 있다. 일 예로, feedback-ID가 current-ID와 동일한 값으로 (또는 total-ID 값이 1로) 지시된 경우, 단말은 current-ID에 대응되는 (하나의) 슬롯 그룹에 대해서만 A/N 피드백을 구성/전송하도록 동작할 수 있다.
또한, 추가적으로, (예를 들어, A/N 트리거링 DCI가 DL 그랜트 DCI와 동일한 경우) DCI를 통해 타이밍-A에 대응되는 번들링 윈도우 또는 current-ID에 대응되는 슬롯 그룹 (혹은 feedback-ID (또는 other-ID)에 대응되는 슬롯 그룹)에 속한 슬롯들 중에서 특정 일부(예, 최초 혹은 마지막 슬롯)에 대해서만 A/N 피드백을 전송하도록 (예, feedback-ID (또는 total-ID) 지시 필드를 통해) 지시할 수 있다.
다른 방법으로, current-ID를 단말 (그룹)-공통 DCI #1을 통해 시그널링하고 및/또는 feedback-ID 및 이에 대응되는 슬롯 그룹에 대한 A/N 피드백 전송 트리거링을 단말 (그룹)-공통 DCI #2를 통해 시그널링하는 구조도 고려할 수 있다. 이 경우, 단말 (그룹)-공통 DCI #1과 #2는 서로 별개의 DCI들이거나, 동일한 하나의 DCI로 구성될 수 있다.
또 다른 방법으로, A/N 트리거링 DCI를 통해 total-DAI가 시그널링되고, 단말은 feedback-ID에 대응되는 슬롯 그룹 (혹은 타이밍-A에 대응되는 번들링 윈도우 또는 current-ID에 대응되는 슬롯 그룹)에 대하여 (1부터) total-DAI 값까지의 counter-DAI 값(들)에 대해서만 A/N 피드백을 구성/전송하도록 동작할 수 있다. 즉, 1부터 total-DAI 값까지의 counter-DAI 값(들)에 대응하는 슬롯(들) (이를 통해 스케줄링된 PDSCH들)에 대해서만 A/N 피드백을 구성/전송할 수 있다. 또는, DCI를 통해 feedback-ID (또는 other-ID)에 대응되는 슬롯 그룹과 current-ID에 대응되는 슬롯 그룹 (혹은, 타이밍-A에 대응되는 번들링 윈도우)에 대해 total-DAI를 각각 시그널링할 수 있다. 이 경우, 단말은 각 슬롯 그룹에 대한 total-DAI에 기반하여 A/N 피드백을 구성/전송하도록 동작할 수 있다.
일 예로, DL 그랜트 DCI를 통해 지시되는 A/N 피드백 구성 관련 정보는 적어도 (i) current-ID, (ii) current-ID에 대응되는 슬롯 그룹 (이를 통해 스케줄링된 PDSCH들)에 대한 counter/total-DAI, 및 (iii) feedback-ID (또는, total-ID)를 포함할 수 있다. 또한, feedback-ID (또는 other-ID)에 대응되는 슬롯 그룹 (이를 통해 스케줄링된 PDSCH들)에 대한 total-DAI가 DL 그랜트 DCI (즉, A/N 피드백 구성 관련 정보)에 더 포함될 수 있다.
한편, UL 그랜트 DCI를 통해서는 (i) current-ID, (ii) current-ID에 대응되는 슬롯 그룹 (이를 통해 스케줄링된 PDSCH들)에 대한 total-DAI, (iii) feedback-ID (또는 total-ID), (iv) feedback-ID (또는 other-ID)에 대응되는 슬롯 그룹에 대한 total-DAI가 지시될 수 있다. 여기서, current-ID와 feedback-ID는 2개의 feedback-ID #1과 #2로 정의/일반화될 수 있다. 이에 따라, 단말은 feedback-ID #1과 #2에 대응되는 슬롯 그룹에 대한 A/N 피드백을 (PUCCH 또는) PUSCH를 통해 (예, UCI 피기백 형태로) 전송하도록 동작할 수 있다.
다른 방법으로, current-ID (및/또는 feedback-ID (또는 total-ID))는 UL 그랜트 DCI에 포함되지 않을 수 있다. 즉, current-ID (및/또는 feedback-ID (또는 total-ID))는 UL 그랜트 DCI를 통한 시그널링이 생략될 수 있다. 이 경우, 단말은 DL 그랜트 DCI를 통해 수신된 current-ID (및/또는 feedback-ID (또는 total-ID)) 정보를 기반으로 (PUSCH 상의) A/N 피드백을 구성/전송하도록 동작할 수 있다. 추가적으로, UL 그랜트 DCI를 통하여 A/N 피드백 전송 요청 (예, A/N 피드백 대상이 되는 슬롯 그룹)이 없음을 특정 필드를 통해 지시할 수 있다. 여기서, 특정 필드는 예를 들어, feedback-ID (또는 total-ID) 및/또는 current-ID (및/또는 feedback-ID (또는 other-ID) 및/또는 current-ID에 대응되는 total-DAI) 지시 필드를 포함할 수 있다.
또 다른 방법으로, A/N 트리거링 DCI(예, DL 그랜트 DCI, UL 그랜트 DCI)를 통해 current-ID와 starting-ID가 지시될 수 있다. 이 경우, 단말은 starting-ID부터 current-ID까지의 (복수의) 연속적인 슬롯 그룹 ID(들)에 대응되는 슬롯 그룹 집합 A (이를 통한 PDSCH 수신)에 대한 A/N 피드백을 구성/전송하도록 동작할 수 있다. starting-ID가 current-ID와 동일한 값으로 지시된 경우, 단말은 current-ID에 대응되는 (하나의) 슬롯 그룹에 대해서만 A/N 피드백을 구성/전송하도록 동작할 수 있다. 여기서, current-ID는 ending-ID로 정의/일반화될 수 있다.
일 예로, DL 그랜트 DCI를 통해 지시되는 A/N 피드백 구성 관련 정보는 적어도 (i) current-ID, (ii) current-ID에 대응되는 슬롯 그룹 (이를 통해 스케줄링된 PDSCH들)에 대한 counter/total-DAI, (iii) starting-ID를 포함할 수 있다. 또한, (current-ID에 대응되는 슬롯 그룹을 제외한) 슬롯 그룹 집합 A에 속한 (복수) 슬롯 그룹(들) 각각에 공통적으로 적용되는 (단일) total-DAI가 DL 그랜트 DCI(즉, A/N 피드백 구성 관련 정보)에 더 포함될 수 있다.
다른 예로, UL 그랜트 DCI를 통해서는 (i) current-ID, (ii) current-ID에 대응되는 슬롯 그룹 (이를 통해 스케줄링된 PDSCH들)에 대한 total-DAI, (iii) starting-ID, (iv) (current-ID에 대응되는 슬롯 그룹을 제외한) 슬롯 그룹 집합 A에 속한 (복수) 슬롯 그룹(들) 각각에 공통으로 적용되는 (단일) total-DAI가 지시될 수 있다. 이에 따라, 단말은 starting-ID부터 current-ID까지에 대응되는 슬롯 그룹 집합에 대한 A/N 피드백을 (PUCCH 또는) PUSCH를 통해 (예, UCI 피기백 형태로) 전송하도록 동작할 수 있다.
또 다른 예로, current-ID (및/또는 starting-ID)는 UL 그랜트 DCI에 포함되지 않을 수 있다. 즉, current-ID (및/또는 starting-ID)는 UL 그랜트 DCI를 통한 시그널링이 생략될 수 있다. 이 경우, 단말은 DL 그랜트 DCI를 통해 수신된 current-ID (및/또는 starting-ID) 정보를 기반으로 (PUSCH 상의) A/N 피드백을 구성/전송하도록 동작할 수 있다. 추가적으로, UL 그랜트 DCI를 통해 A/N 피드백 전송 요청 (예, A/N 피드백 대상이 되는 슬롯 그룹)이 없음을 특정 필드를 통해 지시할 수 있다. 여기서, 특정 필드는 예를 들어 starting-ID 및/또는 current-ID (및/또는 대응되는 total-DAI) 지시 필드를 포함할 수 있다.
한편, 상술한 방법 혹은 여타의 다른 방법을 적용했을 때에 동시에 전송되는 (단일) A/N 피드백 구성 대상이 되는 슬롯 그룹 개수가 (예, current-ID를 포함하여 2개로, 또는 current-ID를 포함하여 3개 이상으로) 동적으로 변경될 수 있다. 이 경우, A/N 트리거링 DCI (예, DL 그랜트 DCI) 및/또는 UL 그랜트 DCI를 통해 A/N 피드백 구성 대상이 되는 (current-ID에 대응되는 슬롯 그룹을 제외한) 복수의 슬롯 그룹들 각각에 공통으로 적용되는 (단일) total-DAI가 지시될 수 있다.
한편, 제한된 DCI 필드 사이즈/비트 수로 인해, current-ID/feedback-ID (또는 total-ID)로 지시 가능한 슬롯 그룹 ID (이에 대응되는 A/N 피드백 대상 슬롯 그룹)에 한계가 있을 수 있다. 이를 고려하여, current-ID/feedback-ID (또는 total-ID) 지시 필드의 특정 상태(state)를 통해 (특정 슬롯 그룹이 아닌) 전체 혹은 (사전에 지정된) 특정 일부 HARQ 프로세스 ID들에 대응되는 PDSCH 수신에 대한 A/N 피드백을 전송하도록 지시할 수 있다.
한편, 각 슬롯 그룹 ID 값 별로 (해당 ID에 대응되는 슬롯 그룹에 대한) A/N 전송 PUCCH/PUSCH 자원 (세트)이 상이하게 설정되거나, 각 A/N 전송 PUCCH/PUSCH 자원 (세트)별로 대응되는 (예, 해당 PUCCH/PUSCH 자원 (세트)로의 A/N 피드백 대상이 되는) 슬롯 그룹 ID 값이 상이하게 설정될 수 있다. 일 예로, 슬롯 그룹 ID = X에 대한 A/N 피드백에 대하여, 단말은 슬롯 그룹 ID = X에 설정된 PUCCH/PUSCH 자원 (세트)을 선택/사용하여 전송하도록 동작할 수 있다.
추가적으로, 하나의 단말에게 복수의 캐리어가 병합/설정된 상황에서(즉, CA 상황), 슬롯 그룹 ID는, Opt 1-1) 동일 시점 (예, 슬롯 타이밍) 또는 시간 구간에서 모든 복수 캐리어들에 대해 공통적으로 동일한 슬롯 그룹 ID가 지시/규정되거나, Opt 1-2) 주파수 (캐리어)-퍼스트(first) 시간 (슬롯 그룹)-세컨드(second) 순서로 각 캐리어 별로 슬롯 그룹 ID가 개별적으로 지시/규정될 수 있다.
추가적으로, CA 상황에서 슬롯 그룹 ID가 지시/규정된 상태에서, counter-DAI는, 1) (Opt 1-1이 적용된 상태에서) 하나의 슬롯 그룹 (ID) 내에서 주파수 (캐리어)-퍼스트 시간 (슬롯)-세컨드 순서로 PDSCH 스케줄링 카운터 값이 결정/지시되거나, 2) (Opt 1-2가 적용된 상태에서) 각 캐리어 별로 하나의 슬롯 그룹 (ID) 내에서 PDSCH 스케줄링 카운터 값이 독립적으로 결정/지시될 수 있다.
(4) 제안 방법 3
제안 방법의 설명에 앞서, A/N 피드백 구성/전송 및 관련 기본 동작 방식들에 대하여 설명하면 다음과 같다. t-A/N 방식과 p-A/N 방식은 도 12~13을 참조하여 설명한 것과 실질적으로 동일하며, A/N 피드백 구성/전송 방식(혹은, A/N 코드북 방식)을 분류하기 위해 아래에 다시 기재하였다.
1) 타이밍 기반의 A/N 피드백 방식(t-A/N 방식)
A. 사전에 RRC 시그널링을 통해 복수의 후보 HARQ 타이밍을 설정한 뒤, 기지국은 (DL 그랜트) DCI를 통해 복수의 후보 HARQ 타이밍 중 하나를 단말에게 지시할 수 있다. 이 경우, 단말은 전체 후보 HARQ 타이밍 세트에 대응되는 복수 슬롯(혹은, 슬롯 집합; 번들링 윈도우)에서의 (복수) PDSCH 수신에 대한 A/N 피드백을, 지시된 HARQ 타이밍을 통해 전송하도록 동작할 수 있다. 여기서, HARQ 타이밍은 PDSCH-to-A/N 타이밍/간격을 의미한다. HARQ 타이밍은 슬롯 단위로 표현될 수 있다. 이하, 상술한 방식을 Type-1 A/N 코드북으로 지칭한다.
B. HARQ 타이밍 지시에 추가하여, (DL 그랜트) DCI를 통해 c-DAI(counter Downlink Assignment Index) 및/또는 t-DAI(total-DAI)가 함께 시그널링 될 수 있다. c-DAI는 (DL 그랜트) DCI에 대응되는 PDSCH가 몇 번째로 스케줄링된 것인지 알려줄 수 있다. t-DAI는 현재 (슬롯)까지 스케줄링된 PDSCH의 총 개수 (또는, PDSCH가 존재하는 슬롯의 총 개수)를 알려줄 수 있다. 이에 따라, 단말은 c-DAI 초기값부터 (수신된) 마지막 t-DAI 값까지의 c-DAI 값들에 대응되는 PDSCH에 대한 A/N을 지시된 HARQ 타이밍을 통해 전송하도록 동작할 수 있다. 이하, 상술한 방식을 Type-2 A/N 코드북으로 지칭한다.
C. PDSCH (슬롯) 그룹 ID 기반의 A/N 피드백 방식(이하, Type-2a A/N 코드북)
i. DL 그랜트 DCI를 통해 current-ID가 시그널링되고, A/N 트리거링 DCI를 통해 feedback-ID를 시그널링될 수 있다. 여기서, current-ID는 DL 그랜트 DCI 혹은 대응되는 PDSCH가 전송된 슬롯이 속한 슬롯 그룹 ID를 지시하는데 사용된다. 또한, feedback-ID는 A/N 피드백 대상이 되는 (DL PDSCH) 슬롯 그룹 ID를 지시하는데 사용된다. 여기서, DCI를 통해 total-ID가 시그널링되고, Method 1에 기반하여 total-ID로부터 feedback-ID가 유추될 수 있다.
ii. 단말은 A/N 전송 타이밍으로 지시된 시점을 통해 feedback-ID에 대응되는 슬롯 그룹 (이를 통한 PDSCH 수신)에 대한 A/N 피드백을 전송할 수 있다.
iii. A/N 트리거링 DCI가 DL 그랜트 DCI와 동일한 경우(즉, current-ID와 feedback-ID (또는 total-ID)가 모두 DL 그랜트 DCI를 통해 시그널링됨), 단말은 타이밍-A로 지시된 시점을 통해, 1) 타이밍-A에 대응되는 번들링 윈도우 혹은 current-ID에 대응되는 슬롯 그룹 (이를 통한 PDSCH 수신)에 대한 A/N 피드백과, 2) feedback-ID에 대응되는 슬롯 그룹 (이를 통한 PDSCH 수신)에 대한 A/N 피드백을 결합하여 (동시에, 예를 들어 하나의 PUCCH/PUSCH를 통해) 전송하도록 동작할 수 있다.
2) 풀링 기반의 A/N 피드백 방식(p-A/N 방식)
A. DL 그랜트 DCI를 통해, 대응되는 PDSCH에 대한 A/N 피드백 전송을 연기 (pending/deferring)시키는 동작을 지시할 수 있다. 이후, DCI를 통해, (i) 전체 DL HARQ 프로세스 ID들, 혹은 (ii) 특정 일부 DL HARQ 프로세스 ID(들)에 대응되는 PDSCH에 대한 A/N 피드백의 전송을 지시할 수 있다(pooling). A/N 피드백은 특정 신호(예, RRC 또는 DCI 시그널링)를 기반으로 설정/지시된 타이밍을 통해 전송될 수 있다. 이하, 상술한 방식을 Type-3 A/N 코드북으로 지칭한다.
B. t-A/N 방식에 c-/t-DAI 시그널링이 설정된 경우(예, DL 그랜트 DCI를 통해 DAI가 시그널링 되는 경우), A/N 풀링은 (풀링 DCI를 통해 지시된) HARQ 프로세스 ID에 대응되는 PDSCH에 대한 A/N 전송을 풀링하거나, (풀링 DCI를 통해 지시된) t-DAI 값에 대응되는 PDSCH에 대한 A/N 전송을 풀링하는 것으로 정의될 수 있다. 후자의 경우, 단말은 c-DAI 초기 값 ~ t-DAI 값에 대응하는 PDSCH 수신에 대한 A/N 정보를 한 번에 전송할 수 있다.
3) t-A/N 방식과 p-A/N 방식간 다이나믹 스위칭 동작 방법
A. 일 예로, DL 그랜트 DCI를 통해 t-A/N 방식과 p-A/N 방식간 스위칭을 지시할 수 있다. 즉, DL 그랜트 DCI를 통해 t-A/N 방식과 p-A/N 방식 중 어느 방식을 적용하여 A/N 피드백을 구성/전송할지 지시할 수 있다. 추가적으로, 동일한 DL 그랜트 DCI를 통해 p-A/N 방식을 위한 A/N 펜딩과 A/N 풀링까지 모두 지시될 수 있다. 예를 들어, DL 그랜트 DCI가 p-A/N 방식을 지시하는 경우, DL 그랜트 DCI는 A/N 피드백 전송을 펜딩할지 아니면 풀링을 지시할지 여부를 더 지시할 수 있다.
B. 다른 예로, DL 그랜트 DCI를 통해 t-A/N 방식과 p-A/N 방식 적용을 위한 A/N 펜딩 동작간 스위칭을 지시할 수 있다. 즉, DL 그랜트 DCI를 통해 t-A/N 방식을 적용할지, p-A/N 방식을 위해 A/N 피드백 전송을 펜딩할지 여부를 지시할 수 있다. 이때, p-A/N 방식을 위한 A/N 풀링 동작은 UL 그랜트 DCI 혹은 (단말 (그룹)) 공통 DCI를 통해 지시될 수 있다.
C. 또 다른 예로, PDSCH 스케줄링을 포함하는 DL 그랜트 DCI를 통해 t-A/N 방식과 p-A/N을 위한 A/N 펜딩간 스위칭을 지시할 수 있다. 즉, DL 그랜트 DCI를 통해 t-A/N을 적용할지, p-A/N 방식을 위해 A/N 전송을 펜딩할지 여부를 지시할 수 있다. 이때, p-A/N 방식을 위한 A/N 풀링은 PDSCH 스케줄링을 포함하지 않는 DL 그랜트 DCI를 통해 지시될 수 있다.
4) NFI(New Feedback Indicator) 정보 시그널링
A. LBT 실패에 따른 단말의 A/N 피드백 전송 드랍 및/또는 기지국에서의 A/N 피드백 검출 실패 등으로 인한, 단말과 기지국간 A/N 코드북 (페이로드) 구성 상의 불일치 방지 (및, A/N PUCCH (이를 포함한 PUSCH 등의 UL 전송)에 수반되는 LBT 동작을 위한 CWS(Contention Window Size) 업데이트)를 목적으로, A/N 피드백 전송을 트리거하는 (예, DL 그랜트 또는 UL 그랜트) DCI를 통해 1-비트 NFI가 시그널링 될 수 있다. NFI는 토글링 형태로 다음의 정보를 지시할 수 있다.
i. 이전 (최근) 시점에 전송했던 A/N 피드백(이하, 이전(previous) A/N 피드백)이 (a) 기지국에서 제대로 검출/수신되었는지, (b) 기지국이 검출/수신에 실패했는지 여부가 시그널링 될 수 있다. (a)의 경우, 단말은 이전 A/N 전송 이후에 스케줄링된 PDSCH에 대응되는 A/N을 제외한 나머지 부분을 NACK 또는 DTX (피드백 구성/전송 생략)로 처리하여 업데이트된 A/N 피드백을 구성/전송할 수 있다. (b)의 경우, 단말은 이전 A/N 전송 이후에 스케줄링된 PDSCH에 대응되는 A/N을 제외한 나머지 부분을 그대로 유지하여 A/N 피드백을 구성/전송할 수 있다.
ii. (a)의 경우에는 이전의 DCI를 통해 수신된 NFI 값에서 토글링된 NFI 값이 현재의 DCI를 통해 지시된다. (b)의 경우에는 이전의 DCI를 통해 수신된 NFI 값에서 토글링되지 않은 NFI 값이 현재의 DCI를 통해 지시될 수 있다. 단말은 토글된 NFI를 수신한 경우 A/N PUCCH (및/또는 PUSCH) 전송을 위한 CWS를 최소 값으로 리셋하는 반면 비-토글된 NFI를 수신한 경우에는 CWS 값을 (일정 단위로) 증가시키도록 동작할 수 있다.
이하, Type-2a 및 Type-1 A/N 코드북 설정시 DL/UL 그랜트 DCI 구성 방법 및 시그널링 정보에 대하여 제안한다. 한편, 본 명세서에서는, DCI 포맷 내의 필드 구성 및 각 필드 사이즈 등이 구성 가능한(configurable)(즉, 변경 가능한) DCI (포맷)를 non-폴백 DCI로 칭하고, DCI 필드 구성 및 각각의 사이즈 등이 구성 가능하지 않은(즉, 고정된) DCI (포맷)를 폴백 DCI로 칭한다. 본 명세서에서 별도로 폴백 DCI라 명시하지 않은 DCI는 non-폴백 DCI를 의미할 수 있다.
(a) Type-2a A/N 코드북 설정시 DCI 구성 및 시그널링 정보
1) DL 그랜트 DCI를 통해 시그널링되는 정보
A. 기본적으로 다음 정보들을 포함할 수 있음 (편의상, 기본 정보).
i. current-ID 정보
ii. current-ID에 대응되는 (PDSCH) 슬롯 그룹과 관련된 counter-DAI 및 total-DAI 정보
iii. feedback-ID 정보
1. 또는, DCI를 통해서는 total-ID가 시그널링되고, feedback-ID 정보는 Method 1을 기반으로 결정될 수 있음
iv. current-ID에 대응되는 A/N 피드백에 대한 NFI 정보 (즉, NFI for current-ID)
v. feedback-ID에 대응되는 A/N 피드백에 대한 NFI 정보 (즉, NFI for feedback-ID)
1. Method 2를 기반으로 (total-ID로 지시된 값에 관계없이) current-ID와 다른 값을 갖는 other-ID에 대응되는 A/N 피드백에 대한 NFI 정보로 대체될 수 있음 (즉, NFI for other-ID)
B. 추가적으로 다음 정보를 더 포함할 수 있음.
i. feedback-ID에 대응되는 (PDSCH) 슬롯 그룹과 관련된 total-DAI 정보
1. Method 2를 기반으로 (total-ID로 지시된 값에 관계없이) current-ID과 다른 값을 갖는 other-ID에 대응되는 A/N 피드백에 대한 total-DAI 정보로 대체될 수 있음 (즉, total-DAI for other-ID)
C. 추가적으로 다음 정보를 더 포함할 수 있음.
i. Type-3 코드북에 기반한 A/N 피드백 구성/전송 여부 (예, Type-2a와 Type-3 중에서 어느 A/N 코드북으로 구성/전송할지 지시하는 CTI(Codebook Type Indicator) 시그널링)
ii. Notes
1. (특정 시점에) DCI를 통해 Type-3가 지시되면, 해당 DCI를 통해 Type-3 코드북 기반 A/N 피드백에 대한 NFI 정보 (즉, NFI for Type-3)가 추가 시그널링 될 수 있음
2. CTI 정보는 전용의 1-비트를 이용하여 명시적으로(explicit) 시그널링되거나, 아래와 같은 방법으로 묵시적으로(implicit) 시그널링 될 수 있음
3. 첫 번째 방법은, DCI를 통해 current-ID에 대응되는 하나의 (PDSCH) 슬롯 그룹에 대해서만 A/N 피드백 전송이 지시된 경우, NFI for feedback-ID (또는 NFI for other-ID) 비트/필드를 통해 CTI 정보가 시그널링 될 수 있음. CTI를 통해 Type-3이 지시된 경우, counter-DAI, total-DAI 비트/필드, 및/또는 NFI for current-ID 비트/필드를 통해, A/N 피드백 대상이 되는 HARQ 프로세스 ID 그룹 및/또는 (CA 상황에서) CC/셀 그룹이 지시되거나/되고 NFI for Type-3 정보가 시그널링 될 수 있음
4. 두 번째 방법은, DCI를 통해 current-ID에 대응되는 하나의 (PDSCH) 슬롯 그룹에 대해서만 A/N 피드백 전송이 지시된 경우, total-DAI for feedback-ID (또는 total-DAI for other-ID) 비트/필드를 통해 CTI 정보가 시그널링 될 수 있음. CTI를 통해 Type-3가 지시된 경우, counter-DAI, total-DAI (for current-ID) 비트/필드, NFI for current-ID, 및/또는 NFI for feedback-ID (또는 NFI for other-ID) 비트/필드를 통해, A/N 피드백 대상이 되는 HARQ 프로세스 ID 그룹 및/또는 (CA 상황에서) CC/셀 그룹이 지시되거나/되고 NFI for Type-3 정보가 시그널링 될 수 있음
D. 폴백 DCI 기반의 DL 스케줄링 관련
i. 기본적으로, 폴백 DCI 포맷에는 상술한 기본 정보들 중에서 current-ID 정보 및/또는 (해당 ID에 대응되는 (PDSCH) 슬롯 그룹과 관련된) counter-DAI 정보만 포함/시그널링 될 수 있음 (편의상, Case 1)
ii. 또 다른 방법으로, 폴백 DCI 포맷에는 total-DAI for current-ID를 제외한 상기 모든 기본 정보들이 포함/시그널링 될 수 있음
iii. 이 경우, 폴백 DCI에 포함/시그널링되지 않는 정보에 대해, 단말은 non-폴백 DL DCI를 통해 가장 최근에 검출/수신된 정보 (예, feedback-ID (또는, total-ID), NFI, CTI)를 기반으로 A/N 코드북 (페이로드)를 구성/전송할 수 있음. 여기서, 최근 검출/수신된 정보와 관련된 non-폴백 DL DCI는, 폴백 DL DCI를 통해 지시된 HARQ-ACK (PUCCH) 전송 시점 (슬롯)을, HARQ-ACK (PUCCH) 전송 시점으로 지시한 DCI만으로 국한될 수 있음. 만약, 폴백 DCI와 동일한 HARQ-ACK (PUCCH) 전송 시점을 지시하는 non-폴백 DCI가 존재하지 않는 경우, Case 1에 따라 단말은 current-ID에 대응되는 슬롯 그룹에 대해서만 A/N 피드백을 구성/전송하고 NFI for current-ID에 대해서는 (이전 A/N 피드백 대비 혹은 이전(즉, 최근)에 수신된 NFI 비트와 비교하여) 토글된 형태 (또는 non-토글된 형태)로 가정/적용하여 동작할 수 있음. 또한, 단말은 CTI가 Type-2a 코드북으로 지시됨을 가정/적용하여 동작할 수 있음
E. CB 그룹 (CBG) 단위 DL 전송 동작 관련
i. CBG 단위 DL 전송이 설정된 CC/셀의 경우, total-DAI for feedback-ID (또는 total-DAI for other-ID) 정보가 TB 단위 전송에 대응되는 A/N 서브-코드북과 CBG 단위 전송에 대응되는 A/N 서브-코드북에 대해 각각 개별적으로 시그널링 될 수 있음
2) UL 그랜트 DCI를 통해 시그널링되는 정보
A. 기본적으로 다음 정보들을 포함할 수 있음 (편의상, 기본 정보).
i. 첫 번째 (PDSCH) 슬롯 그룹 ID (이하, first-ID)에 대한 total-DAI 정보
ii. 두 번째 (PDSCH) 슬롯 그룹 ID (이하, second-ID)에 대한 total-DAI 정보
iii. Notes
1. 일 예로, 최대 2개까지의 (PDSCH) 슬롯 그룹 (인덱스 = 0, 1)이 정의/설정될 경우, first-ID와 second-ID는 각각 슬롯 그룹 인덱스 0와 1에 대응될 수 있음
2. 다른 예로, first-ID와 second-ID가 각각 current-ID와 feedback-ID (또는 other-ID)로 설정/대체될 수 있음. 이 경우, DCI를 통해 추가적으로 current-ID 정보와 feedback-ID (또는 total-ID) 정보가 더 시그널링 될 수 있음
A. feedback-ID의 경우, DCI를 통해서는 total-ID가 시그널링되고, feedback-ID 정보는 Method 1을 기반으로 결정될 수 있음
B. other-ID는 Method 2를 기반으로 current-ID와 다른 값을 가지는 슬롯 그룹 ID로 결정될 수 있음
3. 또 다른 예로, 전체 슬롯 그룹 ID/인덱스 집합 (예, ID/인덱스 = 0, 1)에 대한 비트맵 정보가 DCI를 통해 시그널링 될 수 있음. 해당 비트맵을 통해 각 슬롯 그룹 ID 별로 해당 ID에 대응되는 슬롯 그룹이 A/N 피드백 요청/전송 대상인지 여부가 지시될 수 있음
4. 한편, UL 그랜트 DCI가 슬롯 그룹 ID/인덱스-관련 정보/시그널링을 포함하지 않을 수 있다. 이 경우, 단말은 DL 그랜트 DCI를 통해 가장 최근에 검출/수신된 슬롯 그룹 ID/인덱스 정보를 기반으로 A/N 코드북 (페이로드)를 구성/전송하도록 동작할 수 있음. 여기서, 슬롯 그룹 ID/인덱스와 관련된 DL 그랜트 DCI는, UL 그랜트 DCI를 통해 스케줄링된 PUSCH 전송 시점 (슬롯)을, PDSCH에 대한 HARQ-ACK 전송 시점으로 지시한 DCI만으로 국한될 수 있음
B. 추가적으로 다음 정보를 더 포함할 수 있음
i. first-ID에 대응되는 A/N 피드백에 대한 NFI 정보
ii. second-ID에 대응되는 A/N 피드백에 대한 NFI 정보
iii. Notes
1. 이 경우, 기지국으로부터 추가 DL (PDSCH) 스케줄링/전송 없이도 단말에게 (PUSCH를 통한) A/N 피드백 전송이 지시될 수 있음
2. 그렇지 않고, UL 그랜트 DCI가 A/N 피드백에 대한 NFI 정보를 포함하지 않을 수 있다. 이 경우, 단말은 (각 (PDSCH) 슬롯 그룹에 대해) DL 그랜트 DCI를 통해 가장 최근 검출/수신한 NFI 정보를 기반으로 A/N 코드북 (페이로드)를 구성/전송하도록 동작할 수 있음. 여기서, NFI 정보와 관련된 DL 그랜트 DCI는, UL 그랜트 DCI를 통해 스케줄링된 PUSCH 전송 시점 (슬롯)을, PDSCH에 대한 HARQ-ACK 전송 시점으로 지시한 DCI만으로 국한될 수 있음
C. 추가적으로 다음 정보를 더 포함할 수 있음.
i. Type-3 코드북에 기반한 A/N 피드백 구성/전송 여부 (예, Type-2a와 Type-3 중에서 어느 A/N 코드북으로 구성/전송할지 지시)
ii. Notes
1. (특정 시점에) DCI를 통해 Type-3가 지시되면, 해당 DCI를 통해 Type-3 코드북 기반 A/N 피드백에 대한 NFI 정보가 추가 시그널링 될 수 있음
D. 폴백 DCI 기반의 UL 스케줄링 관련
i. 기본적으로, 폴백 DCI 포맷은 기본 정보들이 모두 포함/시그널링되지 않는 (생략된) 형태일 수 있음
ii. 다른 방법으로, 폴백 DCI 포맷은 모든 기본 정보들이 포함/시그널링되는 형태일 수 있음
iii. 이 경우, UL 그랜트 DCI에 포함/시그널링되지 않는 정보에 대하여 단말은 DL 그랜트 DCI를 통해 가장 최근 검출/수신된 정보 (예, 슬롯 그룹 ID/인덱스, NFI, CTI)를 기반으로 A/N 코드북 (페이로드)를 구성/전송하도록 동작할 수 있음. 여기서, 최근 검출/수신된 정보와 관련된 DL 그랜트 DCI는, UL 그랜트 DCI를 통해 스케줄링된 PUSCH 전송 시점 (슬롯)을, PDSCH에 대한 HARQ-ACK 전송 시점으로 지시하는 DCI만으로 국한될 수 있음
iv. 한편, 다이나믹 그랜트 DCI 전송을 수반하는 스케줄링이 아닌, 구성된(Configured Grant, CG) 형태로 DCI없이 전송되는 CG-PUSCH를 통해 A/N을 피기백하여 전송하는 경우, 단말은 DL 그랜트 DCI를 통해 가장 최근 검출/수신된 정보(예, 슬롯 그룹 ID/인덱스, total-DAI, NFI, CTI)를 기반으로 A/N 코드북 (페이로드)를 구성/전송하도록 동작할 수 있음. 여기서, 최근 검출/수신된 정보와 관련된 DL 그랜트 DCI는, CG-PUSCH 전송 시점 (슬롯)을, PDSCH에 대한 HARQ-ACK 전송 시점으로 지시하는 DCI만으로 국한될 수 있음
E. CB 그룹 (CBG) 단위 DL 전송 동작 관련
i. CBG 단위 DL 전송이 설정된 CC/셀의 경우, total-DAI(예, total-DAI for first-ID 및 total-DAI for second-ID) 정보가 TB 단위 전송에 대응되는 A/N 서브-코드북과 CBG 단위 전송에 대응되는 A/N 서브-코드북에 대해 각각 개별적으로 시그널링 될 수 있음
한편, 단말이 Type-2a 코드북에 기반하여 PUCCH/PUSCH 상에 A/N 피드백을 구성/전송하는 경우, 기지국은 단말에게 "PUSCH에 피기백되어 전송될 A/N 피드백이 없음"을 지시/인지하도록 하는 방법이 필요할 수 있다. 이를 위해, 다음과 같은 DCI 시그널링 및 동작을 고려할 수 있다.
1) 방법 1
A. UL 그랜트 DCI 내의 total-DAI 비트가 '11'로 (또는, total-DAI 값이 4로) 지시되고, PUSCH 전송 시점에 대응되는 번들링 윈도우 구간 (또는 이전(예, 최근) A/N 피드백 전송 시점 (혹은, 해당 전송 타이밍으로 지시된 시점) 이후부터 PUSCH 전송 시점까지의 구간) 동안 검출된 DL 그랜트 DCI가 없고, UL 그랜트 DCI를 통해 지시된 NFI 비트가 (이전 A/N 피드백 대비 혹은 이전(예, 최근) 수신된 NFI 비트와 비교하여) 토글된 경우, 단말은 PUSCH 상에 어떤 A/N도 피기백하지 않도록 동작할 수 있음. 본 방식은 UL 그랜트 DCI를 통해 NFI 정보를 시그널링하는 구조에 적용될 수 있음. 여기서, DCI 정보 체크 및 그에 따른 단말 동작은 각 (PDSCH) 슬롯 그룹 (ID)별로 독립/개별적으로 수행될 수 있음
B. 다른 방식으로, (UL 그랜트 DCI를 통한 별도의 NFI 정보 시그널링이 없는 상태에서) 검출/수신된 UL 그랜트 DCI에 대하여, 상기 DCI 체크/단말 동작을 적용/수행하되, NFI 비트는 (이전 A/N 피드백 대비 혹은 이전 (최근) 수신된 NFI 비트와 비교하여) non-토글된 (또는 토글된) 것으로 가정될 수 있음. 본 방식은 별도의 NFI 정보 시그널링이 없는 (예, 폴백) UL 그랜트 DCI (포맷)인 경우에 대해 적용될 수 있음
2) 방법 2
A. UL 그랜트 DCI 내의 total-DAI 필드로 시그널링 되는 상태(state)들 중 하나를 (PUSCH로 피기백될) "A/N 피드백이 없음"을 지시하는 것으로 정의할 수 있음. 단말은 DCI를 통해 해당 상태가 지시된 경우, PUSCH 상에 아무런 A/N도 피기백하지 않도록 동작할 수 있음. 본 방법은 UL 그랜트 DCI를 통한 NFI 정보 시그널링이 없는 구조에 적용될 수 있음. 여기서, DCI 정보 체크 및 그에 따른 단말 동작은 각 (PDSCH) 슬롯 그룹 (ID)별로 독립/개별적으로 수행될 수 있음
3) 방법 3
A. UL 그랜트 DCI 내의 first-ID 및 second-ID (또는 current-ID 및 feedback-ID (또는 total-ID)) 비트/필드를 통해 하나의 (PDSCH) 슬롯 그룹 (예, first-ID)만 지시될 수 있다. 이 경우, 특정 total-DAI 필드(예, second-ID에 대한 total-DAI 필드)를 통해, 1) 지시된 슬롯 그룹(예, first-ID) 하나에 대해서만 A/N 피드백을 (PUSCH에 피기백하여) 구성/전송하도록 지시하거나, 2) 지시된 슬롯 그룹(예, first-ID)에 대해서도 (즉, 모든 슬롯 그룹(first-ID 및 second-ID)에 대해) PUSCH로 피기백될 A/N 피드백이 없음을 지시할 수 있음. 본 방법은 (UL 그랜트 DCI를 통한 NFI 정보 시그널링이 없고) UL 그랜트 DCI를 통해 (PDSCH) 슬롯 그룹 ID 정보를 시그널링 하는 구조에 적용될 수 있음. 예를 들어, 슬롯 그룹 ID 정보는 first-ID 및 second-ID (또는, current-ID 및 feedback-ID (또는 total-ID)) 정보)를 포함함
한편, 단일 UL 그랜트 DCI를 통해, 복수 슬롯들에 걸쳐 전송되는 복수의 PUSCH 자원을 스케줄링/지시하는 (멀티-슬롯 스케줄링의) 경우, 해당 DCI를 통해 시그널링되는 total-DAI, NFI, 및/또는 CTI 정보를 적용하는 동작이 필요할 수 있다. 해당 정보의 경우, DCI를 통해 스케줄링된 복수의 슬롯 또는 PUSCH 자원들 중에서, 1) (a) 최초 슬롯 내 PUSCH 자원(즉, first-슬롯 PUSCH), (b) 최초 PUSCH 자원(즉, first PUSCH), (c) 특정 심볼 수 (혹은 non-DMRS 심볼 수) 및/또는 특정 RB 수 (혹은 RE 수 혹은 non-DMRS RE 수) 이상으로 구성된 최초 PUSCH 자원, (d) PUSCH 전송이 지시된 최초 슬롯의 바로 다음 슬롯 내에 할당된 PUSCH 자원, 혹은 (e) 슬롯 구간(duration)과 동일한 심볼 구간을 가지는 최초 PUSCH 자원(즉, first full-PUSCH)에만 (예를 들어, 상기 복수의 자원들 중 특정 하나의 자원 또는 특정 자원 조합에만) 적용되거나, 2) (a) LBT (이를 통한 CCA)에 최초 성공한 first-슬롯 PUSCH, (b) first PUSCH, 혹은 (c) first full-PUSCH에만 적용되거나, 3) (a) A/N 피드백이 피기백된 형태로 전송되는 first-슬롯 PUSCH, (b) first PUSCH, 혹은 (c) first full-PUSCH에만 적용될 수 있다. 상기를 제외한 나머지 슬롯 또는 PUSCH 자원에 대해서는 a) DL 그랜트 DCI를 통해 가장 최근 검출/수신된 정보(예, 슬롯 그룹 ID/인덱스, total-DAI, NFI, CTI, 및/또는 하기 폴백 A/N 여부 지시 정보, pended A/N 유무 지시 정보)를 기반으로 A/N 코드북 (페이로드)를 구성/전송하거나, 및/또는 b) 상기 정보에 대해 특정(예, 디폴트) 값을 가정/적용할 수 있다.
a)의 경우, 최근 검출/수신된 정보와 관련된 DL 그랜트 DCI는, PUSCH 전송 시점 (슬롯)을, PDSCH에 대한 HARQ-ACK 전송 시점으로 지시한 DCI만으로 국한될 수 있다. 한편, b)의 경우, 적어도 하나에 대해 다음과 같이 가정/적용할 수 있다.
1) total-DAI에 대해서는 total-DAI 비트를 '11'로 (또는, total-DAI 값을 4로) 가정/적용하고,
2) NFI에 대해서는 (이전 A/N 피드백 대비 혹은 이전(예, 최근) 수신된 NFI 비트와 비교하여) 토글된 (또는 non-토글된) 것으로 가정/적용하고,
3) CTI로는 Type-2a (또는, 하기의 경우 Type-1) 코드북이 지시됨을 가정/적용하고,
4) 하기에서 "Type-1 코드북 기반 A/N 피드백 여부를 지시하는 정보"에 대해서는 해당 필드/시그널링이 없다고 가정/적용하고,
5) 하기에서 "Pended A/N 유무를 지시하는 정보"에 대해서는 해당 pended A/N 피드백이 없다고 가정/적용할 수 있다.
(b) Type-1 A/N 코드북 설정시 DCI 구성 및 시그널링 정보
1) DL 그랜트 DCI를 통해 시그널링되는 정보
A. 기본적으로 다음 정보를 포함할 수 있음 (편의상, 기본 정보).
i. 폴백 A/N 여부를 지시하는 정보
ii. Notes
1. 상기 정보는, 하나의 번들링 윈도우 구간 동안 PCell (이를 통한 PDSCH 전송)을 스케줄링하는 폴백 DCI 하나만 전송되었는지 여부를 지시할 수 있음. 상기 정보는 1-비트만으로 구성/시그널링 될 수 있음
B. 추가적으로 다음 정보를 더 포함할 수 있음
i. Type-3 코드북에 기반한 A/N 피드백 구성/전송 여부 (예, Type-1과 Type-3 중에서 어느 A/N 코드북으로 구성/전송할지 지시하는 CTI 시그널링)
ii. Notes
1. (특정 시점에) DCI를 통해 Type-3가 지시되면, 해당 DCI를 통해 Type-3 코드북 기반 A/N 피드백에 대한 NFI 정보가 추가 시그널링 될 수 있음
C. 추가적으로 다음 정보를 더 포함할 수 있음
i. Pended A/N 유무를 지시하는 정보
ii. Notes
1. 상기 정보는, Type-1 코드북에 기반하여 구성된 A/N 페이로드에 (이전 시점에) 펜딩이 지시된 A/N (즉, pended A/N)을 추가로 더 포함시켜 최종 A/N 피드백을 구성할지 여부를 지시할 수 있음
D. 폴백 DCI 기반의 DL 스케줄링 관련
i. 기본적으로, (적어도 PCell/PSCell에 대응되는) 해당 DCI 포맷에는 상기 기본 정보가 포함/시그널링되는 형태일 수 있음
ii. 추가적으로, (PCell/PSCell을 제외한) SCell에 대응되는 폴백 DCI 포맷에는 상기 기본 정보가 포함/시그널링되지 않는 형태일 수 있음
E. CB 그룹 (CBG) 단위 DL 전송 동작 관련
i. CBG 단위 DL 전송이 설정된 CC/셀의 경우 또는 CBG 단위 DL 전송이 설정된 CC/셀을 포함한 CA인 경우, pended A/N 페이로드는 모든 셀/CC들에 설정된 최대 (전송 가능) CBG 수, 즉 셀/CC별로 설정된 (전송 가능) CBG 수들 중 최대 값에 기반하여 결정될 수 있음. TB 단위 전송이 설정된 CC/셀의 경우 또는 TB 단위 전송이 설정된 CC/셀만 병합된 경우 pended A/N 페이로드는 모든 셀/CC들에 설정된 최대 (전송 가능) TB 수, 즉 셀/CC별로 설정된 (전송 가능) TB 수들 중 최대 값에 기반하여 결정될 수 있음
2) UL 그랜트 DCI를 통해 시그널링되는 정보
A. 기본적으로 다음 정보를 포함할 수 있음 (편의상, 기본 정보).
i. Type-1 코드북 기반 A/N 피드백 여부를 지시하는 정보
ii. Notes
1. 상기 정보는, type-1 코드북에 기반하여 구성된 A/N 페이로드를 PUSCH로 피기백하여 전송할지 (아니면, 0-비트 (즉 피기백 생략) 혹은 폴백 A/N만을 피기백할지) 여부를 지시할 수 있음
B. 추가적으로 다음 정보를 더 포함할 수 있음
i. Type-3 코드북에 기반한 A/N 피드백 구성/전송 여부 (예, Type-1과 Type-3 중에서 어느 A/N 코드북으로 구성/전송할지 지시)
ii. Notes
1. (특정 시점에) DCI를 통해 Type-3가 지시되면, 해당 DCI를 통해 Type-3 코드북 기반 A/N 피드백에 대한 NFI 정보가 추가 시그널링 될 수 있음
C. 추가적으로 다음 정보를 더 포함할 수 있음
i. Pended A/N 유무를 지시하는 정보
ii. Notes
1. 상기 정보는, Type-1 코드북에 기반하여 구성된 A/N 페이로드에 (이전 시점에) 펜딩이 지시된 A/N (즉, pended A/N)을 추가로 더 포함시켜 최종 A/N 피드백을 구성할지 여부를 지시할 수 있음
D. 폴백 DCI 기반의 UL 스케줄링 관련
i. 기본적으로, 폴백 DCI 포맷에는 상기 기본 정보가 포함/시그널링되지 않는 형태일 수 있음
ii. UL 그랜트 DCI에 포함/시그널링되지 않는 정보에 대하여 단말은 DL 그랜트 DCI를 통해 가장 최근 검출/수신된 정보(예, 폴백 A/N 여부 지시 정보, CTI, pended A/N 유무 지시 정보)를 기반으로 A/N 코드북 (페이로드)를 구성/전송하도록 동작할 수 있음. 여기서, 최근 검출/수신된 정보와 관련된 DL 그랜트 DCI는, UL 그랜트 DCI를 통해 스케줄링된 PUSCH 전송 시점 (슬롯)을, PDSCH에 대한 HARQ-ACK 전송 시점으로 지시한 DCI만으로 국한될 수 있음
iii. 한편, 다이나믹 그랜트 DCI 전송을 수반하는 스케줄링이 아닌, CG(Configured Grant) 형태로 DCI없이 전송되는 CG-PUSCH를 통해 A/N을 피기백하여 전송할 수 있음. 이 경우, 단말은 DL 그랜트 DCI를 통해 가장 최근 검출/수신된 정보(예, 폴백 A/N 여부 지시 정보, CTI, pended A/N 유무 지시 정보)를 기반으로 A/N 코드북 (페이로드)를 구성/전송할 수 있음. 최근 검출/수신된 정보와 관련된 DL 그랜트 DCI는, CG-PUSCH 전송 시점 (슬롯)을, PDSCH에 대한 HARQ-ACK 전송 시점으로 지시한 DCI만으로 국한될 수 있음
E. CB 그룹 (CBG) 단위 DL 전송 동작 관련
i. 앞서 DL 그랜트 DCI의 경우와 유사하게, pended A/N 페이로드가 모든 셀/CC들에 설정된 최대 (전송 가능) CBG 수 혹은 TB 수에 기반하여 결정될 수 있음
한편, (Type-2a 또는 Type-1 A/N 코드북 설정 및 이에 따른) DL/UL 그랜트 DCI 정보 구성 및 시그널링 동작은, CA 상황에서 PUCCH 전송을 수행하도록 설정된 PUCCH 셀/CC (예, PCell 또는 PSCell)가 U-밴드 상에서 동작하는 셀/CC인 경우로 한정될 수 있다. 이 경우, CA된 모든 셀/CC들에 대응되는 DL/UL 그랜트 DCI는 본 명세서의 제안 방법에 따라 구성될 수 있다. 한편, PUCCH 셀/CC가 L-밴드 상에서 동작하는 셀/CC인 경우 (기존 Type-1 또는 Type-2 A/N 코드북을 설정한 상태에서) 기존과 동일한 DL/UL 그랜트 DCI 정보 구성 및 시그널링 동작이 적용될 수 있다. 이 경우, 병합된 모든 셀/CC들에 대응되는 DL/UL 그랜트 DCI는 기존과 동일하게 구성될 수 있음.
다른 방안으로, Type-2a 또는 Type-1 A/N 코드북 설정 및 이에 따른 DL/UL 그랜트 DCI 정보의 구성/시그널링은, 멀티-캐리어, 즉 단말에게 CA로 설정된 복수 셀/CC 집합에 U-밴드 상에서 동작하는 셀/CC이 포함된 경우로 한정될 수 있다. 이 경우, 병합된 모든 셀/CC들에 대응되는 DL/UL 그랜트 DCI를 상술한 제안 방법처럼 구성할 수 있음. 한편, 멀티-캐리어에 L-밴드 상에서 동작하는 셀/CC만 포함된 경우 기존 Type-1 또는 Type-2 A/N 코드북 설정 및 이에 따른 기존 DL/UL 그랜트 DCI 정보의 구성/시그널링이 적용될 수 있다. 이 경우, 병합된 모든 셀/CC들에 대응되는 DL/UL 그랜트 DCI는 기존과 동일하게 구성될 수 있음
도 15는 본 발명의 일 예에 따른 A/N 전송 과정을 예시한다. 도 15를 참조하면, 단말은 초기 접속을 위해 RACH 과정을 수행할 수 있다(S1502). RACH 과정에 기반하여, 단말은 A/N 피드백 방식에 대한 정보를 기지국으로부터 수신할 수 있다(S1504). 예를 들어, RRC 연결 과정의 일부로서, 상위 계층(예, RRC) 신호를 통해 A/N 정보 구성/피드백 방식, 슬롯 구성 정보, A/N 전송을 위한 PUCCH 자원 세트 등에 관한 정보가 수신될 수 있다. 초기 접속 이후, 단말은 A/N 피드백 방식에 대한 정보에 기반하여, A/N 피드백 과정을 수행할 수 있다. 여기서, A/N 피드백 과정은 복수의 슬롯 그룹에서 복수의 데이터를 수신하고, A/N 피드백에 관한 제1 정보를 상향링크 스케줄링을 위한 제1 DCI를 통해 수신하고, 제1 정보에 기반하여, 상기 제1 및 제2 슬롯 그룹 중 적어도 하나의 슬롯 그룹에 대한 A/N 정보를 PUSCH 상에서 전송하는 것을 포함할 수 있다. 여기서, PUSCH는 U-밴드(예, UCell) 상에서 전송될 수 있다.
여기서, 단말은 제1 데이터를 스케줄링 하는 제1 스케줄링 정보를 수신하고, 제2 데이터를 스케줄링 하는 제2 스케줄링 정보를 수신하는 것을 포함하고, 제1 스케줄링 정보와 제2 스케줄링 정보는 서로 다른 슬롯 그룹의 인덱스를 지시하는 정보를 포함할 수 있다.
여기서, A/N 피드백에 관한 제1 정보는 본 명세서에서 제안하는 방법에 따라 다양한 정보를 포함할 수 있다. 예를 들어, A/N 피드백에 관한 제1 정보는 하기 정보를 포함할 수 있다:
- A/N 피드백이 요구되는 슬롯 그룹의 인덱스와 관련된 정보, 및
- 상기 슬롯 그룹에 대한 total-DAI(Downlink Assignment Index),
여기서, total-DAI는 슬롯 그룹 내 총 스케줄링 개수를 나타낸다.
또한, A/N 피드백에 관한 제1 정보는 하기 정보를 포함할 수 있다:
- A/N 피드백이 요구되는 복수의 슬롯 그룹의 인덱스와 관련된 정보, 및
- 각 슬롯 그룹에 대한 개별 total-DAI.
또한, A/N 피드백에 관한 제1 정보는 A/N 피드백이 요구되는 슬롯 그룹에 관한 NFI 정보를 더 포함하고, NFI 정보의 값에 기반하여 상기 슬롯 그룹에 대한 이전 A/N 정보 또는 현재 A/N 정보가 상기 PUSCH를 통해 전송될 수 있다.
또한, A/N 피드백이 요구되는 슬롯 그룹에 관한 일부 정보(예, total-DAI) 정보는 제1 DCI의 이전에 검출된 하향링크 스케줄링을 위한 제2 DCI를 통해 획득될 수 있다. 여기서, 제2 DCI는, 제2 DCI에 의해 지시된 A/N 전송 시점이 PUSCH 전송 시점과 동일한 DCI로 제한될 수 있다.
단말은 앞에서 설명/제안한 절차 및/또는 방법들을 수행하기 위해 네트워크 접속 과정을 수행할 수 있다. 예를 들어, 단말은 네트워크(예, 기지국)에 접속을 수행하면서, 앞에서 설명/제안한 절차 및/또는 방법들을 수행하는데 필요한 시스템 정보와 구성 정보들(예, A/N 정보 구성/피드백 방식, 슬롯 구성 정보, A/N 전송을 위한 PUCCH 자원 세트 등)을 수신하여 메모리에 저장할 수 있다. 본 발명에 필요한 구성 정보들은 상위 계층(예, RRC layer; Medium Access Control, MAC, layer 등) 시그널링을 통해 수신될 수 있다.
도 16은 네트워크 초기 접속 및 이후의 통신 과정을 예시한다. NR에서 물리 채널, 참조 신호는 빔-포밍을 이용하여 전송될 수 있다. 빔-포밍-기반의 신호 전송이 지원되는 경우, 기지국과 단말간에 빔을 정렬하기 위해 빔-관리(beam management) 과정이 수반될 수 있다. 또한, 본 발명에서 제안하는 신호는 빔-포밍을 이용하여 전송/수신될 수 있다. RRC(Radio Resource Control) IDLE 모드에서 빔 정렬은 SSB를 기반하여 수행될 수 있다. 반면, RRC CONNECTED 모드에서 빔 정렬은 CSI-RS (in DL) 및 SRS (in UL)에 기반하여 수행될 수 있다. 한편, 빔-포밍-기반의 신호 전송이 지원되지 않는 경우, 이하의 설명에서 빔과 관련된 동작은 생략될 수 있다.
도 16을 참조하면, 기지국(예, BS)는 SSB를 주기적으로 전송할 수 있다(S702). 여기서, SSB는 PSS/SSS/PBCH를 포함한다. SSB는 빔 스위핑을 이용하여 전송될 수 있다. 이후, 기지국은 RMSI(Remaining Minimum System Information)와 OSI(Other System Information)를 전송할 수 있다(S704). RMSI는 단말이 기지국에 초기 접속하는데 필요한 정보(예, PRACH 구성 정보)를 포함할 수 있다. 한편, 단말은 SSB 검출을 수행한 뒤, 베스트 SSB를 식별한다. 이후, 단말은 베스트 SSB의 인덱스(즉, 빔)에 링크된/대응되는 PRACH 자원을 이용하여 RACH 프리앰블(Message 1, Msg1)을 기지국에게 전송할 수 있다(S706). RACH 프리앰블의 빔 방향은 PRACH 자원과 연관된다. PRACH 자원 (및/또는 RACH 프리앰블)과 SSB (인덱스)간 연관성(association)은 시스템 정보(예, RMSI)를 통해 설정될 수 있다. 이후, RACH 과정의 일환으로, 기지국은 RACH 프리앰블에 대한 응답으로 RAR(Random Access Response)(Msg2)를 전송하고(S708), 단말은 RAR 내 UL 그랜트를 이용하여 Msg3(예, RRC Connection Request)을 전송하고(S710), 기지국은 충돌 해결(contention resolution) 메세지(Msg4)를 전송할 수 있다(S720). Msg4는 RRC Connection Setup을 포함할 수 있다.
RACH 과정을 통해 기지국과 단말간에 RRC 연결이 설정되면, 그 이후의 빔 정렬은 SSB/CSI-RS (in DL) 및 SRS (in UL)에 기반하여 수행될 수 있다. 예를 들어, 단말은 SSB/CSI-RS를 수신할 수 있다(S714). SSB/CSI-RS는 단말이 빔/CSI 보고를 생성하는데 사용될 수 있다. 한편, 기지국은 DCI를 통해 빔/CSI 보고를 단말에게 요청할 수 있다(S716). 이 경우, 단말은 SSB/CSI-RS에 기반하여 빔/CSI 보고를 생성하고, 생성된 빔/CSI 보고를 PUSCH/PUCCH를 통해 기지국에게 전송할 수 있다(S718). 빔/CSI 보고는 빔 측정 결과, 선호하는 빔에 관한 정보 등을 포함할 수 있다. 기지국과 단말은 빔/CSI 보고에 기반하여 빔을 스위칭 할 수 있다(S720a, S720b).
이후, 단말과 기지국은 앞에서 설명/제안한 절차 및/또는 방법들을 수행할 수 있다. 예를 들어, 단말과 기지국은 네트워크 접속 과정(예, 시스템 정보 획득 과정, RACH를 통한 RRC 연결 과정 등)에서 얻은 구성 정보(예, A/N 정보 구성/피드백 방식, 슬롯 구성 정보, A/N 전송을 위한 PUCCH 자원 세트 등)에 기반하여, 네트워크 (초기) 접속 이후 본 발명의 제안에 따라 메모리에 있는 정보를 처리하여 무선 신호를 전송하거나, 수신된 무선 신호를 처리하여 메모리에 저장할 수 있다(예, 도 12~15를 참조하여 제안한 동작/방법). 여기서, 무선 신호는 하향링크의 경우 PDCCH, PDSCH, RS(Reference Signal) 중 적어도 하나를 포함하고, 상향링크의 경우 PUCCH, PUSCH, SRS 중 적어도 하나를 포함할 수 있다.
단말은 앞에서 설명/제안한 절차 및/또는 방법들을 수행하면서 DRX 동작을 수행할 수 있다. DRX가 설정된 단말은 DL 신호를 불연속적으로 수신함으로써 전력 소비를 낮출 수 있다. DRX는 RRC(Radio Resource Control)_IDLE 상태, RRC_INACTIVE 상태, RRC_CONNECTED 상태에서 수행될 수 있다. RRC_IDLE 상태와 RRC_INACTIVE 상태에서 DRX는 페이징 신호를 불연속 수신하는데 사용된다. 이하, RRC_CONNECTED 상태에서 수행되는 DRX에 관해 설명한다(RRC_CONNECTED DRX).
도 17은 DRX 사이클을 예시한다(RRC_CONNECTED 상태).
도 17을 참조하면, DRX 사이클은 On Duration과 Opportunity for DRX로 구성된다. DRX 사이클은 On Duration이 주기적으로 반복되는 시간 간격을 정의한다. On Duration은 단말이 PDCCH를 수신하기 위해 모니터링 하는 시간 구간을 나타낸다. DRX가 설정되면, 단말은 On Duration 동안 PDCCH 모니터링을 수행한다. PDCCH 모니터링 동안에 성공적으로 검출된 PDCCH가 있는 경우, 단말은 inactivity 타이머를 동작시키고 깬(awake) 상태를 유지한다. 반면, PDCCH 모니터링 동안에 성공적으로 검출된 PDCCH가 없는 경우, 단말은 On Duration이 끝난 뒤 슬립(sleep) 상태로 들어간다. 따라서, DRX가 설정된 경우, 앞에서 설명/제안한 절차 및/또는 방법을 수행함에 있어서 PDCCH 모니터링/수신이 시간 도메인에서 불연속적으로 수행될 수 있다. 예를 들어, DRX가 설정된 경우, 본 발명에서 PDCCH 수신 기회(occasion)(예, PDCCH 탐색 공간을 갖는 슬롯)는 DRX 설정에 따라 불연속적으로 설정될 수 있다. 반면, DRX가 설정되지 않은 경우, 앞에서 설명/제안한 절차 및/또는 방법을 수행함에 있어서 PDCCH 모니터링/수신이 시간 도메인에서 연속적으로 수행될 수 있다. 예를 들어, DRX가 설정되지 않은 경우, 본 발명에서 PDCCH 수신 기회(예, PDCCH 탐색 공간을 갖는 슬롯)는 연속적으로 설정될 수 있다. 한편, DRX 설정 여부와 관계 없이, 측정 갭으로 설정된 시간 구간에서는 PDCCH 모니터링이 제한될 수 있다.
표 7은 DRX와 관련된 단말의 과정을 나타낸다(RRC_CONNECTED 상태). 표 7을 참조하면, DRX 구성 정보는 상위 계층(예, RRC) 시그널링을 통해 수신되고, DRX ON/OFF 여부는 MAC 계층의 DRX 커맨드에 의해 제어된다. DRX가 설정되면, 단말은 도 16에서 예시한 바와 같이, 본 발명에 설명/제안한 절차 및/또는 방법을 수행함에 있어서 PDCCH 모니터링을 불연속적으로 수행할 수 있다.
Type of signals UE procedure
1 st step RRC signalling(MAC-CellGroupConfig) - Receive DRX configuration information
2 nd Step MAC CE((Long) DRX command MAC CE) - Receive DRX command
3 rd Step - - Monitor a PDCCH during an on-duration of a DRX cycle
여기서, MAC-CellGroupConfig는 셀 그룹을 위한 MAC(Medium Access Control) 파라미터를 설정하는데 필요한 구성 정보를 포함한다. MAC-CellGroupConfig는 DRX에 관한 구성 정보도 포함할 수 있다. 예를 들어, MAC-CellGroupConfig는 DRX를 정의하는데 정보를 다음과 같이 포함할 수 있다.
- Value of drx-OnDurationTimer: DRX 사이클의 시작 구간의 길이를 정의
- Value of drx-InactivityTimer: 초기 UL 또는 DL 데이터를 지시하는 PDCCH가 검출된 PDCCH 기회 이후에 단말이 깬 상태로 있는 시간 구간의 길이를 정의
- Value of drx-HARQ-RTT-TimerDL: DL 초기 전송이 수신된 후, DL 재전송이 수신될 때까지의 최대 시간 구간의 길이를 정의.
- Value of drx-HARQ-RTT-TimerDL: UL 초기 전송에 대한 그랜트가 수신된 후, UL 재전송에 대한 그랜트가 수신될 때까지의 최대 시간 구간의 길이를 정의.
- drx-LongCycleStartOffset: DRX 사이클의 시간 길이와 시작 시점을 정의
- drx-ShortCycle (optional): short DRX 사이클의 시간 길이를 정의
여기서, drx-OnDurationTimer, drx-InactivityTimer, drx-HARQ-RTT-TimerDL, drx-HARQ-RTT-TimerDL 중 어느 하나라도 동작 중이면 단말은 깬 상태를 유지하면서 매 PDCCH 기회마다 PDCCH 모니터링을 수행한다.
도 18은 본 발명에 적용되는 통신 시스템(1)을 예시한다.
도 18을 참조하면, 본 발명에 적용되는 통신 시스템(1)은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(100a), 차량(100b-1, 100b-2), XR(eXtended Reality) 기기(100c), 휴대 기기(Hand-held device)(100d), 가전(100e), IoT(Internet of Thing) 기기(100f), AI기기/서버(400)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량은 UAV(Unmanned Aerial Vehicle)(예, 드론)를 포함할 수 있다. XR 기기는 AR(Augmented Reality)/VR(Virtual Reality)/MR(Mixed Reality) 기기를 포함하며, HMD(Head-Mounted Device), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기는 센서, 스마트미터 등을 포함할 수 있다. 예를 들어, 기지국, 네트워크는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(200a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.
무선 기기(100a~100f)는 기지국(200)을 통해 네트워크(300)와 연결될 수 있다. 무선 기기(100a~100f)에는 AI(Artificial Intelligence) 기술이 적용될 수 있으며, 무선 기기(100a~100f)는 네트워크(300)를 통해 AI 서버(400)와 연결될 수 있다. 네트워크(300)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(100a~100f)는 기지국(200)/네트워크(300)를 통해 서로 통신할 수도 있지만, 기지국/네트워크를 통하지 않고 직접 통신(e.g. 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(100b-1, 100b-2)은 직접 통신(e.g. V2V(Vehicle to Vehicle)/V2X(Vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(100a~100f)와 직접 통신을 할 수 있다.
무선 기기(100a~100f)/기지국(200), 기지국(200)/기지국(200) 간에는 무선 통신/연결(150a, 150b, 150c)이 이뤄질 수 있다. 여기서, 무선 통신/연결은 상향/하향링크 통신(150a)과 사이드링크 통신(150b)(또는, D2D 통신), 기지국간 통신(150c)(e.g. relay, IAB(Integrated Access Backhaul)과 같은 다양한 무선 접속 기술(예, 5G NR)을 통해 이뤄질 수 있다. 무선 통신/연결(150a, 150b, 150c)을 통해 무선 기기와 기지국/무선 기기, 기지국과 기지국은 서로 무선 신호를 송신/수신할 수 있다. 예를 들어, 무선 통신/연결(150a, 150b, 150c)은 다양한 물리 채널을 통해 신호를 송신/수신할 수 있다. 이를 위해, 본 발명의 다양한 제안들에 기반하여, 무선 신호의 송신/수신을 위한 다양한 구성정보 설정 과정, 다양한 신호 처리 과정(예, 채널 인코딩/디코딩, 변조/복조, 자원 매핑/디매핑 등), 자원 할당 과정 등 중 적어도 일부가 수행될 수 있다.
도 19은 본 발명에 적용될 수 있는 무선 기기를 예시한다.
도 19을 참조하면, 제1 무선 기기(100)와 제2 무선 기기(200)는 다양한 무선 접속 기술(예, LTE, NR)을 통해 무선 신호를 송수신할 수 있다. 여기서, {제1 무선 기기(100), 제2 무선 기기(200)}은 도 18의 {무선 기기(100x), 기지국(200)} 및/또는 {무선 기기(100x), 무선 기기(100x)}에 대응할 수 있다.
제1 무선 기기(100)는 하나 이상의 프로세서(102) 및 하나 이상의 메모리(104)를 포함하며, 추가적으로 하나 이상의 송수신기(106) 및/또는 하나 이상의 안테나(108)을 더 포함할 수 있다. 프로세서(102)는 메모리(104) 및/또는 송수신기(106)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(102)는 메모리(104) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, 송수신기(106)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(102)는 송수신기(106)를 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(104)에 저장할 수 있다. 메모리(104)는 프로세서(102)와 연결될 수 있고, 프로세서(102)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(104)는 프로세서(102)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(102)와 메모리(104)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(106)는 프로세서(102)와 연결될 수 있고, 하나 이상의 안테나(108)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(106)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(106)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 본 발명에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
제2 무선 기기(200)는 하나 이상의 프로세서(202), 하나 이상의 메모리(204)를 포함하며, 추가적으로 하나 이상의 송수신기(206) 및/또는 하나 이상의 안테나(208)를 더 포함할 수 있다. 프로세서(202)는 메모리(204) 및/또는 송수신기(206)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202)는 메모리(204) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202)는 송수신기(206)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204)에 저장할 수 있다. 메모리(204)는 프로세서(202)와 연결될 수 있고, 프로세서(202)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204)는 프로세서(202)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202)와 메모리(204)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206)는 프로세서(202)와 연결될 수 있고, 하나 이상의 안테나(208)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206)는 RF 유닛과 혼용될 수 있다. 본 발명에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
이하, 무선 기기(100, 200)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(102, 202)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 계층(예, PHY, MAC, RLC, PDCP, RRC, SDAP와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(Service Data Unit)를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(106, 206)에게 제공할 수 있다. 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)로부터 신호(예, 베이스밴드 신호)를 수신할 수 있고, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.
하나 이상의 프로세서(102, 202)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(102, 202)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(102, 202)에 포함될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(102, 202)에 포함되거나, 하나 이상의 메모리(104, 204)에 저장되어 하나 이상의 프로세서(102, 202)에 의해 구동될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.
도 20은 본 발명에 적용되는 무선 기기의 다른 예를 나타낸다. 무선 기기는 사용-예/서비스에 따라 다양한 형태로 구현될 수 있다(도 18 참조).
도 20을 참조하면, 무선 기기(100, 200)는 도 19의 무선 기기(100,200)에 대응하며, 다양한 요소(element), 성분(component), 유닛/부(unit), 및/또는 모듈(module)로 구성될 수 있다. 예를 들어, 무선 기기(100, 200)는 통신부(110), 제어부(120), 메모리부(130) 및 추가 요소(140)를 포함할 수 있다. 통신부는 통신 회로(112) 및 송수신기(들)(114)을 포함할 수 있다. 예를 들어, 통신 회로(112)는 도 19의 하나 이상의 프로세서(102,202) 및/또는 하나 이상의 메모리(104,204) 를 포함할 수 있다. 예를 들어, 송수신기(들)(114)는 도 19의 하나 이상의 송수신기(106,206) 및/또는 하나 이상의 안테나(108,208)을 포함할 수 있다. 제어부(120)는 통신부(110), 메모리부(130) 및 추가 요소(140)와 전기적으로 연결되며 무선 기기의 제반 동작을 제어한다. 예를 들어, 제어부(120)는 메모리부(130)에 저장된 프로그램/코드/명령/정보에 기반하여 무선 기기의 전기적/기계적 동작을 제어할 수 있다. 또한, 제어부(120)는 메모리부(130)에 저장된 정보를 통신부(110)을 통해 외부(예, 다른 통신 기기)로 무선/유선 인터페이스를 통해 전송하거나, 통신부(110)를 통해 외부(예, 다른 통신 기기)로부터 무선/유선 인터페이스를 통해 수신된 정보를 메모리부(130)에 저장할 수 있다.
추가 요소(140)는 무선 기기의 종류에 따라 다양하게 구성될 수 있다. 예를 들어, 추가 요소(140)는 파워 유닛/배터리, 입출력부(I/O unit), 구동부 및 컴퓨팅부 중 적어도 하나를 포함할 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(도 16, 100a), 차량(도 18, 100b-1, 100b-2), XR 기기(도 18, 100c), 휴대 기기(도 18, 100d), 가전(도 18, 100e), IoT 기기(도 18, 100f), 디지털 방송용 단말, 홀로그램 장치, 공공 안전 장치, MTC 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, AI 서버/기기(도 18, 400), 기지국(도 18, 200), 네트워크 노드 등의 형태로 구현될 수 있다. 무선 기기는 사용-예/서비스에 따라 이동 가능하거나 고정된 장소에서 사용될 수 있다.
도 20에서 무선 기기(100, 200) 내의 다양한 요소, 성분, 유닛/부, 및/또는 모듈은 전체가 유선 인터페이스를 통해 상호 연결되거나, 적어도 일부가 통신부(110)를 통해 무선으로 연결될 수 있다. 예를 들어, 무선 기기(100, 200) 내에서 제어부(120)와 통신부(110)는 유선으로 연결되며, 제어부(120)와 제1 유닛(예, 130, 140)은 통신부(110)를 통해 무선으로 연결될 수 있다. 또한, 무선 기기(100, 200) 내의 각 요소, 성분, 유닛/부, 및/또는 모듈은 하나 이상의 요소를 더 포함할 수 있다. 예를 들어, 제어부(120)는 하나 이상의 프로세서 집합으로 구성될 수 있다. 예를 들어, 제어부(120)는 통신 제어 프로세서, 어플리케이션 프로세서(Application processor), ECU(Electronic Control Unit), 그래픽 처리 프로세서, 메모리 제어 프로세서 등의 집합으로 구성될 수 있다. 다른 예로, 메모리부(130)는 RAM(Random Access Memory), DRAM(Dynamic RAM), ROM(Read Only Memory), 플래시 메모리(flash memory), 휘발성 메모리(volatile memory), 비-휘발성 메모리(non-volatile memory) 및/또는 이들의 조합으로 구성될 수 있다.
도 21은 본 발명에 적용되는 차량 또는 자율 주행 차량을 예시한다. 차량 또는 자율 주행 차량은 이동형 로봇, 차량, 기차, 유/무인 비행체(Aerial Vehicle, AV), 선박 등으로 구현될 수 있다.
도 21을 참조하면, 차량 또는 자율 주행 차량(100)은 안테나부(108), 통신부(110), 제어부(120), 구동부(140a), 전원공급부(140b), 센서부(140c) 및 자율 주행부(140d)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110/130/140a~140d는 각각 도 20의 블록 110/130/140에 대응한다.
통신부(110)는 다른 차량, 기지국(e.g. 기지국, 노변 기지국(Road Side unit) 등), 서버 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량 또는 자율 주행 차량(100)의 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 ECU(Electronic Control Unit)를 포함할 수 있다. 구동부(140a)는 차량 또는 자율 주행 차량(100)을 지상에서 주행하게 할 수 있다. 구동부(140a)는 엔진, 모터, 파워 트레인, 바퀴, 브레이크, 조향 장치 등을 포함할 수 있다. 전원공급부(140b)는 차량 또는 자율 주행 차량(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 센서부(140c)는 차량 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140c)는 IMU(inertial measurement unit) 센서, 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 스티어링 센서, 온도 센서, 습도 센서, 초음파 센서, 조도 센서, 페달 포지션 센서 등을 포함할 수 있다. 자율 주행부(140d)는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등을 구현할 수 있다.
일 예로, 통신부(110)는 외부 서버로부터 지도 데이터, 교통 정보 데이터 등을 수신할 수 있다. 자율 주행부(140d)는 획득된 데이터를 기반으로 자율 주행 경로와 드라이빙 플랜을 생성할 수 있다. 제어부(120)는 드라이빙 플랜에 따라 차량 또는 자율 주행 차량(100)이 자율 주행 경로를 따라 이동하도록 구동부(140a)를 제어할 수 있다(예, 속도/방향 조절). 자율 주행 도중에 통신부(110)는 외부 서버로부터 최신 교통 정보 데이터를 비/주기적으로 획득하며, 주변 차량으로부터 주변 교통 정보 데이터를 획득할 수 있다. 또한, 자율 주행 도중에 센서부(140c)는 차량 상태, 주변 환경 정보를 획득할 수 있다. 자율 주행부(140d)는 새로 획득된 데이터/정보에 기반하여 자율 주행 경로와 드라이빙 플랜을 갱신할 수 있다. 통신부(110)는 차량 위치, 자율 주행 경로, 드라이빙 플랜 등에 관한 정보를 외부 서버로 전달할 수 있다. 외부 서버는 차량 또는 자율 주행 차량들로부터 수집된 정보에 기반하여, AI 기술 등을 이용하여 교통 정보 데이터를 미리 예측할 수 있고, 예측된 교통 정보 데이터를 차량 또는 자율 주행 차량들에게 제공할 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명은 무선 이동 통신 시스템의 단말기, 기지국, 또는 기타 다른 장비에 사용될 수 있다.

Claims (15)

  1. 무선 통신 시스템에서 무선 장치가 신호를 전송하는 방법에 있어서,
    초기 접속을 위해 RACH(Random Access Channel) 과정을 수행하는 단계;
    상기 RACH 과정에 기반하여, A/N(Acknowledgement/Negative acknowledgement) 피드백 방식에 대한 정보를 기지국으로부터 수신하는 단계; 및
    상기 A/N 피드백 방식에 대한 정보에 기반하여, 하기 단계를 포함하는 A/N 피드백 과정을 수행하는 단계를 포함하는 방법:
    복수의 슬롯 그룹에서 복수의 데이터를 수신하고,
    A/N 피드백에 관한 제1 정보를 상향링크 스케줄링을 위한 제1 DCI를 통해 수신하고,
    제1 정보에 기반하여, 상기 제1 및 제2 슬롯 그룹 중 적어도 한 슬롯 그룹에 대한 A/N 정보를 PUSCH(Physical Uplink Shared Channel) 상에서 전송한다.
  2. 제1항에 있어서,
    제1 데이터를 스케줄링 하는 제1 스케줄링 정보를 수신하고, 제2 데이터를 스케줄링 하는 제2 스케줄링 정보를 수신하는 것을 포함하고,
    상기 제1 스케줄링 정보와 상기 제2 스케줄링 정보는 서로 다른 슬롯 그룹의 인덱스를 지시하는 정보를 포함하는 방법.
  3. 제1항에 있어서,
    상기 A/N 피드백에 관한 제1 정보는 하기 정보를 포함하는 방법:
    - A/N 피드백이 요구되는 슬롯 그룹의 인덱스와 관련된 정보, 및
    - 상기 슬롯 그룹에 대한 total-DAI(Downlink Assignment Index),
    여기서, total-DAI는 슬롯 그룹 내 총 스케줄링 개수를 나타낸다.
  4. 제3항에 있어서,
    상기 A/N 피드백에 관한 제1 정보는 하기 정보를 포함하는 방법:
    - A/N 피드백이 요구되는 복수의 슬롯 그룹의 인덱스와 관련된 정보, 및
    - 각 슬롯 그룹에 대한 개별 total-DAI.
  5. 제3항에 있어서,
    상기 A/N 피드백에 관한 제1 정보는 A/N 피드백이 요구되는 슬롯 그룹에 관한 NFI(New Feedback Indicator) 정보를 더 포함하고,
    상기 NFI 정보의 값에 기반하여 상기 슬롯 그룹에 대한 이전 A/N 정보 또는 현재 A/N 정보가 상기 PUSCH를 통해 전송되는 방법.
  6. 제1항에 있어서,
    상기 A/N 피드백이 요구되는 슬롯 그룹에 관한 total-DAI 정보는 상기 제1 DCI의 이전에 검출된 하향링크 스케줄링을 위한 제2 DCI를 통해 획득되는 방법.
  7. 제1항에 있어서,
    상기 PUSCH는 U-밴드(unlicensed band) 상에서 전송되는 방법.
  8. 무선 통신 시스템에 사용되는 무선 장치에 있어서,
    메모리; 및
    프로세서를 포함하고, 상기 프로세서는,
    초기 접속을 위해 RACH(Random Access Channel) 과정을 수행하고,
    상기 RACH 과정에 기반하여, A/N(Acknowledgement/Negative acknowledgement) 피드백 방식에 대한 정보를 기지국으로부터 수신하며,
    상기 A/N 피드백 방식에 대한 정보에 기반하여, 하기 단계를 포함하는 A/N 피드백 과정을 수행하도록 구성되는 무선 장치:
    - 복수의 슬롯 그룹에서 복수의 데이터를 수신하고,
    - A/N 피드백에 관한 제1 정보를 상향링크 스케줄링을 위한 제1 DCI를 통해 수신하고,
    - 제1 정보에 기반하여, 상기 제1 및 제2 슬롯 그룹 중 적어도 한 슬롯 그룹에 대한 A/N 정보를 PUSCH(Physical Uplink Shared Channel) 상에서 전송한다.
  9. 제8항에 있어서,
    제1 데이터를 스케줄링 하는 제1 스케줄링 정보를 수신하고, 제2 데이터를 스케줄링 하는 제2 스케줄링 정보를 수신하는 것을 포함하고,
    상기 제1 스케줄링 정보와 상기 제2 스케줄링 정보는 서로 다른 슬롯 그룹의 인덱스를 지시하는 정보를 포함하는 무선 장치.
  10. 제8항에 있어서,
    상기 A/N 피드백에 관한 제1 정보는 하기 정보를 포함하는 무선 장치:
    - A/N 피드백이 요구되는 슬롯 그룹의 인덱스와 관련된 정보, 및
    - 상기 슬롯 그룹에 대한 total-DAI(Downlink Assignment Index),
    여기서, total-DAI는 슬롯 그룹 내 총 스케줄링 개수를 나타낸다.
  11. 제10항에 있어서,
    상기 A/N 피드백에 관한 제1 정보는 하기 정보를 포함하는 무선 장치:
    - A/N 피드백이 요구되는 복수의 슬롯 그룹의 인덱스와 관련된 정보, 및
    - 각 슬롯 그룹에 대한 개별 total-DAI.
  12. 제10항에 있어서,
    상기 A/N 피드백에 관한 제1 정보는 A/N 피드백이 요구되는 슬롯 그룹에 관한 NFI(New Feedback Indicator) 정보를 더 포함하고,
    상기 NFI 정보의 값에 기반하여 상기 슬롯 그룹에 대한 이전 A/N 정보 또는 현재 A/N 정보가 상기 PUSCH를 통해 전송되는 무선 장치.
  13. 제8항에 있어서,
    상기 A/N 피드백이 요구되는 슬롯 그룹에 관한 total-DAI 정보는 상기 제1 DCI의 이전에 검출된 하향링크 스케줄링을 위한 제2 DCI를 통해 획득되는 무선 장치.
  14. 제8항에 있어서,
    상기 PUSCH는 U-밴드(unlicensed band) 상에서 전송되는 무선 장치.
  15. 제8항에 있어서,
    상기 무선 장치는 적어도 단말, 네트워크 및 상기 무선 장치 외의 다른 자율 주행 차량과 통신할 수 있는 자율 주행 차량을 포함하는 무선 장치.
PCT/KR2019/012361 2018-09-21 2019-09-23 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 WO2020060372A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980061608.6A CN112740591B (zh) 2018-09-21 2019-09-23 在无线通信***中发送和接收无线信号的方法和设备
US17/278,118 US11963228B2 (en) 2018-09-21 2019-09-23 Method and apparatus for transmitting and receiving wireless signals in wireless communication system
DE112019004744.2T DE112019004744T5 (de) 2018-09-21 2019-09-23 Verfahren und einrichtung zum übertragen und empfangen von drahtlossignalen in einem drahtloskommunikationssystem

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
KR10-2018-0114478 2018-09-21
KR20180114478 2018-09-21
KR10-2019-0036710 2019-03-29
KR20190036710 2019-03-29
US201962875991P 2019-07-19 2019-07-19
US62/875,991 2019-07-19
KR10-2019-0100014 2019-08-15
KR20190100014 2019-08-15
KR20190103838 2019-08-23
KR10-2019-0103838 2019-08-23

Publications (1)

Publication Number Publication Date
WO2020060372A1 true WO2020060372A1 (ko) 2020-03-26

Family

ID=69888604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/012361 WO2020060372A1 (ko) 2018-09-21 2019-09-23 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치

Country Status (4)

Country Link
US (1) US11963228B2 (ko)
CN (1) CN112740591B (ko)
DE (1) DE112019004744T5 (ko)
WO (1) WO2020060372A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220053547A1 (en) * 2019-09-30 2022-02-17 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Uplink information generation method and device thereof
WO2022211539A1 (ko) * 2021-04-02 2022-10-06 엘지전자 주식회사 무선 통신 시스템에서 제어 정보 송수신 방법 및 장치

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3987869A1 (en) * 2019-06-20 2022-04-27 Telefonaktiebolaget LM Ericsson (publ) Transmit feedback for unlicensed networks
US11864176B2 (en) * 2019-07-26 2024-01-02 Qualcomm Incorporated Extended slot aggregation scheduling in IAB network
EP3918861A4 (en) 2019-08-16 2022-03-30 Samsung Electronics Co., Ltd. DEVICE AND METHOD FOR TRANSMITTING UPLINK CONTROL INFORMATION IN A NETWORK COOPERATIVE COMMUNICATION
US11632199B2 (en) 2020-02-14 2023-04-18 Qualcomm Incorporated Hybrid automatic repeat request acknowledgment for downlink control information without physical downlink shared channel scheduling
CN115884113A (zh) * 2021-09-30 2023-03-31 大唐移动通信设备有限公司 一种信息反馈方法、装置、终端及网络设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150037762A (ko) * 2012-07-27 2015-04-08 인텔 코포레이션 대역간 시분할 듀플렉스(tdd) 캐리어 집성(ca)을 위한 하이브리드 자동 반복 요청-수신확인(harq-ack) 코드북 생성
CN107231218A (zh) * 2016-03-25 2017-10-03 电信科学技术研究院 一种ack/nack反馈方法及相关设备

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8041364B2 (en) * 2007-10-30 2011-10-18 Sharp Laboratories Of America, Inc. Systems and methods for transmitting control information via a control signaling channel
JP5199223B2 (ja) * 2008-12-30 2013-05-15 創新音▲速▼股▲ふん▼有限公司 Ack/nackバンドリングを改善する方法及び通信装置
US9112692B2 (en) * 2010-08-16 2015-08-18 Qualcomm Incorporated ACK/NACK transmission for multi-carrier operation
WO2012110493A1 (en) * 2011-02-14 2012-08-23 Nokia Siemens Networks Oy Multiplexing of ack/nack and channel state information on uplink control channel
ES2802001T3 (es) * 2011-04-19 2021-01-15 Samsung Electronics Co Ltd Aparato y procedimiento para transmitir información de reconocimiento en un sistema de comunicación TDD
CN103095432A (zh) * 2011-11-07 2013-05-08 北京三星通信技术研究有限公司 一种发送harq-ack反馈信息的方法
EP3694128A1 (en) * 2012-01-15 2020-08-12 LG Electronics Inc. Method and apparatus for transmitting control information in wireless communication system
CN102571287B (zh) * 2012-02-08 2015-02-25 普天信息技术研究院有限公司 E-pdcch的加扰方法和ack/nack的传输方法
US9749094B2 (en) * 2012-06-14 2017-08-29 Sharp Kabushiki Kaisha Devices for sending and receiving feedback information
KR101611825B1 (ko) * 2013-11-08 2016-04-14 주식회사 케이티 상향링크 전송 전력을 제어하는 방법과 그 장치
US9686064B2 (en) * 2015-01-21 2017-06-20 Intel IP Corporation Devices and methods for HARQ-ACK feedback scheme on PUSCH in wireless communication systems
EP3251276B1 (en) * 2015-01-28 2022-10-05 Interdigital Patent Holdings, Inc. Downlink control signaling
CN113285783A (zh) * 2015-01-28 2021-08-20 交互数字专利控股公司 用于操作大量载波的上行链路反馈方法
US11218254B2 (en) * 2015-01-29 2022-01-04 Samsung Electronics Co., Ltd Method and apparatus for transmitting/receiving HARQ-ACK signal in wireless communication system supporting carrier aggregation
US10411861B2 (en) * 2015-02-06 2019-09-10 Lg Electronics Inc. Method for reporting channel state in wireless communication system, and apparatus therefor
WO2016159230A1 (ja) * 2015-04-02 2016-10-06 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
EP3319260B1 (en) * 2015-07-01 2024-01-24 LG Electronics Inc. Method and device for transmitting signal in wireless communication system
US10841066B2 (en) * 2015-11-05 2020-11-17 Ntt Docomo, Inc. Terminal configured for feedback transmission
JP6092347B1 (ja) * 2015-11-05 2017-03-08 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
WO2017164623A2 (en) * 2016-03-22 2017-09-28 Samsung Electronics Co., Ltd. Method and apparatus for transmitting uplink control information in wireless communication system
US10440706B2 (en) * 2016-08-08 2019-10-08 Sharp Kabushiki Kaisha Systems and methods for PUCCH resource allocation and HARQ-ACK reporting with processing time reduction
US10292179B2 (en) * 2016-09-28 2019-05-14 Qualcomm Incorporated Maximizing a frame's arrangement thereby increasing processing time available to processors
CN107888343A (zh) * 2016-09-30 2018-04-06 中兴通讯股份有限公司 一种上行控制信息发送方法、装置及终端
EP3665807B1 (en) * 2017-08-11 2023-03-22 Lenovo (Beijing) Limited Harq-ack for a plurality of carrier groups of a downlink slot set
WO2019050443A1 (en) * 2017-09-08 2019-03-14 Telefonaktiebolaget Lm Ericsson (Publ) RECEIVE ACCUSED SIGNALING IN A RADIO ACCESS NETWORK
CN112042141A (zh) * 2018-05-11 2020-12-04 瑞典爱立信有限公司 用于无线电接入网的harq码本

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150037762A (ko) * 2012-07-27 2015-04-08 인텔 코포레이션 대역간 시분할 듀플렉스(tdd) 캐리어 집성(ca)을 위한 하이브리드 자동 반복 요청-수신확인(harq-ack) 코드북 생성
CN107231218A (zh) * 2016-03-25 2017-10-03 电信科学技术研究院 一种ack/nack反馈方法及相关设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "HARQ enhancements for NR-U", R1-1809206, 3GPP TSG-RAN WG1 MEETING #94, 11 August 2018 (2018-08-11), Gothenburg, Sweden, XP051516576 *
HUAWEI: "HARQ enhancements in NR unlicensed", R1-1808063, 3GPP TSG RAN WG1 MEETING #94, 10 August 2018 (2018-08-10), Gothenburg, Sweden, XP051515467 *
INTEL CORPORATION: "Resource allocation for PUCCH", R1-1720092, 3GPP TSG RAN WG1 MEETING 91, 18 November 2017 (2017-11-18), Reno, USA, XP051369773 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220053547A1 (en) * 2019-09-30 2022-02-17 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Uplink information generation method and device thereof
WO2022211539A1 (ko) * 2021-04-02 2022-10-06 엘지전자 주식회사 무선 통신 시스템에서 제어 정보 송수신 방법 및 장치
US11824666B2 (en) 2021-04-02 2023-11-21 Lg Electronics Inc. Method and apparatus for transmitting and receiving control information in wireless communication system

Also Published As

Publication number Publication date
US11963228B2 (en) 2024-04-16
CN112740591B (zh) 2023-10-27
CN112740591A (zh) 2021-04-30
DE112019004744T5 (de) 2021-06-10
US20210352731A1 (en) 2021-11-11

Similar Documents

Publication Publication Date Title
WO2020032742A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2020060367A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2021091258A1 (ko) 무선 통신 시스템에서 신호 송수신 방법 및 장치
WO2020060372A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2021015520A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2021091251A1 (ko) 무선 통신 시스템에서 신호 송수신 방법 및 장치
WO2022154613A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2020171677A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2021091292A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2021091300A1 (ko) 무선 통신 시스템에서 상향링크 채널을 송수신하는 방법 및 이를 위한 장치
WO2022080928A1 (ko) 무선 통신 시스템에서 신호 송수신 방법 및 장치
WO2021066593A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 장치
WO2020032751A1 (ko) 무선 통신 시스템에서 wus 신호를 전송하는 방법 및 이를 위한 장치
WO2021075886A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2020226406A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2022030945A1 (ko) 무선 통신 시스템에서 신호 송수신 방법 및 장치
WO2021091306A1 (ko) 채널 점유 시간 내에서 물리 상향링크 공유 채널을 송수신하는 방법 및 이를 위한 장치
WO2022154614A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2022216045A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2020032759A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2020032672A1 (ko) 비면허 대역을 지원하는 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2021066594A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 장치
WO2023014199A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2022154606A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2020204681A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19863305

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19863305

Country of ref document: EP

Kind code of ref document: A1