WO2020060095A1 - Thermoplastic polyurethane filament for fdm-type 3d printers - Google Patents

Thermoplastic polyurethane filament for fdm-type 3d printers Download PDF

Info

Publication number
WO2020060095A1
WO2020060095A1 PCT/KR2019/011672 KR2019011672W WO2020060095A1 WO 2020060095 A1 WO2020060095 A1 WO 2020060095A1 KR 2019011672 W KR2019011672 W KR 2019011672W WO 2020060095 A1 WO2020060095 A1 WO 2020060095A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic polyurethane
filament
nano
silica
printer
Prior art date
Application number
PCT/KR2019/011672
Other languages
French (fr)
Korean (ko)
Inventor
박희대
Original Assignee
박희대
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190039636A external-priority patent/KR20200031981A/en
Application filed by 박희대 filed Critical 박희대
Publication of WO2020060095A1 publication Critical patent/WO2020060095A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/34Carboxylic acids; Esters thereof with monohydroxyl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/70Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyurethanes

Definitions

  • the present invention relates to a thermoplastic polyurethane filament for a 3D printer of the FDM method, and more specifically, by using a thermoplastic polyurethane filament compounded with nano-silica, the injection amount that is melt-extruded even at a temperature change of the printer nozzle is always kept constant and 3D It relates to a thermoplastic polyurethane filament for 3D printer of the FDM method that can increase the dimensional stability and precision during melt lamination.
  • 3D printers capable of forming 3D objects have been utilized in various industries, and the technology acceptance is increasing.
  • 3D printing transmits 3D design drawings of computers to 3D printers. It is a method of molding the product.
  • a plastic material is melted and then extruded through a nozzle to build a cured thin film (Fused Deposition Modeling; FDM method) and a raw material is heated by laser to sinter it (Selective Laser Sintering; SLS) Method) and a method in which a laser is projected and cured (Stereo Lithography Apparatus; SLA method) in a water tank containing a photocurable liquid resin.
  • FDM method Fusion Deposition Modeling
  • SLS Selective Laser Sintering
  • SLA method Stepo Lithography Apparatus
  • the FDM 3D printer that melts and stacks filaments has a simpler structure and program than the other 3D printers, and the production cost is low. As it is advantageous and can be applied to various industrial fields, it is becoming popular for home and industrial use.
  • plastic materials that are most frequently used as a filament material for FDM 3D printers are ABS (Acrylonitrile Butadiene Styrene) and PLA (Poly Lactic Acid).
  • ABS is inexpensive and has good durability, but has a disadvantage of requiring a heating bed to prevent high temperature of 220 ° C during processing and shrinkage during printing.
  • PLC is biodegradable, eco-friendly, and easier to output than ABS, so it is receiving much attention, but its strength and durability are weak and its conductivity is low, so it has limitations in use in various fields such as electric and electronic parts and bio.
  • FDM type printer filament material is eco-friendly, it has excellent mechanical properties, and it uses thermoplastic polyurethane (TPU), which is spotlighted as an elastic material.
  • TPU thermoplastic polyurethane
  • thermoplastic polyurethane filament as described above, even under conditions of constant temperature and humidity, the temperature of the printer nozzle changes depending on the surrounding environment (specifically, temperature or humidity, etc.), and accordingly, the thermoplastic polyurethane melt-extruded through the printer nozzle Since the injection amount of the filament is not constant, there is a problem in that dimensional stability and precision are significantly lowered during 3D melt lamination.
  • the temperature of the printer nozzle according to the temperature and humidity is the reference temperature (generally, the nozzle temperature varies depending on the 3D molded product or plastic material, but is usually 180 to 250). The difference between about ⁇ 20 ⁇ 30 °C in the range of °C) occurs, so the viscosity of the melt-extruded thermoplastic polyurethane changes.
  • thermoplastic polyurethane is a resin having a very high dynamic viscosity change according to temperature change
  • the injection amount is small when the viscosity of the thermoplastic polyurethane melt-extruded through the printer nozzle is high and the injection amount is increased when the viscosity of the thermoplastic polyurethane is low.
  • an error occurs in the dimensions of the 3D molded product and the precision decreases. Due to these problems, many restrictions have arisen in the use of thermoplastic polyurethane filaments in products that require accurate dimensions, for example, uppers for shoes.
  • thermoplastic polyurethane filament is melt-extruded through a printer nozzle at a high temperature (about 180 to 250 ° C) and stacked on the output plate, where productivity varies depending on the cooling rate of the injected thermoplastic polyurethane filament.
  • productivity varies depending on the cooling rate of the injected thermoplastic polyurethane filament.
  • the cooling rate is significantly slow after being sprayed through a printer nozzle, so that the molded product collapses during melt lamination, making it difficult to maintain the shape on the output plate, and the production speed is also very low.
  • the conventional thermoplastic polyurethane filament has a slow cooling rate in the process of melt lamination, and thus cannot produce a high-precision product (for example, an upper for shoes, etc.), and the productivity is remarkably low. There were many restrictions to use as.
  • the present invention is to solve the problems of the prior art as described above, when manufacturing various types of molded products with a 3D printer of the FDM method, the dimensional stability and precision during 3D melt lamination by constantly maintaining the injection amount even when the printer nozzle temperature changes It is an object of the present invention to provide a thermoplastic polyurethane filament for 3D printer of FDM method.
  • Another object of the present invention is to provide a thermoplastic polyurethane filament for 3D printer of FDM method to maintain a constant injection amount of the printer nozzle by using a nano-silica compounded thermoplastic polyurethane filament for FDM type 3D printer have.
  • Another object of the present invention is to use a thermoplastic polyurethane filament combined with nano-silica and succinator for an FDM-type 3D printer to accelerate the cooling rate during melt lamination to improve the shape stability of molded products. It is to provide a thermoplastic polyurethane filament for a 3D printer.
  • Another object of the present invention is to use a thermoplastic polyurethane filament with nano-silica containing a hydrophobic functional group for a FDM-type 3D printer, thereby maintaining a constant injection amount even during temperature changes of a printer nozzle to 3D melt lamination. It is to provide a thermoplastic polyurethane filament for 3D printer of FDM method to increase the dimensional stability and precision.
  • thermoplastic polyurethane filament for the 3D printer of the FDM method according to the present invention is made of a thermoplastic polyurethane composition, and the thermoplastic polyurethane composition includes nano silica having a primary particle size of 100 nm or less.
  • Nano silica is characterized in that it contains 0.1 to 5.0phr based on thermoplastic polyurethane.
  • thermoplastic polyurethane composition may include succinate polyol.
  • the nano-silica may include a hydrophobic functional group on the surface.
  • the hydrophobic functional group included on the surface of the nano silica may be at least one of an alkyl group, a dimethyl group, a trimethyl group, a dimethyl siloxane group, and a methacryl group.
  • the nano-silica may form nano-silica aggregates.
  • the nano-silica aggregate may have an aggregate size of 100 to 1200 nm.
  • the thermoplastic polyurethane may include a virgin thermoplastic polyurethane or a thermoplastic polyurethane in which a thermoplastic thermoplastic scrap remaining after high-frequency work or hot melt processing is mixed with virgin thermoplastic polyurethane.
  • the injection amount of the thermoplastic polyurethane filament melt-extruded through the nozzle can always be kept constant even when the temperature of the printer nozzle is changed by using the TPU filament compounded with nano-silica as the material for the 3D printer of the FDM method.
  • the TPU filament compounded with nano-silica as the material for the 3D printer of the FDM method.
  • the present invention when manufacturing the thermoplastic polyurethane filament, by mixing the nano-silica and succinate, the thermoplastic polyurethane filament sprayed through the printer nozzle can increase the morphological stability of the 3D molded article by increasing the cooling rate during melt lamination. .
  • the same effect as described above can be realized as well as the advantage of being able to make a 3D molded article having excellent stretch and recovery properties.
  • the term 'nano silica' used in the present invention refers to silica having a size of primary particles (primary particles) of 100 nm or less smaller than a micro unit.
  • the nano-silica used in the thermoplastic polyurethane filament of the present invention preferably has a size (diameter) of 100 nm or less, and the size of the nano-silica particles is the primary particle size in a non-agglomerated state, and is often transmitted electron microscope And the like.
  • the size of the nano-silica exceeds 100 nm, the injection amount of the thermoplastic polyurethane filament melt-extruded through the printer nozzle may be uneven.
  • nano silica containing a hydrophobic functional group on the surface' used in the present invention means that a functional group having hydrophobicity is introduced on a part or all of the surface of the nano silica particle.
  • Conventional nano-silica surface has a hydrophilic surface
  • the nano-silica of the present invention is a hydrophobic functional group is introduced through a separate surface treatment (or surface modification), the surface is hydrophobic.
  • nano silica aggregate' used in the present invention refers to a state in which about 70% or more of the primary particles of nano silica are strongly bound to each other by physical and chemical methods. Aggregate is composed of several primary particles, and is a separate concept distinguished from agglomerates. Nano silica aggregates are difficult to separate further into smaller entities (nano silica).
  • thermoplastic polyurethane filament for 3D printer of the FDM method when manufacturing a thermoplastic polyurethane filament for 3D printer of the FDM method, by mixing the nano-silica in the thermoplastic polyurethane composition, preferably, the size of the primary particles (primary particles) nano-particles having a particle size of 100nm or less
  • the injection rate of the thermoplastic polyurethane filament that is melt-extruded through the nozzle is always kept constant to increase the dimensional stability and precision of the molded product during 3D melt lamination
  • 3D of FDM method that can prevent the laminated layer from collapsing by speeding up cooling of the thermoplastic polyurethane filament when the thermoplastic polyurethane filament melt-extruded through the printer nozzle is sprayed onto the printer output plate and melt-laminated.
  • Thermoplastic polyurethane filament for printer To be current.
  • thermoplastic polyurethane filament when manufacturing a thermoplastic polyurethane filament, by using a nano-silica and succinate polyol, even when using a low hardness (Shore A type) thermoplastic polyurethane filament, the cooling rate is fast, the melt-laminated layer collapses FDM-type 3D printer thermoplastic polyurethane filament that can make molded products with excellent stretch and recovery properties by realizing the development and shape stability of molded products is realized.
  • the thermoplastic polyurethane filament for the 3D printer of the FDM method according to the present invention includes nano silica in a range of 0.1 to 5.0 phr (parts per hundred resin) based on the thermoplastic polyurethane resin, and the primary particle size is 100 nm or less. It has a particle size.
  • the thermoplastic polyurethane filament As a result of mixing nano-silica, even if a small amount of 0.1 phr or more was mixed, it was confirmed that the thermoplastic polyurethane filament was constantly sprayed through the printer nozzle. It showed good injection amount.
  • the content of the nano silica was 5.0 phr or more, a blooming phenomenon occurred on the surface of the thermoplastic polyurethane filament. Therefore, in the present invention, it was confirmed through experiments that the content of nano-silica is about 0.1 to 5.0 phr in order to maintain a constant injection amount when the thermoplastic polyurethane filament is melt-extruded through a printer nozzle.
  • the thermoplastic polyurethane filament for an FDM 3D printer according to the present invention may include nano silica having a hydrophobic functional group on its surface. That is, in the present invention, the nano-silica having a hydrophobic functional group on the surface is contained in the thermoplastic polyurethane to prepare a thermoplastic polyurethane filament. Specifically, the nano-silica having the hydrophobic functional group on the surface is 0.1 to 5.0 phr based on the thermoplastic polyurethane resin. By blending, it is possible to always maintain a constant injection amount of the thermoplastic polyurethane filament melt-extruded through the printer nozzle.
  • the hydrophobic functional group that can be introduced on the surface of nano silica may be an alkyl group, a dimethyl group, a trimethyl group, a dimethyl siloxane group, a methacryl group, and the like.
  • the nano silica used in the thermoplastic polyurethane filament for the 3D printer of the FDM method of the present invention is dimethyl on the surface of the nano silica by treating the nano silica obtained by controlling the temperature and pressure in a fumed silica manufacturing process with an organosilane compound.
  • the group may be included.
  • the nano silica in which the hydrophobic functional group is introduced has an OH group density of 1.0 OH / nm 2 or less.
  • the density of the OH group is obtained by reacting the nano-silica and lithium aluminum hydride introduced with a hydrophobic functional group to determine the molar absorbance ( ⁇ ) of the elastic band of the OH group in the free silanol group at 3750 cm -1 using an IR spectroscopy. It can be measured by a known method such as measurement.
  • the nano silica of the present invention may exist in an aggregate state, and is dispersed in an aggregate state that is difficult to separate within the thermoplastic polyurethane filament.
  • the aggregate of nano silicas used in the thermoplastic polyurethane filament of the present invention has an aggregate size of 100 to 1200 nm, and preferably an aggregate size of 200 to 500 nm.
  • the size of the nano-silica aggregate refers to the length of the nano-silica aggregate in the long axis direction, and can often be measured using a transmission electron microscope or the like.
  • the thermoplastic polyurethane resin used in the thermoplastic polyurethane filament of the present invention may be a virgin thermoplastic polyurethane.
  • Virgin thermoplastic polyurethane is a thermoplastic polyurethane obtained by polymerizing polyols and isocyanates as raw materials and low molecular weight glycols as chain extenders.
  • Examples of the polyol used herein include polyester, glycol, polyether, glycol, polycaprolactone, and the like, and examples of isocyanates include aromatic isocyanate and aliphatic isocyanate, and examples of low molecular weight glycols include 1,4-butanediol, etc. There is this.
  • thermoplastic polyurethane resin used in the thermoplastic polyurethane filament of the present invention may be a thermoplastic polyurethane obtained by mixing the thermoplastic thermoplastic scrap remaining after high-frequency work or hot melt processing to the virgin thermoplastic polyurethane prepared as above. .
  • thermoplastic polyurethane filament for 3D printer of FDM method
  • the thermoplastic polyurethane composition contains 0.1 to 5.0 phr of nano silica having a particle size of 100 nm or less.
  • nano-silica and succinate polyols, or nanoparticles having a particle size of 100 nm or less and having hydrophobic functional groups on the surface, including 0.1 to 5.0 phr to prepare a thermoplastic polyurethane filament.
  • the thermoplastic polyurethane filament is implemented to be melt extruded at a constant injection amount through a printer nozzle.
  • thermoplastic polyurethane filament for an FDM 3D printer there are two methods of manufacturing a thermoplastic polyurethane filament for an FDM 3D printer according to the present invention, one of which is a thermoplastic polyurethane filament that is polymerized by introducing nano silica into a polymerization raw material of a thermoplastic polyurethane resin. It is a method of manufacturing by using a resin (a thermoplastic polyurethane resin containing a certain amount of nano silica), and the other is to introduce nano silica into a polymerized polyurethane resin instead of the polymerized raw material, and then master It is a method of making a batch and using this master batch and a thermoplastic polyurethane base resin.
  • the first manufacturing method above is a step of dispersing nano silica (preferably, nano silica having a hydrophobic functional group on the surface) on at least one of the liquid raw materials of polyol, isocyanate, and low molecular weight glycol, the liquid in which nano silica is dispersed It may include a step of polymerizing the raw material to polymerize the resin for a thermoplastic polyurethane filament, and melt-extruding the resin for the thermoplastic polyurethane filament.
  • nano silica preferably, nano silica having a hydrophobic functional group on the surface
  • nano-silica (or nano-silica having a hydrophobic functional group on the surface) is added to any one or more of polyol, isocyanate, and low-molecular-weight glycol to sufficiently stir to make a raw material solution, and the raw material solution is polymerized in a reactor to produce a thermoplastic poly
  • the obtained thermoplastic polyurethane filament resin may be melt-extruded to produce the thermoplastic polyurethane filament of the present invention.
  • the nano-silica is added in a content of 0.1 to 5.0 phr based on the thermoplastic polyurethane resin.
  • the second manufacturing method above includes preparing a masterbatch comprising nano silica having hydrophobic functional groups on the surface, and preparing a thermoplastic polyurethane filament resin by compounding the masterbatch with a thermoplastic polyurethane base resin. It may include the step of melt-extruding the resin for the urethane filament. Specifically, nano-silica having a hydrophobic functional group on the surface is concentrated and compounded in a thermoplastic polyurethane resin to prepare a master batch containing nano-silica, and the master batch is introduced into a thermoplastic polyurethane base resin and compounded to form a thermoplastic.
  • the thermoplastic polyurethane filament resin can be melt-extruded to produce a thermoplastic polyurethane filament of the present invention.
  • the content of the nano-silica contained in the master batch is preferably 40% by weight or less, and more preferably about 30% by weight.
  • the content of the master batch compounded is adjusted so that the content of nano silica is 0.1 to 5.0 phr based on the final thermoplastic polyurethane resin.
  • thermoplastic polyurethane filament for the 3D printer of the FDM method according to the present invention will be described in detail.
  • the scope of the present invention is not limited by the present embodiment, as this is for the purpose of exemplifying the present invention only.
  • nano silica As a liquid raw material used for polymerization of a conventional thermoplastic polyurethane resin, polyol, isocyanate, and low molecular weight glycols are prepared, and nano silica of 100 nm or less is treated with dimethyl dichloro silane to have a primary particle size of about 20 nm, and a surface In order to prepare a nano silica containing a dimethyl group as a hydrophobic functional group.
  • the nano-silica is introduced or the nano-silica is added to the liquid raw materials at a constant weight ratio and kneaded at a temperature of 80 to 100 ° C at a rate of 20 to 30 rpm.
  • the nano-silica was added to a polyol, one of the above liquid raw materials, at a constant weight ratio, and kneaded at a temperature of 20 to 30 rpm at 80 to 100 ° C.
  • the raw material sufficiently kneaded with nano-silica and the remaining raw materials were simultaneously put into a reactor and polymerized to obtain a polymer.
  • the polyol in which the above nano-silica is sufficiently dispersed, isocyanate, and low molecular weight glycol are simultaneously introduced into the reactor and polymerized to obtain a polymer.
  • the obtained polymer was dried, aged and cut to prepare a resin for a thermoplastic polyurethane filament in pellet form.
  • the resin for the thermoplastic polyurethane filament in the form of pellets is introduced into a conventional extruder and melt-extruded, it is cooled in a cooling bath, and then taken and packaged at a constant speed in a conventional take-off machine to package the present invention.
  • Thermoplastic polyurethane filaments were prepared.
  • the cooling condition is 10 ⁇ 30 °C
  • the take-off speed is preferably 15 ⁇ 40rpm.
  • Nano silica of 100 nm or less was treated with dimethyl dichloro silane, and the average particle size was about 20 nm, and nano silica containing a dimethyl group as a hydrophobic functional group was prepared on the surface.
  • the above nano-silica and thermoplastic polyurethane resin were added to the kneader at a constant weight ratio, and then kneaded at a temperature of 20 to 30 rpm at a temperature of 100 to 120 ° C. At this time, the content of the nano-silica was about 30% by weight based on the final master batch.
  • the above kneaded product (mixture) was cooled, crushed to a diameter of 10 mm or less, and then charged into a conventional twin-screw extruder. At this time, the temperature of the twin-screw extruder was 150 to 200 ° C.
  • the masterbatch compounded in the twin-screw extruder was put into 15-20 ° C cooling water to form pellets, dried and aged.
  • the master batch prepared as above was compounded with a conventional thermoplastic polyurethane base resin in a constant weight ratio to obtain a resin for a thermoplastic polyurethane filament.
  • thermoplastic polyurethane filament After the resin for the thermoplastic polyurethane filament is put into a conventional extruder and melt-extruded, it is cooled in a cooling bath, and then taken and packaged at a constant rate in a conventional take-off machine to wrap the thermoplastic polyurethane of the present invention. Filaments were prepared.
  • thermoplastic polyurethane TPU of shore A type
  • the present invention uses succinate as a polyol in a thermoplastic polyurethane composition (polyol, isocyanate, glycol) and nano silica having a particle size of 100 nm or less when polymerizing them (preferably, a hydrophobic functional group on the surface) Containing nano silica) to prepare a thermoplastic polyurethane filament.
  • a thermoplastic polyurethane composition polyol, isocyanate, glycol
  • nano silica having a particle size of 100 nm or less when polymerizing them (preferably, a hydrophobic functional group on the surface) Containing nano silica) to prepare a thermoplastic polyurethane filament.
  • the thermoplastic polyurethane filament for the 3D printer of the FDM method includes a general thermoplastic polyurethane composition composed of polyol, isocyanate, and glycol.
  • polyol is succinate (eg, 1,4-bd using succinic acid) succinate), and the nanoparticles containing hydrophobic functional groups were blended on the surface of 100 nm or less at the time of polymerization of the thermoplastic polyurethane composition.
  • the injection amount is kept constant even when the temperature of the printer nozzle is changed, thereby preventing the layer from collapsing during melt lamination.
  • Patent Document 1 Published Patent Publication No. 10-2017-0079460 (Invention name: FDM type 3D printer filament having a molding strength improvement function and a manufacturing method thereof. Publication date: July 10, 2017)
  • Patent Document 2 Publication No. 10-2016-0059302 (Name of invention: FDM-3D printing filament resin composition, FDM-3D printing filament including the same, and FDM-3D printing molding produced using the same. Release date: May 26, 2006)
  • Patent Document 3 Publication No. 10-2015-0098142 (Invention name: FDM-type 3D printer composite filament composition containing metal powder. Publication date: August 27, 2015)
  • Patent Document 4 Publication No. 10-2017-0060373 (Invention name: 3D printer filament composition and extrusion method thereof. Publication date: June 01, 2017)

Abstract

The present invention presents a thermoplastic polyurethane filament for FDM-type 3D printers, in which, when manufacturing a thermoplastic filament for FDM-type 3D printers, a thermoplastic polyurethane composition is blended with nanosilica having a primary particle size of 100 nm or less and including hydrophobic functional groups on the surface thereof, and thus, the spray amount of the thermoplastic polyurethane filament melt-extruded via nozzles is always kept constant regardless of a change in the temperature of printer nozzles during a 3D printing operation, thereby enhancing the dimensional stability and precision of molded products during 3D melt lamination. Also, when the thermoplastic polyurethane filament melt-sprayed via the printer nozzles is sprayed onto a printer output plate and melt-laminated, the cooling rate of the thermoplastic polyurethane filament is increased to prevent laminated layers from collapsing.

Description

에프디엠 방식의 3D 프린터용 열가소성 폴리우레탄 필라멘트FD type thermoplastic polyurethane filament for 3D printer
본 발명은 FDM 방식의 3D 프린터용 열가소성 폴리우레탄 필라멘트에 관한 것으로서, 더욱 상세하게는 나노 실리카가 배합된 열가소성 폴리우레탄 필라멘트를 사용함으로써 프린터 노즐의 온도 변화에도 용융 압출되는 분사량을 항상 일정하게 유지하고 3D 용융 적층시 치수 안정성 및 정밀도를 높일 수 있는 FDM 방식의 3D 프린터용 열가소성 폴리우레탄 필라멘트에 관한 것이다.The present invention relates to a thermoplastic polyurethane filament for a 3D printer of the FDM method, and more specifically, by using a thermoplastic polyurethane filament compounded with nano-silica, the injection amount that is melt-extruded even at a temperature change of the printer nozzle is always kept constant and 3D It relates to a thermoplastic polyurethane filament for 3D printer of the FDM method that can increase the dimensional stability and precision during melt lamination.
최근 3D 프린팅 소재 개발을 포함한 기술의 발달과 경제적 효용성으로 인해 3차원 물체 성형이 가능한 3D 프린터가 다양한 산업분야에 활용되면서 그 기술 수용성이 높아지고 있으며, 3D 프린팅은 컴퓨터의 3D 설계 도면을 3D 프린터로 전송하여 제품을 성형하는 방식이다. 이러한 3D 프린터의 제품성형 방식에는 플라스틱 재료를 용융한 후 노즐을 통해 압출하여 경화된 얇은 막을 쌓아가는 방식(Fused Deposition Modeling; FDM 방식)과 원료를 레이저로 가열하여 소결하는 방식(Selective Laser Sintering; SLS 방식) 및 광경화성 액체 수지가 담긴 수조에 레이저를 투사하여 경화시키는 방식(Stereo Lithography Apparatus; SLA 방식) 등이 있다.Due to the recent development of technology, including the development of 3D printing materials, and economic efficiency, 3D printers capable of forming 3D objects have been utilized in various industries, and the technology acceptance is increasing. 3D printing transmits 3D design drawings of computers to 3D printers. It is a method of molding the product. In this 3D printer product molding method, a plastic material is melted and then extruded through a nozzle to build a cured thin film (Fused Deposition Modeling; FDM method) and a raw material is heated by laser to sinter it (Selective Laser Sintering; SLS) Method) and a method in which a laser is projected and cured (Stereo Lithography Apparatus; SLA method) in a water tank containing a photocurable liquid resin.
이와 같은 3D 프린팅 방식 중에서 필라멘트를 용융하여 적층하는 FDM 방식의 3D 프린터는 다른 3D 프린터에 비해 장치의 구조와 프로그램이 간단하고 생산 단가가 저렴한데, 이러한 이유로 필라멘트를 이용하는 FDM 방식의 3D 프린터는 대형화에 유리하고 다양한 산업분야에 적용이 가능하여 가정용이나 공업용으로 대중화되고 있는 추세이다.Among these 3D printing methods, the FDM 3D printer that melts and stacks filaments has a simpler structure and program than the other 3D printers, and the production cost is low. As it is advantageous and can be applied to various industrial fields, it is becoming popular for home and industrial use.
현재 FDM 방식 3D 프린터의 재료인 필라멘트(filament) 소재로 가장 많이 사용되고 있는 플라스틱 소재는 ABS(Acrylonitrile Butadiene Styrene)와 PLA(Poly Lactic Acid)가 있다. ABS는 가격이 저렴하고 내구성이 좋으나, 가공시 220℃ 정도의 고온 및 출력시의 수축현상을 방지하기 위한 히팅 베드가 필요하다는 단점이 있다. PLC는 생분해성이고 친환경적이며 ABS보다 출력이 쉬워 많은 각광을 받고 있지만, 강도와 내구성이 약하고 전도성이 낮아 전기전자 부품, 바이오 등과 같은 다양한 분야에서의 사용에 한계가 있다.At present, plastic materials that are most frequently used as a filament material for FDM 3D printers are ABS (Acrylonitrile Butadiene Styrene) and PLA (Poly Lactic Acid). ABS is inexpensive and has good durability, but has a disadvantage of requiring a heating bed to prevent high temperature of 220 ° C during processing and shrinkage during printing. PLC is biodegradable, eco-friendly, and easier to output than ABS, so it is receiving much attention, but its strength and durability are weak and its conductivity is low, so it has limitations in use in various fields such as electric and electronic parts and bio.
요즘에는 FDM 방식 프린터의 필라멘트 소재로 친환경적이면서 기계적 물성이 우수하고 탄성체로 각광받고 있는 열가소성 폴리우레탄(Thermoplastic Poly Urethane; TPU)을 사용하는데, 열가소성 폴리우레탄 필라멘트는 다양한 종류의 신발용 갑피나 원단, 의류, 가방 등의 부품을 손쉽게 만들 수 있다. 더욱이 이러한 부품을 3D 프린터로 만들게 되면 별도의 재단공정이 필요없고 스크랩이 발생하지 않아 로스(loss)가 적고 자동화 설비로 인건비를 줄일 수 있을 뿐만 아니라 코스트(cost)를 감소시켜 제품의 원가를 절감할 수 있다.These days, FDM type printer filament material is eco-friendly, it has excellent mechanical properties, and it uses thermoplastic polyurethane (TPU), which is spotlighted as an elastic material. , You can easily make parts such as bags. Moreover, if these parts are made into a 3D printer, there is no need for a separate cutting process and no scrap occurs, so there is less loss and labor costs can be reduced with automation equipment, and cost can be reduced to reduce product cost. You can.
하지만, 상기와 같은 열가소성 폴리우레탄 필라멘트는 항온 항습의 조건에서도 주변의 환경(구체적으로는, 온도나 습도 등)에 따라 프린터 노즐의 온도가 변하게 되고, 이에 따라 프린터 노즐을 통해 용융 압출되는 열가소성 폴리우레탄 필라멘트의 분사량이 일정하지 않아 3D 용융 적층시 치수 안정성이나 정밀도가 현저히 떨어지는 문제점이 있다.However, the thermoplastic polyurethane filament as described above, even under conditions of constant temperature and humidity, the temperature of the printer nozzle changes depending on the surrounding environment (specifically, temperature or humidity, etc.), and accordingly, the thermoplastic polyurethane melt-extruded through the printer nozzle Since the injection amount of the filament is not constant, there is a problem in that dimensional stability and precision are significantly lowered during 3D melt lamination.
즉, 열가소성 폴리우레탄 필라멘트를 사용하는 FDM 방식의 3D 프린터는 온도와 습도에 따라 프린터 노즐의 온도가 기준온도(일반적으로, 노즐 온도는 3D 성형품에 따라 또는 플라스틱 소재에 따라 차이가 있는데 통상 180~250℃ 범위 내임)에서 약 ±20~30℃ 정도 차이가 발생하기 때문에 용융 압출되는 열가소성 폴리우레탄의 점도가 변하게 된다. 특히 열가소성 폴리우레탄은 온도 변화에 따른 동적 점도의 변화가 매우 심한 수지이기 때문에 프린터 노즐을 통해 용융 압출되는 열가소성 폴리우레탄의 점도가 높을 때는 분사량이 작아지고 열가소성 폴리우레탄의 점도가 낮을 때는 분사량이 많아져 결국에는 3D 성형품의 치수에 오차가 발생하고 정밀도가 떨어지게 된다. 이와 같은 문제점으로 인해 정확한 치수를 요구하는 제품, 예를 들어 신발용 갑피 등의 제품에는 열가소성 폴리우레탄 필라멘트를 사용하기에는 많은 제약이 발생하였다.That is, in the FDM 3D printer using a thermoplastic polyurethane filament, the temperature of the printer nozzle according to the temperature and humidity is the reference temperature (generally, the nozzle temperature varies depending on the 3D molded product or plastic material, but is usually 180 to 250). The difference between about ± 20 ~ 30 ℃ in the range of ℃) occurs, so the viscosity of the melt-extruded thermoplastic polyurethane changes. In particular, since the thermoplastic polyurethane is a resin having a very high dynamic viscosity change according to temperature change, the injection amount is small when the viscosity of the thermoplastic polyurethane melt-extruded through the printer nozzle is high and the injection amount is increased when the viscosity of the thermoplastic polyurethane is low. Eventually, an error occurs in the dimensions of the 3D molded product and the precision decreases. Due to these problems, many restrictions have arisen in the use of thermoplastic polyurethane filaments in products that require accurate dimensions, for example, uppers for shoes.
또한, FDM 방식의 3D 프린터는 열가소성 폴리우레탄 필라멘트가 고온(약 180~250℃)의 프린터 노즐을 통해 용융 압출되어 출력판에 적층되는데, 이때 분사된 열가소성 폴리우레탄 필라멘트의 냉각 속도에 따라 생산성이 좌우되며, 특히 경도(modulus)가 낮은 일반적인 열가소성 폴리우레탄의 경우 프린터 노즐을 통해 분사된 후 냉각 속도가 현저히 느려서 용융 적층시 성형품이 무너져 출력판에서 형태를 유지하기 어렵고, 생산 속도도 매우 낮아지게 된다. 이와 같이 종래의 열가소성 폴리우레탄 필라멘트는 용융 적층되는 과정에서 냉각 속도가 느려서 고정밀도의 제품(예를 들어, 신발용 갑피 등)을 생산할 수 없을 뿐더러 생산성이 현저히 떨어져 신발업계에서는 FDM 방식의 3D 프린터용으로 사용하기에는 많은 제약이 따랐다.In addition, in the FDM type 3D printer, the thermoplastic polyurethane filament is melt-extruded through a printer nozzle at a high temperature (about 180 to 250 ° C) and stacked on the output plate, where productivity varies depending on the cooling rate of the injected thermoplastic polyurethane filament. In particular, in the case of a general thermoplastic polyurethane having a low modulus, the cooling rate is significantly slow after being sprayed through a printer nozzle, so that the molded product collapses during melt lamination, making it difficult to maintain the shape on the output plate, and the production speed is also very low. As described above, the conventional thermoplastic polyurethane filament has a slow cooling rate in the process of melt lamination, and thus cannot produce a high-precision product (for example, an upper for shoes, etc.), and the productivity is remarkably low. There were many restrictions to use as.
본 발명은 위와 같은 종래기술의 문제점을 해결하기 위한 것으로, FDM 방식의 3D 프린터로 다양한 종류의 성형품을 제조할 때 프린터 노즐의 온도 변화에도 분사량을 항상 일정하게 유지하여 3D 용융 적층시 치수 안정성 및 정밀도를 높일 수 있는 에프디엠 방식의 3D 프린터용 열가소성 폴리우레탄 필라멘트를 제공하는데 그 목적이 있다.The present invention is to solve the problems of the prior art as described above, when manufacturing various types of molded products with a 3D printer of the FDM method, the dimensional stability and precision during 3D melt lamination by constantly maintaining the injection amount even when the printer nozzle temperature changes It is an object of the present invention to provide a thermoplastic polyurethane filament for 3D printer of FDM method.
본 발명의 다른 목적은 나노 실리카가 배합된 열가소성 폴리우레탄 필라멘트를 FDM 방식의 3D 프린터용으로 사용함으로써 프린터 노즐의 분사량을 일정하게 유지할 수 있도록 하는 에프디엠 방식의 3D 프린터용 열가소성 폴리우레탄 필라멘트를 제공함에 있다.Another object of the present invention is to provide a thermoplastic polyurethane filament for 3D printer of FDM method to maintain a constant injection amount of the printer nozzle by using a nano-silica compounded thermoplastic polyurethane filament for FDM type 3D printer have.
본 발명의 또 다른 목적은 나노 실리카와 석시네이터가 배합된 열가소성 폴리우레탄 필라멘트를 FDM 방식의 3D 프린터용으로 사용함으로써 용융 적층시 냉각 속도를 빠르게 하여 성형품의 형태 안정성을 높일 수 있도록 하는 에프디엠 방식의 3D 프린터용 열가소성 폴리우레탄 필라멘트를 제공함에 있다.Another object of the present invention is to use a thermoplastic polyurethane filament combined with nano-silica and succinator for an FDM-type 3D printer to accelerate the cooling rate during melt lamination to improve the shape stability of molded products. It is to provide a thermoplastic polyurethane filament for a 3D printer.
본 발명의 또 다른 목적은 표면에 소수성 작용기를 포함하는 나노 실리카가 배합된 열가소성 폴리우레탄 필라멘트를 FDM 방식의 3D 프린터용으로 사용함으로써 프린터 노즐의 온도 변화에도 분사량을 항상 일정하게 유지하여 3D 용융 적층시 치수 안정성 및 정밀도를 높일 수 있도록 하는 에프디엠 방식의 3D 프린터용 열가소성 폴리우레탄 필라멘트를 제공함에 있다.Another object of the present invention is to use a thermoplastic polyurethane filament with nano-silica containing a hydrophobic functional group for a FDM-type 3D printer, thereby maintaining a constant injection amount even during temperature changes of a printer nozzle to 3D melt lamination. It is to provide a thermoplastic polyurethane filament for 3D printer of FDM method to increase the dimensional stability and precision.
본 발명에 따른 에프디엠 방식의 3D 프린터용 열가소성 폴리우레탄 필라멘트는 열가소성 폴리우레탄 조성물로 이루어지며, 열가소성 폴리우레탄 조성물은 일차 입자 크기(primary particle size)가 100nm 이하의 입자 크기를 가지는 나노 실리카를 포함하며, 나노 실리카는 열가소성 폴리우레탄 기준으로 0.1~5.0phr을 포함하는 것을 특징으로 한다.The thermoplastic polyurethane filament for the 3D printer of the FDM method according to the present invention is made of a thermoplastic polyurethane composition, and the thermoplastic polyurethane composition includes nano silica having a primary particle size of 100 nm or less. , Nano silica is characterized in that it contains 0.1 to 5.0phr based on thermoplastic polyurethane.
상기 열가소성 폴리우레탄 조성물은 석시네이트 폴리올을 포함할 수 있다.The thermoplastic polyurethane composition may include succinate polyol.
상기 나노 실리카는 표면에 소수성 작용기를 포함할 수 있다.The nano-silica may include a hydrophobic functional group on the surface.
상기 나노 실리카의 표면에 포함된 소수성 작용기는 알킬기, 디메틸기, 트리메틸기, 디메틸 실록산기, 메타크릴기 중 적어도 하나일 수 있다.The hydrophobic functional group included on the surface of the nano silica may be at least one of an alkyl group, a dimethyl group, a trimethyl group, a dimethyl siloxane group, and a methacryl group.
상기 나노 실리카는 나노 실리카 응집체(aggregate)를 형성할 수 있다.The nano-silica may form nano-silica aggregates.
상기 나노 실리카 응집체는 100~1200nm의 응집체 크기를 가질 수 있다.The nano-silica aggregate may have an aggregate size of 100 to 1200 nm.
상기 열가소성 폴리우레탄은 버진(virgin) 열가소성 폴리우레탄 또는 버진 열가소성 폴리우레탄에 고주파 작업이나 핫멜트 가공 후에 남은 열가소성 폴리우레탄 스크랩을 혼합한 열가소성 폴리우레탄을 포함할 수 있다.The thermoplastic polyurethane may include a virgin thermoplastic polyurethane or a thermoplastic polyurethane in which a thermoplastic thermoplastic scrap remaining after high-frequency work or hot melt processing is mixed with virgin thermoplastic polyurethane.
본 발명은 나노 실리카가 배합된 TPU 필라멘트를 FDM 방식의 3D 프린터용 소재로 사용함으로써 프린터 노즐의 온도 변화에도 노즐을 통해 용융 압출되는 열가소성 폴리우레탄 필라멘트의 분사량을 항상 일정하게 유지할 수 있으며, 이로 인해 프린터 출력판에 용융 적층되는 3D 성형품의 치수 안정성 및 정밀도를 높일 수 있는 장점이 있다.According to the present invention, the injection amount of the thermoplastic polyurethane filament melt-extruded through the nozzle can always be kept constant even when the temperature of the printer nozzle is changed by using the TPU filament compounded with nano-silica as the material for the 3D printer of the FDM method. There is an advantage that can increase the dimensional stability and precision of the 3D molded product is melt-laminated on the output plate.
또한, 본 발명은 열가소성 폴리우레탄 필라멘트를 제조할 때, 나노 실리카와 석시네이트를 배합하므로서 프린터 노즐을 통해 분사된 열가소성 폴리우레탄 필라멘트가 용융 적층시 냉각 속도를 빠르게 하여 3D 성형품의 형태 안정성을 높일 수 있다. 특히, 경도(modulus)가 낮은 열가소성 폴리우레탄의 경우에도 위에서 제시한 동일한 효과를 구현할 수 있을 뿐만 아니라 우수한 스트레치(stretch)성과 리커버리(recovery)성을 가진 3D 성형품을 만들 수 있는 장점이 있다.In addition, the present invention, when manufacturing the thermoplastic polyurethane filament, by mixing the nano-silica and succinate, the thermoplastic polyurethane filament sprayed through the printer nozzle can increase the morphological stability of the 3D molded article by increasing the cooling rate during melt lamination. . In particular, in the case of a thermoplastic polyurethane having a low modulus, the same effect as described above can be realized as well as the advantage of being able to make a 3D molded article having excellent stretch and recovery properties.
이하 본 발명의 바람직한 실시형태를 구체적으로 설명하면 다음과 같다. 후술 될 상세한 설명에서는 상술한 기술적 과제를 이루기 위해 본 발명에 있어 대표적인 실시 예를 제시할 것이다. 그리고 본 발명으로 제시될 수 있는 다른 실시 예들은 본 발명의 구성에서 설명으로 대체한다.Hereinafter, preferred embodiments of the present invention will be described in detail. In the detailed description to be described later, a representative embodiment of the present invention will be presented to achieve the above-described technical problem. And other embodiments that can be presented as the present invention are replaced by the description in the configuration of the present invention.
본 발명에서 사용되고 있는 '나노 실리카'라는 용어는 일차 입자(primary particle)의 크기가 마이크로 단위보다 작은 100nm 이하의 실리카를 의미한다. 본 발명의 열가소성 폴리우레탄 필라멘트에 사용되는 나노 실리카는 크기(직경)가 100nm 이하인 것이 바람직하며, 나노 실리카 입자의 크기는 비응집된 상태의 일차 입자의 크기(primary particle size)이며, 흔히 투과 전자 현미경 등을 사용하여 측정할 수 있다. 나노 실리카의 크기가 100nm를 초과하는 경우에는 프린터 노즐을 통해 용융 압출되는 열가소성 폴리우레탄 필라멘트의 분사량이 불균일해질 수 있다.The term 'nano silica' used in the present invention refers to silica having a size of primary particles (primary particles) of 100 nm or less smaller than a micro unit. The nano-silica used in the thermoplastic polyurethane filament of the present invention preferably has a size (diameter) of 100 nm or less, and the size of the nano-silica particles is the primary particle size in a non-agglomerated state, and is often transmitted electron microscope And the like. When the size of the nano-silica exceeds 100 nm, the injection amount of the thermoplastic polyurethane filament melt-extruded through the printer nozzle may be uneven.
본 발명에서 사용되고 있는 '표면에 소수성 작용기가 포함된 나노 실리카'라는 용어는 나노 실리카 입자 표면의 일부 또는 전부에 소수성을 띄는 작용기가 도입된 것을 의미한다. 통상적인 나노 실리카는 표면이 친수성을 띄는데, 본 발명의 나노 실리카는 별도의 표면 처리(또는 표면 개질)를 통해 소수성 작용기가 도입된 것으로 표면이 소수성을 띈다.The term 'nano silica containing a hydrophobic functional group on the surface' used in the present invention means that a functional group having hydrophobicity is introduced on a part or all of the surface of the nano silica particle. Conventional nano-silica surface has a hydrophilic surface, the nano-silica of the present invention is a hydrophobic functional group is introduced through a separate surface treatment (or surface modification), the surface is hydrophobic.
본 발명에서 사용되고 있는 '나노 실리카 응집체(aggregate)'라는 용어는 나노 실리카의 일차 입자들의 약 70% 이상이 물리ㆍ화학적인 방법에 의하여 강하게 서로 결집되어 있는 상태를 가리킨다. 응집체(aggregate)는 일차 입자(primary particle)들이 여러 개 모여 이루어진 것으로서, 여러 개 모여 이루어진 집괴체(agglomerate)와는 구분되는 별개의 개념이다. 나노 실리카 응집체는 더 작은 독립체(나노 실리카)로 추가 분리하는 것이 어렵다.The term 'nano silica aggregate' used in the present invention refers to a state in which about 70% or more of the primary particles of nano silica are strongly bound to each other by physical and chemical methods. Aggregate is composed of several primary particles, and is a separate concept distinguished from agglomerates. Nano silica aggregates are difficult to separate further into smaller entities (nano silica).
본 발명에서는 FDM 방식의 3D 프린터용 열가소성 폴리우레탄 필라멘트를 제조할 때, 열가소성 폴리우레탄 조성물에 나노 실리카를 배합하므로서, 바람직하게는 일차 입자(primary particle)의 크기가 100nm 이하의 입자 크기를 가지는 나노 실리카를 배합하므로서 1) 3D 프린팅 작업시 프린터 노즐의 온도 변화에 관계없이 노즐을 통해 용융 압출되는 열가소성 폴리우레탄 필라멘트의 분사량을 항상 일정하게 유지하여 3D 용융 적층시 성형품의 치수 안정성 및 정밀도를 높일 수 있으며, 2) 프린터 노즐을 통해 용융 압출되는 열가소성 폴리우레탄 필라멘트가 프린터 출력판에 분사되어 용융 적층될 때 열가소성 폴리우레탄 필라멘트의 냉각 속도를 빠르게 하여 적층된 층이 무너지는 현상을 방지할 수 있는 FDM 방식의 3D 프린터용 열가소성 폴리우레탄 필라멘트를 구현하고자 한다.In the present invention, when manufacturing a thermoplastic polyurethane filament for 3D printer of the FDM method, by mixing the nano-silica in the thermoplastic polyurethane composition, preferably, the size of the primary particles (primary particles) nano-particles having a particle size of 100nm or less By blending 1) regardless of the temperature change of the printer nozzle during 3D printing, the injection rate of the thermoplastic polyurethane filament that is melt-extruded through the nozzle is always kept constant to increase the dimensional stability and precision of the molded product during 3D melt lamination, 2) 3D of FDM method that can prevent the laminated layer from collapsing by speeding up cooling of the thermoplastic polyurethane filament when the thermoplastic polyurethane filament melt-extruded through the printer nozzle is sprayed onto the printer output plate and melt-laminated. Thermoplastic polyurethane filament for printer To be current.
또한, 본 발명은 열가소성 폴리우레탄 필라멘트를 제조할 때, 나노 실리카와 석시네이트 폴리올을 사용하므로서 경도가 낮은(Shore A type) 열가소성 폴리우레탄 필라멘트를 사용시에도 냉각 속도를 빠르게 하여 용융 적층된 층이 무너지는 현상 및 성형품의 형태 안정성을 높여 우수한 스트레치(stretch)성과 리커버리(recovery)성을 가진 성형품을 만들 수 있는 FDM 방식의 3D 프린터용 열가소성 폴리우레탄 필라멘트를 구현한다.In addition, the present invention, when manufacturing a thermoplastic polyurethane filament, by using a nano-silica and succinate polyol, even when using a low hardness (Shore A type) thermoplastic polyurethane filament, the cooling rate is fast, the melt-laminated layer collapses FDM-type 3D printer thermoplastic polyurethane filament that can make molded products with excellent stretch and recovery properties by realizing the development and shape stability of molded products is realized.
본 발명에 따른 FDM 방식의 3D 프린터용 열가소성 폴리우레탄 필라멘트는 나노 실리카를 열가소성 폴리우레탄 수지 기준으로 0.1~5.0phr(parts per hundred resin)를 포함하며, 일차 입자 크기(primary particle size)는 100nm 이하의 입자 크기를 가진다. 열가소성 폴리우레탄 필라멘트를 제조할 때 나노 실리카를 배합한 결과 0.1phr 이상의 작은 량만 배합해도 열가소성 폴리우레탄 필라멘트가 프린터 노즐을 통해 일정하게 분사되는 것을 확인할 수 있었고, 안정적으로는 0.5~1.0phr 정도 투입시 가장 양호한 분사량을 보였다. 나노 실리카의 함량이 5.0phr 이상에서는 열가소성 폴리우레탄 필라멘트의 표면에 블루밍(blooming) 현상이 발생하였다. 따라서, 본 발명에서는 프린터 노즐을 통해 열가소성 폴리우레탄 필라멘트가 용융 압출될 때 항상 일정한 분사량을 유지할 수 있도록 하기 위해 나노 실리카의 함량이 0.1~5.0phr 정도가 가장 이상적이라는 것을 실험을 통해 확인하였다.The thermoplastic polyurethane filament for the 3D printer of the FDM method according to the present invention includes nano silica in a range of 0.1 to 5.0 phr (parts per hundred resin) based on the thermoplastic polyurethane resin, and the primary particle size is 100 nm or less. It has a particle size. When manufacturing the thermoplastic polyurethane filament, as a result of mixing nano-silica, even if a small amount of 0.1 phr or more was mixed, it was confirmed that the thermoplastic polyurethane filament was constantly sprayed through the printer nozzle. It showed good injection amount. When the content of the nano silica was 5.0 phr or more, a blooming phenomenon occurred on the surface of the thermoplastic polyurethane filament. Therefore, in the present invention, it was confirmed through experiments that the content of nano-silica is about 0.1 to 5.0 phr in order to maintain a constant injection amount when the thermoplastic polyurethane filament is melt-extruded through a printer nozzle.
한편, 본 발명에 따른 FDM 방식의 3D 프린터용 열가소성 폴리우레탄 필라멘트는 표면에 소수성 작용기를 갖는 나노 실리카를 포함할 수 있다. 즉, 본 발명에서는 표면에 소수성 작용기를 갖는 나노 실리카를 열가소성 폴리우레탄에 함유시켜 열가소성 폴리우레탄 필라멘트를 제조하는데, 구체적으로는 표면에 소수성 작용기를 갖는 나노 실리카를 열가소성 폴리우레탄 수지 기준으로 0.1~5.0phr를 배합함으로써 프린터 노즐을 통해 용융 압출되는 열가소성 폴리우레탄 필라멘트의 분사량을 항상 일정하게 유지시킬 수 있다.Meanwhile, the thermoplastic polyurethane filament for an FDM 3D printer according to the present invention may include nano silica having a hydrophobic functional group on its surface. That is, in the present invention, the nano-silica having a hydrophobic functional group on the surface is contained in the thermoplastic polyurethane to prepare a thermoplastic polyurethane filament. Specifically, the nano-silica having the hydrophobic functional group on the surface is 0.1 to 5.0 phr based on the thermoplastic polyurethane resin. By blending, it is possible to always maintain a constant injection amount of the thermoplastic polyurethane filament melt-extruded through the printer nozzle.
위와 같이 나노 실리카의 표면에 도입될 수 있는 소수성 작용기는 알킬기, 디메틸기, 트리메틸기, 디메틸 실록산기, 메타크릴기 등이 될 수 있다. 예를 들면, 본 발명의 FDM 방식의 3D 프린터용 열가소성 폴리우레탄 필라멘트에 사용되는 나노 실리카는 흄드 실리카 제조 공정에서 온도와 압력을 조절하여 얻어진 나노 실리카를 유기실란 화합물로 처리함으로써 나노 실리카의 표면에 디메틸기가 포함된 것일 수 있다.As described above, the hydrophobic functional group that can be introduced on the surface of nano silica may be an alkyl group, a dimethyl group, a trimethyl group, a dimethyl siloxane group, a methacryl group, and the like. For example, the nano silica used in the thermoplastic polyurethane filament for the 3D printer of the FDM method of the present invention is dimethyl on the surface of the nano silica by treating the nano silica obtained by controlling the temperature and pressure in a fumed silica manufacturing process with an organosilane compound. The group may be included.
소수성 작용기가 도입된 나노 실리카는 OH기 밀도가 1.0OH/nm 2 이하인 것이 바람직하다. OH기 밀도는 소수성 작용기가 도입된 나노 실리카와 리튬 알루미늄 히드라이드를 반응시켜 OH기의 밀도를 IR 스펙트로스코피를 사용하여 3750cm -1에서 유리 실란올기 내의 OH기 신축진동 밴드의 몰 흡광도(ε)를 측정하는 등의 공지된 방법으로 측정할 수 있다.It is preferable that the nano silica in which the hydrophobic functional group is introduced has an OH group density of 1.0 OH / nm 2 or less. The density of the OH group is obtained by reacting the nano-silica and lithium aluminum hydride introduced with a hydrophobic functional group to determine the molar absorbance (ε) of the elastic band of the OH group in the free silanol group at 3750 cm -1 using an IR spectroscopy. It can be measured by a known method such as measurement.
본 발명의 나노 실리카는 응집체(aggregate) 상태로 존재할 수 있으며, 열가소성 폴리우레탄 필라멘트 내에서 분리되기 어려운 응집체 상태로 분산되어 있다.The nano silica of the present invention may exist in an aggregate state, and is dispersed in an aggregate state that is difficult to separate within the thermoplastic polyurethane filament.
본 발명의 열가소성 폴리우레탄 필라멘트에 사용되는 나노 실리카들의 응집체는 100~1200nm의 응집체 크기를 가지며, 바람직하게는 200~500nm의 응집체 크기를 가진다. 나노 실리카 응집체의 크기가 100nm 이상일 경우에 나노 실리카 분산이 잘 이루어지게 된다. 나노 실리카 응집체의 크기는 나노 실리카 응집체의 장축 방향으로의 길이를 가리키며, 흔히 투과 전자 현미경 등을 사용하여 측정할 수 있다.The aggregate of nano silicas used in the thermoplastic polyurethane filament of the present invention has an aggregate size of 100 to 1200 nm, and preferably an aggregate size of 200 to 500 nm. When the size of the nano-silica aggregate is 100 nm or more, dispersion of the nano-silica is well achieved. The size of the nano-silica aggregate refers to the length of the nano-silica aggregate in the long axis direction, and can often be measured using a transmission electron microscope or the like.
본 발명의 열가소성 폴리우레탄 필라멘트에 사용되는 열가소성 폴리우레탄 수지는 버진(virgin) 열가소성 폴리우레탄일 수 있다. 버진(virgin) 열가소성 폴리우레탄은 원재료인 폴리올 및 이소시아네이트와 사슬 연장제인 저분자량 글리콜 등을 중합하여 얻어지는 열가소성 폴리우레탄이다. 여기에 사용되는 폴리올의 예로는 폴리에스테르, 글리콜, 폴리에테르, 글리콜, 폴리카프로락톤 등이 있으며, 이소시아네이트의 예로는 방향족 이소시아네이트, 지방족 이소시아네이트 등이 있고, 저분자량 글리콜의 예로는 1,4-부탄디올 등이 있다.The thermoplastic polyurethane resin used in the thermoplastic polyurethane filament of the present invention may be a virgin thermoplastic polyurethane. Virgin thermoplastic polyurethane is a thermoplastic polyurethane obtained by polymerizing polyols and isocyanates as raw materials and low molecular weight glycols as chain extenders. Examples of the polyol used herein include polyester, glycol, polyether, glycol, polycaprolactone, and the like, and examples of isocyanates include aromatic isocyanate and aliphatic isocyanate, and examples of low molecular weight glycols include 1,4-butanediol, etc. There is this.
또한, 본 발명의 열가소성 폴리우레탄 필라멘트에 사용되는 열가소성 폴리우레탄 수지는 위와 같이 제조한 버진(virgin) 열가소성 폴리우레탄에 고주파 작업이나 핫멜트 가공 후에 남은 열가소성 폴리우레탄 스크랩을 혼합하여 얻은 열가소성 폴리우레탄일 수 있다.In addition, the thermoplastic polyurethane resin used in the thermoplastic polyurethane filament of the present invention may be a thermoplastic polyurethane obtained by mixing the thermoplastic thermoplastic scrap remaining after high-frequency work or hot melt processing to the virgin thermoplastic polyurethane prepared as above. .
이와 같이 본 발명은 FDM 방식의 3D 프린터용 열가소성 폴리우레탄 필라멘트를 제조할 때, 나노 실리카를 배합함으로써, 바람직하게는 열가소성 폴리우레탄 조성물은 100nm 이하의 입자 크기를 가지는 나노 실리카를 0.1~5.0phr을 포함하거나, 나노 실리카와 석시네이트 폴리올을 포함하거나, 100nm 이하의 입자 크기를 가지고 표면에 소수성 작용기를 갖는 나노 실리카를 0.1~5.0phr를 포함하여 열가소성 폴리우레탄 필라멘트를 제조함으로써 열가소성 폴리우레탄의 온도 변화에 따른 점도(즉, 동적 점도) 변화를 줄여서 열가소성 폴리우레탄 필라멘트가 프린터 노즐을 통해 일정한 분사량으로 용융 압출될 수 있도록 구현한 것이다.As described above, when the present invention manufactures a thermoplastic polyurethane filament for 3D printer of FDM method, by mixing nano silica, preferably, the thermoplastic polyurethane composition contains 0.1 to 5.0 phr of nano silica having a particle size of 100 nm or less. Or, nano-silica and succinate polyols, or nanoparticles having a particle size of 100 nm or less and having hydrophobic functional groups on the surface, including 0.1 to 5.0 phr, to prepare a thermoplastic polyurethane filament. By reducing the change in viscosity (ie, dynamic viscosity), the thermoplastic polyurethane filament is implemented to be melt extruded at a constant injection amount through a printer nozzle.
한편, 본 발명에 따른 FDM 방식의 3D 프린터용 열가소성 폴리우레탄 필라멘트를 제조하는 방법은 크게 2 가지가 있는데, 하나는 나노 실리카를 열가소성 폴리우레탄 수지의 중합 원료 물질에 투입하여 중합반응시킨 열가소성 폴리우레탄 필라멘트용 수지(나노 실리카가 일정량 함유된 열가소성 폴리우레탄 수지)를 이용하여 제조하는 방법이고, 다른 하나는 나노 실리카를 열가소성 폴리우레탄 수지의 중합 원료 물질에 투입하는 대신 이미 중합된 폴리우레탄 수지에 투입하여 마스터 배치를 만들고 이 마스터 배치와 열가소성 폴리우레탄 베이스 수지를 이용하여 제조하는 방법이다.On the other hand, there are two methods of manufacturing a thermoplastic polyurethane filament for an FDM 3D printer according to the present invention, one of which is a thermoplastic polyurethane filament that is polymerized by introducing nano silica into a polymerization raw material of a thermoplastic polyurethane resin. It is a method of manufacturing by using a resin (a thermoplastic polyurethane resin containing a certain amount of nano silica), and the other is to introduce nano silica into a polymerized polyurethane resin instead of the polymerized raw material, and then master It is a method of making a batch and using this master batch and a thermoplastic polyurethane base resin.
위의 첫 번째 제조방법은, 폴리올, 이소시아네이트 및 저분자량 글리콜의 액상 원료 중 어느 하나 이상에 나노 실리카(바람직하게는, 표면에 소수성 작용기를 갖는 나노 실리카)를 분산시키는 단계, 나노 실리카가 분산된 액상 원료들을 중합반응시켜 열가소성 폴리우레탄 필라멘트용 수지를 중합하는 단계, 열가소성 폴리우레탄 필라멘트용 수지를 용융 압출하는 단계를 포함할 수 있다. 구체적으로, 나노 실리카(또는 표면에 소수성 작용기를 갖는 나노 실리카)를 폴리올, 이소시아네이트, 저분자량 글리콜 중 어느 하나 이상에 투입하여 충분히 교반하여 원료액으로 만들고, 이 원료액을 반응기에서 중합반응시켜 열가소성 폴리우레탄 필라멘트용 수지를 제조한 다음, 얻어진 열가소성 폴리우레탄 필라멘트용 수지를 용융 압출하여 본 발명의 열가소성 폴리우레탄 필라멘트를 제조할 수 있다. 이때, 나노 실리카는 열가소성 폴리우레탄 수지 기준으로 0.1~5.0phr의 함량이 되도록 투입한다.The first manufacturing method above is a step of dispersing nano silica (preferably, nano silica having a hydrophobic functional group on the surface) on at least one of the liquid raw materials of polyol, isocyanate, and low molecular weight glycol, the liquid in which nano silica is dispersed It may include a step of polymerizing the raw material to polymerize the resin for a thermoplastic polyurethane filament, and melt-extruding the resin for the thermoplastic polyurethane filament. Specifically, nano-silica (or nano-silica having a hydrophobic functional group on the surface) is added to any one or more of polyol, isocyanate, and low-molecular-weight glycol to sufficiently stir to make a raw material solution, and the raw material solution is polymerized in a reactor to produce a thermoplastic poly After preparing the resin for the urethane filament, the obtained thermoplastic polyurethane filament resin may be melt-extruded to produce the thermoplastic polyurethane filament of the present invention. At this time, the nano-silica is added in a content of 0.1 to 5.0 phr based on the thermoplastic polyurethane resin.
위의 두 번째 제조방법은 표면에 소수성 작용기를 갖는 나노 실리카를 포함하는 마스터 배치를 준비하는 단계, 마스터 배치를 열가소성 폴리우레탄 베이스 수지와 컴파운딩하여 열가소성 폴리우레탄 필라멘트용 수지를 제조하는 단계, 열가소성 폴리우레탄 필라멘트용 수지를 용융 압출하는 단계를 포함할 수 있다. 구체적으로는, 표면에 소수성 작용기를 갖는 나노 실리카를 열가소성 폴리우레탄 수지에 농축 및 컴파운딩하여 나노 실리카를 함유한 마스터 배치를 제조하고, 이 마스터 배치를 열가소성 폴리우레탄 베이스 수지에 투입 및 컴파운딩하여 열가소성 폴리우레탄 필라멘트용 수지를 제조한 다음, 이 열가소성 폴리우레탄 필라멘트용 수지를 용융 압출하여 본 발명의 열가소성 폴리우레탄 필라멘트를 제조할 수 있다. 이때, 마스터 배치에 포함되는 나노 실리카의 함량은 40중량% 이하인 것이 바람직하며, 약 30중량% 정도인 것이 더욱 바람직하다. 최종 열가소성 폴리우레탄 수지 기준으로 나노 실리카의 함량이 0.1~5.0phr가 될 수 있도록 컴파운딩되는 마스터 배치의 함량을 조절한다.The second manufacturing method above includes preparing a masterbatch comprising nano silica having hydrophobic functional groups on the surface, and preparing a thermoplastic polyurethane filament resin by compounding the masterbatch with a thermoplastic polyurethane base resin. It may include the step of melt-extruding the resin for the urethane filament. Specifically, nano-silica having a hydrophobic functional group on the surface is concentrated and compounded in a thermoplastic polyurethane resin to prepare a master batch containing nano-silica, and the master batch is introduced into a thermoplastic polyurethane base resin and compounded to form a thermoplastic. After preparing a resin for a polyurethane filament, the thermoplastic polyurethane filament resin can be melt-extruded to produce a thermoplastic polyurethane filament of the present invention. At this time, the content of the nano-silica contained in the master batch is preferably 40% by weight or less, and more preferably about 30% by weight. The content of the master batch compounded is adjusted so that the content of nano silica is 0.1 to 5.0 phr based on the final thermoplastic polyurethane resin.
이하, 실시 예를 들어 본 발명에 따른 FDM 방식의 3D 프린터용 열가소성 폴리우레탄 필라멘트를 구체적으로 설명한다. 다만, 이는 어디까지나 본 발명을 예시하기 위한 것이므로 본 실시예에 의하여 본 발명의 범위가 한정되는 것이 아님은 물론이다.Hereinafter, for example, the thermoplastic polyurethane filament for the 3D printer of the FDM method according to the present invention will be described in detail. However, the scope of the present invention is not limited by the present embodiment, as this is for the purpose of exemplifying the present invention only.
{실시 예 1}{Example 1}
1. 열가소성 폴리우레탄 필라멘트용 수지의 제조 1. Preparation of resin for thermoplastic polyurethane filament
통상적인 열가소성 폴리우레탄 수지 중합에 사용되는 액상 원료로서 폴리올, 이소시아네이트, 저분자량 글리콜을 준비하고, 100nm 이하의 나노 실리카를 디메틸 디클로로 실란을 처리하여 평균 입자 크기(primary particle size)가 약 20nm이며, 표면에 소수성 작용기로서 디메틸기를 포함하는 나노 실리카를 준비하였다.As a liquid raw material used for polymerization of a conventional thermoplastic polyurethane resin, polyol, isocyanate, and low molecular weight glycols are prepared, and nano silica of 100 nm or less is treated with dimethyl dichloro silane to have a primary particle size of about 20 nm, and a surface In order to prepare a nano silica containing a dimethyl group as a hydrophobic functional group.
위의 액상 원료 중에서 어느 하나를 선택하여 상기 나노 실리카를 투입하거나 또는 상기 액상 원료들에 나노 실리카를 일정한 중량비로 투입하고 80~100℃ 온도에서 20~30rpm의 속도로 혼련시켰다. 일 예로, 상기 나노 실리카를 위의 액상 원료 중 하나인 폴리올에 일정한 중량비로 투입하고 80~100℃ 온도에서 20~30rpm의 속도로 혼련시켰다.By selecting any one of the above liquid raw materials, the nano-silica is introduced or the nano-silica is added to the liquid raw materials at a constant weight ratio and kneaded at a temperature of 80 to 100 ° C at a rate of 20 to 30 rpm. For example, the nano-silica was added to a polyol, one of the above liquid raw materials, at a constant weight ratio, and kneaded at a temperature of 20 to 30 rpm at 80 to 100 ° C.
나노 실리카가 충분히 혼련된 원료와 나머지 원료를 동시에 반응기에 투입하고 중합반응시켜 중합물을 얻었다. 일 예로, 위의 나노 실리카가 충분히 분산된 폴리올과 이소시아네이트 및 저분자량 글리콜을 동시에 반응기에 투입하고 중합반응시켜 중합물을 얻었다.The raw material sufficiently kneaded with nano-silica and the remaining raw materials were simultaneously put into a reactor and polymerized to obtain a polymer. As an example, the polyol in which the above nano-silica is sufficiently dispersed, isocyanate, and low molecular weight glycol are simultaneously introduced into the reactor and polymerized to obtain a polymer.
얻어진 중합물을 건조, 숙성 및 커팅하여 펠릿(pellet) 형태의 열가소성 폴리우레탄 필라멘트용 수지를 제조하였다.The obtained polymer was dried, aged and cut to prepare a resin for a thermoplastic polyurethane filament in pellet form.
2. 열가소성 폴리우레탄 필라멘트의 제조 2. Preparation of thermoplastic polyurethane filaments
상기의 펠릿 형태의 열가소성 폴리우레탄 필라멘트용 수지를 통상적인 압출기에 투입하여 용융 압출시킨 후, 이를 냉각조에서 냉각시킨 다음, 이를 통상의 인취기에서 일정한 속도로 인취하여 포장하는 과정을 거쳐 본 발명의 열가소성 폴리우레탄 필라멘트를 제조하였다. 이때, 냉각 조건은 10~30℃이고, 인취 속도는 15~40rpm이 바람직하다.After the resin for the thermoplastic polyurethane filament in the form of pellets is introduced into a conventional extruder and melt-extruded, it is cooled in a cooling bath, and then taken and packaged at a constant speed in a conventional take-off machine to package the present invention. Thermoplastic polyurethane filaments were prepared. At this time, the cooling condition is 10 ~ 30 ℃, the take-off speed is preferably 15 ~ 40rpm.
{실시 예 2}{Example 2}
1. 마스터 배치의 제조 및 열가소성 폴리우레탄 필라멘트용 수지의 제조 1. Preparation of master batch and production of resin for thermoplastic polyurethane filament
100nm 이하의 나노 실리카를 디메틸 디클로로 실란으로 처리하여 평균 입자 크기(primary particle size)가 약 20nm 이며, 표면에 소수성 작용기로서 디메틸기를 포함하는 나노 실리카를 준비하였다.Nano silica of 100 nm or less was treated with dimethyl dichloro silane, and the average particle size was about 20 nm, and nano silica containing a dimethyl group as a hydrophobic functional group was prepared on the surface.
위의 나노 실리카와 열가소성 폴리우레탄 수지를 일정한 중량비로 니더에 투입한 다음 100~120℃ 온도에서 20~30rpm의 속도로 혼련시켰다. 이때 나노 실리카의 함량이 최종 마스터 배치 기준으로 약 30중량%가 되도록 하였다.The above nano-silica and thermoplastic polyurethane resin were added to the kneader at a constant weight ratio, and then kneaded at a temperature of 20 to 30 rpm at a temperature of 100 to 120 ° C. At this time, the content of the nano-silica was about 30% by weight based on the final master batch.
위의 혼련물(배합물)을 냉각시키고, 직경이 10mm 이하가 되도록 분쇄시킨 다음, 통상의 이축 압출기에 투입하였다. 이때 이축 압출기의 온도는 150~200℃ 이었다.The above kneaded product (mixture) was cooled, crushed to a diameter of 10 mm or less, and then charged into a conventional twin-screw extruder. At this time, the temperature of the twin-screw extruder was 150 to 200 ° C.
이축 압출기에서 컴파운딩된 마스터 배치를 15~20℃의 냉각수에 투입하여 펠릿 형태로 만들고 건조 및 숙성시켰다.The masterbatch compounded in the twin-screw extruder was put into 15-20 ° C cooling water to form pellets, dried and aged.
위와 같이 제조된 마스터 배치를 통상의 열가소성 폴리우레탄 베이스 수지와 일정한 중량비로 컴파운딩하여 열가소성 폴리우레탄 필라멘트용 수지를 얻었다.The master batch prepared as above was compounded with a conventional thermoplastic polyurethane base resin in a constant weight ratio to obtain a resin for a thermoplastic polyurethane filament.
2. 열가소성 폴리우레탄 필라멘트의 제조 2. Preparation of thermoplastic polyurethane filaments
위의 열가소성 폴리우레탄 필라멘트용 수지를 통상적인 압출기에 투입하여 용융 압출시킨 후, 이를 냉각조에서 냉각시킨 다음, 이를 통상의 인취기에서 일정한 속도로 인취하여 포장하는 과정을 거쳐 본 발명의 열가소성 폴리우레탄 필라멘트를 제조하였다.After the resin for the thermoplastic polyurethane filament is put into a conventional extruder and melt-extruded, it is cooled in a cooling bath, and then taken and packaged at a constant rate in a conventional take-off machine to wrap the thermoplastic polyurethane of the present invention. Filaments were prepared.
한편, 본 발명에서는 위에서 보았듯이 열가소성 필라멘트가 3D 프린터의 출력판에 분사되어 용융 적층될 때 냉각 속도를 빠르게 하여 성형품의 형태 안정성을 높이고 우수한 스트레치(stretch)성과 리커버리(recovery)성을 가진 성형품을 만들 수 있도록 하였다. 특히, 경도가 낮은 열가소성 폴리우레탄(shore A type의 TPU)의 경우에도 동일한 효과를 구현할 수 있도록 하였다.On the other hand, in the present invention, as seen above, when the thermoplastic filament is sprayed and melt-laminated on the output plate of a 3D printer, the cooling rate is increased to increase the shape stability of the molded product and to make the molded product with excellent stretch and recovery properties. Was made possible. In particular, the same effect can be realized even in the case of a thermoplastic polyurethane (TPU of shore A type) having low hardness.
이를 위해서 본 발명은 열가소성 폴리우레탄 조성물(폴리올, 이소시아네이트, 글리콜) 중에서 폴리올로 석시네이트(succinate)를 사용하고 이들을 중합시에 100nm 이하의 입자 크기를 가지는 나노 실리카(바람직하게는, 표면에 소수성 작용기를 포함하는 나노 실리카)를 배합하여 열가소성 폴리우레탄 필라멘트를 제조하였다. 즉, FDM 방식의 3D 프린터용 열가소성 폴리우레탄 필라멘트는 폴리올, 이소시아네이트, 글리콜로 이루어진 일반적인 열가소성 폴리우레탄 조성물을 포함하는데, 특히 폴리올로는 석시네이트(succinate: 일 예로, succinic acid를 사용한 1,4-bd succinate)를 사용하며, 상기 열가소성 폴리우레탄 조성물을 중합시에 100nm 이하의 표면에 소수성 작용기를 포함하는 나노 실리카를 배합하였다. 이때, 표면에 소수성 작용기를 포함하는 나노 실리카의 함량이 0.1~5.0phr일 때 프린터 노즐의 온도 변화에도 분사량이 일정하게 유지되면서 용융 적층시에 층이 무너지는 현상을 방지할 수 있었다.To this end, the present invention uses succinate as a polyol in a thermoplastic polyurethane composition (polyol, isocyanate, glycol) and nano silica having a particle size of 100 nm or less when polymerizing them (preferably, a hydrophobic functional group on the surface) Containing nano silica) to prepare a thermoplastic polyurethane filament. That is, the thermoplastic polyurethane filament for the 3D printer of the FDM method includes a general thermoplastic polyurethane composition composed of polyol, isocyanate, and glycol. In particular, polyol is succinate (eg, 1,4-bd using succinic acid) succinate), and the nanoparticles containing hydrophobic functional groups were blended on the surface of 100 nm or less at the time of polymerization of the thermoplastic polyurethane composition. At this time, when the content of the nano-silica containing a hydrophobic functional group on the surface is 0.1 to 5.0 phr, the injection amount is kept constant even when the temperature of the printer nozzle is changed, thereby preventing the layer from collapsing during melt lamination.
선행기술문헌Prior art literature
(특허문헌 1) 공개특허공보 제10-2017-0079460호(발명의 명칭: 성형강도 향상기능을 갖는 FDM 방식의 3D 프린터용 필라멘트 및 이의 제조방법. 공개일자: 2017년 07월 10일)(Patent Document 1) Published Patent Publication No. 10-2017-0079460 (Invention name: FDM type 3D printer filament having a molding strength improvement function and a manufacturing method thereof. Publication date: July 10, 2017)
(특허문헌 2) 공개특허공보 제10-2016-0059302호(발명의 명칭: FDM-3D 프린트용 필라멘트 수지 조성물, 이를 포함하는 FDM-3D 프린트용 필라멘트 및 이를 이용하여 제조한 FDM-3D 프린팅 성형물. 공개일자: 2006년 05월 26일)(Patent Document 2) Publication No. 10-2016-0059302 (Name of invention: FDM-3D printing filament resin composition, FDM-3D printing filament including the same, and FDM-3D printing molding produced using the same. Release date: May 26, 2006)
(특허문헌 3) 공개특허공보 제10-2015-0098142호(발명의 명칭: 금속분말이 함유된 FDM 방식의 3D 프린터용 복합필라멘트 조성물. 공개일자: 2015년 08월 27일)(Patent Document 3) Publication No. 10-2015-0098142 (Invention name: FDM-type 3D printer composite filament composition containing metal powder. Publication date: August 27, 2015)
(특허문헌 4) 공개특허공보 제10-2017-0060373호(발명의 명칭: 3D 프린터용 필라멘트 조성물 및 이의 압출 방법. 공개일자: 2017년 06월 01일)(Patent Document 4) Publication No. 10-2017-0060373 (Invention name: 3D printer filament composition and extrusion method thereof. Publication date: June 01, 2017)

Claims (4)

  1. FDM 방식의 3D 프린터용으로 사용되며, 열가소성 폴리우레탄 조성물로 이루어지는 열가소성 폴리우레탄 필라멘트에 있어서,It is used for 3D printer of FDM method, in the thermoplastic polyurethane filament consisting of a thermoplastic polyurethane composition,
    상기 열가소성 폴리우레탄 조성물은 일차 입자 크기가 100nm 이하의 입자 크기를 가지는 나노 실리카를 포함하되;The thermoplastic polyurethane composition includes nano silica having a primary particle size of 100 nm or less;
    상기 나노 실리카는 열가소성 폴리우레탄 기준으로 0.1~5.0phr로 이루어지는 것을 특징으로 하는 에프디엠 방식의 3D 프린터용 열가소성 폴리우레탄 필라멘트.The nano-silica is a thermoplastic polyurethane filament for 3D printer, characterized in that made of 0.1 ~ 5.0phr based on the thermoplastic polyurethane.
  2. 제1항에 있어서,According to claim 1,
    상기 나노 실리카는 표면에 소수성 작용기를 포함하는 것을 특징으로 하는 에프디엠 방식의 3D 프린터용 열가소성 폴리우레탄 필라멘트.The nano silica is a thermoplastic polyurethane filament for FDM 3D printer, characterized in that it comprises a hydrophobic functional group on the surface.
  3. 제2항에 있어서,According to claim 2,
    상기 나노 실리카의 표면에 포함된 소수성 작용기가 알킬기, 디메틸기, 트리메틸기, 디메틸 실록산기, 메타크릴기 중 적어도 하나인 것을 특징으로 하는 에프디엠 방식의 3D 프린터용 열가소성 폴리우레탄 필라멘트.The thermoplastic polyurethane filament for the 3D printer of the FDM method, characterized in that the hydrophobic functional group contained on the surface of the nano-silica is at least one of an alkyl group, a dimethyl group, a trimethyl group, a dimethyl siloxane group, and a methacrylic group.
  4. 제1항 내지 제3항 중 어느 하나의 항에 있어서,The method according to any one of claims 1 to 3,
    상기 열가소성 폴리우레탄 조성물은 석시네이트 폴리올을 포함하는 것을 특징으로 하는 에프디엠 방식의 3D 프린터용 열가소성 폴리우레탄 필라멘트.The thermoplastic polyurethane composition is a thermoplastic polyurethane filament for 3D printer, characterized in that it comprises a succinate polyol.
PCT/KR2019/011672 2018-09-17 2019-09-10 Thermoplastic polyurethane filament for fdm-type 3d printers WO2020060095A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20180110609 2018-09-17
KR10-2018-0110609 2018-09-17
KR1020190039636A KR20200031981A (en) 2018-09-17 2019-04-04 Thermoplastic polyurethane filaments for FDM based 3D printer
KR10-2019-0039636 2019-04-04

Publications (1)

Publication Number Publication Date
WO2020060095A1 true WO2020060095A1 (en) 2020-03-26

Family

ID=69887494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/011672 WO2020060095A1 (en) 2018-09-17 2019-09-10 Thermoplastic polyurethane filament for fdm-type 3d printers

Country Status (1)

Country Link
WO (1) WO2020060095A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112109320A (en) * 2020-07-31 2020-12-22 北京恒尚科技有限公司 3D printing method of TPU9370AU plastic particles
CN112226068A (en) * 2020-10-29 2021-01-15 南通纳科达聚氨酯科技有限公司 Super-hydrophobic wear-resistant TPU film and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015120430A1 (en) * 2014-02-10 2015-08-13 President And Fellows Of Harvard College 3d-printed polishing pad for chemical-mechanical planarization (cmp)
CN106751906A (en) * 2016-12-28 2017-05-31 中国工程物理研究院化工材料研究所 Preparation method with controllable multiple dimensioned pore structure silicon rubber foam
WO2017161120A1 (en) * 2016-03-17 2017-09-21 Qed Labs Inc. Articles with improved flame retardancy and/or melt dripping properties
US20170327704A1 (en) * 2014-11-10 2017-11-16 Xerox Corporation Sustainable materials for three-dimensional printing
KR20180039546A (en) * 2016-10-10 2018-04-18 박희대 method for manufcturing thermoplastic polyurethane yarn

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015120430A1 (en) * 2014-02-10 2015-08-13 President And Fellows Of Harvard College 3d-printed polishing pad for chemical-mechanical planarization (cmp)
US20170327704A1 (en) * 2014-11-10 2017-11-16 Xerox Corporation Sustainable materials for three-dimensional printing
WO2017161120A1 (en) * 2016-03-17 2017-09-21 Qed Labs Inc. Articles with improved flame retardancy and/or melt dripping properties
KR20180039546A (en) * 2016-10-10 2018-04-18 박희대 method for manufcturing thermoplastic polyurethane yarn
CN106751906A (en) * 2016-12-28 2017-05-31 中国工程物理研究院化工材料研究所 Preparation method with controllable multiple dimensioned pore structure silicon rubber foam

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112109320A (en) * 2020-07-31 2020-12-22 北京恒尚科技有限公司 3D printing method of TPU9370AU plastic particles
CN112226068A (en) * 2020-10-29 2021-01-15 南通纳科达聚氨酯科技有限公司 Super-hydrophobic wear-resistant TPU film and preparation method thereof

Similar Documents

Publication Publication Date Title
KR101851952B1 (en) Electrically conductive resin composition and method of preparing the same
WO2020060095A1 (en) Thermoplastic polyurethane filament for fdm-type 3d printers
EP3699216B1 (en) Thermoplastic polyurethane yarn
CN105121561A (en) Talc composition and uses thereof
MXPA01005690A (en) Process for preparing an exfoliated, high i.v. polymer nanocomposite with an oligomer resin precursor and an article produced therefrom.
CN106633778A (en) High-content glass fiber reinforced antistatic PC composite material and preparation method thereof
WO2007123582A2 (en) Nanonylon composites prepared by chain extension reactive extrusion
CN108102369A (en) High filled composite materials of heat resistant and wear resistant and preparation method thereof
EP3875540A1 (en) Powder mixture, method for producing same, powder composition and method for producing three-dimensional model
KR20120077647A (en) Polymer/carbon nano tube composites and preparation method thereof
KR102057036B1 (en) Thermoplastic hot-melt film with excellent adhesive strength mixed with hydrophobic nano silica
Kumar et al. Plastic pellets
CN109721786B (en) Polyethylene composite material and preparation method thereof
CN106633582A (en) A polypropylene composition used for 3D printing and a preparing method thereof
CN112080062A (en) Graphene multifunctional master batch using elastomer as carrier and preparation method thereof
KR20200031981A (en) Thermoplastic polyurethane filaments for FDM based 3D printer
CN110964301A (en) Lignin-based flame-retardant biodegradable polylactic acid film and preparation method thereof
CN113321866A (en) Laser direct forming polypropylene material and preparation method thereof
CN111566265A (en) Filament and 3D printed article
CN112552683B (en) Anti-aging graphene 3D printing material and preparation method thereof
CN112321854A (en) Graphene multifunctional master batch using elastomer as carrier and preparation method thereof
CN108084497B (en) A kind of thermoplasticity inorganic filler and preparation method thereof for plastics
CN112876842A (en) Preparation method of anti-aging polymer composite material with enhanced core-shell structure
CN112029296A (en) Organic carrier-free polysiloxane particles and preparation method thereof
CN108148363A (en) A kind of PET adhesion-resistant slipperies master batch and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19862445

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19862445

Country of ref document: EP

Kind code of ref document: A1