WO2020057448A1 - 血流动力学参数测量设备及测量方法 - Google Patents

血流动力学参数测量设备及测量方法 Download PDF

Info

Publication number
WO2020057448A1
WO2020057448A1 PCT/CN2019/105793 CN2019105793W WO2020057448A1 WO 2020057448 A1 WO2020057448 A1 WO 2020057448A1 CN 2019105793 W CN2019105793 W CN 2019105793W WO 2020057448 A1 WO2020057448 A1 WO 2020057448A1
Authority
WO
WIPO (PCT)
Prior art keywords
impedance
pulse wave
user
human
hemodynamic parameter
Prior art date
Application number
PCT/CN2019/105793
Other languages
English (en)
French (fr)
Inventor
李晓
Original Assignee
芯海科技(深圳)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811098316.3A external-priority patent/CN109171676A/zh
Priority claimed from CN201811098318.2A external-priority patent/CN109171677A/zh
Priority claimed from CN201811097964.7A external-priority patent/CN109171674A/zh
Priority claimed from CN201811098207.1A external-priority patent/CN109171675A/zh
Application filed by 芯海科技(深圳)股份有限公司 filed Critical 芯海科技(深圳)股份有限公司
Publication of WO2020057448A1 publication Critical patent/WO2020057448A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/44Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing persons
    • G01G19/50Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing persons having additional measuring devices, e.g. for height

Definitions

  • the invention belongs to the technical field of smart wear, and particularly relates to a hemodynamic parameter measurement device and a measurement method.
  • Hemodynamic parameters such as cardiac output, stroke output, stroke output index, and cardiac index are of great significance in assessing cardiac health, and have important guiding significance in clinical treatment, intensive care, and athlete training.
  • detection methods and operation forms which can be divided into three types: invasive, non-invasive and minimally invasive.
  • the measurement of hemodynamic parameters is still limited to hospitals and clinical applications, and there is no good measurement of human hemodynamic parameter information in the home scene; for example, when the current watch uses the PPG method for hemodynamic measurement, it is often It is susceptible to the pressure of capillaries, the tightness of the sensor and the skin, and the skin tone. It is difficult to ensure the consistency and repeatability of the measurement.
  • the purpose of the present invention is to provide a hemodynamic parameter measurement device and a measurement method, which are aimed at solving the difficulty of continuously and accurately obtaining the human hemodynamic parameters in a home scene, resulting in failure to guarantee the repeatability and consistency of the measurement.
  • the problem is to provide a hemodynamic parameter measurement device and a measurement method, which are aimed at solving the difficulty of continuously and accurately obtaining the human hemodynamic parameters in a home scene, resulting in failure to guarantee the repeatability and consistency of the measurement.
  • a hemodynamic parameter measurement device including a body,
  • the body is provided with an impedance measurement device, and the impedance measurement device includes a preset number of electrode pairs provided on the body, and each of the electrode pairs includes an excitation electrode and a measurement electrode;
  • the main body is further provided with a microprocessor electrically connected to the impedance measurement device, and the microprocessor is configured to, according to the impedance pulse wave of the human body measured by each of the electrode pairs, from the impedance pulse wave of the human body.
  • a pulse wave impedance characteristic of the user is extracted from the user, and a hemodynamic parameter of the user is obtained according to the pulse wave impedance characteristic and a preset mapping relationship.
  • the hemodynamic parameter measurement device includes a portable measurement device, a body scale, a wearable device, or a toilet lid.
  • a method for measuring a hemodynamic parameter including:
  • a pulse wave impedance characteristic of the user is extracted from the human impedance pulse wave, and a hemodynamic parameter of the user is obtained according to the pulse wave impedance characteristic and a preset mapping relationship.
  • an impedance pulse wave of a human body is accurately measured by an electrode pair provided on the body, and then the user is extracted from the impedance pulse wave of the human body by a microprocessor.
  • the pulse wave impedance characteristics of the pulse wave impedance characteristics and the preset mapping relationship the hemodynamic parameters of the human body, including the stroke volume, are obtained; the repeatability and consistency of the measurement are achieved.
  • FIG. 1 is a schematic structural diagram of a hemodynamic parameter measurement device according to an embodiment of the present invention.
  • Embodiment 2 is a structural example diagram of a wearable device provided by Embodiment 1 of the present invention.
  • FIG. 3 and FIG. 4 respectively illustrate preferred structural schematic diagrams of the front and back of the wearable device according to the first embodiment of the present invention
  • FIG. 5 is a schematic circuit structure diagram of a wearable device according to the first embodiment of the present invention.
  • FIG. 6 is a structural example diagram of a portable measurement device according to a second embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of another portable measurement device according to the second embodiment of the present invention.
  • Embodiment 8 is a structural example diagram of a human body scale provided by Embodiment 3 of the present invention.
  • Embodiment 9 is a schematic structural diagram of another body scale provided by Embodiment 3 of the present invention.
  • FIG. 10 is a structural example diagram of a preferred human scale provided by Embodiment 3 of the present invention.
  • FIG. 11 is a structural example diagram of a toilet lid provided by Embodiment 4 of the present invention.
  • FIG. 12 is a schematic structural diagram of a preferred toilet lid provided by Embodiment 4 of the present invention.
  • FIG. 13 is an implementation flowchart of a method for measuring hemodynamic parameters provided by Embodiment 5 of the present invention.
  • FIG. 14 is a waveform diagram of a human impedance pulse wave in the hemodynamic measurement method provided by Embodiment 5 of the present invention.
  • 15 is a differential diagram of the human impedance pulse wave corresponding to the human impedance pulse wave provided in the fifth embodiment of the present invention.
  • FIG. 16 is a flowchart of a preferred implementation of a method for measuring hemodynamic parameters provided in Embodiment 6 of the present invention.
  • a hemodynamic parameter measurement device 100 includes a body 101.
  • the body 101 is provided with an impedance measurement device 102.
  • the impedance measurement device 102 includes an impedance measurement device 102.
  • a preset number of electrode pairs on the device, each electrode pair includes an excitation electrode and a measurement electrode;
  • a microprocessor 103 electrically connected to the impedance measurement device 102, configured to extract the user's pulse wave impedance from the human impedance pulse wave based on the impedance pulse wave of the user measured by each of the electrode pairs Characteristics, and obtaining the hemodynamic parameters of the user according to the pulse wave impedance characteristics and a preset mapping relationship.
  • the hemodynamic parameters include pulse output. Further, the hemodynamic parameters may also include a pulse output index, a cardiac output, a cardiac output index, etc., so as to obtain the hemodynamic parameters of the user in a comprehensive manner, which is convenient for understanding the cardiovascular health status of the user.
  • the pulse wave impedance characteristics include the amplitude of the human impedance pulse wave, the differential negative maximum absolute value of the human impedance pulse wave, the differential positive maximum absolute value of the human impedance pulse wave, and the maximum negative negative wave of the human impedance pulse wave differential map.
  • the pulse wave impedance characteristic further includes a pulse wave area, an impedance pulse wave period, and a predetermined point on the left side of the maximum negative wave peak of the human impedance pulse wave differential chart is a 15% amplitude point of the maximum negative wave, thereby further improving Accuracy of obtaining hemodynamic parameters.
  • the wearable device 100 provided by an embodiment of the present invention is described by using a wristband.
  • the wristband 100 is worn on the wrist and includes a body 101, an impedance measurement device 102 disposed on the body 101, and impedance measurement.
  • Device 102 is connected to a microprocessor 103.
  • the body 101 includes an impedance measurement device 102.
  • the first electrode pair and the second electrode pair of the impedance measurement device 102 are both disposed on the body 101 for measuring the bioelectrical impedance information of the human body between the hands of a user wearing the wearable device 100. Therefore, the user's human impedance pulse wave on the wearable device can be obtained through the user's human bioelectrical impedance information. In this way, the user's human impedance pulse wave can be accurately and automatically acquired without wearing a specific device.
  • the first electrode pair and the second electrode pair are both disposed on the back of the body 101 and correspond to the position of the wrist contacting the human body, which is convenient for obtaining the user's bioelectrical impedance information while not Bring more physical limitations to users.
  • the microprocessor 103 is configured to extract the user's pulse wave impedance characteristics from the human impedance pulse wave according to the human impedance pulse wave measured by the electrode pair in the impedance measurement device 102, and obtain the user's Hemodynamic parameters.
  • Hemodynamic parameters include stroke volume. Further, hemodynamic parameters can also include stroke output index, cardiac output, cardiac output index, etc., so as to fully obtain the user's blood flow power. Learning parameters to understand the cardiovascular health of users.
  • the pulse wave impedance characteristics include the amplitude of the human impedance pulse wave, the differential negative maximum absolute value of the human impedance pulse wave, the differential positive maximum absolute value of the human impedance pulse wave, and the maximum negative negative wave of the human impedance pulse wave differential map.
  • the pulse wave impedance characteristic further includes a pulse wave area, an impedance pulse wave period, and a predetermined point on the left side of the maximum negative wave peak of the human impedance pulse wave differential chart is a 15% amplitude point of the maximum negative wave, thereby further improving Accuracy of obtaining hemodynamic parameters.
  • the microprocessor 103 measures the human impedance pulse wave of the user on the wearable device through the first electrode pair and the second electrode pair, and extracts the user's impedance wave from the human impedance pulse wave waveform. Pulse wave impedance characteristics, according to the pulse wave impedance characteristics and preset mapping relationships, to obtain the user's hemodynamic parameters, so that the user's body impedance pulse wave can be accurately and automatically acquired without wearing specific equipment, and then the user's Hemodynamic parameters.
  • the microprocessor 103 is disposed on the main body 101.
  • the wearable device 100 further includes an acceleration sensor 104 connected to the microprocessor 103, and the acceleration sensor 104 is mounted on the body for measuring human body shake data.
  • the wearable device 100 further includes a wireless communication module 105 connected to the microprocessor 103.
  • the wireless communication module 105 is installed on the body 101 and is used to control the human body impedance obtained by the microprocessor 103 under the control of the microprocessor 103.
  • Pulse wave waveform data and / or stroke volume are uploaded to a remote server and / or mobile terminal via wireless communication.
  • the remote server can be a big data platform or server that manages the user's health for continuous monitoring of the cardiovascular health of the user
  • the mobile terminal can be the terminal for the user on the wearable device 100, so that the user can use the mobile terminal Almost understand your cardiovascular health.
  • the mobile terminal is a user's guardian or immediate relative user terminal on the wearable device, so that the guardian or immediate relative can understand the cardiovascular health status of the user on the wearable device anytime, anywhere, and when the user has a corresponding disease on the wearable device At this time, the guardian or immediate family members can detect and remind in time, which improves the intelligence of the wearable device.
  • the microprocessor 103 is further configured to determine the health status of the user on the wearable device according to the hemodynamic parameters, so as to directly obtain the health status of the user through the wearable device.
  • the user may use the wearable device (for example, a wearable device) Voice output unit, etc.) to intuitively know their cardiovascular health status.
  • the wearable device 100 further includes a display 106 connected to the microprocessor 103, and the display 106 is mounted on the body 101.
  • the microprocessor 103 obtains the impedance pulse wave data of the human body, hemodynamic parameters, After the pulse output and / or the cardiovascular health status of the user on the wearable device, it can be displayed directly on the display 106, which is convenient for the user to understand the cardiovascular status in a timely and intuitive manner.
  • FIGS. 3 and 4 show schematic structures of the front and back of the wearable device, respectively.
  • the wearable device includes a body 10 and a microprocessor 2.
  • the wearable device further includes a display 3, a first electrode pair 4 and a second electrode pair 5 of the impedance measuring device.
  • the display 3 is located on the front of the body 10, and the first An electrode pair 4 and a second electrode pair 5 are each provided with a plurality of excitation electrodes and measurement electrodes, and are all located on the back of the body 10.
  • the wireless communication module 9 is mounted on the body 10 and is used for controlling the microprocessor 2 under the control of the microprocessor 2.
  • the body impedance pulse wave waveform data and / or stroke output volume obtained by the microprocessor 2 are uploaded to a remote server and / or mobile terminal through a wireless communication method.
  • FIG. 5 shows a schematic diagram of the circuit structure of the wearable device provided in the second embodiment of the present invention. For the convenience of description, only the parts related to the embodiment of the present invention are shown.
  • the microcontroller 91 for arithmetic processing the microcontroller 91 is electrically connected with an acceleration sensor 8 that reads the state of human movement, the microcontroller 91 is electrically connected with an impedance measuring device 93 that measures the human body impedance, and the microcontroller 91 is electrically connected with Display 3 showing human physiological parameter information;
  • the device further includes a wireless communication module 92, which is electrically connected to the microcontroller 91.
  • the wireless communication module 92 uploads the human physiological parameter information calculated and processed by the microcontroller 91 to a cloud server or terminal device, and controls Convenient.
  • the wireless communication chip 92 can also communicate with a cloud server or a terminal device;
  • the impedance measurement device 93 includes a first pair of electrodes 4 and a second pair of electrodes 5, and each of the first pair of electrodes 4 and the second pair of electrodes 5 is provided with a plurality of excitation electrodes and measurement electrodes; making the measurement more accurate.
  • the wearable device provided by the embodiment of the present invention includes a body.
  • the body further includes an impedance measurement device and a microprocessor connected to the impedance measurement device.
  • the impedance measurement device includes a first electrode pair and a second electrode provided on the body. Yes, each electrode pair includes an excitation electrode and a measurement electrode; thereby accurately measuring the impedance pulse wave of the human body through the first electrode pair and the second electrode pair provided on the body, and then obtaining the blood of the human body through the microprocessor Hydrodynamic parameters. It can conveniently and accurately obtain the hemodynamic parameters of the human body to ensure the repeatability and consistency of the measurement.
  • a portable measurement device 100 includes a main body 101, an impedance measurement device 102 disposed on the main body 101, and a microprocessor 103 connected to the impedance measurement device 102.
  • the main body 101 is used for supporting the human body;
  • the impedance measuring device 102 includes a preset number of electrode pairs provided on the main body 101, and each electrode pair includes an excitation electrode and a measurement electrode; the preset number of electrode pairs is used for measuring portable
  • the human bioelectrical impedance information of the user's feet on the measurement device 100 so that the human body impedance pulse wave of the user on the portable measurement device 100 can be known through the human bioelectrical impedance information.
  • the user only needs to stand on the body 101 without wearing Other specific devices thus have a sense of restraint, and the user has a good user experience, achieving accurate and automatic acquisition of the user's body impedance pulse wave.
  • the number of electrode pairs can be flexibly customized according to a user's requirement for measurement accuracy.
  • two electrode pairs are provided in total; two electrode pairs are symmetrically arranged on both sides of the body and are located on the body.
  • electrode pairs are set at the corresponding positions with the user's feet to measure the bioelectrical impedance information of the human body. While accurately and automatically acquiring the user's human body impedance pulse wave, the structure of the impedance measurement device is simplified and reduced. The complexity of obtaining human hemodynamic parameters.
  • the microprocessor 103 is configured to extract the user's pulse wave impedance characteristics from the human impedance pulse wave according to the human impedance pulse wave measured by the impedance measurement device 102, and obtain the user's blood flow based on the pulse wave impedance characteristics and a preset mapping relationship.
  • Dynamic parameters, hemodynamic parameters include stroke volume, further, hemodynamic parameters can also include stroke output index, cardiac output, cardiac output index, etc., so as to comprehensively obtain the user's hemodynamic parameters To understand the cardiovascular health of users.
  • the pulse wave impedance characteristics include the amplitude of the human impedance pulse wave, the differential negative maximum absolute value of the human impedance pulse wave, the differential positive maximum absolute value of the human impedance pulse wave, and the maximum negative negative wave of the human impedance pulse wave differential map.
  • the pulse wave impedance characteristic further includes a pulse wave area, an impedance pulse wave period, and a predetermined point on the left side of the maximum negative wave peak of the human impedance pulse wave differential chart is a 15% amplitude point of the maximum negative wave, thereby further improving Accuracy of obtaining hemodynamic parameters.
  • the microprocessor 103 measures the human body impedance pulse wave of the user on the portable measuring device through a preset number of electrode pairs, and extracts the user's pulse wave impedance from the body impedance pulse wave waveform. Characteristics, according to the pulse wave impedance characteristics and the preset mapping relationship, to obtain the user's hemodynamic parameters, the user only needs to stand on the body without wearing other specific equipment to have a sense of restraint, the user experience is good, and the user's Accurate and automatic acquisition of the body's impedance pulse wave to obtain the user's hemodynamic parameters.
  • the portable measuring device 100 further includes a load cell 104 connected to the microprocessor 103.
  • the load cell 104 is mounted on the body 101 and used to measure the body weight of the human body; the microprocessor 103 obtains the human body sent by the load cell 104 After the weight, the human hemodynamic parameters can be further calculated or corrected by the human body weight, thereby further improving the accuracy of the user's hemodynamic parameters on the portable measurement device 100.
  • load cells 104 are provided, and the body 101 has a rectangular shape.
  • the four load cells 104 are uniformly distributed around the center axis of the body to ensure that users standing on the body 101 can be sensed by the load cells 104. , The detection sensitivity is good, and the circumference is evenly distributed, which makes the overall device more beautiful.
  • the portable measurement device 100 may be a human body scale.
  • the human body scale not only has a weighing function of a general scale, but also a detection function for detecting hemodynamic parameters.
  • the portable measurement device 100 further includes a wireless communication unit 105 connected to the microprocessor 103.
  • the wireless communication unit 105 is mounted on the body 101 and is configured to transmit the impedance pulse wave data and / or stroke volume of the human body through wireless communication.
  • the remote server can be a big data platform or server that manages the user's health for continuous monitoring of the cardiovascular health of the user
  • the mobile terminal can be the user on the portable measurement device 100
  • User terminal so that users can easily understand their cardiovascular health status through the mobile terminal; further preferably, the mobile terminal is the user's guardian or immediate relative user terminal on the portable measurement device 100, so that the guardian or immediate relative can be anytime, anywhere Understand the cardiovascular health status of the user on the portable measurement device 100.
  • a guardian or immediate family member can detect and alert in time, which improves the intelligence of the portable measurement device 100.
  • the microprocessor 103 is further configured to determine the health status of the user on the portable measurement device 100 according to the hemodynamic parameters; in order to directly obtain the health status of the user through the portable measurement device 100, the user may use the portable measurement device 100 (for example, The voice output unit of the portable measurement device 100, etc.) intuitively knows its cardiovascular health status.
  • the main body 101 is further provided with a display unit 106 connected to the microprocessor 103, and the display unit 106 is installed on the main body 101. In this way, the microprocessor 103 obtains the impedance pulse wave waveform data and hemodynamic parameters of the human body. After the stroke volume output and / or the cardiovascular health status of the user on the portable measurement device, it can be displayed directly through the display unit 106, which is convenient for the user to understand the cardiovascular status in a timely and intuitive manner.
  • FIG. 7 shows a schematic structure of a portable measurement device.
  • the portable measuring device 1 includes a main body 2 and a microprocessor 7, and an electrode pair of an impedance measuring device is provided on the main body 2.
  • the electrode pair includes an excitation electrode 4 and a measuring electrode 5.
  • the two electrode pairs are respectively installed on the main body 2 and the left and right sides of the human body.
  • the corresponding position of the foot is used to measure the bioelectrical impedance information of the user's foot.
  • the portable measuring device 1 further includes a load cell 6, a display screen 3, and a wireless communication unit 8. Among them, the load cell 6 is used to measure the weight of a human body, and four are provided.
  • the body has a rectangular shape, and the four load cells 6 are wound.
  • the central axis of the main body 2 is uniformly distributed on the circumference;
  • the display screen 3 is installed on the main body 2 and is used to display the impedance pulse wave data of the human body, hemodynamic parameters, stroke volume, and / or the cardiovascular of the user on the portable measuring device
  • the health status is convenient for the user to understand the cardiovascular status in a timely and intuitive way.
  • the wireless communication unit 8 is installed on the body 2 and is used to control the impedance wave waveform data of the human body obtained by the microprocessor 7 under the control of the microprocessor 7 and / or
  • the stroke volume is uploaded to a remote server and / or mobile terminal through wireless communication.
  • the portable measuring device provided by the embodiment of the present invention accurately measures the human impedance pulse wave through the electrode pair.
  • the microprocessor receives the human impedance pulse wave and processes it to obtain the human hemodynamic parameters including the stroke volume, and the user can understand To their own physical conditions, to meet the needs of users in their daily lives without going to the hospital to be able to carry out the measurement of hemodynamic related parameters on their own, at the same time can more fully reflect the changes in human cardiovascular function after long-term exercise, improve people's exercise Planning and enthusiasm. At the same time, it is easy to carry and convenient to detect, which can ensure the repeatability and consistency of the measurement.
  • a human body scale provided by an embodiment of the present invention includes a body 101 and a handle 108, an impedance measurement device 102 disposed on the body 101, and a microprocessor 103 connected to the impedance measurement device 102.
  • the body is used to carry the human body, and the handle 108 is used to measure the impedance pulse wave of the position of the human hand.
  • the impedance measurement device 102 includes a first preset number of electrode pairs provided on the body 101 and a second preset number of electrode pairs provided on the handle 108, and each electrode pair includes two excitation electrodes and two measurement electrodes
  • the first preset number of electrode pairs on the body is used to measure the human bioelectrical impedance information of the user's feet on the hemodynamic parameter measurement device 100
  • the second preset number of electrode pairs on the handle 108 is used to measure blood
  • the human bioelectrical impedance information of the user's hand on the hydrodynamic parameter measurement device 100, so as to obtain the human impedance pulse wave of the user on the hemodynamic parameter measurement device through the human bioelectrical impedance information of the user's foot and hand.
  • the ground includes at least human bioelectrical impedance information for measuring a current loop formed from the left hand of the human body to the lower limbs.
  • the handle 108 is arranged at the front end of the body and connected with a wire, so as to conveniently obtain the bioelectrical impedance information of the human body of the user's hand, while not bringing more restrictions on the limb of the user.
  • the first preset number and the second preset number can be set according to a user's measurement accuracy requirement.
  • the impedance measurement device 102 includes an electrode pair provided on the body and a handle 108.
  • One electrode pair, two excitation electrodes and two pole measurement electrodes of the electrode pair provided on the body are respectively installed on the front of the body, corresponding to the positions where they touch the left and right feet of the human body, and the electrode pairs provided on the handle 108
  • each includes two excitation motors and two measuring electrodes, so that electrode pairs are provided at positions corresponding to the hemodynamic parameter measuring device of the user's feet and hands, for measuring human biological resistance
  • the anti-information while accurately and automatically acquiring the user's human impedance pulse wave, simplifies the structure of the impedance measurement device 102, reduces the complexity of obtaining human hemodynamic parameters, reduces costs, and reduces the size of the device.
  • the microprocessor 103 is configured to extract the user's pulse wave impedance characteristics from the human impedance pulse wave according to the human impedance pulse wave measured by the electrode pair in the impedance measurement device 102, and obtain the human body's Hemodynamic parameters.
  • Hemodynamic parameters include stroke volume. Further, hemodynamic parameters can also include stroke output index, cardiac output, cardiac output index, etc., so as to fully obtain the user's blood flow power. Learning parameters to understand the cardiovascular health of users.
  • the pulse wave impedance characteristics include the amplitude of the human impedance pulse wave, the differential negative maximum absolute value of the human impedance pulse wave, the differential positive maximum absolute value of the human impedance pulse wave, and the maximum negative negative wave of the human impedance pulse wave differential map.
  • the pulse wave impedance characteristic further includes a pulse wave area, an impedance pulse wave period, and a predetermined point on the left side of the maximum negative wave peak of the human impedance pulse wave differential chart is a 15% amplitude point of the maximum negative wave, thereby further improving Accuracy of obtaining hemodynamic parameters.
  • the microprocessor 103 measures the impedance pulse of the human body of the user on the hemodynamic parameter measurement device through the first preset number of electrode pairs and the second preset number of electrode pairs. Wave, which extracts the user ’s pulse wave impedance characteristics from the human impedance pulse wave waveform, and obtains the user ’s hemodynamic parameters according to the pulse wave impedance characteristics and the preset mapping relationship, so that the user ’s body impedance can be achieved without wearing specific equipment Accurate and automatic acquisition of the pulse wave to obtain the user's hemodynamic parameters.
  • the microprocessor 103 is disposed on the body 101 to reduce the volume of the handle 108 and make it convenient to use.
  • the hemodynamic parameter measurement device 100 further includes a load cell 104 connected to the microprocessor 103, and the load cell 104 is installed on the back of the body 100 for measuring body weight.
  • the processor 103 can further calculate or modify the human hemodynamic parameters by the human body weight, thereby further improving the accuracy of the user's hemodynamic parameters on the hemodynamic parameter measurement device.
  • the hemodynamic parameter measurement device 100 further includes a wireless communication unit 105 connected to the microprocessor 103.
  • the wireless communication unit 105 is mounted on the main body 101 and is used to control the microprocessor 103 under the control of the microprocessor 103.
  • the acquired body impedance pulse wave waveform data and / or stroke volume are uploaded to a remote server and / or terminal device through wireless communication; the microprocessor can also communicate with the remote server and / or terminal device through a wireless communication unit, Set and update the data.
  • the preset data includes the weight, age, gender, and height information of the human body to achieve a more intelligent control method and meet people's use needs.
  • the remote server can be a big data platform or server that manages the user's health for continuously monitoring the cardiovascular health of the user, and the terminal device can be used for the terminal on the hemodynamic parameter measurement device 100 by the user. You can easily understand your cardiovascular health status through your mobile terminal.
  • the terminal device is a user's guardian or immediate relative user terminal on the hemodynamic parameter measurement device, so that the guardian or immediate relative can understand the cardiovascular health status of the user on the hemodynamic parameter measurement device anytime, anywhere.
  • the guardian or immediate family member can detect and remind in time, which improves the intelligence of the hemodynamic parameter measurement device.
  • the microprocessor 103 is further configured to determine the health status of the user on the hemodynamic parameter measurement device according to the hemodynamic parameter, so as to directly obtain the health status of the user through the hemodynamic parameter measurement device.
  • a hydrodynamic parameter measurement device for example, a voice output unit of a hemodynamic parameter measurement device, etc.
  • the hemodynamic parameter measurement device 100 further includes a display unit 106 connected to the microprocessor 103, and the display unit 106 is mounted on the body 101.
  • the microprocessor 103 obtains the impedance pulse wave waveform data of the human body, the blood After measuring the cardiovascular health status of the user on the flow dynamic parameter, stroke volume output, and / or hemodynamic parameter measurement device, it can be directly displayed through the display unit 106, which is convenient for the user to understand the cardiovascular status in a timely and intuitive manner.
  • FIG. 10 shows a schematic structure of a hemodynamic parameter measurement device.
  • the hemodynamic parameter measurement device may be a human body scale 1 including a body 2 and a microprocessor 21.
  • the body 2 is provided with a first preset number of electrode pairs of the impedance measurement device, and the first preset The number of electrode pairs includes two excitation electrodes 4, 5 and measurement electrodes 6, 7, both of which are installed on the front of the body 2 and correspond to the positions of the left and right feet of the human body for measuring the bioelectrical impedance information of the user's feet.
  • the handle 3 is provided with a second preset number of electrode pairs of the impedance measurement device.
  • the second preset number of electrode pairs includes two excitation electrodes 11, 13 and two measurement electrodes 12, 14 corresponding to the position held by a human hand.
  • the hemodynamic parameter measurement device 1 further includes a load cell 8, a display screen 9, and a wireless communication unit 22, wherein the load cell 8 is installed on the back of the body 2 for measuring the body weight, and the display screen 9 is installed on the body 2. It is used to display the body impedance pulse wave waveform data, hemodynamic parameters, stroke volume and / or hemodynamic parameter measurement device 1 on the user's cardiovascular health status, which is convenient for users to understand the heart in a timely and intuitive way.
  • the wireless communication unit 22 is installed on the body 2 and is used to upload the human body's impedance pulse wave waveform data and / or stroke volume obtained by the microprocessor 21 to a remote place under the control of the microprocessor 21
  • the server and / or terminal device may also communicate with the remote server and / or terminal device through the wireless communication unit 22, preset and update data, and the preset data includes body weight, age, gender, and height information.
  • the human body scale provided by the present invention accurately measures the impedance pulse wave of the human body through a first preset number of electrode pairs provided on the body and a second preset number of electrode pairs provided on the handle, and is further obtained through microprocessor processing. Obtaining the human hemodynamic parameters including the stroke volume output improves the intelligence of the hemodynamic parameter measurement device and provides users with a simple structure, low cost, and convenient use.
  • the toilet cover 100 includes a main body 101, an impedance measurement device 102 disposed on the main body 101, and a microprocessor 103 connected to the impedance measurement device 102.
  • the body 100 includes a washer and an armrest.
  • the washer is used to carry a human body
  • the armrest is used to place a user (human body) arm on the toilet cover 100 to provide support for the arm.
  • the impedance measuring device 102 includes a first preset number of electrode pairs provided on the gasket and a second preset number of electrode pairs provided on the armrest. Each electrode pair includes an excitation electrode and a measurement electrode.
  • a preset number of electrode pairs is used to measure the human bioelectrical impedance of the user's leg on the toilet cover 100
  • a second preset number of electrode pairs on the armrest is used to measure the human bioelectrical impedance of the user's hand on the toilet cover 100 Information, so as to obtain the user ’s human impedance pulse wave on the toilet cover through the human bioelectrical impedance information of the user ’s legs and hands, so that the user ’s body impedance pulse wave can be accurately and automatically achieved without the user wearing specific equipment Obtain.
  • the armrest is provided on the left side of the human body after sitting on the toilet, so as to provide hand support and facilitate access to the bioelectrical impedance information of the human hand of the user, it will not bring more restrictions on the user's limbs.
  • the first preset number and the second preset number can be set according to a user's measurement accuracy requirement.
  • the impedance measurement device 102 includes an electrode pair provided on a gasket and a One electrode pair, the excitation electrode and the pole measurement electrode of the electrode pair provided on the gasket are respectively installed on both sides of the gasket, corresponding to the positions where the left and right thighs of the human body are contacted, and the electrode pair provided on the armrest corresponds to the grip of the human palm Holding position, so that electrode pairs are set at positions corresponding to the toilet lid of the user ’s legs and hands, for measuring the bioelectrical impedance information of the human body, and accurately and automatically acquiring the user ’s human body impedance pulse wave while simplifying the impedance measurement device 102
  • the structure reduces the complexity of obtaining human hemodynamic parameters.
  • the microprocessor 103 is configured to extract the user's pulse wave impedance characteristics from the human impedance pulse wave according to the human impedance pulse wave measured by the measurement electrode pair in the impedance measurement device 102, and obtain the user according to the pulse wave impedance characteristic and a preset mapping relationship.
  • the hemodynamic parameters include the stroke volume. Further, the hemodynamic parameters can also include the stroke output index, cardiac output, cardiac output index, etc., so as to obtain the user's blood flow in a comprehensive manner. Kinetic parameters to understand the cardiovascular health of the user.
  • the pulse wave impedance characteristics include the amplitude of the human impedance pulse wave, the differential negative maximum absolute value of the human impedance pulse wave, the differential positive maximum absolute value of the human impedance pulse wave, and the maximum negative negative wave of the human impedance pulse wave differential map.
  • the pulse wave impedance characteristic further includes a pulse wave area, an impedance pulse wave period, and a predetermined point on the left side of the maximum negative wave peak of the human impedance pulse wave differential chart is a 15% amplitude point of the maximum negative wave, thereby further improving Accuracy of obtaining hemodynamic parameters.
  • the microprocessor 103 measures the impedance pulse wave of the human body on the toilet lid by the first preset number of measurement electrode pairs and the second preset number of measurement electrode pairs from The user's pulse wave impedance characteristics are extracted from the human impedance pulse wave waveform, and the user's hemodynamic parameters are obtained according to the pulse wave impedance characteristics and a preset mapping relationship, so that the user's body impedance pulse wave can be realized without wearing specific equipment. Accurate and automatic acquisition to obtain user hemodynamic parameters.
  • the microprocessor 103 is disposed on the body 101. Specifically, the microprocessor 103 can be installed in the washer or the armrest according to the internal structure of the washer or the armrest. Of course, it can also be installed in other positions on the body.
  • the toilet cover 100 further includes a load cell 104 connected to the microprocessor 103.
  • the load cell 104 is installed on the back of the gasket to measure the weight of the human body.
  • the microprocessor 103 obtains the load cell 104 After sending the human body weight, the human body hemodynamic parameters can be further calculated or corrected by the human body weight to further improve the accuracy of the user's hemodynamic parameters on the toilet lid.
  • the toilet cover 100 further includes a wireless communication unit 105 connected to the microprocessor 103.
  • the wireless communication unit 105 is installed on the body 101 and is used to control the impedance pulse of the human body obtained by the microprocessor 103 under the control of the microprocessor 103.
  • Waveform data and / or stroke volume are uploaded to a remote server and / or mobile terminal via wireless communication.
  • the remote server can be a big data platform or server that manages the user's health for continuous monitoring of the cardiovascular health of the user
  • the mobile terminal can be a terminal for the user on the toilet cover 100, so that the user can conveniently use the mobile terminal To understand your cardiovascular health.
  • the mobile terminal is a user's guardian or immediate relative user terminal on the toilet lid, so that the guardian or immediate family can know the cardiovascular health status of the user on the toilet lid anytime, anywhere. Or immediate family members can find and remind in time, which improves the intelligence of the toilet seat.
  • the microprocessor 103 is further configured to determine the health status of the user on the toilet cover according to the hemodynamic parameters, so as to directly obtain the health status of the user through the toilet cover.
  • the user may pass the toilet cover (for example, a voice output unit of the toilet cover). Etc.) intuitively know their cardiovascular health status.
  • the toilet cover 100 further includes a display unit 106 connected to the microprocessor 103, and the display unit 106 is mounted on the body 101.
  • the microprocessor 103 obtains impedance pulse wave data, hemodynamic parameters, After the stroke volume and / or the cardiovascular health status of the user on the toilet lid, it can be displayed directly through the display unit 106, which is convenient for the user to understand the cardiovascular status in a timely and intuitive manner.
  • FIG. 12 shows a schematic structure of a toilet lid.
  • the toilet cover 1 includes a main body microprocessor 2.
  • the main body includes a base 11, a washer 12, and an armrest 13.
  • the washer 12 is provided with an electrode pair of an impedance measuring device.
  • the electrode pair includes an excitation electrode 3 and a measurement electrode 4.
  • the two electrodes are installed on both sides of the gasket, corresponding to the left and right thigh positions of the human body, for measuring the bioelectrical impedance information of the user's leg.
  • the armrest 13 is provided with an electrode pair of an impedance measuring device.
  • the electrode pair includes an excitation electrode 5 and a measurement electrode 6, corresponding to a person's left hand holding position, for measuring bioelectrical impedance information of a user's hand.
  • the toilet cover 1 also includes a load cell 7, a display screen 8, and a wireless communication unit 9, wherein the load cell 7 is installed on the back of the gasket 12 for measuring the weight of the human body, and the display screen 8 is installed on the base 11 for For displaying the impedance pulse wave data, hemodynamic parameters, stroke volume, and / or the cardiovascular health status of the user on the toilet cover, it is convenient for the user to understand the cardiovascular status in a timely and intuitive manner.
  • the wireless communication unit 9 is installed on the body. It is used to upload the body impedance pulse wave waveform data and / or stroke volume obtained by the microprocessor 2 to the remote server and / or the mobile terminal under the control of the microprocessor 2.
  • the impedance pulse wave of the human body is accurately measured by the first preset number of electrode pairs provided on the gasket and the second preset number of electrode pairs provided on the armrest, and then by the microprocessor
  • the human hemodynamic parameters including the stroke output are processed to improve the intelligence of the toilet cover, and at the same time, a simplified and convenient human hemodynamic parameter continuous monitoring device is provided for the user.
  • FIG. 13 shows an implementation flow of a method for measuring a hemodynamic parameter provided by Embodiment 5 of the present invention.
  • the method includes:
  • the wearable device may be worn on a limb of a human body to measure the impedance pulse wave of the human body through the first electrode pair and the second electrode pair, or measure the impedance pulse wave of the human body on the portable measurement device through the electrode pair; or
  • the body impedance pulse wave of the user on the body scale can be measured by electrode pairs; or the user's body impedance pulse wave on the toilet lid can be measured by a preset number of electrode pairs.
  • step S202 Extract the pulse wave impedance characteristics of the user from the human impedance pulse wave, and obtain the hemodynamic parameters of the user according to the pulse wave impedance characteristics and a preset mapping relationship.
  • step S202 the waveform characteristics of the impedance pulse wave are extracted from the waveform of the impedance pulse wave of the human body, and the hemodynamic parameters of the human body are obtained according to the waveform characteristics of the impedance pulse wave and a preset mapping relationship.
  • the method of the embodiment of the present invention can be applied to any one of the hemodynamic measurement devices in the first to fourth embodiments.
  • the user jitter is removed from the human impedance pulse wave waveform measured in step S201.
  • the distortion impedance pulse wave corresponding to the time is obtained to obtain the impedance pulse wave of the human body after removing the distortion impedance pulse wave, thereby obtaining a stable and true human impedance pulse wave, and improving the accuracy of hemodynamic parameters.
  • the distortion pulse wave corresponding to the user shake is removed from the human impedance pulse wave
  • the human body shake change is detected by an acceleration sensor, and the pulse wave corresponding to the shake change time period is eliminated, so as to obtain an accurate human impedance pulse wave.
  • erroneous pulse wave impedance feature extraction is avoided, and the accuracy of hemodynamic parameters is ensured.
  • FIG. 14 schematically illustrates a human impedance pulse wave.
  • the figure shows two complete pulse (heartbeat) cycles, where the cycle is T 0 , and the diagram of the impedance pulse wave shows the first peak and trough versus amplitude Zamp 0 ,
  • the area of the second periodic waveform of the impedance pulse wave is Zarea 0 , which is the integral of the impedance pulse wave to the baseline BaseLine (the line connecting two adjacent valleys); Z 00 is the base impedance.
  • the amplitude, period, and area of the impedance pulse wave in this figure are all defined based on the periodic waveform, in practice, the corresponding values of several periodic waveforms are generally used as an average process.
  • the pulse wave impedance characteristic further includes the area of each pulse waveform and the impedance pulse wave period.
  • the period of the human impedance pulse wave is extracted from the human impedance pulse wave.
  • the body impedance pulse wave and the user's height are used to calculate the stroke volume according to a preset mapping relationship, thereby improving the accuracy of the stroke volume volume acquisition.
  • SV represents the stroke output
  • is the blood conductivity
  • the value is 130 ⁇ 150 ⁇ • cm
  • L is equal, etc.
  • the effective length is proportional to the height of the user
  • Z 0 is the basic impedance
  • ( dZ / dt ) nmax represents the absolute value of the maximum negative wave in the impedance differential corresponding to the impedance pulse wave of the human body
  • LVET represents the left ventricular ejection time
  • LVET is taken as The length of time from the 15% amplitude point on the left side of the maximum negative wave vertex of the human impedance pulse wave differential chart to the absolute value of the maximum positive wave of the human impedance pulse wave differential chart.
  • the absolute value of the peak value of the largest negative wave ( dZ in the impedance differential corresponding to the body impedance pulse wave and the body height H, the basic impedance Z 0 , and the pulse impedance of the human body) is obtained.
  • / dt ) nmax , left ventricular ejection time LVET , human impedance pulse wave amplitude, waveform area, and period are input to a preset neural network model, and the user's stroke output is obtained through the neural network model, thereby improving the stroke output. Get accuracy.
  • one or more of weight, age, gender, and body fat rate parameters can also be used, combined with pulse wave impedance characteristic parameters to modify the stroke output, thereby further improving the stroke output Quantitative acquisition accuracy.
  • the pulse wave impedance characteristics include the amplitude of the human impedance pulse wave, the differential negative maximum absolute value of the human impedance pulse wave, the differential positive maximum absolute value of the human impedance pulse wave, and the maximum negative negative wave of the human impedance pulse wave differential map.
  • the time interval LVET 0 from B 0 to X 0 can represent the ventricular ejection time.
  • LVET 0 is not exactly equal to the ventricular ejection time, but can be used as a positive correlation for a ventricular ejection time.
  • L is a quantity related to height.
  • the measured impedance pulse waveform (impedance blood flow chart) between the hands is measured, so it is more accurate to say that L is the length of both upper limbs + shoulders.
  • L 0 H * 0.9 * 0.5
  • Z 00 is the basic impedance, and take a quarter of the body impedance between the two hands.
  • the stroke output index, cardiac output, and cardiac output index in the hemodynamic parameters can be obtained according to the acquired stroke output.
  • the user's weight and height are acquired, and the stroke output index, cardiac output, and cardiac output index are calculated based on the acquired weight, height, and stroke output, so as to quickly obtain blood based on the stroke output
  • Other parameters of flow dynamics while further simplifying the process of obtaining hemodynamic parameters, comprehensively obtain the user's hemodynamic parameters, which improves the accuracy of determining the cardiovascular health status of the user.
  • the stroke output index SI SV / BSA
  • cardiac output CO HR * SV
  • cardiac output index CI CO / BSA.
  • BSA represents the body surface area of the human body
  • BSA 0.0061 * height (cm) + 0.0128 * weight (kg)-0.1529
  • HR represents the pulse (heart) rate
  • HR 60 / T 0
  • T 0 represents a pulse (heartbeat) cycle.
  • FIG. 16 shows the implementation flow of the hemodynamic parameter measurement method provided in Embodiment 4 of the present invention.
  • the method of the embodiment of the present invention can be applied to any of the hemodynamic measurement devices of Embodiments 1 to 4 above, for convenience The description only shows a part related to the embodiment of the present invention, and the details are as follows:
  • the method for measuring hemodynamic parameters can be used on a wearable device to further improve the accuracy of measuring the hemodynamic parameters of a human body by the wearable device.
  • step S701 an acceleration sensor and an impedance measuring device are used to measure the jitter data of the human body and the impedance pulse wave of the human body;
  • step S702 the impedance pulse wave of the human body is processed to remove the waveform of the human body's jitter phase and retain a stable waveform;
  • step S703 the human impedance pulse wave is filtered to remove baseline drift and other processing to obtain a processed human impedance pulse wave suitable for feature extraction (as shown in FIG. 7), and the human impedance pulse wave is differentiated to obtain the human impedance.
  • Pulse wave differential map shown in Figure 8;
  • step S704 the characteristics of the human impedance pulse wave are obtained from the human impedance pulse wave and the human impedance pulse wave differential map.
  • the characteristics of the impedance pulse wave of the human body include dZamp_C0, LVET0, Z00, T0, Zamp0, Zarea0, T0 and take the average of 8 pulse wave periods.
  • dZamp_C0 8.7 ⁇ / s
  • LVET0 0.201s
  • Z00 150 ⁇
  • Zamp0 0.6 ⁇
  • Zarea0 0.26 ⁇ • s
  • T0 0.86s;
  • SV 61.4mL / beat can be calculated.
  • BSA is the body surface area
  • BSA (m2) 0.0061 * height (cm) + 0.0128 * weight (kg) -0.1529.
  • the body composition parameters can also be calculated according to the user's height, weight, age, gender, and body impedance, where the body composition parameters include at least the body fat rate, so as to obtain the hemodynamic parameters through the wearable device, get Body composition parameters simplify the process of obtaining body composition parameters and improve the intelligence of wearable devices.
  • the weight, height, and heart rate of the user are obtained, and then the stroke output index, cardiac output, and cardiac output index are obtained through the wearable device according to the obtained weight, height, heart rate, and stroke output, so that Quickly obtain other hemodynamic parameters based on stroke volume. While further simplifying the process of obtaining hemodynamic parameters, the user's hemodynamic parameters can be obtained comprehensively.
  • an impedance pulse wave of a human body is accurately measured by an electrode pair provided on the body, and then the user is extracted from the impedance pulse wave of the human body by a microprocessor.
  • the pulse wave impedance characteristics of the pulse wave the hemodynamic parameters of the human body are obtained according to the pulse wave impedance characteristics and a preset mapping relationship, and the repeatability and consistency of the measurement are achieved. Therefore, it has industrial applicability.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Molecular Biology (AREA)
  • Physiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

一种血流动力学参数测量设备(100)及测量方法,设备(100)包括本体(101),阻抗测量装置(102)、以及与阻抗测量装置(102)电连接的微处理器(103),阻抗测量装置(102)包括设在本体(101)上的预设数量的电极对,每个电极对均包括一个激励电极和一个测量电极;微处理器(103)用于根据每个电极对测量得到的人体阻抗脉搏波,从人体阻抗脉搏波中提取用户的脉搏波阻抗特征,根据脉搏波阻抗特征和预设映射关系,获取用户的血流动力学参数;从而实现了测量数据的重复性和一致性。

Description

血流动力学参数测量设备及测量方法 技术领域
本发明属于智能穿戴技术领域,尤其涉及一种血流动力学参数测量设备及测量方法。
背景技术
随着生活水平的提高,人们对于健康指标的关注更加多样,运动对健康的促进作用被广泛的认同,利用各种电子装置为自己计划和统计运动,并评估运动效果,包括体重、心率、体成分等变化,用于形成一个闭环的反馈,改善运动效果;但是运动对人体的促进作用还远不局限在如上的几点;例如,长期运动会带来心脏泵血能力的改善,从而表现为人体血流动力学上的改善,包括每搏输出量、心输出量等。
血流动力学参数如心输出量、每搏输出量,每搏输出指数、心指数等对于评估心脏健康具有重要意义,在临床治疗、重症监护,以及运动员训练方面具有重要的指导意义。目前有多种检测方法和操作形式,从临床操作上可分为有创,无创和微创三种。但是血流动力学参数测量仍然局限在医院及临床应用,尚未有较好的在家庭场景测量出人体的血流动力学参数信息;例如,现有手表采用PPG方式进行血流动力学测量时往往容易受到毛细血管外张的压力、传感器和皮肤的紧密程度、肤色等影响测量的一致性和重复性难以保证;而对于在家庭场景,连续测量结果的纵向对比有时候比某个断点上的绝对准确性更为重要,因为用户关注的是变化趋势,而不是绝对的数值,因此家庭场景的血流动力学参数测量对于性能的追求侧重点将、和用于医院及临床的相应设备是不同的,更关注使用方便、便于连续测量,以及测量结果的一致性和重复性以便于纵向对比,而后者关注绝对准确性。
因此,家庭场景的连续监测血流动力学参数中,缺乏一种使用方便、保证测量的重复性和一致性的血流动力参数测量设备。
技术问题
本发明的目的在于提供一种血流动力学参数测量设备及测量方法,旨在解决难以在家庭场景方便地持续准确的获取人体的血流动力学参数,导致不能保证测量的重复性和一致性的问题。
技术解决方案
根据本发明的一个方面,提供一种血流动力学参数测量设备,包括本体,
所述本体上设有阻抗测量装置,所述阻抗测量装置包括设在所述本体上的预设数量的电极对,每个所述电极对均包括一个激励电极和一个测量电极;
所述本体上还设有与所述阻抗测量装置电连接的微处理器,所述微处理器用于根据每个所述电极对测量得到的用户的人体阻抗脉搏波,从所述人体阻抗脉搏波中提取所述用户的脉搏波阻抗特征,根据所述脉搏波阻抗特征和预设映射关系,获取所述用户的血流动力学参数。
在一些实施例中,上述血流动力学参数测量设备包括便捷式测量装置、人体秤、可穿戴设备、或马桶盖。
根据本发明的另一个方面,提供一种血流动力学参数测量方法,包括:
利用预设数量的电极对测量用户的人体阻抗脉搏波;
从所述人体阻抗脉搏波中提取所述用户的脉搏波阻抗特征,根据所述脉搏波阻抗特征和预设映射关系,获取所述用户的血流动力学参数。
有益效果
本发明实施例的血流动力学参数测量设备及测量方法,通过设置在本体上的电极对准确的测量人体的阻抗脉搏波,进而通过微处理器从所述人体阻抗脉搏波中提取所述用户的脉搏波阻抗特征,根据所述脉搏波阻抗特征和预设映射关系,获取人体的血流动力学参数、包括每搏输出量;实现了测量的重复性和一致性。
附图说明
图1是本发明实施例提供的一种血流动力学参数测量设备的结构示意图;
图2是本发明实施例一提供的穿戴式设备的结构示例图;
图3及图4分别示出了本发明实施例一提供的穿戴式设备正面及背面的优选结构示意图;
图5是本发明实施例一提供的穿戴式设备的电路结构示意;
图6是本发明实施例二提供的一种便携式测量装置的结构示例图;
图7是本发明实施例二提供的另一种便携式测量装置的结构示意图;
图8是本发明实施例三提供的一种人体秤的结构示例图;
图9是本发明实施例三提供的一另种人体秤的结构示意图;
图10是本发明实施例三提供的一种优选的人体秤的结构示例图;
图11是本发明实施例四提供的一种马桶盖的结构示例图;
图12是本发明实施例四提供的一种优选的马桶盖的结构示意图;
图13是本发明实施例五提供的血流动力学参数测量方法的实现流程图;
图14是本发明实施例五提供的血流动力学测量方法的人体阻抗脉搏波的波形图;
图15是本发明实施例五提供的人体阻抗脉搏波对应的人体阻抗脉搏波的微分图;
图16是本发明实施例六提供的血流动力学参数测量方法的优选实现流程图。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如图1所示,本发明实施例提供的一种血流动力学参数测量设备100包括本体101,所述本体101上设有阻抗测量装置102,所述阻抗测量装置102包括设在所述本体上的预设数量的电极对,每个电极对均包括一个激励电极和一个测量电极;
以及与所述阻抗测量装置102电连接的微处理器103,用于根据每个所述电极对测量得到的用户的阻抗脉搏波,从所述人体阻抗脉搏波中提取所述用户的脉搏波阻抗特征,根据所述脉搏波阻抗特征和预设映射关系,获取所述用户的血流动力学参数。
具体的,血流动力学参数包括脉搏输出量。进一步地,血流动力学参数还可以包括脉搏输出指数、心输出量、心输出指数等,从而全面获取用户的血流动力学参数,便于了解用户心血管方面的健康状态。
优选地,脉搏波阻抗特征包括人体阻抗脉搏波的波幅、人体阻抗脉搏波的微分负向最大绝对值、人体阻抗脉搏波的微分正向最大绝对值,人体阻抗脉搏波微分图的最大负向波顶点左侧预定点到阻抗脉搏波微分图的最大正向波的顶点绝对值的时间长度,从而提高血流动力学参数的获取准确度。进一步优选地,脉搏波阻抗特征还包括每搏波形面积、阻抗脉搏波周期,人体阻抗脉搏波微分图的最大负向波顶点左侧预定点为最大负向波的15%幅度点,从而进一步提高血流动力学参数的获取准确度。
基于以上结构,提出以下实施例,以下结合具体实施例对本发明的具体实现进行详细描述:
实施例一
如图2所示,本发明实施例提供的穿戴式设备100以手环进行描述,该手环佩戴100在手腕处,包括本体101、设置在本体101上的阻抗测量装置102、以及与阻抗测量装置102连接的微处理器103。
本体101包括阻抗测量装置102,阻抗测量装置102的第一电极对和第二电极对均设置在本体101上,用于测量佩戴该穿戴式设备100上用户双手之间的人体生物电阻抗信息,从而通过用户的人体生物电阻抗信息,得到穿戴式设备上用户的人体阻抗脉搏波,这样,无需用户穿戴特定设备,即可实现对用户的人体阻抗脉搏波的准确、自动获取。
优选地,在本发明实施例中,第一电极对和第二电极对均设置在本体101的背面、与接触人体的手腕处位置对应,方便获取用户的人体生物电阻抗信息的同时,不会对用户带来更多肢体上的限定。
微处理器103用于根据阻抗测量装置102中电极对测量得到的人体阻抗脉搏波,从人体阻抗脉搏波中提取用户的脉搏波阻抗特征,根据脉搏波阻抗特征和预设映射关系,获取用户的血流动力学参数,血流动力学参数包括每搏输出量,进一步地,血流动力学参数还可以包括每搏输出指数、心输出量、心输出指数等,从而全面获取用户的血流动力学参数,便于了解用户心血管方面的健康状态。
优选地,脉搏波阻抗特征包括人体阻抗脉搏波的波幅、人体阻抗脉搏波的微分负向最大绝对值、人体阻抗脉搏波的微分正向最大绝对值,人体阻抗脉搏波微分图的最大负向波顶点左侧预定点到阻抗脉搏波微分图的最大正向波的顶点绝对值的时间长度,从而提高血流动力学参数的获取准确度。进一步优选地,脉搏波阻抗特征还包括每搏波形面积、阻抗脉搏波周期,人体阻抗脉搏波微分图的最大负向波顶点左侧预定点为最大负向波的15%幅度点,从而进一步提高血流动力学参数的获取准确度。
优选地,微处理器103在获取人体的血流动力学参数时,通过第一电极对和第二电极对测量穿戴式设备上用户的人体阻抗脉搏波,从人体阻抗脉搏波波形中提取用户的脉搏波阻抗特征,根据脉搏波阻抗特征和预设映射关系,获取用户的血流动力学参数,从而无需穿戴特定设备,即可实现对用户人体阻抗脉搏波的准确、自动获取,进而得到用户的血流动力学参数。其中,微处理器103设置在本体101上。
优选地,穿戴式设备100还包括与微处理器103连接的加速度传感器104,加速度传感器104安装在本体上,以用于测量人体的抖动数据。
优选地,穿戴式设备100还包括与微处理器103连接的无线通信模块105,无线通信模块105安装在本体101上,用于在微处理器103的控制下将微处理器103获得的人体阻抗脉搏波波形数据和/或每搏输出量通过无线通信方式上传至远程服务器和/或移动终端。其中,远程服务器可以为管理用户健康的大数据平台或服务器,以用于持续监测用户的心血管健康状态,移动终端则可以为穿戴式设备100上用户的用于终端,这样用户可通过移动终端方便地了解自己的心血管健康状态。进一步优选地,移动终端为穿戴式设备上用户的监护人或直系亲属用户终端,从而使得监护人或直系亲属可随时随地了解穿戴式设备上用户的心血管健康状态,当穿戴式设备上用户发生相应疾病时,监护人或直系亲属可及时发现并提醒,提高了穿戴式设备的智能化程度。
优选地,微处理器103还用于根据血流动力学参数确定穿戴式设备上用户的健康状态,以通过穿戴式设备直接得到用户的健康状态,用户可通过穿戴式设备(例如,穿戴式设备的语音输出单元等)直观获知自身的心血管健康状态。进一步优选地,穿戴式设备100还包括与微处理器103连接的显示器106,显示器106安装在本体101上,这样,在微处理器103获得人体阻抗脉搏波波形数据、血流动力学参数、每搏输出量和/或穿戴式设备上用户的心血管健康状态后,可直接通过显示器106显示出来,方便用户及时、直观地了解心血管状态。
作为示例地,图3及图4分别示出了穿戴式设备正面及背面的示意性结构。如图所示,穿戴式设备包括本体10、微处理器2,穿戴式设备还包括显示器3、阻抗测量装置的第一电极对4以第二电极对5,显示器3位于本体10的正面,第一电极对4和第二电极对5均设有多个激励电极和测量电极、且均位于本体10的背面,无线通信模块9安装在本体10上,用于在微处理器2的控制下将微处理器2获得的人体阻抗脉搏波波形数据和/或每搏输出量通过无线通信方式上传至远程服务器和/或移动终端。
图5示出了本发明实施例二提供的穿戴式设备的电路结构示意图,为了便于说明,仅示出了与本发明实施例相关的部分,其中本体10的内部设有对人体的生理参数进行运算处理的微控制器91,微控制器91电连接有读取人体运动状态的加速度传感器8,微控制器91电连接还有测量人体阻抗的阻抗测量装置93,微控制器91电连接还有显示人体生理参数信息的显示器3;
优选地,装置还包括无线通信模块92,无线通信模块92与微控制器91电连接,无线通信模块92将微控制器91运算处理得出的人体生理参数信息上传至云服务器或终端设备,控制便捷。
进一步,通过无线通讯芯片92还可以与云服务器或终端设备进行通信;
进一步,阻抗测量装置93包括第一对电极4和第二对电极5,第一对电极4和第二对电极5均设有多个激励电极和测量电极;使得测量更准确。
本发明实施例提供的穿戴式设备,包括本体,本体上还设有阻抗测量装置、以及与阻抗测量装置连接的微处理器,阻抗测量装置包括设在本体上的第一电极对和第二电极对,每个电极对均包括一个激励电极和一个测量电极;从而通过设置在本体上的第一电极对和第二电极对准确的测量人体的阻抗脉搏波,进而通过微处理器获取人体的血流动力学参数。能方便地持续准确的获取人体的血流动力学参数,保证测量的重复性和一致性。
实施例二
请参阅图1和图6,本发明实施例提供的便携式测量装置100包括本体101、设置在本体101上的阻抗测量装置102,和与阻抗测量装置102连接的微处理器103。
本体101,用于承托人体;阻抗测量装置102包括设置在本体101上的预设数量的电极对,每个电极对包括一个激励电极和一个测量电极;预设数量的电极对用于测量便携式测量装置100上用户脚部的人体生物电阻抗信息,从而通过人体生物电阻抗信息,得知便携式测量装置100上用户的人体阻抗脉搏波,使用时,用户只需站立在本体101上,无需穿戴其他特定设备从而有束缚感,用户使用体验好,实现了对用户的人体阻抗脉搏波的准确、自动获取。
本发明实施例中,电极对数量可根据用户对测量精度的要求灵活进行个性化设置;优选地,电极对共设置有两个;两个电极对对称设置在本体的两侧,且位于与人体左右脚对应的位置,在与用户脚部的对应位置设置电极对,以用于测量人体生物电阻抗信息,在准确、自动获取用户人体阻抗脉搏波的同时,简化了阻抗测量装置的结构,降低了获取人体血流动力学参数的复杂性。
微处理器103,用于根据阻抗测量装置102测量得到的人体阻抗脉搏波,从人体阻抗脉搏波中提取用户的脉搏波阻抗特征,根据脉搏波阻抗特征和预设映射关系,获取用户的血流动力学参数,血流动力学参数包括每搏输出量,进一步地,血流动力学参数还可以包括每搏输出指数、心输出量、心输出指数等,从而全面获取用户的血流动力学参数,便于了解用户心血管方面的健康状态。优选地,脉搏波阻抗特征包括人体阻抗脉搏波的波幅、人体阻抗脉搏波的微分负向最大绝对值、人体阻抗脉搏波的微分正向最大绝对值,人体阻抗脉搏波微分图的最大负向波顶点左侧预定点到阻抗脉搏波微分图的最大正向波的顶点绝对值的时间长度,从而提高血流动力学参数的获取准确度。进一步优选地,脉搏波阻抗特征还包括每搏波形面积、阻抗脉搏波周期,人体阻抗脉搏波微分图的最大负向波顶点左侧预定点为最大负向波的15%幅度点,从而进一步提高血流动力学参数的获取准确度。
优选地,微处理器103在获取人体的血流动力学参数时,通过预设数量的电极对测量便携式测量装置上用户的人体阻抗脉搏波,从人体阻抗脉搏波波形中提取用户的脉搏波阻抗特征,根据脉搏波阻抗特征和预设映射关系,获取用户的血流动力学参数,用户只需站立在本体上,无需穿戴其他特定设备从而有束缚感,用户使用体验好,实现了对用户的人体阻抗脉搏波的准确、自动获取,进而得到用户的血流动力学参数。
优选地,便携式测量装置100还包括与微处理器103连接的称重传感器104,称重传感器104安装在本体101上,用于测量人体体重;微处理器103在得到称重传感器104发送的人体体重后,可进一步通过人体体重计算或修正人体血流动力学参数,进一步提高便携式测量装置100上用户血流动力学参数的准确度。
进一步优选地,称重传感器104设置有四个,本体101呈矩形形状,四个称重传感器104绕本体的中心轴呈圆周均匀分布,确保用户站立在本体101上能被称重传感器104感应到,检测灵敏度好,同时圆周均匀分布使得装置整体更加美观。
本发明实施例中,便携式测量装置100可以为人体秤,该人体秤既具有一般秤的称重功能,又具有检测血流动力学参数的检测功能。
优选地,便携式测量装置100还包括与微处理器103连接的无线通信单元105,无线通信单元105安装在本体101上,用于将人体阻抗脉搏波波形数据和/或每搏输出量通过无线通信方式上传至远程服务器和/或移动终端,其中,远程服务器可以是管理用户健康的大数据平台或服务器,以用于持续监测用户的心血管健康状态,移动终端则可以为便携式测量装置100上用户的用户终端,这样用户可通过移动终端方便地了解自己的心血管健康状态;进一步优选地,移动终端为便携式测量装置100上用户的监护人或直系亲属用户终端,从而使得监护人或直系亲属可随时随地了解便携式测量装置100上用户的心血管健康状态,当便携式测量装置100上用户发生相应疾病时,监护人或直系亲属可及时发现并提醒,提高了便携式测量装置100的智能化程度。
优选地,微处理器103还用于根据血流动力学参数确定便携式测量100装置上用户的健康状态;以通过便携式测量装置100直接得到用户的健康状态,用户可通过便携式测量装置100(例如,便携式测量装置100的语音输出单元等)直观获知自身的心血管健康状态。进一步优选地,本体101上还设置有与微处理器103连接的显示单元106,显示单元106安装在本体101上,这样,在微处理器103获得人体阻抗脉搏波波形数据、血流动力学参数、每搏输出量和/或便携式测量装置上用户的心血管健康状态后,可直接通过显示单元106显示出来,方便用户及时、直观地了解心血管状态。
作为示例地,图7示出了便携式测量装置的示意性结构。便携式测量装置1包括本体2和微处理器7,本体2上设置有阻抗测量装置的电极对,该电极对包括激励电极4和测量电极5,两个电极对分别安装在本体2上与人体左右脚对应的位置,以用于测量用户脚部的生物电阻抗信息。便携式测量装置1还包括称重传感器6、显示屏3和无线通信单元8,其中,称重传感器6用于测量人体体重,且设置有四个,本体呈矩形形状,四个称重传感器6绕本体2的中心轴呈圆周均匀分布;显示屏3安装在本体2上,用于显示人体阻抗脉搏波波形数据、血流动力学参数、每搏输出量和/或便携式测量装置上用户的心血管健康状态,方便用户及时、直观地了解心血管状态,无线通信单元8安装在本体2上,用于在微处理器7的控制下将微处理器7获得的人体阻抗脉搏波波形数据和/或每搏输出量通过无线通信方式上传至远程服务器和/或移动终端。
本发明实施例提供的便携式测量设备,通过电极对准确地测量得到人体阻抗脉搏波,微处理器接收人体阻抗脉搏波并处理得到包括每搏输出量的人体血流动力学参数,用户便可以了解到自身的身体状况,满足用户日常生活中无需去医院便能自行进行血流动力学相关参数测量的需求,同时也可以更全面地反映人体长期运动后对于人体心血管功能的改变,提高人们运动的计划性和热情。同时便于携带、检测便利,能保证测量的重复性和一致性。
实施例三
请参阅图1和图8,本发明实施例提供的人体秤包括本体101和手柄108、设置在本体101上的阻抗测量装置102、以及与阻抗测量装置102连接的微处理器103。
本体用于承载人体,手柄108则用于测量人体手部位置的阻抗脉搏波。阻抗测量装置102包括设置在本体101上的第一预设数量的电极对和设置在手柄108上的第二预设数量的电极对,每个电极对均包括两个激励电极和两个测量电极,本体上的第一预设数量的电极对用于测量血流动力学参数测量装置100上用户脚部的人体生物电阻抗信息,手柄108上的第二预设数量的电极对用于测量血流动力学参数测量装置100上用户手部的人体生物电阻抗信息,从而通过用户脚部和手部的人体生物电阻抗信息,得到血流动力学参数测量装置上用户的人体阻抗脉搏波,优选地,至少包括测量从人体的左手到下肢组成的电流回路的人体生物电阻抗信息,这样,无需用户穿戴特定设备,即可实现对用户的人体阻抗脉搏波的准确、自动获取。优选地,手柄108设置在本体的前端用导线连接,从而方便获取用户手部人体生物电阻抗信息的同时,不会对用户带来更多肢体上的限定。
本发明实施例中,第一预设数量和第二预设数量可根据用户测量精度的要求进行设定,优选地,阻抗测量装置102包括设置在本体上的一个电极对和设置在手柄108上的一个电极对,设置在本体上的电极对中的两个激励电极和两个极测量电极分别安装在所述本体的正面,与接触人体左右脚的位置对应,设置在手柄108上的电极对对应人体手掌的握持位置、均包括两个激励电机和两个测量电极,从而在与用户脚部和手部的血流动力学参数测量装置对应位置设置电极对,以用于测量人体生物电阻抗信息,在准确、自动获取用户人体阻抗脉搏波的同时,简化了阻抗测量装置102的结构,降低了获取人体血流动力学参数的复杂性,降低了成本,减小了设备的体积。
微处理器103用于根据阻抗测量装置102中电极对测量得到的人体阻抗脉搏波,从人体阻抗脉搏波中提取用户的脉搏波阻抗特征,根据脉搏波阻抗特征和预设映射关系,获取人体的血流动力学参数,血流动力学参数包括每搏输出量,进一步地,血流动力学参数还可以包括每搏输出指数、心输出量、心输出指数等,从而全面获取用户的血流动力学参数,便于了解用户心血管方面的健康状态。
优选地,脉搏波阻抗特征包括人体阻抗脉搏波的波幅、人体阻抗脉搏波的微分负向最大绝对值、人体阻抗脉搏波的微分正向最大绝对值,人体阻抗脉搏波微分图的最大负向波顶点左侧预定点到阻抗脉搏波微分图的最大正向波的顶点绝对值的时间长度,从而提高血流动力学参数的获取准确度。进一步优选地,脉搏波阻抗特征还包括每搏波形面积、阻抗脉搏波周期,人体阻抗脉搏波微分图的最大负向波顶点左侧预定点为最大负向波的15%幅度点,从而进一步提高血流动力学参数的获取准确度。
优选地,微处理器103在获取人体的血流动力学参数时,通过第一预设数量的电极对和第二预设数量的电极对测量血流动力学参数测量装置上用户的人体阻抗脉搏波,从人体阻抗脉搏波波形中提取用户的脉搏波阻抗特征,根据脉搏波阻抗特征和预设映射关系,获取用户的血流动力学参数,从而无需穿戴特定设备,即可实现对用户人体阻抗脉搏波的准确、自动获取,进而得到用户的血流动力学参数。其中,微处理器103设置在本体101上,以减小手柄108的体积,使得使用方便。
如图9所示,优选地,血流动力学参数测量装置100还包括与微处理器103连接的称重传感器104,称重传感器104安装在本体100的背面,以用于测量人体体重,微处理器103在得到称重传感器104发送的人体体重后,可进一步通过人体体重计算或修正人体血流动力学参数,进一步提高血流动力学参数测量装置上用户血流动力学参数的准确度。
优选地,血流动力学参数测量装置100还包括与微处理器103连接的无线通信单元105,无线通信单元105安装在本体101上,用于在微处理器103的控制下将微处理器103获得的人体阻抗脉搏波波形数据和/或每搏输出量通过无线通信方式上传至远程服务器和/或终端设备;微处理器还可以通过无线通信单元与远程服务器和/或终端设备进行通信、预设及更新数据,预设数据包括所述人体的体重、年龄、性别、身高信息,以实现控制方式更加智能化,满足人们的使用需求。
其中,远程服务器可以为管理用户健康的大数据平台或服务器,以用于持续监测用户的心血管健康状态,终端设备则可以为血流动力学参数测量装置100上的用户用于终端,这样用户可通过移动终端方便地了解自己的心血管健康状态。进一步优选地,终端设备为血流动力学参数测量装置上用户的监护人或直系亲属用户终端,从而使得监护人或直系亲属可随时随地了解血流动力学参数测量装置上用户的心血管健康状态,当血流动力学参数测量装置上用户发生相应疾病时,监护人或直系亲属可及时发现并提醒,提高了血流动力学参数测量装置的智能化程度。
优选地,微处理器103还用于根据血流动力学参数确定血流动力学参数测量装置上用户的健康状态,以通过血流动力学参数测量装置直接得到用户的健康状态,用户可通过血流动力学参数测量装置(例如,血流动力学参数测量装置的语音输出单元等)直观获知自身的心血管健康状态。进一步优选地,血流动力学参数测量装置100还包括与微处理器103连接的显示单元106,显示单元106安装在本体101上,这样,在微处理器103获得人体阻抗脉搏波波形数据、血流动力学参数、每搏输出量和/或血流动力学参数测量装置上用户的心血管健康状态后,可直接通过显示单元106显示出来,方便用户及时、直观地了解心血管状态。
作为示例地,图10示出了血流动力学参数测量装置的示意性结构。如图10所示,血流动力学参数测量装置可以为人体秤1,包括本体2、微处理器21,本体2上设置有阻抗测量装置的第一预设数量的电极对,第一预设数量的电极对包括两个激励电极4、5和测量电极6、7、均安装在本体2的正面,对应人体左右脚位置,以用于测量用户脚部的生物电阻抗信息。手柄3上设置有阻抗测量装置的第二预设数量的电极对,第二预设数量的电极对包括两个激励电极11、13和两个测量电极12、14,对应人体手掌握持位置,以用于测量用户手部的生物电阻抗信息。血流动力学参数测量装置1还包括称重传感器8、显示屏9和无线通信单元22,其中,称重传感器8安装在本体2的背面,以用于测量人体体重,显示屏9安装在本体2上,用于显示人体阻抗脉搏波波形数据、血流动力学参数、每搏输出量和/或血流动力学参数测量装置1上用户的心血管健康状态,方便用户及时、直观地了解心血管状态,无线通信单元22安装在本体2上,用于在微处理器21的控制下将微处理器21获得的人体阻抗脉搏波波形数据和/或每搏输出量通过无线通信方式上传至远程服务器和/或终端设备,还可以通过无线通信单元22与远程服务器和/或终端设备进行通信、预设及更新数据,预设数据包括人体的体重、年龄、性别、身高信息。
本发明提供的人体秤,通过设置在本体上的第一预设数量的电极对和设置在手柄上的第二预设数量的电极对准确地测量人体阻抗脉搏波,进而通过微处理器处理得到获取包括每搏输出量的人体血流动力学参数,提高了血流动力学参数测量装置的智能化程度,为用户提供了结构简单、成本低、使用便捷。
实施例四
请参阅图1和图11,本发明实施例提供的马桶盖100包括本体101、设置在本体101上的阻抗测量装置102、以及与阻抗测量装置102连接的微处理器103。
本体100包括垫圈和扶手,垫圈用于承载人体,扶手则用于放置马桶盖100上用户(人体)手臂,为手臂提供支撑。阻抗测量装置102包括设置在垫圈上的第一预设数量的电极对和设置在扶手上的第二预设数量的电极对,每个电极对包括一个激励电极和一个测量电极,垫圈上的第一预设数量的电极对用于测量马桶盖100上用户腿部的人体生物电阻抗信息,扶手上的第二预设数量的电极对用于测量马桶盖100上用户手部的人体生物电阻抗信息,从而通过用户腿部和手部的人体生物电阻抗信息,得到马桶盖上用户的人体阻抗脉搏波,这样,无需用户穿戴特定设备,即可实现对用户的人体阻抗脉搏波的准确、自动获取。优选地,扶手设置在人体坐上马桶后的左侧,从而在提供手部支撑、方便获取用户手部人体生物电阻抗信息的同时,不会对用户带来更多肢体上的限定。
本发明实施例中,第一预设数量和第二预设数量可根据用户测量精度的要求进行设定,优选地,阻抗测量装置102包括设置在垫圈上的一个电极对和设置在扶手上的一个电极对,设置在垫圈上的电极对中的激励电极和极测量电极分别安装在所述垫圈的两侧,与接触人体左右大腿的位置对应,设置在扶手上的电极对对应人体手掌的握持位置,从而在与用户腿部和手部的马桶盖对应位置设置电极对,以用于测量人体生物电阻抗信息,在准确、自动获取用户人体阻抗脉搏波的同时,简化了阻抗测量装置102的结构,降低了获取人体血流动力学参数的复杂性。
微处理器103用于根据阻抗测量装置102中测量电极对测量得到的人体阻抗脉搏波,从人体阻抗脉搏波中提取用户的脉搏波阻抗特征,根据脉搏波阻抗特征和预设映射关系,获取用户的血流动力学参数,血流动力学参数包括每搏输出量,进一步地,血流动力学参数还可以包括每搏输出指数、心输出量、心输出指数等,从而全面获取用户的血流动力学参数,便于了解用户心血管方面的健康状态。优选地,脉搏波阻抗特征包括人体阻抗脉搏波的波幅、人体阻抗脉搏波的微分负向最大绝对值、人体阻抗脉搏波的微分正向最大绝对值,人体阻抗脉搏波微分图的最大负向波顶点左侧预定点到阻抗脉搏波微分图的最大正向波的顶点绝对值的时间长度,从而提高血流动力学参数的获取准确度。进一步优选地,脉搏波阻抗特征还包括每搏波形面积、阻抗脉搏波周期,人体阻抗脉搏波微分图的最大负向波顶点左侧预定点为最大负向波的15%幅度点,从而进一步提高血流动力学参数的获取准确度。
优选地,微处理器103在获取人体的血流动力学参数时,通过第一预设数量的测量电极对和第二预设数量的测量电极对测量马桶盖上用户的人体阻抗脉搏波,从人体阻抗脉搏波波形中提取用户的脉搏波阻抗特征,根据脉搏波阻抗特征和预设映射关系,获取用户的血流动力学参数,从而无需穿戴特定设备,即可实现对用户人体阻抗脉搏波的准确、自动获取,进而得到用户的血流动力学参数。其中,微处理器103设置在本体101上,具体地可以根据垫圈或扶手的内部构造,将微处理器103安装在垫圈或扶手中,当然,也可以安装在本体的其他位置。
如图12所示,马桶盖100还包括与微处理器103连接的称重传感器104,称重传感器104安装在垫圈的背面,以用于测量人体体重,微处理器103在得到称重传感器104发送的人体体重后,可进一步通过人体体重计算或修正人体血流动力学参数,进一步提高马桶盖上用户血流动力学参数的准确度。
优选地,马桶盖100还包括与微处理器103连接的无线通信单元105,无线通信单元105安装在本体101上,用于在微处理器103的控制下将微处理器103获得的人体阻抗脉搏波波形数据和/或每搏输出量通过无线通信方式上传至远程服务器和/或移动终端。其中,远程服务器可以为管理用户健康的大数据平台或服务器,以用于持续监测用户的心血管健康状态,移动终端则可以为马桶盖100上用户的用于终端,这样用户可通过移动终端方便地了解自己的心血管健康状态。进一步优选地,移动终端为马桶盖上用户的监护人或直系亲属用户终端,从而使得监护人或直系亲属可随时随地了解马桶盖上用户的心血管健康状态,当马桶盖上用户发生相应疾病时,监护人或直系亲属可及时发现并提醒,提高了马桶盖的智能化程度。
优选地,微处理器103还用于根据血流动力学参数确定马桶盖上用户的健康状态,以通过马桶盖直接得到用户的健康状态,用户可通过马桶盖(例如,马桶盖的语音输出单元等)直观获知自身的心血管健康状态。进一步优选地,马桶盖100还包括与微处理器103连接的显示单元106,显示单元106安装在本体101上,这样,在微处理器103获得人体阻抗脉搏波波形数据、血流动力学参数、每搏输出量和/或马桶盖上用户的心血管健康状态后,可直接通过显示单元106显示出来,方便用户及时、直观地了解心血管状态。
作为示例地,图12示出了马桶盖的示意性结构。如图所示,马桶盖1包括本体微处理器2,本体包括基座11、垫圈12和扶手13,垫圈12上设置有阻抗测量装置的电极对,该电极对包括激励电极3和测量电极4,两个电极分别安装在垫圈两侧,对应人体左右大腿位置,以用于测量用户腿部的生物电阻抗信息。扶手13上设置有阻抗测量装置的电极对,该电极对包括激励电极5和测量电极6,对应人左手掌握持位置,以用于测量用户手部的生物电阻抗信息。马桶盖1还包括称重传感器7、显示屏8和无线通信单元9,其中,称重传感器7安装在垫圈12的背面,以用于测量人体体重,显示屏8安装在基座11上,用于显示人体阻抗脉搏波波形数据、血流动力学参数、每搏输出量和/或马桶盖上用户的心血管健康状态,方便用户及时、直观地了解心血管状态,无线通信单元9安装在本体上,用于在微处理器2的控制下将微处理器2获得的人体阻抗脉搏波波形数据和/或每搏输出量通过无线通信方式上传至远程服务器和/或移动终端。
本发明实施例提供的马桶盖,通过设置在垫圈上的第一预设数量的电极对和设置在扶手上的第二预设数量的电极对准确地测量人体阻抗脉搏波,进而通过微处理器处理得到包括每搏输出量的人体血流动力学参数,提高了马桶盖的智能化程度,同时为用户提供了一种简化、便利的人体血流动力学参数持续监测设备。
实施例五
图13示出了本发明实施例五提供的血流动力学参数测量方法的实现流程,该方法包括:
S201、利用预设数量的电极对测量用户的人体阻抗脉搏波。
在步骤S201中,可将穿戴式设备佩戴于人体的肢体上通过第一电极对和第二电极对测量人体的阻抗脉搏波,或通过电极对测量便携式测量装置上用户的人体阻抗脉搏波;或可通过电极对测量人体秤上用户的人体阻抗脉搏波;或通过预设数量的电极对测量马桶盖上用户的人体阻抗脉搏波。
S202、从所述人体阻抗脉搏波中提取所述用户的脉搏波阻抗特征,根据所述脉搏波阻抗特征和预设映射关系,获取所述用户的血流动力学参数。在步骤S202中,从人体的阻抗脉搏波的波形中提取阻抗脉搏波的波形特征,根据阻抗脉搏波的波形特征和预设映射关系、获取人体的血流动力学参数。
需要说明的是,本发明实施例的方法可适用于上述实施例一至实施例四中任一血流动力学测量设备。
为了得到更好的脉搏波阻抗特征,在本发明实施例中,优选地,从人体阻抗脉搏波中提取用户的阻抗脉搏波特征之前,从步骤S201测量得到的人体阻抗脉搏波波形中去除用户抖动时对应的失真阻抗脉搏波,以得到去除失真阻抗脉搏波后的人体阻抗脉搏波,从而得到稳定、人体真实的人体阻抗脉搏波,提高血流动力学参数的准确度。进一步优选地,在从人体阻抗脉搏波中去除用户抖动时对应的失真脉搏波时,通过加速度传感器检测人体抖动变化,将抖动变化时间段对应的脉搏波剔除,从而得到准确的人体阻抗脉搏波,进而避免了错误的脉搏波阻抗特征提取,保证血流动力学参数的准确度。
当人体使用穿戴式设备进行生物阻抗测量时,可能不可避免地存在身体的轻微抖动,从而造成人体皮肤与测量电极的接触状态的变化,从而影响人体阻抗测量值,进而影响阻抗脉搏波的波形,造成阻抗脉搏波特征提取困难或错误,因此,通过加速度传感器检测人体的运动(抖动),将运动时间段对应的阻抗波滤除,进而避免错误的特征提取,保证血流动力学参数计算的正确。
图14示意性地示出了人体阻抗脉搏波,图中所示为两个完整的脉搏(心跳)周期,其中周期为T 0,阻抗脉搏波的图示第一个波峰波谷对波幅为Zamp 0,阻抗脉搏波的图示第二周期波形的面积为Zarea 0,为阻抗脉搏波对基线BaseLine(相邻两个波谷的连线)的积分;Z 00是基础阻抗。在该图中阻抗脉搏波的波幅、周期、面积等虽然都是基于周期波形内定义的,但实际使用时一般取若干个周期波形的相应值做平均处理来使用。
进一步优选地,脉搏波阻抗特征还包括每搏波形面积以及阻抗脉搏波周期,这样,从人体阻抗脉搏波中提取用户的脉搏波阻抗特征时,从人体阻抗脉搏波中提取人体阻抗脉搏波的周期、波幅、每搏波形面积参数。
在获取血流动力学参数中的每搏输出量时,利用人体阻抗脉搏波和用户身高,按照预设映射关系计算每搏输出量,从而提高每搏输出量获取的准确度。
在获取用户的血流动力学参数时,优选地,根据公式1:SV=ρL 2/Z 0 2× ( dZ/dt) nmax× LVET获取血流动力学参数中的每搏输出量,从而在保证每搏输出量的准确度的同时,简化血流动力学参数的获取过程,在该公式中SV表示每搏输出量,ρ为血液导电率,取值为130~150Ω•cm, L为等效长度,与用户身高成正比,Z 0为基础阻抗,( dZ/dt) nmax表示人体阻抗脉搏波对应的阻抗微分中最大负向波的顶点绝对值, LVET表示左心室射血时间, LVET取人体阻抗脉搏波微分图的最大负向波顶点左侧15%幅度点到人体阻抗脉搏波微分图的最大正向波的顶点绝对值的时间长度。
又一优选地,在获取用户的血流动力学参数时,将脉搏波阻抗特征中的身高H、基础阻抗Z 0、人体阻抗脉搏波对应的阻抗微分中最大负向波的顶点绝对值( dZ/dt) nmax、左心室射血时间 LVET、人体阻抗脉搏波波幅、波形面积、周期输入到预设的神经网络模型,通过神经网络模型获取用户的每搏输出量,从而提高每搏输出量的获取准确度。
在获取用户的每搏输出量之后,还可以利用体重、年龄、性别、体脂率参数中的一种或多种,并结合脉搏波阻抗特征参数修正每搏输出量,从而进一步提高每搏输出量的获取准确度。
优选地,脉搏波阻抗特征包括人体阻抗脉搏波的波幅、人体阻抗脉搏波的微分负向最大绝对值、人体阻抗脉搏波的微分正向最大绝对值,人体阻抗脉搏波微分图的最大负向波顶点左侧预定点到阻抗脉搏波微分图的最大正向波的顶点绝对值的时间长度。
作为示例地,如图15所示的人体阻抗脉搏波微分图,其中C 0点为负向波的顶点,其幅度取绝对值为dZamp_C 0,即dZamp_C 0=(dZ/dt) nmax;B 0点是C 0点左侧的预设点,可代表心室射血的起点,一般取dZamp_B 0=15%* dZamp_C 0对应的点作为B 0点;X 0点是正向波的顶点,可代表心室射血的结束,因此B 0点到X 0点的时间间隔LVET 0就可以代表心室射血时间。但由于测量部位的差异,LVET 0并不精确等于心室射血时间,但可以作为一个心室射血时间的一个正相关量。另外,SV公式中L是一个和身高相关的量,在本发明实施例中,测量的双手之间的阻抗脉搏波形(阻抗血流图),因此更确切的说L是和双上肢长度+肩宽相关的量,但因为上肢长度和身高具有比例关系,因此可认为是和身高H相关,记为L 0;其和身高的关系L 0=F(H)可通过有限次的实验获得,一般取L 0=H*0.9*0.5;Z 00为基础阻抗,取两手之间人体阻抗值的四分之一 。
进一步,可根据获取的每搏输出量获取血流动力学参数中的每搏输出指数、心输出量和心输出指数。在获取这些参数时,优选地,获取用户的体重、身高,根据获取的体重、身高和每搏输出量计算每搏输出指数、心输出量和心输出指数,从而基于每搏输出量快速获取血流动力学其他参数,在进一步简化血流动力学参数获取过程的同时,全面地获取用户的血流动力学参数,提高了用户心血管健康状态的确定准确度。在获取这些参数时,每搏输出指数SI=SV/BSA、心输出量CO=HR*SV、心输出指数CI=CO/BSA。其中BSA表示人体体表面积,BSA= 0.0061*身高(cm)+0.0128*体重(kg)-0.1529,HR表示脉(心)率,HR=60/T 0,T 0表示一个脉搏(心跳)周期。
实施例六
图16示出了本发明实施例四提供的血流动力学参数测量方法的实现流程,本发明实施例的方法可适用于上述实施例一至实施例四任一血流动力学测量设备,为了便于说明,仅示出了与本发明实施例相关的部分,详述如下:
优选地,该血流动力学参数测量方法可以用在穿戴式设备上,进一步提高穿戴式设备测量人体的血流动力学参数的精度。
在步骤S701中,同时利用加速度传感器和阻抗测量装置测量人体的抖动数据和人体的阻抗脉搏波;
在步骤S702中,对人体阻抗脉搏波进行处理,去掉人体抖动阶段的波形,保留稳定的波形;
在步骤S703中,对人体阻抗脉搏波进行滤波去基线漂移等处理得到适合特征提取的处理后人体阻抗脉搏波(如图7所示),并对人体阻抗脉搏波进行微分处理,以得到人体阻抗脉搏波微分图(如8所示);
在步骤S704中,从人体阻抗脉搏波和人体阻抗脉搏波微分图中获取人体阻抗脉搏波特征。
在本发明实施例中,人体阻抗脉搏波特征包括dZamp_C0、 LVET0、 Z00、 T0、 Zamp0、 Zarea0、T0并取8个脉搏波周期的平均值。其中,dZamp_C0=8.7Ω/s、LVET0=0.201s、Z00=150Ω、Zamp0=0.6Ω、Zarea0=0.26Ω•s、T0=0.86s;
在步骤S705中,将步骤S704获得的参数、以及预存的身高H=170厘米,发送到微处理器,根据公式1或预先训练好的神经网络模型计算每搏输出量基础值SV0,当使用公式1时,可计算得到SV=61.4mL/beat。
在步骤S706中,将体重、以及预存的年龄、性别信息发送到微处理器,计算每搏输出量修正量k0、SV1,每搏输出量SV=k0*SV0+SV1;
在本发明实施例中,若采用神经网络模型,则步骤S705和步骤S706可以合并在一个神经网络模型中,而采用公式1时则k0=1, SV1=0。
在步骤S707中,将体重、身高、心率发送到微处理器,脉(心)率HR=60/T0,通过微处理器计算每搏输出指数SI=SV/BSA、心输出量CO=HR*SV、心输出指数CI=CO/BSA。
在本发明实施例中,BSA为体表面积,BSA(m2)= 0.0061*身高(cm)+0.0128*体重(kg)-0.1529。
进一步地,还可以根据用户的身高、体重、年龄、性别和人体阻抗来计算人体成分参数,其中,人体成分参数至少包括体脂率,从而通过穿戴式设备获取血流动力学参数的同时,得到人体成分参数,简化了人体成分参数的获取过程,提升了穿戴式设备的智能化程度。
在本发明实施例中,通过获取用户的体重、身高和心率,进而根据获取的体重、身高、心率和每搏输出量通过穿戴式设备获取每搏输出指数、心输出量和心输出指数,从而基于每搏输出量快速获取血流动力学其他参数,在进一步简化血流动力学参数获取过程的同时,可全面地获取用户的血流动力学参数。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
工业实用性
本发明实施例的血流动力学参数测量设备及测量方法,通过设置在本体上的电极对准确的测量人体的阻抗脉搏波,进而通过微处理器从所述人体阻抗脉搏波中提取所述用户的脉搏波阻抗特征,根据所述脉搏波阻抗特征和预设映射关系,获取人体的血流动力学参数,实现了测量的重复性和一致性。因此,具有工业实用性。

Claims (19)

  1. 一种血流动力学参数测量设备,包括本体,其特征在于,
    所述本体上设有阻抗测量装置,所述阻抗测量装置包括设在所述本体上的预设数量的电极对,每个所述电极对均包括一个激励电极和一个测量电极;
    所述本体上还设有与所述阻抗测量装置电连接的微处理器,所述微处理器用于根据每个所述电极对测量得到的用户的人体阻抗脉搏波,从所述人体阻抗脉搏波中提取所述用户的脉搏波阻抗特征,根据所述脉搏波阻抗特征和预设映射关系,获取所述用户的血流动力学参数。
  2. 如权利要求1所述的血流动力学参数测量设备,其特征在于,所述血流动力学参数测量设备为可穿戴设备,所述可穿戴设备的阻抗测量装置包括第一电极对和所述第二电极对,所述第一电极对和所述第二电极对均设置在所述本体的背面、且与接触用户肢体的位置对应。
  3. 如权利要求1所述的血流动力学参数测量设备,其特征在于,所述可穿戴设备还包括与所述微处理器电连接的加速度传感器,所述加速度传感器用于测量所述人体的抖动数据,所述加速度传感器设在所述本体上。
  4. 如权利要求1所述的血流动力学参数测量设备,其特征在于,所述血流动力学参数测量设备为便捷式测量设备,所述便捷式测量设备的阻抗测量装置包括第一电极对和所述第二电极对,所述第一电极对和第二电极对分别位于与用户左右脚对应的位置。
  5. 如权利要求1所述的血流动力学参数测量设备,其特征在于,所述血流动力学参数测量设备为人体秤,所述人体秤还包括手柄,所述阻抗测量装置包括安装在所述本体的正面的第一电极对以及设置在手柄上的第二电极对,所述第一电极对与接触人体左右脚的位置对应;所述第二电极对对应人体手掌的握持位置。
  6. 如权利要求5所述的血流动力学参数测量装置,其特征在于,所述手柄通过导线与所述阻抗测量装置连接、设置在所述本体的前端。
  7. 如权利要求5所述的血流动力学参数测量装置,其特征在于,所述人体秤还包括:与所述微处理器连接的称重传感器,所述称重传感器安装在所述本体的背面,用于测量所述血流动力学参数测量装置上人体的重量及称量时产生的晃动数据。
  8. 如权利要求1所述血流动力学参数测量设备,其特征在于,所述血流动力学参数测量设备为马桶盖,所述马桶盖的本体包括垫圈和扶手,所述阻抗测量装置包括设置在垫圈上的第一电极对和设置在扶手上的第二电极对,设置在所述垫圈上的第一电极对中的激励电极和测量电极分别安装在所述垫圈的两侧,与接触人体左右大腿的位置对应,设置在所述扶手上的第二电极对与人体手掌的握持位置对应。
  9. 一种血流动力学参数测量方法,其特征在于,该方法包括:
    利用预设数量的电极对测量用户的人体阻抗脉搏波;
    从所述人体阻抗脉搏波中提取所述用户的脉搏波阻抗特征,根据所述脉搏波阻抗特征和预设映射关系,获取所述用户的血流动力学参数。
  10. 如权利要求9所述的血流动力学参数测量方法,其特征在于,从所述人体阻抗脉搏波中提取所述用户的脉搏波阻抗特征的步骤之前,还包括:
    从测量到的所述人体阻抗脉搏波中去除所述用户抖动时对应的失真阻抗脉搏波,以得到去除所述失真阻抗脉搏波后的人体阻抗脉搏波。
  11. 如权利要求9所述的血流动力学参数测量方法,其特征在于,所述脉搏波阻抗特征包括:人体阻抗脉搏波的波幅、人体阻抗脉搏波的微分负向最大绝对值、人体阻抗脉搏波的微分正向最大绝对值,人体阻抗脉搏波微分图的最大负向波顶点左侧预定点到阻抗脉搏波微分图的最大正向波的顶点绝对值的时间长度。
  12. 如权利要求10所述的血流动力学参数测量方法,其特征在于,所述脉搏波阻抗特征还包括:每搏波形面积、阻抗脉搏波周期。
  13. 如权利要求10所述的血流动力学参数测量方法,其特征在于,所述人体阻抗脉搏波微分图的最大负向波顶点左侧预定点为最大负向波的15%幅度点。
  14. 如权利要求11所述的血流动力学参数测量方法,其特征在于,根据所述脉搏波阻抗特征和预设映射关系,获取所述用户的血流动力学参数的步骤,包括:
    利用所述人体阻抗脉搏波阻抗特征和所述用户的身高,按照预设映射关系计算每搏输出量。
  15. 如权利要求14所述的血流动力学参数测量方法,其特征在于,根据所述脉搏波阻抗特征和预设映射关系,获取所述用户的血流动力学参数的步骤,包括:
    根据公式 SV=ρL 2/Z 0 2× ( dZ /dt) nmax× LVET获取所述每搏输出量,其中,SV表示所述每搏输出量,ρ为血液导电率,ρ取值为130~150Ω•cm, L为等效长度、与用户身高成正比,Z 0为基础阻抗,( dZ /dt) nmax表示所述人体的阻抗脉搏波对应的阻抗微分图中最大负向波的顶点绝对值, LVET表示左心室射血时间,所述 LVET取人体阻抗脉搏波微分图的最大负向波顶点左侧15%幅度点到人体阻抗脉搏波微分图的最大正向波的顶点绝对值的时间长度。
  16. 如权利要求14所述的血流动力学参数测量方法,其特征在于,根据所述脉搏波阻抗特征和预设映射关系,获取所述用户的血流动力学参数的步骤,包括:
    将所述脉搏波阻抗特征中的身高H、基础阻抗Z 0、所述人体阻抗脉搏波对应的阻抗微分中最大负向波的顶点绝对值( dZ /dt) nmax、左心室射血时间 LVET、人体阻抗脉搏波波幅、波形面积、周期输入到预设的神经网络模型,通过所述神经网络模型获取所述用户的每搏输出量。
  17. 如权利要求16所述的血流动力学参数测量方法,其特征在于,输入到预设的神经网络模型的参数还包括所述用户的体重、年龄、性别;所述血流动力学参数测量方法还包括:
    根据所述用户的身高、体重、年龄、性别和人体阻抗来计算人体成分参数,所述人体成分参数至少包括体脂率。
  18. 如权利要求17所述的血流动力学参数测量方法,其特征在于,通过所述神经网络模型获取所述用户的每搏输出量的步骤之后,还包括:
    利用体重、年龄、性别、体脂率参数中的一种或多种,并结合所述脉搏波阻抗特征参数修正所述每搏输出量。
  19. 如权利要求14所述的血流动力学参数测量方法,其特征在于,根据所述脉搏波阻抗特征和预设映射关系,获取所述用户的血流动力学参数的步骤,还包括:
    获取所述用户的体重、身高和心率,根据所述体重、身高和所述每搏输出量计算每搏输出指数、心输出量和心输出指数。
     
PCT/CN2019/105793 2018-09-20 2019-09-12 血流动力学参数测量设备及测量方法 WO2020057448A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201811098316.3A CN109171676A (zh) 2018-09-20 2018-09-20 一种血流动力学参数测量装置及方法
CN201811097964.7 2018-09-20
CN201811098318.2A CN109171677A (zh) 2018-09-20 2018-09-20 一种便携式测量装置及基于该装置的血流动力学参数测量方法
CN201811097964.7A CN109171674A (zh) 2018-09-20 2018-09-20 马桶盖及基于该马桶盖的血流动力学参数测量方法
CN201811098316.3 2018-09-20
CN201811098318.2 2018-09-20
CN201811098207.1A CN109171675A (zh) 2018-09-20 2018-09-20 一种穿戴式设备及基于该设备的血流动力学参数测量方法
CN201811098207.1 2018-09-20

Publications (1)

Publication Number Publication Date
WO2020057448A1 true WO2020057448A1 (zh) 2020-03-26

Family

ID=69888343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105793 WO2020057448A1 (zh) 2018-09-20 2019-09-12 血流动力学参数测量设备及测量方法

Country Status (1)

Country Link
WO (1) WO2020057448A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4450527A (en) * 1982-06-29 1984-05-22 Bomed Medical Mfg. Ltd. Noninvasive continuous cardiac output monitor
CN1370503A (zh) * 2001-02-20 2002-09-25 流图私人有限公司 利用胸部生物阻抗和心电图的血液动力参数无损伤性监测
CN1703165A (zh) * 2002-10-07 2005-11-30 科恩瑟斯蒂姆斯医疗技术公司 血液动力学参数的基于阻抗的测量方法
CN109171675A (zh) * 2018-09-20 2019-01-11 芯海科技(深圳)股份有限公司 一种穿戴式设备及基于该设备的血流动力学参数测量方法
CN109171674A (zh) * 2018-09-20 2019-01-11 芯海科技(深圳)股份有限公司 马桶盖及基于该马桶盖的血流动力学参数测量方法
CN109171676A (zh) * 2018-09-20 2019-01-11 芯海科技(深圳)股份有限公司 一种血流动力学参数测量装置及方法
CN109171677A (zh) * 2018-09-20 2019-01-11 芯海科技(深圳)股份有限公司 一种便携式测量装置及基于该装置的血流动力学参数测量方法
CN209360671U (zh) * 2018-09-20 2019-09-10 芯海科技(深圳)股份有限公司 一种血流动力学参数测量装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4450527A (en) * 1982-06-29 1984-05-22 Bomed Medical Mfg. Ltd. Noninvasive continuous cardiac output monitor
CN1370503A (zh) * 2001-02-20 2002-09-25 流图私人有限公司 利用胸部生物阻抗和心电图的血液动力参数无损伤性监测
CN1703165A (zh) * 2002-10-07 2005-11-30 科恩瑟斯蒂姆斯医疗技术公司 血液动力学参数的基于阻抗的测量方法
CN109171675A (zh) * 2018-09-20 2019-01-11 芯海科技(深圳)股份有限公司 一种穿戴式设备及基于该设备的血流动力学参数测量方法
CN109171674A (zh) * 2018-09-20 2019-01-11 芯海科技(深圳)股份有限公司 马桶盖及基于该马桶盖的血流动力学参数测量方法
CN109171676A (zh) * 2018-09-20 2019-01-11 芯海科技(深圳)股份有限公司 一种血流动力学参数测量装置及方法
CN109171677A (zh) * 2018-09-20 2019-01-11 芯海科技(深圳)股份有限公司 一种便携式测量装置及基于该装置的血流动力学参数测量方法
CN209360671U (zh) * 2018-09-20 2019-09-10 芯海科技(深圳)股份有限公司 一种血流动力学参数测量装置

Similar Documents

Publication Publication Date Title
US10451473B2 (en) Physiological assessment scale
CA2958282C (en) Device for monitoring for effectiveness of heart failure therapy
CN109171676A (zh) 一种血流动力学参数测量装置及方法
EP3361944A1 (en) Ambulatory blood pressure and vital sign monitoring apparatus, system and method
CN209360671U (zh) 一种血流动力学参数测量装置
WO2022246987A1 (zh) 一种基于血流动力学的数字人体心血管***的构建方法和应用
CN108888247B (zh) 有氧能力测试方法、装置、***和数据采集设备
CN109171675A (zh) 一种穿戴式设备及基于该设备的血流动力学参数测量方法
CN104921718A (zh) 健康监控与管理***
EP3197347A1 (en) Physiological assessment scale
CN205563118U (zh) 用于测量多体征数据的智能腕表
CN205031254U (zh) 心电检测装置及多功能体检仪
CN109171677A (zh) 一种便携式测量装置及基于该装置的血流动力学参数测量方法
JP2009005842A (ja) 体組成測定装置、体組成測定方法
CN209863796U (zh) 一种便携式测量装置
US20170188963A1 (en) Physiological monitoring system featuring floormat and handheld sensor
CN109171674A (zh) 马桶盖及基于该马桶盖的血流动力学参数测量方法
CN209847160U (zh) 一种穿戴式设备
WO2020057448A1 (zh) 血流动力学参数测量设备及测量方法
CN211432900U (zh) 一种人体心血健康综合参数检测***
Scagliusi et al. Bioimpedance Spectroscopy-Based Edema Supervision Wearable System for Noninvasive Monitoring of Heart Failure
US20170188964A1 (en) Physiological monitoring system featuring floormat and handheld sensor
US20170188962A1 (en) Physiological monitoring system featuring floormat and handheld sensor
US20170188890A1 (en) Physiological monitoring system featuring floormat and handheld sensor
CN105147279A (zh) 心电检测装置及多功能体检仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19861955

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19861955

Country of ref document: EP

Kind code of ref document: A1