WO2020054772A1 - Polyarylene sulfide resin composition, molded article, and insert-molded article - Google Patents

Polyarylene sulfide resin composition, molded article, and insert-molded article Download PDF

Info

Publication number
WO2020054772A1
WO2020054772A1 PCT/JP2019/035732 JP2019035732W WO2020054772A1 WO 2020054772 A1 WO2020054772 A1 WO 2020054772A1 JP 2019035732 W JP2019035732 W JP 2019035732W WO 2020054772 A1 WO2020054772 A1 WO 2020054772A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
resin composition
olefin
polyarylene sulfide
sulfide resin
Prior art date
Application number
PCT/JP2019/035732
Other languages
French (fr)
Japanese (ja)
Inventor
博樹 荒井
大西 克平
Original Assignee
ポリプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリプラスチックス株式会社 filed Critical ポリプラスチックス株式会社
Publication of WO2020054772A1 publication Critical patent/WO2020054772A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • B60K11/04Arrangement or mounting of radiators, radiator shutters, or radiator blinds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers

Definitions

  • the present invention comprises a polyarylene sulfide resin, a polyarylene sulfide resin composition used for molding a molded article that can be brought into contact with a fluid containing water, a molded article obtained by molding the resin composition, and the resin composition
  • the present invention relates to an insert molded product formed by insert molding using an insert member.
  • PAS resin polyarylene sulfide resin
  • PPS resin polyphenylene sulfide resin
  • Patent Document 3 proposes a PAS resin composition having heat shock resistance and high fluidity during melting.
  • the PAS resin composition contains a PAS resin having a predetermined melt viscosity and a predetermined elastomer, and defines a predetermined fluidity. This PAS resin composition can satisfy the requirements for heat shock resistance and high fluidity.
  • LLC long life coolant
  • an electric water pump a fluid containing water and an organic solvent component such as ethylene glycol or glycerin.
  • a PAS resin composition is used as a sealing material for protecting a yoke having a magnetic material from the LLC. May be used.
  • heat shock resistance in an environment where LLC can come into contact cannot be considered in the same manner as heat shock resistance in a dry environment as described above. In other words, in the presence of such a fluid containing water, not only a temperature change but also durability against hot water is required, and a higher level of performance than heat shock resistance in a dry environment is required.
  • a member such as a yoke has a thin portion of, for example, about 1 mm. In order to form such a thin portion, high fluidity is required at the time of melting.
  • the PAS resin composition described in Patent Literature 3 has heat shock resistance and high fluidity, but does not consider heat shock resistance in an environment where a fluid containing water can come into contact with it, and there is room for improvement. Was left.
  • the present invention has been made in view of the above-mentioned conventional problems, and has as its object to provide a polyarylene sulfide resin composition having excellent heat shock resistance and fluidity during melting in an environment where it can come into contact with a fluid containing water. Object, molded article, and insert molded article.
  • the content ratio of the constituent unit derived from the glycidyl ester of the ⁇ , ⁇ -unsaturated acid to the olefin-based copolymer is 1.0 to 8.0% by mass,
  • a polyarylene sulfide resin composition having a flow length of 110 to 300 mm with a width of 20 mm and a thickness of 1 mm at a cylinder temperature of 320 ° C., an injection pressure of 100 MPa, a holding pressure of 100 MPa, and a mold temperature of 150 ° C.
  • a polyarylene sulfide resin composition a molded article, and an insert molded article that are excellent in heat shock resistance and fluidity during melting in an environment where the composition can come into contact with a fluid containing water.
  • FIG. 1 is a view showing a test piece used in a heat shock resistance test, in which (a) is a perspective view and (b) is a plan view.
  • 2A and 2B are diagrams illustrating an insert member of the test piece illustrated in FIG. 1, wherein FIG. 2A is a perspective view, and FIG. 2B is an enlarged plan view of an acute angle portion.
  • 3A and 3B are explanatory diagrams illustrating dimensions of the test piece illustrated in FIG. 1, wherein FIG. 3A is a plan view and FIG. 3B is a side view.
  • the PAS resin composition of the present embodiment is a PAS resin composition used for molding a molded article that can come into contact with a fluid containing water, and has a melt viscosity of 100 to 250 Pa measured at a temperature of 310 ° C. and a shear rate of 1200 sec ⁇ 1.
  • An olefin copolymer containing a structural unit derived from an ⁇ -olefin and a structural unit derived from a glycidyl ester of an ⁇ , ⁇ -unsaturated acid is used in an amount of from 2.0 to 9.
  • the width is 20 mm and the thickness is 1 m at a cylinder temperature of 320 ° C., an injection pressure of 100 MPa, a holding pressure of 100 MPa, and a mold temperature of 150 ° C. It is characterized in that the flow length is 110 ⁇ 300 mm.
  • the PAS resin composition of the present embodiment contains a predetermined amount of a predetermined olefin-based copolymer, glass fiber, and a silane coupling agent with respect to a PAS resin having a predetermined melt viscosity, thereby forming a fluid containing water.
  • the heat shock resistance (hereinafter, also referred to as “LLC resistance”) in an environment where it can come into contact, and the fluidity during melting are improved.
  • heat shock resistance can be improved by using an olefin polymer (elastomer) in the PAS resin composition, but it is not possible to improve LLC resistance alone. Therefore, in the present embodiment, the use of glass fibers and a silane coupling agent in predetermined amounts improves the LLC resistance.
  • the present inventors when improving the LLC resistance, the effect is expressed by simply reducing the content of the glass fiber to an amount that simply improves the heat shock resistance, and conversely, exceeds a certain amount. And found that the effect was inferior. Therefore, by limiting the range of the glass fiber content to the above range, the LLC resistance is improved. Although the resistance to LLC can be improved even when the content of the silane coupling agent is relatively large, the use of a large amount of the silane coupling agent increases the viscosity at the time of melting, thereby lowering the fluidity. Therefore, by defining the range of the content of the silane coupling agent in the above range, both the improvement of LLC resistance and the high fluidity at the time of melting are achieved.
  • the PAS resin composition of the present embodiment exhibits high fluidity at the time of melting by using a PAS resin having a relatively low melt viscosity and defining an index for a prescribed fluidity under a prescribed condition.
  • the olefin-based copolymer by specifying the ratio of the constituent units derived from the glycidyl ester of an ⁇ , ⁇ -unsaturated acid, the fluidity is improved in addition to the heat shock resistance.
  • the PAS resin composition of the present embodiment by defining each component as described above, the LLC resistance and the fluidity during melting are excellent. First, each component of the PAS resin composition will be described.
  • PAS resins are characterized by excellent mechanical properties, electrical properties, heat resistance, and other physical and chemical properties, and good workability.
  • the PAS resin is a polymer compound mainly composed of-(Ar-S)-(where Ar is an arylene group) as a repeating unit.
  • a PAS resin having a molecular structure generally known is used. Can be used.
  • arylene group examples include p-phenylene group, m-phenylene group, o-phenylene group, substituted phenylene group, p, p′-diphenylene sulfone group, p, p′-biphenylene group, p, p′- Examples include a diphenylene ether group, a p, p'-diphenylenecarbonyl group, and a naphthalene group.
  • the PAS resin may be a homopolymer composed of only the above-mentioned repeating units, or a copolymer containing the following different types of repeating units may be preferable in terms of processability and the like.
  • a polyphenylene sulfide resin having a p-phenylene sulfide group as a repeating unit using a p-phenylene group as an arylene group is preferably used.
  • the copolymer two or more different combinations among the above-mentioned arylene sulfide groups composed of an arylene group can be used. Among them, a combination containing a p-phenylene sulfide group and an m-phenylene sulfide group is particularly preferably used.
  • PAS resins those containing a p-phenylene sulfide group in an amount of 70 mol% or more, preferably 80 mol% or more are suitable from the viewpoint of physical properties such as heat resistance, moldability and mechanical properties.
  • PAS resins a high molecular weight polymer having a substantially linear structure obtained by condensation polymerization from a monomer mainly containing a bifunctional halogen aromatic compound can be particularly preferably used.
  • the PAS resin used in the present embodiment may be a mixture of two or more different molecular weight PAS resins.
  • a partially branched or crosslinked structure is formed by using a small amount of a monomer such as a polyhalo aromatic compound having three or more halogen substituents at the time of condensation polymerization.
  • a monomer such as a polyhalo aromatic compound having three or more halogen substituents
  • the melt viscosity (310 ° C., shear rate 1200 sec ⁇ 1 ) of the PAS resin as the base resin used in the present embodiment is 100 to 250 Pa ⁇ s including the case of the above mixed system. If the melt viscosity is less than 100 Pa ⁇ s, the LLC resistance is poor, and if it exceeds 250 Pa ⁇ s, the fluidity is poor.
  • the melt viscosity is preferably from 110 to 240 Pa ⁇ s, more preferably from 130 to 200 Pa ⁇ s.
  • the method for producing the PAS resin is not particularly limited, and it can be produced by a conventionally known production method. For example, it can be produced by synthesizing a low molecular weight PAS resin and then polymerizing it at a high temperature in the presence of a known polymerization aid to increase the molecular weight.
  • the PAS resin composition of the present embodiment may contain other resin components in addition to the above-described PAS resin as a resin component as long as the effect is not impaired.
  • Other resin components are not particularly limited, for example, polyethylene resin, polypropylene resin, polyamide resin, polyacetal resin, modified polyphenylene ether resin, polyethylene terephthalate resin, polybutylene terephthalate resin, polyethylene naphthalate resin, polyimide resin, polyamide imide Resin, polyetherimide resin, polysulfone resin, polyethersulfone resin, polyetherketone resin, polyetheretherketone resin, liquid crystal resin, fluorine resin, cyclic olefin resin (cyclic olefin polymer, cyclic olefin copolymer, etc.), thermoplastic Elastomers (however, those other than the olefin-based copolymer described later), silicone-based polymers, various biodegradable resins, and the like can be used.
  • two or more resin components may be used in combination.
  • polybutylene terephthalate resin, polyacetal resin, liquid crystal resin and the like are preferably used from the viewpoint of mechanical properties, electrical properties, physical / chemical properties, workability and the like.
  • the olefin-based copolymer is used for improving heat shock resistance, and includes a constituent unit derived from ⁇ -olefin and a constituent unit derived from ⁇ , ⁇ -unsaturated glycidyl ester.
  • the olefin-based copolymer can be used alone or in combination of two or more.
  • each structural unit will be described.
  • the (meth) acrylate is also referred to as (meth) acrylate.
  • glycidyl (meth) acrylate is also referred to as glycidyl (meth) acrylate.
  • (meth) acrylic acid” means both acrylic acid and methacrylic acid
  • (meth) acrylate” means both acrylate and methacrylate.
  • the ⁇ -olefin is not particularly restricted but includes, for example, ethylene, propylene, butylene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 4-methyl-1-pentene, 4-methyl-1-hexene And the like, and ethylene is particularly preferred.
  • the ⁇ -olefins can be used alone or in combination of two or more.
  • the content of the copolymer component derived from the ⁇ -olefin is not particularly limited, but can be, for example, 1% by mass or more and 8% by mass or less in the entire PAS resin composition.
  • the olefin-based copolymer contains a constituent unit derived from ⁇ -olefin as a copolymer component, flexibility is easily imparted to the resin member.
  • the softening of the resin member by imparting flexibility contributes to the improvement of heat shock resistance.
  • the glycidyl ester of an ⁇ , ⁇ -unsaturated acid is not particularly limited, and examples thereof include those having a structure represented by the following general formula (1).
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • glycidyl acrylate, glycidyl methacrylate, glycidyl ethacrylate and the like can be mentioned, and glycidyl methacrylate is particularly preferable.
  • the glycidyl esters of ⁇ , ⁇ -unsaturated acids can be used alone or in combination of two or more.
  • the content ratio of the constituent unit derived from the glycidyl ester of ⁇ , ⁇ -unsaturated acid to the olefin-based copolymer is 1.0 to 8.0% by mass. It is difficult to form an inferior thin portion, and if it is less than 1.0% by mass, the effect of heat shock resistance becomes insufficient.
  • the content ratio is preferably 2.0 to 7.0% by mass, and more preferably 2.5 to 6.5% by mass.
  • the content ratio of the structural unit derived from the glycidyl ester of the ⁇ , ⁇ -unsaturated acid to the olefin copolymer when two or more olefin copolymers are used in combination is based on the ratio of ⁇ , ⁇ -to the total amount of the olefin copolymer after mixing. It is a content ratio of a structural unit derived from a glycidyl ester of an unsaturated acid.
  • the olefin-based copolymer in order to further improve the heat shock resistance, preferably further contains a structural unit derived from a (meth) acrylate.
  • the (meth) acrylate is not particularly restricted but includes, for example, methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, n-hexyl acrylate, acrylic Acrylic esters such as isobutyl acrylate, n-amyl acrylate, n-octyl acrylate; methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, methacrylic acid And methacrylic esters such as -n-hexyl, isobutyl methacrylate, n-amyl methacrylate, and n-octyl methacrylate.
  • (Meth) acrylic acid esters can be used alone or in combination of two or more.
  • the content of the copolymer component derived from the (meth) acrylic acid ester is not particularly limited, but can be, for example, 0.5% by mass or more and 3% by mass or less in the entire PAS resin composition.
  • the olefin copolymer can be produced by copolymerization by a conventionally known method.
  • the above-mentioned olefin-based copolymer can be obtained by performing copolymerization by a generally well-known radical polymerization reaction.
  • the type of the olefin-based copolymer is not particularly limited, and may be, for example, a random copolymer or a block copolymer.
  • the above-mentioned olefin-based copolymer includes, for example, polymethyl methacrylate, polyethyl methacrylate, polymethyl acrylate, polyethyl acrylate, polybutyl acrylate, poly (2-ethylhexyl acrylate), polystyrene, polyacrylonitrile ,
  • An acrylonitrile-styrene copolymer, a butyl acrylate-styrene copolymer, or the like may be an olefin-based graft copolymer chemically bonded in a branched or cross-linked structure.
  • the olefin copolymer used in the present embodiment may contain structural units derived from other copolymer components as long as the effect is not impaired.
  • examples of the olefin copolymer include glycidyl methacrylate graft-modified ethylene polymer, ethylene-glycidyl methacrylate-methyl acrylate copolymer, ethylene-glycidyl methacrylate-ethyl acrylate Copolymers, ethylene-glycidyl methacrylate-propyl acrylate copolymer, ethylene-glycidyl methacrylate-butyl acrylate copolymer, and the like.
  • ethylene-glycidyl methacrylate copolymer and ethylene-glycidyl methacrylate-methyl acrylate copolymer are preferable, and an ethylene-glycidyl methacrylate-methyl acrylate copolymer is particularly preferable.
  • Specific examples of the ethylene-glycidyl methacrylate copolymer and the ethylene-glycidyl methacrylate-methyl acrylate copolymer include "Bond First" (manufactured by Sumitomo Chemical Co., Ltd.).
  • the content of the olefin copolymer is 2.0 to 9.0 parts by mass based on 100 parts by mass of the PAS resin, and the balance between the heat shock resistance and the fluidity.
  • 2.0 to 7.0 parts by mass is preferable, and 2.0 to 5.0 parts by mass is more preferable.
  • the PAS resin composition of the present embodiment in order to further improve the fluidity, a constitutional unit derived from an ethylene / ⁇ -olefin copolymer and an ⁇ -olefin and an alkyl ester derived from an ⁇ , ⁇ -unsaturated carboxylic acid alkyl ester are used. It is preferable that the composition further contains at least one olefin copolymer selected from the group consisting of olefin copolymers containing a structural unit.
  • olefin-based copolymers examples include copolymers of ethylene and an ⁇ -olefin having 3 or more carbon atoms, such as ethylene / propylene copolymer, ethylene / 1-butene copolymer, and ethylene / octene copolymer. And a copolymer of ethylene and an alkyl (meth) acrylate such as an ethylene / ethyl acrylate copolymer (EEA) and an ethylene / methacrylic acid copolymer.
  • ESA ethylene / ethyl acrylate copolymer
  • the content of the olefin copolymer is preferably from 0 to 10 parts by mass based on 100 parts by mass of the PAS resin.
  • the PAS resin composition of the present embodiment contains glass fibers, the amount of addition is most important for improving LLC resistance. That is, by including 5 to 40 parts by mass of glass fiber with respect to 100 parts by mass of PAS resin, LLC resistance can be improved. If the glass fiber content is less than 5 parts by mass, the LLC resistance cannot be improved, and if it exceeds 40 parts by mass, the fluidity is poor and the LLC resistance cannot be improved.
  • the glass fiber preferably contains 7 to 35 parts by mass, more preferably 10 to 30 parts by mass, based on 100 parts by mass of the PAS resin.
  • the fiber diameter of the glass fiber is not particularly limited, but may be, for example, 5 ⁇ m or more and 30 ⁇ m or less in the initial shape (shape before melt kneading).
  • the fiber diameter of the glass fiber refers to the major diameter of the fiber cross section of the glass fiber.
  • the cross-sectional shape of the glass fiber may be, for example, a perfect circle, an ellipse, or the like.
  • the type of glass fiber is not particularly limited, and for example, A glass, C glass, E glass, or the like can be used. Among them, E glass (alkali-free glass) is preferably used.
  • the glass fiber may or may not have been subjected to a surface treatment. Examples of the surface treatment for the glass fiber include a treatment with an epoxy-based, acrylic, urethane-based coating or sizing agent, and a treatment with a silane coupling agent such as aminosilane or epoxysilane.
  • chopped glass fibers obtained by cutting a large number of these fibers into a predetermined length.
  • the cut length of the chopped glass fiber is not particularly limited, and may be, for example, about 1 to 10 mm.
  • the silane coupling agent is used for improving LLC resistance.
  • the content of the silane coupling agent is 0.1 to 0.7 part by mass, preferably 0.1 to 0.5 part by mass, per 100 parts by mass of the PAS resin. If the content is less than 0.1 part by mass, the LLC resistance cannot be improved, and if it exceeds 0.7 part by mass, the viscosity increases and the fluidity decreases.
  • silane coupling agent those having a functional group (for example, vinylalkoxysilane, epoxyalkoxysilane, mercaptoalkoxysilane, allylalkoxysilane, aminosilane, etc.) can exert the effects of the present embodiment. Coupling agents are preferred.
  • the aminosilane coupling agent refers to a compound containing a silicon atom to which an alkoxy group is bonded in one molecule and a functional group containing a nitrogen atom.
  • Specific aminosilane coupling agents include ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropylmethyldimethoxysilane, ⁇ -aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyltriethoxysilane, N, N'-bis [3- (trimethoxysilyl) propyl] ethylenediamine, N, N'-bis [3- (triethoxysilyl) propyl ] Ethylenediamine, N, N'-bis [3- (methyldimethoxysilyl) propyl] ethylenediamine, N, N'-bis [3- (trimethoxysilyl) propyl] hexamethylenediamine, N, N'-bis [3- (Triethoxysily
  • aminosilane coupling agent examples include ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropylmethyldimethoxysilane, ⁇ -aminopropylmethyldiethoxysilane, and N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltrimethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltriethoxysilane and N-phenyl- ⁇ -aminopropyltrimethoxysilane are preferred, and ⁇ -aminopropyltrimethoxysilane and More preferably, ⁇ -aminopropyltriethoxysilane is used.
  • silane coupling agents may be used alone or in combination of two or more.
  • the PAS resin composition of the present embodiment can be a lubricant, a nucleating agent, a flame retardant, a flame retardant aid, an antioxidant, a metal deactivator, other anti-aging agents, a UV absorber, Agent, plasticizer, pigment, dye, colorant, antistatic agent, foaming agent, glass beads, silica, calcium carbonate, talc, glass flake, kaolin, clay, alumina, aluminum nitride, nitride such as boron nitride Fillers; hardly soluble ionic crystal particles such as barium sulfate, calcium fluoride, barium fluoride; fillers using semiconductor materials (elemental semiconductors such as Si, Ge, Se, Te; compound semiconductors such as oxide semiconductors); A filler, a conductive filler, or the like may be contained.
  • PAS resin composition of the present embodiment can be manufactured by melt-kneading a mixed component containing at least a PAS resin, an olefin-based copolymer, a glass fiber, and a silane coupling agent.
  • the method for producing the PAS resin composition of the present embodiment is not particularly limited, and various methods known in the art can be employed. For example, there is a method in which the above-described components are mixed, then put into an extruder, melt-kneaded, and pelletized.
  • a method of once preparing pellets having different compositions, mixing a predetermined amount of the pellets, subjecting the mixture to molding, and obtaining a molded article of a desired composition after molding, a method of directly charging one or more of each component to a molding machine, and the like. May be used.
  • the PAS resin composition of the present embodiment can be prepared by being put into an extruder, melt-kneaded, and pelletized, and then put into an injection molding machine equipped with a predetermined mold and injection-molded. it can.
  • the PAS resin composition of the present embodiment has a flow length of 110 mm to 300 mm with a width of 20 mm and a thickness of 1 mm at a cylinder temperature of 320 ° C., an injection pressure of 100 MPa, a holding pressure of 100 MPa, and a mold temperature of 150 ° C.
  • the flow length is 110 mm or more and 300 mm or less, it can be said that the fluidity is good, and it is possible to satisfactorily mold a thin resin portion in a complicated structure without excessively increasing the molding temperature.
  • the PAS resin composition of the present embodiment can be molded satisfactorily even when the thickness of a molded article requiring high fluidity at the time of melting is as thin as about 1 mm, as shown in Examples described later. .
  • the flow length of the PAS resin composition is preferably from 120 mm to 300 mm, more preferably from 130 mm to 300 mm.
  • the shape of the PAS resin molded product is not particularly limited and can be appropriately selected depending on the application.
  • it can be formed into a three-dimensional molded body having a desired shape in addition to a sheet shape, a plate shape, a tubular shape, a film shape, and the like.
  • the PAS resin composition of the present embodiment is used for molding a molded article that can come into contact with a fluid containing water.
  • the fluid containing water include an organic solvent component such as ethylene glycol and glycerin, and water. And so-called long life coolant (LLC), and a washer liquid.
  • LLC long life coolant
  • the molded article of the present embodiment is formed by molding the above-described PAS resin composition. That is, the molded article of the present embodiment can be suitably used as a member having a thin portion, which requires heat shock resistance, particularly LLC resistance. Examples of such a member include a yoke, an impeller, a radiator tank, a thermostat housing, a flow shut valve, a cooling water control valve, and various pipes used in the above-described electric water pump.
  • the PAS resin composition of the present embodiment Since the PAS resin composition of the present embodiment has high fluidity at the time of melting, the PAS resin composition spreads to a thin portion having a thickness of 1.0 mm or less in a mold at the time of molding, and the thin portion can be favorably molded. . Therefore, the PAS resin composition of the present embodiment can favorably mold even a molded article having a thin portion having a thickness of 1.0 mm or less at least in part.
  • the thin portion may be formed at a pinpoint on a part of the molded product, or may be formed in a region occupying most of the molded product.
  • the insert molded product of the present embodiment has an insert member and a resin member that covers at least a part of the insert member.
  • the resin member is formed using the above-described PAS resin composition, and includes the PAS resin composition.
  • the insert molded product of the present embodiment is a composite molded product in which an insert member such as a metal is previously mounted on a molding die, and the PAS resin composition of the present embodiment is filled in the molding die. is there.
  • As a molding method for filling the PAS resin composition into a mold there are an injection method, an extrusion compression molding method and the like, and an injection molding method is generally used.
  • the material of the insert member is used for the purpose of making the most of its properties and compensating for the drawbacks of the PAS resin composition, when it comes into contact with the PAS resin composition during molding, it does not change its shape or melt. Things are used. For this reason, metals such as aluminum, magnesium, copper, iron, brass and their alloys, and inorganic solids such as glass and ceramics, which are preliminarily formed into plates, rods, pins, screws, etc., are used. You.
  • the insert molded product of the present embodiment is also a member requiring heat shock resistance, particularly LLC resistance, similarly to the molded product of the present embodiment, and is a member having a thin portion in at least a part of the resin member. It can be suitably used.
  • the resin member tends to be necessarily thinner due to the presence of the insert member, and there may be a thin portion that is difficult to mold.
  • the insert molded product of the present embodiment forms the resin member using the PAS resin composition of the present embodiment having high fluidity at the time of melting, even if there is a portion where the resin member becomes thin, it can be satisfactorily formed. Can be molded.
  • the insert molded product of the present embodiment may have a thin portion having a thickness of 1.0 mm or less on at least a part of the resin member.
  • the thickness of the thin portion indicates the thickness of only the PAS resin composition portion where the PAS resin composition and the insert member are in contact, and does not include the thickness of the insert member itself.
  • each raw material component was introduced from a raw material supply section (hopper) of a twin-screw extruder having a cylinder temperature of 320 ° C. (glass fiber was supplied from a side feed section of the extruder. The mixture was melt-kneaded under the conditions of an extrusion rate of 20 kg / Hr and a screw rotation speed of 200 rpm, and pelletized. Details of each raw material component shown in Table 1 are described below.
  • melt viscosity of PPS resin was measured as follows. The melt viscosity at a barrel temperature of 310 ° C. and a shear rate of 1200 sec -1 was measured using a capillary of 1 mm ⁇ ⁇ 20 mmL as a capillary using a Capillograph manufactured by Toyo Seiki Seisaku-sho, Ltd.
  • Olefin-based copolymer / Olefin-based copolymer 1 Bondfast 7L (ethylene-glycidyldimethacrylate-methyl acrylate copolymer, manufactured by Sumitomo Chemical Co., Ltd., GMA: 3% by mass, MA: 27) mass%)
  • Olefin-based copolymer 2 Bondfast 7M (manufactured by Sumitomo Chemical Co., Ltd.) (ethylene-glycidyl dimethacrylate-methyl acrylate copolymer, GMA: 6% by mass, MA: 27% by mass)
  • Bondfast 2C ethylene-glycidyl dimethacrylate copolymer, GMA: 6% by mass manufactured by Sumitomo Chemical Co., Ltd.
  • -Olefin copolymer 4 Bond First E (ethylene-glycidyl dimethacrylate copolymer, GMA: 12% by mass) manufactured by Sumitomo Chemical Co., Ltd.
  • -Olefin copolymer 5 Lexpearl RA3150 (ethylene-glycidyl dimethacrylate copolymer, GMA: 15% by mass) manufactured by Japan Polyolefin Co., Ltd.
  • GMA xyl dimethacrylate copolymer
  • Tables 1 and 2 the content ratio of the structural unit derived from the glycidyl ester of an ⁇ , ⁇ -unsaturated acid is shown as “GMA: xx% by mass”.
  • Silane coupling agent / alkoxysilane compound KBE-903P manufactured by Shin-Etsu Chemical Co., Ltd.
  • Fluidity A rod-shaped molded product having a width of 20 mm and a thickness of 1 mm (a side gate having a width of 12 mm and a thickness of 6 mm) was molded by injection molding using the above pellets, and the flow length was measured.
  • the conditions for injection molding are as follows. Cylinder temperature: 320 ° C Injection pressure: 100MPa Holding pressure: 100MPa Mold temperature: 150 ° C, Mold: Spiral flow mold with one point gate Next, the average value of five tests was taken as the flow length. As described above, when the flow length is 110 mm to 300 mm, it is possible to mold a thin resin portion in a complicated structure without excessively increasing the molding temperature. Tables 1 and 2 show the evaluation results.
  • FIG. 1 is a view showing a test piece 1 formed by insert molding
  • FIG. 2 is a view showing an insert member 11
  • FIG. 3 is a view showing dimensions of the test piece 1.
  • the test piece 1 is formed in a state in which a metal insert member 11 is embedded in a cylindrical resin member 10 made of a resin composition.
  • the cylindrical resin member 10 is formed by using the pellets obtained as described above. As shown in FIG.
  • the insert member 11 has a columnar shape, and the upper and lower surfaces thereof have an arc shape on one side and an acute angle shape on the other side, and have a tear shape.
  • the acute angle portion has an arc-shaped tip and a radius of curvature r of 0.2 mm.
  • the insert member 11 is higher than the height of the cylindrical resin member 10 and a part thereof protrudes (see FIG. 1A).
  • the center O 1 of the circle of which the arc of the insert member 11 is part does not coincide with the center O 2 of the circle of the resin member 10, and the acute angle The side is arranged so as to approach the side surface of the resin member 10.
  • the distance dw between the acute-angled tip of the insert member 11 and the side surface of the resin member 10 is 1 mm.
  • the vicinity of the acute-angled tip of the insert member 11 is a thin weld portion (thin portion). ).
  • FIG. 3 shows the dimensions of the test piece, and the unit is mm.
  • the test piece was treated at 121 ° C., 2 atm, and 100% RH for 500 hours using a pressure cooker test (PCT) apparatus.
  • PCT pressure cooker test
  • a cycle of cooling at -40 ° C. for 1.5 hours and then heating at 180 ° C. for 1.5 hours was repeated on the treated test piece using a thermal shock tester (manufactured by Espec Corporation).
  • the weld was observed every 20 cycles.
  • the number of cycles when a crack occurred in the weld was evaluated as an index of heat shock resistance. Tables 1 and 2 show the evaluation results. When the number of cycles is 140 or more, the heat shock resistance is excellent, and when it is 150 or more, the heat shock resistance is particularly excellent. When it is 175 or more, the heat shock resistance is remarkably excellent.
  • Table 1 shows that all of Examples 1 to 12 were excellent in fluidity and heat shock resistance after PCT. That is, it is understood that the PAS resin compositions of Examples 1 to 12 have LLC resistance and high fluidity. On the other hand, from Table 2, in Comparative Examples 1 to 9, all of the evaluations could not be made good at the same time. For example, Comparative Example 1 was inferior in LLC resistance because the melt viscosity of the PAS resin was low. Comparative Example 2 was inferior in LLC resistance because of a small amount of glass fibers, and Comparative Example 3 was inferior in LLC resistance because of a large amount of glass fibers.
  • Comparative Example 4 containing no olefin-based copolymer was inferior in LLC resistance
  • Comparative Example 5 containing a large amount of olefin-based copolymer was inferior in fluidity.
  • Comparative Examples 6 and 9 in which the content ratio of the constituent unit derived from the glycidyl ester of ⁇ , ⁇ -unsaturated acid in the olefin-based copolymer was large were all inferior in fluidity.
  • Comparative Examples 7 and 8, which did not contain a silane coupling agent were all inferior in LLC resistance.
  • the melt viscosity of the PAS resin, the predetermined olefin-based copolymer and its content, the glass fiber and its content It can be seen that both the amount, the silane coupling agent and its content need to be within the ranges specified in the present embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention is a polyarylene sulfide resin composition used to mold a molded article that can come into contact with fluids including water, wherein: the composition contains 2.0–9.0 parts by mass of a prescribed olefin copolymer, 5–40 parts by mass glass fibers, and 0.1–0.7 parts by mass of a silane coupling agent per 100 parts by mass of a polyarylene sulfide resin having a melt viscosity of 100–250 Pa·s; the content ratio of structural units derived from α,β-unsaturated acid glycidyl esters to the olefin copolymer is 1.0–8.0 mass%; and the composition has a 20 mm-width and 1 mm-thickness flow length of 110–300 mm at a prescribed cylinder temperature, injection pressure, dwell pressure, and mold temperature.

Description

ポリアリーレンスルフィド樹脂組成物、成形品及びインサート成形品Polyarylene sulfide resin composition, molded product and insert molded product
 本発明は、ポリアリーレンスルフィド樹脂を含み、水を含む流体と接触し得る成形品の成形に用いるポリアリーレンスルフィド樹脂組成物、該樹脂組成物を成形してなる成形品、及び該樹脂組成物とインサート部材とを用いてインサート成形してなるインサート成形品に関する。 The present invention comprises a polyarylene sulfide resin, a polyarylene sulfide resin composition used for molding a molded article that can be brought into contact with a fluid containing water, a molded article obtained by molding the resin composition, and the resin composition The present invention relates to an insert molded product formed by insert molding using an insert member.
 近年、電気機器類においては、筐体や内部の電気系統部品に種々の樹脂成形品が用いられている。電気機器類としては、一般的な家庭用電化製品や産業用電気製品のみならず、例えば、自動車、自動二輪車、又はトラックなどの車両内の電気系統を司る機器類も挙げられ、そのような機器類にも樹脂成形品が広く用いられている。中でも、ポリフェニレンスルフィド樹脂(以下「PPS樹脂」と呼ぶ場合がある)に代表されるポリアリーレンスルフィド樹脂(以下「PAS樹脂」と呼ぶ場合がある)は、高い耐熱性、機械的物性、耐化学薬品性、寸法安定性、難燃性を有している。そのため、上記のような車両内の電気系統を司る機器類に有用である。 In recent years, in electrical equipment, various resin molded products have been used for housings and internal electrical system components. Examples of the electric devices include not only general home appliances and industrial electric products but also, for example, devices that control an electric system in a vehicle such as an automobile, a motorcycle, or a truck. Also, resin molded products are widely used. Among them, polyarylene sulfide resin (hereinafter sometimes referred to as “PAS resin”) represented by polyphenylene sulfide resin (hereinafter sometimes referred to as “PPS resin”) has high heat resistance, mechanical properties, and chemical resistance. It has properties, dimensional stability, and flame retardancy. Therefore, it is useful for the devices that control the electric system in the vehicle as described above.
 一方、PAS樹脂単独では、靱性に乏しく脆弱であり、例えばインサート成形品の高温と低温とに交互に晒される場合の耐久性、いわゆる耐ヒートショック性(耐高低温衝撃性)に劣ることが知られている。耐ヒートショック性の向上を図るために、PAS樹脂に限らずエラストマーを添加することが一般的に行われている(特許文献1、2参照)。 On the other hand, it is known that the PAS resin alone has poor toughness and is brittle, and is inferior in, for example, the durability of the insert molded product when alternately exposed to high and low temperatures, that is, the so-called heat shock resistance (high-low temperature impact resistance). Have been. In order to improve the heat shock resistance, it is common practice to add not only a PAS resin but also an elastomer (see Patent Documents 1 and 2).
 また、複雑な構造を有する部材の薄肉部分の成形もできるように、PAS樹脂を含む組成物には溶融時において高い流動性が要求される。そこで、特許文献3においては、耐ヒートショック性及び溶融時において高い流動性を有するPAS樹脂組成物が提案されている。当該PAS樹脂組成物は、所定の溶融粘度のPAS樹脂と、所定のエラストマーとを含み、所定の流動性を規定したものである。このPAS樹脂組成物により、耐ヒートショック性及び高い流動性の要求を満たすことができる。 組成 In addition, a composition containing a PAS resin is required to have high fluidity at the time of melting so that a thin portion of a member having a complicated structure can be formed. Therefore, Patent Document 3 proposes a PAS resin composition having heat shock resistance and high fluidity during melting. The PAS resin composition contains a PAS resin having a predetermined melt viscosity and a predetermined elastomer, and defines a predetermined fluidity. This PAS resin composition can satisfy the requirements for heat shock resistance and high fluidity.
特開2002-129014号公報JP-A-2002-129014 特開2008-214383号公報JP 2008-214383 A 国際公開第2017/110807号International Publication No. WO 2017/110807
 近年、自動車等の車両のエンジンやインバーターを冷却するロングライフクーラント(LLC)は、電動ウォーターポンプにより循環制御される。LLCは、エチレングリコールやグリセリンなどの有機溶媒成分と、水とを含む流体であるが、電動ウォーターポンプには磁性体を具備するヨークをLLCから保護するための封止材として、PAS樹脂組成物が使用される場合がある。ところが、LLCが接触し得る環境下での耐ヒートショック性は、上記のようなドライ環境下での耐ヒートショック性と同じように考えることはできない。つまり、そのような水を含む流体存在下では、温度変化のみならず熱水に対する耐久性をも要し、ドライ環境下での耐ヒートショック性よりも高いレベルの性能が要求される。また、ヨークのような部材は、例えば1mm程度の薄肉部が存在し、そのような薄肉部の成形をするため、溶融時において高い流動性も要求される。特許文献3に記載のPAS樹脂組成物は、耐ヒートショック性及び高い流動性を有するが、水を含む流体が接触し得る環境下での耐ヒートショック性は考慮されておらず、改善の余地が残されていた。 In recent years, circulation of long life coolant (LLC) for cooling the engine and inverter of vehicles such as automobiles is controlled by an electric water pump. LLC is a fluid containing water and an organic solvent component such as ethylene glycol or glycerin. In an electric water pump, a PAS resin composition is used as a sealing material for protecting a yoke having a magnetic material from the LLC. May be used. However, heat shock resistance in an environment where LLC can come into contact cannot be considered in the same manner as heat shock resistance in a dry environment as described above. In other words, in the presence of such a fluid containing water, not only a temperature change but also durability against hot water is required, and a higher level of performance than heat shock resistance in a dry environment is required. In addition, a member such as a yoke has a thin portion of, for example, about 1 mm. In order to form such a thin portion, high fluidity is required at the time of melting. The PAS resin composition described in Patent Literature 3 has heat shock resistance and high fluidity, but does not consider heat shock resistance in an environment where a fluid containing water can come into contact with it, and there is room for improvement. Was left.
 本発明は、上記従来の問題点に鑑みなされたものであり、その課題は、水を含む流体と接触し得る環境下での耐ヒートショック性及び溶融時の流動性に優れるポリアリーレンスルフィド樹脂組成物、成形品及びインサート成形品を提供することにある。 SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and has as its object to provide a polyarylene sulfide resin composition having excellent heat shock resistance and fluidity during melting in an environment where it can come into contact with a fluid containing water. Object, molded article, and insert molded article.
 前記課題を解決する本発明の一態様は以下の通りである。
(1)水を含む流体と接触し得る成形品の成形に用いるポリアリーレンスルフィド樹脂組成物であって、
 温度310℃及びせん断速度1200sec-1で測定した溶融粘度が100~250Pa・sのポリアリーレンスルフィド樹脂100質量部に対して、α-オレフィン由来の構成単位とα,β-不飽和酸のグリシジルエステル由来の構成単位とを含有するオレフィン系共重合体を2.0~9.0質量部、ガラス繊維を5~40質量部、及びシランカップリング剤を0.1~0.7質量部含み、
 前記オレフィン系共重合体に対する前記α,β-不飽和酸のグリシジルエステル由来の構成単位の含有比率が1.0~8.0質量%であり、
 シリンダー温度320℃、射出圧力100MPa、保圧100MPa及び金型温度150℃における幅20mm及び厚み1mmの流動長が110~300mmである、ポリアリーレンスルフィド樹脂組成物。
One embodiment of the present invention that solves the above problems is as follows.
(1) A polyarylene sulfide resin composition used for molding a molded article that can come into contact with a fluid containing water,
Glycidyl ester of α-olefin-derived structural unit and α, β-unsaturated acid per 100 parts by mass of polyarylene sulfide resin having a melt viscosity of 100 to 250 Pa · s measured at a temperature of 310 ° C. and a shear rate of 1200 sec −1 2.0 to 9.0 parts by mass of an olefin-based copolymer containing a structural unit derived from the above, 5 to 40 parts by mass of glass fiber, and 0.1 to 0.7 parts by mass of a silane coupling agent.
The content ratio of the constituent unit derived from the glycidyl ester of the α, β-unsaturated acid to the olefin-based copolymer is 1.0 to 8.0% by mass,
A polyarylene sulfide resin composition having a flow length of 110 to 300 mm with a width of 20 mm and a thickness of 1 mm at a cylinder temperature of 320 ° C., an injection pressure of 100 MPa, a holding pressure of 100 MPa, and a mold temperature of 150 ° C.
(2)前記オレフィン系共重合体が、さらに(メタ)アクリル酸エステル由来の構成単位を含有する前記(1)に記載のポリアリーレンスルフィド樹脂組成物。 (2) The polyarylene sulfide resin composition according to the above (1), wherein the olefin-based copolymer further contains a structural unit derived from a (meth) acrylate ester.
(3)前記水を含む流体が、ロングライフクーラントである前記(1)又は(2)に記載のポリアリーレンスルフィド樹脂組成物。 (3) The polyarylene sulfide resin composition according to (1) or (2), wherein the fluid containing water is a long life coolant.
(4)前記(1)~(3)のいずれかに記載のポリアリーレンスルフィド樹脂組成物を成形してなる成形品。 (4) A molded article obtained by molding the polyarylene sulfide resin composition according to any one of the above (1) to (3).
(5)少なくとも一部に厚さ1.0mm以下の薄肉部を有する前記(4)に記載の成形品。 (5) The molded article according to (4), which has a thin portion having a thickness of 1.0 mm or less at least in part.
(6)インサート部材と、前記インサート部材の少なくとも一部を覆う樹脂部材とを有し、前記樹脂部材が前記(1)~(3)のいずれかに記載のポリアリーレンスルフィド樹脂組成物を用いて形成された、インサート成形品。 (6) An insert member, and a resin member that covers at least a part of the insert member, wherein the resin member uses the polyarylene sulfide resin composition according to any one of (1) to (3). Formed insert molded product.
(7)前記樹脂部材の少なくとも一部に厚さ1.0mm以下の薄肉部を有する前記(6)に記載のインサート成形品。 (7) The insert molded product according to (6), wherein at least a part of the resin member has a thin portion having a thickness of 1.0 mm or less.
 本発明によれば、水を含む流体と接触し得る環境下での耐ヒートショック性及び溶融時の流動性に優れるポリアリーレンスルフィド樹脂組成物、成形品及びインサート成形品を提供することができる。 According to the present invention, it is possible to provide a polyarylene sulfide resin composition, a molded article, and an insert molded article that are excellent in heat shock resistance and fluidity during melting in an environment where the composition can come into contact with a fluid containing water.
図1は、耐ヒートショック性試験で用いた試験片を示す図であって、(a)は斜視図であり、(b)は平面図である。FIG. 1 is a view showing a test piece used in a heat shock resistance test, in which (a) is a perspective view and (b) is a plan view. 図2は、図1に示す試験片のインサート部材を示す図であって、(a)は斜視図であり、(b)は鋭角形状部分の拡大平面図である。2A and 2B are diagrams illustrating an insert member of the test piece illustrated in FIG. 1, wherein FIG. 2A is a perspective view, and FIG. 2B is an enlarged plan view of an acute angle portion. 図3は、図1に示す試験片の寸法についての説明図であって、(a)は平面図、(b)は側面図である。3A and 3B are explanatory diagrams illustrating dimensions of the test piece illustrated in FIG. 1, wherein FIG. 3A is a plan view and FIG. 3B is a side view.
<ポリアリーレンスルフィド樹脂組成物>
 本実施形態のPAS樹脂組成物は、水を含む流体と接触し得る成形品の成形に用いるPAS樹脂組成物であって、温度310℃及びせん断速度1200sec-1で測定した溶融粘度が100~250Pa・sのPAS樹脂100質量部に対して、α-オレフィン由来の構成単位とα,β-不飽和酸のグリシジルエステル由来の構成単位とを含有するオレフィン系共重合体を2.0~9.0質量部、ガラス繊維を5~40質量部、及びシランカップリング剤を0.1~0.7質量部含み、オレフィン系共重合体に対するα,β-不飽和酸のグリシジルエステル由来の構成単位の含有比率が1.0~8.0質量%であり、シリンダー温度320℃、射出圧力100MPa、保圧100MPa及び金型温度150℃における幅20mm及び厚み1mmの流動長が110~300mmであることを特徴としている。
<Polyarylene sulfide resin composition>
The PAS resin composition of the present embodiment is a PAS resin composition used for molding a molded article that can come into contact with a fluid containing water, and has a melt viscosity of 100 to 250 Pa measured at a temperature of 310 ° C. and a shear rate of 1200 sec −1. An olefin copolymer containing a structural unit derived from an α-olefin and a structural unit derived from a glycidyl ester of an α, β-unsaturated acid is used in an amount of from 2.0 to 9. 0 unit by mass, 5 to 40 parts by mass of glass fiber, and 0.1 to 0.7 parts by mass of a silane coupling agent, and a structural unit derived from a glycidyl ester of an α, β-unsaturated acid with respect to an olefin-based copolymer Is 1.0 to 8.0% by mass, the width is 20 mm and the thickness is 1 m at a cylinder temperature of 320 ° C., an injection pressure of 100 MPa, a holding pressure of 100 MPa, and a mold temperature of 150 ° C. It is characterized in that the flow length is 110 ~ 300 mm.
 本実施形態のPAS樹脂組成物は、所定の溶融粘度のPAS樹脂に対して、所定のオレフィン系共重合体、ガラス繊維、及びシランカップリング剤をそれぞれ所定量含むことで、水を含む流体と接触し得る環境下での耐ヒートショック性(以下、「耐LLC性」とも呼ぶ。)及び溶融時の流動性を向上させたものである。上述の通り、PAS樹脂組成物においてオレフィン系重合体(エラストマー)を用いることで耐ヒートショック性を向上させることができるが、それのみでは耐LLC性をも向上させることはできない。そこで、本実施形態においては、ガラス繊維及びシランカップリング剤を所定量用いることで耐LLC性の向上を図っている。すなわち、本発明者らは、耐LLC性を向上させるに当たり、ガラス繊維の含有量を、単に耐ヒートショック性を向上させる量よりも少量とすることで効果が発現し、逆に一定量を超えると効果に劣ることを見出した。そこで、ガラス繊維の含有量の範囲を上記範囲に規定することで耐LLC性の向上を図っている。また、シランカップリング剤の含有量は比較的多量であっても耐LLC性の向上を図ることができるが、多量に使用すると溶融時の粘度が上昇するため流動性が低下する。そこで、シランカップリング剤の含有量の範囲を上記範囲に規定することで耐LLC性向上と溶融時の高い流動性との両立を図っている。
 また、本実施形態のPAS樹脂組成物は、比較的低い溶融粘度のPAS樹脂を用いつつ、所定の条件下で所定の流動性についての指標を規定することによって、溶融時において高い流動性を示す。
 尚、オレフィン系共重合体において、α,β-不飽和酸のグリシジルエステル由来の構成単位の比率を規定することによって、耐ヒートショック性の向上に加えて流動性の向上を図っている。
 以上より、本実施形態のPAS樹脂組成物においては、上記のように各成分を規定することにより、耐LLC性及び溶融時の流動性に優れる。
 以下にまず、PAS樹脂組成物の各成分について説明する。
The PAS resin composition of the present embodiment contains a predetermined amount of a predetermined olefin-based copolymer, glass fiber, and a silane coupling agent with respect to a PAS resin having a predetermined melt viscosity, thereby forming a fluid containing water. The heat shock resistance (hereinafter, also referred to as “LLC resistance”) in an environment where it can come into contact, and the fluidity during melting are improved. As described above, heat shock resistance can be improved by using an olefin polymer (elastomer) in the PAS resin composition, but it is not possible to improve LLC resistance alone. Therefore, in the present embodiment, the use of glass fibers and a silane coupling agent in predetermined amounts improves the LLC resistance. That is, the present inventors, when improving the LLC resistance, the effect is expressed by simply reducing the content of the glass fiber to an amount that simply improves the heat shock resistance, and conversely, exceeds a certain amount. And found that the effect was inferior. Therefore, by limiting the range of the glass fiber content to the above range, the LLC resistance is improved. Although the resistance to LLC can be improved even when the content of the silane coupling agent is relatively large, the use of a large amount of the silane coupling agent increases the viscosity at the time of melting, thereby lowering the fluidity. Therefore, by defining the range of the content of the silane coupling agent in the above range, both the improvement of LLC resistance and the high fluidity at the time of melting are achieved.
In addition, the PAS resin composition of the present embodiment exhibits high fluidity at the time of melting by using a PAS resin having a relatively low melt viscosity and defining an index for a prescribed fluidity under a prescribed condition. .
In addition, in the olefin-based copolymer, by specifying the ratio of the constituent units derived from the glycidyl ester of an α, β-unsaturated acid, the fluidity is improved in addition to the heat shock resistance.
As described above, in the PAS resin composition of the present embodiment, by defining each component as described above, the LLC resistance and the fluidity during melting are excellent.
First, each component of the PAS resin composition will be described.
[ポリアリーレンスルフィド樹脂]
 PAS樹脂は、機械的性質、電気的性質、耐熱性その他物理的・化学的特性に優れ、かつ加工性が良好であるという特徴を有する。
 PAS樹脂は、主として、繰返し単位として-(Ar-S)-(但しArはアリーレン基)で構成された高分子化合物であり、本実施形態では一般的に知られている分子構造のPAS樹脂を使用することができる。
[Polyarylene sulfide resin]
PAS resins are characterized by excellent mechanical properties, electrical properties, heat resistance, and other physical and chemical properties, and good workability.
The PAS resin is a polymer compound mainly composed of-(Ar-S)-(where Ar is an arylene group) as a repeating unit. In the present embodiment, a PAS resin having a molecular structure generally known is used. Can be used.
 上記アリーレン基としては、例えば、p-フェニレン基、m-フェニレン基、o-フェニレン基、置換フェニレン基、p,p’-ジフェニレンスルフォン基、p,p’-ビフェニレン基、p,p’-ジフェニレンエーテル基、p,p’-ジフェニレンカルボニル基、ナフタレン基などが挙げられる。PAS樹脂は、上記繰返し単位のみからなるホモポリマーでもよいし、下記の異種繰返し単位を含んだコポリマーが加工性等の点から好ましい場合もある。 Examples of the arylene group include p-phenylene group, m-phenylene group, o-phenylene group, substituted phenylene group, p, p′-diphenylene sulfone group, p, p′-biphenylene group, p, p′- Examples include a diphenylene ether group, a p, p'-diphenylenecarbonyl group, and a naphthalene group. The PAS resin may be a homopolymer composed of only the above-mentioned repeating units, or a copolymer containing the following different types of repeating units may be preferable in terms of processability and the like.
 ホモポリマーとしては、アリーレン基としてp-フェニレン基を用いた、p-フェニレンスルフィド基を繰返し単位とするポリフェニレンスルフィド樹脂が好ましく用いられる。また、コポリマーとしては、前記のアリーレン基からなるアリーレンスルフィド基の中で、相異なる2種以上の組み合わせが使用できるが、中でもp-フェニレンスルフィド基とm-フェニレンスルフィド基を含む組み合わせが特に好ましく用いられる。この中で、p-フェニレンスルフィド基を70モル%以上、好ましくは80モル%以上含むものが、耐熱性、成形性、機械的特性等の物性上の点から適当である。また、これらのPAS樹脂の中で、2官能性ハロゲン芳香族化合物を主体とするモノマーから縮重合によって得られる実質的に直鎖状構造の高分子量ポリマーが、特に好ましく使用できる。尚、本実施形態に用いるPAS樹脂は、異なる2種類以上の分子量のPAS樹脂を混合して用いてもよい。 As the homopolymer, a polyphenylene sulfide resin having a p-phenylene sulfide group as a repeating unit using a p-phenylene group as an arylene group is preferably used. As the copolymer, two or more different combinations among the above-mentioned arylene sulfide groups composed of an arylene group can be used. Among them, a combination containing a p-phenylene sulfide group and an m-phenylene sulfide group is particularly preferably used. Can be Among them, those containing a p-phenylene sulfide group in an amount of 70 mol% or more, preferably 80 mol% or more are suitable from the viewpoint of physical properties such as heat resistance, moldability and mechanical properties. Among these PAS resins, a high molecular weight polymer having a substantially linear structure obtained by condensation polymerization from a monomer mainly containing a bifunctional halogen aromatic compound can be particularly preferably used. The PAS resin used in the present embodiment may be a mixture of two or more different molecular weight PAS resins.
 尚、直鎖状構造のPAS樹脂以外にも、縮重合させるときに、3個以上のハロゲン置換基を有するポリハロ芳香族化合物等のモノマーを少量用いて、部分的に分岐構造または架橋構造を形成させたポリマーや、低分子量の直鎖状構造ポリマーを酸素等の存在下、高温で加熱して酸化架橋または熱架橋により溶融粘度を上昇させ、成形加工性を改良したポリマーも挙げられる。 In addition, in addition to the PAS resin having a linear structure, a partially branched or crosslinked structure is formed by using a small amount of a monomer such as a polyhalo aromatic compound having three or more halogen substituents at the time of condensation polymerization. Polymers obtained by heating a polymer having a low molecular weight and a linear polymer having a low molecular weight at a high temperature in the presence of oxygen or the like to increase the melt viscosity by oxidative crosslinking or thermal crosslinking to improve the moldability.
 本実施形態に使用する基体樹脂としてのPAS樹脂の溶融粘度(310℃・せん断速度1200sec-1)は、上記混合系の場合も含め100~250Pa・sである。当該溶融粘度が100Pa・s未満であると耐LLC性に劣り、250Pa・sを超えると流動性に劣る。当該溶融粘度は110~240Pa・sが好ましく、130~200Pa・sがより好ましい。 The melt viscosity (310 ° C., shear rate 1200 sec −1 ) of the PAS resin as the base resin used in the present embodiment is 100 to 250 Pa · s including the case of the above mixed system. If the melt viscosity is less than 100 Pa · s, the LLC resistance is poor, and if it exceeds 250 Pa · s, the fluidity is poor. The melt viscosity is preferably from 110 to 240 Pa · s, more preferably from 130 to 200 Pa · s.
 PAS樹脂の製造方法は、特に限定されず、従来公知の製造方法によって製造することができる。例えば、低分子量のPAS樹脂を合成後、公知の重合助剤の存在下で、高温下で重合して高分子量化することで製造することができる。 方法 The method for producing the PAS resin is not particularly limited, and it can be produced by a conventionally known production method. For example, it can be produced by synthesizing a low molecular weight PAS resin and then polymerizing it at a high temperature in the presence of a known polymerization aid to increase the molecular weight.
 尚、本実施形態のPAS樹脂組成物は、その効果を損なわない範囲で、樹脂成分として、上述のPAS樹脂に加えて、その他の樹脂成分を含んでもよい。その他の樹脂成分としては、特に限定はなく、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリアミド樹脂、ポリアセタール樹脂、変性ポリフェニレンエーテル樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリサルフォン樹脂、ポリエーテルサルフォン樹脂、ポリエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂、液晶樹脂、弗素樹脂、環状オレフィン系樹脂(環状オレフィンポリマー、環状オレフィンコポリマー等)、熱可塑性エラストマー(ただし、後述のオレフィン系共重合体以外のもの)、シリコーン系ポリマー、各種の生分解性樹脂等が挙げられる。また、2種類以上の樹脂成分を併用してもよい。その中でも、機械的性質、電気的性質、物理的・化学的特性、加工性等の観点から、ポリブチレンテレフタレート樹脂、ポリアセタール樹脂、液晶樹脂等が好ましく用いられる。 Note that the PAS resin composition of the present embodiment may contain other resin components in addition to the above-described PAS resin as a resin component as long as the effect is not impaired. Other resin components are not particularly limited, for example, polyethylene resin, polypropylene resin, polyamide resin, polyacetal resin, modified polyphenylene ether resin, polyethylene terephthalate resin, polybutylene terephthalate resin, polyethylene naphthalate resin, polyimide resin, polyamide imide Resin, polyetherimide resin, polysulfone resin, polyethersulfone resin, polyetherketone resin, polyetheretherketone resin, liquid crystal resin, fluorine resin, cyclic olefin resin (cyclic olefin polymer, cyclic olefin copolymer, etc.), thermoplastic Elastomers (however, those other than the olefin-based copolymer described later), silicone-based polymers, various biodegradable resins, and the like can be used. Further, two or more resin components may be used in combination. Among them, polybutylene terephthalate resin, polyacetal resin, liquid crystal resin and the like are preferably used from the viewpoint of mechanical properties, electrical properties, physical / chemical properties, workability and the like.
[オレフィン系共重合体]
 本実施形態において、オレフィン系共重合体は、耐ヒートショック性を向上させるために使用され、α-オレフィン由来の構成単位と、α,β-不飽和酸グリシジルエステル由来の構成単位とを含む。オレフィン系共重合体は、1種単独で又は2種以上組み合わせて使用することができる。
 以下、各構成単位について説明する。尚、以下、(メタ)アクリル酸エステルを(メタ)アクリレートともいう。例えば、(メタ)アクリル酸グリシジルエステルをグリシジル(メタ)アクリレートともいう。また、本明細書において、「(メタ)アクリル酸」は、アクリル酸とメタクリル酸との両方を意味し、「(メタ)アクリレート」は、アクリレートとメタクリレートとの両方を意味する。
[Olefin copolymer]
In the present embodiment, the olefin-based copolymer is used for improving heat shock resistance, and includes a constituent unit derived from α-olefin and a constituent unit derived from α, β-unsaturated glycidyl ester. The olefin-based copolymer can be used alone or in combination of two or more.
Hereinafter, each structural unit will be described. Hereinafter, the (meth) acrylate is also referred to as (meth) acrylate. For example, glycidyl (meth) acrylate is also referred to as glycidyl (meth) acrylate. In this specification, “(meth) acrylic acid” means both acrylic acid and methacrylic acid, and “(meth) acrylate” means both acrylate and methacrylate.
(α-オレフィン由来の構成単位)
 α-オレフィンとしては、特に限定されず、例えば、エチレン、プロピレン、ブチレン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、4-メチル-1-ペンテン、4-メチル-1-ヘキセン等が挙げられ、特にエチレンが好ましい。α-オレフィンは、1種単独で使用することもでき、2種以上を併用することもできる。α-オレフィンに由来する共重合成分の含有量は、特に限定されないが、例えば、全PAS樹脂組成物中1質量%以上8質量%以下とすることができる。オレフィン系共重合体がα-オレフィン由来の構成単位を共重合成分として含むことで、樹脂部材には可撓性が付与されやすい。可撓性の付与により樹脂部材が軟らかくなることは、耐ヒートショック性の改善に寄与する。
(Structural unit derived from α-olefin)
The α-olefin is not particularly restricted but includes, for example, ethylene, propylene, butylene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 4-methyl-1-pentene, 4-methyl-1-hexene And the like, and ethylene is particularly preferred. The α-olefins can be used alone or in combination of two or more. The content of the copolymer component derived from the α-olefin is not particularly limited, but can be, for example, 1% by mass or more and 8% by mass or less in the entire PAS resin composition. When the olefin-based copolymer contains a constituent unit derived from α-olefin as a copolymer component, flexibility is easily imparted to the resin member. The softening of the resin member by imparting flexibility contributes to the improvement of heat shock resistance.
(α,β-不飽和酸のグリシジルエステル由来の構成単位)
 α,β-不飽和酸のグリシジルエステルとしては、特に限定されず、例えば、以下の一般式(1)に示される構造を有するものを挙げることができる。
(Structural unit derived from glycidyl ester of α, β-unsaturated acid)
The glycidyl ester of an α, β-unsaturated acid is not particularly limited, and examples thereof include those having a structure represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000001
 
(但し、Rは、水素原子又は炭素原子数1以上10以下のアルキル基を示す。)
Figure JPOXMLDOC01-appb-C000001

(However, R 1 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.)
 上記一般式(1)で示される化合物としては、例えば、アクリル酸グリシジルエステル、メタクリル酸グリシジルエステル、エタクリル酸グリシジルエステル等が挙げられ、特にメタクリル酸グリシジルエステルが好ましい。α,β-不飽和酸のグリシジルエステルは、1種単独で使用することもでき、2種以上を併用することもできる。オレフィン系共重合体に対するα,β-不飽和酸のグリシジルエステルに由来する構成単位の含有比率は1.0~8.0質量%であるが、8.0質量%を超えると、流動性に劣り薄肉部の成形が困難となり、1.0質量%未満では耐ヒートショック性の効果が不十分となる。当該含有比率は2.0~7.0質量%が好ましく、2.5~6.5質量%がより好ましい。尚、2種以上を併用した場合のオレフィン系共重合体に対するα,β-不飽和酸のグリシジルエステルに由来する構成単位の含有比率は、混合後のオレフィン系共重合体全量に対するα,β-不飽和酸のグリシジルエステルに由来する構成単位の含有比率である。 化合物 As the compound represented by the general formula (1), for example, glycidyl acrylate, glycidyl methacrylate, glycidyl ethacrylate and the like can be mentioned, and glycidyl methacrylate is particularly preferable. The glycidyl esters of α, β-unsaturated acids can be used alone or in combination of two or more. The content ratio of the constituent unit derived from the glycidyl ester of α, β-unsaturated acid to the olefin-based copolymer is 1.0 to 8.0% by mass. It is difficult to form an inferior thin portion, and if it is less than 1.0% by mass, the effect of heat shock resistance becomes insufficient. The content ratio is preferably 2.0 to 7.0% by mass, and more preferably 2.5 to 6.5% by mass. The content ratio of the structural unit derived from the glycidyl ester of the α, β-unsaturated acid to the olefin copolymer when two or more olefin copolymers are used in combination is based on the ratio of α, β-to the total amount of the olefin copolymer after mixing. It is a content ratio of a structural unit derived from a glycidyl ester of an unsaturated acid.
((メタ)アクリル酸エステル由来の構成単位)
 本実施形態において、耐ヒートショック性の更なる向上を図るため、オレフィン系共重合体は、さらに(メタ)アクリル酸エステル由来の構成単位を含有することが好ましい。
 (メタ)アクリル酸エステルとしては、特に限定されず、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸-n-プロピル、アクリル酸イソプロピル、アクリル酸-n-ブチル、アクリル酸-n-ヘキシル、アクリル酸イソブチル、アクリル酸-n-アミル、アクリル酸-n-オクチル等のアクリル酸エステル;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸-n-プロピル、メタクリル酸イソプロピル、メタクリル酸-n-ブチル、メタクリル酸-n-ヘキシル、メタクリル酸イソブチル、メタクリル酸-n-アミル、メタクリル酸-n-オクチル等のメタクリル酸エステルが挙げられる。中でも、特にアクリル酸メチルが好ましい。(メタ)アクリル酸エステルは、1種単独で使用することもでき、2種以上を併用することもできる。(メタ)アクリル酸エステルに由来する共重合成分の含有量は、特に限定されないが、例えば、全PAS樹脂組成物中0.5質量%以上3質量%以下とすることができる。
(Structural unit derived from (meth) acrylate)
In the present embodiment, in order to further improve the heat shock resistance, the olefin-based copolymer preferably further contains a structural unit derived from a (meth) acrylate.
The (meth) acrylate is not particularly restricted but includes, for example, methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, n-hexyl acrylate, acrylic Acrylic esters such as isobutyl acrylate, n-amyl acrylate, n-octyl acrylate; methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, methacrylic acid And methacrylic esters such as -n-hexyl, isobutyl methacrylate, n-amyl methacrylate, and n-octyl methacrylate. Among them, methyl acrylate is particularly preferable. (Meth) acrylic acid esters can be used alone or in combination of two or more. The content of the copolymer component derived from the (meth) acrylic acid ester is not particularly limited, but can be, for example, 0.5% by mass or more and 3% by mass or less in the entire PAS resin composition.
 オレフィン系共重合体は、従来公知の方法で共重合を行うことにより製造することができる。例えば、通常よく知られたラジカル重合反応により共重合を行うことによって、上記オレフィン系共重合体を得ることができる。オレフィン系共重合体の種類は、特に問われず、例えば、ランダム共重合体であっても、ブロック共重合体であってもよい。また、上記オレフィン系共重合体に、例えば、ポリメタアクリル酸メチル、ポリメタアクリル酸エチル、ポリアクリル酸メチル、ポリアクリル酸エチル、ポリアクリル酸ブチル、ポリアクリル酸-2エチルヘキシル、ポリスチレン、ポリアクリロニトリル、アクリロニトリル-スチレン共重合体、アクリル酸ブチル-スチレン共重合体等が、分岐状に又は架橋構造的に化学結合したオレフィン系グラフト共重合体であってもよい。 The olefin copolymer can be produced by copolymerization by a conventionally known method. For example, the above-mentioned olefin-based copolymer can be obtained by performing copolymerization by a generally well-known radical polymerization reaction. The type of the olefin-based copolymer is not particularly limited, and may be, for example, a random copolymer or a block copolymer. Further, the above-mentioned olefin-based copolymer includes, for example, polymethyl methacrylate, polyethyl methacrylate, polymethyl acrylate, polyethyl acrylate, polybutyl acrylate, poly (2-ethylhexyl acrylate), polystyrene, polyacrylonitrile , An acrylonitrile-styrene copolymer, a butyl acrylate-styrene copolymer, or the like, may be an olefin-based graft copolymer chemically bonded in a branched or cross-linked structure.
 本実施形態に用いるオレフィン系共重合体は、その効果を害さない範囲で、他の共重合成分由来の構成単位を含有することができる。 オ レ フ ィ ン The olefin copolymer used in the present embodiment may contain structural units derived from other copolymer components as long as the effect is not impaired.
 より具体的には、オレフィン系共重合体としては、例えば、グリシジルメタクリレートグラフト変性エチレン重合体、エチレン-グリシジルメタクリレート共重合体、エチレン-グリシジルメタクリレート-メチルアクリレート共重合体、エチレン-グリシジルメタクリレート-エチルアクリレート共重合体、エチレン-グリシジルメタクリレート-プロピルアクリレート共重合体、エチレン-グリシジルメタクリレート-ブチルアクリレート共重合体等が挙げられ、中でも、エチレン-グリシジルメタクリレート共重合体及びエチレン-グリシジルメタクリレート-メチルアクリレート共重合体が好ましく、エチレン-グリシジルメタクリレート-メチルアクリレート共重合体が特に好ましい。エチレン-グリシジルメタクリレート共重合体及びエチレン-グリシジルメタクリレート-メチルアクリレート共重合体の具体例としては、「ボンドファースト」(住友化学(株)製)等が挙げられる。 More specifically, examples of the olefin copolymer include glycidyl methacrylate graft-modified ethylene polymer, ethylene-glycidyl methacrylate-methyl acrylate copolymer, ethylene-glycidyl methacrylate-ethyl acrylate Copolymers, ethylene-glycidyl methacrylate-propyl acrylate copolymer, ethylene-glycidyl methacrylate-butyl acrylate copolymer, and the like. Among them, ethylene-glycidyl methacrylate copolymer and ethylene-glycidyl methacrylate-methyl acrylate copolymer Are preferable, and an ethylene-glycidyl methacrylate-methyl acrylate copolymer is particularly preferable. Specific examples of the ethylene-glycidyl methacrylate copolymer and the ethylene-glycidyl methacrylate-methyl acrylate copolymer include "Bond First" (manufactured by Sumitomo Chemical Co., Ltd.).
 本実施形態のPAS樹脂組成物において、オレフィン系共重合体の含有量は、PAS樹脂100質量部に対して2.0~9.0質量部であり、耐ヒートショック性と流動性とのバランスの観点から、2.0~7.0質量部が好ましく、2.0~5.0質量部がより好ましい。 In the PAS resin composition of the present embodiment, the content of the olefin copolymer is 2.0 to 9.0 parts by mass based on 100 parts by mass of the PAS resin, and the balance between the heat shock resistance and the fluidity. In light of the above, 2.0 to 7.0 parts by mass is preferable, and 2.0 to 5.0 parts by mass is more preferable.
 本実施形態のPAS樹脂組成物においては、流動性の更なる向上のため、エチレン・α-オレフィン系共重合体及びα-オレフィン由来の構成単位とα,β-不飽和カルボン酸アルキルエステル由来の構成単位とを含有するオレフィン系共重合体からなる群から選択される少なくとも1種のオレフィン系共重合体をさらに含むことが好ましい。そのようなオレフィン系共重合体としては、エチレン/プロピレン共重合体、エチレン/1-ブテン共重合体、エチレン/オクテン共重合体等のエチレンと炭素数3以上のα-オレフィンとの共重合体や、エチレン/アクリル酸エチル共重合体(EEA)、エチレン/メタクリル酸共重合体等のエチレンと(メタ)アクリル酸アルキルエステルとの共重合体等が挙げられる。
 エチレン・α-オレフィン系共重合体及びα-オレフィン由来の構成単位とα,β-不飽和カルボン酸アルキルエステル由来の構成単位とを含有するオレフィン系共重合体からなる群から選択される少なくとも1種のオレフィン系共重合体の含有量は、PAS樹脂100質量部に対して0~10質量部が好ましい。
In the PAS resin composition of the present embodiment, in order to further improve the fluidity, a constitutional unit derived from an ethylene / α-olefin copolymer and an α-olefin and an alkyl ester derived from an α, β-unsaturated carboxylic acid alkyl ester are used. It is preferable that the composition further contains at least one olefin copolymer selected from the group consisting of olefin copolymers containing a structural unit. Examples of such olefin-based copolymers include copolymers of ethylene and an α-olefin having 3 or more carbon atoms, such as ethylene / propylene copolymer, ethylene / 1-butene copolymer, and ethylene / octene copolymer. And a copolymer of ethylene and an alkyl (meth) acrylate such as an ethylene / ethyl acrylate copolymer (EEA) and an ethylene / methacrylic acid copolymer.
At least one selected from the group consisting of ethylene / α-olefin-based copolymers and olefin-based copolymers containing α-olefin-derived constituent units and α, β-unsaturated carboxylic acid alkyl ester-derived constituent units; The content of the olefin copolymer is preferably from 0 to 10 parts by mass based on 100 parts by mass of the PAS resin.
[ガラス繊維]
 本実施形態のPAS樹脂組成物はガラス繊維を含むが、その添加量が耐LLC性の向上に最も重要である。すなわち、PAS樹脂100質量部に対してガラス繊維5~40質量部含むことにより、耐LLC性を向上することができる。当該ガラス繊維が5質量部未満であると、耐LLC性の向上を図ることができず、40質量部を超えると流動性に劣り、かつ、耐LLC性の向上を図ることができない。ガラス繊維は、PAS樹脂100質量部に対して7~35質量部含むことが好ましく、10~30質量部含むことがより好ましい。
[Glass fiber]
Although the PAS resin composition of the present embodiment contains glass fibers, the amount of addition is most important for improving LLC resistance. That is, by including 5 to 40 parts by mass of glass fiber with respect to 100 parts by mass of PAS resin, LLC resistance can be improved. If the glass fiber content is less than 5 parts by mass, the LLC resistance cannot be improved, and if it exceeds 40 parts by mass, the fluidity is poor and the LLC resistance cannot be improved. The glass fiber preferably contains 7 to 35 parts by mass, more preferably 10 to 30 parts by mass, based on 100 parts by mass of the PAS resin.
 ガラス繊維の繊維径は、特に限定されないが、初期形状(溶融混練前の形状)において、例えば5μm以上30μm以下とすることができる。ここで、ガラス繊維の繊維径とは、ガラス繊維の繊維断面の長径をいう。 繊 維 The fiber diameter of the glass fiber is not particularly limited, but may be, for example, 5 μm or more and 30 μm or less in the initial shape (shape before melt kneading). Here, the fiber diameter of the glass fiber refers to the major diameter of the fiber cross section of the glass fiber.
 ガラス繊維の断面形状は、例えば、真円状、楕円状等であってもよい。また、ガラス繊維の種類についても特に限定されず、例えば、Aガラス、Cガラス、Eガラス等を用いることができるが、その中でもEガラス(無アルカリガラス)を用いることが好ましい。また、そのガラス繊維は、表面処理が施されたものであっても、施されていないものであってもよい。尚、ガラス繊維に対する表面処理としては、エポキシ系、アクリル系、ウレタン系等の被覆剤或いは集束剤による処理や、アミノシランやエポキシシラン等のシランカップリング剤等による処理が挙げられる。 断面 The cross-sectional shape of the glass fiber may be, for example, a perfect circle, an ellipse, or the like. Further, the type of glass fiber is not particularly limited, and for example, A glass, C glass, E glass, or the like can be used. Among them, E glass (alkali-free glass) is preferably used. Further, the glass fiber may or may not have been subjected to a surface treatment. Examples of the surface treatment for the glass fiber include a treatment with an epoxy-based, acrylic, urethane-based coating or sizing agent, and a treatment with a silane coupling agent such as aminosilane or epoxysilane.
 また、ガラス繊維は、通常、これらの繊維を多数本集束したものを所定の長さに切断したチョップドストランド(チョップドガラス繊維)として用いることが好ましい。なお、チョップドガラス繊維のカット長については特に限定されず、例えば1~10mm程度とすることができる。 ガ ラ ス In addition, it is usually preferable to use glass fibers as chopped strands (chopped glass fibers) obtained by cutting a large number of these fibers into a predetermined length. The cut length of the chopped glass fiber is not particularly limited, and may be, for example, about 1 to 10 mm.
 上市品の例としては、日本電気硝子(株)製、チョップドガラス繊維(ECS03T-790DE、平均繊維径:6μm)、オーウェンスコーニング製造(株)製、チョップドガラス繊維(CS03DE 416A、平均繊維径:6μm)、日本電気硝子(株)製、チョップドガラス繊維(ECS03T-747H、平均繊維径:10.5μm)、日本電気硝子(株)製、チョップドガラス繊維(ECS03T-747、平均繊維径:13μm)等が挙げられる。 Examples of products on the market include chopped glass fibers (ECS03T-790DE, average fiber diameter: 6 μm), manufactured by Nippon Electric Glass Co., Ltd., and chopped glass fibers (CS03DE 416A, average fiber diameter: manufactured by Owens Corning). Nippon Electric Glass Co., Ltd., chopped glass fiber (ECS03T-747H, average fiber diameter: 10.5 μm), NEC Glass Co., Ltd., chopped glass fiber (ECS03T-747, average fiber diameter: 13 μm) And the like.
[シランカップリング剤]
 本実施形態において、シランカップリング剤は、耐LLC性の向上のために使用される。シランカップリング剤の含有量はPAS樹脂100質量部に対して0.1~0.7質量部であり、0.1~0.5質量部とすることが好ましい。当該含有量が0.1質量部未満では耐LLC性の向上を図ることができず、0.7質量部を超えると粘度が上昇して流動性が低下する。
[Silane coupling agent]
In the present embodiment, the silane coupling agent is used for improving LLC resistance. The content of the silane coupling agent is 0.1 to 0.7 part by mass, preferably 0.1 to 0.5 part by mass, per 100 parts by mass of the PAS resin. If the content is less than 0.1 part by mass, the LLC resistance cannot be improved, and if it exceeds 0.7 part by mass, the viscosity increases and the fluidity decreases.
 シランカップリング剤としては、官能基を有するもの(例えばビニルアルコキシシラン、エポキシアルコキシシラン、メルカプトアルコキシシラン、アリルアルコキシシラン、アミノシラン等)であれば本実施形態の効果を発揮することができるが、アミノシランカップリング剤が好ましい。アミノシランカップリング剤とは、一分子中にアルコキシ基が結合した珪素原子と、窒素原子を含有する官能基とを含有している化合物をいう。 As the silane coupling agent, those having a functional group (for example, vinylalkoxysilane, epoxyalkoxysilane, mercaptoalkoxysilane, allylalkoxysilane, aminosilane, etc.) can exert the effects of the present embodiment. Coupling agents are preferred. The aminosilane coupling agent refers to a compound containing a silicon atom to which an alkoxy group is bonded in one molecule and a functional group containing a nitrogen atom.
 具体的なアミノシランカップリング剤として、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、N,N’-ビス〔3-(トリメトキシシリル)プロピル〕エチレンジアミン、N,N’-ビス〔3-(トリエトキシシリル)プロピル〕エチレンジアミン、N,N’-ビス〔3-(メチルジメトキシシリル)プロピル〕エチレンジアミン、N,N’-ビス〔3-(トリメトキシシリル)プロピル〕ヘキサメチレンジアミン、N,N’-ビス〔3-(トリエトキシシリル)プロピル〕ヘキサメチレンジアミン等が挙げられる。 Specific aminosilane coupling agents include γ-aminopropyltrimethoxysilane, γ-aminopropylmethyldimethoxysilane, γ-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyltriethoxysilane, N, N'-bis [3- (trimethoxysilyl) propyl] ethylenediamine, N, N'-bis [3- (triethoxysilyl) propyl ] Ethylenediamine, N, N'-bis [3- (methyldimethoxysilyl) propyl] ethylenediamine, N, N'-bis [3- (trimethoxysilyl) propyl] hexamethylenediamine, N, N'-bis [3- (Triethoxysilyl) propyl] hexamethylenediamine and the like.
 上記アミノシランカップリング剤として、中でも、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジエトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリエトキシシラン及びN-フェニル-γ-アミノプロピルトリメトキシシランが好ましく挙げられ、γ-アミノプロピルトリメトキシシラン及びγ-アミノプロピルトリエトキシシランがより好ましく挙げられる。
 また、これらのシランカップリング剤は、単独で用いられても二種以上が併用されてもよい。
Examples of the aminosilane coupling agent include γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropylmethyldimethoxysilane, γ-aminopropylmethyldiethoxysilane, and N- (β-aminoethyl) -Γ-aminopropyltrimethoxysilane, N- (β-aminoethyl) -γ-aminopropyltriethoxysilane and N-phenyl-γ-aminopropyltrimethoxysilane are preferred, and γ-aminopropyltrimethoxysilane and More preferably, γ-aminopropyltriethoxysilane is used.
These silane coupling agents may be used alone or in combination of two or more.
[他の成分]
 本実施形態のPAS樹脂組成物は、その効果を妨げない範囲で、滑剤、核剤、難燃剤、難燃助剤、酸化防止剤、金属不活性剤、その他老化防止剤、UV吸収剤、安定剤、可塑剤、顔料、染料、着色剤、帯電防止剤、発泡剤、ガラスビーズ、シリカ、炭酸カルシウム、タルク、ガラスフレーク、カオリン、クレイ、アルミナ、窒化アルミニウム、窒化硼素等の窒化物を用いたフィラー;硫酸バリウム、フッ化カルシウム、フッ化バリウム等の難溶性イオン結晶粒子;半導体材料(Si、Ge、Se、Te等の元素半導体;酸化物半導体等の化合物半導体等)を用いたフィラー、有機フィラー、導電性フィラー等を含有していてもよい。
[Other components]
The PAS resin composition of the present embodiment can be a lubricant, a nucleating agent, a flame retardant, a flame retardant aid, an antioxidant, a metal deactivator, other anti-aging agents, a UV absorber, Agent, plasticizer, pigment, dye, colorant, antistatic agent, foaming agent, glass beads, silica, calcium carbonate, talc, glass flake, kaolin, clay, alumina, aluminum nitride, nitride such as boron nitride Fillers; hardly soluble ionic crystal particles such as barium sulfate, calcium fluoride, barium fluoride; fillers using semiconductor materials (elemental semiconductors such as Si, Ge, Se, Te; compound semiconductors such as oxide semiconductors); A filler, a conductive filler, or the like may be contained.
 本実施形態のPAS樹脂組成物は、PAS樹脂と、オレフィン系共重合体と、ガラス繊維と、シランカップリング剤とを少なくとも含有する混合成分を溶融混練することにより製造することができる。本実施形態のPAS樹脂組成物の製造方法は特に限定されず、当該技術分野で知られている各種方法を採用することができる。例えば、上述した各成分を混合した後、押出機に投入し、溶融混練し、ペレット化する方法が挙げられる。また、一旦組成の異なるペレットを調製し、そのペレットを所定量混合して成形に供し、成形後に目的組成の成形品を得る方法、成形機に各成分の1又は2以上を直接仕込む方法等を用いてもよい。 PA The PAS resin composition of the present embodiment can be manufactured by melt-kneading a mixed component containing at least a PAS resin, an olefin-based copolymer, a glass fiber, and a silane coupling agent. The method for producing the PAS resin composition of the present embodiment is not particularly limited, and various methods known in the art can be employed. For example, there is a method in which the above-described components are mixed, then put into an extruder, melt-kneaded, and pelletized. In addition, a method of once preparing pellets having different compositions, mixing a predetermined amount of the pellets, subjecting the mixture to molding, and obtaining a molded article of a desired composition after molding, a method of directly charging one or more of each component to a molding machine, and the like. May be used.
 本実施形態のPAS樹脂組成物を用いて成形品を成形する方法としては特に限定はなく、当該技術分野で知られている各種方法を採用することができる。例えば、本実施形態のPAS樹脂組成物を押出機に投入して溶融混練してペレット化し、このペレットを所定の金型を装備した射出成形機に投入し、射出成形することで作製することができる。 方法 There is no particular limitation on the method for molding a molded article using the PAS resin composition of the present embodiment, and various methods known in the art can be employed. For example, the PAS resin composition of the present embodiment can be prepared by being put into an extruder, melt-kneaded, and pelletized, and then put into an injection molding machine equipped with a predetermined mold and injection-molded. it can.
 一方、本実施形態のPAS樹脂組成物は、シリンダー温度320℃、射出圧力100MPa、保圧100MPa及び金型温度150℃における幅20mm及び厚み1mmの流動長が、110mm~300mmである。流動長が110mm以上300mm以下の場合に、流動性が良好であるといえ、成形温度を過度に高温にしなくとも複雑な構造における肉薄な樹脂部分の成形を良好に行うことができる。本実施形態のPAS樹脂組成物は、後述する実施例に示すように、溶融時において高い流動性が要求される成形品の肉厚が1mm程度の肉薄な場合でも、良好に成形することができる。PAS樹脂組成物の上記流動長は、好ましくは、120mm~300mm、更に好ましくは130mm~300mmである。 On the other hand, the PAS resin composition of the present embodiment has a flow length of 110 mm to 300 mm with a width of 20 mm and a thickness of 1 mm at a cylinder temperature of 320 ° C., an injection pressure of 100 MPa, a holding pressure of 100 MPa, and a mold temperature of 150 ° C. When the flow length is 110 mm or more and 300 mm or less, it can be said that the fluidity is good, and it is possible to satisfactorily mold a thin resin portion in a complicated structure without excessively increasing the molding temperature. The PAS resin composition of the present embodiment can be molded satisfactorily even when the thickness of a molded article requiring high fluidity at the time of melting is as thin as about 1 mm, as shown in Examples described later. . The flow length of the PAS resin composition is preferably from 120 mm to 300 mm, more preferably from 130 mm to 300 mm.
 PAS樹脂成形品の形状は特に限定されず用途に応じて適宜選択することができる。例えば、シート状、板状、筒状、被膜状等の他、所望の形状の三次元成形体に成形することができる。 形状 The shape of the PAS resin molded product is not particularly limited and can be appropriately selected depending on the application. For example, it can be formed into a three-dimensional molded body having a desired shape in addition to a sheet shape, a plate shape, a tubular shape, a film shape, and the like.
 本実施形態のPAS樹脂組成物は、水を含む流体と接触し得る成形品の成形に用いるが、当該水を含む流体としては、例えば、エチレングリコールやグリセリンなどの有機溶媒成分と、水とを含む所謂ロングライフクーラント(LLC)や、ウォッシャー液等が挙げられる。 The PAS resin composition of the present embodiment is used for molding a molded article that can come into contact with a fluid containing water. Examples of the fluid containing water include an organic solvent component such as ethylene glycol and glycerin, and water. And so-called long life coolant (LLC), and a washer liquid.
<成形品>
 本実施形態の成形品は、上述のPAS樹脂組成物を成形してなる。すなわち、本実施形態の成形品は、耐ヒートショック性、特に耐LLC性が要求される、薄肉部を有する部材として好適に用いることができる。そのような部材としては、例えば、上述の電動ウォーターポンプに用いられるヨーク、インペラ、ラジエータタンク、サーモスタッドハウジング、フローシャットバルブ、冷却水制御バルブ、各種パイプ等が挙げられる。
<Molded product>
The molded article of the present embodiment is formed by molding the above-described PAS resin composition. That is, the molded article of the present embodiment can be suitably used as a member having a thin portion, which requires heat shock resistance, particularly LLC resistance. Examples of such a member include a yoke, an impeller, a radiator tank, a thermostat housing, a flow shut valve, a cooling water control valve, and various pipes used in the above-described electric water pump.
 本実施形態のPAS樹脂組成物は、溶融時に高い流動性を有することから、成形時において金型内の厚さ1.0mm以下の薄肉部にも行き渡り、薄肉部を良好に成形することができる。従って、本実施形態のPAS樹脂組成物により、少なくとも一部に厚さ1.0mm以下の薄肉部を有する成形品であっても良好に成形することができる。薄肉部は、成形品の一部にピンポイントで形成されてもよいし、成形品の大半を占める領域に形成されてもよい。 Since the PAS resin composition of the present embodiment has high fluidity at the time of melting, the PAS resin composition spreads to a thin portion having a thickness of 1.0 mm or less in a mold at the time of molding, and the thin portion can be favorably molded. . Therefore, the PAS resin composition of the present embodiment can favorably mold even a molded article having a thin portion having a thickness of 1.0 mm or less at least in part. The thin portion may be formed at a pinpoint on a part of the molded product, or may be formed in a region occupying most of the molded product.
<インサート成形品>
 本実施形態のインサート成形品は、インサート部材と、当該インサート部材の少なくとも一部を覆う樹脂部材とを有する。樹脂部材は、上述のPAS樹脂組成物を用いて形成されたものであり、当該PAS樹脂組成物を含む。本実施形態のインサート成形品は、成形用金型に金属等のインサート部材をあらかじめ装着し、当該成形用金型内に本実施形態のPAS樹脂組成物を充填して複合成形品としたものである。PAS樹脂組成物を金型に充填するための成形法としては射出、押出圧縮成形法等があるが、射出成形法が一般的である。また、インサート部材の素材は、その特性を生かし、かつ、PAS樹脂組成物の欠点を補う目的で使用されるため、成形時にPAS樹脂組成物と接触したとき、形が変化したり溶融したりしないものが使用される。そのため、主としてアルミニウム、マグネシウム、銅、鉄、真鍮及びそれらの合金等の金属類やガラス、セラミックスのような無機固体物であらかじめ平板状、棒、ピン、ネジ等に成形されているものが使用される。
<Insert molding>
The insert molded product of the present embodiment has an insert member and a resin member that covers at least a part of the insert member. The resin member is formed using the above-described PAS resin composition, and includes the PAS resin composition. The insert molded product of the present embodiment is a composite molded product in which an insert member such as a metal is previously mounted on a molding die, and the PAS resin composition of the present embodiment is filled in the molding die. is there. As a molding method for filling the PAS resin composition into a mold, there are an injection method, an extrusion compression molding method and the like, and an injection molding method is generally used. Also, since the material of the insert member is used for the purpose of making the most of its properties and compensating for the drawbacks of the PAS resin composition, when it comes into contact with the PAS resin composition during molding, it does not change its shape or melt. Things are used. For this reason, metals such as aluminum, magnesium, copper, iron, brass and their alloys, and inorganic solids such as glass and ceramics, which are preliminarily formed into plates, rods, pins, screws, etc., are used. You.
 本実施形態のインサート成形品も、上記本実施形態の成形品と同様、耐ヒートショック性、特に耐LLC性が要求される部材であって、樹脂部材の少なくとも一部に薄肉部を有する部材として好適に用いることができる。一般に、インサート成形品は、インサート部材が存在するが故に樹脂部材が必然的に薄肉になる傾向にあり、成形が困難な薄肉部が存在し得る。しかし、本実施形態のインサート成形品は、溶融時に高い流動性を有する本実施形態のPAS樹脂組成物を用いて樹脂部材を形成するため、当該樹脂部材が薄肉となる部分があっても良好に成形することができる。具体的には、本実施形態のインサート成形品は、樹脂部材の少なくとも一部に厚さ1.0mm以下の薄肉部を有するものとすることができる。なお、当該薄肉部の厚さは、PAS樹脂組成物とインサート部材とが接触した箇所においてはPAS樹脂組成物部分のみの厚さを示し、インサート部材自体の厚さは含まないものとする。 The insert molded product of the present embodiment is also a member requiring heat shock resistance, particularly LLC resistance, similarly to the molded product of the present embodiment, and is a member having a thin portion in at least a part of the resin member. It can be suitably used. In general, in an insert molded product, the resin member tends to be necessarily thinner due to the presence of the insert member, and there may be a thin portion that is difficult to mold. However, since the insert molded product of the present embodiment forms the resin member using the PAS resin composition of the present embodiment having high fluidity at the time of melting, even if there is a portion where the resin member becomes thin, it can be satisfactorily formed. Can be molded. Specifically, the insert molded product of the present embodiment may have a thin portion having a thickness of 1.0 mm or less on at least a part of the resin member. In addition, the thickness of the thin portion indicates the thickness of only the PAS resin composition portion where the PAS resin composition and the insert member are in contact, and does not include the thickness of the insert member itself.
 以下に、実施例により本実施形態をさらに具体的に説明するが、本実施形態は以下の実施例に限定されるものではない。 本 Hereinafter, the present embodiment will be described more specifically by way of examples, but the present embodiment is not limited to the following examples.
[実施例1~12、比較例1~9]
 表1に示すように、各実施例・比較例において、各原料成分を、シリンダー温度320℃の二軸押出機の原料供給部(ホッパー)より投入し(ガラス繊維は押出機のサイドフィード部より別添加)、押出量20kg/Hr、スクリュー回転数200rpmの条件で溶融混練し、ペレット化した。
 表1に示す各原料成分の詳細を以下に記す。
[Examples 1 to 12, Comparative Examples 1 to 9]
As shown in Table 1, in each of Examples and Comparative Examples, each raw material component was introduced from a raw material supply section (hopper) of a twin-screw extruder having a cylinder temperature of 320 ° C. (glass fiber was supplied from a side feed section of the extruder. The mixture was melt-kneaded under the conditions of an extrusion rate of 20 kg / Hr and a screw rotation speed of 200 rpm, and pelletized.
Details of each raw material component shown in Table 1 are described below.
(1)PAS樹脂成分
・PPS樹脂1:(株)クレハ製、フォートロンKPS(溶融粘度:130Pa・s(せん断速度:1200sec-1、310℃))
・PPS樹脂2:(株)クレハ製、フォートロンKPS(溶融粘度:220Pa・s(せん断速度:1200sec-1、310℃))
・PPS樹脂3:(株)クレハ製、フォートロンKPS(溶融粘度:28Pa・s(せん断速度:1200sec-1、310℃))
(1) PAS resin component • PPS resin 1: Fortron KPS manufactured by Kureha Corporation (melt viscosity: 130 Pa · s (shear rate: 1200 sec −1 , 310 ° C.))
PPS resin 2: Fortron KPS manufactured by Kureha Corporation (melt viscosity: 220 Pa · s (shear rate: 1200 sec −1 , 310 ° C.))
PPS resin 3: Fortron KPS manufactured by Kureha Corporation (melt viscosity: 28 Pa · s (shear rate: 1200 sec −1 , 310 ° C.))
(PPS樹脂の溶融粘度の測定)
 上記PPS樹脂の溶融粘度は以下のようにして測定した。
 東洋精機製作所製キャピログラフを用い、キャピラリーとして1mmφ×20mmLのフラットダイを使用し、バレル温度310℃、せん断速度1200sec-1での溶融粘度を測定した。
(Measurement of melt viscosity of PPS resin)
The melt viscosity of the PPS resin was measured as follows.
The melt viscosity at a barrel temperature of 310 ° C. and a shear rate of 1200 sec -1 was measured using a capillary of 1 mmφ × 20 mmL as a capillary using a Capillograph manufactured by Toyo Seiki Seisaku-sho, Ltd.
(2)オレフィン系共重合体
・オレフィン系共重合体1:住友化学工業(株)製、ボンドファースト7L(エチレン-グリシジルジメタクリレート-アクリル酸メチル共重合体、GMA:3質量%、MA:27質量%)
・オレフィン系共重合体2:住友化学工業(株)製、ボンドファースト7M(エチレン-グリシジルジメタクリレート-アクリル酸メチル共重合体、GMA:6質量%、MA:27質量%)
・オレフィン系共重合体3:住友化学工業(株)製、ボンドファースト2C(エチレン-グリシジルジメタクリレート共重合体、GMA:6質量%)
・オレフィン系共重合体4:住友化学工業(株)製、ボンドファーストE(エチレン-グリシジルジメタクリレート共重合体、GMA:12質量%)
・オレフィン系共重合体5:日本ポリオレフィン(株)製、レクスパールRA3150(エチレン-グリシジルジメタクリレート共重合体、GMA:15質量%)
 なお、α,β-不飽和酸のグリシジルエステル由来の構成単位の含有比率を、表1、2においては「GMA:××質量%」として示した。
(2) Olefin-based copolymer / Olefin-based copolymer 1: Bondfast 7L (ethylene-glycidyldimethacrylate-methyl acrylate copolymer, manufactured by Sumitomo Chemical Co., Ltd., GMA: 3% by mass, MA: 27) mass%)
-Olefin-based copolymer 2: Bondfast 7M (manufactured by Sumitomo Chemical Co., Ltd.) (ethylene-glycidyl dimethacrylate-methyl acrylate copolymer, GMA: 6% by mass, MA: 27% by mass)
-Olefin-based copolymer 3: Bondfast 2C (ethylene-glycidyl dimethacrylate copolymer, GMA: 6% by mass) manufactured by Sumitomo Chemical Co., Ltd.
-Olefin copolymer 4: Bond First E (ethylene-glycidyl dimethacrylate copolymer, GMA: 12% by mass) manufactured by Sumitomo Chemical Co., Ltd.
-Olefin copolymer 5: Lexpearl RA3150 (ethylene-glycidyl dimethacrylate copolymer, GMA: 15% by mass) manufactured by Japan Polyolefin Co., Ltd.
In Tables 1 and 2, the content ratio of the structural unit derived from the glycidyl ester of an α, β-unsaturated acid is shown as “GMA: xx% by mass”.
(3)ガラス繊維
・ガラス繊維:日本電気硝子(株)製、ECS03T717、繊維径13μm、長さ3mm
(3) Glass fiber / glass fiber: Nippon Electric Glass Co., Ltd., ECS03T717, fiber diameter 13 μm, length 3 mm
(4)シランカップリング剤
・アルコキシシラン化合物:信越化学工業(株)製、KBE-903P
(4) Silane coupling agent / alkoxysilane compound: KBE-903P manufactured by Shin-Etsu Chemical Co., Ltd.
[評価]
 得られた各実施例・比較例のペレットを用いて以下の評価を行った。
[Evaluation]
The following evaluation was performed using the obtained pellets of Examples and Comparative Examples.
(1)流動性
 上記ペレットを用い、幅20mm、厚み1mm(幅12mm、厚み6mmのサイドゲート)の棒状成形品を射出成形にて成形し、流動長を測定した。射出成形の条件は以下の通りである。
 シリンダー温度:320℃
 射出圧力:100MPa
 保圧:100MPa
 金型温度:150℃、
 金型:1点ゲートのスパイラルフロー金型
 次いで、5回の試験のおける平均値を流動長とした。上記したように、流動長が110mm~300mmの場合、成形温度を過度に高くせずに複雑な構造における肉薄な樹脂部分の成形が可能である。評価結果を表1、2に示す。
(1) Fluidity A rod-shaped molded product having a width of 20 mm and a thickness of 1 mm (a side gate having a width of 12 mm and a thickness of 6 mm) was molded by injection molding using the above pellets, and the flow length was measured. The conditions for injection molding are as follows.
Cylinder temperature: 320 ° C
Injection pressure: 100MPa
Holding pressure: 100MPa
Mold temperature: 150 ° C,
Mold: Spiral flow mold with one point gate Next, the average value of five tests was taken as the flow length. As described above, when the flow length is 110 mm to 300 mm, it is possible to mold a thin resin portion in a complicated structure without excessively increasing the molding temperature. Tables 1 and 2 show the evaluation results.
(2)プレッシャークッカー試験(PCT)後の耐ヒートショック性(耐LLC性)
 まず、各実施例・比較例で得たペレットと金属製のインサート部材を用い、図1~図3に示す試験片をインサート成形した。図1は、インサート成形した試験片1を示す図であり、図2は、インサート部材11を示す図であり、図3は試験片1の寸法を示す図である。試験片1は、図1に示すように、樹脂組成物からなる円柱形の樹脂部材10に金属製のインサート部材11が埋入した状態で成形されている。円柱形の樹脂部材10は、上記のようにして得られたペレットを用いて成形されたものである。インサート部材11は、図2に示すように、柱状であって、その上面及び底面の形状が一側が円弧形状、他側が鋭角形状の涙型の形状をなす。鋭角形状部分は部分拡大図である図1(b)に示すように、先端が円弧状になっており、その曲率半径rは0.2mmである。また、インサート部材11は、円柱形の樹脂部材10の高さより高く、その一部が突出している(図1(a)参照)。さらに、図3(a)に示すように、インサート部材11の円弧を一部とする円の中心Oと、樹脂部材10の円の中心Oとは一致せず、インサート部材11の鋭角形状側が樹脂部材10の側面に近接するように配置されている。そして、インサート部材11の鋭角形状の先端と、樹脂部材10の側面との距離dwは1mmであり、樹脂部材10において、インサート部材11の鋭角形状の先端近傍が肉厚の薄いウェルド部(薄肉部)となっている。なお、図3に試験片の寸法を示しているが、その単位はmmである。
(2) Heat shock resistance (LLC resistance) after pressure cooker test (PCT)
First, the test pieces shown in FIGS. 1 to 3 were insert-molded using the pellets obtained in Examples and Comparative Examples and metal insert members. FIG. 1 is a view showing a test piece 1 formed by insert molding, FIG. 2 is a view showing an insert member 11, and FIG. 3 is a view showing dimensions of the test piece 1. As shown in FIG. 1, the test piece 1 is formed in a state in which a metal insert member 11 is embedded in a cylindrical resin member 10 made of a resin composition. The cylindrical resin member 10 is formed by using the pellets obtained as described above. As shown in FIG. 2, the insert member 11 has a columnar shape, and the upper and lower surfaces thereof have an arc shape on one side and an acute angle shape on the other side, and have a tear shape. As shown in FIG. 1B, which is a partially enlarged view, the acute angle portion has an arc-shaped tip and a radius of curvature r of 0.2 mm. Further, the insert member 11 is higher than the height of the cylindrical resin member 10 and a part thereof protrudes (see FIG. 1A). Furthermore, as shown in FIG. 3A, the center O 1 of the circle of which the arc of the insert member 11 is part does not coincide with the center O 2 of the circle of the resin member 10, and the acute angle The side is arranged so as to approach the side surface of the resin member 10. The distance dw between the acute-angled tip of the insert member 11 and the side surface of the resin member 10 is 1 mm. In the resin member 10, the vicinity of the acute-angled tip of the insert member 11 is a thin weld portion (thin portion). ). FIG. 3 shows the dimensions of the test piece, and the unit is mm.
 上記試験片に対し、プレッシャークッカーテスト(PCT)装置を用いて、121℃、2atm、100%RH下で500時間処理した。次いで、処理後の試験片に対し、冷熱衝撃試験機(エスペック(株)製)を用い、-40℃にて1.5時間冷却後、180℃にて1.5時間加熱するというサイクルを繰り返し、20サイクル毎にウェルド部を観察した。ウェルド部にクラックが発生したときのサイクル数を耐ヒートショック性の指標として評価した。評価結果を表1、2に示す。サイクル数が140以上である場合に耐ヒートショック性が優れており、150以上である場合に耐ヒートショック性が特に優れている。175以上ある場合に耐ヒートショック性が顕著に優れている。 The test piece was treated at 121 ° C., 2 atm, and 100% RH for 500 hours using a pressure cooker test (PCT) apparatus. Next, a cycle of cooling at -40 ° C. for 1.5 hours and then heating at 180 ° C. for 1.5 hours was repeated on the treated test piece using a thermal shock tester (manufactured by Espec Corporation). The weld was observed every 20 cycles. The number of cycles when a crack occurred in the weld was evaluated as an index of heat shock resistance. Tables 1 and 2 show the evaluation results. When the number of cycles is 140 or more, the heat shock resistance is excellent, and when it is 150 or more, the heat shock resistance is particularly excellent. When it is 175 or more, the heat shock resistance is remarkably excellent.
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
 表1より、実施例1~12においてはいずれも、流動性及びPCT後の耐ヒートショック性に優れていた。すなわち、実施例1~12のPAS樹脂組成物は、耐LLC性及び高い流動性を有することが分かる。
 一方、表2より、比較例1~9においては、すべての評価を同時に良好な結果とすることができなかった。例えば、比較例1は、PAS樹脂の溶融粘度が低いため耐LLC性に劣っていた。また、比較例2は、ガラス繊維が少ないため耐LLC性に劣り、逆に比較例3はガラス繊維が多いため耐LLC性に劣っていた。さらに、オレフィン系共重合体を含有させていない比較例4は、耐LLC性に劣り、逆にオレフィン系共重合体を多く含有させた比較例5は流動性に劣っていた。さらに、オレフィン系共重合体におけるα,β-不飽和酸のグリシジルエステル由来の構成単位の含有比率が多い比較例6及び9はいずれも流動性に劣っていた。また、シランカップリング剤を含有させていない比較例7及び8は、いずれも耐LLC性に劣っていた。
 以上より、PAS樹脂組成物において、耐LLC性及び流動性のいずれにおいても優れたものとするには、PAS樹脂の溶融粘度、所定のオレフィン系共重合体及びその含有量、ガラス繊維及びその含有量、及びシランカップリング剤及びその含有量のいずれも本実施形態において規定する範囲とする必要があることが分かる。
Table 1 shows that all of Examples 1 to 12 were excellent in fluidity and heat shock resistance after PCT. That is, it is understood that the PAS resin compositions of Examples 1 to 12 have LLC resistance and high fluidity.
On the other hand, from Table 2, in Comparative Examples 1 to 9, all of the evaluations could not be made good at the same time. For example, Comparative Example 1 was inferior in LLC resistance because the melt viscosity of the PAS resin was low. Comparative Example 2 was inferior in LLC resistance because of a small amount of glass fibers, and Comparative Example 3 was inferior in LLC resistance because of a large amount of glass fibers. Further, Comparative Example 4 containing no olefin-based copolymer was inferior in LLC resistance, while Comparative Example 5 containing a large amount of olefin-based copolymer was inferior in fluidity. Furthermore, Comparative Examples 6 and 9 in which the content ratio of the constituent unit derived from the glycidyl ester of α, β-unsaturated acid in the olefin-based copolymer was large, were all inferior in fluidity. Comparative Examples 7 and 8, which did not contain a silane coupling agent, were all inferior in LLC resistance.
As described above, in order to make the PAS resin composition excellent in both LLC resistance and fluidity, the melt viscosity of the PAS resin, the predetermined olefin-based copolymer and its content, the glass fiber and its content It can be seen that both the amount, the silane coupling agent and its content need to be within the ranges specified in the present embodiment.
1 試験片
10 樹脂部材
11 インサート部
1 Test piece 10 Resin member 11 Insert part

Claims (7)

  1.  水を含む流体と接触し得る成形品の成形に用いるポリアリーレンスルフィド樹脂組成物であって、
     温度310℃及びせん断速度1200sec-1で測定した溶融粘度が100~250Pa・sのポリアリーレンスルフィド樹脂100質量部に対して、α-オレフィン由来の構成単位とα,β-不飽和酸のグリシジルエステル由来の構成単位とを含有するオレフィン系共重合体を2.0~9.0質量部、ガラス繊維を5~40質量部、及びシランカップリング剤を0.1~0.7質量部含み、
     前記オレフィン系共重合体に対する前記α,β-不飽和酸のグリシジルエステル由来の構成単位の含有比率が1.0~8.0質量%であり、
     シリンダー温度320℃、射出圧力100MPa、保圧100MPa及び金型温度150℃における幅20mm及び厚み1mmの流動長が110~300mmである、ポリアリーレンスルフィド樹脂組成物。
    A polyarylene sulfide resin composition used for molding a molded article that can come into contact with a fluid containing water,
    Glycidyl ester of α-olefin-derived structural unit and α, β-unsaturated acid per 100 parts by mass of polyarylene sulfide resin having a melt viscosity of 100 to 250 Pa · s measured at a temperature of 310 ° C. and a shear rate of 1200 sec −1 2.0 to 9.0 parts by mass of an olefin-based copolymer containing a structural unit derived from the above, 5 to 40 parts by mass of glass fiber, and 0.1 to 0.7 parts by mass of a silane coupling agent
    The content ratio of the constituent unit derived from the glycidyl ester of the α, β-unsaturated acid to the olefin-based copolymer is 1.0 to 8.0% by mass,
    A polyarylene sulfide resin composition having a flow length of 110 to 300 mm with a width of 20 mm and a thickness of 1 mm at a cylinder temperature of 320 ° C., an injection pressure of 100 MPa, a holding pressure of 100 MPa, and a mold temperature of 150 ° C.
  2.  前記オレフィン系共重合体が、さらに(メタ)アクリル酸エステル由来の構成単位を含有する請求項1に記載のポリアリーレンスルフィド樹脂組成物。 The polyarylene sulfide resin composition according to claim 1, wherein the olefin-based copolymer further contains a structural unit derived from a (meth) acrylate.
  3.  前記水を含む流体が、ロングライフクーラントである請求項1又は2に記載のポリアリーレンスルフィド樹脂組成物。 The polyarylene sulfide resin composition according to claim 1 or 2, wherein the water-containing fluid is a long life coolant.
  4.  請求項1~3のいずれか1項に記載のポリアリーレンスルフィド樹脂組成物を成形してなる成形品。 A molded article obtained by molding the polyarylene sulfide resin composition according to any one of claims 1 to 3.
  5.  少なくとも一部に厚さ1.0mm以下の薄肉部を有する請求項4に記載の成形品。 The molded article according to claim 4, wherein at least a part of the molded article has a thin portion having a thickness of 1.0 mm or less.
  6.  インサート部材と、前記インサート部材の少なくとも一部を覆う樹脂部材とを有し、前記樹脂部材が請求項1~3のいずれか1項に記載のポリアリーレンスルフィド樹脂組成物を用いて形成された、インサート成形品。 An insert member, and a resin member covering at least a part of the insert member, wherein the resin member is formed using the polyarylene sulfide resin composition according to any one of claims 1 to 3. Insert molded product.
  7.  前記樹脂部材の少なくとも一部に厚さ1.0mm以下の薄肉部を有する請求項6に記載のインサート成形品。 7. The insert molded product according to claim 6, wherein at least a part of the resin member has a thin portion having a thickness of 1.0 mm or less.
PCT/JP2019/035732 2018-09-14 2019-09-11 Polyarylene sulfide resin composition, molded article, and insert-molded article WO2020054772A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-172512 2018-09-14
JP2018172512 2018-09-14

Publications (1)

Publication Number Publication Date
WO2020054772A1 true WO2020054772A1 (en) 2020-03-19

Family

ID=69776830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035732 WO2020054772A1 (en) 2018-09-14 2019-09-11 Polyarylene sulfide resin composition, molded article, and insert-molded article

Country Status (1)

Country Link
WO (1) WO2020054772A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022080129A1 (en) * 2020-10-16 2022-04-21
WO2023017762A1 (en) * 2021-08-11 2023-02-16 東ソー株式会社 Metal member–polyarylene sulfide member complex and production method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002003716A (en) * 2000-06-16 2002-01-09 Toray Ind Inc Polyphenylene sulfide resin composition and injection molding
JP2011256387A (en) * 2010-06-11 2011-12-22 Ticona Llc Blow molded article and process for making the same
JP2014502690A (en) * 2010-12-22 2014-02-03 ティコナ・エルエルシー High temperature conduit with complex 3D configuration
CN106147230A (en) * 2015-04-09 2016-11-23 东丽先端材料研究开发(中国)有限公司 The polyphenyl thioether resin composition of high fluidity high rigidity and products formed thereof
WO2019026869A1 (en) * 2017-08-02 2019-02-07 ポリプラスチックス株式会社 Polyarylene sulfide resin composition and fuel contact body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002003716A (en) * 2000-06-16 2002-01-09 Toray Ind Inc Polyphenylene sulfide resin composition and injection molding
JP2011256387A (en) * 2010-06-11 2011-12-22 Ticona Llc Blow molded article and process for making the same
JP2014502690A (en) * 2010-12-22 2014-02-03 ティコナ・エルエルシー High temperature conduit with complex 3D configuration
CN106147230A (en) * 2015-04-09 2016-11-23 东丽先端材料研究开发(中国)有限公司 The polyphenyl thioether resin composition of high fluidity high rigidity and products formed thereof
WO2019026869A1 (en) * 2017-08-02 2019-02-07 ポリプラスチックス株式会社 Polyarylene sulfide resin composition and fuel contact body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022080129A1 (en) * 2020-10-16 2022-04-21
WO2022080129A1 (en) * 2020-10-16 2022-04-21 ポリプラスチックス株式会社 Cooling system component for vehicles, said component being capable of coming into contact with fluid that contains water
WO2023017762A1 (en) * 2021-08-11 2023-02-16 東ソー株式会社 Metal member–polyarylene sulfide member complex and production method therefor

Similar Documents

Publication Publication Date Title
JP5618025B2 (en) Polyarylene sulfide resin composition and molded article
JP2009030030A (en) Polyphenylene sulfide resin composition and molding made therefrom
JP2008075049A (en) Polyphenylene sulfide resin composition and molded article
JP2005306926A (en) Polyphenylene sulfide resin composition and molded article
KR102647580B1 (en) Metal/resin composite and production method therefor
JP5510624B2 (en) Polyarylene sulfide resin composition and molded article
WO2020054772A1 (en) Polyarylene sulfide resin composition, molded article, and insert-molded article
JP2020109135A (en) Polyarylene sulfide-based resin composition and insert molding
JPWO2019208377A1 (en) Polyarylene sulfide resin composition, molded product, composite molded product and method for producing them
KR102141928B1 (en) Polyarylene sulfide resin composition, molded article and manufacturing method
JP6809083B2 (en) Polyarylene sulfide resin compositions, molded articles and methods for producing them
WO2019208709A1 (en) Polyarylene sulfide-based resin composition and insert-molded product
JP2005060454A (en) Polyphenylene sulfide resin composition and composite molded product
JP6797360B2 (en) Polyarylene sulfide resin composition, molded article and manufacturing method
JP2007246883A (en) Polyphenylene sulfide resin composition and molded article thereof
JP6823841B2 (en) Metal resin composite and its manufacturing method
JP2021075640A (en) Vehicular cooling system component contactable with fluid including water
JP6753470B2 (en) Polyarylene sulfide resin composition, molded product and manufacturing method
JP7311051B2 (en) Polyarylene sulfide resin composition, molded article and method for producing the same
JP6769582B2 (en) Polyarylene sulfide resin composition, molded product, composite molded product and method for producing them
JP7136394B1 (en) Polyarylene sulfide resin composition, molded article and method for producing the same
JP2017088878A (en) Polyarylene sulfide resin composition and molded article
JP2007211116A (en) Injection molded canister
WO2022180999A1 (en) Polyarylene sulfide resin composition, polyarylene sulfide resin composition manufacturing method, molded article, and molded article manufacturing method
WO2021246268A1 (en) Polyarylene sulfide resin composition, molded article, and methods for producing polyarylene sulfide resin composition and molded article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19859577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19859577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP