WO2020054382A1 - Output device for surface features measurement data and surface features measurement device - Google Patents

Output device for surface features measurement data and surface features measurement device Download PDF

Info

Publication number
WO2020054382A1
WO2020054382A1 PCT/JP2019/033326 JP2019033326W WO2020054382A1 WO 2020054382 A1 WO2020054382 A1 WO 2020054382A1 JP 2019033326 W JP2019033326 W JP 2019033326W WO 2020054382 A1 WO2020054382 A1 WO 2020054382A1
Authority
WO
WIPO (PCT)
Prior art keywords
image data
illumination
photoelectric conversion
conversion element
measurement
Prior art date
Application number
PCT/JP2019/033326
Other languages
French (fr)
Japanese (ja)
Inventor
良隆 寺岡
阿部 芳久
拓史 宇田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2020546821A priority Critical patent/JPWO2020054382A1/en
Publication of WO2020054382A1 publication Critical patent/WO2020054382A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/51Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/57Measuring gloss

Definitions

  • a coating portion including a flake-shaped aluminum piece or mica piece called a glittering material is used as a portion to be measured, and the output of surface characteristic measurement data used for measuring a parameter depending on its reflection angle characteristic is output.
  • the present invention relates to a device and a surface characteristic measuring device.
  • Paints containing the above brilliant materials appear different in color depending on the viewing angle, so they are widely used as metallic paint or pearl paint for a variety of industrial products such as automobiles that require design properties. Have been.
  • Patent Document 1 discloses that an object to be measured is illuminated from a specific direction or diffusely illuminated from all directions and reflected light is reflected.
  • a method has been proposed in which a two-dimensional sensor is used to analyze the reflected image to quantify the glitter and graininess of the object to be measured, which is manifested by the glitter contained in the interior of the automotive paint.
  • Patent Document 2 proposes a method of inspecting a surface for defects such as scratches and bumps by projecting a two-dimensional light and dark fringe pattern onto an object to be measured and analyzing the reflected image two-dimensionally. ing.
  • the measurement target is illuminated by a plurality of illuminations in specific directions independent of each other, or diffused illumination.
  • Patent Literature 2 since a bright and dark fringe pattern is used as an illumination pattern, illumination is performed at a plurality of incident angles at the same time. As a result, the reflection characteristic unique to each pixel cannot be uniquely determined. However, there is also a problem that high-precision measurement cannot be performed.
  • the present invention has been made in view of such a technical background, and does not complicate the apparatus, and can uniquely determine a reflection characteristic unique to each pixel in a measurement target portion. It is another object of the present invention to provide a surface characteristic measurement data output device and a surface characteristic measurement device capable of outputting data for enabling highly accurate measurement of a parameter depending on a reflection angle characteristic.
  • a single illumination display device capable of displaying an illumination pattern composed of a structured pattern having a cross-sectional intensity distribution indicated by a waveform that changes at a constant cycle, and measurement from an illumination pattern displayed on the illumination display device
  • a two-dimensional photoelectric conversion element that receives reflected light from the measured part when the measured part of the target is irradiated with the illumination light, receives and converts the reflected light into image data for each pixel, and outputs the image data.
  • a surface characteristic measurement data output device comprising: a photoelectric conversion element that is used for measuring a parameter that depends on a reflection angle characteristic of each pixel of a measurement site.
  • the display device for illumination displays the cross-sectional intensity distribution in the structured pattern with different phases a plurality of times, and the photoelectric conversion element receives reflected light for each display at a different phase to generate image data.
  • the display device for lighting displays the frequency of the cross-sectional intensity distribution in the structured pattern differently a plurality of times, and the photoelectric conversion element receives reflected light for each display at a different frequency to generate image data. 4.
  • the surface characteristic measurement data according to (6), wherein the parameter depending on the reflection angle characteristic includes at least one of information on luminance, chromaticity, light distribution characteristic, particle diameter, and dispersion and aggregation of the glittering material.
  • Output device The output device for surface characteristic measurement data according to (7), wherein the light distribution characteristic is measured based on reflection angle characteristics in two orthogonal directions.
  • the illumination display device individually displays the illumination patterns in different colors, the photoelectric conversion element receives reflected light of each color, converts the reflected light into image data, and outputs the image data. Item 10.
  • the surface characteristic measurement data output device according to any one of Items 1 to 9, wherein color information or spectral information of a measurement site is measured based on the image data.
  • a plurality of filters having different spectral transmittances are provided, and the photoelectric conversion element receives the reflected light through each filter, converts the reflected light into image data for each filter, and outputs the image data.
  • 10. The surface characteristic measurement data output device according to any one of the above items 1 to 9, wherein color information or spectral information of a measured portion is measured based on image data for each filter.
  • a surface characteristic measuring device comprising: a calculating unit that calculates a parameter.
  • the illumination display device of the surface characteristic measurement data output device displays the cross-sectional intensity distribution in the structured pattern with different phases a plurality of times, and the arithmetic unit outputs the surface characteristic measurement data photoelectrically.
  • a plurality of reflection intensity distributions at each pixel are calculated from the image data for each display of the structured pattern in which the cross-sectional intensity distribution has different phases output from the conversion element, and a phase is calculated from the calculated plurality of reflection intensity distributions.
  • the surface characteristic measurement data output device is provided in one housing, and the housing irradiates illumination light to a measurement site of the measurement object and reflects light reflected from the measurement site. 16.
  • the surface characteristic measuring device according to any one of the items 13 to 15, further comprising an opening for taking in and a result display unit for displaying a calculation result by the calculation unit.
  • the surface characteristic measuring device according to any one of the above items 13 to 16, wherein the arithmetic unit is configured by a personal computer.
  • the surface characteristic measuring device according to any one of the items 13 to 17, wherein the image data output from the photoelectric conversion element is sent to an arithmetic unit via a network.
  • the illumination light of the illumination pattern including the structured pattern having the cross-sectional intensity distribution indicated by the waveform that changes at a constant cycle is applied to the measurement site of the measurement target.
  • the reflected light from the measured part at the time is received by the photoelectric conversion element for each pixel, converted into image data, and output, so that the reflection characteristic unique to each pixel can be uniquely determined, and continuous for each pixel.
  • the reflection characteristics thus obtained can be obtained, and highly accurate measurement of parameters depending on the reflection angle characteristics can be performed.
  • the complexity of the configuration of the entire device can be suppressed.
  • the waveform that changes at a constant cycle is a sine wave or a cosine wave, it is possible to output image data for accurately measuring a parameter depending on the reflection angle characteristic.
  • the display device for illumination displays the cross-sectional intensity distribution in the structured pattern with different phases a plurality of times, and the photoelectric conversion element displays reflected light for each display with a different phase. Is received, converted into image data, and output, so that image data for easily and accurately measuring a parameter depending on the reflection angle characteristic can be output.
  • the display device for illumination displays the frequency of the cross-sectional intensity distribution in the structured pattern differently a plurality of times, and the photoelectric conversion element displays reflected light for each display at a different frequency. Is converted to image data and output, and the reflection angle characteristic unique to each pixel of the measured part becomes higher in accuracy, and the image data for measuring the parameter depending on the reflection angle characteristic more accurately is obtained. Can output.
  • the spatial resolution of the photoelectric conversion element is 10 to 100 ⁇ m, it is possible to measure a realistic reflection angle characteristic suitable for human eyes.
  • the light distribution characteristics can be measured based on the reflection angle characteristics in two orthogonal directions.
  • the display device for illumination and the photoelectric conversion element are arranged in a positional relationship such that the photoelectric conversion element can receive light reflected in a substantially regular reflection direction from the measurement site. Therefore, the image data output from the photoelectric conversion element includes image data in the vicinity of regular reflection, and therefore, the image data output from the photoelectric conversion element is used to generate image data in the vicinity of regular reflection.
  • a parameter depending on the reflection angle characteristic can be measured for the entire measurement site including the reflection angle characteristic.
  • highly accurate measurement of a parameter depending on a reflection angle characteristic of each pixel is performed. This makes it possible to obtain a measurement result with high visual correlation.
  • the illumination display device displays the illumination patterns individually in different colors and irradiates the measurement sites with the color information or the spectral information of the measurement sites for each color. Can be measured.
  • the photoelectric conversion element receives the reflected light through each filter having a different spectral transmittance, thereby measuring the color information or the spectral information of the measured portion for each filter. can do.
  • the calculation unit calculates a parameter depending on the reflection angle characteristic of each pixel of the measurement site using the image data output from the photoelectric conversion element of the output device. From, for example, for a measurement site such as a painted surface in which the glittering material in which the orientation distribution is concentrated in the horizontal direction of the coating film is dispersed, it is possible to highly accurately measure a parameter depending on the reflection angle characteristic, In addition, the surface characteristic measuring device can obtain continuous measurement results.
  • a parameter depending on the reflection angle characteristic can be calculated by the personal computer.
  • the image data output from the photoelectric conversion element is sent to the calculation unit via the network. Therefore, even if the calculation unit is apart from the measurement place, the parameter depending on the reflection angle characteristic is obtained. Can be measured.
  • FIG. 1 is a block diagram showing a configuration of a surface characteristic measuring device including a surface characteristic measuring data output device according to an embodiment of the present invention.
  • A is a diagram schematically illustrating a state in which the orientation of the glittering material is aligned in the horizontal direction of the coating film surface
  • B is a diagram schematically illustrating a state in which the orientation of the glittering material is away from 0 degrees.
  • A) shows a basic illumination pattern
  • (B) to (D) are diagrams showing a state in which the phase of the cross-sectional intensity distribution of the illumination pattern of (A) is shifted by ⁇ / 2.
  • FIG. 1 is a block diagram showing a configuration of a surface characteristic measuring device including a surface characteristic measuring data output device according to an embodiment of the present invention.
  • (A) is a diagram schematically illustrating a state in which the orientation of the glittering material is aligned in the horizontal direction of the coating film surface
  • B is a diagram schematically illustrating a state in which the orientation of
  • FIG. 4 is a diagram for explaining an imaging state by a photoelectric conversion element when a measurement target is a completely smooth surface that does not include a glittering material.
  • FIG. 5 is a diagram for explaining an imaging state by a photoelectric conversion element when a measurement target includes a glittering material having a light distribution.
  • (A) is a diagram schematically showing a state in which a large number of glittering materials having a small particle size are present
  • (B) is a diagram schematically showing a state in which a glittering material having a large particle size is present.
  • (A) is a figure which shows the state in which the glittering material is disperse
  • (B) is a figure which shows the state which aggregated, respectively.
  • FIG. 7B is a diagram showing a state in which the structured pattern is displayed with the phase of the cross-sectional intensity distribution being different in the direction orthogonal to the glue phase direction of the cross-sectional intensity distribution of FIG. 8A shows that the orientation angle of the glittering material can be measured in a plane parallel to the direction A in FIG. 8A, and FIG. It is a figure for each explaining that the orientation angle of a glitter material can be measured.
  • FIG. 3 is a diagram illustrating a configuration of an optical characteristic measuring device in which a filter unit for measuring color information and spectral information is added to a light receiving side. It is a figure which shows an example of a filter part typically.
  • (A), (B) is a figure which shows another example of a filter part typically. It is a perspective view of the optical characteristic measuring device concerning other embodiments of this invention.
  • FIG. 1 is a block diagram showing a configuration of a surface characteristic measuring device provided with a surface characteristic measuring data output device according to an embodiment of the present invention.
  • the surface characteristic measuring device shown in FIG. 1 includes a single illumination display device 1, an objective lens 2, a two-dimensional photoelectric conversion element 3 including a CCD sensor, and the like, an operation unit 4, a liquid crystal display device, and the like.
  • An illumination display device 1, an objective lens 2, and a photoelectric conversion element 3 constitute a surface characteristic measurement data output device.
  • the illumination display device 1 displays at least one illumination pattern, and irradiates the measurement site 100a of the measurement object (also referred to simply as a sample) 100 with the illumination light L1 from the displayed illumination pattern.
  • the photoelectric conversion element 3 has a large number of pixels, receives the reflected light L2 from the sample 100 for each pixel via the objective lens 2, converts the light into image data, and outputs the image data.
  • the illumination display device 1 and the photoelectric conversion element 3 are arranged in a positional relationship such that the photoelectric conversion element 3 can receive light reflected in a substantially regular reflection direction from the measured portion 100a.
  • the substantially regular reflection direction is intended to allow not only reflected light in the regular reflection direction but also reflected light slightly deviating from the regular reflection direction.
  • the reason for such an arrangement relationship is that even when physical properties such as high luminance and high saturation are expressed only near specular reflection because a large number of components in the horizontal direction (0 degree) exist in the measured portion 100a. This is in order to accurately respond and obtain a measurement result having high visual correlation.
  • the orientation distribution of the glitter material in the coating film is generally a distribution having a peak in the horizontal direction (0 degree direction) of the coating film surface. This is to accurately capture information in the vicinity of the specular reflection of the glittering material.
  • the surface (sample surface) of the measured portion 100a in the sample 100 and the photoelectric conversion element 3 have a conjugate relationship.
  • the image data which is an electric signal output from the photoelectric conversion element 3, is converted into a digital signal through an IV conversion circuit and an AD conversion circuit (not shown) as necessary, and is sent to the arithmetic unit 4.
  • the calculation unit 4 performs a calculation process of a parameter depending on the reflection angle characteristic by the CPU or the like using the sent image data, and the measurement result display unit 5 displays the calculation result by the calculation unit 4, that is, the measurement result.
  • the conversion of the image data output from the photoelectric conversion element 3 into a digital signal may be performed by the arithmetic unit 4.
  • the operation unit 4 may be a dedicated device or may be configured by a personal computer.
  • the image data output from the photoelectric conversion element 3 and processed into a digital signal may be sent to the arithmetic unit 4 via a network. In this case, even if the calculation unit 4 is located at a location distant from the measurement location, measurement of a parameter depending on the reflection angle characteristic can be performed.
  • the photoelectric conversion element 3 In order for the photoelectric conversion element 3 to detect a phenomenon observed visually, the photoelectric conversion element 3 needs a spatial resolution equivalent to that of a human eye. According to one study, the minimum width that can be distinguished by the human eye is about 0.6 minutes. Assuming that the distance from the pupil to the observation object is 20 to 30 cm, the distance between two distinguishable points is calculated to be 30 to 50 ⁇ m.
  • the particle size of the glitter material contained in the coating film is as small as 10 to 20 ⁇ m and as large as about 100 ⁇ m. It is more desirable that the photoelectric conversion element 3 can spatially distinguish each glittering material.
  • the spatial resolution of the photoelectric conversion element 3 is about 10 to 100 ⁇ m.
  • the reflection angle characteristic is a characteristic of a reflection angle at which the measured portion 100a reflects the illumination light L1 and is evaluated for each pixel of the photoelectric conversion element 3.
  • a parameter that depends on the reflection angle characteristic is information (for example, a light distribution angle) on the light distribution of the glittering material.
  • ⁇ ⁇ Select a resolution that is sufficiently high on the sample surface.
  • a description will be given of an example in which the surface 100 is coated with a glittering material as the sample 100, and it is assumed that the sample 100 has a spatial resolution enough to capture the texture structure of the surface.
  • the glittering material in the coating film exists with a certain inclination (orientation).
  • the orientation distribution generally has a peak in the horizontal direction (0 degrees) of the coating film surface, and has a distribution in which the number of glittering materials decreases with an increase in the angle, and is represented by, for example, a Gaussian distribution.
  • the state of orientation depends on design factors such as the type of glittering material and paint, and also depends on coating conditions such as the spraying speed, pressure, and film thickness of the paint.
  • coating conditions such as the spraying speed, pressure, and film thickness of the paint.
  • FIG. 2A when the orientation of the glittering material 110 is aligned in the horizontal direction (0 °) of the coating film surface, it is said that the orientation is good, and conversely, as shown in FIG.
  • the orientation of the glittering material 110 is apart from 0 degrees, it is said that the orientation is bad.
  • the method according to the present embodiment can be used as a method of quantifying the quality of the orientation.
  • a structured pattern having a cross-sectional intensity distribution indicated by a waveform that changes at a constant period is displayed on the illumination display device 1 as an illumination pattern to illuminate the measurement site 100a of the measurement target 100. It is.
  • the reflection angle characteristics of each pixel cannot be uniquely determined.
  • a structured pattern having a cross-sectional intensity distribution such as a sine wave or a cosine wave having a cross-sectional intensity distribution that changes at a constant cycle
  • the photoelectric conversion element 3 when displayed in a plurality of patterns in which the phase of the cross-sectional intensity distribution is changed.
  • the inventors have found that by applying a specific arithmetic processing to the image data output from the image processing unit 4 by the arithmetic unit 4, it is possible to measure a parameter depending on the reflection angle characteristic of each pixel.
  • a basic illumination pattern (hereinafter, referred to as a basic pattern) has a cross-sectional intensity distribution represented by a cosine wave for one cycle, as shown in FIG. Note that an illumination pattern having a cross-sectional intensity distribution indicated by a sine wave for one cycle may be used.
  • FIGS. 7B to 7D show structured patterns in which the phase of the sectional intensity distribution of the basic pattern in FIG. 7A is shifted, and in this example, the phases are shifted by ⁇ / 2. ing.
  • 3 (A) to 3 (D) show the luminance distribution of the display surface of the illumination display device 1 (white areas have higher luminance and black areas have lower luminance), and the lower figures show the cross-sectional intensity distribution. It is.
  • the surface of the sample 100 can be regarded as a spatial intensity distribution substantially according to the basic pattern (cosine wave). That is, the spatial intensity distribution at the coordinates (x, y) of the sample surface is represented by the following equation.
  • the reflected image is measured by the photoelectric conversion element 3. 2) Calculation of phase distribution from intensity distribution Consider a specific numerical value given to N.
  • the measurement site 100a of the sample 100 is sequentially illuminated in a pattern having the following spatial intensity distribution. This corresponds to three cosine waves whose phases are shifted by 2 ⁇ / 3.
  • phase distribution ⁇ (x, y) can be calculated by the following equation.
  • phase distribution ⁇ (x, y) can be calculated by the following simple formula.
  • the regular reflection direction of the reflected light L2 changes from a dotted line to a solid line as shown in FIG. Shift compared to. That is, it means that the phase shifts.
  • the amount of the shift depends on the reflection angle characteristics of the glittering material 110 and the surface, and furthermore, the orientation angle of the glittering material 110 or the gradient angle of the surface. That is, it is possible to uniquely determine, that is, measure, the orientation angle or the surface gradient angle of the glittering material 110 from the phase shift amount.
  • the phase distribution ⁇ (x, y) can be specified from one irradiation of only the basic pattern, The orientation angle of the material 110 can be obtained.
  • the parameters that can be calculated (measured) in the present embodiment and that depend on the reflection angle characteristics are not limited to the orientation angles.
  • By analyzing the two-dimensional spatial luminance distribution it is possible to quantify the size of the particle size of the glittering material 110 contained therein. Further, from the analysis result, the particle size distribution, the average particle size, and the like of the glittering material 110 can be calculated.
  • FIG. 6A shows a case where a large number of luminous materials 110 having a small particle diameter are present
  • FIG. 6B shows a case where a luminous material 110 having a large particle diameter is present.
  • the particle size of the glittering material 110 can be calculated because the light distribution angle and the horizontal length of the glittering material 110 can be determined by analyzing the two-dimensional spatial luminance distribution.
  • FIG. 7A shows a state where the glittering material 110 is dispersed
  • FIG. 7B shows a state where the glittering material 110 is aggregated.
  • the reflected light from the measurement target portion 100a when the illumination light of the illumination pattern including the structured pattern having the cross-sectional intensity distribution that changes at a constant cycle is applied to the measurement target portion 100a of the measurement target 100 Since the photoelectric conversion element 3 receives light for each pixel, converts the light into image data, and outputs the image data, it is possible to uniquely determine the reflection characteristic unique to each pixel and obtain continuous reflection characteristics for each pixel. Highly accurate measurement of a parameter depending on the angle characteristic becomes possible, and a continuous measurement result is obtained. In addition, measurement in a specific limited range becomes possible.
  • FIG. 8A a structure in which the phase of the cross-sectional intensity distribution is changed in the width direction of the display surface of the display device 1 for illumination (the phase direction A in the horizontal direction in FIG. 8).
  • B the two directions of the structured pattern in which the phase of the cross-sectional intensity distribution is changed in a direction perpendicular to the width direction (the vertical direction in the figure is a phase direction B).
  • the measurement is performed by illuminating the measured portion 100a of the measurement object 100 with an illumination pattern based on the structured pattern. This makes it possible to evaluate the reflection angle characteristics of the glittering material 110 in two orthogonal directions, and to measure the orientation angle and the like of the glittering material 110 in two orthogonal directions.
  • the details are as follows.
  • the illumination display device 1 displays the illumination display 11 with the basic pattern of A1, the A2 obtained by shifting the phase of the cross-sectional intensity distribution of the basic pattern A1 by ⁇ / 2, and further by ⁇ /.
  • the phase of the cross-sectional intensity distribution is B, such as B2, the phase of the cross-sectional intensity distribution of the basic pattern B1, the phase B2 shifted by ⁇ / 2, the B3 further shifted by ⁇ / 2, and the B4 shifted ⁇ / 2.
  • a plurality of illumination patterns shifted in the direction are displayed, and measurement is performed in the same manner as in the first embodiment.
  • the orientation angle of the glittering material 110 in a plane parallel to the direction A can be measured as shown in FIG.
  • the orientation angle of the glittering material 110 in a plane parallel to the direction B can be measured, as shown in FIG. .
  • the orientation angle (light distribution) of the glittering material 110 and the surface gradient angle (surface gradient angle) depending on the reflection angle characteristics are calculated. Gradient distribution).
  • the change of the vertical axis is small especially near the peak and valley of the cosine wave peak, and in some cases, the signal component of the phase distribution is buried in noise. Is concerned.
  • the orientation angle (or surface normal vector) in any two-dimensional direction can be more accurately determined. It can be calculated and measured well.
  • the sample 100 whose surface is coated with the glittering material 110 is exemplified.
  • fine irregularities and gradients are present on the surface in a micro region on the order of several ⁇ m to several tens ⁇ m. Due to the microstructure, a part of the surface appears to glitter when illuminated and observed from a specific direction, and another part shines when illuminated and observed from another direction. ing.
  • the glittering material even in the case where the glittering material is not present, even for the sample 100 having minute irregularities or gradients on the surface, such as the one which has been subjected to the alumite treatment, it depends on the reflection angle characteristics as in the case of Examples 1 to 3. It becomes possible to measure parameters such as the gradient angle. (Embodiment 5) In particular, in the case of pearl pigments, the color changes according to the observation angle. Therefore, it is very significant to perform wavelength resolution measurement such as color measurement and spectroscopic measurement. Therefore, a mechanism for measuring color information or spectral information of the measured portion 100a may be added as a parameter depending on the reflection angle characteristics.
  • RGB Red, green, and blue
  • RGB are individually displayed in a time-division manner, and the photoelectric conversion element 3 receives reflected light of each color in synchronization with the display timing, and outputs image data, so that color Information and spectral information can be calculated and measured.
  • a mechanism for measuring color information / spectral information is added to the illumination side has been described.
  • a color measurement mechanism is added to the light receiving side will be described.
  • the two-dimensional color filter unit 6 is provided on the front surface of the photoelectric conversion element 3.
  • the configuration of the surface characteristic measuring apparatus shown in FIG. 11 is the same as that of the surface characteristic measuring apparatus shown in FIG.
  • a filter having a plurality of filters 61 to 63 having different spectral transmittances corresponding to the pixels 31 of the photoelectric conversion element 3 can be given.
  • the photoelectric conversion element 3 receives reflected light of a color corresponding to the spectral transmittance of each of the filters 61 to 63 and outputs image data. Can be used to calculate and measure color information and spectral information.
  • the filter array may be a Bayer array.
  • the output of the pixel between them may be interpolated from the output of the same type of adjacent filter.
  • the plurality of filters 61 to 63 may be RGB filters or filters having sensitivities corresponding to the color matching functions x ( ⁇ ), y ( ⁇ ), and z ( ⁇ ), which are the sensitivities of human eyes. .
  • the configuration shown in FIG. 13 is also possible. That is, a plurality (three in the case of FIG. 12) of filters 64 to 66 having different spectral transmittances are arranged on the circumference of the disk 67, and the rotating shaft 71 of the motor 7 is installed at the center of the disk 67. 7, the disk 67 is rotated in the circumferential direction. The reflected light L2 from the measurement site 100a of the sample 100 is transmitted through the filters 64 to 67, and then arranged so as to be received by the photoelectric conversion element 3.
  • the photoelectric conversion element 3 sequentially receives light in the sequence of transmission of the first filter 64 ⁇ rotation of the disk 67 ⁇ transmission of the second filter 65 ⁇ rotation of the disk 67 ⁇ transmission of the third filter 66, and outputs corresponding image data. Therefore, it is possible to calculate and measure color information and spectral information in a time-division manner.
  • the plurality of filters 64 to 66 may be RGB filters or filters having sensitivities corresponding to the color matching functions x ( ⁇ ), y ( ⁇ ), and z ( ⁇ ), which are the sensitivities of the human eye. But it is good.
  • a plurality of different band-pass filters having a full width at half maximum of about 10 to 20 nm and a center-of-gravity wavelength of about 10 nm are arranged on the circumference, and the motor is rotated to transmit light in order, so that the spectral reflection at each two-dimensional pixel is obtained. It is also possible to measure the rate.
  • FIG. 14 is a perspective view showing an appearance of an optical characteristic measuring device according to another embodiment of the present invention. In this embodiment, the optical characteristic measuring device is configured as a portable hand-held type.
  • the illumination display device 1, the objective lens 2, the photoelectric conversion element 3, the arithmetic unit 4, and the two-dimensional color filter unit 6 are housed in the housing 8.
  • a carrying grip 82 is provided on the upper surface of the housing 8
  • a measurement result display unit 5 for displaying a measurement result is provided, and a lower surface of the housing 8 is An opening 81 for irradiating the measurement site 100a with illumination light and taking in reflected light from the measurement site is formed.
  • the optical characteristic measuring device shown in FIG. 14 holds the grip portion 82 and positions the opening 81 on the lower surface at the measured portion 100a of the sample 100 when used. Then, in this state, the sample 100 is irradiated with illumination light from the illumination display device 1 housed inside the housing 8, the reflected light is received by the photoelectric conversion element 3, and output from the photoelectric conversion element 3.
  • the calculation unit 5 calculates the parameter depending on the reflection angle characteristic by using the image data, and displays the measurement result on the measurement result display unit 5.
  • a parameter depending on the reflection angle characteristic can be measured regardless of the location by carrying the housing.
  • the present invention can be used for measurement of a parameter depending on the reflection angle characteristic, for example, with a painted portion including a flake-shaped aluminum piece or mica piece called a glitter material as a measured portion.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The present invention comprises: a single display device (1) for illumination that is capable of displaying an illumination pattern from a structured pattern having a cross-sectional intensity distribution that changes in a regular cycle; and a two-dimensional photoelectric conversion element (3) that, for each pixel, receives reflected light from a measurement site (100a) in a measurement target (100) when illumination light is illuminated on the measurement site from an illumination pattern, converting the reflected light to image data and outputting same. The image data is used to measure a parameter that depends on the reflection angle for each pixel at the measurement site.

Description

表面特性測定用データの出力装置及び表面特性測定装置Output device for surface characteristic measurement data and surface characteristic measurement device
 この発明は、例えば光輝材と呼ばれるフレーク状のアルミニウム片やマイカ片を含む塗装部位等を被測定部位として、その反射角度特性に依存するパラメータを測定するのに用いられる表面特性測定用データの出力装置、及び表面特性測定装置に関する。 According to the present invention, for example, a coating portion including a flake-shaped aluminum piece or mica piece called a glittering material is used as a portion to be measured, and the output of surface characteristic measurement data used for measuring a parameter depending on its reflection angle characteristic is output. The present invention relates to a device and a surface characteristic measuring device.
 上記のような光輝材が含まれた塗装は、観察角度によって色彩が異なるように見えることから、メタリック塗装あるいはパール塗装等として、意匠性が要求される自動車を始め各種の工業製品等に幅広く使用されている。 Paints containing the above brilliant materials appear different in color depending on the viewing angle, so they are widely used as metallic paint or pearl paint for a variety of industrial products such as automobiles that require design properties. Have been.
 従来、このようなメタリック塗装あるいはパール塗装の特徴の評価を、色彩以外の質感としてとらえるために、特許文献1には、被測定物を特定方向から照明し又は全方向から拡散照明し、反射光を二次元センサで受光し、反射像を解析することで、自動車塗料内部に含まれる光輝材によって発現される、被測定物の光輝感・粒子感を数値化する手法が提案されている。 Conventionally, in order to grasp such an evaluation of the characteristic of metallic coating or pearl coating as a texture other than color, Patent Document 1 discloses that an object to be measured is illuminated from a specific direction or diffusely illuminated from all directions and reflected light is reflected. A method has been proposed in which a two-dimensional sensor is used to analyze the reflected image to quantify the glitter and graininess of the object to be measured, which is manifested by the glitter contained in the interior of the automotive paint.
 また、特許文献2には、二次元の明暗縞パターンを被測定物に投影し、その反射像を二次元的に解析することで、表面の傷・ブツ等の欠陥を検査する手法が提案されている。 Patent Document 2 proposes a method of inspecting a surface for defects such as scratches and bumps by projecting a two-dimensional light and dark fringe pattern onto an object to be measured and analyzing the reflected image two-dimensionally. ing.
特開2006-208327号公報JP 2006-208327 A 特開2008-224341号公報JP 2008-224341 A
 しかし特許文献1に記載の技術では、各々独立した特定方向の複数の照明、もしくは拡散照明にて被測定部位を照射するため、装置の複雑化が懸念される。 However, in the technique described in Patent Literature 1, the measurement target is illuminated by a plurality of illuminations in specific directions independent of each other, or diffused illumination.
 しかも、互いに不連続な角度での測定になるため、結果の連続性に欠け、このため高精度な測定を行うことができないとか、特定の限られた角度範囲の光学特性等を測定したい場合に対し、応用性に欠けるという課題もある。 In addition, since measurements are performed at discontinuous angles with each other, the continuity of the result is lacking, so that high-precision measurement cannot be performed, or when it is desired to measure optical characteristics or the like in a specific limited angle range. On the other hand, there is also a problem of lack of applicability.
 また特許文献2に記載の技術では、照明パターンとして明暗縞パターンが用いられているため、同時に複数の入射角から照明がなされる結果、各画素固有の反射特性を一意に決定することができず、やはり高精度な測定を行うことができないという課題があった。 Further, in the technology described in Patent Literature 2, since a bright and dark fringe pattern is used as an illumination pattern, illumination is performed at a plurality of incident angles at the same time. As a result, the reflection characteristic unique to each pixel cannot be uniquely determined. However, there is also a problem that high-precision measurement cannot be performed.
 この発明は、このような技術的背景に鑑みてなされたものであって、装置の複雑化を生じることがなく、しかも、被測定部位における各画素固有の反射特性を一意に決定することができ、反射角度特性に依存するパラメータの精度の高い測定を可能とするためのデータを出力できる表面特性測定用データの出力装置、及び表面特性測定装置を提供することを目的とする。 The present invention has been made in view of such a technical background, and does not complicate the apparatus, and can uniquely determine a reflection characteristic unique to each pixel in a measurement target portion. It is another object of the present invention to provide a surface characteristic measurement data output device and a surface characteristic measurement device capable of outputting data for enabling highly accurate measurement of a parameter depending on a reflection angle characteristic.
 上記目的は、以下の手段によって達成される。
(1)一定周期で変化する波形で示される断面強度分布を有する構造化パターンからなる照明パターンを表示可能な単一の照明用表示装置と、前記照明用表示装置に表示された照明パターンから測定対象物の被測定部位に対して照明光が照射されたときの前記被測定部位からの反射光を、画素毎に受光して画像データに変換し出力する二次元の光電変換素子であって、前記画像データは被測定部位の各画素毎の反射角度特性に依存するパラメータを測定するのに使用される光電変換素子と、を備えた表面特性測定用データの出力装置。
(2)一定周期で変化する波形は正弦波もしくは余弦波である前項1に記載の表面特性測定用データの出力装置。
(3)前記照明用表示装置は、構造化パターンにおける断面強度分布の位相を複数回異ならせて表示し、前記光電変換素子は、異なる位相での表示毎に反射光を受光して画像データに変換し出力する前項1または2に記載の表面特性測定用データの出力装置。
(4)前記照明用表示装置は、構造化パターンにおける断面強度分布の周波数を複数回異ならせて表示し、前記光電変換素子は、異なる周波数での表示毎に反射光を受光して画像データに変換し出力する前項1~3のいずれかに記載の表面特性測定用データの出力装置。
(5)前記光電変換素子の空間分解能が10~100μmである前項1~4のいずれかに記載の表面特性測定用データの出力装置。
(6)前記測定対象物の被測定部位は光輝材が含まれた塗装部位であり、前記反射角度特性は前記光輝材の反射角度特性である前項1~5のいずれかに記載の表面特性測定用データの出力装置。
(7)反射角度特性に依存するパラメータには、光輝材の輝度、色度、配光特性、粒径、分散凝集に関する情報のうちの少なくとも一つが含まれる前項6に記載の表面特性測定用データの出力装置。
(8)前記配光特性は、直交する2方向における反射角度特性に基づいて測定される前項7に記載の表面特性測定用データの出力装置。
(9)前記照明用表示装置と前記光電変換素子とは、前記光電変換素子が前記被測定部位からの略正反射方向の反射光を受光可能である位置関係で配置されている前項1~8のいずれかに記載の表面特性測定用データの出力装置。
(10)前記照明用表示装置は、異なる色で前記照明パターンを個別に表示し、前記光電変換素子は、各色毎の反射光を受光し画像データに変換して出力し、出力された各色毎の画像データに基づいて、被測定部位の色情報もしくは分光情報が測定される前項1~9のいずれかに記載の表面特性測定用データの出力装置。
(11)分光透過率の異なる複数のフィルタを備えると共に、前記光電変換素子は各フィルタを介して前記反射光を受光することにより、各フィルタ毎の画像データに変換して出力し、出力された各フィルタ毎の画像データに基づいて、被測定部位の色情報もしくは分光情報が測定される前項1~9のいずれかに記載の表面特性測定用データの出力装置。
(12)前記複数のフィルタは、等色関数x(λ)、y(λ)、z(λ)に対応する分光透過率を有している前項11に記載の表面特性測定用データの出力装置。
(13)前項1~12のいずれかに記載の表面特性測定用データの出力装置と、前記出力装置から出力された画像データに基づいて、被測定部位の各画素毎の反射角度特性に依存するパラメータを算出する演算部と、を備えた表面特性測定装置。
(14)前記表面特性測定用データの出力装置の照明用表示装置は、構造化パターンにおける断面強度分布の位相を複数回異ならせて表示し、前記演算部は、前記表面特性測定用データの光電変換素子から出力される、断面強度分布の位相が異なる複数回の構造化パターンの表示毎の画像データから、各画素における複数の反射強度分布を算出するとともに、算出した複数の反射強度分布から位相分布を算出し、前記位相分布に基づいて、反射角度特性に依存するパラメータを算出する前項13に記載の表面特性測定装置。
(15)前記断面強度分布は正弦波もしくは余弦波で示される前項13または14に記載の表面特性測定装置。
(16)前記表面特性測定用データの出力装置は1つの筐体内に備えられ、前記筐体には、前記測定対象物の被測定部位に照明光を照射し、被測定部位からの反射光を取り込むための開口と、前記演算部による算出結果を表示するための結果表示部が備えられている前項13~15のいずれかに記載の表面特性測定装置。
(17)前記演算部は、パーソナルコンピュータにより構成されている前項13~16のいずれかに記載の表面特性測定装置。
(18)前記光電変換素子から出力された画像データはネットワークを介して演算部に送られる前項13~17のいずれかに記載の表面特性測定装置。
The above object is achieved by the following means.
(1) A single illumination display device capable of displaying an illumination pattern composed of a structured pattern having a cross-sectional intensity distribution indicated by a waveform that changes at a constant cycle, and measurement from an illumination pattern displayed on the illumination display device A two-dimensional photoelectric conversion element that receives reflected light from the measured part when the measured part of the target is irradiated with the illumination light, receives and converts the reflected light into image data for each pixel, and outputs the image data. A surface characteristic measurement data output device, comprising: a photoelectric conversion element that is used for measuring a parameter that depends on a reflection angle characteristic of each pixel of a measurement site.
(2) The device for outputting surface characteristic measurement data according to the above item 1, wherein the waveform that changes at a constant cycle is a sine wave or a cosine wave.
(3) The display device for illumination displays the cross-sectional intensity distribution in the structured pattern with different phases a plurality of times, and the photoelectric conversion element receives reflected light for each display at a different phase to generate image data. 3. The output device for surface characteristic measurement data according to the above 1 or 2, which converts and outputs the converted data.
(4) The display device for lighting displays the frequency of the cross-sectional intensity distribution in the structured pattern differently a plurality of times, and the photoelectric conversion element receives reflected light for each display at a different frequency to generate image data. 4. The device for outputting surface characteristic measurement data according to any one of the items 1 to 3, which converts and outputs the converted data.
(5) The output device for surface characteristic measurement data according to any one of (1) to (4) above, wherein the photoelectric conversion element has a spatial resolution of 10 to 100 μm.
(6) The surface property measurement according to any one of (1) to (5) above, wherein the measured portion of the object to be measured is a painted portion containing a glitter material, and the reflection angle characteristic is a reflection angle characteristic of the glitter material. Data output device.
(7) The surface characteristic measurement data according to (6), wherein the parameter depending on the reflection angle characteristic includes at least one of information on luminance, chromaticity, light distribution characteristic, particle diameter, and dispersion and aggregation of the glittering material. Output device.
(8) The output device for surface characteristic measurement data according to (7), wherein the light distribution characteristic is measured based on reflection angle characteristics in two orthogonal directions.
(9) The illumination display device and the photoelectric conversion element, wherein the photoelectric conversion element is arranged in a positional relationship such that the photoelectric conversion element can receive light reflected in a substantially regular reflection direction from the measurement site. An output device for surface characteristic measurement data according to any one of the above.
(10) The illumination display device individually displays the illumination patterns in different colors, the photoelectric conversion element receives reflected light of each color, converts the reflected light into image data, and outputs the image data. Item 10. The surface characteristic measurement data output device according to any one of Items 1 to 9, wherein color information or spectral information of a measurement site is measured based on the image data.
(11) A plurality of filters having different spectral transmittances are provided, and the photoelectric conversion element receives the reflected light through each filter, converts the reflected light into image data for each filter, and outputs the image data. 10. The surface characteristic measurement data output device according to any one of the above items 1 to 9, wherein color information or spectral information of a measured portion is measured based on image data for each filter.
(12) The device for outputting surface characteristic measurement data according to the above item 11, wherein the plurality of filters have spectral transmittances corresponding to the color matching functions x (λ), y (λ), and z (λ). .
(13) Based on the output device for surface characteristic measurement data according to any one of the above items 1 to 12, and the reflection angle characteristic of each pixel of the measurement site based on the image data output from the output device. A surface characteristic measuring device comprising: a calculating unit that calculates a parameter.
(14) The illumination display device of the surface characteristic measurement data output device displays the cross-sectional intensity distribution in the structured pattern with different phases a plurality of times, and the arithmetic unit outputs the surface characteristic measurement data photoelectrically. A plurality of reflection intensity distributions at each pixel are calculated from the image data for each display of the structured pattern in which the cross-sectional intensity distribution has different phases output from the conversion element, and a phase is calculated from the calculated plurality of reflection intensity distributions. 14. The surface characteristic measuring device according to the preceding clause 13, wherein a distribution is calculated, and a parameter depending on a reflection angle characteristic is calculated based on the phase distribution.
(15) The surface characteristic measuring apparatus according to the above (13) or (14), wherein the cross-sectional intensity distribution is represented by a sine wave or a cosine wave.
(16) The surface characteristic measurement data output device is provided in one housing, and the housing irradiates illumination light to a measurement site of the measurement object and reflects light reflected from the measurement site. 16. The surface characteristic measuring device according to any one of the items 13 to 15, further comprising an opening for taking in and a result display unit for displaying a calculation result by the calculation unit.
(17) The surface characteristic measuring device according to any one of the above items 13 to 16, wherein the arithmetic unit is configured by a personal computer.
(18) The surface characteristic measuring device according to any one of the items 13 to 17, wherein the image data output from the photoelectric conversion element is sent to an arithmetic unit via a network.
 前項(1)に記載の発明によれば、一定周期で変化する波形で示される断面強度分布を有する構造化パターンからなる照明パターンの照明光が測定対象物の被測定部位に対して照射されたときの被測定部位からの反射光を、光電変換素子が画素毎に受光して画像データに変換し出力するから、各画素固有の反射特性を一意に決定することができると共に、各画素で連続した反射特性が得られるものとなり、反射角度特性に依存するパラメータの精度の高い測定が可能となる。しかも、単一の照明用表示装置を使用するから、装置全体の構成の複雑化を抑制できる。 According to the invention described in the above (1), the illumination light of the illumination pattern including the structured pattern having the cross-sectional intensity distribution indicated by the waveform that changes at a constant cycle is applied to the measurement site of the measurement target. The reflected light from the measured part at the time is received by the photoelectric conversion element for each pixel, converted into image data, and output, so that the reflection characteristic unique to each pixel can be uniquely determined, and continuous for each pixel. The reflection characteristics thus obtained can be obtained, and highly accurate measurement of parameters depending on the reflection angle characteristics can be performed. Moreover, since a single illumination display device is used, the complexity of the configuration of the entire device can be suppressed.
 前項(2)に記載の発明によれば、一定周期で変化する波形は正弦波もしくは余弦波であるから、反射角度特性に依存するパラメータの測定を精度良く行うための画像データを出力できる。 According to the invention described in the above item (2), since the waveform that changes at a constant cycle is a sine wave or a cosine wave, it is possible to output image data for accurately measuring a parameter depending on the reflection angle characteristic.
 前項(3)に記載の発明によれば、照明用表示装置は、構造化パターンにおける断面強度分布の位相を複数回異ならせて表示し、光電変換素子は、異なる位相での表示毎に反射光を受光して画像データに変換し出力するから、反射角度特性に依存するパラメータをより簡単に精度良く測定するための画像データを出力できる。 According to the invention described in the above item (3), the display device for illumination displays the cross-sectional intensity distribution in the structured pattern with different phases a plurality of times, and the photoelectric conversion element displays reflected light for each display with a different phase. Is received, converted into image data, and output, so that image data for easily and accurately measuring a parameter depending on the reflection angle characteristic can be output.
 前項(4)に記載の発明によれば、照明用表示装置は、構造化パターンにおける断面強度分布の周波数を複数回異ならせて表示し、光電変換素子は、異なる周波数での表示毎に反射光を受光して画像データに変換し出力するから、被測定部位の各画素固有の反射角度特性がより精度の高いものとなり、反射角度特性に依存するパラメータをより精度良く測定するための画像データを出力できる。 According to the invention described in the above (4), the display device for illumination displays the frequency of the cross-sectional intensity distribution in the structured pattern differently a plurality of times, and the photoelectric conversion element displays reflected light for each display at a different frequency. Is converted to image data and output, and the reflection angle characteristic unique to each pixel of the measured part becomes higher in accuracy, and the image data for measuring the parameter depending on the reflection angle characteristic more accurately is obtained. Can output.
 前項(5)に記載の発明によれば、光電変換素子の空間分解能が10~100μmであるから、人の目に適した現実的な反射角度特性の測定が可能となる。 According to the invention described in (5), since the spatial resolution of the photoelectric conversion element is 10 to 100 μm, it is possible to measure a realistic reflection angle characteristic suitable for human eyes.
 前項(6)に記載の発明によれば、塗装部位に含まれる光輝材の反射角度特性に依存するパラメータを測定するための画像データを出力することができる。 According to the invention described in the above item (6), it is possible to output image data for measuring a parameter depending on a reflection angle characteristic of a glitter material included in a coating portion.
 前項(7)に記載の発明によれば、光輝材の輝度、色度、配光特性、粒径、分散凝集に関する情報のうちの少なくとも一つを測定するための画像データを出力できる。 According to the invention described in the above item (7), it is possible to output image data for measuring at least one of information on luminance, chromaticity, light distribution characteristics, particle diameter, and dispersion aggregation of the glittering material.
 前項(8)に記載の発明によれば、直交する2方向における反射角度特性に基づいて配光特性を測定することができる。 According to the invention described in the above item (8), the light distribution characteristics can be measured based on the reflection angle characteristics in two orthogonal directions.
 前項(9)に記載の発明によれば、照明用表示装置と光電変換素子とは、光電変換素子が被測定部位からの略正反射方向の反射光を受光可能である位置関係で配置されているから、光電変換素子から出力された画像データには、正反射近傍の画像データが含まれることになり、このため、光電変換素子から出力された画像データを使用して、正反射近傍での反射角度特性を含む被測定部位の全体について、反射角度特性に依存するパラメータを測定することができる。その結果、例えば配向分布が塗膜水平方向に集中している光輝材が分散された塗装面等の被測定部位に対して、各画素毎の反射角度特性に依存するパラメータの精度の高い測定が可能となり、目視相関の高い測定結果を得ることができる。 According to the invention described in the above item (9), the display device for illumination and the photoelectric conversion element are arranged in a positional relationship such that the photoelectric conversion element can receive light reflected in a substantially regular reflection direction from the measurement site. Therefore, the image data output from the photoelectric conversion element includes image data in the vicinity of regular reflection, and therefore, the image data output from the photoelectric conversion element is used to generate image data in the vicinity of regular reflection. A parameter depending on the reflection angle characteristic can be measured for the entire measurement site including the reflection angle characteristic. As a result, for a measurement site such as a painted surface in which the glittering material in which the orientation distribution is concentrated in the horizontal direction of the coating film is dispersed, highly accurate measurement of a parameter depending on a reflection angle characteristic of each pixel is performed. This makes it possible to obtain a measurement result with high visual correlation.
 前項(10)に記載の発明によれば、照明用表示装置は、異なる色で照明パターンを個別に表示し、被測定部位に照射することで、各色毎の被測定部位の色情報もしくは分光情報を測定することができる。 According to the invention described in the above item (10), the illumination display device displays the illumination patterns individually in different colors and irradiates the measurement sites with the color information or the spectral information of the measurement sites for each color. Can be measured.
 前項(11)に記載の発明によれば、光電変換素子が、分光透過率の異なる各フィルタを介して反射光を受光することにより、各フィルタ毎に被測定部位の色情報もしくは分光情報を測定することができる。 According to the invention described in the above (11), the photoelectric conversion element receives the reflected light through each filter having a different spectral transmittance, thereby measuring the color information or the spectral information of the measured portion for each filter. can do.
 前項(12)に記載の発明によれば、等色関数x(λ)、y(λ)、z(λ)に対応する分光透過率のフィルタを用いることで、人間の目の感度に近い情報を算出することができる。 According to the invention described in the above (12), by using filters having spectral transmittances corresponding to the color matching functions x (λ), y (λ) and z (λ), information close to the sensitivity of human eyes can be obtained. Can be calculated.
 前項(13)に記載の発明によれば、出力装置の光電変換素子から出力された画像データを使用して、演算部が被測定部位の各画素毎の反射角度特性に依存するパラメータを算出するから、例えば配向分布が塗膜水平方向に集中している光輝材が分散された塗装面等の被測定部位に対して、反射角度特性に依存するパラメータの測定を高精度に行うことができ、しかも連続的な測定結果を得ることができる表面特性測定装置となる。 According to the invention described in the above item (13), the calculation unit calculates a parameter depending on the reflection angle characteristic of each pixel of the measurement site using the image data output from the photoelectric conversion element of the output device. From, for example, for a measurement site such as a painted surface in which the glittering material in which the orientation distribution is concentrated in the horizontal direction of the coating film is dispersed, it is possible to highly accurately measure a parameter depending on the reflection angle characteristic, In addition, the surface characteristic measuring device can obtain continuous measurement results.
 前項(14)に記載の発明によれば、演算部による反射角度特性に依存するパラメータの算出ひいては測定を、確実に行うことができる。 According to the invention described in (14) above, the calculation of the parameter depending on the reflection angle characteristic by the calculation unit, and hence the measurement, can be reliably performed.
 前項(15)に記載の発明によれば、断面強度分布は正弦波もしくは余弦波で示されるから、演算部での反射角度特性に依存するパラメータの算出がより簡単になる。 According to the invention described in the above (15), since the sectional intensity distribution is represented by a sine wave or a cosine wave, the calculation of the parameter depending on the reflection angle characteristic in the calculation unit becomes easier.
 前項(16)に記載の発明によれば、筐体を持ち運ぶことにより、場所を問わず反射角度特性に依存するパラメータを測定できる。 According to the invention described in (16) above, by carrying the housing, it is possible to measure a parameter depending on the reflection angle characteristic regardless of the place.
 前項(17)に記載の発明によれば、パーソナルコンピュータにより反射角度特性に依存するパラメータを算出できる。 According to the invention described in the item (17), a parameter depending on the reflection angle characteristic can be calculated by the personal computer.
 前項(18)に記載の発明によれば、光電変換素子から出力された画像データはネットワークを介して演算部に送られるから、演算部が測定場所と離れていても反射角度特性に依存するパラメータの測定を行うことができる。 According to the invention described in (18), the image data output from the photoelectric conversion element is sent to the calculation unit via the network. Therefore, even if the calculation unit is apart from the measurement place, the parameter depending on the reflection angle characteristic is obtained. Can be measured.
この発明の一実施形態に係る表面特性測定用データの出力装置を備えた表面特性測定装置の構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of a surface characteristic measuring device including a surface characteristic measuring data output device according to an embodiment of the present invention. (A)は光輝材の配向が塗膜面水平方向に揃っている状態を、(B)は光輝材の配向が0度から離れている状態を、それぞれ模式的に示す図である。(A) is a diagram schematically illustrating a state in which the orientation of the glittering material is aligned in the horizontal direction of the coating film surface, and (B) is a diagram schematically illustrating a state in which the orientation of the glittering material is away from 0 degrees. (A)は基本となる照明パターンを示し、(B)~(D)は(A)の照明パターンの断面強度分布の位相をπ/2ずつずらした状態を示す図である。(A) shows a basic illumination pattern, and (B) to (D) are diagrams showing a state in which the phase of the cross-sectional intensity distribution of the illumination pattern of (A) is shifted by π / 2. 測定対象物が光輝材を含まない完全な平滑面である場合の、光電変換素子による撮像状態を説明するための図である。FIG. 4 is a diagram for explaining an imaging state by a photoelectric conversion element when a measurement target is a completely smooth surface that does not include a glittering material. 測定対象物が配光分布を有する光輝材を含む場合の、光電変換素子による撮像状態を説明するための図である。FIG. 5 is a diagram for explaining an imaging state by a photoelectric conversion element when a measurement target includes a glittering material having a light distribution. (A)は小さい粒径の光輝材が多数存在している状態を、(B)は大きな粒径の光輝材が存在している状態を、それぞれ模式的に示す図である。(A) is a diagram schematically showing a state in which a large number of glittering materials having a small particle size are present, and (B) is a diagram schematically showing a state in which a glittering material having a large particle size is present. (A)は光輝材が分散している状態を、(B)は凝集している状態をそれぞれ模式的に示す図である。(A) is a figure which shows the state in which the glittering material is disperse | distributed, and (B) is a figure which shows the state which aggregated, respectively. (A)は、照明用表示装置に表示された、余弦波で示される断面強度分布を有する構造化パターンを断面強度分布の位相を異ならせて表示する状態を示す図、(B)は(A)の断面強度分布のり位相方向と直交する方向に、構造化パターンを断面強度分布の位相を異ならせて表示する状態を示す図である。(A) is a diagram showing a state in which a structured pattern having a cross-sectional intensity distribution indicated by a cosine wave displayed on the illumination display device is displayed with the phase of the cross-sectional intensity distribution being different, and (B) is a diagram showing (A). FIG. 7B is a diagram showing a state in which the structured pattern is displayed with the phase of the cross-sectional intensity distribution being different in the direction orthogonal to the glue phase direction of the cross-sectional intensity distribution of FIG. (A)は、図8(A)の方向Aに平行な面内における光輝材の配向角度を測定可能であることを、(B)は、方向Aと直交する方向Bに平行な面内における光輝材の配向角度を測定可能であることを、それぞれ説明するための図である。8A shows that the orientation angle of the glittering material can be measured in a plane parallel to the direction A in FIG. 8A, and FIG. It is a figure for each explaining that the orientation angle of a glitter material can be measured. (A)~(C)は、図13(A)の基本となる構造化パターンの断面強度分布の周波数を変更して、測定対象物を照明する場合の説明図である。(A) to (C) are explanatory diagrams in a case where the frequency of the cross-sectional intensity distribution of the basic structured pattern in FIG. 13A is changed to illuminate the measurement object. 受光側に色情報・分光情報を測定するためのフィルタ部を追加した光学特性測定装置の構成を示す図である。FIG. 3 is a diagram illustrating a configuration of an optical characteristic measuring device in which a filter unit for measuring color information and spectral information is added to a light receiving side. フィルタ部の一例を模式的に示す図である。It is a figure which shows an example of a filter part typically. (A)(B)はフィルタ部の他の例を模式的に示す図である。(A), (B) is a figure which shows another example of a filter part typically. この発明の他の実施形態に係る光学特性測定装置の斜視図である。It is a perspective view of the optical characteristic measuring device concerning other embodiments of this invention.
 以下、この発明の実施形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、この発明の一実施形態に係る表面特性測定用データの出力装置を備えた表面特性測定装置の構成を示すブロック図である。 FIG. 1 is a block diagram showing a configuration of a surface characteristic measuring device provided with a surface characteristic measuring data output device according to an embodiment of the present invention.
 図1に示す表面特性測定装置は、単一の照明用表示装置1と、対物レンズ2と、CCDセンサ等からなる二次元の光電変換素子3と、演算部4と、液晶表示装置等によって構成される測定結果表示部5を備えており、照明用表示装置1と、対物レンズ2と、光電変換素子3によって、表面特性測定用データの出力装置が構成されている。 The surface characteristic measuring device shown in FIG. 1 includes a single illumination display device 1, an objective lens 2, a two-dimensional photoelectric conversion element 3 including a CCD sensor, and the like, an operation unit 4, a liquid crystal display device, and the like. An illumination display device 1, an objective lens 2, and a photoelectric conversion element 3 constitute a surface characteristic measurement data output device.
 照明用表示装置1は少なくとも1個の照明パターンを表示するとともに、表示した照明パターンから測定対象物(単に試料ともいう)100の被測定部位100aに対して照明光L1を照射する。 The illumination display device 1 displays at least one illumination pattern, and irradiates the measurement site 100a of the measurement object (also referred to simply as a sample) 100 with the illumination light L1 from the displayed illumination pattern.
 光電変換素子3は多数の画素を備え、試料100からの反射光L2を対物レンズ2を介して画素毎に受光し、画像データに変換して出力する。 The photoelectric conversion element 3 has a large number of pixels, receives the reflected light L2 from the sample 100 for each pixel via the objective lens 2, converts the light into image data, and outputs the image data.
 この実施形態では、照明用表示装置1と光電変換素子3とは、光電変換素子3が被測定部位100aからの略正反射方向の反射光を受光可能である位置関係で配置されている。略正反射方向とは、正反射方向の反射光のみならず正反射方向から僅かに外れている反射光も許容する主旨である。このような配置関係にする理由は、被測定部位100aに水平方向(0度)方向の成分が多数存在しているために正反射近傍でのみ高輝度・高彩度などの物性が発現する場合にも的確に対応し、目視相関の高い測定結果を得るためである。 In this embodiment, the illumination display device 1 and the photoelectric conversion element 3 are arranged in a positional relationship such that the photoelectric conversion element 3 can receive light reflected in a substantially regular reflection direction from the measured portion 100a. The substantially regular reflection direction is intended to allow not only reflected light in the regular reflection direction but also reflected light slightly deviating from the regular reflection direction. The reason for such an arrangement relationship is that even when physical properties such as high luminance and high saturation are expressed only near specular reflection because a large number of components in the horizontal direction (0 degree) exist in the measured portion 100a. This is in order to accurately respond and obtain a measurement result having high visual correlation.
 例えば、試料100に光輝材が含まれた塗装が施されているような場合、塗膜内の光輝材の配向分布は、一般的に塗膜面水平方向(0度方向)をピークとする分布となっており、このような光輝材の正反射近傍の情報を的確にとらえるためである。 For example, when the sample 100 is coated with a glitter material, the orientation distribution of the glitter material in the coating film is generally a distribution having a peak in the horizontal direction (0 degree direction) of the coating film surface. This is to accurately capture information in the vicinity of the specular reflection of the glittering material.
 また、試料100における被測定部位100aの表面(試料面)と光電変換素子3が共役関係にあることが望ましい。 (4) It is desirable that the surface (sample surface) of the measured portion 100a in the sample 100 and the photoelectric conversion element 3 have a conjugate relationship.
 光電変換素子3から出力された電気信号である画像データは、必要に応じ、図示しないIV変換回路、AD変換回路を通じてデジタル信号に変換され、演算部4に送られる。演算部4は、送られてきた画像データを用いてCPU等により反射角度特性に依存するパラメータの算出処理を行い、測定結果表示部5は演算部4による算出結果つまり測定結果を表示する。なお、光電変換素子3から出力された画像データのデジタル信号への変換は、演算部4で行われても良い。 The image data, which is an electric signal output from the photoelectric conversion element 3, is converted into a digital signal through an IV conversion circuit and an AD conversion circuit (not shown) as necessary, and is sent to the arithmetic unit 4. The calculation unit 4 performs a calculation process of a parameter depending on the reflection angle characteristic by the CPU or the like using the sent image data, and the measurement result display unit 5 displays the calculation result by the calculation unit 4, that is, the measurement result. The conversion of the image data output from the photoelectric conversion element 3 into a digital signal may be performed by the arithmetic unit 4.
 演算部4は専用の装置であっても良いし、パーソナルコンピュータにより構成されていても良い。また、光電変換素子3から出力されデジタル信号に加工された画像データは、ネットワークを介して演算部4に送られても良い。この場合は、演算部4が測定場所と離れた場所に存在していても、反射角度特性に依存するパラメータの測定を行うことができる。 The operation unit 4 may be a dedicated device or may be configured by a personal computer. The image data output from the photoelectric conversion element 3 and processed into a digital signal may be sent to the arithmetic unit 4 via a network. In this case, even if the calculation unit 4 is located at a location distant from the measurement location, measurement of a parameter depending on the reflection angle characteristic can be performed.
 次に、光電変換素子3の空間分解能について説明する。目視で観察される現象を光電変換素子3で検知するためには、光電変換素子3に人間の眼に相当する空間分解能が必要になる。ある研究によると、人間の眼で区別可能な最小幅は、約0.6分といわれている。仮に瞳から観察物までの距離を20~30cmとすると、区別可能な2点の距離は30~50μmと計算される。 Next, the spatial resolution of the photoelectric conversion element 3 will be described. In order for the photoelectric conversion element 3 to detect a phenomenon observed visually, the photoelectric conversion element 3 needs a spatial resolution equivalent to that of a human eye. According to one study, the minimum width that can be distinguished by the human eye is about 0.6 minutes. Assuming that the distance from the pupil to the observation object is 20 to 30 cm, the distance between two distinguishable points is calculated to be 30 to 50 μm.
 また、測定対象を自動車外装材の光輝材を含む塗装面とすると、塗膜内部に含まれる光輝材の粒径は、小さなもので10~20μm、大きなもので凡そ100μm程度である。光電変換素子3は光輝材1つ1つを空間的に区別できることがより望ましい。 (4) When the object to be measured is a painted surface of a car exterior material containing a glitter material, the particle size of the glitter material contained in the coating film is as small as 10 to 20 μm and as large as about 100 μm. It is more desirable that the photoelectric conversion element 3 can spatially distinguish each glittering material.
 以上から、光電変換素子3の空間分解能は10~100μm程度であることが望ましい。
(実施形態1)
 次に、具体的な反射角度特性に依存するパラメータの測定について説明する。
From the above, it is desirable that the spatial resolution of the photoelectric conversion element 3 is about 10 to 100 μm.
(Embodiment 1)
Next, measurement of a parameter depending on specific reflection angle characteristics will be described.
 反射角度特性とは、被測定部位100aが照明光L1をどのような反射角度で反射させるかという特性であり、光電変換素子3の画素に対応して画素毎に評価される。この実施形態では、反射角度特性に依存するパラメータが光輝材の配光に関する情報(例えば配光角度)である場合について説明する。 The reflection angle characteristic is a characteristic of a reflection angle at which the measured portion 100a reflects the illumination light L1 and is evaluated for each pixel of the photoelectric conversion element 3. In this embodiment, a case will be described in which a parameter that depends on the reflection angle characteristic is information (for example, a light distribution angle) on the light distribution of the glittering material.
 試料面での解像度は十分高いものを選択する。この実施形態では、試料100として、表面に光輝材を含む塗装が施されたものを例に挙げて説明し、試料100は表面のテクスチャ構造が捉えられるほどの空間分解能があると仮定する。 選 択 Select a resolution that is sufficiently high on the sample surface. In this embodiment, a description will be given of an example in which the surface 100 is coated with a glittering material as the sample 100, and it is assumed that the sample 100 has a spatial resolution enough to capture the texture structure of the surface.
 塗膜内の光輝材は、一定の傾き(配向)を持った状態で存在する。その配向分布は、一般的に塗膜面水平方向(0度)をピークとし、角度の増加に伴い光輝材数が減少する分布をとり、例えばガウス分布などで表現される。 光 The glittering material in the coating film exists with a certain inclination (orientation). The orientation distribution generally has a peak in the horizontal direction (0 degrees) of the coating film surface, and has a distribution in which the number of glittering materials decreases with an increase in the angle, and is represented by, for example, a Gaussian distribution.
 配向の状態は、光輝材や塗料の種類など設計的な要因もあれば、塗料の吹付速度、圧力、膜厚など塗装条件にも依存すると言われている。一般的に、図2(A)に示すように、光輝材110の配向が塗膜面水平方向(0度)に揃っている場合は配向が良いといわれ、逆に同図(B)に示すように、光輝材110の配向が0度から離れている場合は、配向が悪いといわれる。この配向の良し悪しを定量化する方法として、本実施形態による手法を活用できる。 It is said that the state of orientation depends on design factors such as the type of glittering material and paint, and also depends on coating conditions such as the spraying speed, pressure, and film thickness of the paint. Generally, as shown in FIG. 2A, when the orientation of the glittering material 110 is aligned in the horizontal direction (0 °) of the coating film surface, it is said that the orientation is good, and conversely, as shown in FIG. As described above, when the orientation of the glittering material 110 is apart from 0 degrees, it is said that the orientation is bad. As a method of quantifying the quality of the orientation, the method according to the present embodiment can be used.
 この実施形態は、照明パターンとして、一定周期で変化する波形で示される断面強度分布を有する構造化パターンを照明用表示装置1に表示して、測定対象物100の被測定部位100aを照明するものである。 In this embodiment, a structured pattern having a cross-sectional intensity distribution indicated by a waveform that changes at a constant period is displayed on the illumination display device 1 as an illumination pattern to illuminate the measurement site 100a of the measurement target 100. It is.
 一般的に、照明用表示装置1の表示面上の互いに離れた複数点から照明した場合、各画素の反射角特性を一意に決定することができない。しかし、正弦波や余弦波のように、一定周期で変化する波形で示される断面強度分布を有する構造化パターンにおいて、断面強度分布の位相を変化させた複数パターンで表示したときの光電変換素子3から出力された画像データに対し、演算部4により特定の演算処理を加えることで、各画素毎の反射角度特性に依存するパラメータの測定が可能となることを、発明者らは見出した。
1)測定手順
 基本となる照明パターン(以下、基本パターンという)は、図3(A)に示すように、1周期分の余弦波で示される断面強度分布を有している。なお1周期分の正弦波で示される断面強度分布を有する照明パターンであっても良い。同図(B)~(D)は、同図(A)の基本パターンの断面強度分布の位相をずらした状態の構造化パターンを示し、この例では位相をπ/2ずつずらした状態を示している。
Generally, when illumination is performed from a plurality of points separated from each other on the display surface of the illumination display device 1, the reflection angle characteristics of each pixel cannot be uniquely determined. However, in a structured pattern having a cross-sectional intensity distribution such as a sine wave or a cosine wave having a cross-sectional intensity distribution that changes at a constant cycle, the photoelectric conversion element 3 when displayed in a plurality of patterns in which the phase of the cross-sectional intensity distribution is changed. The inventors have found that by applying a specific arithmetic processing to the image data output from the image processing unit 4 by the arithmetic unit 4, it is possible to measure a parameter depending on the reflection angle characteristic of each pixel.
1) Measurement Procedure A basic illumination pattern (hereinafter, referred to as a basic pattern) has a cross-sectional intensity distribution represented by a cosine wave for one cycle, as shown in FIG. Note that an illumination pattern having a cross-sectional intensity distribution indicated by a sine wave for one cycle may be used. FIGS. 7B to 7D show structured patterns in which the phase of the sectional intensity distribution of the basic pattern in FIG. 7A is shifted, and in this example, the phases are shifted by π / 2. ing.
 図3(A)~(D)の上側の図は照明用表示装置1の表示面の輝度分布(白い部分ほど高輝度、黒い部分ほど低輝度)であり、下側の図はその断面強度分布である。 3 (A) to 3 (D) show the luminance distribution of the display surface of the illumination display device 1 (white areas have higher luminance and black areas have lower luminance), and the lower figures show the cross-sectional intensity distribution. It is.
 照明用表示装置1に基本パターンを表示し、試料100の被測定部位101aを照明する場合、試料100の表面もほぼ基本パターン(余弦波)通りの空間強度分布とみなせる。すなわち試料面の座標(x,y)における空間強度分布は、以下の式であらわされる。 In the case where the basic pattern is displayed on the illumination display device 1 and the measured portion 101a of the sample 100 is illuminated, the surface of the sample 100 can be regarded as a spatial intensity distribution substantially according to the basic pattern (cosine wave). That is, the spatial intensity distribution at the coordinates (x, y) of the sample surface is represented by the following equation.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 基本パターンに対し、位相を(n/N)*2π (n=0,1,2,…,N-1) だけずらした空間強度分布は以下の式であらわされる。 The spatial intensity distribution in which the phase is shifted by (n / N) * 2π {(n = 0, 1, 2,..., N-1)} with respect to the basic pattern is represented by the following equation.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 試料100の被測定部位100aにおける表面の空間強度分布が当該分布(n=0,1,2,…,N-1)となるよう、照明用表示装置1によって試料100を順次照明し、その正反射像を光電変換素子3で測定する。
2)強度分布から位相分布の算出
 Nに具体的な数値を与えて考える。
例1)N=3 (n=0,1,2)の場合
 以下の空間強度分布となるパターンにて試料100の被測定部位100aを順次照明する。これは、2π/3ずつ位相をずらした3枚の余弦波に相当する。
The sample 100 is sequentially illuminated by the illumination display device 1 so that the spatial intensity distribution on the surface of the measured portion 100a of the sample 100 at the measured portion 100a becomes the distribution (n = 0, 1, 2,..., N−1). The reflected image is measured by the photoelectric conversion element 3.
2) Calculation of phase distribution from intensity distribution Consider a specific numerical value given to N.
Example 1) When N = 3 (n = 0, 1, 2) The measurement site 100a of the sample 100 is sequentially illuminated in a pattern having the following spatial intensity distribution. This corresponds to three cosine waves whose phases are shifted by 2π / 3.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 光電変換素子3側の各画素の反射強度分布(試料表面の空間強度分布と同じ)I(x,y,0)、I(x,y,1)、I(x,y,2)を測定する。 Measure the reflection intensity distribution (same as the spatial intensity distribution on the sample surface) I (x, y, 0), I (x, y, 1), I (x, y, 2) of each pixel on the photoelectric conversion element 3 side I do.
 未知数はa(x,y)、b(x,y)、θ(x,y)の3個であり、式も3個のため、厳密解が一意に決まる。位相分布θ(x,y)に関しては、以下の式にて算出可能となる。 There are three unknowns, a (x, y), b (x, y) and θ (x, y), and since there are three equations, the exact solution is uniquely determined. The phase distribution θ (x, y) can be calculated by the following equation.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
例2)N=4 (n=0,1,2,3)の場合
 以下の空間強度分布となるパターンにて試料を順次照明する。これは、図3(A)~(D)に示したようなπ/2ずつ位相をずらした4枚の余弦波に相当する。
Example 2) When N = 4 (n = 0, 1, 2, 3) The sample is sequentially illuminated in a pattern having the following spatial intensity distribution. This corresponds to four cosine waves whose phases are shifted by π / 2 as shown in FIGS. 3 (A) to 3 (D).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 それぞれの反射強度分布I(x,y,0)、I(x,y,1)、I(x,y,2)、I(x,y,3)を測定する。 測定 Measure the respective reflection intensity distributions I (x, y, 0), I (x, y, 1), I (x, y, 2) and I (x, y, 3).
 N=4の場合の利点として、位相分布θ(x,y)が以下に示す簡潔な式で算出可能となる。 As an advantage in the case of N = 4, the phase distribution θ (x, y) can be calculated by the following simple formula.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
3)位相分布から配向分布の算出
 試料100が光輝材を含まない完全な平滑面である場合、図4に示すように、光電変換素子3上では、照明用表示装置1が投影した基準の反射強度分布が撮像される。
3) Calculation of Orientation Distribution from Phase Distribution When the sample 100 is a completely smooth surface that does not include a glittering material, the reference reflection projected by the illumination display device 1 on the photoelectric conversion element 3 as shown in FIG. An intensity distribution is imaged.
 一方、試料100が配向分布を有する光輝材110を含む場合、図5に示すように、反射光L2の正反射方向が点線から実線へと変化するため、基準分布の同一輝度にあたる座標が平滑面に比べてシフトする。すなわち、位相がシフトすることを意味する。 On the other hand, when the sample 100 includes the glittering material 110 having an orientation distribution, the regular reflection direction of the reflected light L2 changes from a dotted line to a solid line as shown in FIG. Shift compared to. That is, it means that the phase shifts.
 そのシフト量は、光輝材110や表面の反射角度特性、ひいては光輝材110の配向角度あるいは表面の勾配角度に依存する。すなわち、位相シフト量から光輝材110の配向角度あるいは表面の勾配角度を一意に求めること、つまり測定することが可能である。 The amount of the shift depends on the reflection angle characteristics of the glittering material 110 and the surface, and furthermore, the orientation angle of the glittering material 110 or the gradient angle of the surface. That is, it is possible to uniquely determine, that is, measure, the orientation angle or the surface gradient angle of the glittering material 110 from the phase shift amount.
 なお、振幅a(x,y)及び背景輝度b(x,y)が既知の場合は、基本パターンのみの1回の照射から、位相分布θ(x,y)を特定することができ、光輝材110の配向角度を求めることができる。 If the amplitude a (x, y) and the background luminance b (x, y) are known, the phase distribution θ (x, y) can be specified from one irradiation of only the basic pattern, The orientation angle of the material 110 can be obtained.
 本実施形態で算出(測定)することのできる反射角度特性に依存するパラメータは、配向角度に限定されることはない。二次元の空間輝度分布を解析することで、含有する光輝材110の粒径の大小も定量化可能となる。またその解析結果から、光輝材110の粒度分布・平均粒径などを算出することも可能である。 パ ラ メ ー タ The parameters that can be calculated (measured) in the present embodiment and that depend on the reflection angle characteristics are not limited to the orientation angles. By analyzing the two-dimensional spatial luminance distribution, it is possible to quantify the size of the particle size of the glittering material 110 contained therein. Further, from the analysis result, the particle size distribution, the average particle size, and the like of the glittering material 110 can be calculated.
 図6(A)に、小さい粒径の光輝材110が多数存在している場合を、同図(B)に、大きな粒径の光輝材110が存在している場合をそれぞれ示す。光輝材110の粒径は、二次元の空間輝度分布の解析により、光輝材110の配光角度と水平方向の長さが分かることから、算出することができる。 FIG. 6A shows a case where a large number of luminous materials 110 having a small particle diameter are present, and FIG. 6B shows a case where a luminous material 110 having a large particle diameter is present. The particle size of the glittering material 110 can be calculated because the light distribution angle and the horizontal length of the glittering material 110 can be determined by analyzing the two-dimensional spatial luminance distribution.
 他にも、同様に二次元の空間輝度分布を解析することで、場所ごとの光輝材のムラの有無(均一に分散しているか、凝集している箇所があるか)も定量化可能となる。図7(A)に光輝材110が分散している状態を、同図(B)に凝集している状態をそれぞれ示す。 In addition, by similarly analyzing the two-dimensional spatial luminance distribution, it is possible to quantify the presence / absence of the brilliant material at each location (whether the material is uniformly dispersed or agglomerated). . FIG. 7A shows a state where the glittering material 110 is dispersed, and FIG. 7B shows a state where the glittering material 110 is aggregated.
 このようにして反射角度特性を解析評価することで、反射角度特性に依存するパラメータとして、光輝材110の輝度・色度、配向、粒径、分散凝集などの少なくとも一つに代表される、塗料物性に関する多くの情報を測定することができる。 By analyzing and evaluating the reflection angle characteristics in this way, paints represented by at least one of brightness / chromaticity, orientation, particle size, dispersion aggregation, and the like of the glittering material 110 as parameters depending on the reflection angle characteristics. Much information about physical properties can be measured.
 しかも、一定周期で変化する断面強度分布を有する構造化パターンからなる照明パターンの照明光が測定対象物100の被測定部位100aに対して照射されたときの被測定部位100aからの反射光を、光電変換素子3が画素毎に受光して画像データに変換し出力するから、各画素固有の反射特性を一意に決定することができると共に、各画素で連続した反射特性が得られるものとなり、反射角度特性に依存するパラメータの精度の高い測定が可能となり、連続的な測定結果も得られる。また、特定の限られた範囲での測定も可能となる。 Moreover, the reflected light from the measurement target portion 100a when the illumination light of the illumination pattern including the structured pattern having the cross-sectional intensity distribution that changes at a constant cycle is applied to the measurement target portion 100a of the measurement target 100, Since the photoelectric conversion element 3 receives light for each pixel, converts the light into image data, and outputs the image data, it is possible to uniquely determine the reflection characteristic unique to each pixel and obtain continuous reflection characteristics for each pixel. Highly accurate measurement of a parameter depending on the angle characteristic becomes possible, and a continuous measurement result is obtained. In addition, measurement in a specific limited range becomes possible.
 また、この実施形態では、単一の照明用表示装置1を用いるから、複数の照明用表示装置を用いる場合に較べて、装置全体の構成の複雑化を抑制できる。
(実施形態2)
 この実施形態では、図8(A)に示すように、照明用表示装置1の表示面の幅方向(同図の左右方向で位相方向Aとする)に断面強度分布の位相を変化させた構造化パターンと、同図(B)に示すように、幅方向と直交する方向(同図の上下方向で位相方向Bとする)に断面強度分布の位相を変化させた構造化パターンの2方向の構造化パターンによる照明パターンを測定対象物100の被測定部位100aに照明して、測定を行っている。これにより、直交する2方向での光輝材110の反射角度特性を評価でき、ひいては直交する2方向での光輝材110の配向角度等を測定することが可能となる。具体的には以下のとおりである。
Further, in this embodiment, since a single illumination display device 1 is used, complication of the configuration of the entire device can be suppressed as compared with the case where a plurality of illumination display devices are used.
(Embodiment 2)
In this embodiment, as shown in FIG. 8A, a structure in which the phase of the cross-sectional intensity distribution is changed in the width direction of the display surface of the display device 1 for illumination (the phase direction A in the horizontal direction in FIG. 8). (B), the two directions of the structured pattern in which the phase of the cross-sectional intensity distribution is changed in a direction perpendicular to the width direction (the vertical direction in the figure is a phase direction B). The measurement is performed by illuminating the measured portion 100a of the measurement object 100 with an illumination pattern based on the structured pattern. This makes it possible to evaluate the reflection angle characteristics of the glittering material 110 in two orthogonal directions, and to measure the orientation angle and the like of the glittering material 110 in two orthogonal directions. The details are as follows.
 即ち、照明用表示装置1に、照明用表示11を同図(A)のように、A1の基本パターンと、基本パターンA1の断面強度分布の位相をπ/2ずらしたA2と、さらにπ/2ずらしたA3、さらにπ/2ずらしたA4というように、断面強度分布の位相をA方向にずらした複数の照明パターンを表示して測定を行った後、同図(B)のように、B1の基本パターンと、基本パターンB1の断面強度分布の位相をπ/2ずらしたB2と、さらにπ/2ずらしたB3、さらにπ/2ずらしたB4というように、断面強度分布の位相をB方向にずらした複数の照明パターンを表示して、実施形態1と同様に測定を行う。 That is, as shown in FIG. 1A, the illumination display device 1 displays the illumination display 11 with the basic pattern of A1, the A2 obtained by shifting the phase of the cross-sectional intensity distribution of the basic pattern A1 by π / 2, and further by π /. After displaying and measuring a plurality of illumination patterns in which the phase of the cross-sectional intensity distribution is shifted in the A direction, such as A3 shifted by 2 and A4 shifted by π / 2, as shown in FIG. The phase of the cross-sectional intensity distribution is B, such as B2, the phase of the cross-sectional intensity distribution of the basic pattern B1, the phase B2 shifted by π / 2, the B3 further shifted by π / 2, and the B4 shifted π / 2. A plurality of illumination patterns shifted in the direction are displayed, and measurement is performed in the same manner as in the first embodiment.
 A1→A2→A3→ …の表示による測定では、図9(A)に示すように、方向Aに平行な面内における光輝材110の配向角度を測定可能である。一方、B1→B2→B3→ …の表示による測定では、図9(B)に示すように、方向B(方向Aと直交)に平行な面内における光輝材110の配向角度を測定可能である。 In the measurement by the display of {A1 → A2 → A3 →}, the orientation angle of the glittering material 110 in a plane parallel to the direction A can be measured as shown in FIG. On the other hand, in the measurement based on the display of B1, B2, B3,..., The orientation angle of the glittering material 110 in a plane parallel to the direction B (perpendicular to the direction A) can be measured, as shown in FIG. .
 したがって、A1→A2→A3→ …→An、B1→B2→B3→ …→Bnと順に表示し測定することで、各光輝材110について直交する2方向の配向角度が求められるため、両者の値から、二次元の任意の方向への配向角度(もしくは面法線ベクトル)を推定算出すること、つまり配向角度を測定することが可能となる。
(実施形態3)
 本実施形態では、周波数をシフトさせた照明パターンを照明した場合について説明する。基本パターンは、前述の実施形態1と同様に、1周期分の余弦波で示される断面強度分布を有している。
Therefore, by displaying and measuring in the order of A1 → A2 → A3 →... An, B1 → B2 → B3 →... → Bn, the orientation angles in two directions orthogonal to each glittering material 110 are obtained. From this, it is possible to estimate and calculate the orientation angle (or surface normal vector) in an arbitrary two-dimensional direction, that is, to measure the orientation angle.
(Embodiment 3)
In the present embodiment, a case will be described in which an illumination pattern whose frequency is shifted is illuminated. The basic pattern has a cross-sectional intensity distribution indicated by a cosine wave for one cycle, as in the first embodiment.
 実施形態1と同様の手法を用いて、輝度分布(断面強度分布)から位相分布を算出することで、反射角度特性に依存する光輝材110の配向角度(配光分布)や表面の勾配角度(勾配分布)を求めることが可能である。 By calculating the phase distribution from the luminance distribution (cross-sectional intensity distribution) using the same method as in the first embodiment, the orientation angle (light distribution) of the glittering material 110 and the surface gradient angle (surface gradient angle) depending on the reflection angle characteristics are calculated. Gradient distribution).
 但し、図10(A)に断面強度分布を示すように、1周期では特に余弦波のピークの山谷付近で縦軸の変化が小さく、場合によっては位相分布の信号成分がノイズに埋もれてしまうことが懸念される。 However, as shown in the cross-sectional intensity distribution in FIG. 10A, in one cycle, the change of the vertical axis is small especially near the peak and valley of the cosine wave peak, and in some cases, the signal component of the phase distribution is buried in noise. Is concerned.
 そこで、図10(B)に示すように2周期、あるいは同図(C)の3周期などN周期(N≧2)の余弦波で示される断面強度分布の構造パターンも順次照明することで、N=1の場合よりも特に山谷付近の輝度変化を上げることができ、結果的に縦軸の分解能を上げることが可能となる。したがって位相分布(配向分布や勾配分布)をより高精度で求めることが可能となる。 Therefore, by sequentially illuminating the structural pattern of the cross-sectional intensity distribution indicated by a cosine wave of N periods (N ≧ 2) such as two periods as shown in FIG. 10B or three periods of FIG. 10C, It is possible to increase the luminance change particularly near the peaks and valleys as compared with the case of N = 1, and as a result, it is possible to increase the resolution on the vertical axis. Therefore, the phase distribution (the orientation distribution and the gradient distribution) can be obtained with higher accuracy.
 なおこの場合も、実施形態2と同様に、相互に直交する2方向で構造化パターンの周波数を変更することにより、二次元の任意の方向への配向角度(もしくは面法線ベクトル)をより精度良く算出・測定することができる。
(実施形態4)
 実施形態1~3では、表面に光輝材110を含む塗装が施された試料100を例示した。しかし、アルマイト処理などの処理を加えた場合、表面には、微小な凹凸や勾配が数μm~数十μmオーダーのミクロ領域にて存在する。その微小構造によって、特定方向から照明・観察すると表面の一部がキラキラと光って見えたり、また別の方向から照明・観察すると他の部分が光ったりなど、高い意匠性を発現させる原動力となっている。
Also in this case, as in the second embodiment, by changing the frequency of the structured pattern in two directions orthogonal to each other, the orientation angle (or surface normal vector) in any two-dimensional direction can be more accurately determined. It can be calculated and measured well.
(Embodiment 4)
In the first to third embodiments, the sample 100 whose surface is coated with the glittering material 110 is exemplified. However, when a treatment such as an alumite treatment is applied, fine irregularities and gradients are present on the surface in a micro region on the order of several μm to several tens μm. Due to the microstructure, a part of the surface appears to glitter when illuminated and observed from a specific direction, and another part shines when illuminated and observed from another direction. ing.
 従って、光輝材は存在していなくても、アルマイト処理されたもののように、表面に微小な凹凸や勾配を有する試料100に対しても、実施例1~3と同様に反射角度特性に依存する勾配角度等のパラメータの測定が可能となる。
(実施形態5)
 特にパール顔料では、観察角度に応じて色が変化するため、色測定、分光測定などの波長分解測定を行うことは非常に有意である。したがって、反射角度特性に依存するパラメータとして、被測定部位100aの色情報もしくは分光情報を測定する機構を追加しても良い。
Therefore, even in the case where the glittering material is not present, even for the sample 100 having minute irregularities or gradients on the surface, such as the one which has been subjected to the alumite treatment, it depends on the reflection angle characteristics as in the case of Examples 1 to 3. It becomes possible to measure parameters such as the gradient angle.
(Embodiment 5)
In particular, in the case of pearl pigments, the color changes according to the observation angle. Therefore, it is very significant to perform wavelength resolution measurement such as color measurement and spectroscopic measurement. Therefore, a mechanism for measuring color information or spectral information of the measured portion 100a may be added as a parameter depending on the reflection angle characteristics.
 そこでこの実施形態では、照明側に色情報・分光情報を測定するための機構を追加する場合について説明する。 Therefore, in this embodiment, a case will be described in which a mechanism for measuring color information and spectral information is added to the illumination side.
 照明用表示装置1に液晶やOLED(Organic Light Emitting Diode:有機エレクトロルミネッセンス)のディスプレイ等を用いることで、赤色、緑色、青色(以下、これらをRGBという)の単色表示が可能である。 By using a liquid crystal display or an OLED (Organic Light Emitting Diode) display or the like as the display device 1 for illumination, it is possible to perform monochromatic display of red, green, and blue (hereinafter, these are referred to as RGB).
 同一の照明パターンにて照明する際に、RGBを時分割で個別に表示し、表示タイミングと同期させて光電変換素子3が各色毎の反射光を受光し、画像データを出力することで、色情報・分光情報の算出・測定が可能となる。
(実施形態6)
 実施形態5では、照明側に色情報・分光情報を測定するための機構を追加した場合を説明したが、本実施形態では、受光側に色測定機構を追加する場合を説明する。
When illuminating with the same illumination pattern, RGB are individually displayed in a time-division manner, and the photoelectric conversion element 3 receives reflected light of each color in synchronization with the display timing, and outputs image data, so that color Information and spectral information can be calculated and measured.
(Embodiment 6)
In the fifth embodiment, a case where a mechanism for measuring color information / spectral information is added to the illumination side has been described. In the fifth embodiment, a case where a color measurement mechanism is added to the light receiving side will be described.
 即ち、図11に示すように、光電変換素子3の前面に二次元色フィルタ部6を設ける。なお、図11に示した表面特性測定装置において、二次元色フィルタ部6以外の構成は図1に示した表面特性測定装置と同じである。 That is, as shown in FIG. 11, the two-dimensional color filter unit 6 is provided on the front surface of the photoelectric conversion element 3. The configuration of the surface characteristic measuring apparatus shown in FIG. 11 is the same as that of the surface characteristic measuring apparatus shown in FIG.
 二次元色フィルタ部6の一例として、図12に示すように、光電変換素子3の画素31に対応する、分光透過率が互いに異なる複数のフィルタ61~63を有するものを挙げることができる。このようなフィルタ部6を用いることで、光電変換素子3は、各フィルタ61~63の分光透過率に応じた色の反射光を受光し、画像データを出力するから、この出力された画像データを用いて色情報・分光情報の算出・測定が可能となる。 (2) As an example of the two-dimensional color filter section 6, as shown in FIG. 12, a filter having a plurality of filters 61 to 63 having different spectral transmittances corresponding to the pixels 31 of the photoelectric conversion element 3 can be given. By using such a filter unit 6, the photoelectric conversion element 3 receives reflected light of a color corresponding to the spectral transmittance of each of the filters 61 to 63 and outputs image data. Can be used to calculate and measure color information and spectral information.
 フィルタ配列はベイヤー配列としても良い。空間解像度の低下を防ぐため、近接する同種類のフィルタの出力から、その間の画素の出力を補間しても良い。 The filter array may be a Bayer array. In order to prevent the spatial resolution from lowering, the output of the pixel between them may be interpolated from the output of the same type of adjacent filter.
 複数のフィルタ61~63は、RGBフィルタであっても良いし、人間の目の感度である等色関数x(λ)、y(λ)、z(λ)に相当する感度を有するフィルタでも良い。 The plurality of filters 61 to 63 may be RGB filters or filters having sensitivities corresponding to the color matching functions x (λ), y (λ), and z (λ), which are the sensitivities of human eyes. .
 二次元色フィルタ部6の他の例として、図13に示す構成も可能である。即ち、分光透過率が互いに異なる複数(図12の場合は3個)のフィルタ64~66を円盤67の円周上に配置し、円盤67の中心にモータ7の回転軸71を設置し、モータ7の駆動によって、円盤67が円周方向に回転するような構成とする。試料100の被測定部位100aからの反射光L2は当該フィルタ64~67を透過したのち、光電変換素子3に受光されるよう配置する。光電変換素子3は第1フィルタ64の透過⇒円盤67の回転⇒第2フィルタ65の透過⇒円盤67の回転⇒第3フィルタ66の透過、のシーケンスで順次受光し、対応する画像データを出力するから、時分割で色情報・分光情報の演算・測定を行うことが可能である。 と し て As another example of the two-dimensional color filter section 6, the configuration shown in FIG. 13 is also possible. That is, a plurality (three in the case of FIG. 12) of filters 64 to 66 having different spectral transmittances are arranged on the circumference of the disk 67, and the rotating shaft 71 of the motor 7 is installed at the center of the disk 67. 7, the disk 67 is rotated in the circumferential direction. The reflected light L2 from the measurement site 100a of the sample 100 is transmitted through the filters 64 to 67, and then arranged so as to be received by the photoelectric conversion element 3. The photoelectric conversion element 3 sequentially receives light in the sequence of transmission of the first filter 64 → rotation of the disk 67 → transmission of the second filter 65 → rotation of the disk 67 → transmission of the third filter 66, and outputs corresponding image data. Therefore, it is possible to calculate and measure color information and spectral information in a time-division manner.
 なお、複数のフィルタ64~66は、RGBフィルタであっても良いし、人間の目の感度である等色関数x(λ)、y(λ)、z(λ)に相当する感度を有するフィルタでも良い。また半値全幅が10~20nm程度で、重心波長が10nmピッチ程度で、異なる複数のバンドパスフィルタを円周上に並べ、モータを回転させて順に透過させることにより、二次元の各画素における分光反射率を測定することも可能である。
(実施形態7)
 図14は、この発明の他の実施形態に係る光学特性測定装置の外観を示す斜視図である。この実施形態では、光学特性測定装置は携行可能なハンディタイプのものに構成されている。
The plurality of filters 64 to 66 may be RGB filters or filters having sensitivities corresponding to the color matching functions x (λ), y (λ), and z (λ), which are the sensitivities of the human eye. But it is good. A plurality of different band-pass filters having a full width at half maximum of about 10 to 20 nm and a center-of-gravity wavelength of about 10 nm are arranged on the circumference, and the motor is rotated to transmit light in order, so that the spectral reflection at each two-dimensional pixel is obtained. It is also possible to measure the rate.
(Embodiment 7)
FIG. 14 is a perspective view showing an appearance of an optical characteristic measuring device according to another embodiment of the present invention. In this embodiment, the optical characteristic measuring device is configured as a portable hand-held type.
 具体的には、照明用表示装置1、対物レンズ2、光電変換素子3、演算部4、あるいは更に二次元色フィルタ部6が、筐体8内に収容されている。また、筐体8の上面には、携行用の把持部82が備えられると共に、測定結果を表示するための測定結果表示部5が備えられ、さらに筐体8の下面には、試料100の被測定部位100aに照明光を照射し、被測定部位からの反射光を取り込むための開口81が形成されている。 {Specifically, the illumination display device 1, the objective lens 2, the photoelectric conversion element 3, the arithmetic unit 4, and the two-dimensional color filter unit 6 are housed in the housing 8. In addition, a carrying grip 82 is provided on the upper surface of the housing 8, a measurement result display unit 5 for displaying a measurement result is provided, and a lower surface of the housing 8 is An opening 81 for irradiating the measurement site 100a with illumination light and taking in reflected light from the measurement site is formed.
 図14に示す光学特性測定装置は、使用に際して、把持部82を把持して下面の開口81を試料100の被測定部位100aに位置させる。そしてこの状態で、筐体8の内部に収容されている照明用表示装置1から照明光を試料100に照射し、その反射光を光電変換素子3で受光し、光電変換素子3から出力された画像データを用いて演算部5で算出することにより、反射角度特性に依存するパラメータを測定し、測定結果を測定結果表示部5に表示するようになっている。 In use, the optical characteristic measuring device shown in FIG. 14 holds the grip portion 82 and positions the opening 81 on the lower surface at the measured portion 100a of the sample 100 when used. Then, in this state, the sample 100 is irradiated with illumination light from the illumination display device 1 housed inside the housing 8, the reflected light is received by the photoelectric conversion element 3, and output from the photoelectric conversion element 3. The calculation unit 5 calculates the parameter depending on the reflection angle characteristic by using the image data, and displays the measurement result on the measurement result display unit 5.
 このような光学特性測定装置によれば、筐体を持ち運ぶことにより、場所を問わず反射角度特性に依存するパラメータを測定できる。 According to such an optical characteristic measuring device, a parameter depending on the reflection angle characteristic can be measured regardless of the location by carrying the housing.
 本願は、2018年9月14日付で出願された日本国特許出願の特願2018-172331号の優先権主張を伴うものであり、その開示内容は、そのまま本願の一部を構成するものである。 This application is accompanied by the priority claim of Japanese Patent Application No. 2018-172331 filed on Sep. 14, 2018, the disclosure content of which is incorporated in its entirety as it is. .
 この明細書に用いられた用語及び表現は、説明のために用いられたものであって限定的に解釈するために用いられたものではなく、ここに示され且つ述べられた特徴事項の如何なる均等物をも排除するものではなく、この発明のクレームされた範囲内における各種変形をも許容するものであると認識されなければならない。 The terms and expressions used in this specification are used for description, not for restrictive interpretation, and any equivalents of the features shown and described herein. It should be recognized that they do not exclude things and also allow for various variations within the claimed scope of the invention.
 本発明の図示実施形態をここに記載したが、本発明は、ここに記載した実施形態に限定されるものではなく、この開示に基づいていわゆる当業者によって認識され得る、均等な要素、修正、削除、組み合わせ(例えば、各種実施形態に跨がる特徴の組み合わせ)、改良及び/又は変更を有するありとあらゆる実施形態をも包含するものである。 Although illustrated embodiments of the present invention have been described herein, the present invention is not limited to the embodiments described herein, and equivalent elements, modifications, It includes any and all embodiments with deletions, combinations (eg, combinations of features across various embodiments), improvements and / or changes.
 本発明は、例えば光輝材と呼ばれるフレーク状のアルミニウム片やマイカ片を含む塗装部位等を被測定部位として、その反射角度特性に依存するパラメータの測定等に利用可能である。 The present invention can be used for measurement of a parameter depending on the reflection angle characteristic, for example, with a painted portion including a flake-shaped aluminum piece or mica piece called a glitter material as a measured portion.
 1 照明用表示装置
 2 対物レンズ
 3 光電変換素子
 4 演算部
 5 測定結果表示部
 6 フィルタ部
 8 筐体
 81 開口部
 61~66 フィルタ
 100 測定対象物(試料)
 100a 被測定部位
 110 光輝材
DESCRIPTION OF SYMBOLS 1 Illumination display device 2 Objective lens 3 Photoelectric conversion element 4 Operation part 5 Measurement result display part 6 Filter part 8 Housing 81 Opening 61-66 Filter 100 Measurement object (sample)
100a Measurement site 110 Bright material

Claims (18)

  1.  一定周期で変化する波形で示される断面強度分布を有する構造化パターンからなる照明パターンを表示可能な単一の照明用表示装置と、
     前記照明用表示装置に表示された照明パターンから測定対象物の被測定部位に対して照明光が照射されたときの前記被測定部位からの反射光を、画素毎に受光して画像データに変換し出力する二次元の光電変換素子であって、前記画像データは被測定部位の各画素毎の反射角度特性に依存するパラメータを測定するのに使用される光電変換素子と、
     を備えた表面特性測定用データの出力装置。
    A single illumination display device capable of displaying an illumination pattern composed of a structured pattern having a cross-sectional intensity distribution indicated by a waveform that changes at a constant cycle,
    The reflected light from the measured portion when the measured portion of the measured object is irradiated with the illumination light from the illumination pattern displayed on the illumination display device is received for each pixel and converted into image data. A two-dimensional photoelectric conversion element to output the image data, wherein the image data is used to measure a parameter that depends on the reflection angle characteristic of each pixel of the measured part,
    An output device for data for measuring surface characteristics, comprising:
  2.  一定周期で変化する波形は正弦波もしくは余弦波である請求項1に記載の表面特性測定用データの出力装置。 2. The device for outputting surface characteristic measurement data according to claim 1, wherein the waveform that changes at a constant cycle is a sine wave or a cosine wave.
  3.  前記照明用表示装置は、構造化パターンにおける断面強度分布の位相を複数回異ならせて表示し、前記光電変換素子は、異なる位相での表示毎に反射光を受光して画像データに変換し出力する請求項1または2に記載の表面特性測定用データの出力装置。 The illumination display device displays the cross-section intensity distribution in the structured pattern with a plurality of different phases, and the photoelectric conversion element receives reflected light for each display at a different phase, converts the received light into image data, and outputs the image data. The data output device for surface characteristics measurement according to claim 1 or 2, wherein:
  4.  前記照明用表示装置は、構造化パターンにおける断面強度分布の周波数を複数回異ならせて表示し、前記光電変換素子は、異なる周波数での表示毎に反射光を受光して画像データに変換し出力する請求項1~3のいずれかに記載の表面特性測定用データの出力装置。 The illumination display device displays the frequency of the cross-sectional intensity distribution in the structured pattern differently a plurality of times, and the photoelectric conversion element receives reflected light for each display at a different frequency, converts the received light into image data, and outputs the image data. An output device for surface characteristic measurement data according to any one of claims 1 to 3.
  5.  前記光電変換素子の空間分解能が10~100μmである請求項1~4のいずれかに記載の表面特性測定用データの出力装置。 (5) The output device for surface characteristic measurement data according to any one of (1) to (4), wherein the spatial resolution of the photoelectric conversion element is 10 to 100 μm.
  6.  前記測定対象物の被測定部位は光輝材が含まれた塗装部位であり、前記反射角度特性は前記光輝材の反射角度特性である請求項1~5のいずれかに記載の表面特性測定用データの出力装置。 The surface characteristic measurement data according to any one of claims 1 to 5, wherein the measured portion of the measurement object is a painted portion containing a glitter material, and the reflection angle characteristic is a reflection angle characteristic of the glitter material. Output device.
  7.  反射角度特性に依存するパラメータには、光輝材の輝度、色度、配光特性、粒径、分散凝集に関する情報のうちの少なくとも一つが含まれる請求項6に記載の表面特性測定用データの出力装置。 7. The output of the surface characteristic measurement data according to claim 6, wherein the parameter depending on the reflection angle characteristic includes at least one of information on luminance, chromaticity, light distribution characteristic, particle size, and dispersion and aggregation of the glittering material. apparatus.
  8.  前記配光特性は、直交する2方向における反射角度特性に基づいて測定される請求項7に記載の表面特性測定用データの出力装置。 The data output device for measuring surface characteristics according to claim 7, wherein the light distribution characteristics are measured based on reflection angle characteristics in two orthogonal directions.
  9.  前記照明用表示装置と前記光電変換素子とは、前記光電変換素子が前記被測定部位からの略正反射方向の反射光を受光可能である位置関係で配置されている請求項1~8のいずれかに記載の表面特性測定用データの出力装置。 9. The illumination display device and the photoelectric conversion element are arranged in a positional relationship such that the photoelectric conversion element can receive light reflected in a substantially regular reflection direction from the measurement site. A device for outputting data for measuring surface characteristics according to any of the claims.
  10.  前記照明用表示装置は、異なる色で前記照明パターンを個別に表示し、前記光電変換素子は、各色毎の反射光を受光し画像データに変換して出力し、出力された各色毎の画像データに基づいて、被測定部位の色情報もしくは分光情報が測定される請求項1~9のいずれかに記載の表面特性測定用データの出力装置。 The illumination display device individually displays the illumination patterns in different colors, the photoelectric conversion element receives reflected light of each color, converts the received light into image data, and outputs the image data. The surface characteristic measurement data output device according to any one of claims 1 to 9, wherein color information or spectral information of the measurement site is measured based on the data.
  11.  分光透過率の異なる複数のフィルタを備えると共に、前記光電変換素子は各フィルタを介して前記反射光を受光することにより、各フィルタ毎の画像データに変換して出力し、出力された各フィルタ毎の画像データに基づいて、被測定部位の色情報もしくは分光情報が測定される請求項1~9のいずれかに記載の表面特性測定用データの出力装置。 A plurality of filters having different spectral transmittances are provided, and the photoelectric conversion element receives the reflected light through each filter, converts the reflected light into image data for each filter, and outputs the image data. 10. The surface characteristic measurement data output device according to claim 1, wherein color information or spectral information of the measurement site is measured based on the image data.
  12.  前記複数のフィルタは、等色関数x(λ)、y(λ)、z(λ)に対応する分光透過率を有している請求項11に記載の表面特性測定用データの出力装置。 The device for outputting surface characteristic measurement data according to claim 11, wherein the plurality of filters have spectral transmittances corresponding to the color matching functions x (λ), y (λ), and z (λ).
  13.  請求項1~12のいずれかに記載の表面特性測定用データの出力装置と、
     前記出力装置から出力された画像データに基づいて、被測定部位の各画素毎の反射角度特性に依存するパラメータを算出する演算部と、
     を備えた表面特性測定装置。
    An output device for surface characteristic measurement data according to any one of claims 1 to 12,
    A calculation unit that calculates a parameter that depends on a reflection angle characteristic of each pixel of the measurement site based on the image data output from the output device;
    Surface property measuring device provided with.
  14.  前記表面特性測定用データの出力装置の照明用表示装置は、構造化パターンにおける断面強度分布の位相を複数回異ならせて表示し、
     前記演算部は、前記表面特性測定用データの光電変換素子から出力される、断面強度分布の位相が異なる複数回の構造化パターンの表示毎の画像データから、各画素における複数の反射強度分布を算出するとともに、算出した複数の反射強度分布から位相分布を算出し、前記位相分布に基づいて、反射角度特性に依存するパラメータを算出する請求項13に記載の表面特性測定装置。
    The display device for illumination of the output device for the surface characteristic measurement data, the phase of the cross-sectional intensity distribution in the structured pattern is displayed differently a plurality of times, and displayed.
    The arithmetic unit outputs a plurality of reflection intensity distributions in each pixel from image data for each display of a plurality of structured patterns having different cross-sectional intensity distribution phases output from the photoelectric conversion element of the surface characteristic measurement data. 14. The surface characteristic measuring device according to claim 13, wherein a phase distribution is calculated from the plurality of calculated reflection intensity distributions, and a parameter depending on a reflection angle characteristic is calculated based on the phase distribution.
  15.  前記断面強度分布は正弦波もしくは余弦波で示される請求項13または14に記載の表面特性測定装置。 15. The surface characteristic measuring device according to claim 13, wherein the cross-sectional intensity distribution is represented by a sine wave or a cosine wave.
  16.  前記表面特性測定用データの出力装置は1つの筐体内に備えられ、
     前記筐体には、前記測定対象物の被測定部位に照明光を照射し、被測定部位からの反射光を取り込むための開口と、前記演算部による算出結果を表示するための結果表示部が備えられている請求項13~15のいずれかに記載の表面特性測定装置。
    An output device of the surface characteristic measurement data is provided in one housing,
    The housing has an opening for irradiating the measurement target portion of the measurement target with illumination light, capturing reflected light from the measurement target portion, and a result display unit for displaying a calculation result by the calculation unit. The surface characteristic measuring device according to any one of claims 13 to 15, which is provided.
  17.  前記演算部は、パーソナルコンピュータにより構成されている請求項13~16のいずれかに記載の表面特性測定装置。 The surface characteristic measuring device according to any one of claims 13 to 16, wherein the arithmetic unit is configured by a personal computer.
  18.  前記光電変換素子から出力された画像データはネットワークを介して演算部に送られる請求項13~17のいずれかに記載の表面特性測定装置。 18. The surface characteristic measuring device according to claim 13, wherein the image data output from the photoelectric conversion element is sent to an arithmetic unit via a network.
PCT/JP2019/033326 2018-09-14 2019-08-26 Output device for surface features measurement data and surface features measurement device WO2020054382A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020546821A JPWO2020054382A1 (en) 2018-09-14 2019-08-26 Data output device for surface characteristic measurement and surface characteristic measurement device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-172331 2018-09-14
JP2018172331 2018-09-14

Publications (1)

Publication Number Publication Date
WO2020054382A1 true WO2020054382A1 (en) 2020-03-19

Family

ID=69778232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033326 WO2020054382A1 (en) 2018-09-14 2019-08-26 Output device for surface features measurement data and surface features measurement device

Country Status (2)

Country Link
JP (1) JPWO2020054382A1 (en)
WO (1) WO2020054382A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4746805A (en) * 1986-11-18 1988-05-24 General Motors Corporation Combined distinctness of image and gloss meter
US20120218437A1 (en) * 2009-10-17 2012-08-30 Alexander Thomas Hermary Enhanced imaging method and apparatus
JP2014240830A (en) * 2013-05-15 2014-12-25 キヤノン株式会社 Measuring device and method for controlling the same
JP2016006416A (en) * 2014-05-26 2016-01-14 有限会社パパラボ Coloring evaluation device and coloring evaluation method
JP2017129561A (en) * 2016-01-20 2017-07-27 キヤノン株式会社 Measuring system, information processing device, information processing method, and program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4746805A (en) * 1986-11-18 1988-05-24 General Motors Corporation Combined distinctness of image and gloss meter
US20120218437A1 (en) * 2009-10-17 2012-08-30 Alexander Thomas Hermary Enhanced imaging method and apparatus
JP2014240830A (en) * 2013-05-15 2014-12-25 キヤノン株式会社 Measuring device and method for controlling the same
JP2016006416A (en) * 2014-05-26 2016-01-14 有限会社パパラボ Coloring evaluation device and coloring evaluation method
JP2017129561A (en) * 2016-01-20 2017-07-27 キヤノン株式会社 Measuring system, information processing device, information processing method, and program

Also Published As

Publication number Publication date
JPWO2020054382A1 (en) 2021-08-30

Similar Documents

Publication Publication Date Title
US9958265B2 (en) Specimen measuring device and computer program product
JP6038965B2 (en) Coloring inspection apparatus and coloring inspection method
CN101426419B (en) Optical measurement device
JP6390252B2 (en) Sample measuring apparatus and sample measuring program
JP2015529832A (en) Polygonal color, opacity, pigment characterization, and texture analysis of painted surfaces via visual and / or appliance techniques
JP6371237B2 (en) Coloring evaluation apparatus and coloring evaluation method
EP3220101B1 (en) Texture evaluation apparatus, texture evaluation method, and computer-readable recording medium
JPH11211673A (en) Apparatus and method for evaluation of surface property
JP6632145B2 (en) Surface roughness determination device and determination method
WO2020054381A1 (en) Output device for surface features measurement data and surface features measurement device
JP4629554B2 (en) Method for optical inspection of inspection surface properties and apparatus for carrying out the method
WO2020054382A1 (en) Output device for surface features measurement data and surface features measurement device
JP6328838B1 (en) Paint color evaluation apparatus and paint color evaluation method
Han et al. Bidirectional reflectance distribution function (BRDF)-based coarseness prediction of textured metal surface
JP2004526969A (en) Method and apparatus for surface evaluation
WO2020145023A1 (en) Optical characteristic analysis apparatus and program
JP2016194449A (en) Coloring checkup device, and coloring checkup method
JP2006337352A (en) Pearl luster inspection method and pearl luster inspection device
WO2022065038A1 (en) Optical characteristics measuring device, and optical characteristics measuring method
JP2006071316A (en) Film thickness acquiring method
Becker et al. 29‐4: image blurring induced by scattering anti‐glare layers
JP2020187093A (en) Imaging method and imaging system
NL2030196B1 (en) Method of analysing optical properties of material.
TWI843820B (en) Method of color inspection by using monochrome imaging with multiple wavelengths of light
JP2018159557A (en) Film thickness measurement device and film thickness measurement method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19859076

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020546821

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19859076

Country of ref document: EP

Kind code of ref document: A1