WO2020054228A1 - Power supply device - Google Patents

Power supply device Download PDF

Info

Publication number
WO2020054228A1
WO2020054228A1 PCT/JP2019/029339 JP2019029339W WO2020054228A1 WO 2020054228 A1 WO2020054228 A1 WO 2020054228A1 JP 2019029339 W JP2019029339 W JP 2019029339W WO 2020054228 A1 WO2020054228 A1 WO 2020054228A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
supply device
heat insulating
insulating member
battery cell
Prior art date
Application number
PCT/JP2019/029339
Other languages
French (fr)
Japanese (ja)
Inventor
直剛 吉田
直 武田
和博 原塚
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2020054228A1 publication Critical patent/WO2020054228A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/227Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power supply device having a plurality of battery cells.
  • an electric vehicle BEV: Battery Electric Vehicle
  • HEV Hybrid Electric Electric
  • a power supply device mounted on these electric vehicles uses a plurality of battery cells.
  • Each battery cell is a chargeable / dischargeable secondary battery such as a lithium ion battery or a nickel hydride battery.
  • it is desirable that the space occupied by the power supply device is small, and it is required to improve space efficiency.
  • Patent Literature 1 As a power supply device with excellent space efficiency, a plurality of prismatic batteries stacked in one direction, an insulating separator disposed between each battery cell, and a restraining member for assembling the plurality of prismatic batteries. Is known (Patent Literature 1).
  • the power supply device of Patent Literature 1 has a configuration in which battery cells are arranged close to each other. Therefore, when a certain battery cell is in a state of self-heating due to some abnormality, the battery cell adjacent to the battery cell is Heat is transmitted to. If the amount of heat transferred from the battery cell in the abnormal state to the adjacent battery cell is large, the transferred heat may promote a chemical reaction of the power generation element inside the adjacent battery cell. In order to suppress such heat propagation, it is necessary to increase the thickness of the separator provided for insulation. However, such a configuration causes an increase in the size of the power supply device and a problem that space efficiency is reduced. Occurs.
  • the present invention has been made in order to solve such a problem, and a main object of the present invention is to provide a power supply device having a configuration for suppressing heat transfer between adjacent battery cells while suppressing an increase in size of the power supply device. To provide a power supply device.
  • a power supply device includes a plurality of battery cells having a rectangular outer shape, a plurality of separators for insulating adjacent battery cells, and a restraining member for assembling the plurality of battery cells and the plurality of separators.
  • Each of the separators includes a clamping plate portion disposed between adjacent battery cells, at least one sheet-like heat insulating member disposed between the clamping plate portion and the adjacent battery cells, and a clamping plate portion. And a peripheral wall protruding toward the adjacent battery cell.
  • each battery cell is fitted in a space defined by the peripheral wall so that each separator regulates relative displacement between adjacent battery cells.
  • the adjacent battery can be thermally insulated, maintaining the function required as a separator, the heat transfer between adjacent battery cells is suppressed, suppressing the enlargement of a power supply device. Can be suppressed.
  • FIG. 1 is a perspective view of a power supply device according to a first embodiment of the present invention. It is a perspective view of the battery cell of FIG. It is a perspective view which shows an example of the separator of FIG. It is a perspective view of a power supply device concerning a second embodiment of the present invention. It is a perspective view which shows an example of the separator of FIG. It is a perspective view which shows an example of the separator of FIG. It is a perspective view which shows an example of the separator of FIG. It is a perspective view which shows an example of the separator of FIG. It is a perspective view which shows an example of the separator of FIG. It is a perspective view which shows an example of the separator of FIG. It is a perspective view which shows an example of the separator of FIG. It is a perspective view which shows an example of the separator of FIG. It is a perspective view which shows an example of the separator of FIG. It is a perspective view which shows an example of the separator of FIG. It is a perspective view which
  • a typical power supply device has a plurality of battery cells arranged in the same posture.
  • An insulating separator is arranged between adjacent battery cells in order to prevent a short circuit between adjacent battery cells.
  • the amount of energy possessed by individual battery cells tends to increase.
  • the power supply device disclosed in Patent Literature 1 has a configuration in which battery cells are arranged close to each other. Therefore, when a certain battery cell is in a state of being self-heated due to some abnormality, an adjacent battery is connected to the battery cell. Heat is transmitted to the cell. If the amount of heat transferred from the battery cell in the abnormal state to the adjacent battery cell is large, the transferred heat may promote a chemical reaction of the power generation element inside the adjacent battery cell. When the capacity of the battery cell is increased, the amount of heat transferred from the battery cell in an abnormal state to the adjacent battery cell becomes relatively large, so that this phenomenon may become a problem.
  • the inventors of the present invention have studied a configuration employing a separator having heat insulation properties.
  • a resin having high moldability is used for the separator in order to form the separator into a shape capable of realizing various functions such as insulation of adjacent battery cells and prevention of a short circuit via dew condensation water. Therefore, it is necessary to increase the thickness of the separator in order to enhance the heat insulation.
  • the thickness of the separator is increased, the size of the power supply device is increased, and there is a problem that the capacity per volume as the power supply device is reduced.
  • a member having high heat insulating property there is a sheet-shaped heat insulating member.
  • FIG. 1 is a perspective view showing a power supply device 100 according to the first embodiment of the present invention.
  • the power supply device 100 includes a plurality of battery cells 1, a plurality of separators 2, and a restraint member 3 that collects the plurality of battery cells 1 and the plurality of separators 2.
  • the plurality of battery cells 1 are arranged along one direction.
  • Each separator 2 is arranged between the adjacent battery cells 1 and holds the adjacent battery cells 1.
  • the plurality of separators 2 have insulating properties and prevent short-circuiting between adjacent battery cells 1.
  • the separator 2 includes a heat insulating member, and suppresses heat transfer between adjacent battery cells.
  • the plurality of battery cells 1 are connected in series or in parallel via a bus bar (not shown).
  • the voltage and capacity of the power supply device are determined according to the number of battery cells 1 connected in parallel and the number of battery cells 1 connected in series.
  • the battery cell various secondary batteries such as a lithium ion secondary battery and a nickel hydride battery can be employed.
  • the heat insulating member included in the separator 2 is a sheet having a thickness of 0.1 to 1.5 mm, and includes a fiber sheet made of a woven fabric or a nonwoven fabric, and a porous material supported between fibers of the fiber sheet.
  • the heat insulating member suitable for the embodiment of the present invention has a thermal conductivity of 0.02 W / (m ⁇ K) or less.
  • the porous material preferably has a void structure such as xerogel or aerogel.
  • silica airgel and silica xerogel have a nano-sized void structure that regulates the movement of air molecules, and have excellent heat insulating performance.
  • the silica xerogel can stably maintain its structure against external pressure.
  • silica xerogel also has high heat resistance.
  • Various fibers can be used as the fibers constituting the fiber sheet, and may include flame-retardant fibers having heat resistance.
  • Known flame-retardant fibers include oxidized acrylic fiber, flame-retardant vinylon fiber, polyetherimide fiber, aramid fiber, and glass fiber.
  • the fiber sheet can be expected to improve rigidity and suppress creep deformation in addition to heat resistance.
  • the heat insulating member 24A using the fiber sheet containing the flame-retardant fiber does not break even if the battery cell 1 is heated to a high temperature and is heated to a high temperature. Can be effectively prevented.
  • the fibers contained in the heat insulating member are preferably synthetic fibers having a small fiber diameter. Since the heat insulating property of the heat insulating member is caused by the characteristics of the powder described later, a large amount of powder can be included in the heat insulating material by using a synthetic fiber having a small fiber diameter as a base material.
  • the fiber sheet used in the present embodiment is preferably 1 to 30 ⁇ m from the viewpoint of achieving both thermal conductivity and productivity.
  • the above-mentioned heat insulating member may be molded by adding a thermoplastic resin.
  • the heat insulating member to which the thermoplastic resin is added can improve rigidity.
  • various characteristics can be imparted. For example, by covering with a coating layer made of alumina having a low emissivity, the influence of radiation heat transfer of the heat insulating member can be suppressed.
  • the heat insulating member in this way, by adjusting the additive, physical properties can be appropriately imparted according to required performance while maintaining heat insulating properties and heat resistance.
  • the restraint member 3 includes a pair of end plates 32 disposed at both ends in the stacking direction of the plurality of battery cells 1 to be stacked, and a plurality of bind bars 34 fixed to the pair of end plates 32. And The end of the bind bar 34 is connected to the end plate 32. The bind bar 34 is fixed to the end plate 32 via a set screw 36.
  • the bind bar 34 is manufactured by processing a metal plate having a predetermined thickness into a predetermined width.
  • the bind bar 34 has an end connected to the end plate 32, connects the pair of end plates 32, and holds the battery cell 1 therebetween.
  • the bind bar 34 suppresses expansion of the battery cells 1 stacked therebetween by fixing the pair of end plates 32 to a predetermined size.
  • a metal plate having a strength that does not expand due to the expansion pressure of the battery cell 1 for example, a stainless plate such as SUS304 or a metal plate such as a steel plate is used as the bind bar 34. It is manufactured by processing into a width and thickness having sufficient strength.
  • the bind bar 34 in FIG. 1 is fixed to the end plate 32 with a set screw 36, it is not always necessary to fix the bind bar with a screw member. Specifically, it can also be fixed using welding or a locking structure. Further, in the power supply device 100 of FIG. 1, the bind bar 34 is fixed to the side surface of the end plate 32, but the fixing structure of the end plate and the bind bar is not limited to the illustrated structure. .
  • the function required as the bind bar 34 is to regulate the relative distance between the pair of end plates 32.
  • the end plate 32 and the bind bar 34 may have any configuration as long as the configuration can restrict the displacement of the pair of end plates.
  • the battery cell 1 includes a rectangular parallelepiped outer can 12 and a sealing body 14 provided with positive and negative electrode terminals 16.
  • the battery cell 1 has an electrode body housed in the outer can 12, and the outer can 12 is filled with an electrolytic solution, and expands or contracts with charge / discharge or deterioration. Have the following characteristics.
  • the outer can 12 is formed in a box shape having an opening.
  • the sealing body 14 is welded to the outer can 12 and closes the opening of the outer can 12.
  • the exterior can 12 is manufactured by deep drawing a metal plate such as aluminum or an aluminum alloy.
  • the sealing body 14 is made of a metal plate such as aluminum or an aluminum alloy, like the outer can 12.
  • the positive and negative electrode terminals 16 are fixed to both ends of the sealing body 14.
  • the sealing body 14 is welded while being inserted into the opening of the outer can 12.
  • the sealing body 14 is air-tightly fixed to the outer can 12.
  • the metal is exposed on the surface.
  • This type of battery cell may be configured to cover the surface of the outer can with an insulating heat-shrinkable tube in order to prevent a short circuit due to dew water or the like. Also in the present embodiment, a configuration in which the surface of the outer can 12 is covered with a heat-shrinkable tube may be employed as necessary.
  • FIG. 3 is a perspective view showing an example of the separator 2 shown in FIG.
  • the separator 2A includes a sandwiching plate portion 22A sandwiched between adjacent battery cells 1, and a peripheral wall 26 projecting from the periphery of the sandwiching plate portion 22A toward both adjacent battery cells 1.
  • the peripheral wall 26 protrudes from the clamping plate portion 22A toward the adjacent battery cell 1, and defines a housing space for holding the battery cell 1 on both surfaces of the separator 2A.
  • the battery cell 1 is sandwiched by the peripheral wall 26 and is fitted with the separator 2A. Displacement of the battery cell 1 arranged inside the peripheral wall 26 is regulated by the peripheral wall 26.
  • the separator 2A illustrated in FIG. 3 is provided with a peripheral wall having a shape surrounding the entire periphery of the battery cell 1 disposed in the housing space, but is not necessarily required to have such a shape.
  • a peripheral wall having a shape surrounding the entire periphery of the battery cell 1 disposed in the housing space, but is not necessarily required to have such a shape.
  • the holding and displacement control of the battery cell can be realized.
  • Such a pair of walls is also one of the embodiments of the peripheral wall 26 in the present invention.
  • the separator 2A includes a heat insulating member 24A. It is preferable to use the above-mentioned heat insulating member as the heat insulating member 24A.
  • the heat insulating member 24A is disposed in a housing space defined inside the peripheral wall 26 of the separator 2A. In this state, the battery cells 1 are arranged in the accommodation space. According to this configuration, since the heat insulating member 24A is held between the holding plate portion 22A of the separator 2A and the battery cell 1, the displacement of the heat insulating member 24A can be prevented.
  • the heat insulating member 24A only needs to be provided between the adjacent battery cells 1 and may be disposed in at least one of the pair of housing spaces provided in the separator 2A.
  • the separator 2A includes the holding plate 22A and the peripheral wall 26 formed of a resin having high moldability, and the heat insulating member 24A disposed on the surface of the holding plate 22A. Since the separator 2A having this configuration can be realized by a member formed of a resin having high moldability with respect to the function due to the shape such as holding and displacement control of the battery cell 1, the shape of the heat insulating member 24A is not particularly limited. The thickness, shape, arrangement position, and the like can be freely selected according to the required heat insulating performance.
  • the heat insulating member included in the separator 2 is composed of a fiber sheet made of a woven fabric or a nonwoven fabric and a porous material carried between fibers of the fiber sheet, the heat insulating member may be formed into a shape other than the sheet shape. However, according to the above configuration, such a heat insulating member having low moldability can be employed.
  • FIG. 4 is a perspective view showing a power supply device 200 according to the second embodiment of the present invention.
  • the configuration of the power supply device 200 according to the second embodiment will be described with reference to FIGS.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
  • the power supply device 200 of the second embodiment is configured so that the cooling gap 4 is formed between the separator 2 and the battery cell 1.
  • the battery cell 1 can be cooled by introducing cooling air into the cooling gap 4. Since the deterioration of the battery cell 1 is promoted at a high temperature, the deterioration of the battery cell 1 can be suppressed by cooling the battery cell 1.
  • the bind bar 34 has a shape that allows cooling air to be introduced into the cooling gap 4 located between the separator 2 and the battery cell 1.
  • a pair of bind bars 34 is provided on one side surface, and the configuration is such that the inlet of the cooling gap 4 faces between the pair of bind bars 34. Have been.
  • FIG. 5 is a perspective view showing an example of the separator 2 shown in FIG.
  • the separator 2B includes a sandwiching plate portion 22B sandwiched between the adjacent battery cells 1, and a peripheral wall 26 projecting from the periphery of the sandwiching plate portion 22B toward both of the adjacent battery cells 1.
  • the peripheral wall 26 protrudes from the clamping plate portion 22B toward the adjacent battery cell 1, and defines an accommodation space for holding the battery cell 1 on both surfaces of the separator 2B.
  • the battery cell 1 is sandwiched by the peripheral wall 26 and is fitted with the separator 2B. Displacement of the battery cell 1 arranged inside the peripheral wall 26 is regulated by the peripheral wall 26.
  • the peripheral wall 26 is constituted by a pair of walls provided at the upper end and the lower end of the holding plate portion 22B.
  • the displacement of the battery cell 1 disposed between the pair of walls is regulated by the peripheral wall 26 formed of the pair of walls.
  • the holding plate portion 22B is provided with a plurality of ribs 23B on one surface.
  • the plurality of ribs 23B are in contact with the outer can 12 of the adjacent battery cell 1 to form the cooling gap 4 between the adjacent ribs 23B.
  • the battery cell 1 can be cooled by the cooling gas flowing through the cooling gap 4.
  • the separator 2B includes a heat insulating member 24B disposed on the opposite side of the surface of the holding plate portion 22B on which the ribs 23B are provided. It is preferable to use the above-described heat insulating member for the heat insulating member 24B.
  • the heat insulating member 24B is arranged in a housing space defined inside the peripheral wall 26 of the separator 2B. In this state, the battery cells 1 are arranged in the accommodation space. According to this configuration, since the heat insulating member 24B is sandwiched between the holding plate portion 22B of the separator 2B and the battery cell 1, the displacement of the heat insulating member 24B can be prevented.
  • the heat insulating member 24B is provided on the surface of the clamping plate portion 22B opposite to the surface on which the plurality of ribs 23B are formed, the heat generated by the cooling air flowing through the cooling gap 4 is provided. Heat transfer between adjacent battery cells 1 can be suppressed without obstructing cooling of the battery cells 1.
  • FIG. 6 is a perspective view showing an example of the separator 2 shown in FIG.
  • the separator 2C includes a clamping plate portion 22C sandwiched between the adjacent battery cells 1, and a peripheral wall 26 protruding from the periphery of the clamping plate portion 22C toward both of the adjacent battery cells 1.
  • the peripheral wall 26 protrudes from the clamping plate portion 22C toward the adjacent battery cell 1, and defines an accommodation space for holding the battery cell 1 on both surfaces of the separator 2C.
  • the battery cell 1 is sandwiched by the peripheral wall 26 and is fitted with the separator 2C. Displacement of the battery cell 1 arranged inside the peripheral wall 26 is regulated by the peripheral wall 26.
  • the separator 2C has a plurality of heat insulating members 24C attached to one surface of the clamping plate portion 22C.
  • the plurality of heat insulating members 24C are arranged at intervals, and form cooling gaps 4 between adjacent heat insulating members 24C.
  • the heat insulating member 24C illustrated in FIG. 6 is formed in a long external shape, and a plurality of heat insulating members 24C are arranged side by side so as to be parallel. It is preferable to use the above-mentioned heat insulating member for the heat insulating member 24C.
  • the heat insulating member 24C is a heat insulating member having relatively high rigidity.
  • the heat insulating member having high rigidity has a small deformation amount even when an external force is applied, it is possible to suppress the reduction of the space of the cooling gap 4 due to the expansion of the battery cell.
  • the heat insulating member including the fiber sheet can improve physical properties such as rigidity by including the glass fiber and the thermoplastic resin. Note that a plurality of heat insulating members 24C may be attached to both sides of the holding plate portion 22C, and the cooling gaps 4 may be formed on both sides of the holding plate portion 22C.
  • the separator 2C having the above-described configuration can achieve both heat insulation of the adjacent battery cells 1 and cooling of the battery cells 1 by the configuration of the heat insulating member 24C. Therefore, by employing such a configuration, the thickness of the separator can be reduced.
  • FIG. 7 is a perspective view showing an example of the separator 2 shown in FIG.
  • the separator 2D includes a clamping plate portion 22D sandwiched between the adjacent battery cells 1, and a peripheral wall 26 protruding from the periphery of the clamping plate portion 22D toward both of the adjacent battery cells 1.
  • the peripheral wall 26 protrudes from the clamping plate portion 22D toward the adjacent battery cell 1, and defines an accommodation space for holding the battery cell 1 on both surfaces of the separator 2D.
  • the battery cell 1 is sandwiched by the peripheral wall 26 and is fitted with the separator 2D. Displacement of the battery cell 1 arranged inside the peripheral wall 26 is regulated by the peripheral wall 26.
  • the heat insulating member 24D is provided on one surface of the clamping plate portion 22D. It is preferable to use the above-described heat insulating member as the heat insulating member 24D.
  • the heat insulating member 24D is a sheet member having the same area as the holding plate portion 22D, and extends over the entire surface of the holding plate portion 22D. Thereby, the displacement of the heat insulating member 24D is regulated by the peripheral wall 26 of the separator 2D. According to this configuration, the positioning of the heat insulating member 24D at the time of assembling the power supply device 200 becomes easy.
  • a plurality of grooves 25D extending in one direction are provided on both sides of the holding plate portion 22D so that the cross section becomes a rectangular pattern.
  • the holding plate portion 22D has a groove 25D formed on the surface where the heat insulating member 24D is provided, thereby reducing the contact area between the holding plate portion 22D and the heat insulating member 24D. With this configuration, heat transfer between adjacent battery cells 1 can be further suppressed. Further, in the holding plate portion 22D, by forming a groove 25D on the opposite side to the surface on which the heat insulating member 24D is provided, the space of the groove 25D can be used as the cooling gap 4. The battery cell 1 can be cooled by the cooling gas flowing through the cooling gap 4.
  • FIG. 8 is a perspective view showing an example of the separator 2 shown in FIG.
  • the separator 2E includes a clamping plate portion 22E sandwiched between the adjacent battery cells 1, and a peripheral wall 26 projecting from the periphery of the clamping plate portion 22E toward both of the adjacent battery cells 1.
  • the peripheral wall 26 protrudes from the clamping plate portion 22E toward the adjacent battery cell 1, and defines a housing space for holding the battery cell 1 on both surfaces of the separator 2E.
  • the battery cell 1 is sandwiched by the peripheral wall 26 and is fitted with the separator 2E. Displacement of the battery cell 1 arranged inside the peripheral wall 26 is regulated by the peripheral wall 26.
  • a plurality of grooves 25E extending in one direction are provided on both sides of the holding plate portion 22E so that the cross section becomes a rectangular pattern.
  • a flat surface is formed between the adjacent grooves 25E, and the heat insulating member 24E is provided on the flat surface.
  • the heat insulating member 24E is held between the battery cell 1 and the holding plate portion 22E. It is preferable to use the above-described heat insulating member as the heat insulating member 24E.
  • the heat insulating member 24E is not disposed in the groove 25E for forming the cooling gap 4, the heat transfer between the adjacent battery cells 1 is suppressed while ensuring the space of the cooling gap 4. be able to.
  • FIG. 9 is a perspective view showing an example of the separator 2 shown in FIG.
  • the separator 2F includes a clamping plate portion 22F sandwiched between the adjacent battery cells 1, and a peripheral wall 26 projecting from the periphery of the clamping plate portion 22F toward both of the adjacent battery cells 1.
  • the peripheral wall 26 protrudes from the clamping plate portion 22F toward the adjacent battery cell 1, and defines an accommodation space for holding the battery cell 1 on both surfaces of the separator 2F.
  • the battery cell 1 is sandwiched by the peripheral wall 26 and is fitted with the separator 2F. Displacement of the battery cell 1 arranged inside the peripheral wall 26 is regulated by the peripheral wall 26.
  • a plurality of grooves 25F extending in one direction are provided on both sides of the holding plate portion 22F so that the cross section becomes a rectangular pattern.
  • the plurality of grooves 25F include a groove for forming a cooling gap and a groove for disposing a heat insulating member.
  • a groove extending to both ends is formed in the center portion of the holding plate portion 22F, and this groove is used as a heat insulating member accommodating portion 27F.
  • the heat insulating member 24F is disposed in a heat insulating member accommodating portion 27F provided at the center of the holding plate portion 22F. It is preferable to use the above-described heat insulating member for the heat insulating member 24F.
  • the wall of the groove forming the heat insulating member housing portion 27F is in contact with the battery cell 1, the expansion of the battery cell 1 is suppressed, so that the compressive deformation of the heat insulating member 24F can be suppressed, and the heat insulating performance can be improved. The decrease can be suppressed.
  • the central portion of the battery cell 1 is the region that expands most, the gap between the adjacent battery cells 1 tends to be small. According to the above configuration, the heat insulating member 24F can be arranged in a region where heat insulating performance is required.
  • FIG. 10 is a perspective view showing an example of the separator 2 shown in FIG.
  • the separator 2G includes a clamping plate portion 22G sandwiched between the adjacent battery cells 1, and a peripheral wall 26 protruding from the periphery of the clamping plate portion 22G toward both of the adjacent battery cells 1.
  • the peripheral wall 26 protrudes from the clamping plate portion 22G toward the adjacent battery cell 1, and defines a housing space for holding the battery cell 1 on both surfaces of the separator 2G.
  • the battery cell 1 is sandwiched by the peripheral wall 26 and is fitted with the separator 2G. Displacement of the battery cells 1 arranged inside the peripheral wall 26 is regulated by the peripheral wall 26.
  • a plurality of grooves 25G extending in one direction are provided on both sides of the holding plate portion 22G so that the cross section becomes a rectangular pattern.
  • the plurality of grooves 25G include a groove for forming a cooling gap and a groove for disposing a heat insulating member.
  • a groove extending to both ends is formed in the upper end portion and the lower end portion of the holding plate portion 22G, and this groove is used as the heat insulating member accommodating portion 27G.
  • the heat insulating member 24G is disposed in a heat insulating member receiving portion 27G provided at an upper end portion and a lower end portion of the holding plate portion 22G. It is preferable to use the above-described heat-insulating member as the heat-insulating member 24G.
  • the cooling gap 4 is formed at a position corresponding to the center of the battery cell 1.
  • the battery cell 1 can effectively suppress a rise in temperature by cooling a central portion where heat is easily trapped. Since the cooling gap 4 is located in the separator 2 ⁇ / b> G corresponding to the center of the battery cell 1, the center of the battery cell 1 can be reliably cooled while insulating the adjacent battery cells 1.
  • FIG. 11 is a perspective view showing an example of the separator 2 shown in FIG.
  • the separator 2H includes a clamping plate portion 22H sandwiched between the adjacent battery cells 1, and a peripheral wall 26 projecting from the periphery of the clamping plate portion 22H toward both of the adjacent battery cells 1.
  • the peripheral wall 26 protrudes from the clamping plate portion 22H toward the adjacent battery cell 1, and defines a housing space for holding the battery cell 1 on both surfaces of the separator 2H.
  • the battery cell 1 is sandwiched by the peripheral wall 26 and is fitted with the separator 2H. Displacement of the battery cells 1 arranged inside the peripheral wall 26 is regulated by the peripheral wall 26.
  • the clamping plate portion 22H has a plurality of slits extending in one direction. Specifically, it includes a clamping plate portion 22H, a plurality of columnar portions 28H arranged in parallel with a gap therebetween, and a pair of frame portions 29H connected to the plurality of columnar portions 28H. Both ends in the extending direction of the plurality of columnar portions 28H are respectively connected to the frame portion 29H, and the plurality of columnar portions 28H and the pair of frame portions 29H are molded so as to have an integral structure.
  • the plurality of heat insulating members 24H are attached to opposing surfaces of the plurality of columnar portions 28H facing the adjacent battery cells 1.
  • the plurality of heat insulating members 24H contact the adjacent battery cells 1 to suppress the displacement of the battery cells 1, and can form a gap between the pair of frame portions 29H and the adjacent battery cells 1.
  • the gap formed between the pair of frame portions 29H and the adjacent battery cells 1 is communicated with the space of the slit of the sandwiching plate portion 22H so that the cooling gap 4 can be formed.
  • the heat insulating member 24H is preferably a heat insulating member having relatively high rigidity.
  • the heat insulating member having high rigidity has a small deformation amount even when an external force is applied, it is possible to suppress the reduction of the space of the cooling gap 4 due to the expansion of the battery cell.
  • the heat insulating member including the fiber sheet can improve physical properties such as rigidity by including the glass fiber and the thermoplastic resin.
  • the power supply device having the above configuration has a plurality of battery cells having a rectangular outer shape, a plurality of separators for insulating adjacent battery cells, and a restraining member for assembling the plurality of battery cells and the plurality of separators, It has.
  • Each of the separators includes a clamping plate portion disposed between adjacent battery cells, at least one sheet-like heat insulating member disposed between the clamping plate portion and the adjacent battery cells, and a clamping plate portion. And a peripheral wall protruding toward both of the adjacent battery cells.
  • each battery cell is fitted in a space defined by the peripheral wall so that each separator regulates relative displacement between adjacent battery cells.
  • the separator can insulate adjacent batteries from each other while maintaining a necessary function. Therefore, the power supply device having such a configuration can suppress heat transfer between adjacent battery cells while suppressing an increase in the size of the power supply device.
  • Reference numerals 100, 200 power supply device, 1: battery cell, 12: outer can, 14: sealing body, 16: electrode terminal, 2, 2A, 2B, 2C, 2D, 2E, 2F, 2G, 2H: separator, 22A, 22B , 22C, 22D, 22E, 22F, 22G, 22H: clamping plate portion, 23B: rib, 24A, 24B, 24C, 24D, 24E, 24F, 24G, 24H: heat insulating member, 25D, 25E, 25F, 25G: groove , 26 ... peripheral wall, 27F, 27G ... heat insulating member housing part, 28H ... columnar part, 29H ... frame part, 3 ... restraint member, 32 ... end plate, 34 ... bind bar, 36 ... set screw, 4 ... cooling gap

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

In order to suppress heat transfer between adjacent battery cells while suppressing any increase in the size of a power supply device, this power supply device comprises a plurality of battery cells (1) configured so that the external shape thereof is rectangular, a plurality of separators (2A) for insulating adjacent battery cells (1), and a restriction member for assembling the plurality of battery cells (1) and the plurality of separators (2A). Each of the separators (2A) includes a sandwiched plate part (22A) disposed between adjacent battery cells (1), at least one sheet-form insulation member (24A) disposed between the sandwiched plate part (22A) and the adjacent battery cell (1), and a peripheral wall (26) that projects from the sandwiched plate part (22A) toward the adjacent battery cell (1). In addition, each of the battery cells (1) is fitted into a space partitioned by the peripheral wall (26) so that each of the separators (2A) restricts relative displacement between adjacent battery cells (1).

Description

電源装置Power supply
 本発明は、複数の電池セルを備える電源装置に関する。 The present invention relates to a power supply device having a plurality of battery cells.
 近年、推進用の電源装置を使用する電動車両が普及している。電動車両は、様々な構成が知られており、例えば、駆動用のモータを搭載する電気自動車(BEV:Battery Electric Vehicle)や、モータに加えてエンジンを搭載しているハイブリッドカー(HEV:Hybrid Electric Vehicle)などがある。これらの電動車両に搭載される電源装置では、複数の電池セルが用いられる。各々の電池セルは、リチウムイオン電池やニッケル水素電池等の充放電が可能な二次電池である。この種の電源装置では、電源装置が占有するスペースは少ないほうが望ましく、スペース効率を向上させることが求められている。スペース効率に優れた電源装置としては、一方向に積層された複数の角形電池と、各電池セルの間に配置される絶縁性のセパレータと、複数の角形電池を集合化するための拘束部材と、を備えた電源装置が知られている(特許文献1)。 In recent years, electric vehicles using a power supply device for propulsion have become widespread. Various configurations of an electric vehicle are known. For example, an electric vehicle (BEV: Battery Electric Vehicle) equipped with a driving motor or a hybrid vehicle (HEV: Hybrid Electric Electric) equipped with an engine in addition to the motor. Vehicle). A power supply device mounted on these electric vehicles uses a plurality of battery cells. Each battery cell is a chargeable / dischargeable secondary battery such as a lithium ion battery or a nickel hydride battery. In this type of power supply device, it is desirable that the space occupied by the power supply device is small, and it is required to improve space efficiency. As a power supply device with excellent space efficiency, a plurality of prismatic batteries stacked in one direction, an insulating separator disposed between each battery cell, and a restraining member for assembling the plurality of prismatic batteries. Is known (Patent Literature 1).
特開2010-157450号公報JP 2010-157450 A
 二次電池は、高温になると様々な不具合が生じることが知られている。特に、内部の発電要素の化学反応が熱によって促進されると、化学反応によって生じる熱により、さらに、自己加熱されるおそれがある。一方で、特許文献1の電源装置は、電池セル同士が近接して配置される構成となるため、ある電池セルが何らかの異常により、自己加熱される状態となると、当該電池セルから隣接する電池セルに熱が伝わる。異常な状態となった電池セルから隣接する電池セルに伝熱する熱量が大きい場合、伝熱された熱により隣接する電池セルの内部の発電要素の化学反応が促進されるおそれがある。このような熱伝播を抑制するためには、絶縁のために設けられているセパレータを厚くする必要があるが、そのような構成は、電源装置の大型化を招き、スペース効率が低下する問題が生じる。 It is known that various problems occur in secondary batteries at high temperatures. In particular, if the chemical reaction of the internal power generation element is accelerated by heat, the heat generated by the chemical reaction may further cause self-heating. On the other hand, the power supply device of Patent Literature 1 has a configuration in which battery cells are arranged close to each other. Therefore, when a certain battery cell is in a state of self-heating due to some abnormality, the battery cell adjacent to the battery cell is Heat is transmitted to. If the amount of heat transferred from the battery cell in the abnormal state to the adjacent battery cell is large, the transferred heat may promote a chemical reaction of the power generation element inside the adjacent battery cell. In order to suppress such heat propagation, it is necessary to increase the thickness of the separator provided for insulation. However, such a configuration causes an increase in the size of the power supply device and a problem that space efficiency is reduced. Occurs.
 本発明は、斯かる問題を解決するためになされたものであり、本発明の主な目的は、電源装置の大型化を抑制しながら、隣接する電池セル同士の伝熱を抑制する構成を備えた電源装置を提供することにある。 The present invention has been made in order to solve such a problem, and a main object of the present invention is to provide a power supply device having a configuration for suppressing heat transfer between adjacent battery cells while suppressing an increase in size of the power supply device. To provide a power supply device.
 本発明のある態様の電源装置は、外形を角形とした複数の電池セルと、隣接する電池セルを絶縁するための複数のセパレータと、複数の電池セルと複数のセパレータとを集合化する拘束部材と、を備えている。それぞれのセパレータは、隣接する電池セルの間に配置される挾着プレート部と、挾着プレート部と隣接する電池セルの間に配置される少なくとも一つのシート状の断熱部材と、挾着プレート部から隣接する電池セルに向かって突出する周壁と、を含んでいる。また、それぞれのセパレータが隣接する電池セル同士の相対変位を規制するように、周壁で区画される空間にそれぞれの電池セルを嵌合させている。 A power supply device according to an embodiment of the present invention includes a plurality of battery cells having a rectangular outer shape, a plurality of separators for insulating adjacent battery cells, and a restraining member for assembling the plurality of battery cells and the plurality of separators. And Each of the separators includes a clamping plate portion disposed between adjacent battery cells, at least one sheet-like heat insulating member disposed between the clamping plate portion and the adjacent battery cells, and a clamping plate portion. And a peripheral wall protruding toward the adjacent battery cell. Also, each battery cell is fitted in a space defined by the peripheral wall so that each separator regulates relative displacement between adjacent battery cells.
 本発明にかかる電源装置によれば、セパレータとして必要な機能を維持しつつ、隣接する電池同士を断熱することができるので、電源装置の大型化を抑制しながら、隣接する電池セル同士の伝熱を抑制することができるという効果を奏する。 ADVANTAGE OF THE INVENTION According to the power supply device which concerns on this invention, since the adjacent battery can be thermally insulated, maintaining the function required as a separator, the heat transfer between adjacent battery cells is suppressed, suppressing the enlargement of a power supply device. Can be suppressed.
本発明の第一実施形態に係る電源装置の斜視図である。1 is a perspective view of a power supply device according to a first embodiment of the present invention. 図1の電池セルの斜視図である。It is a perspective view of the battery cell of FIG. 図1のセパレータの一例を示す斜視図である。It is a perspective view which shows an example of the separator of FIG. 本発明の第二実施形態に係る電源装置の斜視図である。It is a perspective view of a power supply device concerning a second embodiment of the present invention. 図4のセパレータの一例を示す斜視図である。It is a perspective view which shows an example of the separator of FIG. 図4のセパレータの一例を示す斜視図である。It is a perspective view which shows an example of the separator of FIG. 図4のセパレータの一例を示す斜視図である。It is a perspective view which shows an example of the separator of FIG. 図4のセパレータの一例を示す斜視図である。It is a perspective view which shows an example of the separator of FIG. 図4のセパレータの一例を示す斜視図である。It is a perspective view which shows an example of the separator of FIG. 図4のセパレータの一例を示す斜視図である。It is a perspective view which shows an example of the separator of FIG. 図4のセパレータの一例を示す斜視図である。It is a perspective view which shows an example of the separator of FIG.
 まず、本発明のある態様の電源装置の構成を着想するに至った経緯について説明する。特許文献1に示されるように、典型的な電源装置は、複数の電池セルが同じ姿勢で配置される。隣接する電池セルの間には、隣接する電池セル同士の短絡を防止するために、絶縁性のセパレータが配置される。一方、近年、電池セルの高容量化に伴い、個々の電池セルが保有するエネルギー量が増大する傾向にある。 First, the process of conceiving the configuration of the power supply device according to an embodiment of the present invention will be described. As shown in Patent Literature 1, a typical power supply device has a plurality of battery cells arranged in the same posture. An insulating separator is arranged between adjacent battery cells in order to prevent a short circuit between adjacent battery cells. On the other hand, in recent years, with the increase in capacity of battery cells, the amount of energy possessed by individual battery cells tends to increase.
 上述のとおり、特許文献1の電源装置は、電池セル同士が近接して配置される構成となるため、ある電池セルが何らかの異常により、自己加熱される状態となると、当該電池セルから隣接する電池セルに熱が伝わる。異常な状態となった電池セルから隣接する電池セルに伝熱する熱量が大きい場合、伝熱された熱により隣接する電池セルの内部の発電要素の化学反応が促進されるおそれがある。電池セルの高容量化すると、異常な状態となった電池セルから隣接する電池セルに伝熱する熱量が相対的に大きくなるため、この現象が問題になる可能性がある。 As described above, the power supply device disclosed in Patent Literature 1 has a configuration in which battery cells are arranged close to each other. Therefore, when a certain battery cell is in a state of being self-heated due to some abnormality, an adjacent battery is connected to the battery cell. Heat is transmitted to the cell. If the amount of heat transferred from the battery cell in the abnormal state to the adjacent battery cell is large, the transferred heat may promote a chemical reaction of the power generation element inside the adjacent battery cell. When the capacity of the battery cell is increased, the amount of heat transferred from the battery cell in an abnormal state to the adjacent battery cell becomes relatively large, so that this phenomenon may become a problem.
 この問題に対して、本発明の発明者らは、断熱性を有するセパレータを採用する構成について検討を行った。従来の電源装置では、セパレータは、隣接する電池セルの絶縁や結露水を介した短絡の防止等、様々な機能を実現できるような形状に成形するために、成形性の高い樹脂が用いられる。そのため、断熱性を高めるためには、セパレータの材厚を大きくする必要がある。しかしながら、セパレータの厚さを大きくすると、電源装置の大型化を招き、電源装置としての体積あたりの容量が低下する問題ある。一方、断熱性の高い部材としては、シート状の断熱部材があるが、この種の断熱部材は成形性が低いため、シート以外の形状に成形することが難しいという問題がある。斯かる実情に鑑み、本発明者らは、シート状の断熱部材を利用することができるようにするための構成について検討を行った。 に 対 し て To solve this problem, the inventors of the present invention have studied a configuration employing a separator having heat insulation properties. In a conventional power supply device, a resin having high moldability is used for the separator in order to form the separator into a shape capable of realizing various functions such as insulation of adjacent battery cells and prevention of a short circuit via dew condensation water. Therefore, it is necessary to increase the thickness of the separator in order to enhance the heat insulation. However, when the thickness of the separator is increased, the size of the power supply device is increased, and there is a problem that the capacity per volume as the power supply device is reduced. On the other hand, as a member having high heat insulating property, there is a sheet-shaped heat insulating member. However, since this kind of heat insulating member has low formability, there is a problem that it is difficult to form the heat insulating member into a shape other than a sheet. In view of such circumstances, the present inventors have studied a configuration for making it possible to use a sheet-shaped heat insulating member.
 (第一実施形態)
 図1は、本発明の第一実施形態の電源装置100を示す斜視図である。図1に示すように、電源装置100は、複数の電池セル1と、複数のセパレータ2と、複数の電池セル1と複数のセパレータ2とを集合化する拘束部材3と、を備える。複数の電池セル1は、一方向に沿って配置されている。それぞれのセパレータ2は、隣接する電池セル1の間に配置され、隣接する電池セル1を保持している。複数のセパレータ2は、絶縁性を有しており、隣接する電池セル1同士の短絡を防止する。また、セパレータ2は、断熱部材を含んでおり、隣接する電池セル同士の伝熱を抑制する。複数の電池セル1は、バスバー(図示せず)を介して、直列または並列に接続されている。電源装置100は、並列接続される電池セル1の数と、直列接続される電池セル1の数に応じて、電源装置の電圧と容量が決まるようになっている。電池セル1は、リチウムイオン二次電池やニッケル水素電池など、種々の二次電池が採用されうる。
(First embodiment)
FIG. 1 is a perspective view showing a power supply device 100 according to the first embodiment of the present invention. As shown in FIG. 1, the power supply device 100 includes a plurality of battery cells 1, a plurality of separators 2, and a restraint member 3 that collects the plurality of battery cells 1 and the plurality of separators 2. The plurality of battery cells 1 are arranged along one direction. Each separator 2 is arranged between the adjacent battery cells 1 and holds the adjacent battery cells 1. The plurality of separators 2 have insulating properties and prevent short-circuiting between adjacent battery cells 1. The separator 2 includes a heat insulating member, and suppresses heat transfer between adjacent battery cells. The plurality of battery cells 1 are connected in series or in parallel via a bus bar (not shown). In the power supply device 100, the voltage and capacity of the power supply device are determined according to the number of battery cells 1 connected in parallel and the number of battery cells 1 connected in series. As the battery cell 1, various secondary batteries such as a lithium ion secondary battery and a nickel hydride battery can be employed.
 セパレータ2に含まれる断熱部材は、0.1~1.5mmの厚さのシートであり、織布や不織布等からなる繊維シートと、繊維シートの繊維間に担持される多孔質材とを含んでいる。本発明の実施形態に好適な断熱部材は、熱伝導率が0.02W/(m・K)以下の特性を有しているものである。多孔質材は、キセロゲルやエアロゲル等の空隙構造を有するものが好ましい。特に、シリカエアロゲルやシリカキセロゲルは、空気分子の運動を規制するナノサイズの空隙構造を有しており、優れた断熱性能を有している。また、シリカキセロゲルは、外部からの押圧に対してその構造を安定的に維持することができる。シリカ粒子は、融点が高いため、シリカキセロゲルも高い耐熱性を有している。繊維シートを構成する繊維は、種々の繊維を用いることができ、耐熱性を有する難燃性繊維を含んでいてもよい。難燃性繊維としては、酸化アクリル繊維、難燃性ビニロン繊維、ポリエーテルイミド繊維、アラミド繊維およびガラス繊維などが知られている。特に、繊維シートは、ガラス繊維を含むことで、耐熱性の向上に加え、剛性の向上およびクリープ変形の抑制が期待できる。難燃性繊維を含む繊維シートを用いた断熱部材24Aは、電池セル1が熱暴走して高温に加熱されても破損することがなく、安定して熱エネルギーの伝導を遮断して、熱暴走の誘発を効果的に阻止できる。 The heat insulating member included in the separator 2 is a sheet having a thickness of 0.1 to 1.5 mm, and includes a fiber sheet made of a woven fabric or a nonwoven fabric, and a porous material supported between fibers of the fiber sheet. In. The heat insulating member suitable for the embodiment of the present invention has a thermal conductivity of 0.02 W / (m · K) or less. The porous material preferably has a void structure such as xerogel or aerogel. In particular, silica airgel and silica xerogel have a nano-sized void structure that regulates the movement of air molecules, and have excellent heat insulating performance. In addition, the silica xerogel can stably maintain its structure against external pressure. Since silica particles have a high melting point, silica xerogel also has high heat resistance. Various fibers can be used as the fibers constituting the fiber sheet, and may include flame-retardant fibers having heat resistance. Known flame-retardant fibers include oxidized acrylic fiber, flame-retardant vinylon fiber, polyetherimide fiber, aramid fiber, and glass fiber. In particular, by including glass fibers, the fiber sheet can be expected to improve rigidity and suppress creep deformation in addition to heat resistance. The heat insulating member 24A using the fiber sheet containing the flame-retardant fiber does not break even if the battery cell 1 is heated to a high temperature and is heated to a high temperature. Can be effectively prevented.
 なお、上述の断熱部材に含まれる繊維は、繊維径の細い合成繊維とすることが好ましい。断熱部材の断熱性は、後述する粉体の特性に起因するため、繊維径の細い合成繊維を基材とすることで、多量の粉体を断熱材に含ませることができる。本実施形態で用いられる繊維シートとしては、熱伝導率、生産性を両立させる観点から1~30μmが好ましい。 The fibers contained in the heat insulating member are preferably synthetic fibers having a small fiber diameter. Since the heat insulating property of the heat insulating member is caused by the characteristics of the powder described later, a large amount of powder can be included in the heat insulating material by using a synthetic fiber having a small fiber diameter as a base material. The fiber sheet used in the present embodiment is preferably 1 to 30 μm from the viewpoint of achieving both thermal conductivity and productivity.
 また、上述の断熱部材は、熱可塑性樹脂を添加して成形してもよい。熱可塑性樹脂を添加した断熱部材は、剛性を向上させることができる。断熱部材の表面をコート処理することで、様々な特性を付与することもできる。例えば、輻射率が低いアルミナからなるコーティング層で覆うことで、断熱部材の輻射伝熱の影響を抑制することができる。このように断熱部材を形成する際、添加物を調整することで、断熱性や耐熱性等を維持しつつ、要求される性能に応じて、物理的特性を適宜、付与することができる。 The above-mentioned heat insulating member may be molded by adding a thermoplastic resin. The heat insulating member to which the thermoplastic resin is added can improve rigidity. By coating the surface of the heat insulating member, various characteristics can be imparted. For example, by covering with a coating layer made of alumina having a low emissivity, the influence of radiation heat transfer of the heat insulating member can be suppressed. When forming the heat insulating member in this way, by adjusting the additive, physical properties can be appropriately imparted according to required performance while maintaining heat insulating properties and heat resistance.
 図1に示すように、拘束部材3は、積層される複数の電池セル1の積層方向の両端に配置される一対のエンドプレート32と、一対のエンドプレート32に固定される複数のバインドバー34と、を含んでいる。エンドプレート32には、バインドバー34の端部が連結される。バインドバー34は、止ネジ36を介してエンドプレート32に固定される。 As shown in FIG. 1, the restraint member 3 includes a pair of end plates 32 disposed at both ends in the stacking direction of the plurality of battery cells 1 to be stacked, and a plurality of bind bars 34 fixed to the pair of end plates 32. And The end of the bind bar 34 is connected to the end plate 32. The bind bar 34 is fixed to the end plate 32 via a set screw 36.
 バインドバー34は、所定の厚さの金属板を所定の幅に加工して製作される。バインドバー34は、端部をエンドプレート32に連結して、一対のエンドプレート32を連結して、その間に電池セル1を保持する。バインドバー34は、一対のエンドプレート32を所定の寸法に固定することで、その間に積層される電池セル1の膨張を抑制する。バインドバー34が伸びると、電池セル1の膨張を阻止できないため、バインドバー34には、電池セル1の膨張圧で伸びない強度の金属板、たとえばSUS304等のステンレス板や鋼板等の金属板を十分な強度を有する幅と厚さに加工して製作される。 The bind bar 34 is manufactured by processing a metal plate having a predetermined thickness into a predetermined width. The bind bar 34 has an end connected to the end plate 32, connects the pair of end plates 32, and holds the battery cell 1 therebetween. The bind bar 34 suppresses expansion of the battery cells 1 stacked therebetween by fixing the pair of end plates 32 to a predetermined size. When the bind bar 34 extends, the expansion of the battery cell 1 cannot be prevented. Therefore, a metal plate having a strength that does not expand due to the expansion pressure of the battery cell 1, for example, a stainless plate such as SUS304 or a metal plate such as a steel plate is used as the bind bar 34. It is manufactured by processing into a width and thickness having sufficient strength.
 なお、図1のバインドバー34は、止ネジ36でエンドプレート32に固定しているが、必ずしも螺合部材で固定する必要はない。具体的には、溶接や係止構造などを利用して固定することもできる。また、図1の電源装置100では、エンドプレート32の側面にバインドバー34が固定される構成となっているが、エンドプレートとバインドバーの固定構造は、図示されている構成に限る必要はない。バインドバー34として必要な機能は、一対のエンドプレート32の相対距離を規制することにある。一対のエンドプレートの変位を規制できる構成であれば、エンドプレート32やバインドバー34の構成はどのような構成であってもよい。 Although the bind bar 34 in FIG. 1 is fixed to the end plate 32 with a set screw 36, it is not always necessary to fix the bind bar with a screw member. Specifically, it can also be fixed using welding or a locking structure. Further, in the power supply device 100 of FIG. 1, the bind bar 34 is fixed to the side surface of the end plate 32, but the fixing structure of the end plate and the bind bar is not limited to the illustrated structure. . The function required as the bind bar 34 is to regulate the relative distance between the pair of end plates 32. The end plate 32 and the bind bar 34 may have any configuration as long as the configuration can restrict the displacement of the pair of end plates.
 (電池セル)
 図2に示すように、電池セル1は、直方体形状の外装缶12と、正負の電極端子16が設けられる封口体14とを含んでいる。また、電池セル1は、外装缶12内に収納される電極体を有しており、外装缶12内に電解液が充填されており、充放電や劣化に伴い、膨張したり、収縮したりする特性を有している。
(Battery cell)
As shown in FIG. 2, the battery cell 1 includes a rectangular parallelepiped outer can 12 and a sealing body 14 provided with positive and negative electrode terminals 16. In addition, the battery cell 1 has an electrode body housed in the outer can 12, and the outer can 12 is filled with an electrolytic solution, and expands or contracts with charge / discharge or deterioration. Have the following characteristics.
 外装缶12は、開口を有する箱型形状に形成されている。封口体14は、外装缶12に溶接され、外装缶12の開口を閉塞する。具体的には、外装缶12は、アルミニウムやアルミニウム合金などの金属板を深絞り加工して製作される。封口体14は、外装缶12と同じように、アルミニウムやアルミニウム合金などの金属板で製作される。この封口体14は、両端部に正負の電極端子16が固定されている。封口体14は、外装缶12の開口部に挿入された状態で溶接される。典型的には、封口体14の外周と外装缶12の内周との境界にレーザービームを照射することで、封口体14が外装缶12に気密に固定される。 The outer can 12 is formed in a box shape having an opening. The sealing body 14 is welded to the outer can 12 and closes the opening of the outer can 12. Specifically, the exterior can 12 is manufactured by deep drawing a metal plate such as aluminum or an aluminum alloy. The sealing body 14 is made of a metal plate such as aluminum or an aluminum alloy, like the outer can 12. The positive and negative electrode terminals 16 are fixed to both ends of the sealing body 14. The sealing body 14 is welded while being inserted into the opening of the outer can 12. Typically, by irradiating a laser beam to a boundary between the outer circumference of the sealing body 14 and the inner circumference of the outer can 12, the sealing body 14 is air-tightly fixed to the outer can 12.
 なお、外装缶や封口体が金属である電池セルは、表面に金属を露出することになる。この種の電池セルは、結露水等を介した短絡を防止するために、外装缶の表面を絶縁性の熱収縮チューブで覆う構成とすることがある。本実施形態においても、必要に応じて、外装缶12の表面を熱収縮チューブで覆う構成を採用してもよい。 (4) In the case of a battery cell in which the outer can and the sealing body are made of metal, the metal is exposed on the surface. This type of battery cell may be configured to cover the surface of the outer can with an insulating heat-shrinkable tube in order to prevent a short circuit due to dew water or the like. Also in the present embodiment, a configuration in which the surface of the outer can 12 is covered with a heat-shrinkable tube may be employed as necessary.
 (セパレータ2A)
 図3は、図1に示すセパレータ2の一例を示す斜視図である。図3に示すように、セパレータ2Aは、隣接する電池セル1の間に挟まれる挾着プレート部22Aと、挾着プレート部22Aの周縁から隣接する両方の電池セル1に向かって突出する周壁26とを有している。周壁26は、挾着プレート部22Aから隣接する電池セル1に向けて突出しており、セパレータ2Aの両面に電池セル1を保持するための収容空間を規定している。電池セル1は、周壁26によって挟持され、セパレータ2Aと嵌合している。周壁26の内側に配置された電池セル1は、周壁26によって変位が規制される。
(Separator 2A)
FIG. 3 is a perspective view showing an example of the separator 2 shown in FIG. As shown in FIG. 3, the separator 2A includes a sandwiching plate portion 22A sandwiched between adjacent battery cells 1, and a peripheral wall 26 projecting from the periphery of the sandwiching plate portion 22A toward both adjacent battery cells 1. And The peripheral wall 26 protrudes from the clamping plate portion 22A toward the adjacent battery cell 1, and defines a housing space for holding the battery cell 1 on both surfaces of the separator 2A. The battery cell 1 is sandwiched by the peripheral wall 26 and is fitted with the separator 2A. Displacement of the battery cell 1 arranged inside the peripheral wall 26 is regulated by the peripheral wall 26.
 なお、図3に例示するセパレータ2Aは、収容空間に配置される電池セル1の全周を囲繞するような形状の周壁が設けられているが、必ずしもこのような形状である必要はない。例えば、後述する図5ないし図11に例示されるような一対の壁の間に電池セル1を配置する構成でも、電池セルの保持や変位規制を実現することができる。このような一対の壁も、本発明における周壁26の態様の一つである。 The separator 2A illustrated in FIG. 3 is provided with a peripheral wall having a shape surrounding the entire periphery of the battery cell 1 disposed in the housing space, but is not necessarily required to have such a shape. For example, even in a configuration in which the battery cell 1 is disposed between a pair of walls as illustrated in FIGS. 5 to 11 described below, the holding and displacement control of the battery cell can be realized. Such a pair of walls is also one of the embodiments of the peripheral wall 26 in the present invention.
 図3に示すように、セパレータ2Aは、断熱部材24Aを含んでいる。断熱部材24Aは、上述の断熱部材を用いることが好ましい。断熱部材24Aは、セパレータ2Aの周壁26の内側に規定された収容空間に配置される。この状態で、電池セル1を収容空間に配置される。この構成によると、断熱部材24Aがセパレータ2Aの挾着プレート部22Aと電池セル1とで挟持されるので、断熱部材24Aの位置ずれを防止することができる。なお、断熱部材24Aは、隣接する電池セル1の間に一つあればよく、セパレータ2Aに設けられる一対の収容空間のうちの少なくとも一方に配置すればよい。 セ パ レ ー タ As shown in FIG. 3, the separator 2A includes a heat insulating member 24A. It is preferable to use the above-mentioned heat insulating member as the heat insulating member 24A. The heat insulating member 24A is disposed in a housing space defined inside the peripheral wall 26 of the separator 2A. In this state, the battery cells 1 are arranged in the accommodation space. According to this configuration, since the heat insulating member 24A is held between the holding plate portion 22A of the separator 2A and the battery cell 1, the displacement of the heat insulating member 24A can be prevented. The heat insulating member 24A only needs to be provided between the adjacent battery cells 1 and may be disposed in at least one of the pair of housing spaces provided in the separator 2A.
 以上の構成によると、セパレータ2Aは、成形性の高い樹脂で成形される挾着プレート部22Aや周壁26と、挾着プレート部22Aの表面に配置される断熱部材24Aと、を備えている。この構成のセパレータ2Aは、電池セル1の保持や変位規制といった形状に起因する機能については成形性の高い樹脂で形成される部材で実現できるので、断熱部材24Aの形状には特に制限はなく、必要とされる断熱性能に応じて、厚さや形状、配置位置などを自由に選択することができる。上述のセパレータ2に含まれる断熱部材は、織布や不織布等からなる繊維シートと、繊維シートの繊維間に担持される多孔質材とで構成されるため、シート状以外の形状に成形することが困難であるが、上記構成によれば、このような成形性の低い断熱部材を採用することもできる。 According to the above configuration, the separator 2A includes the holding plate 22A and the peripheral wall 26 formed of a resin having high moldability, and the heat insulating member 24A disposed on the surface of the holding plate 22A. Since the separator 2A having this configuration can be realized by a member formed of a resin having high moldability with respect to the function due to the shape such as holding and displacement control of the battery cell 1, the shape of the heat insulating member 24A is not particularly limited. The thickness, shape, arrangement position, and the like can be freely selected according to the required heat insulating performance. Since the heat insulating member included in the separator 2 is composed of a fiber sheet made of a woven fabric or a nonwoven fabric and a porous material carried between fibers of the fiber sheet, the heat insulating member may be formed into a shape other than the sheet shape. However, according to the above configuration, such a heat insulating member having low moldability can be employed.
 (第二実施形態)
 図4は、本発明の第二実施形態の電源装置200を示す斜視図である。以下、図4ないし図11に基づいて、第二実施形態の電源装置200の構成を説明する。なお、以下の説明において、第一実施形態と同様の構成要素については、同一の符号を附し、説明を省略する。
(Second embodiment)
FIG. 4 is a perspective view showing a power supply device 200 according to the second embodiment of the present invention. Hereinafter, the configuration of the power supply device 200 according to the second embodiment will be described with reference to FIGS. In the following description, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
 図4に示すように第二実施形態の電源装置200は、セパレータ2と電池セル1との間に冷却隙間4が形成されるように構成されている。この構成によると、冷却隙間4に冷却風を導入することで、電池セル1を冷却できる。電池セル1は、高温になると劣化が促進されるため、電池セル1を冷却することで、電池セル1の劣化を抑制することができる。なお、図4に例示されるように、バインドバー34は、セパレータ2と電池セル1との間に位置する冷却隙間4に冷却風を導入できるような形状とすることが好ましい。具体的には、図4に例示される電源装置200では、一方の側面に一対のバインドバー34が設けられており、一対のバインドバー34の間に冷却隙間4の流入口が臨むように構成されている。 よ う As shown in FIG. 4, the power supply device 200 of the second embodiment is configured so that the cooling gap 4 is formed between the separator 2 and the battery cell 1. According to this configuration, the battery cell 1 can be cooled by introducing cooling air into the cooling gap 4. Since the deterioration of the battery cell 1 is promoted at a high temperature, the deterioration of the battery cell 1 can be suppressed by cooling the battery cell 1. In addition, as illustrated in FIG. 4, it is preferable that the bind bar 34 has a shape that allows cooling air to be introduced into the cooling gap 4 located between the separator 2 and the battery cell 1. Specifically, in the power supply device 200 illustrated in FIG. 4, a pair of bind bars 34 is provided on one side surface, and the configuration is such that the inlet of the cooling gap 4 faces between the pair of bind bars 34. Have been.
 (セパレータ2B)
 図5は、図4に示すセパレータ2の一例を示すための斜視図である。図5に示すように、セパレータ2Bは、隣接する電池セル1の間に挟まれる挾着プレート部22Bと、挾着プレート部22Bの周縁から隣接する両方の電池セル1に向かって突出する周壁26とを有している。周壁26は、挾着プレート部22Bから隣接する電池セル1に向けて突出しており、セパレータ2Bの両面に電池セル1を保持するための収容空間を規定している。電池セル1は、周壁26によって挟持され、セパレータ2Bと嵌合している。周壁26の内側に配置された電池セル1は、周壁26によって変位が規制される。具体的には、周壁26は、挾着プレート部22Bの上端および下端に設けられる一対の壁で構成されている。一対の壁の間に配置された電池セル1は、一対の壁からなる周壁26により、変位が規制される。挾着プレート部22Bは、一方の面に複数条のリブ23Bが設けられている。複数条のリブ23Bは、隣接する電池セル1の外装缶12と当接することで、隣接するリブ23Bの間に冷却隙間4を形成する。冷却用の気体が、冷却隙間4を流れることにより、電池セル1を冷却することができる。
(Separator 2B)
FIG. 5 is a perspective view showing an example of the separator 2 shown in FIG. As shown in FIG. 5, the separator 2B includes a sandwiching plate portion 22B sandwiched between the adjacent battery cells 1, and a peripheral wall 26 projecting from the periphery of the sandwiching plate portion 22B toward both of the adjacent battery cells 1. And The peripheral wall 26 protrudes from the clamping plate portion 22B toward the adjacent battery cell 1, and defines an accommodation space for holding the battery cell 1 on both surfaces of the separator 2B. The battery cell 1 is sandwiched by the peripheral wall 26 and is fitted with the separator 2B. Displacement of the battery cell 1 arranged inside the peripheral wall 26 is regulated by the peripheral wall 26. Specifically, the peripheral wall 26 is constituted by a pair of walls provided at the upper end and the lower end of the holding plate portion 22B. The displacement of the battery cell 1 disposed between the pair of walls is regulated by the peripheral wall 26 formed of the pair of walls. The holding plate portion 22B is provided with a plurality of ribs 23B on one surface. The plurality of ribs 23B are in contact with the outer can 12 of the adjacent battery cell 1 to form the cooling gap 4 between the adjacent ribs 23B. The battery cell 1 can be cooled by the cooling gas flowing through the cooling gap 4.
 セパレータ2Bは、挾着プレート部22Bのリブ23Bが設けられている面の反対側に配置される断熱部材24Bを備えている。断熱部材24Bは、上述の断熱部材を用いることが好ましい。断熱部材24Bは、セパレータ2Bの周壁26の内側に規定された収容空間に配置される。この状態で、電池セル1が収容空間に配置される。この構成によると、断熱部材24Bがセパレータ2Bの挾着プレート部22Bと電池セル1とで挟持されるので、断熱部材24Bの位置ずれを防止することができる。また、この構成によると、断熱部材24Bは、挾着プレート部22Bの複数条のリブ23Bが形成される面に対して反対側に位置する面に設けられるため、冷却隙間4を流れる冷却風による電池セル1の冷却を阻害することなく、隣接する電池セル1同士の伝熱を抑制することができる。 The separator 2B includes a heat insulating member 24B disposed on the opposite side of the surface of the holding plate portion 22B on which the ribs 23B are provided. It is preferable to use the above-described heat insulating member for the heat insulating member 24B. The heat insulating member 24B is arranged in a housing space defined inside the peripheral wall 26 of the separator 2B. In this state, the battery cells 1 are arranged in the accommodation space. According to this configuration, since the heat insulating member 24B is sandwiched between the holding plate portion 22B of the separator 2B and the battery cell 1, the displacement of the heat insulating member 24B can be prevented. Further, according to this configuration, since the heat insulating member 24B is provided on the surface of the clamping plate portion 22B opposite to the surface on which the plurality of ribs 23B are formed, the heat generated by the cooling air flowing through the cooling gap 4 is provided. Heat transfer between adjacent battery cells 1 can be suppressed without obstructing cooling of the battery cells 1.
 (セパレータ2C)
 図6は、図4に示すセパレータ2の一例を示すための斜視図である。図6に示すように、セパレータ2Cは、隣接する電池セル1の間に挟まれる挾着プレート部22Cと、挾着プレート部22Cの周縁から隣接する両方の電池セル1に向かって突出する周壁26とを有している。周壁26は、挾着プレート部22Cから隣接する電池セル1に向けて突出しており、セパレータ2Cの両面に電池セル1を保持するための収容空間を規定している。電池セル1は、周壁26によって挟持され、セパレータ2Cと嵌合している。周壁26の内側に配置された電池セル1は、周壁26によって変位が規制される。
(Separator 2C)
FIG. 6 is a perspective view showing an example of the separator 2 shown in FIG. As shown in FIG. 6, the separator 2C includes a clamping plate portion 22C sandwiched between the adjacent battery cells 1, and a peripheral wall 26 protruding from the periphery of the clamping plate portion 22C toward both of the adjacent battery cells 1. And The peripheral wall 26 protrudes from the clamping plate portion 22C toward the adjacent battery cell 1, and defines an accommodation space for holding the battery cell 1 on both surfaces of the separator 2C. The battery cell 1 is sandwiched by the peripheral wall 26 and is fitted with the separator 2C. Displacement of the battery cell 1 arranged inside the peripheral wall 26 is regulated by the peripheral wall 26.
 セパレータ2Cは、挾着プレート部22Cの一方の面に複数の断熱部材24Cが貼り付けられている。複数の断熱部材24Cは、それぞれ間隔をあけて配置されており、隣接する断熱部材24Cの間に冷却隙間4を形成している。図6に例示される断熱部材24Cは、長尺状の外形に形成されており、複数の断熱部材24Cが、平行になるように並んで配置されている。断熱部材24Cは、上述の断熱部材を用いることが好ましい。特に、断熱部材24Cは、比較的剛性が高い断熱部材とすることが好ましい。剛性の高い断熱部材は、外力が加わっても変形量が小さいため、電池セルの膨張に伴う冷却隙間4の空間の縮小を抑制することができる。上述の通り、繊維シートを含む断熱部材は、ガラス繊維や熱可塑性樹脂を含むことで、剛性等の物理的特性を向上させることができる。なお、挾着プレート部22Cの両側に複数の断熱部材24Cを貼り付け、挾着プレート部22Cの両側に冷却隙間4を形成してもよい。 The separator 2C has a plurality of heat insulating members 24C attached to one surface of the clamping plate portion 22C. The plurality of heat insulating members 24C are arranged at intervals, and form cooling gaps 4 between adjacent heat insulating members 24C. The heat insulating member 24C illustrated in FIG. 6 is formed in a long external shape, and a plurality of heat insulating members 24C are arranged side by side so as to be parallel. It is preferable to use the above-mentioned heat insulating member for the heat insulating member 24C. In particular, it is preferable that the heat insulating member 24C is a heat insulating member having relatively high rigidity. Since the heat insulating member having high rigidity has a small deformation amount even when an external force is applied, it is possible to suppress the reduction of the space of the cooling gap 4 due to the expansion of the battery cell. As described above, the heat insulating member including the fiber sheet can improve physical properties such as rigidity by including the glass fiber and the thermoplastic resin. Note that a plurality of heat insulating members 24C may be attached to both sides of the holding plate portion 22C, and the cooling gaps 4 may be formed on both sides of the holding plate portion 22C.
 以上の構成のセパレータ2Cは、断熱部材24Cの構成により、隣接する電池セル1の断熱と、電池セル1の冷却を両立することができるようになっている。そのため、斯かる構成を採用することで、セパレータの厚さを小さくすることができる。 The separator 2C having the above-described configuration can achieve both heat insulation of the adjacent battery cells 1 and cooling of the battery cells 1 by the configuration of the heat insulating member 24C. Therefore, by employing such a configuration, the thickness of the separator can be reduced.
 (セパレータ2D)
 図7は、図4に示すセパレータ2の一例を示すための斜視図である。図7に示すように、セパレータ2Dは、隣接する電池セル1の間に挟まれる挾着プレート部22Dと、挾着プレート部22Dの周縁から隣接する両方の電池セル1に向かって突出する周壁26とを有している。周壁26は、挾着プレート部22Dから隣接する電池セル1に向けて突出しており、セパレータ2Dの両面に電池セル1を保持するための収容空間を規定している。電池セル1は、周壁26によって挟持され、セパレータ2Dと嵌合している。周壁26の内側に配置された電池セル1は、周壁26によって変位が規制される。
(Separator 2D)
FIG. 7 is a perspective view showing an example of the separator 2 shown in FIG. As shown in FIG. 7, the separator 2D includes a clamping plate portion 22D sandwiched between the adjacent battery cells 1, and a peripheral wall 26 protruding from the periphery of the clamping plate portion 22D toward both of the adjacent battery cells 1. And The peripheral wall 26 protrudes from the clamping plate portion 22D toward the adjacent battery cell 1, and defines an accommodation space for holding the battery cell 1 on both surfaces of the separator 2D. The battery cell 1 is sandwiched by the peripheral wall 26 and is fitted with the separator 2D. Displacement of the battery cell 1 arranged inside the peripheral wall 26 is regulated by the peripheral wall 26.
 断熱部材24Dは、挾着プレート部22Dの一方の面に設けられている。断熱部材24Dは、上述の断熱部材を用いることが好ましい。断熱部材24Dは、挾着プレート部22Dと同程度の面積のシート部材であり、挾着プレート部22Dの全面に延在している。それにより、断熱部材24Dは、セパレータ2Dの周壁26によって変位が規制される。この構成によると、電源装置200の組立時における断熱部材24Dの位置決めが容易となる。 (4) The heat insulating member 24D is provided on one surface of the clamping plate portion 22D. It is preferable to use the above-described heat insulating member as the heat insulating member 24D. The heat insulating member 24D is a sheet member having the same area as the holding plate portion 22D, and extends over the entire surface of the holding plate portion 22D. Thereby, the displacement of the heat insulating member 24D is regulated by the peripheral wall 26 of the separator 2D. According to this configuration, the positioning of the heat insulating member 24D at the time of assembling the power supply device 200 becomes easy.
 挾着プレート部22Dは、断面が矩形パターン状になるように、一方向に延在する複数の溝25Dが両面に設けられている。挾着プレート部22Dは、断熱部材24Dが設けられる面に溝25Dを形成することで、挾着プレート部22Dと断熱部材24Dの接触面積を小さくしている。この構成により、隣接する電池セル1同士の伝熱をさらに抑制することができる。また、挾着プレート部22Dは、断熱部材24Dが設けられる面の反対側に溝25Dを形成することで、この溝25Dの空間を冷却隙間4とすることができるようになっている。冷却用の気体が、冷却隙間4を流れることにより、電池セル1を冷却することができる。 A plurality of grooves 25D extending in one direction are provided on both sides of the holding plate portion 22D so that the cross section becomes a rectangular pattern. The holding plate portion 22D has a groove 25D formed on the surface where the heat insulating member 24D is provided, thereby reducing the contact area between the holding plate portion 22D and the heat insulating member 24D. With this configuration, heat transfer between adjacent battery cells 1 can be further suppressed. Further, in the holding plate portion 22D, by forming a groove 25D on the opposite side to the surface on which the heat insulating member 24D is provided, the space of the groove 25D can be used as the cooling gap 4. The battery cell 1 can be cooled by the cooling gas flowing through the cooling gap 4.
 (セパレータ2E) 図8は、図4に示すセパレータ2の一例を示すための斜視図である。図8に示すように、セパレータ2Eは、隣接する電池セル1の間に挟まれる挾着プレート部22Eと、挾着プレート部22Eの周縁から隣接する両方の電池セル1に向かって突出する周壁26とを有している。周壁26は、挾着プレート部22Eから隣接する電池セル1に向けて突出しており、セパレータ2Eの両面に電池セル1を保持するための収容空間を規定している。電池セル1は、周壁26によって挟持され、セパレータ2Eと嵌合している。周壁26の内側に配置された電池セル1は、周壁26によって変位が規制される。 {(Separator 2E)} FIG. 8 is a perspective view showing an example of the separator 2 shown in FIG. As shown in FIG. 8, the separator 2E includes a clamping plate portion 22E sandwiched between the adjacent battery cells 1, and a peripheral wall 26 projecting from the periphery of the clamping plate portion 22E toward both of the adjacent battery cells 1. And The peripheral wall 26 protrudes from the clamping plate portion 22E toward the adjacent battery cell 1, and defines a housing space for holding the battery cell 1 on both surfaces of the separator 2E. The battery cell 1 is sandwiched by the peripheral wall 26 and is fitted with the separator 2E. Displacement of the battery cell 1 arranged inside the peripheral wall 26 is regulated by the peripheral wall 26.
 挾着プレート部22Eは、断面が矩形パターン状になるように、一方向に延在する複数の溝25Eが両面に設けられている。隣接する溝25Eの間には、平坦面が形成されており、この平坦面に、断熱部材24Eが設けられている。断熱部材24Eは、電池セル1と挾着プレート部22Eで挟持される。断熱部材24Eは、上述の断熱部材を用いることが好ましい。挾着プレート部22Eの収容空間に電池セル1を配置することで、挾着プレート部22Eの複数の溝25Eの空間が冷却隙間4となる。冷却用の気体が、冷却隙間4を流れることにより、電池セル1を冷却することができる。 A plurality of grooves 25E extending in one direction are provided on both sides of the holding plate portion 22E so that the cross section becomes a rectangular pattern. A flat surface is formed between the adjacent grooves 25E, and the heat insulating member 24E is provided on the flat surface. The heat insulating member 24E is held between the battery cell 1 and the holding plate portion 22E. It is preferable to use the above-described heat insulating member as the heat insulating member 24E. By arranging the battery cells 1 in the holding space of the holding plate portion 22E, the space of the plurality of grooves 25E of the holding plate portion 22E becomes the cooling gap 4. The battery cell 1 can be cooled by the cooling gas flowing through the cooling gap 4.
 この構成によると、冷却隙間4を形成するための溝25Eには、断熱部材24Eが配置されないため、冷却隙間4の空間を確実に確保しつつ、隣接する電池セル1同士の伝熱を抑制することができる。 According to this configuration, since the heat insulating member 24E is not disposed in the groove 25E for forming the cooling gap 4, the heat transfer between the adjacent battery cells 1 is suppressed while ensuring the space of the cooling gap 4. be able to.
 (セパレータ2F)
 図9は、図4に示すセパレータ2の一例を示すための斜視図である。図9に示すように、セパレータ2Fは、隣接する電池セル1の間に挟まれる挾着プレート部22Fと、挾着プレート部22Fの周縁から隣接する両方の電池セル1に向かって突出する周壁26とを有している。周壁26は、挾着プレート部22Fから隣接する電池セル1に向けて突出しており、セパレータ2Fの両面に電池セル1を保持するための収容空間を規定している。電池セル1は、周壁26によって挟持され、セパレータ2Fと嵌合している。周壁26の内側に配置された電池セル1は、周壁26によって変位が規制される。
(Separator 2F)
FIG. 9 is a perspective view showing an example of the separator 2 shown in FIG. As shown in FIG. 9, the separator 2F includes a clamping plate portion 22F sandwiched between the adjacent battery cells 1, and a peripheral wall 26 projecting from the periphery of the clamping plate portion 22F toward both of the adjacent battery cells 1. And The peripheral wall 26 protrudes from the clamping plate portion 22F toward the adjacent battery cell 1, and defines an accommodation space for holding the battery cell 1 on both surfaces of the separator 2F. The battery cell 1 is sandwiched by the peripheral wall 26 and is fitted with the separator 2F. Displacement of the battery cell 1 arranged inside the peripheral wall 26 is regulated by the peripheral wall 26.
 挾着プレート部22Fは、断面が矩形パターン状になるように、一方向に延在する複数の溝25Fが両面に設けられている。複数の溝25Fは、冷却隙間を形成するための溝と、断熱部材を配置するための溝を含んでいる。具体的には、挾着プレート部22Fの中央部分に両端にかけて延在する溝が形成されており、この溝を断熱部材収容部27Fとしている。断熱部材24Fは、挾着プレート部22Fの中央部分に設けられた断熱部材収容部27Fに配置される。断熱部材24Fは、上述の断熱部材を用いることが好ましい。 A plurality of grooves 25F extending in one direction are provided on both sides of the holding plate portion 22F so that the cross section becomes a rectangular pattern. The plurality of grooves 25F include a groove for forming a cooling gap and a groove for disposing a heat insulating member. Specifically, a groove extending to both ends is formed in the center portion of the holding plate portion 22F, and this groove is used as a heat insulating member accommodating portion 27F. The heat insulating member 24F is disposed in a heat insulating member accommodating portion 27F provided at the center of the holding plate portion 22F. It is preferable to use the above-described heat insulating member for the heat insulating member 24F.
 この構成によると、断熱部材収容部27Fを形成する溝の壁が電池セル1と当接することで、電池セル1の膨張が抑制されるため、断熱部材24Fの圧縮変形を抑制でき、断熱性能の低下を抑制することができる。また、電池セル1の中央部分は、最も膨張する領域であるため、隣接する電池セル1の隙間が小さくなりやすい。上記構成によると、断熱性能が必要とされる領域に断熱部材24Fを配置できるようになっている。 According to this configuration, since the wall of the groove forming the heat insulating member housing portion 27F is in contact with the battery cell 1, the expansion of the battery cell 1 is suppressed, so that the compressive deformation of the heat insulating member 24F can be suppressed, and the heat insulating performance can be improved. The decrease can be suppressed. In addition, since the central portion of the battery cell 1 is the region that expands most, the gap between the adjacent battery cells 1 tends to be small. According to the above configuration, the heat insulating member 24F can be arranged in a region where heat insulating performance is required.
 (セパレータ2G)
 図10は、図4に示すセパレータ2の一例を示すための斜視図である。図10に示すように、セパレータ2Gは、隣接する電池セル1の間に挟まれる挾着プレート部22Gと、挾着プレート部22Gの周縁から隣接する両方の電池セル1に向かって突出する周壁26とを有している。周壁26は、挾着プレート部22Gから隣接する電池セル1に向けて突出しており、セパレータ2Gの両面に電池セル1を保持するための収容空間を規定している。電池セル1は、周壁26によって挟持され、セパレータ2Gと嵌合している。周壁26の内側に配置された電池セル1は、周壁26によって変位が規制される。 
(Separator 2G)
FIG. 10 is a perspective view showing an example of the separator 2 shown in FIG. As shown in FIG. 10, the separator 2G includes a clamping plate portion 22G sandwiched between the adjacent battery cells 1, and a peripheral wall 26 protruding from the periphery of the clamping plate portion 22G toward both of the adjacent battery cells 1. And The peripheral wall 26 protrudes from the clamping plate portion 22G toward the adjacent battery cell 1, and defines a housing space for holding the battery cell 1 on both surfaces of the separator 2G. The battery cell 1 is sandwiched by the peripheral wall 26 and is fitted with the separator 2G. Displacement of the battery cells 1 arranged inside the peripheral wall 26 is regulated by the peripheral wall 26.
 挾着プレート部22Gは、断面が矩形パターン状になるように、一方向に延在する複数の溝25Gが両面に設けられている。複数の溝25Gは、冷却隙間を形成するための溝と、断熱部材を配置するための溝を含んでいる。具体的には、挾着プレート部22Gの上端部分と下端部分に、両端にかけて延在する溝が形成されており、この溝を断熱部材収容部27Gとしている。断熱部材24Gは、挾着プレート部22Gの上端部分と下端部分に設けられた断熱部材収容部27Gに配置される。断熱部材24Gは、上述の断熱部材を用いることが好ましい。 A plurality of grooves 25G extending in one direction are provided on both sides of the holding plate portion 22G so that the cross section becomes a rectangular pattern. The plurality of grooves 25G include a groove for forming a cooling gap and a groove for disposing a heat insulating member. Specifically, a groove extending to both ends is formed in the upper end portion and the lower end portion of the holding plate portion 22G, and this groove is used as the heat insulating member accommodating portion 27G. The heat insulating member 24G is disposed in a heat insulating member receiving portion 27G provided at an upper end portion and a lower end portion of the holding plate portion 22G. It is preferable to use the above-described heat-insulating member as the heat-insulating member 24G.
 この構成によると、電池セル1の中央部分に対応する位置に冷却隙間4が形成される。電池セル1は、熱が篭り易い中央部分を冷却することで、効果的に温度上昇を抑制することができる。セパレータ2Gは、電池セル1の中央部分に対応して冷却隙間4が位置することになるので、隣接する電池セル1を断熱しつつ、電池セル1の中央部分を確実に冷却することができる。 According to this configuration, the cooling gap 4 is formed at a position corresponding to the center of the battery cell 1. The battery cell 1 can effectively suppress a rise in temperature by cooling a central portion where heat is easily trapped. Since the cooling gap 4 is located in the separator 2 </ b> G corresponding to the center of the battery cell 1, the center of the battery cell 1 can be reliably cooled while insulating the adjacent battery cells 1.
 (セパレータ2H)
 図11は、図4に示すセパレータ2の一例を示すための斜視図である。図11に示すように、セパレータ2Hは、隣接する電池セル1の間に挟まれる挾着プレート部22Hと、挾着プレート部22Hの周縁から隣接する両方の電池セル1に向かって突出する周壁26とを有している。周壁26は、挾着プレート部22Hから隣接する電池セル1に向けて突出しており、セパレータ2Hの両面に電池セル1を保持するための収容空間を規定している。電池セル1は、周壁26によって挟持され、セパレータ2Hと嵌合している。周壁26の内側に配置された電池セル1は、周壁26によって変位が規制される。
(Separator 2H)
FIG. 11 is a perspective view showing an example of the separator 2 shown in FIG. As shown in FIG. 11, the separator 2H includes a clamping plate portion 22H sandwiched between the adjacent battery cells 1, and a peripheral wall 26 projecting from the periphery of the clamping plate portion 22H toward both of the adjacent battery cells 1. And The peripheral wall 26 protrudes from the clamping plate portion 22H toward the adjacent battery cell 1, and defines a housing space for holding the battery cell 1 on both surfaces of the separator 2H. The battery cell 1 is sandwiched by the peripheral wall 26 and is fitted with the separator 2H. Displacement of the battery cells 1 arranged inside the peripheral wall 26 is regulated by the peripheral wall 26.
 挾着プレート部22Hは、一方向に延在する複数のスリットを有する。具体的には、挾着プレート部22H、互いに隙間を空けた状態で平行に並ぶ複数の柱状部28Hと、複数の柱状部28Hと連結される一対のフレーム部29Hとを備えている。複数の柱状部28Hは、延在方向における両端がそれぞれ、フレーム部29Hと連結されており、複数の柱状部28Hと一対のフレーム部29Hは一体構造となるように成型されている。 The clamping plate portion 22H has a plurality of slits extending in one direction. Specifically, it includes a clamping plate portion 22H, a plurality of columnar portions 28H arranged in parallel with a gap therebetween, and a pair of frame portions 29H connected to the plurality of columnar portions 28H. Both ends in the extending direction of the plurality of columnar portions 28H are respectively connected to the frame portion 29H, and the plurality of columnar portions 28H and the pair of frame portions 29H are molded so as to have an integral structure.
 複数の断熱部材24Hは、隣接する電池セル1と対向する複数の柱状部28Hの対向面に貼り付けられる。複数の断熱部材24Hが、隣接する電池セル1と当接することで電池セル1の変位を抑制するとともに、一対のフレーム部29Hと隣接する電池セル1との間に隙間を形成することができる。一対のフレーム部29Hと隣接する電池セル1との間に形成された隙間は、挾着プレート部22Hのスリットの空間と連通され、冷却隙間4を形成することができるようになっている。なお、断熱部材24Fは、上述の断熱部材を用いることが好ましい。特に、断熱部材24Hは、比較的剛性が高い断熱部材とすることが好ましい。剛性の高い断熱部材は、外力が加わっても変形量が小さいため、電池セルの膨張に伴う冷却隙間4の空間の縮小を抑制することができる。上述の通り、繊維シートを含む断熱部材は、ガラス繊維や熱可塑性樹脂を含むことで、剛性等の物理的特性を向上させることができる。 (4) The plurality of heat insulating members 24H are attached to opposing surfaces of the plurality of columnar portions 28H facing the adjacent battery cells 1. The plurality of heat insulating members 24H contact the adjacent battery cells 1 to suppress the displacement of the battery cells 1, and can form a gap between the pair of frame portions 29H and the adjacent battery cells 1. The gap formed between the pair of frame portions 29H and the adjacent battery cells 1 is communicated with the space of the slit of the sandwiching plate portion 22H so that the cooling gap 4 can be formed. In addition, it is preferable to use the above-mentioned heat insulating member as the heat insulating member 24F. In particular, the heat insulating member 24H is preferably a heat insulating member having relatively high rigidity. Since the heat insulating member having high rigidity has a small deformation amount even when an external force is applied, it is possible to suppress the reduction of the space of the cooling gap 4 due to the expansion of the battery cell. As described above, the heat insulating member including the fiber sheet can improve physical properties such as rigidity by including the glass fiber and the thermoplastic resin.
 以上の構成の電源装置は、外形を角形とした複数の電池セルと、隣接する電池セルを絶縁するための複数のセパレータと、複数の電池セルと複数のセパレータとを集合化する拘束部材と、を備えている。それぞれのセパレータは、隣接する電池セルの間に配置される挾着プレート部と、挾着プレート部と隣接する電池セルの間に配置される少なくとも一つのシート状の断熱部材と、挾着プレート部から隣接する両方の電池セルに向かって突出する周壁と、を含んでいる。また、それぞれのセパレータが隣接する電池セル同士の相対変位を規制するように、周壁で区画される空間にそれぞれの電池セルを嵌合させている。この構成により、セパレータは、必要な機能を維持しつつ、隣接する電池同士を断熱することができる。そのため、斯かる構成の電源装置は、電源装置の大型化を抑制しながら、隣接する電池セル同士の伝熱を抑制することができる。 The power supply device having the above configuration has a plurality of battery cells having a rectangular outer shape, a plurality of separators for insulating adjacent battery cells, and a restraining member for assembling the plurality of battery cells and the plurality of separators, It has. Each of the separators includes a clamping plate portion disposed between adjacent battery cells, at least one sheet-like heat insulating member disposed between the clamping plate portion and the adjacent battery cells, and a clamping plate portion. And a peripheral wall protruding toward both of the adjacent battery cells. Also, each battery cell is fitted in a space defined by the peripheral wall so that each separator regulates relative displacement between adjacent battery cells. With this configuration, the separator can insulate adjacent batteries from each other while maintaining a necessary function. Therefore, the power supply device having such a configuration can suppress heat transfer between adjacent battery cells while suppressing an increase in the size of the power supply device.
 以上、本発明を実施の形態をもとに説明した。これらの実施の形態は例示であり、それらの各々の構成要素や各々の処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。 The present invention has been described based on the embodiments. It is understood by those skilled in the art that these embodiments are exemplifications, and that various modifications can be made to the respective components and combinations of the respective processing processes, and that such modifications are also within the scope of the present invention. Is about to be done.
 100、200…電源装置、1…電池セル、12…外装缶、14…封口体、16…電極端子、2、2A、2B、2C、2D、2E、2F、2G、2H…セパレータ、22A、22B、22C、22D、22E、22F、22G、22H…挾着プレート部、23B…リブ、24A、24B、24C、24D、24E、24F、24G、24H…断熱部材、25D、25E、25F、25G…溝、26…周壁、27F、27G…断熱部材収容部、28H…柱状部、29H…フレーム部、3…拘束部材、32…エンドプレート、34…バインドバー、36…止ネジ、4…冷却隙間 Reference numerals 100, 200: power supply device, 1: battery cell, 12: outer can, 14: sealing body, 16: electrode terminal, 2, 2A, 2B, 2C, 2D, 2E, 2F, 2G, 2H: separator, 22A, 22B , 22C, 22D, 22E, 22F, 22G, 22H: clamping plate portion, 23B: rib, 24A, 24B, 24C, 24D, 24E, 24F, 24G, 24H: heat insulating member, 25D, 25E, 25F, 25G: groove , 26 ... peripheral wall, 27F, 27G ... heat insulating member housing part, 28H ... columnar part, 29H ... frame part, 3 ... restraint member, 32 ... end plate, 34 ... bind bar, 36 ... set screw, 4 ... cooling gap

Claims (13)

  1.  外形を角形とした複数の電池セルと、
     隣接する電池セルを絶縁するための複数のセパレータであって、それぞれのセパレータが、前記隣接する電池セルの間に配置される挾着プレート部と、前記挾着プレート部と隣接する電池セルの間に配置される少なくとも一つのシート状の断熱部材と、前記挾着プレート部から隣接する両方の電池セルに向かって突出する周壁と、を含んでおり、かつ、それぞれのセパレータが隣接する電池セル同士の相対変位を規制するように、前記周壁で区画される空間にそれぞれの電池セルを嵌合させている、該複数のセパレータと、
     前記複数の電池セルと前記複数のセパレータとを集合化する拘束部材と、を備える電源装置。
    A plurality of battery cells having a rectangular outer shape,
    A plurality of separators for insulating adjacent battery cells, wherein each separator is provided between a clamp plate portion disposed between the adjacent battery cells and a battery plate disposed between the clamp plate portion and the adjacent battery cell. And at least one sheet-like heat-insulating member disposed on the battery cell, and a peripheral wall protruding from the clamping plate portion toward both of the adjacent battery cells, and the respective separators are adjacent to each other. The plurality of separators, each battery cell being fitted in a space defined by the peripheral wall, so as to regulate the relative displacement of the plurality of separators,
    A power supply device comprising: a plurality of battery cells; and a restraining member that collects the plurality of separators.
  2.  請求項1に記載の電源装置において、
     前記挾着プレート部は、一方の面に前記少なくとも一つのシート状の断熱部材が一方の面に配置されており、他方の面に冷却流路を規定する複数のリブが設けられていることを特徴とする電源装置。
    The power supply device according to claim 1,
    In the holding plate portion, the at least one sheet-shaped heat insulating member is disposed on one surface, and a plurality of ribs for defining a cooling flow path are provided on the other surface. Power supply device characterized.
  3.  請求項1に記載の電源装置において、
     前記少なくとも一つのシート状の断熱部材は、複数の断熱部材であり、それぞれの断熱部材が前記挾着プレート部の一方の面に貼り付けられ、かつ、前記複数の断熱部材が隙間を空けて並んでいることを特徴とする電源装置。
    The power supply device according to claim 1,
    The at least one sheet-shaped heat insulating member is a plurality of heat insulating members, each of which is attached to one surface of the holding plate portion, and the plurality of heat insulating members are arranged with a gap therebetween. A power supply device characterized by the following.
  4.  請求項1に記載の電源装置において、
     前記挾着プレート部は、平行に並ぶ複数の溝が両面に形成されていることを特徴とする電源装置。
    The power supply device according to claim 1,
    The power supply device, wherein the holding plate portion has a plurality of grooves arranged in parallel on both surfaces.
  5.  請求項4に記載の電源装置において、
     前記複数の溝のうちの少なくとも一つに前記断熱部材が配置されることを特徴とする電源装置。
    The power supply device according to claim 4,
    The power supply device, wherein the heat insulating member is disposed in at least one of the plurality of grooves.
  6.  請求項5に記載の電源装置において、
     前記断熱部材は、隣接する電池セルに対して中央に位置していることを特徴とする電源装置。
    The power supply device according to claim 5,
    The power supply device, wherein the heat insulating member is located at a center with respect to an adjacent battery cell.
  7.  請求項5に記載の電源装置において、
     前記断熱部材は、隣接する電池セルに対して端部に位置していることを特徴とする電源装置。
    The power supply device according to claim 5,
    The power supply device, wherein the heat insulating member is located at an end with respect to an adjacent battery cell.
  8.  請求項1に記載の電源装置において、
     前記挾着プレート部は、互いに隙間を空けた状態で平行に並んだ複数の柱状部と、複数の柱状部と連結される一対のフレーム部とを含んでおり、
     前記少なくとも一つの断熱部材は、前記一対のフレーム部と隣接する電池セルとの間に隙間を形成するように、隣接する電池セルと対向する前記複数の柱状部の対向面に貼り付けられることを特徴とする電源装置。
    The power supply device according to claim 1,
    The clamping plate portion includes a plurality of columnar portions arranged in parallel with a gap therebetween, and a pair of frame portions connected to the plurality of columnar portions,
    The at least one heat insulating member may be attached to an opposing surface of the plurality of columnar portions opposing an adjacent battery cell so as to form a gap between the pair of frame portions and an adjacent battery cell. Power supply device characterized.
  9.  請求項2ないし請求項8のいずれかに記載の電源装置において、
     前記断熱部材は、該断熱部材が設けられている前記挾着プレート部と隣接する電池セルとで圧縮状態に保持されていることを特徴とする電源装置。
    The power supply device according to any one of claims 2 to 8,
    The power supply device, wherein the heat insulating member is held in a compressed state by the holding plate portion provided with the heat insulating member and the adjacent battery cell.
  10.  請求項1ないし請求項9のいずれかに記載の電源装置において、 主繊維を含む繊維シートと、前記繊維シートに担持される粉体と、を含んでいることを特徴とする電源装置。 The power supply device according to any one of claims 1 to 9, further comprising: (1) a fiber sheet including main fibers and powder supported on the fiber sheet.
  11.  請求項10に記載の電源装置において、
     前記粉体は、シリカエアロゲルまたはシリカキセロゲルを含んでいることを特徴とする電源装置。
    The power supply device according to claim 10,
    The power supply device, wherein the powder contains silica airgel or silica xerogel.
  12.  請求項10に記載の電源装置において、
     前記繊維シートは、酸化アクリル繊維、難燃性ビニロン繊維、ポリエーテルイミド繊維、アラミド繊維およびガラス繊維のうちの少なくとも一つを含んでいることを特徴とする電源装置。
    The power supply device according to claim 10,
    The power supply device, wherein the fiber sheet includes at least one of oxidized acrylic fiber, flame-retardant vinylon fiber, polyetherimide fiber, aramid fiber, and glass fiber.
  13.  請求項10に記載の電源装置において、
     前記断熱部材は、さらに、熱可塑性樹脂を含んでいることを特徴とする電源装置。
    The power supply device according to claim 10,
    The power supply device, wherein the heat insulating member further contains a thermoplastic resin.
PCT/JP2019/029339 2018-09-11 2019-07-26 Power supply device WO2020054228A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018169255 2018-09-11
JP2018-169255 2018-09-11

Publications (1)

Publication Number Publication Date
WO2020054228A1 true WO2020054228A1 (en) 2020-03-19

Family

ID=69778249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029339 WO2020054228A1 (en) 2018-09-11 2019-07-26 Power supply device

Country Status (1)

Country Link
WO (1) WO2020054228A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111834575A (en) * 2020-07-31 2020-10-27 昆山宝创新能源科技有限公司 Battery module and flame-retardant heat insulation plate thereof
DE102020110543A1 (en) 2020-04-17 2021-10-21 Bayerische Motoren Werke Aktiengesellschaft Energy storage device, motor vehicle and cold plate assembly
EP4131581A1 (en) * 2021-08-05 2023-02-08 Illinois Tool Works Inc. Thermal blocking sheet
WO2024021942A1 (en) * 2022-07-29 2024-02-01 宁德时代新能源科技股份有限公司 Electricity storage device and electric device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010157450A (en) * 2008-12-27 2010-07-15 Sanyo Electric Co Ltd Battery system
JP2012119156A (en) * 2010-11-30 2012-06-21 Sanyo Electric Co Ltd Battery pack and electric vehicle equipped with the same
JP2015138753A (en) * 2014-01-24 2015-07-30 日立オートモティブシステムズ株式会社 battery module
WO2018061894A1 (en) * 2016-09-27 2018-04-05 パナソニックIpマネジメント株式会社 Battery, battery module and method for producing separator
WO2018110055A1 (en) * 2016-12-12 2018-06-21 パナソニックIpマネジメント株式会社 Heat insulation sheet, method for producing same, and secondary cell in which same is used

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010157450A (en) * 2008-12-27 2010-07-15 Sanyo Electric Co Ltd Battery system
JP2012119156A (en) * 2010-11-30 2012-06-21 Sanyo Electric Co Ltd Battery pack and electric vehicle equipped with the same
JP2015138753A (en) * 2014-01-24 2015-07-30 日立オートモティブシステムズ株式会社 battery module
WO2018061894A1 (en) * 2016-09-27 2018-04-05 パナソニックIpマネジメント株式会社 Battery, battery module and method for producing separator
WO2018110055A1 (en) * 2016-12-12 2018-06-21 パナソニックIpマネジメント株式会社 Heat insulation sheet, method for producing same, and secondary cell in which same is used

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020110543A1 (en) 2020-04-17 2021-10-21 Bayerische Motoren Werke Aktiengesellschaft Energy storage device, motor vehicle and cold plate assembly
CN111834575A (en) * 2020-07-31 2020-10-27 昆山宝创新能源科技有限公司 Battery module and flame-retardant heat insulation plate thereof
EP4131581A1 (en) * 2021-08-05 2023-02-08 Illinois Tool Works Inc. Thermal blocking sheet
WO2024021942A1 (en) * 2022-07-29 2024-02-01 宁德时代新能源科技股份有限公司 Electricity storage device and electric device

Similar Documents

Publication Publication Date Title
WO2020054228A1 (en) Power supply device
US11387502B2 (en) Battery module comprising a heat transfer component and a thermal expansion material between cells
US11437664B2 (en) Battery module
US9705163B2 (en) Battery module
KR101501026B1 (en) Battery Module with Excellent Cooling Efficiency and Compact Structure
CN111033876B (en) Battery pack
JPWO2018061894A1 (en) Method of manufacturing battery, battery module and separator
JP5330802B2 (en) Power storage device and vehicle
KR20120099063A (en) Battery pack
JP5352571B2 (en) Power storage device
JP7356497B2 (en) Separators and power supplies to isolate adjacent battery cells
JP7463282B2 (en) Power Supplies
WO2020054227A1 (en) Power supply device
KR20140144781A (en) Battery Module Having Cooling Pin with Coolant Flow Channel
JP5692132B2 (en) Power storage device
WO2020137062A1 (en) Separator for insulating adjacent battery cells, and power source device provided with same
JP6684613B2 (en) Battery module and battery pack
JP2012015072A (en) Battery pack
JP6065823B2 (en) Temperature control structure of power storage device
WO2024101199A1 (en) Power storage device
WO2024101198A1 (en) Electric power storage device
EP4277001A1 (en) Battery module and battery pack comprising same
WO2024101197A1 (en) Power storage device
US20240136656A1 (en) Battery module and battery pack comprising same
JP2023540768A (en) Battery packs with improved cooling performance and devices containing them

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19858817

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19858817

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP