WO2020054010A1 - Steam-pipe temperature measurement device, steam-pipe temperature measurement method - Google Patents

Steam-pipe temperature measurement device, steam-pipe temperature measurement method Download PDF

Info

Publication number
WO2020054010A1
WO2020054010A1 PCT/JP2018/033920 JP2018033920W WO2020054010A1 WO 2020054010 A1 WO2020054010 A1 WO 2020054010A1 JP 2018033920 W JP2018033920 W JP 2018033920W WO 2020054010 A1 WO2020054010 A1 WO 2020054010A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam pipe
steam
cover
optical fiber
pipe
Prior art date
Application number
PCT/JP2018/033920
Other languages
French (fr)
Japanese (ja)
Inventor
西田 秀高
Original Assignee
中国電力株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国電力株式会社 filed Critical 中国電力株式会社
Priority to JP2018566332A priority Critical patent/JP6551621B1/en
Priority to PCT/JP2018/033920 priority patent/WO2020054010A1/en
Publication of WO2020054010A1 publication Critical patent/WO2020054010A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/38Determining or indicating operating conditions in steam boilers, e.g. monitoring direction or rate of water flow through water tubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres

Definitions

  • the present invention relates to a steam pipe temperature measuring device and a steam pipe temperature measuring method.
  • a steam pipe for example, a superheater or a reheater for circulating steam obtained by heat-exchanging water supplied from a condenser with combustion gas is installed.
  • the steam pipe is composed of a boiler tube containing heat-resistant steel (for example, low alloy steel) as a component.
  • heat-resistant steel for example, low alloy steel
  • the outer circumferential surface of the steam pipe will increase with the progress of creep damage.
  • the steam pipe or the thickness of the steam pipe may be reduced. Therefore, inspections are being conducted to prevent the accident caused by the deterioration of the steam pipe by grasping the combustion state of the boiler and the remaining life of the steam pipe from the measurement result of the surface temperature of the steam pipe (for example, Patent Reference 1).
  • thermocouple may be used as a means for measuring the surface temperature of a steam pipe.
  • a thermocouple when a thermocouple is used, only the surface temperature in a narrow range of the steam pipe can be measured, so that it is difficult to obtain the temperature distribution of the surface temperature of the steam pipe.
  • an object of the present invention is to provide a temperature measuring device capable of reliably measuring the surface temperature of a steam pipe over a wide range.
  • the main invention for solving the above-mentioned problem is to measure a surface temperature of a steam pipe in which steam obtained by heat-exchanging water supplied to a boiler with a combustion gas circulates as a steam pipe temperature measuring device. And a cover attached so as to surround the steam pipe with the optical fiber interposed therebetween so that the optical fiber is in close contact with the steam pipe along the longitudinal direction of the steam pipe.
  • FIG. 4 is a cross-sectional view showing a state after the temperature measuring device according to the present embodiment is mounted on a straight pipe portion of a steam pipe. It is a perspective view showing a situation before attaching other temperature measuring devices concerning this embodiment to a curved pipe part of a steam pipe.
  • FIG. 4 is a cross-sectional view showing a state after the temperature measuring device according to the present embodiment is mounted on a straight pipe portion of a steam pipe. It is a perspective view showing a situation before attaching other temperature measuring devices concerning this embodiment to a curved pipe part of a steam pipe.
  • FIG. 11 is a perspective view showing a state after another temperature measuring device according to the present embodiment is mounted on a curved pipe portion of a steam pipe. It is sectional drawing which shows the mode after attaching the other temperature measuring apparatus which concerns on this embodiment to the curved pipe part of a steam pipe.
  • FIG. 1 is a diagram illustrating an example of an overall configuration of a thermal power plant in which the steam pipe temperature measuring device according to the present embodiment is used.
  • the thermal power plant 1 includes a boiler 2, a steam generator 3, a water cooling wall 4, a steam valve 5, a high-pressure turbine 6, a medium-pressure turbine 7, a low-pressure turbine 8, a reheater 9, a condenser 10, a feedwater pump 11, and a power generator.
  • Machine 12 The thermal power plant 1 includes a boiler 2, a steam generator 3, a water cooling wall 4, a steam valve 5, a high-pressure turbine 6, a medium-pressure turbine 7, a low-pressure turbine 8, a reheater 9, a condenser 10, a feedwater pump 11, and a power generator. Machine 12.
  • the boiler 2 is a heat exchange device that mixes fuel (for example, pulverized coal) supplied from the outside with air and generates combustion gas, and uses the heat of the combustion gas to convert water into steam.
  • the boiler 2 houses a steam generator 3, a water cooling wall 4, and a reheater 9.
  • the steam generator 3 includes a economizer (not shown) that preheats water supplied from the condenser 10 and a superheater (not shown) that further heats saturated steam supplied from the water cooling wall 4 to superheated steam. ).
  • the water cooling wall 4 forms the housing of the boiler 2 and supplies the superheated water to the superheater as saturated steam.
  • the steam valve 5 is a regulating valve that controls the flow rate of superheated steam generated by the steam generator 3.
  • the rotating shafts 13 of the high-pressure turbine 6, the medium-pressure turbine 7, and the low-pressure turbine 8 are the same, and are connected to the rotating shaft 14 of the generator 12.
  • Superheated steam (first steam) generated by the steam generator 3 is supplied to the high-pressure turbine 6 via the steam valve 5.
  • the high-pressure turbine 6 expands the first steam and supplies the expanded steam (second steam) to the reheater 9 in the boiler 2.
  • the reheater 9 reheats the second steam and supplies it to the medium-pressure turbine 7 as reheated steam (third steam).
  • the medium-pressure turbine 7 expands the third steam and supplies the expanded steam (fourth steam) to the low-pressure turbine 8.
  • the low-pressure turbine 8 expands the fourth steam.
  • the condenser 10 condenses the exhaust gas after the low-pressure turbine 8 expands the fourth steam and converts the exhaust gas into condensate water.
  • the feedwater pump 11 pressurizes the condensed water generated by the condenser 10 and returns the condensed water to the steam generator 3 in the boiler 2 as feedwater.
  • the generator 12 is driven by power generated when the fourth steam expands so that electric power is generated.
  • the surface temperature of a superheater tube (steam tube) constituting the superheater included in the steam generator 3 and a reheater tube (steam tube) constituting the reheater 9 are measured by the temperature measuring device according to the present embodiment. The details will be described later. For convenience of explanation, in the following description, the superheater tube and the reheater tube will be referred to as a steam tube 15.
  • FIG. 2 is a perspective view showing a state before the temperature measuring device according to the present embodiment is mounted on a straight pipe portion of a steam pipe.
  • FIG. 3 is a perspective view showing a state after the temperature measuring device according to the present embodiment is mounted on a straight pipe portion of a steam pipe.
  • FIG. 4 is a cross-sectional view showing a state after the temperature measuring device according to the present embodiment is mounted on a straight pipe portion of a steam pipe. The temperature measuring device is mounted on the steam pipe so that the optical fiber is not exposed in the boiler.
  • the temperature measuring device 100 is made of metal (for example, SUS304, SUS316) mounted on the straight pipe portion of the steam pipe 15 via the optical fiber 110 such that the optical fiber 110 is in close contact with the surface of the straight pipe portion of the steam pipe 15.
  • the temperature measuring device 100 includes an optical fiber 110 and a cover 120.
  • the optical fiber 110 is attached by a cover 120 so as to be in close contact with the surface of the steam pipe 15 along the longitudinal direction of the steam pipe 15 in order to measure the surface temperature of the steam pipe 15.
  • the pulse light travels while slightly scattering in the optical fiber 110.
  • the Raman scattered light Stokes light and anti-Stokes light
  • the temperature of the object can be measured by detecting the Raman scattered light. That is, the surface temperature of the steam pipe 15 can be measured by bringing the optical fiber 110 into close contact with the surface of the steam pipe 15.
  • the diameter of the optical fiber 110 is, for example, about 0.2 mm. Since a temperature measuring method using the temperature dependency of Raman scattered light is well known, its description is omitted.
  • the cover 120 includes a cover main body 1201 and flanges 1202A and 1202B.
  • the thickness of the cover 120 is, for example, about 2 to 3 mm.
  • the cover body 1201 has a cylindrical shape having a diameter slightly larger than the diameter of the steam pipe 15.
  • the optical fiber 110 is accommodated along the longitudinal direction of the steam pipe 15 in order to adhere the optical fiber 110 to the surface of the steam pipe 15 along the longitudinal direction of the steam pipe 15.
  • Groove 1201C is formed.
  • the groove 1201C is formed, for example, on the opposite side of the cover body 1201 from the flanges 1202A and 1202B.
  • the groove 1201C has such a depression that the optical fiber 110 is in close contact with the surface of the steam pipe 15.
  • the cover main body 1201 has end faces 1201A and 1201B along the longitudinal direction of the steam pipe 15 so that one gap is formed along the longitudinal direction of the steam pipe 15.
  • the flanges 1202A and 1202B are formed to extend from the end surfaces 1201A and 1201B so as to be away from the steam pipe 15, respectively.
  • the flanges 1202A and 1202B have a plurality of holes 1203A and 1203B, respectively, along the longitudinal direction of the steam pipe 15.
  • the plurality of holes 1203A and 1203B communicate with each other such that the bolt 1204 is screwed with the nut 1205.
  • the bolts 1204 are inserted into the plurality of holes 1203A and 1203B to insert the bolts 1204.
  • the nut 1205 is tightened, the gap between the flanges 1202A and 1202B disappears, and the cover main body 1201 is attached in close contact with the steam pipe 15.
  • the temperature of the combustion gas is, for example, about 1200 ° C.
  • the temperature of the steam circulating in the steam pipe 15 is, for example, about 600 ° C. .
  • the optical fiber 110 does not directly contact the combustion gas with the cover 120, the temperature of the optical fiber 110 is affected only by the surface temperature of the steam pipe 15. Therefore, the temperature of the optical fiber 110 is suppressed to less than 700 ° C., and the surface temperature of the steam pipe 15 can be reliably obtained.
  • Information on the surface temperature of the steam pipe 15 is taken into an external monitoring device (not shown) via a network, and a temperature distribution is obtained. Further, since the cover 120 surrounds the steam pipe 15, the creep strength of the steam pipe 15 can be improved.
  • FIG. 5 is a perspective view showing a state before the other temperature measuring device according to the present embodiment is mounted on the curved pipe portion of the steam pipe.
  • FIG. 6 is a perspective view showing a state after another temperature measuring device according to the present embodiment is mounted on a curved pipe portion of a steam pipe.
  • FIG. 7 is a cross-sectional view showing a state after another temperature measuring device according to the present embodiment is mounted on a curved pipe portion of a steam pipe. The temperature measuring device is attached to the steam pipe so that the optical fiber is not exposed in the boiler.
  • the temperature measuring device 200 is made of metal (for example, SUS304, SUS316) mounted on the bent portion of the steam pipe 15 via the optical fiber 210 so that the optical fiber 210 is in close contact with the surface of the bent portion of the steam tube 15.
  • the temperature measuring device 200 includes an optical fiber 210 and a cover 220.
  • the optical fiber 210 is attached by the cover 220 so as to be in close contact with the surface of the steam pipe 15 along the longitudinal direction (the shape of the curved pipe portion) of the steam pipe 15 in order to measure the surface temperature of the steam pipe 15. Then, similarly to the optical fiber 110, the surface temperature of the steam pipe 15 can be measured by bringing the optical fiber 210 into close contact with the surface of the steam pipe 15 and utilizing the temperature dependency of the Raman scattered light.
  • the diameter of the optical fiber 210 is, for example, about 0.2 mm.
  • the cover 220 includes a cover body 2201 and flanges 2202A and 2202B.
  • the thickness of the cover 220 is, for example, about 2 to 3 mm.
  • the cover body 2201 has a diameter slightly larger than the diameter of the steam pipe 15 and has a cylindrical shape according to the curvature of the steam pipe 15.
  • the inner peripheral surface of the cover body 2201 is for accommodating the optical fiber 210 along the longitudinal direction of the steam pipe 15 in order to bring the optical fiber 210 into close contact with the surface of the steam pipe 15 along the longitudinal direction of the steam pipe 15.
  • Groove 2201C is formed.
  • the groove 2201C is formed on the cover body 2201, for example, on the opposite side of the flanges 2202A and 2202B.
  • the flanges 2202A and 2202B are located downstream of the combustion gas (the side where the combustion gas hits).
  • the temperature measuring device 200 is installed so as to face the opposite side.
  • the flanges 2202A and 2202B always have various shapes so as to always face the downstream side of the combustion gas. Is prepared in advance.
  • the groove 2201C has such a depression that the optical fiber 210 is in close contact with the surface of the steam pipe 15.
  • the cover body 2201 has end faces 2201A and 2201B along the longitudinal direction of the steam pipe 15 so that one gap is formed along the longitudinal direction of the steam pipe 15.
  • the flanges 2202A and 2202B are formed to extend from the end faces 2201A and 2201B so as to be away from the steam pipe 15, respectively.
  • the flanges 2202A and 2202B have a plurality of holes 2203A and 2203B, respectively, along the longitudinal direction of the steam pipe 15.
  • the plurality of holes 2203A and 2203B communicate with each other such that the bolt 2204 is screwed with the nut 2205.
  • the bolts 2204 are inserted into the plurality of holes 2203A and 2203B.
  • the gap between the flanges 2202A and 2202B disappears, and the cover main body 2201 is attached to the bent portion of the steam pipe 15 in close contact.
  • the temperature of the optical fiber 210 is affected only by the surface temperature of the steam pipe 15. Therefore, the temperature of the optical fiber 210 is suppressed to less than 700 ° C., and the surface temperature of the curved portion of the steam pipe 15 can be reliably obtained. Information on the surface temperature of the steam pipe 15 is taken into an external monitoring device (not shown) via a network, and a temperature distribution is obtained. Further, since the cover 220 surrounds the steam pipe 15, the creep strength of the steam pipe 15 can be improved.
  • the steam pipe 15 has a shape in which a straight pipe portion and a curved pipe portion are continuous. Therefore, when measuring the surface temperature of the straight pipe portion and the curved pipe portion of the steam pipe 15, the cover 120 may be attached to the straight pipe portion of the steam pipe 15, and the cover 220 may be attached to the curved pipe portion of the steam pipe 15. . Further, the cover 220 may be double mounted on the curved pipe portion of the steam pipe 15 to reinforce the curved pipe section of the steam pipe 15.
  • the temperature measuring device 100 (200) includes the steam pipe 15 (superheater pipe) in which steam obtained by heat-exchanging water supplied to the boiler 2 with combustion gas circulates. And the optical fiber 110 (210) for measuring the surface temperature of the reheater tube) and the optical fiber 110 (210) so that the optical fiber 110 (210) adheres to the steam tube 15 along the longitudinal direction of the steam tube 15. And a cover 120 (220) attached so as to surround the steam pipe 15 with the (210) interposed therebetween.
  • the optical fiber 110 (210) does not directly contact the combustion gas by the cover 120 (220), and the temperature of the optical fiber 110 (210) is affected only by the surface temperature of the steam pipe 15, The temperature of the optical fiber 110 (210) is suppressed to less than 700 ° C., and the surface temperature of the steam pipe 15 can be reliably obtained. Furthermore, since the cover 120 (220) surrounds the steam pipe 15, the creep strength of the steam pipe 15 can be improved.
  • the cover 120 (220) has a groove 1201C () that is recessed along the longitudinal direction of the steam pipe 15 so that the optical fiber 110 (210) is accommodated when the cover 120 (220) is mounted on the steam pipe 15. 2201C). According to the present embodiment, it is possible to protect the optical fiber 110 (210) while keeping the optical fiber 110 (210) in close contact with the steam pipe 15.
  • the cover 120 (220) has a gap along the longitudinal direction of the steam pipe 15 and has a cylindrical cover body 1201 (2201) surrounding the steam pipe 15, and a cover body 1201 (2201). And flanges 1202A (2202A) and 1202B (2202B) which are formed at both ends of the cover and are fastened by bolts 1204 (2204) and nuts 1205 (2205) so that the cover main body 1201 (2201) is in close contact with the steam pipe 15.
  • the cover 120 (220) is formed from an alloy steel.
  • the cover 120 (220) may be welded to the steam pipe 15 without providing the flanges 1202A (2202A) and 1202B (2202B).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

A steam-pipe temperature measurement device according to the present invention includes: an optical fiber for measuring the temperature of the surface of a steam pipe inside which steam obtained through heat exchange between water to be supplied to a boiler and a combustion gas circulates; and a cover that is mounted so as to surround the steam pipe, with the optical fiber sandwiched therebetween, such that the optical fiber is brought into close contact with the steam pipe along the longitudinal direction of the steam pipe.

Description

蒸気管の温度測定装置、蒸気管の温度測定方法Steam pipe temperature measuring device, steam pipe temperature measuring method
 本発明は、蒸気管の温度測定装置、蒸気管の温度測定方法に関する。 The present invention relates to a steam pipe temperature measuring device and a steam pipe temperature measuring method.
 例えば、火力発電所における発電用のボイラ内には、復水器から供給される水を燃焼ガスと熱交換することによって得られる蒸気を循環させる蒸気管(例えば過熱器や再熱器)が設置されている。蒸気管は耐熱鋼(例えば低合金鋼)を成分とするボイラチューブで構成されているが、設計基準を超えた高温状態で使用され続けると、クリープ損傷の進行に伴って、蒸気管の外周面が膨張するか或いは蒸気管の肉厚が減肉する等の変形を生じる虞がある。そこで、蒸気管の表面温度の測定結果から、ボイラの燃焼状態や蒸気管の余寿命を把握することによって、蒸気管の劣化に起因する事故を未然に防止する点検が行われている(例えば特許文献1を参照)。 For example, in a boiler for power generation in a thermal power plant, a steam pipe (for example, a superheater or a reheater) for circulating steam obtained by heat-exchanging water supplied from a condenser with combustion gas is installed. Have been. The steam pipe is composed of a boiler tube containing heat-resistant steel (for example, low alloy steel) as a component. However, if the steam pipe is continuously used at a high temperature exceeding the design standards, the outer circumferential surface of the steam pipe will increase with the progress of creep damage. Of the steam pipe or the thickness of the steam pipe may be reduced. Therefore, inspections are being conducted to prevent the accident caused by the deterioration of the steam pipe by grasping the combustion state of the boiler and the remaining life of the steam pipe from the measurement result of the surface temperature of the steam pipe (for example, Patent Reference 1).
特開2013-190229号公報JP 2013-190229 A
 ボイラの燃焼状態や蒸気管の余寿命を把握する場合、蒸気管の表面温度を広範囲に亘って測定し、蒸気管の表面温度の温度分布を求める必要がある。 場合 When grasping the boiler combustion state and the remaining life of the steam pipe, it is necessary to measure the surface temperature of the steam pipe over a wide range and obtain the temperature distribution of the surface temperature of the steam pipe.
 例えば、蒸気管の表面温度を測定する手段として熱電対を用いる場合がある。しかし、熱電対を用いた場合、蒸気管における狭い範囲の表面温度しか測定できないため、蒸気管の表面温度の温度分布を求めることは困難である。 For example, a thermocouple may be used as a means for measuring the surface temperature of a steam pipe. However, when a thermocouple is used, only the surface temperature in a narrow range of the steam pipe can be measured, so that it is difficult to obtain the temperature distribution of the surface temperature of the steam pipe.
 そこで、本発明は、蒸気管の表面温度を広範囲に亘って確実に測定することが可能な温度測定装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a temperature measuring device capable of reliably measuring the surface temperature of a steam pipe over a wide range.
 前述した課題を解決する主たる本発明は、蒸気管の温度測定装置として、ボイラに供給される水を燃焼ガスと熱交換して得られる蒸気が内部を循環する蒸気管の表面温度を測定するための光ファイバと、前記光ファイバが前記蒸気管の長手方向に沿って前記蒸気管に密着するように、前記光ファイバを挟んで前記蒸気管を取り囲むように装着されるカバーと、を備える。 SUMMARY OF THE INVENTION The main invention for solving the above-mentioned problem is to measure a surface temperature of a steam pipe in which steam obtained by heat-exchanging water supplied to a boiler with a combustion gas circulates as a steam pipe temperature measuring device. And a cover attached so as to surround the steam pipe with the optical fiber interposed therebetween so that the optical fiber is in close contact with the steam pipe along the longitudinal direction of the steam pipe.
 本発明の他の特徴については、添付図面及び本明細書の記載により明らかとなる。 の 他 Other features of the present invention will be apparent from the accompanying drawings and the description of this specification.
 本発明によれば、蒸気管の表面温度を広範囲に亘って確実に測定することが可能となる。 According to the present invention, it is possible to reliably measure the surface temperature of the steam pipe over a wide range.
本実施形態に係る蒸気管の温度測定装置が用いられる火力発電所の全体構成の一例を示す図である。It is a figure showing an example of the whole composition of the thermal power plant in which the temperature measuring device of the steam pipe concerning this embodiment is used. 本実施形態に係る温度測定装置を蒸気管の直管部分に装着する前の様子を示す斜視図である。It is a perspective view showing the situation before attaching the temperature measuring device concerning this embodiment to a straight pipe part of a steam pipe. 本実施形態に係る温度測定装置を蒸気管の直管部分に装着した後の様子を示す斜視図である。It is a perspective view showing the situation after attaching the temperature measuring device concerning this embodiment to a straight pipe part of a steam pipe. 本実施形態に係る温度測定装置を蒸気管の直管部分に装着した後の様子を示す断面図である。FIG. 4 is a cross-sectional view showing a state after the temperature measuring device according to the present embodiment is mounted on a straight pipe portion of a steam pipe. 本実施形態に係る他の温度測定装置を蒸気管の曲管部分に装着する前の様子を示す斜視図である。It is a perspective view showing a situation before attaching other temperature measuring devices concerning this embodiment to a curved pipe part of a steam pipe. 本実施形態に係る他の温度測定装置を蒸気管の曲管部分に装着した後の様子を示す斜視図である。FIG. 11 is a perspective view showing a state after another temperature measuring device according to the present embodiment is mounted on a curved pipe portion of a steam pipe. 本実施形態に係る他の温度測定装置を蒸気管の曲管部分に装着した後の様子を示す断面図である。It is sectional drawing which shows the mode after attaching the other temperature measuring apparatus which concerns on this embodiment to the curved pipe part of a steam pipe.
 本明細書および添付図面の記載により、少なくとも以下の事項が明らかとなる。 、 At least the following matters will be made clear by the description in this specification and the accompanying drawings.
===火力発電所の全体構成の一例===
 図1は、本実施形態に係る蒸気管の温度測定装置が用いられる火力発電所の全体構成の一例を示す図である。
=== Example of Overall Configuration of Thermal Power Plant ===
FIG. 1 is a diagram illustrating an example of an overall configuration of a thermal power plant in which the steam pipe temperature measuring device according to the present embodiment is used.
 火力発電所1は、ボイラ2、蒸気発生器3、水冷壁4、蒸気弁5、高圧タービン6、中圧タービン7、低圧タービン8、再熱器9、復水器10、給水ポンプ11、発電機12を含んで構成されている。 The thermal power plant 1 includes a boiler 2, a steam generator 3, a water cooling wall 4, a steam valve 5, a high-pressure turbine 6, a medium-pressure turbine 7, a low-pressure turbine 8, a reheater 9, a condenser 10, a feedwater pump 11, and a power generator. Machine 12.
 ボイラ2は、外部から供給される燃料(例えば微粉炭の状態の石炭)と空気を混合して燃焼ガスを生成し、燃焼ガスの熱を用いて水を水蒸気に換える熱交換装置である。ボイラ2には、蒸気発生器3、水冷壁4、再熱器9が収容されている。蒸気発生器3は、復水器10から供給される水を予熱する節炭器(不図示)と、水冷壁4から供給される飽和蒸気を更に加熱して過熱蒸気にする過熱器(不図示)と、を含んで構成されている。水冷壁4は、ボイラ2のハウジングを形成し、余熱された水を飽和蒸気にして過熱器に供給する。蒸気弁5は、蒸気発生器3で生成される過熱蒸気の流量を制御する調整弁である。 The boiler 2 is a heat exchange device that mixes fuel (for example, pulverized coal) supplied from the outside with air and generates combustion gas, and uses the heat of the combustion gas to convert water into steam. The boiler 2 houses a steam generator 3, a water cooling wall 4, and a reheater 9. The steam generator 3 includes a economizer (not shown) that preheats water supplied from the condenser 10 and a superheater (not shown) that further heats saturated steam supplied from the water cooling wall 4 to superheated steam. ). The water cooling wall 4 forms the housing of the boiler 2 and supplies the superheated water to the superheater as saturated steam. The steam valve 5 is a regulating valve that controls the flow rate of superheated steam generated by the steam generator 3.
 高圧タービン6、中圧タービン7、低圧タービン8の回転軸13は同一であって、発電機12の回転軸14と結合されている。高圧タービン6には、蒸気発生器3で生成される過熱蒸気(第1蒸気)が蒸気弁5を介して供給される。高圧タービン6は、第1蒸気を膨張させ、膨張後の蒸気(第2蒸気)をボイラ2内の再熱器9に供給する。再熱器9は、第2蒸気を再熱し、再熱蒸気(第3蒸気)として中圧タービン7に供給する。中圧タービン7は、第3蒸気を膨張させ、膨張後の蒸気(第4蒸気)を低圧タービン8に供給する。低圧タービン8は、第4蒸気を膨張させる。 The rotating shafts 13 of the high-pressure turbine 6, the medium-pressure turbine 7, and the low-pressure turbine 8 are the same, and are connected to the rotating shaft 14 of the generator 12. Superheated steam (first steam) generated by the steam generator 3 is supplied to the high-pressure turbine 6 via the steam valve 5. The high-pressure turbine 6 expands the first steam and supplies the expanded steam (second steam) to the reheater 9 in the boiler 2. The reheater 9 reheats the second steam and supplies it to the medium-pressure turbine 7 as reheated steam (third steam). The medium-pressure turbine 7 expands the third steam and supplies the expanded steam (fourth steam) to the low-pressure turbine 8. The low-pressure turbine 8 expands the fourth steam.
 復水器10は、低圧タービン8が第4蒸気を膨張させた後の排気を凝縮して復水に換える。給水ポンプ11は、復水器10で生成される復水を昇圧して給水としてボイラ2内の蒸気発生器3に戻している。 (4) The condenser 10 condenses the exhaust gas after the low-pressure turbine 8 expands the fourth steam and converts the exhaust gas into condensate water. The feedwater pump 11 pressurizes the condensed water generated by the condenser 10 and returns the condensed water to the steam generator 3 in the boiler 2 as feedwater.
 そして、発電機12は、電力が発電されるように、第4蒸気が膨張した際に発生する動力で駆動される。 The generator 12 is driven by power generated when the fourth steam expands so that electric power is generated.
 本実施形態に係る温度測定装置によって、蒸気発生器3に含まれる過熱器を構成する過熱器管(蒸気管)や再熱器9を構成する再熱器管(蒸気管)の表面温度を測定することとなるが、詳細については後述する。尚、説明の便宜上、以下の説明において、過熱器管や再熱器管を蒸気管15と称することとする。 The surface temperature of a superheater tube (steam tube) constituting the superheater included in the steam generator 3 and a reheater tube (steam tube) constituting the reheater 9 are measured by the temperature measuring device according to the present embodiment. The details will be described later. For convenience of explanation, in the following description, the superheater tube and the reheater tube will be referred to as a steam tube 15.
===温度測定装置===
 図2は、本実施形態に係る温度測定装置を蒸気管の直管部分に装着する前の様子を示す斜視図である。図3は、本実施形態に係る温度測定装置を蒸気管の直管部分に装着した後の様子を示す斜視図である。図4は、本実施形態に係る温度測定装置を蒸気管の直管部分に装着した後の様子を示す断面図である。尚、温度測定装置は、光ファイバがボイラ内で露出することがないように蒸気管に装着されていることとする。
=== Temperature measuring device ===
FIG. 2 is a perspective view showing a state before the temperature measuring device according to the present embodiment is mounted on a straight pipe portion of a steam pipe. FIG. 3 is a perspective view showing a state after the temperature measuring device according to the present embodiment is mounted on a straight pipe portion of a steam pipe. FIG. 4 is a cross-sectional view showing a state after the temperature measuring device according to the present embodiment is mounted on a straight pipe portion of a steam pipe. The temperature measuring device is mounted on the steam pipe so that the optical fiber is not exposed in the boiler.
 温度測定装置100は、光ファイバ110が蒸気管15の直管部分の表面に密着するように、光ファイバ110を介して蒸気管15の直管部分に装着される金属製(例えばSUS304,SUS316)の装置である。温度測定装置100は、光ファイバ110とカバー120を含んで構成されている。 The temperature measuring device 100 is made of metal (for example, SUS304, SUS316) mounted on the straight pipe portion of the steam pipe 15 via the optical fiber 110 such that the optical fiber 110 is in close contact with the surface of the straight pipe portion of the steam pipe 15. Device. The temperature measuring device 100 includes an optical fiber 110 and a cover 120.
 光ファイバ110は、蒸気管15の表面温度を測定するために、蒸気管15の長手方向に沿って蒸気管15の表面に密着するようにカバー120によって取り付けられる。光ファイバ110にパルス光を入射すると、パルス光は光ファイバ110の中で僅かに散乱を起こしながら進行する。その散乱光の1つであるラマン散乱光(ストークス光とアンチストークス光)は温度依存性を有するため、ラマン散乱光を検知することによって被測定物の温度を測定することが可能である。つまり、光ファイバ110を蒸気管15の表面に密着させることによって、蒸気管15の表面温度を測定することが可能である。光ファイバ110の径は、例えば0.2mm程度である。尚、ラマン散乱光の温度依存性を利用する温度測定方法は周知であるため、その説明を省略する。 The optical fiber 110 is attached by a cover 120 so as to be in close contact with the surface of the steam pipe 15 along the longitudinal direction of the steam pipe 15 in order to measure the surface temperature of the steam pipe 15. When pulse light is incident on the optical fiber 110, the pulse light travels while slightly scattering in the optical fiber 110. Since the Raman scattered light (Stokes light and anti-Stokes light), which is one of the scattered lights, has a temperature dependency, the temperature of the object can be measured by detecting the Raman scattered light. That is, the surface temperature of the steam pipe 15 can be measured by bringing the optical fiber 110 into close contact with the surface of the steam pipe 15. The diameter of the optical fiber 110 is, for example, about 0.2 mm. Since a temperature measuring method using the temperature dependency of Raman scattered light is well known, its description is omitted.
 カバー120は、カバー本体1201とフランジ1202A,1202Bを含んで構成されている。カバー120の厚みは、例えば2~3mm程度である。 The cover 120 includes a cover main body 1201 and flanges 1202A and 1202B. The thickness of the cover 120 is, for example, about 2 to 3 mm.
 カバー本体1201は、蒸気管15の径よりも僅かに大きい径を有する円筒形状を呈している。カバー本体1201の内周面には、光ファイバ110を蒸気管15の長手方向に沿って蒸気管15の表面に密着させるために、蒸気管15の長手方向に沿って光ファイバ110を収容するための溝1201Cが形成されている。溝1201Cは、例えばカバー本体1201におけるフランジ1202A,1202Bの反対側に形成されている。温度測定装置100をボイラ2内に設置する場合、燃焼ガスがフランジ1202A,1202Bに当たると、燃焼ガスの流れが乱れてしまうため、フランジ1202A,1202Bが燃焼ガスの下流側(燃焼ガスが当たる側とは反対側)を向くように、温度測定装置100は設置される。溝1201Cは、光ファイバ110が蒸気管15の表面に密着する程度の窪みを有している。カバー本体1201は、蒸気管15の長手方向に沿って1本の隙間が形成されるように、蒸気管15の長手方向に沿う端面1201A,1201Bを有している。フランジ1202A,1202Bは、それぞれ、蒸気管15から遠ざかるように端面1201A,1201Bから延在して形成されている。フランジ1202A,1202Bは、それぞれ、蒸気管15の長手方向に沿って複数の孔1203A,1203Bを有している。複数の孔1203A,1203Bは、それぞれ、ボルト1204がナット1205と螺合するように連通している。そして、温度測定装置100の剛性に抗してフランジ1020A,1202Bの間の隙間を広げながらカバー本体1201を蒸気管15に被せた後、ボルト1204を複数の孔1203A,1203Bに挿入してボルト1204とナット1205を締め付けると、フランジ1202A,1202Bの間の隙間がなくなって、カバー本体1201は蒸気管15に密着して装着される。 The cover body 1201 has a cylindrical shape having a diameter slightly larger than the diameter of the steam pipe 15. On the inner peripheral surface of the cover body 1201, the optical fiber 110 is accommodated along the longitudinal direction of the steam pipe 15 in order to adhere the optical fiber 110 to the surface of the steam pipe 15 along the longitudinal direction of the steam pipe 15. Groove 1201C is formed. The groove 1201C is formed, for example, on the opposite side of the cover body 1201 from the flanges 1202A and 1202B. When the temperature measuring device 100 is installed in the boiler 2, when the combustion gas hits the flanges 1202A and 1202B, the flow of the combustion gas is disturbed. Therefore, the flanges 1202A and 1202B are located downstream of the combustion gas (the side where the combustion gas hits). Is located on the opposite side). The groove 1201C has such a depression that the optical fiber 110 is in close contact with the surface of the steam pipe 15. The cover main body 1201 has end faces 1201A and 1201B along the longitudinal direction of the steam pipe 15 so that one gap is formed along the longitudinal direction of the steam pipe 15. The flanges 1202A and 1202B are formed to extend from the end surfaces 1201A and 1201B so as to be away from the steam pipe 15, respectively. The flanges 1202A and 1202B have a plurality of holes 1203A and 1203B, respectively, along the longitudinal direction of the steam pipe 15. The plurality of holes 1203A and 1203B communicate with each other such that the bolt 1204 is screwed with the nut 1205. Then, after covering the cover main body 1201 on the steam pipe 15 while widening the gap between the flanges 1020A and 1202B against the rigidity of the temperature measuring device 100, the bolts 1204 are inserted into the plurality of holes 1203A and 1203B to insert the bolts 1204. When the nut 1205 is tightened, the gap between the flanges 1202A and 1202B disappears, and the cover main body 1201 is attached in close contact with the steam pipe 15.
 ボイラ2において、復水器10から供給される水を燃焼ガスと熱交換するとき、燃焼ガスの温度は例えば1200℃程度であり、蒸気管15を循環する蒸気の温度は例えば600℃程度である。光ファイバ110はカバー120によって燃焼ガスには直接触れないため、光ファイバ110の温度は蒸気管15の表面温度の影響のみを受ける。従って、光ファイバ110の温度は700℃未満に抑えられ、蒸気管15の表面温度を確実に取得することが可能となる。蒸気管15の表面温度の情報は、ネットワークを介して監視用の外部機器(不図示)に取り込まれて温度分布が求められる。更に、カバー120は蒸気管15を取り囲むため、蒸気管15のクリープ強度を向上させることが可能となる。 When the water supplied from the condenser 10 is heat-exchanged with the combustion gas in the boiler 2, the temperature of the combustion gas is, for example, about 1200 ° C., and the temperature of the steam circulating in the steam pipe 15 is, for example, about 600 ° C. . Since the optical fiber 110 does not directly contact the combustion gas with the cover 120, the temperature of the optical fiber 110 is affected only by the surface temperature of the steam pipe 15. Therefore, the temperature of the optical fiber 110 is suppressed to less than 700 ° C., and the surface temperature of the steam pipe 15 can be reliably obtained. Information on the surface temperature of the steam pipe 15 is taken into an external monitoring device (not shown) via a network, and a temperature distribution is obtained. Further, since the cover 120 surrounds the steam pipe 15, the creep strength of the steam pipe 15 can be improved.
 図5は、本実施形態に係る他の温度測定装置を蒸気管の曲管部分に装着する前の様子を示す斜視図である。図6は、本実施形態に係る他の温度測定装置を蒸気管の曲管部分に装着した後の様子を示す斜視図である。図7は、本実施形態に係る他の温度測定装置を蒸気管の曲管部分に装着した後の様子を示す断面図である。尚、温度測定装置は、光ファイバがボイラ内で露出することがないような長さを有して蒸気管に装着されることとする。 FIG. 5 is a perspective view showing a state before the other temperature measuring device according to the present embodiment is mounted on the curved pipe portion of the steam pipe. FIG. 6 is a perspective view showing a state after another temperature measuring device according to the present embodiment is mounted on a curved pipe portion of a steam pipe. FIG. 7 is a cross-sectional view showing a state after another temperature measuring device according to the present embodiment is mounted on a curved pipe portion of a steam pipe. The temperature measuring device is attached to the steam pipe so that the optical fiber is not exposed in the boiler.
 温度測定装置200は、光ファイバ210が蒸気管15の曲管部分の表面に密着するように、光ファイバ210を介して蒸気管15の曲管部分に装着される金属製(例えばSUS304,SUS316)装置である。温度測定装置200は、光ファイバ210とカバー220を含んで構成されている。 The temperature measuring device 200 is made of metal (for example, SUS304, SUS316) mounted on the bent portion of the steam pipe 15 via the optical fiber 210 so that the optical fiber 210 is in close contact with the surface of the bent portion of the steam tube 15. Device. The temperature measuring device 200 includes an optical fiber 210 and a cover 220.
 光ファイバ210は、蒸気管15の表面温度を測定するために、蒸気管15の長手方向(曲管部分の形状)に沿って蒸気管15の表面に密着するようにカバー220によって取り付けられる。そして、光ファイバ110と同様に、光ファイバ210を蒸気管15の表面に密着させ、ラマン散乱光の温度依存性を利用することによって、蒸気管15の表面温度を測定することが可能となる。光ファイバ210の径は、例えば0.2mm程度である。 The optical fiber 210 is attached by the cover 220 so as to be in close contact with the surface of the steam pipe 15 along the longitudinal direction (the shape of the curved pipe portion) of the steam pipe 15 in order to measure the surface temperature of the steam pipe 15. Then, similarly to the optical fiber 110, the surface temperature of the steam pipe 15 can be measured by bringing the optical fiber 210 into close contact with the surface of the steam pipe 15 and utilizing the temperature dependency of the Raman scattered light. The diameter of the optical fiber 210 is, for example, about 0.2 mm.
 カバー220は、カバー本体2201とフランジ2202A,2202Bを含んで構成されている。カバー220の厚みは、例えば2~3mm程度である。 The cover 220 includes a cover body 2201 and flanges 2202A and 2202B. The thickness of the cover 220 is, for example, about 2 to 3 mm.
 カバー本体2201は、蒸気管15の径よりも僅かに大きい径を有し、蒸気管15の曲率に応じた円筒形状を呈している。カバー本体2201の内周面には、光ファイバ210を蒸気管15の長手方向に沿って蒸気管15の表面に密着させるために、蒸気管15の長手方向に沿って光ファイバ210を収容するための溝2201Cが形成されている。溝2201Cは、例えばカバー本体2201におけるフランジ2202A,2202Bの反対側に形成されている。温度測定装置200をボイラ2内に設置する場合、燃焼ガスがフランジ2202A,2202Bに当たると、燃焼ガスの流れが乱れてしまうため、フランジ2202A,2202Bが燃焼ガスの下流側(燃焼ガスが当たる側とは反対側)を向くように、温度測定装置200は設置される。又、温度測定装置200として、ボイラ2内に配置されている蒸気管15の曲管部分に装着した際に、フランジ2202A,2202Bが常に燃焼ガスの下流側を向くような様々な形状を呈するバリエーションが予め用意されていることとする。溝2201Cは、光ファイバ210が蒸気管15の表面に密着する程度の窪みを有している。カバー本体2201は、蒸気管15の長手方向に沿って1本の隙間が形成されるように、蒸気管15の長手方向に沿う端面2201A,2201Bを有している。フランジ2202A,2202Bは、それぞれ、蒸気管15から遠ざかるように端面2201A,2201Bから延在して形成されている。フランジ2202A,2202Bは、それぞれ、蒸気管15の長手方向に沿って複数の孔2203A,2203Bを有している。複数の孔2203A,2203Bは、それぞれ、ボルト2204がナット2205と螺合するように連通している。そして、温度測定装置200の剛性に抗してフランジ2020A,2202Bの間の隙間を広げながらカバー本体2201を蒸気管15の曲管部分に被せた後、ボルト2204を複数の孔2203A,2203Bに挿入してボルト2204とナット2205を締め付けると、フランジ2202A,2202Bの間の隙間がなくなって、カバー本体2201は蒸気管15の曲管部分に密着して装着される。 The cover body 2201 has a diameter slightly larger than the diameter of the steam pipe 15 and has a cylindrical shape according to the curvature of the steam pipe 15. The inner peripheral surface of the cover body 2201 is for accommodating the optical fiber 210 along the longitudinal direction of the steam pipe 15 in order to bring the optical fiber 210 into close contact with the surface of the steam pipe 15 along the longitudinal direction of the steam pipe 15. Groove 2201C is formed. The groove 2201C is formed on the cover body 2201, for example, on the opposite side of the flanges 2202A and 2202B. When the temperature measuring device 200 is installed in the boiler 2, when the combustion gas hits the flanges 2202A and 2202B, the flow of the combustion gas is disturbed. Therefore, the flanges 2202A and 2202B are located downstream of the combustion gas (the side where the combustion gas hits). The temperature measuring device 200 is installed so as to face the opposite side. In addition, when the temperature measuring device 200 is mounted on a curved portion of the steam pipe 15 disposed in the boiler 2, the flanges 2202A and 2202B always have various shapes so as to always face the downstream side of the combustion gas. Is prepared in advance. The groove 2201C has such a depression that the optical fiber 210 is in close contact with the surface of the steam pipe 15. The cover body 2201 has end faces 2201A and 2201B along the longitudinal direction of the steam pipe 15 so that one gap is formed along the longitudinal direction of the steam pipe 15. The flanges 2202A and 2202B are formed to extend from the end faces 2201A and 2201B so as to be away from the steam pipe 15, respectively. The flanges 2202A and 2202B have a plurality of holes 2203A and 2203B, respectively, along the longitudinal direction of the steam pipe 15. The plurality of holes 2203A and 2203B communicate with each other such that the bolt 2204 is screwed with the nut 2205. Then, after covering the cover main body 2201 over the curved pipe portion of the steam pipe 15 while widening the gap between the flanges 2020A and 2202B against the rigidity of the temperature measuring device 200, the bolts 2204 are inserted into the plurality of holes 2203A and 2203B. Then, when the bolt 2204 and the nut 2205 are tightened, the gap between the flanges 2202A and 2202B disappears, and the cover main body 2201 is attached to the bent portion of the steam pipe 15 in close contact.
 光ファイバ210はカバー220によって燃焼ガスには直接触れないため、光ファイバ210の温度は蒸気管15の表面温度の影響のみを受ける。従って、光ファイバ210の温度は700℃未満に抑えられ、蒸気管15の曲管部分の表面温度を確実に取得することが可能となる。蒸気管15の表面温度の情報は、ネットワークを介して監視用の外部機器(不図示)に取り込まれて温度分布が求められる。更に、カバー220は蒸気管15を取り囲むため、蒸気管15のクリープ強度を向上させることが可能となる。 た め Since the optical fiber 210 does not directly contact the combustion gas with the cover 220, the temperature of the optical fiber 210 is affected only by the surface temperature of the steam pipe 15. Therefore, the temperature of the optical fiber 210 is suppressed to less than 700 ° C., and the surface temperature of the curved portion of the steam pipe 15 can be reliably obtained. Information on the surface temperature of the steam pipe 15 is taken into an external monitoring device (not shown) via a network, and a temperature distribution is obtained. Further, since the cover 220 surrounds the steam pipe 15, the creep strength of the steam pipe 15 can be improved.
 蒸気管15は、直管部分と曲管部分が連続する形状を呈している。そこで、蒸気管15における直管部分と曲管部分の表面温度を測定する場合、カバー120を蒸気管15の直管部分に装着し、カバー220を蒸気管15の曲管部分に装着すればよい。又、カバー220を蒸気管15の曲管部分に二重に装着し、蒸気管15の曲管部分を補強してもよい。 The steam pipe 15 has a shape in which a straight pipe portion and a curved pipe portion are continuous. Therefore, when measuring the surface temperature of the straight pipe portion and the curved pipe portion of the steam pipe 15, the cover 120 may be attached to the straight pipe portion of the steam pipe 15, and the cover 220 may be attached to the curved pipe portion of the steam pipe 15. . Further, the cover 220 may be double mounted on the curved pipe portion of the steam pipe 15 to reinforce the curved pipe section of the steam pipe 15.
 以上説明したように、本実施形態に係る温度測定装置100(200)は、ボイラ2に供給される水を燃焼ガスと熱交換して得られる蒸気が内部を循環する蒸気管15(過熱器管や再熱器管)の表面温度を測定するための光ファイバ110(210)と、光ファイバ110(210)が蒸気管15の長手方向に沿って蒸気管15に密着するように、光ファイバ110(210)を挟んで蒸気管15を取り囲むように装着されるカバー120(220)と、を備える。本実施形態によれば、光ファイバ110(210)はカバー120(220)によって燃焼ガスには直接触れず、光ファイバ110(210)の温度は蒸気管15の表面温度の影響のみを受けるため、光ファイバ110(210)の温度は700℃未満に抑えられ、蒸気管15の表面温度を確実に取得することが可能となる。更に、カバー120(220)は蒸気管15を取り囲むため、蒸気管15のクリープ強度を向上させることが可能となる。 As described above, the temperature measuring device 100 (200) according to the present embodiment includes the steam pipe 15 (superheater pipe) in which steam obtained by heat-exchanging water supplied to the boiler 2 with combustion gas circulates. And the optical fiber 110 (210) for measuring the surface temperature of the reheater tube) and the optical fiber 110 (210) so that the optical fiber 110 (210) adheres to the steam tube 15 along the longitudinal direction of the steam tube 15. And a cover 120 (220) attached so as to surround the steam pipe 15 with the (210) interposed therebetween. According to this embodiment, the optical fiber 110 (210) does not directly contact the combustion gas by the cover 120 (220), and the temperature of the optical fiber 110 (210) is affected only by the surface temperature of the steam pipe 15, The temperature of the optical fiber 110 (210) is suppressed to less than 700 ° C., and the surface temperature of the steam pipe 15 can be reliably obtained. Furthermore, since the cover 120 (220) surrounds the steam pipe 15, the creep strength of the steam pipe 15 can be improved.
 又、本実施形態において、カバー120(220)は、蒸気管15に装着された際に光ファイバ110(210)が収容されるように、蒸気管15の長手方向に沿って窪む溝1201C(2201C)を有する。本実施形態によれば、光ファイバ110(210)を蒸気管15に密着させたまま保護することが可能となる。 Further, in the present embodiment, the cover 120 (220) has a groove 1201C () that is recessed along the longitudinal direction of the steam pipe 15 so that the optical fiber 110 (210) is accommodated when the cover 120 (220) is mounted on the steam pipe 15. 2201C). According to the present embodiment, it is possible to protect the optical fiber 110 (210) while keeping the optical fiber 110 (210) in close contact with the steam pipe 15.
 又、本実施形態において、カバー120(220)は、蒸気管15の長手方向に沿う隙間を有し、蒸気管15を取り囲む円筒形状を呈するカバー本体1201(2201)と、カバー本体1201(2201)の両端に形成され、カバー本体1201(2201)が蒸気管15に密着するようにボルト1204(2204)及びナット1205(2205)によって締め付けられるフランジ1202A(2202A),1202B(2202B)と、を有する。 In the present embodiment, the cover 120 (220) has a gap along the longitudinal direction of the steam pipe 15 and has a cylindrical cover body 1201 (2201) surrounding the steam pipe 15, and a cover body 1201 (2201). And flanges 1202A (2202A) and 1202B (2202B) which are formed at both ends of the cover and are fastened by bolts 1204 (2204) and nuts 1205 (2205) so that the cover main body 1201 (2201) is in close contact with the steam pipe 15.
 又、本実施形態において、カバー120(220)は、合金鋼から形成される。特に、カバー120(220)は、ステンレス鋼(SUS304やSUS316)から形成されることが望ましい。 In the present embodiment, the cover 120 (220) is formed from an alloy steel. In particular, it is desirable that the cover 120 (220) be formed from stainless steel (SUS304 or SUS316).
 尚、上記の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得るとともに、本発明にはその等価物も含まれる。例えば、カバー120(220)は、フランジ1202A(2202A),1202B(2202B)を設けずに蒸気管15に対して溶接されてもよい。 Note that the above-described embodiment is for the purpose of facilitating the understanding of the present invention, and is not for limiting and interpreting the present invention. The present invention can be modified and improved without departing from the spirit thereof, and the present invention also includes equivalents thereof. For example, the cover 120 (220) may be welded to the steam pipe 15 without providing the flanges 1202A (2202A) and 1202B (2202B).
1 火力発電所
2 ボイラ
3 蒸気発生器
6 高圧タービン
7 中圧タービン
8 低圧タービン
9 再熱器
10 復水器
12 発電機
100,200 温度測定装置
110,210 光ファイバ
120,220 カバー
1201,2201 カバー本体
1201A,1201B,2201A,2201B 端面
1201C,2201C 溝
1202A,1202B,2202A,2202B フランジ
1203A,1203B,2203A,2203B 孔
1204,2204 ボルト
1205,2205 ナット
DESCRIPTION OF SYMBOLS 1 Thermal power plant 2 Boiler 3 Steam generator 6 High pressure turbine 7 Medium pressure turbine 8 Low pressure turbine 9 Reheater 10 Condenser 12 Generator 100, 200 Temperature measuring device 110, 210 Optical fiber 120, 220 Cover 1201, 201 Cover Body 1201A, 1201B, 2201A, 2201B End face 1201C, 2201C Groove 1202A, 1202B, 2202A, 2202B Flange 1203A, 1203B, 2203A, 2203B Hole 1204, 2204 Bolt 1205, 2205 Nut

Claims (10)

  1.  ボイラに供給される水を燃焼ガスと熱交換して得られる蒸気が内部を循環する蒸気管の表面温度を測定するための光ファイバと、
     前記光ファイバが前記蒸気管の長手方向に沿って前記蒸気管に密着するように、前記光ファイバを挟んで前記蒸気管を取り囲むように装着されるカバーと、
     を備えたことを特徴とする蒸気管の温度測定装置。
    An optical fiber for measuring the surface temperature of a steam pipe in which steam obtained by heat-exchanging water supplied to the boiler with combustion gas circulates,
    A cover attached so as to surround the steam pipe with the optical fiber interposed therebetween, so that the optical fiber is in close contact with the steam pipe along the longitudinal direction of the steam pipe;
    A steam pipe temperature measuring device comprising:
  2.  前記カバーは、前記蒸気管に装着された際に前記光ファイバが収容されるように、前記蒸気管の長手方向に沿って窪む溝を有する
     ことを特徴とする請求項1に記載の蒸気管の温度測定装置。
    The steam pipe according to claim 1, wherein the cover has a groove that is depressed along a longitudinal direction of the steam pipe so that the optical fiber is accommodated when the cover is attached to the steam pipe. Temperature measuring device.
  3.  前記カバーは、
      前記蒸気管の長手方向に沿う隙間を有し、前記蒸気管を取り囲む円筒形状を呈するカバー本体と、
      前記カバー本体の両端に形成され、前記カバー本体が前記蒸気管に密着するようにボルトによって締め付けられるフランジと、を有する
     ことを特徴とする請求項1又は請求項2に記載の蒸気管の温度測定装置。
    The cover,
    A cover body having a gap along the longitudinal direction of the steam pipe and having a cylindrical shape surrounding the steam pipe,
    The temperature measurement of the steam pipe according to claim 1 or 2, further comprising: a flange formed at both ends of the cover main body, the flange being fastened by bolts so that the cover main body is in close contact with the steam pipe. apparatus.
  4.  前記カバーは、合金鋼から形成される
     ことを特徴とする請求項1~請求項3の何れか一項に記載の蒸気管の温度測定装置。
    The steam pipe temperature measuring device according to any one of claims 1 to 3, wherein the cover is made of an alloy steel.
  5.  前記カバーは、ステンレス鋼から形成される
     ことを特徴とする請求項4に記載の蒸気管の温度測定装置。
    The steam pipe temperature measuring device according to claim 4, wherein the cover is formed of stainless steel.
  6.  前記蒸気管は、過熱器管である
     ことを特徴とする請求項1~請求項5の何れか一項に記載の蒸気管の温度測定装置。
    The steam pipe temperature measuring device according to any one of claims 1 to 5, wherein the steam pipe is a superheater pipe.
  7.  前記蒸気管は、再熱器管である
     ことを特徴とする請求項1~請求項5の何れか一項に記載の蒸気管の温度測定装置。
    The steam pipe temperature measuring device according to any one of claims 1 to 5, wherein the steam pipe is a reheater pipe.
  8.  ボイラに供給される水を燃焼ガスと熱交換して得られる蒸気が内部を循環する蒸気管の表面温度を測定するための光ファイバが、前記蒸気管の長手方向に沿って前記蒸気管に密着するように、前記光ファイバを挟んで前記蒸気管を取り囲むカバーを装着する
     ことを特徴とする蒸気管の温度測定方法。
    An optical fiber for measuring a surface temperature of a steam pipe in which steam obtained by heat-exchanging water supplied to the boiler with a combustion gas circulates is closely attached to the steam pipe along a longitudinal direction of the steam pipe. A method for measuring the temperature of a steam pipe, comprising: mounting a cover surrounding the steam pipe with the optical fiber interposed therebetween.
  9.  前記カバーは、合金鋼から形成される
     ことを特徴とする請求項8に記載の蒸気管の温度測定方法。
    The method according to claim 8, wherein the cover is made of an alloy steel.
  10.  前記カバーは、ステンレス鋼から形成される
     ことを特徴とする請求項9に記載の蒸気管の温度測定方法。
     
     
    The method according to claim 9, wherein the cover is formed of stainless steel.

PCT/JP2018/033920 2018-09-13 2018-09-13 Steam-pipe temperature measurement device, steam-pipe temperature measurement method WO2020054010A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018566332A JP6551621B1 (en) 2018-09-13 2018-09-13 Steam pipe temperature measuring device, steam pipe temperature measuring method
PCT/JP2018/033920 WO2020054010A1 (en) 2018-09-13 2018-09-13 Steam-pipe temperature measurement device, steam-pipe temperature measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/033920 WO2020054010A1 (en) 2018-09-13 2018-09-13 Steam-pipe temperature measurement device, steam-pipe temperature measurement method

Publications (1)

Publication Number Publication Date
WO2020054010A1 true WO2020054010A1 (en) 2020-03-19

Family

ID=67473349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033920 WO2020054010A1 (en) 2018-09-13 2018-09-13 Steam-pipe temperature measurement device, steam-pipe temperature measurement method

Country Status (2)

Country Link
JP (1) JP6551621B1 (en)
WO (1) WO2020054010A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019176000A1 (en) * 2018-03-14 2019-09-19 富士通株式会社 Detection device, temperature distribution measurement device, and detection device production method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06137509A (en) * 1992-10-29 1994-05-17 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for detecting temperatures of parts of boiler
JPH0854289A (en) * 1994-08-11 1996-02-27 Sokuon Kogyo:Kk Sensor mounting structure
JPH11108765A (en) * 1997-09-30 1999-04-23 Matsushita Electric Works Ltd Structure for fixing temperature detecting sensor
JP2007024830A (en) * 2005-07-21 2007-02-01 Okazaki Mfg Co Ltd Attaching structure of surface thermometer
JP2010014583A (en) * 2008-07-04 2010-01-21 Hitachi-Ge Nuclear Energy Ltd Steam generating apparatus
CN103727521A (en) * 2014-01-20 2014-04-16 河南华润电力首阳山有限公司 Temperature-measuring element fixing device and boiler
CA2799824A1 (en) * 2012-12-20 2014-06-20 General Electric Company System and method for monitoring steam generator tube operating conditions
JP2014196964A (en) * 2013-03-29 2014-10-16 三菱重工業株式会社 Thermometer fixture and thermometer fixing method
JP2016042005A (en) * 2014-08-19 2016-03-31 三菱日立パワーシステムズ株式会社 Boiler
JP2018132240A (en) * 2017-02-15 2018-08-23 三菱日立パワーシステムズ株式会社 Prediction method and apparatus for high risk portion

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06137509A (en) * 1992-10-29 1994-05-17 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for detecting temperatures of parts of boiler
JPH0854289A (en) * 1994-08-11 1996-02-27 Sokuon Kogyo:Kk Sensor mounting structure
JPH11108765A (en) * 1997-09-30 1999-04-23 Matsushita Electric Works Ltd Structure for fixing temperature detecting sensor
JP2007024830A (en) * 2005-07-21 2007-02-01 Okazaki Mfg Co Ltd Attaching structure of surface thermometer
JP2010014583A (en) * 2008-07-04 2010-01-21 Hitachi-Ge Nuclear Energy Ltd Steam generating apparatus
CA2799824A1 (en) * 2012-12-20 2014-06-20 General Electric Company System and method for monitoring steam generator tube operating conditions
JP2014196964A (en) * 2013-03-29 2014-10-16 三菱重工業株式会社 Thermometer fixture and thermometer fixing method
CN103727521A (en) * 2014-01-20 2014-04-16 河南华润电力首阳山有限公司 Temperature-measuring element fixing device and boiler
JP2016042005A (en) * 2014-08-19 2016-03-31 三菱日立パワーシステムズ株式会社 Boiler
JP2018132240A (en) * 2017-02-15 2018-08-23 三菱日立パワーシステムズ株式会社 Prediction method and apparatus for high risk portion

Also Published As

Publication number Publication date
JP6551621B1 (en) 2019-07-31
JPWO2020054010A1 (en) 2020-10-22

Similar Documents

Publication Publication Date Title
JP6026711B1 (en) Piping reinforcement device and piping reinforcement method
US8240913B2 (en) Fiber optic sensing device and method
JP4805728B2 (en) Steam turbine rotor and steam turbine
JP6137432B1 (en) Boiler tube reinforcement device and boiler tube reinforcement method
WO2020054010A1 (en) Steam-pipe temperature measurement device, steam-pipe temperature measurement method
US8702311B2 (en) Rotating machine and additional ring
JP2021071286A (en) Heat exchanger with heat exchange tubes movable between aligned and non-aligned positions
JP7093238B2 (en) Steam turbine equipment and combined cycle plant
JP6669323B1 (en) Heat transfer tube and method for manufacturing heat transfer tube
WO2020054011A1 (en) Steam-pipe temperature measurement device, steam-pipe temperature measurement method
JP6651722B2 (en) Piping fatigue test method
JP2010191494A (en) System and method for diagnosing remaining life of high temperature plant equipment
WO2021157141A1 (en) Thermometer protective cylinder, temperature measurement instrument, steam pipe structure, and method for installing thermometer protective cylinder
Malik et al. Studies on the failure of economizer tubes involving acid dew-point corrosion in high pressure boilers
RU2561780C2 (en) Combined-cycle plant
Sobota Increasing the Performance and Reliability of Power Boiler by Monitoring Thermal and Strength Parameters
JP5985634B2 (en) Turbine system with push rod mechanism between two housings
JP6696788B2 (en) Axis arrangement of single-axis combined cycle power plant
JP5134393B2 (en) Marine boiler
Taler et al. Thermal performance and stress monitoring of power boiler
JP6953564B2 (en) Plug and steam piping structure and how to install the plug
JP5973532B2 (en) Outside diameter measuring device
Tina et al. Failure Analysis of Once-Through Steam Generator (OTSG) Tube
US20200191502A1 (en) Tube with conductive fins
KR200387131Y1 (en) Heat exchanging tube with fins coated with aluminium

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018566332

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18933177

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18933177

Country of ref document: EP

Kind code of ref document: A1