WO2020052329A1 - 一种屏下图像获取结构及电子设备 - Google Patents

一种屏下图像获取结构及电子设备 Download PDF

Info

Publication number
WO2020052329A1
WO2020052329A1 PCT/CN2019/094572 CN2019094572W WO2020052329A1 WO 2020052329 A1 WO2020052329 A1 WO 2020052329A1 CN 2019094572 W CN2019094572 W CN 2019094572W WO 2020052329 A1 WO2020052329 A1 WO 2020052329A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
sensor
area
under
Prior art date
Application number
PCT/CN2019/094572
Other languages
English (en)
French (fr)
Inventor
陈宗文
Original Assignee
上海耕岩智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海耕岩智能科技有限公司 filed Critical 上海耕岩智能科技有限公司
Priority to US17/275,586 priority Critical patent/US20220198818A1/en
Publication of WO2020052329A1 publication Critical patent/WO2020052329A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing

Definitions

  • the invention relates to the technical field of imaging under a screen, and in particular, to an image acquiring structure under a screen and an electronic device.
  • biometric recognition technology is playing an increasingly important role in ensuring information security.
  • fingerprint recognition has become one of the key technical means for identity recognition and device unlocking widely used in the mobile Internet field.
  • capacitive fingerprint recognition has been unable to meet the needs, while ultrasonic fingerprint recognition has technical maturity and cost problems.
  • Optical fingerprint recognition is expected to become an under-screen fingerprint. Identification of mainstream technology solutions.
  • the existing optical fingerprint recognition scheme is based on the geometric optical lens imaging principle.
  • the fingerprint module used includes microlens arrays, optical space filters and other components. It has many shortcomings such as complex structure, thick module, small sensing range, high cost, etc.
  • the imaging area of the current under-screen optical imaging is generally smaller than the sensor area. In order to obtain a larger imaging area, a larger sensor is needed, which will occupy the space under the screen.
  • the inventor provides an image acquisition structure under the screen, which includes a light-transmitting cover plate, a light source plate, and a light sensor.
  • the light source plate and the light sensor are disposed below the light-transmitting cover plate.
  • the light cover plate has a light transmission area beyond the edge of the light sensor, and the light source plate has a light source area beyond the edge of the light sensor along the direction of the light transmission area. After the light from the light source in the light source area is totally reflected by the light cover Into the light sensor.
  • the light source area extends beyond the edge of the light-transmissive cover plate.
  • the light source board is disposed above the light sensor.
  • the plane of the light sensor includes a right angle
  • the light source region of the light source plate is arc-shaped at the right angle
  • the normal distance between the light source of the light source plate and the light source incident on the light-transmitting cover plate at a critical angle is denoted as d, and the distance D from the edge of the light source region to the edge of the light sensor is greater than the distance d.
  • the distance between the edge of the light transmitting area and the edge of the light sensor is D-d.
  • the light source board is a display panel.
  • the display panel is a liquid crystal display, an active matrix organic light emitting diode display or a micro light emitting diode display.
  • the light transmitting region or the light source region surrounds the outer periphery of the light sensor.
  • the invention provides an electronic device including a processor and an image acquisition structure connected to the processor.
  • the image acquisition structure is the above-mentioned image acquisition structure under the screen.
  • the above technical solution uses the principle of optical total reflection, so that image data outside the range of the light sensor can be collected by the light sensor, increasing the effective imaging area of the small-sized imaging sensor, so that the area of the fingerprint being imaged exceeds that of the sensor. Area so that image information for lensless imaging can be effectively used. This can reduce the area of the light sensor and avoid taking up too much space under the screen.
  • FIG. 1 is a schematic diagram of realizing optical fingerprint imaging under a lensless screen using a total reflection imaging principle
  • FIG. 2 is a schematic diagram of an imaging structure and imaging diagram of an under-screen image according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a light sensor and a light source board according to an embodiment
  • FIG. 4 is a schematic diagram of a fingerprint image collected on a light sensor and a light transmitting panel according to an embodiment.
  • O luminous point
  • A the contact point between the luminous point and the transparent cover
  • the under-screen image imaging structure includes a light-transmissive cover plate, a light source plate, and a light sensor.
  • the light-source plate and light sensor are disposed below the light-transmissive cover plate.
  • the light-transmissive cover plate, light source plate, and light sensor are arranged in parallel.
  • the light source board is a plurality of light sources arranged on one board.
  • the light-transmitting cover plate may be a single-layer plate structure or a multilayer structure.
  • the single-layer structure may be a glass cover plate or an organic light-transmitting material cover plate.
  • the single-layer cover plate may also be a cover plate having other functions, such as a touch screen.
  • the multilayer structure may be a multilayer glass cover or a multilayer organic transparent material cover or a combination of a glass cover and an organic transparent material cover.
  • the light sensor is used for obtaining light, and includes a plurality of photosensitive units, which can be separately arranged below the light source board or on the light source board. When placed under the light source board, light can enter the light sensor through the gap between the light sources on the light source board. When set on the light source board, the photosensitive unit can be set in the light source (pixel point) gap of the light source board.
  • the sensor can be set under the screen image imaging structure for acquiring the image under the screen, such as fingerprint fingerprint print.
  • the transparent cover and the light source board need to be filled with optical glue to connect and avoid the reflection of light by the air.
  • the refractive index of the optical glue should be close to the refractive index of the transparent cover to avoid the total reflection of light between the optical glue and the transparent cover. .
  • the principle of total reflection imaging is that when imaging, the finger is in contact with the transparent cover. Due to the air in the fingerprint depression, the light with an incident angle exceeding the critical angle of total reflection will form total reflection. The light sensor will collect bright light and the fingerprint will be convex. If it comes into contact with the upper surface of the light-transmissive cover, the light will not be totally reflected, so the light sensor will collect the darker light, which can distinguish the fingerprint image.
  • imaging as shown in Figure 1, press your finger to a point A on the cover glass, and the light from the light source board is imaged on the surface of the sensor through the total reflection of B on the transparent cover. Point, according to the light data collected at point B, the fingerprint image at point A can be obtained.
  • the super imaging under-screen image acquisition structure of this embodiment is shown in FIG. 2 and includes a light-transmitting cover plate, a light source plate, and a light sensor, and the light source plate and the light sensor are disposed below the light-transmitting cover plate.
  • the light-transmitting cover plate has a light-transmitting area 1 beyond the edge of the light sensor
  • the light source plate has a light-source area 2 extending beyond the edge of the light-sensor along the direction of the light-transmitting area. After total reflection, it enters the light sensor.
  • the light O from the light source area 2 can enter the light transmission area 1 and be totally reflected on the light sensor. Although there is no light sensor under the fingerprint at point A on the light transmission cover, the light sensor can still obtain A.
  • the collected fingerprint image 5 will be larger than the range of the light sensor 3. That is, the light transmission area 1 is beyond the plane where the light sensor is located in the projection direction of the vertical light transmission cover, so that the light sensor can obtain a fingerprint image larger than the area of the light sensor. In this way, when acquiring fingerprint images of the same area, a light sensor with a smaller area can be used in this embodiment, which saves the volume under the light source board.
  • the light-transmitting cover plate can be the same size as the light source plate, that is, the light transmitting area 1 and the light source area 2 are the same size.
  • the transparent area 1 such as the edge
  • the fingerprint image cannot be acquired, and the transparent cover is wasted.
  • the size of the light source plate is Larger than the light-transmissive cover, that is, the light source region extends beyond the edge of the light-transmissive cover, that is, a part of the light-source region perpendicular to the projection of the light-transmissive cover is outside the light-transmissive region 1.
  • the application is not limited to the shape of the light sensor, and may be circular or square.
  • the plane of the light sensor 3 includes a right angle.
  • the light source board 4 The light source area is arc-shaped at the right angle.
  • the normal X distance between the light source of the light source plate and the light source incident on the light-transmitting cover plate at a critical angle is recorded as d, then the edge of the light source area The distance D from the edge of the light sensor is greater than the distance d.
  • the critical angle is the incident angle at which the incident light just emitted total reflection on the light-transmitting cover plate, and the incident light smaller than the critical angle does not emit total reflection.
  • the normal line X is a straight line perpendicular to the light-transmitting cover plate, and the vertical point is the intersection of the critical angle light and the upper surface of the light-transmitting cover plate.
  • the distance d is constant.
  • the distance D is the distance between the edge of the light source area away from the light sensor and the edge of the light sensor near the light source area in a direction perpendicular to the projection direction of the light-transmissive panel.
  • the distance D is greater than the distance d, the light source area Light rays with a distance greater than d will form a total reflection on the light-transmitting area, so that a fingerprint image can be acquired on the light-transmitting area. Since the light-transmitting area 1 is beyond the light sensor in the projection direction of the vertical light-transmissive cover plate. Flat, so the light sensor can capture fingerprint images larger than the area of the light sensor.
  • the arc radius of the light source region at the right angle is the distance D.
  • the distance between the edge of the area where the total reflection can occur in the light transmitting area and the edge of the light sensor is Dd.
  • the preferred distance between the edge of the light transmitting area and the edge of the light sensor is Dd. Total reflection can occur, so that all fingerprint images on the light-transmitting area can be obtained.
  • the total reflection fingerprint imaging can be without the longest distance limitation, that is, the distance D can be infinitely large.
  • the distance D can be infinitely large.
  • the totally reflected light will be blocked by the side of the light source and cannot enter the light sensor from the gap between the light sources. Therefore, there is a maximum value for the horizontal distance of the total reflection imaging illuminated by a single point light source, as shown by the imaging point C in FIG. 3, and this value can be obtained through experiments.
  • the size of the sensor is a square of K ⁇ K size (where K is the side length of the sensor)
  • K is the side length of the sensor
  • the principle of time-division multiplexing can be used and the light source can be used. Bright points of different light sources are illuminated on the board, and the fingerprints outside the light sensor are projected onto the sensor.
  • the imaging area on the transparent cover can be extended to a size of (K + Dd) 2 with four corners as a circle of radius D. As shown in Figure 3.
  • the light source dot matrix can image the fingerprints in the area farthest D onto the light sensor; in order to obtain fingerprint information with an area of (K + Dd) 2 , you need to design a light source dot matrix on the light source plate in a circular area At this time, the distance between the outermost dot matrix is about 0.5D, the center of the bright spot is about 2d from the sensor boundary, and the light-transmitting cover area corresponding to the four corners of the light sensor will have a semicircle with a radius of about 2d. At this time, the light-transmitting cover The image outside the sensor on the board can be imaged on the sensor to achieve external super imaging. The internal imaging of the sensor also follows the aforementioned super imaging principle.
  • the light source point on the light source board When the light source point on the light source board is driven, the bright point is designed at a distance. At the size d of the sensor boundary, scanning is still performed at a distance of 0.5D, and then progressively narrowed inward at a distance of d, so that all fingerprints can be scanned, as shown in FIG. 3. That is, in an embodiment, the light sources on the light source board may be arranged at a horizontal pitch d and a vertical pitch 0.5D. In this case, the vertical direction is the same as the edge of the light sensor, and the horizontal direction is perpendicular to the edge of the light sensor.
  • the light source may be a single light source for obtaining images under the screen, such as a solid-color LED light source.
  • a display panel contains a plurality of pixels for display, and different images can be displayed by driving the amount and color of different pixels.
  • the display panel includes a liquid crystal display (LCD), an active matrix organic light emitting diode (AMOLED) display, or a micro-LED display, all of which scan and drive a single unit with a thin film transistor (TFT) structure.
  • Pixels can achieve single driving of pixels, that is, driving of point light sources and array display of multiple point light sources. At the same time, light can enter the light sensor after passing through the gap of the pixel points.
  • the present invention is not limited to the distribution form of the light-transmitting area or the light source area, and the light-transmitting area may be only on one side or both sides of the light sensor (as shown in FIG. 4). Or in some embodiments, as shown in FIG. 3, the light transmission area or the light source area surrounds the outer periphery of the light sensor, so that the fingerprint acquisition area on the light transmission cover can be enlarged as much as possible.
  • the present invention provides an electronic device including a processor and an image acquisition structure connected to the processor.
  • the image acquisition structure is the above-mentioned image acquisition structure under the screen.
  • an electronic device drives a light source board through a processor, an image of the surface of the light-transmitting cover plate can be collected on the light sensor. Only a small sensor size is needed, which can reduce the volume occupied by the sensor under the light source board. It is an existing electronic device. Free up more space, which can be used for the battery, which can extend the battery life of the electronic device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Image Input (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

本发明公开一种屏下图像获取结构及电子设备,包括透光盖板、光源板和光线传感器,所述光源板、光线传感器置于所述透光盖板的下方,所述透光盖板具有超出光线传感器边缘的透光区,所述光源板沿所述透光区方向具有超出光线传感器边缘的光源区,所述光源区的光源的光线经过透光盖板的全反射后射入光线传感器上。区别于现有技术,上述技术方案利用光学全反射原理,使得在光线传感器范围外的图像数据可以被光线传感器采集到,增加小尺寸成像传感器的有效成像面积,使得被成像的指纹面积超过传感器的面积,从而能够有效利用无透镜成像的图像信息。

Description

一种屏下图像获取结构及电子设备 技术领域
本发明涉及屏下图像成像技术领域,尤其涉及一种屏下图像获取结构及电子设备。
背景技术
随着信息科技的发展,生物特征识别技术在保障信息安全的方面发挥着越来越重要的作用,其中指纹识别已经成为移动互联网领域广泛应用的身份识别、设备解锁的关键技术手段之一。在设备的屏占比越来越大的趋势下,传统的电容式指纹识别已经不能满足需求,而超声波指纹识别则存在技术成熟度和成本等方面的问题,光学指纹识别是有望成为屏下指纹识别的主流技术方案。
现有的光学指纹识别方案是基于几何光学透镜成像原理,所用的指纹模组包含微透镜阵列、光学空间滤光器等元件,存在结构复杂、模块厚、感测范围小、成本高等诸多缺点。通过物理光学的全反射成像原理实现无透镜屏下光学指纹识别,相比于现有的光学指纹方案,具有结构简单、模块薄、感测范围大、成本低等优点。当前屏下光学成像的成像面积一般小于传感器面积,则为了获取到较大的成像面积,需要较大的传感器,就会挤占屏下空间。
发明内容
为此,需要提供一种屏下图像获取结构及电子设备,解决“为了获取到较大的成像面积,需要较大的传感器,就会挤占屏下空间”的技术问题。
为实现上述目的,发明人提供了一种屏下图像获取结构,包括透光盖板、光源板和光线传感器,所述光源板、光线传感器置于所述透光盖板的下方,所述透光盖板具有超出光线传感器边缘的透光区,所述光源板沿所述透光区方 向具有超出光线传感器边缘的光源区,所述光源区的光源的光线经过透光盖板的全反射后射入光线传感器上。
进一步地,所述光源区超出透光盖板边缘。
进一步地,所述光源板置于所述光线传感器的上方。
进一步地,所述光线传感器平面包括有直角,所述光源板的光源区域在所述直角处为圆弧形。
进一步地,所述光源板的光源与该光源以临界角入射透光盖板的法线距离记为d,所述光源区边缘距离光线传感器边缘的距离D大于所述距离d。
进一步地,所述透光区边缘距离光线传感器边缘的距离为D-d。
进一步地,所述光源板为显示面板。
进一步地,所述显示面板为液晶显示屏、有源阵列式有机发光二极管显示屏或微发光二极管显示屏。
进一步地,所述透光区或者所述光源区环绕光线传感器外周。
本发明提供一种电子设备,包括处理器和与处理器连接的图像获取结构,所述图像获取结构为上述的一种屏下图像获取结构。
区别于现有技术,上述技术方案利用光学全反射原理,使得在光线传感器范围外的图像数据可以被光线传感器采集到,增加小尺寸成像传感器的有效成像面积,使得被成像的指纹面积超过传感器的面积,从而能够有效利用无透镜成像的图像信息。从而可以减少光线传感器面积,避免过多占用屏下空间。
附图说明
图1为利用全反射成像原理实现无透镜屏下光学指纹成像的示意图;
图2为本发明一实施例的具体实施方式屏下图像成像结构及成像示意图;
图3为一实施例的光线传感器与光源板的结构示意图;
图4为一种实施例的光线传感器与透光面板上采集到的指纹图像的示意 图。
附图标记说明:
O:发光点;                      A:发光点与透光盖板接触点;
B、C:成像点;                   X:法线;
1、透光区;                      2、光源区;
3、光线传感器;                  4、光源板;
5、透光盖板上的指纹图像。
具体实施方式
为详细说明技术方案的技术内容、构造特征、所实现目的及效果,以下结合具体实施例并配合附图详予说明。
请参阅图1到图4,本实施例提供一种屏下图像获取结构,是屏下图像获取结构的改进。改进前的屏下图像获取结构如图1所示。屏下图像成像结构包括透光盖板、光源板和光线传感器,所述光源板、光线传感器置于所述透光盖板的下方,优选地,透光盖板、光源板和光线传感器平行设置。其中,光源板即是在一块板上设置有多个的光源。透光盖板可以是单层板结构或者多层结构,单层结构可以是玻璃盖板或者有机透光材质盖板,单层盖板也可以是具有其他功能的盖板,如可以是触摸屏。多层结构可以是多层玻璃盖板或者多层有机透光材质盖板或者是玻璃盖板与有机透光材质盖板的结合。光线传感器用于获取光线,包括有多个感光单元,可以单独设置在光源板的下方或者设置在光源板上。设置在光源板下方时,光线可以穿过光源板上光源之间的间隙进入到光线传感器中。设置在光源板上时,感光单元可以设置在光源板的光源(像素点)间隙中。传感器可以设置在屏下图像成像结构用于获取屏下图像,如可以获取指纹掌纹等。透光盖板与光源板需要填充光学胶进行连接以及避免空气影响光线的反射,光学胶的折射率应该接近透光盖板的 折射率,避免光线在光学胶与透光盖板间发生全反射。
全反射成像原理是成像时,手指与透光盖板接触,指纹凹陷处由于有空气,入射角超过全反射临界角的光线会在形成全反射,光线传感器会采集到明亮光线,而指纹凸出与透光盖板上表面接触,光线不会产生全反射,则光线传感器会采集到较暗光线,从而可以区分出指纹图像。在成像的时候,如图1所示,将手指按压到玻璃盖板(Cover glass)上某一点A,光源板上的光源光线经过透光盖板上表面的全反射成像到传感器表面上的B点,根据B点采集到的光线数据可以获取到A处的指纹图像。
本实施例的超成像的屏下图像获取结构如图2所述,包括透光盖板、光源板和光线传感器,所述光源板、光线传感器置于所述透光盖板的下方,所述透光盖板具有超出光线传感器边缘的透光区1,所述光源板沿所述透光区方向具有超出光线传感器边缘的光源区2,所述光源区的光源的光线经过透光盖板的全反射后射入光线传感器上。在成像的时候,光源区2的光线O可以进入到透光区1并全反射到光线传感器上,尽管透光盖板上点A的指纹下方没有光线传感器,但是光线传感器还是能获取到A的图像信息。这样,如图4所示,采集到的指纹图像5会大于光线传感器3的范围。即透光区1在垂直透光盖板的投影方向上是超出光线传感器所在平面的,从而光线传感器可以获取到比光线传感器面积大的指纹图像。这样在获取相同面积的指纹图像的时候,本实施例可以采用面积更小的光线传感器,节省了光源板下方的体积。
本申请并不限定透光盖板的大小,透光盖板只要有超出光线传感器边缘的区域即可,如透光盖板可以与光源板相同大小,即透光区1与光源区2相同大小,但是这样透光区1的部分区域(如边缘)由于无法发生全反射,则无法获取到指纹图像,也会造成透光盖板的浪费,则在某些实施例中,光源板的大小是大于透光盖板的,即所述光源区超出透光盖板边缘,即光源区有一部分垂直于透光盖板的投影处在透光区1的外面。
本申请不限定光线传感器的形状,可以为圆形或者方形等。当光线传感 器为方形时,如图3所示,则所述光线传感器3平面包括有直角,为了让光源板上的光源能经过透光盖板的全反射落入光线传感器,则光源板4的光源区域在所述直角处为圆弧形。
为了使得光源区的光源能够在透光区上形成全反射,先将所述光源板的光源与该光源以临界角入射透光盖板的法线X距离记为d,则所述光源区边缘距离光线传感器边缘的距离D大于所述距离d。其中,临界角就是入射光线在透光盖板上刚发射全反射的入射角,小于临界角的入射光线不会发射全反射。法线X就是垂直于透光盖板,垂点为临界角光线与透光盖板上表面交点的直线。对于一个材质均匀的透光盖板和相对位置确定的光源板,其距离d是一定的。其中,距离D就是光源区远离光线传感器的一侧的边缘与光线传感器靠近光源区一侧的边缘的在垂直于透光面板的投影方向上的距离,当距离D大于距离d时,则光源区上距离大于d的光源光线就会在透光区上形成全反射,这样就可以在透光区上获取指纹图像,由于透光区1在垂直透光盖板的投影方向上是超出光线传感器所在平面的,从而光线传感器可以获取到比光线传感器面积大的指纹图像。当光线传感器具有直角的时候,优选的光源区在所述直角处的圆弧形半径为距离D。
则在透光区上能发生全反射的区域边缘距离光线传感器边缘的距离为D-d,则优选的所述透光区边缘距离光线传感器边缘的距离为D-d,则光源在在透光区上的都能发生全反射,从而可以获取到透光区上全部的指纹图像。
虽然在理论上全反射的指纹成像可以没有最远距离限制,即距离D可以无限大。但是在实际上,由于光源板内部结构的限制,当反射角增大到一定程度,全反射的光线会被光源侧面挡住,无法从光源的间隙中进入到光线传感器。因此,单点光源照明的全反射成像的水平距离存在一个最大值,如图3中的成像点C所示,这个值可以通过试验得到。
在一具体的实施例中,假设传感器的大小为K×K大小的正方形(其中K为传感器边长),那么满足4(D-d)<K时,理论上可以利用分时复用原理, 利用光源板上不同光源亮点照明,将光线传感器外部的指纹投射到传感器上,则在透光盖板上成像区域可以扩展到约为(K+D-d) 2大小,四个角处为半径D的圆,如图3所示。光源点阵能将最远为D的区域内的指纹成像到光线传感器上;为了获取约为面积为(K+D-d) 2的指纹信息,则需要以一个环形区域设计光源板上的光源点阵,此时最***的点阵间距约为0.5D,亮点中心距离传感器边界约为2d,在光线传感器四角处对应的透光盖板区域会呈现半径约为2d半圆形,此时透光盖板上在传感器外部的像便可以成像到传感器上,实现外部的超成像,对于传感器内部的成像也遵循前述的超成像原理,在驱动光源板上的光源点点亮时,将亮点设计在距离传感器边界d大小处,仍以0.5D大小的间距扫描,依次向内以d间距递进缩小,便可扫描处全部指纹,如图3所示。即在某一实施例中,光源板上的光源可以是以横向间距d,纵向间距0.5D排列的,此时的纵向与光线传感器边缘同向,横向垂直于光线传感器边缘。
本发明不限定光源板上的光源形式,如果点单纯为了获取指纹,则光源可以是单一的为了屏下图像获取的光源,如纯色的LED光源。或者是显示面板,显示面板包含有多个用于显示的像素点,驱动不同像素点的量灭和颜色可以显示不同图像。显示面板包括液晶显示屏(LCD)、有源阵列式有机发光二极管(AMOLED)显示屏或微发光二极管(micro-LED)显示屏,这些都是以薄膜电晶管(TFT)结构扫描并驱动单一像素,可以实现对像素点的单一驱动,即可以实现点光源的驱动和多个点光源的阵列显示,同时光线可以透过像素点的间隙后进入到光线传感器中。
本发明不限定透光区或者光源区的分布形式,透光区可以只有在光线传感器的某一侧或者两侧(如图4所示)。或者某些实施例中,如图3所示,所述透光区或者所述光源区环绕光线传感器外周,这样可以尽可能地扩大透光盖板上指纹的获取面积。
本发明提供一种电子设备,包括处理器和与处理器连接的图像获取结构, 所述图像获取结构为上述的一种屏下图像获取结构。这样的电子设备通过处理器驱动光源板后,可以在光线传感器上采集到透光盖板表面图像,只需要较小的传感器尺寸,可以减少光源板下方的传感器体积占用,为现有的电子设备腾出更多的空间,这些空间可以用于给蓄电池使用,可以延长电子设备的续航时间。
需要说明的是,尽管在本文中已经对上述各实施例进行了描述,但并非因此限制本发明的专利保护范围。因此,基于本发明的创新理念,对本文所述实施例进行的变更和修改,或利用本发明说明书及附图内容所作的等效结构或等效流程变换,直接或间接地将以上技术方案运用在其他相关的技术领域,均包括在本发明的专利保护范围之内。

Claims (10)

  1. 一种屏下图像获取结构,其特征在于:包括透光盖板、光源板和光线传感器,所述光源板、光线传感器置于所述透光盖板的下方,所述透光盖板具有超出光线传感器边缘的透光区,所述光源板沿所述透光区方向具有超出光线传感器边缘的光源区,所述光源区的光源的光线经过透光盖板的全反射后射入光线传感器上。
  2. 根据权利要求1所述的一种屏下图像获取结构,其特征在于:
    所述光源区超出透光盖板边缘。
  3. 根据权利要求1所述的一种屏下图像获取结构,其特征在于:
    所述光源板置于所述光线传感器的上方。
  4. 根据权利要求1所述的一种屏下图像获取结构,其特征在于:所述光线传感器平面包括有直角,所述光源板的光源区域在所述直角处为圆弧形。
  5. 根据权利要求1所述的一种屏下图像获取结构,其特征在于:
    所述光源板的光源与该光源以临界角入射透光盖板的法线距离记为d,
    所述光源区边缘距离光线传感器边缘的距离D大于所述距离d。
  6. 根据权利要求5所述的一种屏下图像获取结构,其特征在于:
    所述透光区边缘距离光线传感器边缘的距离为D-d。
  7. 根据权利要求1所述的一种屏下图像获取结构,其特征在于:
    所述光源板为显示面板。
  8. 根据权利要求7所述的一种屏下图像获取结构,其特征在于:
    所述显示面板为液晶显示屏、有源阵列式有机发光二极管显示屏或微发光二极管显示屏。
  9. 根据权利要求1所述的一种屏下图像获取结构,其特征在于:
    所述透光区或者所述光源区环绕光线传感器外周。
  10. 一种电子设备,其特征在于:包括处理器和与处理器连接的图像获取结构,所述图像获取结构为权利要求1到9任一项所述的一种屏下图像获取结构。
PCT/CN2019/094572 2018-09-12 2019-07-03 一种屏下图像获取结构及电子设备 WO2020052329A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/275,586 US20220198818A1 (en) 2018-09-12 2019-07-03 Under-display image acquisition structure and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811062585.4A CN110895666A (zh) 2018-09-12 2018-09-12 一种屏下图像获取结构及电子设备
CN201811062585.4 2018-09-12

Publications (1)

Publication Number Publication Date
WO2020052329A1 true WO2020052329A1 (zh) 2020-03-19

Family

ID=69776712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/094572 WO2020052329A1 (zh) 2018-09-12 2019-07-03 一种屏下图像获取结构及电子设备

Country Status (4)

Country Link
US (1) US20220198818A1 (zh)
CN (1) CN110895666A (zh)
TW (1) TWI821326B (zh)
WO (1) WO2020052329A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070274101A1 (en) * 2006-05-25 2007-11-29 Samsung Electronics Co., Ltd. Illumination sensing device for portable terminal
CN206331451U (zh) * 2016-12-27 2017-07-14 广东欧珀移动通信有限公司 指纹识别模块及终端
CN107220622A (zh) * 2017-05-27 2017-09-29 北京小米移动软件有限公司 有机发光二极管显示模组及其控制方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101928319B1 (ko) * 2015-06-18 2018-12-12 선전 구딕스 테크놀로지 컴퍼니, 리미티드 광 감지 능력을 가지는 다기능 지문 센서
CN106022325B (zh) * 2016-08-05 2019-08-09 上海箩箕技术有限公司 光学指纹传感器模组
CN108229241A (zh) * 2016-12-09 2018-06-29 上海箩箕技术有限公司 显示模组及其使用方法
CN207182338U (zh) * 2017-09-15 2018-04-03 南昌欧菲生物识别技术有限公司 光学指纹识别组件和电子装置
CN207601817U (zh) * 2017-11-30 2018-07-10 北京集创北方科技股份有限公司 生物特征检测装置和终端
KR20190066433A (ko) * 2017-12-05 2019-06-13 삼성전자주식회사 마이크로 홀이 형성된 차광 부재를 포함하는 전자 장치
CN107832752B (zh) * 2017-12-15 2021-04-27 京东方科技集团股份有限公司 指纹识别面板、全屏指纹识别方法及显示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070274101A1 (en) * 2006-05-25 2007-11-29 Samsung Electronics Co., Ltd. Illumination sensing device for portable terminal
CN206331451U (zh) * 2016-12-27 2017-07-14 广东欧珀移动通信有限公司 指纹识别模块及终端
CN107220622A (zh) * 2017-05-27 2017-09-29 北京小米移动软件有限公司 有机发光二极管显示模组及其控制方法

Also Published As

Publication number Publication date
US20220198818A1 (en) 2022-06-23
TWI821326B (zh) 2023-11-11
CN110895666A (zh) 2020-03-20
TW202024990A (zh) 2020-07-01

Similar Documents

Publication Publication Date Title
CN107832752B (zh) 指纹识别面板、全屏指纹识别方法及显示装置
US8570303B2 (en) Display module
CN107748874B (zh) 全屏指纹识别oled模组、指纹识别方法及显示装置
CN108121483B (zh) 嵌入有光学成像传感器的平板显示器
WO2020035021A1 (zh) Lcd指纹识别***、屏下光学指纹识别装置和电子装置
WO2019137002A1 (zh) 显示面板和显示装置
US11308725B2 (en) Touch display device
TWI759662B (zh) 螢幕下圖像獲取結構及電子設備
KR101303443B1 (ko) 액정표시장치
WO2017118031A1 (zh) 光学指纹传感器模组
CN111095289B (zh) 屏下指纹识别装置以及终端设备
WO2021249178A1 (zh) 显示面板和显示装置
CN111837130A (zh) 指纹识别装置、背光模组、液晶显示屏和电子设备
US11733572B2 (en) Image capturing apparatus
WO2020052329A1 (zh) 一种屏下图像获取结构及电子设备
US11468706B2 (en) Fingerprint identification method, fingerprint identification structure and display device
TWI756779B (zh) 電子裝置
CN112446250B (zh) 指纹识别装置及电子设备
WO2020098585A1 (zh) 一种应用于屏下图像成像的拓扑结构光源驱动方法、存储介质和电子设备
WO2020052328A1 (zh) 一种用于屏下成像的坐标变换方法、存储介质及电子设备
TWI749354B (zh) 應用於屏下成像的驅動和圖像獲取方法、存儲介質和電子設備
WO2020248809A1 (zh) 屏下式指纹感测模块与电子装置
WO2020052327A1 (zh) 自动搜索显示屏幕厚度参数的方法、存储介质及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19858922

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19858922

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS (EPO FORM 1205A DATED 12.07.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19858922

Country of ref document: EP

Kind code of ref document: A1