WO2020052008A1 - 显示面板的驱动方法、装置以及显示设备 - Google Patents

显示面板的驱动方法、装置以及显示设备 Download PDF

Info

Publication number
WO2020052008A1
WO2020052008A1 PCT/CN2018/111829 CN2018111829W WO2020052008A1 WO 2020052008 A1 WO2020052008 A1 WO 2020052008A1 CN 2018111829 W CN2018111829 W CN 2018111829W WO 2020052008 A1 WO2020052008 A1 WO 2020052008A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
driving
sub
pixel
pixels
Prior art date
Application number
PCT/CN2018/111829
Other languages
English (en)
French (fr)
Inventor
康志聪
Original Assignee
重庆惠科金渝光电科技有限公司
惠科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆惠科金渝光电科技有限公司, 惠科股份有限公司 filed Critical 重庆惠科金渝光电科技有限公司
Priority to US16/241,986 priority Critical patent/US10796651B2/en
Publication of WO2020052008A1 publication Critical patent/WO2020052008A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers

Definitions

  • the present application relates to the technical field of displays, and in particular, to a driving method and device for a display panel, and a display device.
  • VA liquid crystal technology has the advantages of higher production efficiency and lower manufacturing cost.
  • IPS liquid crystal technology there are obvious defects in optical properties. For example, when presenting large-view angle images, VA liquid crystal technology The liquid crystal display panel may have a color shift.
  • the brightness of a pixel should ideally change linearly with the change in voltage, so that the driving voltage of the pixel can accurately represent the gray level of the pixel and be reflected by the brightness.
  • the brightness of the pixel when using VA liquid crystal technology, when viewing the display surface with a small viewing angle (such as front view), the brightness of the pixel can meet the ideal situation, that is, it changes linearly with voltage, as shown by the ideal curve in Figure 1a
  • the display surface is viewed at a larger viewing angle (for example, above 160 degrees with the display surface)
  • the brightness of the pixel quickly saturates with the voltage, and then changes slowly. This is shown in the actual curve in Figure 1a. In this way, under a large viewing angle, the gray level that the driving voltage should have had a serious deviation, that is, a color shift.
  • the traditional way to improve color cast is to subdivide each sub-pixel into a main pixel and a sub-pixel, and then drive the main pixel with a relatively high driving voltage, and drive the sub-pixel with a relatively low driving voltage.
  • the sub-pixels together display a sub-pixel.
  • the relatively high driving voltage and the relatively low driving voltage are used to drive the main pixel and the sub-pixel, the relationship between the brightness under the front view angle and the corresponding gray scale is maintained.
  • the method shown in Figure 1b is adopted. In the first half of the gray scale, the main pixel is driven by a relatively high driving voltage and the sub-pixel is not displayed.
  • the brightness of the entire sub-pixel is half the brightness of the main pixel.
  • the main pixel is driven with a relatively high driving voltage and the sub-pixel is driven with a relatively low driving voltage.
  • the brightness of the entire sub-pixel is half the sum of the brightness of the main pixel plus the brightness of the sub-pixel.
  • the problem with the above method is that it is necessary to double the metal traces and driving devices to drive the sub-pixels, sacrificing the light-transmissive opening area, affecting the light transmittance of the panel, and the cost is higher.
  • the main purpose of the present application is to propose a driving method, device, device and storage medium for a display panel based on a data integrated driving circuit, which aims to improve the role of large viewing roles.
  • the present application provides a method for driving a display panel.
  • the display array includes pixel units arranged in an array, which are alternately arranged by a first pixel unit and a second pixel unit.
  • the method for driving the display panel include:
  • the scanning cycle is performed after at least three columns of pixel units are scanned, and the common electrode of each sub-pixel in the pixel unit is driven with a preset voltage during the current driving cycle;
  • the preset voltage is a negative polarity driving voltage, driving a high voltage sub-pixel in the pixel unit with a positive polarity driving, and driving a low voltage sub-pixel in the pixel unit with a negative polarity driving, the preset voltage Less than the reference voltage;
  • the preset voltage after the inversion is a positive polarity driving voltage
  • the high-voltage sub-pixels in the pixel unit are driven with a negative polarity
  • the low-voltage sub-pixels in the pixel unit are driven with a positive polarity.
  • the preset voltage after the rotation is greater than the reference voltage.
  • the present application also proposes a driving device for a display panel, wherein the driving device includes a processor and a nonvolatile memory, the nonvolatile memory stores executable instructions, and the processing The processor executes the executable instructions, and the executable instructions include:
  • the common electrode driving module is configured to take at least three columns of pixel units after scanning as a driving cycle, and drive the common electrode of each sub-pixel in the pixel unit with a preset voltage during the current driving cycle;
  • the common electrode driving module is further configured to drive the high-voltage sub-pixels in the pixel unit with a positive polarity when the preset voltage is a negative-polarity driving voltage, and drive the low-voltage sub-pixels in the pixel unit. Adopting negative polarity driving, the preset voltage is less than the reference voltage;
  • An inversion module configured to periodically invert the preset voltage when a data driving signal received by a data driving circuit is inverted
  • the common electrode driving module is further configured to drive the high-voltage sub-pixels in the pixel unit with a negative-polarity drive when the preset voltage after the inversion is a positive-polarity driving voltage, and drive the low-voltage in the pixel unit.
  • the sub-pixels are driven with a positive polarity, and the preset voltage after the inversion is greater than the reference voltage.
  • the present application also proposes a display device, wherein the display device includes a driving device for a display panel.
  • the present application also proposes a storage medium, wherein the storage medium stores a driver for a display panel, and the driver for the display panel implements the display as described above when executed by a processor. Steps of panel driving method.
  • a scanning cycle is completed after scanning at least three columns of pixel units, and the common electrode of each sub-pixel in the pixel unit is driven by a preset voltage in the current driving cycle, without doubling the metal wiring.
  • driving devices to drive the sub-pixels to achieve cost savings and when the preset voltage is a positive-negative driving voltage, the high-voltage sub-pixels and low-voltage sub-pixels in the pixel unit are preset-driven
  • the driving is performed in a manner such that the sub-pixels in the pixel unit are arranged in a manner of high and low voltage crossing, thereby achieving the purpose of resolving the role of the visual role.
  • Figure 1a is the relationship between the improved front color deviation curve and the ideal curve
  • Figure 1b shows the relationship between the improved color shift curve and the ideal curve
  • FIG. 2 is a schematic structural diagram of a display device in a hardware operating environment according to an embodiment of the present application
  • 3a is a schematic structural diagram of an example display array
  • 3b is a driving timing diagram of an exemplary display array
  • 4a is a schematic structural diagram of a display array according to an embodiment of the present application.
  • Figure 4b is a schematic diagram of a driving timing of a display array according to an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of an embodiment of a driving method of a display panel of the present application.
  • FIG. 6 is a schematic structural diagram of an embodiment of a driving device for a display panel of the present application.
  • FIG. 7 is a schematic structural diagram of another embodiment of a driving device for a display panel of the present application.
  • FIG. 2 is a schematic structural diagram of a display device in a hardware operating environment according to an embodiment of the present application.
  • the display device may include a processor 1001, such as a CPU, a communication bus 1002, a user interface 1003, a network interface 1004, a memory 1005, and a display panel 1006.
  • the communication bus 1002 is configured to implement connection and communication between these components.
  • the user interface 1003 may include a display, an input unit such as a keyboard, and the optional user interface 1003 may further include a standard wired interface and a wireless interface.
  • the network interface 1004 may optionally include a standard wired interface and a wireless interface (such as a WI-FI interface).
  • the memory 1005 may be a high-speed RAM memory or a non-volatile memory. memory), such as disk storage.
  • the memory 1005 may optionally be a storage device independent of the foregoing processor 1001, and the display panel 1006 may be a liquid crystal display panel or other display panels that can implement the same or similar functions.
  • the structure of the display device shown in FIG. 2 does not constitute a limitation on the display device, and may include more or fewer components than those shown in the figure, or some components may be combined, or different components may be arranged.
  • the memory 1005 as a storage medium may include an operating system, a network communication module, a user interface module, and a driver for a display device.
  • the network interface 1004 is mainly configured to connect to a network and perform data communication with the Internet;
  • the user interface 1003 is mainly configured to connect to a user terminal and perform data communication with the terminal;
  • the processor 1001 in the display device of the present application The memory 1005 may be provided in a data driving integrated circuit.
  • the data driving integrated circuit calls the driver of the display panel stored in the memory 1005 through the processor 1001 and executes the operation of the driving method of the display panel.
  • FIG. 3a a schematic structural diagram of an example display array is shown.
  • the common electrode of the original liquid crystal display pixel is designed to pass through the same row of sub-pixels in the same row direction parallel to the gate electrode, as shown in FIG. 3b.
  • the voltage is a fixed voltage value.
  • the driving voltage Vd is sequentially driven according to the required voltage of each sub-pixel, as shown in the high-voltage sub-pixel on Figure 3a.
  • the voltage driving frequency of the pixel driving voltage of the same column will increase. Because the driving signals of the high-voltage subpixel and the low-voltage subpixel are different, if the adjacent subpixels adopt the traditional positive and negative polarity In the driving method, the driving amplitude of adjacent sub-pixels will increase, the driving frequency will increase, and the increase in driving amplitude will directly increase the power consumption and temperature of the driving IC, and may reduce the pixel charging capacity and directly reflect the decrease in panel brightness. .
  • FIG. 4a is a schematic structural diagram of an embodiment of a display array
  • FIG. 4b is a schematic diagram of a driving sequence corresponding to the display array of this embodiment.
  • the display panel of the display array 30 may be a liquid crystal display panel, and may also be the same or similar.
  • the functional display panel is not limited in this embodiment. In this embodiment, a liquid crystal display panel is used as an example.
  • the display panel includes a display array, and the display array includes pixel units arranged in an array.
  • the pixel unit includes a first pixel unit 10 and a second pixel unit 20, wherein the first pixel unit 10 and the second pixel unit 20 are alternately arranged in a row direction and a column direction, and the first pixel unit 10 And the second pixel unit 20 respectively include a first sub-pixel, a second sub-pixel, and a third sub-pixel, and the first sub-pixel, the second sub-pixel, and the third sub-pixel respectively correspond to a red sub-pixel (R) , A green sub-pixel (G) and a blue sub-pixel (B), the sub-pixels in the first pixel unit and the sub-pixels in the second pixel unit have opposite polarities.
  • R red sub-pixel
  • G green sub-pixel
  • B blue sub-pixel
  • FIG. 5 is a schematic flowchart of a first embodiment of a method for driving a display panel of the present application.
  • the driving method of the display panel includes the following steps:
  • step S10 a scanning cycle is performed after scanning at least three columns of pixel units.
  • a common electrode of each sub-pixel in the pixel unit is driven with a preset voltage.
  • the common electrode of the sub-pixels in the pixel unit is input with a preset voltage Vcom1
  • the preset voltage can be inverted according to the inversion of the data driving signal, and the preset voltage is positive
  • the preset voltage is greater than the reference voltage, that is, greater than the original common electrode voltage Vcom.
  • the preset voltage is switched to negative polarity driving, the preset voltage after switching is smaller than the reference voltage, thereby achieving positive polarity and negative polarity. Sexually driven.
  • the driving cycle is described after scanning three pixel units, and it may further include setting more pixel units for periodic scanning, which is not limited in this embodiment.
  • the three-pixel unit is used as an example to describe the driving cycle.
  • step S20 when the preset voltage is a negative polarity driving voltage, the high voltage sub-pixels in the pixel unit are driven with a positive polarity, and the low voltage sub-pixels in the pixel unit are driven with a negative polarity.
  • the preset voltage is less than the reference voltage.
  • the timing is frame 1 frame
  • the adjacent pixel units are arranged in a high-low voltage interpolation driving arrangement
  • frame 1 Timing high-voltage pixel unit is driven by positive polarity
  • low-voltage pixel unit is driven by negative polarity
  • the common electrode voltage is driven by negative polarity voltage.
  • the common electrode voltage Vcom1 is smaller than the original common electrode voltage Vcom, that is, Vcom1 ⁇ Vcom.
  • step S30 when the data driving signal input from the data driving circuit is inverted, the preset voltage is periodically inverted.
  • the driving voltage of the common electrode is switched from frame 1 to frame 2.
  • the high voltage pixel unit is driven by negative polarity, and the low voltage pixel unit is driven by positive polarity.
  • the positive polarity voltage is driven.
  • the common electrode voltage positive polarity is the common electrode voltage Vcom1, which is larger than the original common electrode voltage Vcom. Vcom1> Vcom.
  • the common electrode voltage Vcom1 corresponding to the high-voltage subpixels VGd_1, VGd_3, VGd_5 and the low-voltage subpixels VGd_2, VGd_4, and VGd_6 is the negative-polarity driving voltage.
  • the negative voltage is the common electrode voltage Vcom1, which is smaller than the original common electrode voltage Vcom, that is, Vcom1 ⁇ Vcom, where the high voltage subpixels VGd_1, VGd_3, and VGd_5 are positive driving voltages, and the low voltage subpixels VGd_2, VGd_4, and VGd_6 are negative electrodes. Sex drive voltage.
  • step S40 when the preset voltage after the inversion is a positive polarity driving voltage, the high voltage sub-pixels in the pixel unit are driven by a negative polarity, and the low voltage sub-pixels in the pixel unit are driven by a positive polarity.
  • the preset voltage after the inversion is greater than the reference voltage.
  • the common electrode voltage is also switched with the polarity of the driving inversion to switch the periodic voltage, that is, the common electrode voltage Vcom1 is switched to a positive polarity driving voltage and the common electrode voltage
  • the positive polarity means that the common electrode voltage Vcom1 is larger than the original common electrode voltage Vcom (that is, Vcom1> Vcom).
  • the high-voltage subpixels VGd_1, VGd_3, and VGd_5 are negative driving voltages ( ⁇ Vcom)
  • the low voltage subpixels VGd_2, VGd_4, and VGd_6 are positive driving voltages (> Vcom).
  • the common electrodes of the sub-pixels in the pixel unit are driven by the same driving voltage, and the high- and low-voltage sub-pixels are driven by different driving methods, so as to solve the role deviation, and correspondingly through the common electrode.
  • Driving thereby reducing the work of the driving chip, reducing the power consumption of the driving chip and the risk of temperature increase, do not need to double the metal traces and driving devices to drive the sub-pixels, to achieve the purpose of cost savings.
  • the method for driving the display panel further includes:
  • Two adjacent sub-pixels in the same column are selected respectively, and an equivalent driving voltage of a high-voltage sub-pixel in the selected sub-pixel is driven by an equivalent driving voltage that is greater than an equivalent driving voltage of a low-voltage sub-pixel in the selected sub-pixel.
  • Vgd V1
  • the voltage difference between (V2> Vcom) and the negative common electrode Vcom1 (Vcom1 ⁇ Vcom), that is, VGd_3
  • step S20 includes:
  • the equivalent driving voltage of the low-voltage sub-pixels in the selected sub-pixels is driven by an absolute value of a voltage difference between the driving voltage of the negative polarity driving and the preset voltage.
  • the method for driving the display panel further includes:
  • the data driving signals of the selected high-voltage sub-pixels and the selected low-voltage sub-pixels of the selected sub-pixels are driven by alternately positive driving and negative driving, respectively.
  • the data driving signal is correspondingly set to the positive polarity driving and the negative polarity driving alternately, so as to realize the input of the alternating high and low driving signals. Drive to ensure that each sub-pixel is driven accordingly.
  • the method for driving the display panel further includes:
  • An equivalent driving voltage of the high voltage subpixel and the low voltage subpixel in the selected subpixel is driven by a preset data driving signal, and the preset data driving signal is an original of two adjacent subpixels in the same column.
  • the average signal of the drive signal is an equivalent driving voltage of the high voltage subpixel and the low voltage subpixel in the selected subpixel.
  • the method for driving the display panel further includes:
  • the driving method of frame inversion is used to drive adjacent sub-pixels in high-low voltage interspersed array driving, and the problem of apparent role deviation is solved, and when the data driving signal input from the data driving circuit is inverted, , Periodically inverting the preset voltage in a driving manner opposite to the data driving signal.
  • the common electrode of each sub-pixel in the pixel unit is driven by a preset voltage, without the need to double the metal wiring and driving devices to drive the sub-pixels, thereby achieving cost savings.
  • the preset voltage is a positive-negative driving voltage
  • driving the high-voltage sub-pixel and the low-voltage sub-pixel in the pixel unit by a preset driving method so that the The sub-pixels are arranged in a manner of high and low voltage crossing, thereby achieving the purpose of resolving the role of the visual role.
  • an embodiment of the present application also provides a driving device for a display panel.
  • the display panel includes a display array, and the display array includes pixel units arranged in an array, which are alternately arranged by a first pixel unit and a second pixel unit;
  • a driving device of the display panel includes:
  • the common electrode driving module 110 is configured to take at least three columns of pixel units as a driving cycle, and drive the common electrode of each sub-pixel in the pixel unit with a preset voltage during the current driving cycle;
  • the common electrode driving module 110 is further configured to drive a high-voltage sub-pixel in the pixel unit with a positive-polarity drive when the preset voltage is a negative-polarity driving voltage, and drive a low-voltage sub-pixel in the pixel unit.
  • the pixel is driven by a negative polarity, and the preset voltage is less than a reference voltage;
  • the inversion module 120 is configured to periodically invert the preset voltage when the data driving signal received by the data driving circuit is inverted;
  • the common electrode driving module 110 is further configured to drive the high-voltage sub-pixels in the pixel unit with negative polarity when the preset voltage after the inversion is a positive-polarity driving voltage, and lower the low-voltage in the pixel unit.
  • the voltage sub-pixel is driven with a positive polarity, and the preset voltage after the inversion is greater than the reference voltage.
  • the driving device of the display panel further includes a display array 100 and a driving module 200.
  • the driving module 200 may include a scanning unit 210 and a driving unit 220.
  • the scanning unit 210 is configured to output a scanning signal, and is generally The pixel unit is scanned in a row, and the driving unit 220 outputs a driving signal, so that the pixel unit receives driving data for display when it is scanned.
  • the driving module 200 can refer to the above embodiment.
  • the common electrodes of the sub-pixels in the pixel unit can be driven by the same driving voltage, and the high- and low-voltage sub-pixels can be driven by different driving methods, so that Solve the problem of the role of the driver and drive the corresponding electrode through the common electrode, so as to reduce the work of the driver chip, reduce the power consumption of the driver chip and the risk of temperature rise. It is not necessary to double the metal traces and driver devices to drive the sub pixels. To achieve the purpose of cost savings.
  • an embodiment of the present application further provides a storage medium.
  • the storage medium stores a driver for the display panel, and the driver for the display panel is executed by the processor with the steps of the method for driving the display panel described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种显示面板(1006)的驱动方法、装置以及显示设备。以扫描完至少三列像素单元(10,20)为驱动周期,在当前驱动周期内将像素单元(10,20)中的各个子像素的共电极采用预设电压(Vcom1)进行驱动(S10),并且在预设电压(Vcom1)为正负极性驱动电压时,将像素单元(10,20)中的高电压子像素和低电压子像素采用预设驱动方式进行驱动。

Description

显示面板的驱动方法、装置以及显示设备
技术领域
本申请涉及显示器技术领域,尤其涉及一种显示面板的驱动方法、装置以及显示设备。
背景技术
大尺寸液晶显示面板大多采用负型垂直配向(Vertical Alignment,VA)式或者共平面切换(In Panel Switching,IPS)式。VA型液晶技术相较于IPS液晶技术存在较高的生产效率及低制造成本的优势,但相较于IPS液晶技术,则存在较明显的光学性质缺陷,例如在大视角图像呈现时,VA型液晶显示面板会存在色偏。
在进行图像显示时,像素的亮度在理想情况下应该是随着电压的变化呈现线性的变化,这样像素的驱动电压就能够准确表示像素的灰阶,并通过亮度体现出来。如图1a所示,采用VA型液晶技术时,以较小的视角观看显示面时(例如正视),像素的亮度可以符合理想情况,即随电压呈现线性变化,如图1a中的理想曲线所示;但当以较大的视角观看显示面时(例如与显示面呈160度以上),由于VA型液晶技术原理所限,像素的亮度随着电压呈现出快速饱和,然后缓慢变化的情况,如图1a中的实际曲线所示。这样一来,大视角下,驱动电压原本应该呈现的灰阶,出现了严重的偏离,即出现色偏。
传统设置为改善色偏的方式是将每一个子像素都再细分为一个主像素和次像素,然后用相对高的驱动电压驱动主像素,用相对低的驱动电压驱动次像素,主像素和次像素一起显示一个子像素。并且所述相对高的驱动电压和相对低的驱动电压在驱动主像素和次像素时,能够维持正视视角下的亮度与对应灰阶的关系不变。一般地,是采用如图1b所示的方式,灰阶的前半段,主像素用相对高的驱动电压驱动显示、次像素不显示,整个子像素的亮度就是主像素亮度的一半;在灰阶的后半段,主像素用相对高的驱动电压驱动显示、次像素用相对低的驱动电压驱动显示,整个子像素的亮度就是主像素的亮度加上次像素的亮度的和的一半。这样合成后,大视角下的亮度曲线如图1b中的实际曲线,其更接近理想曲线,因此大视角下的色偏情况有所改善。
但上述方法存在的问题是,需要增加一倍的金属走线和驱动器件来驱动次像素,使可透光开口区牺牲,影响面板透光率,同时成本也更高。
发明内容
本申请的主要目的在于提出一种基于数据集成驱动电路的显示面板的驱动方法、装置、设备及存储介质,旨在改善大视角色偏。
为实现上述目的,本申请提供一种显示面板的驱动方法,所述显示阵列包括呈阵列排布的像素单元,其由第一像素单元和第二像素单元交替设置;所述显示面板的驱动方法包括:
以扫描完至少三列像素单元为驱动周期,当前驱动周期内将所述像素单元中的各个子像素的共电极采用预设电压进行驱动;
在所述预设电压为负极性驱动电压时,将所述像素单元中的高电压子像素采用正极性驱动,将所述像素单元中的低电压子像素采用负极性驱动,所述预设电压小于参考电压;
在接收数据驱动电路输入的数据驱动信号反转时,将所述预设电压进行周期性反转;
在反转后的预设电压为正极性驱动电压时,将所述像素单元中的高电压子像素采用负极性驱动,将所述像素单元中的低电压子像素采用正极性驱动,所述反转后的预设电压大于所述参考电压。
此外,为实现上述目的,本申请还提出一种显示面板的驱动装置,其中,所述驱动装置包括处理器和非易失性存储器,所述非易失性存储器存储可执行指令,所述处理器执行所述可执行指令,所述可执行指令包括:
共电极驱动模块,设置为以扫描完至少三列像素单元为驱动周期,当前驱动周期内将所述像素单元中的各个子像素的共电极采用预设电压进行驱动;
所述共电极驱动模块,还设置为在所述预设电压为负极性驱动电压时,将所述像素单元中的高电压子像素采用正极性驱动,将所述像素单元中的低电压子像素采用负极性驱动,所述预设电压小于参考电压;
反转模块,设置为在接收数据驱动电路输入的数据驱动信号反转时,将所述预设电压进行周期性反转;以及
所述共电极驱动模块,还设置为在反转后的预设电压为正极性驱动电压时,将所述像素单元中的高电压子像素采用负极性驱动,将所述像素单元中的低电压子像素采用正极性驱动,所述反转后的预设电压大于所述参考电压。
此外,为实现上述目的,本申请还提出一种显示设备,其中,所述显示设备包括显示面板的驱动装置。
此外,为实现上述目的,本申请还提出一种存储介质,其中,所述存储介质上存储有显示面板的驱动程序,所述显示面板的驱动程序被处理器执行时实现如上文所述的显示面板的驱动方法的步骤。
本申请以扫描完至少三列像素单元为驱动周期,在当前驱动周期内将所述像素单元中的各个子像素的共电极采用预设电压进行驱动,而并不需要增加一倍的金属走线和驱动器件来驱动次像素,达到节约成本的目的,并且在所述预设电压为正负极性驱动电压时,将所述像素单元中的高电压子像素和低电压子像素采用预设驱动方式进行驱动,从而将所述像素单元中的子像素设置为高低电压交叉的方式排列,进而达到解决视角色偏的目的。
附图说明
图1a为改善前色偏曲线与理想曲线的关系;
图1b为改善后色偏曲线与理想曲线的关系;
图2是本申请实施例方案涉及的硬件运行环境的显示设备结构示意图;
图3a为示例的显示阵列的结构示意图;
图3b为示例的显示阵列的驱动时序示意图;
图4a为本申请实施例的显示阵列的结构示意图;
图4b为本申请实施例的显示阵列的驱动时序示意图;
图5为本申请显示面板的驱动方法一实施例的流程示意图;
图6为本申请显示面板的驱动装置一实施例的结构示意图;
图7为本申请显示面板的驱动装置另一实施例的结构示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不设置为限定本申请。
参照图2,图2为本申请实施例方案涉及的硬件运行环境的显示设备结构示意图。
如图2所示,该显示设备可以包括:处理器1001,例如CPU,通信总线1002、用户接口1003,网络接口1004,存储器1005以及显示面板1006。其中,通信总线1002设置为实现这些组件之间的连接通信。用户接口1003可以包括显示屏(Display)、输入单元比如键盘(Keyboard),可选用户接口1003还可以包括标准的有线接口、无线接口。网络接口1004可选的可以包括标准的有线接口、无线接口(如WI-FI接口)。存储器1005可以是高速RAM存储器,也可以是稳定的存储器(non-volatile memory),例如磁盘存储器。存储器1005可选的还可以是独立于前述处理器1001的存储装置,所述显示面板1006可为液晶显示面板,还可为其他可实现相同或相似功能的显示面板。
本领域技术人员可以理解,图2中示出的显示设备结构并不构成对显示设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
如图2所示,作为一种存储介质的存储器1005中可以包括操作***、网络通信模块、用户接口模块以及显示设备的驱动程序。
在图2所示的显示设备中,网络接口1004主要设置为连接网络,与互联网进行数据通信;用户接口1003主要设置为连接用户终端,与终端进行数据通信;本申请显示设备中的处理器1001、存储器1005可以设置在数据驱动集成电路中,所述数据驱动集成电路通过处理器1001调用存储器1005中存储的显示面板的驱动程序,并执行显示面板的驱动方法的操作。
基于上述硬件结构,提出本申请显示面板的驱动方法实施例。
参照图3a为示例的显示阵列的结构示意图,原液晶显示像素共电极设计为与栅极电极平行的同一行方向通过同一行子像素,如图3b为示例的显示阵列的驱动时序示意图,共电极电压为一固定的电压值,为实现高电压子像素与低电压子像素穿插达成色偏改善的效果,驱动电压Vd根据每个子像素的需求电压依序驱动,如图3a上的高电压子画素等效驱动电压VGd_1即为驱动电压VH1与共电极电Vcom的压差,即VGd_1=VH1-Vcom,次一相邻低电压子像素VGd_2即为驱动电压VL1与共电极电Vcom的压差,亦即VGd_2=VL1-Vcom,同理依序高电压及低电压子像素驱动,如图3b同一列像素驱动电压的电压驱动频率为VH1,VL1,VH2,VL2….,为显示器同一列子像素频率切换的数目。因此,如果显示器随著解析度的提高,同一列画素驱动电压的电压驱动频率就会提高,由于高电压子像素与低电压子像素的驱动信号不同,如果相邻子像素采用传统正负极性驱动方式,相邻子像素的驱动振幅便会提高,驱动频率提高,驱动振幅加大直接造成驱动IC的功耗增加及温度的上升,并且可能造画素成充电能力下降,直接反应面板亮度的下降。
参照图4a为显示阵列一实施例的结构示意图,图4b为本实施例显示阵列对应的驱动时序示意图,所述显示阵列30的显示面板可为液晶显示面板,还可为其他可实现相同或相似功能的显示面板,本实施例对此不作限制,在本实施例中,以液晶显示面板为例进行说明,所述显示面板包括显示阵列,所述显示阵列包括呈阵列排布的像素单元,所述像素单元包括第一像素单元10和第二像素单元20,其中由所述第一像素单元10和所述第二像素单元20在行方向和列方向上交替设置,所述第一像素单元10和所述第二像素单元20分别包括第一子像素、第二子像素以及第三子像素,所述第一子像素、第二子像素以及第三子像素分别对应为红色子像素(R)、绿色子像素(G)以及蓝色子像素(B),所述第一像素单元中的子像素与第二像素单元中的子像素的极性相反。
参照图5,图5为本申请显示面板的驱动方法第一实施例的流程示意图。
在第一实施例中,所述显示面板的驱动方法包括以下步骤:
步骤S10,以扫描完至少三列像素单元为驱动周期,当前驱动周期内将所述像素单元中的各个子像素的共电极采用预设电压进行驱动。
如图4a所示,在所述像素单元中的子像素的共电极输入预设电压Vcom1,所述预设电压可根据数据驱动信号的反转进行反转,在所述预设电压为正极性驱动时,所述预设电压大于参考电压,即大于原始的共电极电压Vcom,在所述预设电压切换为负极性驱动时,切换后的预设电压小于参考电压,从而实现正极性和负极***替驱动。
需要说明的是,在本实施例中,以扫描完三列像素单元为驱动周期进行说明,还可包括设置更多的像素单元进行周期扫描,本实施例对此不作限制,在本实施例中,以三列像素单元为驱动周期为例进行说明。
步骤S20,在所述预设电压为负极性驱动电压时,将所述像素单元中的高电压子像素采用正极性驱动,将所述像素单元中的低电压子像素采用负极性驱动,所述预设电压小于参考电压。
如图4b所示,当时序为frame 1图框时,相邻的像素单元为高低电压穿插驱动排列方式,frame 1时序高电压像素单元为正极性驱动,低电压像素单元为负极性驱动,配合共电极电压负极性电压驱动,共电极电压Vcom1相对于原共电极电压Vcom较小,即Vcom1<Vcom。
步骤S30,在接收数据驱动电路输入的数据驱动信号反转时,将所述预设电压进行周期性反转。
反转后,共电极的驱动电压从frame 1切换到frame 2,高电压像素单元为负极性驱动,低电压像素单元为正极性驱动,配合共电极电压正极性电压驱动,共电极电压正极性即共电极电压Vcom1相对于原共电极电压Vcom较大,即Vcom1>Vcom。
参考图4a,frame 1时,G行子像素,R与B行子像素均相同,高电压子画素VGd_1、VGd_3、VGd_5与低电压子画素VGd_2、VGd_4、VGd_6对应的共电极电压Vcom1为负极性驱动电压,共电极电压负极性即共电极电压Vcom1相对于原共电极电压Vcom较小,即Vcom1<Vcom,其中高电压子像素VGd_1、VGd_3、VGd_5为正极性驱动电压,低电压子画素VGd_2、VGd_4、VGd_6为负极性驱动电压。
步骤S40,在反转后的预设电压为正极性驱动电压时,将所述像素单元中的高电压子像素采用负极性驱动,将所述像素单元中的低电压子像素采用正极性驱动,所述反转后的预设电压大于所述参考电压。
如图4b所示,随著相邻两驱动信号的反转,共电极电压亦配合极性的驱动反转作周期性电压的切换,即共电极电压Vcom1切换为正极性驱动电压,共电极电压正极性即共电极电压Vcom1相对于原共电极电压Vcom较大,即Vcom1>Vcom)。另外,高电压子像素VGd_1、VGd_3、VGd_5为负极性驱动电压(<Vcom),低电压子画素VGd_2、VGd_4、VGd_6为正极性驱动电压(>Vcom)。
本实施例将所述像素单元中的子像素的共电极采用相同的驱动电压进行驱动,并配合高低电压子像素采用不同的驱动方式进行驱动,从而解决视角色偏,并通过共电极进行相应的驱动,从而减少驱动芯片的工作,降低驱动芯片的功耗以及温度提升风险,并不需要增加一倍的金属走线和驱动器件来驱动次像素,达到节约成本的目的。
进一步地,所述步骤S40之后,所述显示面板的驱动方法还包括:
分别选取同一列相邻的两个子像素,对选取的子像素中的高电压子像素的等效驱动电压以大于所述选取的子像素中的低电压子像素的等效驱动电压进行驱动。
在具体实现中,当frame1图框时序时,高电压子像素等效驱动电压VGd_1即为正极性驱动电压Vgd=V1(V1>Vcom)与负极性共电极电Vcom1(Vcom1<Vcom)的压差,亦即VGd_1=|V1-Vcom1|,次一相邻低电压子像素VGd_2即为负极性驱动电压Vgd=V1’(V1’<Vcom)与负极性共电极电Vcom1(Vcom1<Vcom)的压差,亦即VGd_2=|V1’-Vcom1|,所以 VGd_1>VGd_2。同理依序高电压VGd_3及低电压子像素VGd_4驱动,高电压子画素等效驱动电压VGd_3即为正极性驱动电压Vgd=V2 (V2>Vcom)与负极性共电极电Vcom1(Vcom1<Vcom)的压差,亦即VGd_3=|V2-Vcom1|,次一相邻低电压子像素VGd_4即为负极性驱动电压Vgd=V2’ (V2’<Vcom)与负极性共电极电Vcom1的压差,亦即VGd_4=|V2’-Vcom1|,所以 VGd_3>VGd_4,从而实现相邻子像素为高低电压交替排列,并搭配对所述显示阵列中的子像素采用帧反转的驱动方式,从而达到减少色偏的目的。
进一步地,所述步骤S20,包括:
对所述选取的子像素中的高电压子像素的等效驱动电压采用正极性驱动的驱动电压与所述预设电压的压差进行驱动;
对所述选取的子像素中的低电压子像素的等效驱动电压采用负极性驱动的驱动电压与所述预设电压的压差的绝对值进行驱动。
在具体实现中,高电压子像素等效驱动电压VGd_1即为正极性驱动电压Vgd=V1(V1>Vcom)与负极性共电极电Vcom1(Vcom1<Vcom)的压差,亦即VGd_1=|V1-Vcom1|,次一相邻低电压子像素VGd_2即为负极性驱动电压Vgd=V1’(V1’<Vcom)与负极性共电极电Vcom1(Vcom1<Vcom)的压差,亦即VGd_2=|V1’-Vcom1|。
进一步地,所述步骤S30前,所述显示面板的驱动方法还包括:
对所述选取的子像素中的高电压子像素和所述选取的子像素中的低电压子像素的数据驱动信号分别采用正极性驱动和负极性驱动交替的方式进行驱动。
如图4b所示,在同列相邻的子像素,在共电极驱动电压为负极性驱动时,将数据驱动信号对应为正极性驱动和负极性驱动交替设置,从而实现输入高低交替的驱动信号进行驱动,保证每个子像素进行相应的驱动。
进一步地,所述步骤S40之后,所述显示面板的驱动方法还包括:
对所述选取的子像素中的高电压子像素和低电压子像素的等效驱动电压采用预设数据驱动信号进行驱动,所述预设数据驱动信号为原始同一列相邻的两个子像素的驱动信号的平均信号。
在具体实现中,如图4b所示,G列的高电压正极性驱动信号Vgd=V1、V2、V3…..,高电压负极性动信号Vgd=V1’、V2’、V3’…,其中(V1、V2、V3…>Vcom,V1’、V2’、V3’….<Vcom)。
需要说明的是,VGd_1与VGd_2等效电压分别以正极性驱动电压Vgd=V1与负极性驱动电压Vgd=V1’ 驱动, 正极性驱动电压V1与负极性驱动电压V1’则可以优选为原图框像素信号Gd1与Gd2信号的平均信号(以 8 bit驱动信号来说为0~255信号),即G1=( Gd1+Gd2)/2,G1信号对应的正极性驱动电压V1及负极性驱动电压V1’。VGd_3与VGd_4等效电压分别以正极性驱动电压Vgd=V2与负极性驱动电压Vgd=V2’驱动,优选为原像素信号Gd3与Gd4信号的平均信号(以 8 bit驱动信号来说为0~255信号),亦即G2=( Gd3+Gd4)/2,G2信号对应的正极性驱动电压V2及负极性驱动电压V2’,从而降低驱动芯片的频率,减少驱动芯片的工作,降低驱动芯片的功耗以及驱动芯片的温度提升风险。
进一步地,所述步骤S40之后,所述显示面板的驱动方法还包括:
获取反转信号,根据所述反转信号分别选取同列子像素采用帧反转的方式进行驱动。
在本实施例中,通过帧反转的驱动方式,使相邻子像素为高低电压穿插排列驱动,并解决了视角色偏问题,且在接收所述数据驱动电路输入的数据驱动信号反转时,将所述预设电压采用与所述数据驱动信号相反的驱动方式进行周期性反转。
本实施例当前驱动周期内将所述像素单元中的各个子像素的共电极采用预设电压进行驱动,而并不需要增加一倍的金属走线和驱动器件来驱动次像素,达到节约成本的目的,并且在所述预设电压为正负极性驱动电压时,将所述像素单元中的高电压子像素和低电压子像素采用预设驱动方式进行驱动,从而将所述像素单元中的子像素设置为高低电压交叉的方式排列,进而达到解决视角色偏的目的。
此外,本申请实施例还提出一种显示面板的驱动装置。如图6所示,所述显示面板包括显示阵列,所述显示阵列包括呈阵列排布的像素单元,其由第一像素单元和第二像素单元交替设置;所述显示面板的驱动装置包括:
共电极驱动模块110,设置为以扫描完至少三列像素单元为驱动周期,当前驱动周期内将所述像素单元中的各个子像素的共电极采用预设电压进行驱动;
所述共电极驱动模块110,还设置为在所述预设电压为负极性驱动电压时,将所述像素单元中的高电压子像素采用正极性驱动,将所述像素单元中的低电压子像素采用负极性驱动,所述预设电压小于参考电压;
反转模块120,设置为在接收数据驱动电路输入的数据驱动信号反转时,将所述预设电压进行周期性反转;
所述共电极驱动模块110,还设置为在反转后的预设电压为正极性驱动电压时,将所述像素单元中的高电压子像素采用负极性驱动,将所述像素单元中的低电压子像素采用正极性驱动,所述反转后的预设电压大于所述参考电压。
如图7所示,所述显示面板的驱动装置还包括显示阵列100和驱动模块200,所述驱动模块200可以包括扫描单元210和驱动单元220,扫描单元210设置为输出扫描信号,一般是逐行对像素单元进行扫描,驱动单元220则输出驱动信号,使像素单元在被扫描到时接收驱动数据进行显示。
驱动模块200可以参考上述实施例,经过该处理,可通过将所述像素单元中的子像素的共电极采用相同的驱动电压进行驱动,并配合高低电压子像素采用不同的驱动方式进行驱动,从而解决视角色偏,并通过共电极进行相应的驱动,从而减少驱动芯片的工作,降低驱动芯片的功耗以及温度提升风险,并不需要增加一倍的金属走线和驱动器件来驱动次像素,达到节约成本的目的。
此外,本申请实施例还提出一种存储介质,所述存储介质上存储有显示面板的驱动程序,所述显示面板的驱动程序被处理器执行如上文所述的显示面板的驱动方法的步骤。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (20)

  1. 一种显示面板的驱动方法,其中,所述显示面板包括显示阵列,所述显示阵列包括呈阵列排布的像素单元,其由第一像素单元和第二像素单元交替设置;所述显示面板的驱动方法包括:
    以扫描完至少三列像素单元为驱动周期,在当前驱动周期内将所述像素单元中的各个子像素的共电极采用预设电压进行驱动;
    在所述预设电压为负极性驱动电压时,将所述像素单元中的高电压子像素采用正极性驱动,将所述像素单元中的低电压子像素采用负极性驱动,所述预设电压小于参考电压;
    在接收数据驱动电路输入的数据驱动信号反转时,将所述预设电压进行周期性反转;以及
    在反转后的预设电压为正极性驱动电压时,将所述像素单元中的高电压子像素采用负极性驱动,将所述像素单元中的低电压子像素采用正极性驱动,所述反转后的预设电压大于所述参考电压。
  2. 根据权利要求1所述的显示面板的驱动方法,其中,所述在反转后的预设电压为正极性驱动电压之后,所述显示面板的驱动方法还包括:
    分别选取同一列相邻的两个子像素,对选取的子像素中的高电压子像素的等效驱动电压以大于所述选取的子像素中的低电压子像素的等效驱动电压进行驱动。
  3. 根据权利要求2所述的显示面板的驱动方法,其中,所述在所述预设电压为负极性驱动电压时,将所述像素单元中的高电压子像素采用正极性驱动,将所述像素单元中的低电压子像素采用负极性驱动,包括:
    对所述选取的子像素中的高电压子像素的等效驱动电压采用正极性驱动的驱动电压与所述预设电压的压差进行驱动;以及
    对所述选取的子像素中的低电压子像素的等效驱动电压采用负极性驱动的驱动电压与所述预设电压的压差的绝对值进行驱动。
  4. 根据权利要求2所述的显示面板的驱动方法,其中,所述在接收数据驱动电路输入的数据驱动信号反转时,将所述预设电压进行周期性反转前,所述显示面板的驱动方法还包括:
    对所述选取的子像素中的高电压子像素和所述选取的子像素中的低电压子像素的数据驱动信号分别采用正极性驱动和负极性驱动交替的方式进行驱动。
  5. 根据权利要求2所述的显示面板的驱动方法,其中,所述在反转后的预设电压为正极性驱动电压时之后,所述显示面板的驱动方法还包括:
    对所述选取的子像素中的高电压子像素和低电压子像素的等效驱动电压采用预设数据驱动信号进行驱动,所述预设数据驱动信号为原始同一列相邻的两个子像素的驱动信号的平均信号。
  6. 根据权利要求2所述的显示面板的驱动方法,其中,所述在反转后的预设电压为正极性驱动电压时之后,所述显示面板的驱动方法还包括:
    获取反转信号,根据所述反转信号分别选取同列子像素采用帧反转的方式进行驱动。
  7. 一种显示面板的驱动装置,其中,所述驱动装置包括处理器和非易失性存储器,所述非易失性存储器存储可执行指令,所述处理器执行所述可执行指令,所述可执行指令包括:
    共电极驱动模块,设置为以扫描完至少三列像素单元为驱动周期,当前驱动周期内将所述像素单元中的各个子像素的共电极采用预设电压进行驱动;
    所述共电极驱动模块,还设置为在所述预设电压为负极性驱动电压时,将所述像素单元中的高电压子像素采用正极性驱动,将所述像素单元中的低电压子像素采用负极性驱动,所述预设电压小于参考电压;
    反转模块,设置为在接收数据驱动电路输入的数据驱动信号反转时,将所述预设电压进行周期性反转;以及
    所述共电极驱动模块,还设置为在反转后的预设电压为正极性驱动电压时,将所述像素单元中的高电压子像素采用负极性驱动,将所述像素单元中的低电压子像素采用正极性驱动,所述反转后的预设电压大于所述参考电压。
  8. 如权利要求7所述的显示面板的驱动装置,其中,分别选取同一列相邻的两个子像素,对选取的子像素中的高电压子像素的等效驱动电压以大于所述选取的子像素中的低电压子像素的等效驱动电压进行驱动。
  9. 根据权利要求8所述的显示面板的驱动装置,其中,对所述选取的子像素中的高电压子像素的等效驱动电压采用正极性驱动的驱动电压与所述预设电压的压差进行驱动;
    对所述选取的子像素中的低电压子像素的等效驱动电压采用负极性驱动的驱动电压与所述预设电压的压差的绝对值进行驱动。
  10. 根据权利要求8所述的显示面板的驱动装置,其中,对所述选取的子像素中的高电压子像素和所述选取的子像素中的低电压子像素的数据驱动信号分别采用正极性驱动和负极性驱动交替的方式进行驱动。
  11. 根据权利要求8所述的显示面板的驱动装置,其中,对所述选取的子像素中的高电压子像素和低电压子像素的等效驱动电压采用预设数据驱动信号进行驱动,所述预设数据驱动信号为原始同一列相邻的两个子像素的驱动信号的平均信号。
  12. 根据权利要求8所述的显示面板的驱动装置,其中,获取反转信号,根据所述反转信号分别选取同列子像素采用帧反转的方式进行驱动。
  13. 根据权利要求7所述的显示面板的驱动装置,其中,所述第一像素单元和所述第二像素单元在行方向和列方向上交替设置。
  14. 根据权利要求7所述的显示面板的驱动装置,其中,所述第一像素单元和所述第二像素单元分别包括第一子像素、第二子像素以及第三子像素,所述第一子像素、第二子像素以及第三子像素分别对应为红色子像素、绿色子像素以及蓝色子像素。
  15. 根据权利要求7所述的显示面板的驱动装置,其中,所述第一像素单元和所述第二像素单元分别包括第一子像素、第二子像素以及第三子像素,所述第一子像素、第二子像素以及第三子像素分别对应为红色子像素、绿色子像素以及蓝色子像素。
  16. 根据权利要求7所述的显示面板的驱动装置,其中,所述第一像素单元和第二像素单元分别为极性相异的高低电压。
  17. 一种显示设备,其中,所述显示设备包括显示面板的驱动装置,该显示面板的驱动装置包括处理器和非易失性存储器,所述非易失性存储器存储可执行指令,所述处理器执行上述可执行指令,所述可执行指令包括:
    共电极驱动模块,设置为以扫描完至少三列像素单元为驱动周期,当前驱动周期内将所述像素单元中的各个子像素的共电极采用预设电压进行驱动;
    所述共电极驱动模块,还设置为在所述预设电压为负极性驱动电压时,将所述像素单元中的高电压子像素采用正极性驱动,将所述像素单元中的低电压子像素采用负极性驱动,所述预设电压小于参考电压;
    反转模块,设置为在接收数据驱动电路输入的数据驱动信号反转时,将所述预设电压进行周期性反转;以及
    所述共电极驱动模块,还设置为在反转后的预设电压为正极性驱动电压时,将所述像素单元中的高电压子像素采用负极性驱动,将所述像素单元中的低电压子像素采用正极性驱动,所述反转后的预设电压大于所述参考电压。
  18. 如权利要求17所述的显示设备,其中,分别选取同一列相邻的两个子像素,对选取的子像素中的高电压子像素的等效驱动电压以大于所述选取的子像素中的低电压子像素的等效驱动电压进行驱动。
  19. 根据权利要求18所述的显示设备,其中,对所述选取的子像素中的高电压子像素的等效驱动电压采用正极性驱动的驱动电压与所述预设电压的压差进行驱动;
    对所述选取的子像素中的低电压子像素的等效驱动电压采用负极性驱动的驱动电压与所述预设电压的压差的绝对值进行驱动。
  20. 根据权利要求18所述的显示设备,其中,对所述选取的子像素中的高电压子像素和低电压子像素的等效驱动电压采用预设数据驱动信号进行驱动,所述预设数据驱动信号为原始同一列相邻的两个子像素的驱动信号的平均信号。
PCT/CN2018/111829 2018-09-13 2018-10-25 显示面板的驱动方法、装置以及显示设备 WO2020052008A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/241,986 US10796651B2 (en) 2018-09-13 2019-01-07 Driving method and device of display panel, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811072392.7A CN108831405B (zh) 2018-09-13 2018-09-13 显示面板的驱动方法、装置、设备及存储介质
CN201811072392.7 2018-09-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/241,986 Continuation US10796651B2 (en) 2018-09-13 2019-01-07 Driving method and device of display panel, and display device

Publications (1)

Publication Number Publication Date
WO2020052008A1 true WO2020052008A1 (zh) 2020-03-19

Family

ID=64149762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111829 WO2020052008A1 (zh) 2018-09-13 2018-10-25 显示面板的驱动方法、装置以及显示设备

Country Status (2)

Country Link
CN (1) CN108831405B (zh)
WO (1) WO2020052008A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109509456B (zh) 2018-12-26 2020-09-11 惠科股份有限公司 显示器及其显示面板的驱动装置、方法
CN109584836B (zh) 2019-01-30 2021-02-19 惠科股份有限公司 显示面板的驱动方法、驱动装置、显示设备以及存储介质
CN109616075B (zh) * 2019-01-30 2021-04-06 惠科股份有限公司 显示面板的驱动方法、装置、设备及存储介质
CN109671410B (zh) 2019-01-30 2021-06-04 惠科股份有限公司 显示面板的驱动方法、装置、设备及存储介质
CN109584840B (zh) * 2019-01-30 2020-12-29 惠科股份有限公司 显示面板的驱动方法及装置
CN109671408A (zh) * 2019-01-30 2019-04-23 惠科股份有限公司 显示面板的驱动方法、装置、设备及存储介质
CN109637493B (zh) 2019-01-30 2021-04-27 惠科股份有限公司 显示面板的驱动方法及设备
CN109637492B (zh) * 2019-01-30 2021-01-15 惠科股份有限公司 显示面板的驱动方法、装置及显示设备
CN109671409A (zh) * 2019-01-30 2019-04-23 惠科股份有限公司 显示面板的驱动装置、驱动方法、显示设备及存储介质
CN109671411B (zh) * 2019-01-30 2020-10-27 惠科股份有限公司 显示面板的驱动装置、驱动方法及显示设备
CN109697946A (zh) * 2019-01-30 2019-04-30 惠科股份有限公司 显示面板的驱动方法及显示设备
CN109785812B (zh) * 2019-01-30 2021-04-16 惠科股份有限公司 显示面板的驱动方法、显示设备及存储介质
CN113219742A (zh) * 2021-04-20 2021-08-06 北海惠科光电技术有限公司 显示面板、显示设备以及显示面板的驱动方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1924647A (zh) * 2005-08-30 2007-03-07 三星电子株式会社 液晶显示设备、用于驱动该液晶显示设备的模块和方法
CN101620329A (zh) * 2008-07-04 2010-01-06 群康科技(深圳)有限公司 液晶显示器及其驱动方法
US8462282B2 (en) * 2008-10-03 2013-06-11 Hannstar Display Corporation Liquid crystal display and driving method thereof
CN104834138A (zh) * 2015-05-25 2015-08-12 深圳市华星光电技术有限公司 高画质液晶显示器像素电路
CN105182649A (zh) * 2015-10-29 2015-12-23 深圳市华星光电技术有限公司 广视角面板和显示装置
CN106652944A (zh) * 2016-12-23 2017-05-10 深圳市华星光电技术有限公司 一种驱动架构及液晶显示装置
CN107833561A (zh) * 2017-12-18 2018-03-23 惠科股份有限公司 显示面板的驱动方法、驱动装置及显示装置
CN107833563A (zh) * 2017-12-18 2018-03-23 惠科股份有限公司 显示面板的驱动方法、驱动装置及显示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5284535B2 (ja) * 2010-02-26 2013-09-11 シャープ株式会社 液晶表示装置
CN103760725B (zh) * 2013-12-25 2016-08-17 深圳市华星光电技术有限公司 一种阵列基板及液晶显示面板和驱动方法
CN105096852B (zh) * 2015-06-19 2018-07-24 深圳市华星光电技术有限公司 用于液晶面板的极性反转的驱动方法
CN107301851A (zh) * 2017-08-03 2017-10-27 深圳市华星光电技术有限公司 液晶显示面板及具有液晶显示面板的液晶显示装置
CN107255894B (zh) * 2017-08-09 2020-05-05 深圳市华星光电技术有限公司 阵列基板及液晶显示面板
CN108107634B (zh) * 2017-12-18 2019-12-06 惠科股份有限公司 显示面板的驱动方法及显示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1924647A (zh) * 2005-08-30 2007-03-07 三星电子株式会社 液晶显示设备、用于驱动该液晶显示设备的模块和方法
CN101620329A (zh) * 2008-07-04 2010-01-06 群康科技(深圳)有限公司 液晶显示器及其驱动方法
US8462282B2 (en) * 2008-10-03 2013-06-11 Hannstar Display Corporation Liquid crystal display and driving method thereof
CN104834138A (zh) * 2015-05-25 2015-08-12 深圳市华星光电技术有限公司 高画质液晶显示器像素电路
CN105182649A (zh) * 2015-10-29 2015-12-23 深圳市华星光电技术有限公司 广视角面板和显示装置
CN106652944A (zh) * 2016-12-23 2017-05-10 深圳市华星光电技术有限公司 一种驱动架构及液晶显示装置
CN107833561A (zh) * 2017-12-18 2018-03-23 惠科股份有限公司 显示面板的驱动方法、驱动装置及显示装置
CN107833563A (zh) * 2017-12-18 2018-03-23 惠科股份有限公司 显示面板的驱动方法、驱动装置及显示装置

Also Published As

Publication number Publication date
CN108831405A (zh) 2018-11-16
CN108831405B (zh) 2020-09-11

Similar Documents

Publication Publication Date Title
WO2020052008A1 (zh) 显示面板的驱动方法、装置以及显示设备
WO2020051994A1 (zh) 显示面板的驱动方法、装置以及显示设备
WO2020155254A1 (zh) 显示面板的驱动方法及显示设备
WO2020155258A1 (zh) 显示面板的驱动装置、驱动方法、显示设备及存储介质
WO2015021660A1 (zh) 阵列基板及液晶显示装置
WO2020206589A1 (zh) 显示面板及其驱动方法、显示装置
WO2020135075A1 (zh) 显示器及其显示面板的驱动装置、方法
WO2014008693A1 (zh) 一种液晶显示面板及其修复方法
WO2020155257A1 (zh) 显示面板的驱动方法、装置及设备
WO2018170984A1 (zh) 一种显示面板的驱动方法、时序控制器及液晶显示器
WO2018176561A1 (zh) 一种液晶面板驱动电路及液晶显示装置
WO2017088268A1 (zh) 具有数据线共享架构的阵列基板
WO2017101176A1 (zh) 液晶显示装置
WO2016173006A1 (zh) 一种液晶面板及其驱动方法
WO2017219400A1 (zh) Hsd液晶显示面板及液晶显示装置
WO2020024530A1 (zh) 驱动装置、显示装置及液晶显示器
WO2017210953A1 (zh) 像素结构及相应的液晶显示面板
WO2016026167A1 (zh) 一种液晶显示面板及阵列基板
WO2017177491A1 (zh) 液晶显示电路及液晶显示驱动方法
WO2020134997A1 (zh) 显示面板的驱动方法、显示装置及存储介质
WO2017210952A1 (zh) 像素结构及相应的液晶显示面板
WO2020155260A1 (zh) 显示面板的驱动方法及装置
WO2019090843A1 (zh) 像素驱动架构及显示装置
WO2020155255A1 (zh) 显示面板的驱动方法、驱动装置以及显示设备
WO2020134998A1 (zh) 显示面板的驱动方法、显示装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18933459

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18933459

Country of ref document: EP

Kind code of ref document: A1