WO2020051945A1 - 一种窄环隙换热空调末端装置 - Google Patents

一种窄环隙换热空调末端装置 Download PDF

Info

Publication number
WO2020051945A1
WO2020051945A1 PCT/CN2018/107225 CN2018107225W WO2020051945A1 WO 2020051945 A1 WO2020051945 A1 WO 2020051945A1 CN 2018107225 W CN2018107225 W CN 2018107225W WO 2020051945 A1 WO2020051945 A1 WO 2020051945A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
air
tube
terminal device
header
Prior art date
Application number
PCT/CN2018/107225
Other languages
English (en)
French (fr)
Inventor
舒海文
张宏亮
姜珊
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Publication of WO2020051945A1 publication Critical patent/WO2020051945A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/32Supports for air-conditioning, air-humidification or ventilation units

Definitions

  • the present invention relates to the technical field of terminal devices of heating, ventilation and air-conditioning systems, and in particular to a terminal device of narrow-ring-gap heat-exchanging air conditioners.
  • HVAC systems are the most important component of building energy consumption. In near-zero energy buildings with low cooling / heating load as its important feature, traditional HVAC systems should also be adjusted accordingly.
  • the common air-conditioning terminal equipment that can achieve both cold and heat supply in China's buildings mainly includes fan coils and radiant panels.
  • the fan coil noise level is generally between 30dB-60dB, the speed of the air outlet is between 2-4m / s, it is easy to produce a feeling of blowing, and it is not suitable for places with high requirements for noise control; the radiant panel does not Condensation is allowed on the surface, which not only limits the cooling capacity of the radiant panel, but also cannot bear the indoor air conditioning wet load.
  • the present invention provides a narrow annular gap heat exchange air-conditioning terminal device, which can enhance the heat exchange effect under the premise of ensuring that there is no obvious blowing feeling in the working area of the personnel, improve the heat exchange capacity of the air-conditioning terminal device, and have both winter Heating and cooling in summer.
  • the present invention provides the following solutions:
  • the invention provides a narrow annular gap heat exchange air-conditioning terminal device, comprising a mounting frame, a water system, and a wind system.
  • the water system includes an upper header, a lower header, and a heat exchange tube.
  • the lower header is provided with a liquid inlet.
  • a liquid outlet is provided on the upper header, and a plurality of the heat exchange tubes are provided.
  • the heat exchange tubes are vertically fixed on the mounting frame.
  • the heat exchange tubes include an inner tube and an outer tube.
  • the inner tube is fixed inside the outer tube, a liquid flow path is formed between the inner tube and the outer tube, an air flow path is formed inside the inner tube, and two ends of the liquid flow path are respectively connected with the inner tube.
  • the upper header is in communication with the lower header;
  • the wind system includes a main air duct and a duct fan, the main duct is fixed to a lower side of the mounting frame, and the duct fan is connected to the main duct Connection, the main air duct is in communication with the air flow channel, an upper air opening is opened on one side of the top of the heat exchange tube, and the air flow channel is communicated with the outside world through the upper air outlet.
  • the water system further includes a connection joint, and an upper end of each of the heat exchange tubes is connected to the upper header through one of the connection joints, and a lower end of each of the heat exchange tubes is connected to the lower part through one of the connection joints.
  • the headers are connected, and the two ends of each of the liquid flow channels communicate with the upper header and the lower header through a connection joint, respectively.
  • connection joint is a hollow structure, and a shielding portion is provided on a side where the connection joint is connected to the heat exchange tube.
  • the shielding portion is provided with a communication groove, and the shape of the communication groove is similar to that of the heat exchange.
  • the shapes of the liquid flow channels at both ends of the tube are the same, and the liquid flow channels at both ends of the heat exchange tube are in butt communication with the communication grooves of one of the connection joints, and the connection joints are funnel-shaped.
  • the air system further includes a branch air duct, and a downdraft opening is provided at one side of the bottom of the heat exchange tube, the downdraft is communicated with the air flow channel, and one of the downdrafts is provided in each of the downdrafts.
  • a branch air duct, and the main air duct communicates with the air flow channel through the branch air duct.
  • one end of the branch duct is coaxially sleeved in the inner pipe and forms a gap with the inner pipe.
  • the mounting frame includes an upper transverse plate, a lower transverse plate, and two vertical plates, and two ends of the upper transverse plate are fixedly connected to the upper ends of the two vertical plates, respectively.
  • the two ends are respectively fixedly connected to the lower ends of the two vertical plates, the heat exchange tubes are arranged in parallel with the vertical plates, and the upper ends of the heat exchange tubes protrude from the upper surfaces of the upper horizontal plates.
  • the lower end of the heat exchange tube protrudes from the lower surface of the lower transverse plate.
  • it further comprises a fixing frame and a soft joint
  • the main air pipe is fixed to one of the vertical plates through the fixing frame
  • the duct fan is connected to the main air pipe through the soft joint
  • the diameter of the main air duct gradually decreases from an end near the duct fan to an end far from the duct fan.
  • it further comprises a condensate tank, two ends of the condensate tank are fixedly connected to the two vertical plates, respectively, and the condensate tank is disposed below the lower header, and the outer bottom of the condensate tank is attached With insulation layer.
  • the outer surface of the upper header, the outer surface of the lower header and the outer surface of the heat exchange tube are all coated with a super-hydrophobic coating, and the outer surface of the heat exchange tube is provided with a longitudinal rectangle Micro ribs.
  • an exhaust valve is further included, and the exhaust valve is installed at the highest point of the upper header.
  • the structure of the heat exchange tube is a narrow annular gap sleeve, and a liquid flow path is provided between the inner tube and the outer tube for cooling / heat medium circulation heat exchange, and the inner tube is air
  • the air flow channel of the system is used for air circulation and heat exchange.
  • the air entering the air flow channel is exchanged with the cold / heating medium entering the liquid flow channel. After the heat exchange process, the air enters the room through the upper air outlet to cool the indoor environment or Heating, it can be seen that the air in the air flow channel and the cold / heat medium in the liquid channel perform heat exchange by forced convection.
  • the air in the air flow channel and the cold / heat medium in the liquid channel can fully contact the heat transfer, and the heat exchange efficiency high.
  • the cold / heat medium in the liquid channel is exchanged through the outer surface of the heat exchange tube and the indoor air through natural convection and radiation, thereby realizing the complete heat exchange process of the narrow-gap heat exchange air-conditioning terminal device.
  • This type of heat exchange is used to enhance the heat exchange effect and improve the heat exchange capacity of the air-conditioning terminal device.
  • the narrow-ring-gap heat-exchanging air-conditioning end device of the present invention can ensure that there is no obvious blowing feeling in the working area of the personnel, and it is easy to form a good and comfortable air environment, which is suitable for including ultra-low energy Various heating and air-conditioning buildings including buildings.
  • FIG. 1 is a perspective structural schematic view of a narrow annular gap heat exchange air-conditioning terminal device according to the present invention
  • FIG. 2 is a cross-sectional view of a portion A in FIG. 1;
  • connection part between a lower part of a heat exchange tube and a connection joint according to the present invention
  • FIG. 4 is a front view of a narrow-gap heat exchange air-conditioning terminal device according to the present invention.
  • FIG. 5 is a top view of the narrow annular gap heat exchange air-conditioning terminal device in FIG. 4;
  • FIG. 6 is a right side view of the narrow annular gap heat exchange air-conditioning terminal device in FIG. 4;
  • FIG. 7 is a schematic structural diagram of a heat exchange tube according to the present invention.
  • connection joint 8 is a schematic structural diagram of a connection joint according to the present invention.
  • Fig. 9 is a sectional view of a connection joint of the present invention.
  • the invention provides a narrow annular gap heat exchange air-conditioning terminal device, which can enhance the heat exchange effect on the premise of ensuring that there is no obvious blowing feeling in the working area of the personnel, improve the heat exchange capacity of the air-conditioning terminal device, and have both winter heating and summer cooling functions. .
  • this embodiment provides a narrow-ring-gap heat exchange air-conditioning terminal device, including a mounting frame, a water system, and a wind system.
  • the water system includes an upper header 1, a lower header 2, and a heat exchange tube 3.
  • the lower header 2 is provided with a liquid inlet
  • the upper header 1 is provided with a liquid outlet
  • a plurality of heat exchange tubes 3 are provided
  • the heat exchange tubes 3 are vertically fixed on the mounting frame
  • the heat exchange tubes 3 include an inner tube 32 and the outer tube 31, the inner tube 32 is fixed inside the outer tube 31, a liquid flow path 33 is formed between the inner tube 32 and the outer tube 31, and an air flow path 34 is formed inside the inner tube 32, and the two ends of the liquid flow path 33 are respectively connected with
  • the upper header 1 and the lower header 2 communicate with each other;
  • the wind system includes a main air duct 5 and a duct fan 7, the main air duct 5 is fixed to a lower side of the installation frame, the duct fan 7 is connected to the main air duct 5, and the main air duct 5 It communicates with the air flow channel 34.
  • An upper air outlet 8 is opened on one side of the top of the heat exchange tube 3, and the air flow channel 34 communicates with the outside world through the upper air outlet 8.
  • the water system further includes a connection joint 4.
  • the upper end of each heat exchange tube 3 is connected to the upper header 1 through a connection joint 4, and the lower end of each heat exchange tube 3 is connected to the lower header 2 through a connection joint 4.
  • the two ends communicate with the upper header 1 and the lower header 2 through a connection joint 4 respectively.
  • connection joint 4 is a hollow structure.
  • a shielding portion 41 is provided on the side where the connection joint 4 is connected to the heat exchange tube 3.
  • the shielding portion 41 is provided with a communication groove 42.
  • the shape of the communication groove 42 and heat exchange The shapes of the liquid flow channels 33 at both ends of the tube 3 are the same, and the liquid flow channels 33 at both ends of the heat exchange tube 3 are in butt communication with a communication groove 42 connected to the joint 4.
  • the connection joint 4 has a funnel shape, and the connection joint 4 has an integrally formed structure.
  • the air system also includes branch air ducts 6, and a downdraft port 9 is opened at one side of the bottom of the heat exchange tube 3.
  • the downdraft port 9 communicates with the air flow path 34.
  • Each of the downdraft ports 9 is provided with a branched air duct 6 and a main air duct 5
  • the branch air duct 6 communicates with the air flow path 34.
  • the height of the upper air outlet 8 and the lower air outlet 9 is 6-10 cm.
  • One end of the branch air duct 6 is coaxially sleeved in the inner tube 32 and forms a gap with the inner tube 32.
  • the depth of the branch air duct 6 inserted into the inner tube 32 is 5-10 cm, and the diameter of the branch air duct 6 is smaller than the diameter of the inner tube 32 by 1-2 cm, so as to prevent the condensed water on the inner wall of the inner tube 32 from flowing into the branch air duct 6 Then enter the main air pipe 5.
  • the mounting frame includes an upper transverse plate 10, a lower transverse plate 11, and two vertical plates 12. Both ends of the upper transverse plate 10 are fixedly connected to the upper ends of the two vertical plates 12, respectively. The lower ends of the two vertical plates 12 are fixedly connected.
  • the heat exchange tubes 3 are arranged in parallel with the vertical plates 12. The lower surface is protruding.
  • the upper header 1 and the lower header 2 are in a horizontal state and are arranged in parallel with the upper transverse plate 10, and one end of the lower header 2 is fixed to a vertical plate 12 on one side, and the lower header 2 is used for water supply.
  • the upper header 1 is used for return water.
  • the distance between the tube walls of the adjacent heat exchange tubes 3 is 10 mm, and the tube diameter of the heat exchange tubes 3 is 50-80 mm.
  • the difference between the radius of the outer tube 31 and the radius of the inner tube 32 is 3-8 mm.
  • the cooling / heating medium in the liquid flow path 33 is a liquid having a large specific heat capacity such as water, an ethylene glycol aqueous solution, a freezing point of not higher than 5 ° C., a non-corrosive metal, and a non-toxic human body.
  • This embodiment further includes a fixing frame 13 and a soft joint 14.
  • the main air duct 5 is fixed to a vertical plate 12 through the fixing frame 13.
  • the main air duct 5 is arranged in parallel with the lower header 2.
  • the duct fan 7 is connected to the main air duct 5 through a flexible joint 14.
  • the material of the flexible joint 14 is canvas or silicone glass fiber with high temperature resistance.
  • the length of the flexible joint is 150-300mm, which plays the role of vibration isolation and displacement compensation. The connection is tight, firm and reliable, leaving a telescopic amount after installation.
  • the diameter of the main air duct 5 gradually decreases from the end near the duct fan 7 to the end far from the duct fan 7, so as to ensure that the speed of the air from each air outlet is the same, and achieve uniform air supply.
  • the duct fan 7 can realize variable gear speed adjustment, which is convenient to adjust the fan air volume according to the indoor cold / heat load to adjust the heat exchange intensity.
  • the maximum noise of the duct fan 7 is less than 36dB, which meets national standards for bedroom and living room (lobby) noise.
  • Level requirements The equivalent continuous A sound level in the bedroom and living room (lobby) during the day should not be greater than 45dB, and the equivalent continuous A sound level in the bedroom at night should not be greater than 37dB.
  • This embodiment further includes a condensate water tank 15, two ends of the condensate water tank 15 are fixedly connected to two vertical plates 12, respectively, and the condensate water tank 15 is disposed below the lower header 2 for collecting condensate water.
  • a thermal insulation layer is attached to the outer bottom of the condensate tank 15, and the thermal insulation layer is used to prevent condensation and water droplets generated by the condensation on the outer bottom of the condensate tank 15 during cooling.
  • the thermal conductivity of the thermal insulation layer is not less than 0.15 ( m 2 ⁇ K / W).
  • the outer surface of the upper header 1, the outer surface of the lower header 2, and the outer surface of the heat transfer tube 3 are all coated with a super-hydrophobic coating.
  • the super-hydrophobic coating can change the condensed water condensation form into a bead-like condensation.
  • the condensed water droplets are caused to flow into the condensed water tank 15 along the outer surface under the effect of its own gravity.
  • the outer surface of the heat exchange tube 3 is provided with longitudinal rectangular micro-ribs, which plays a role of guiding the condensed water.
  • an exhaust valve 16 is installed at the highest point of the upper header 1.
  • the material of the upper header 1 and the lower header 2 may be stainless steel, copper, or aluminum alloy, which are not easily corroded and have good pressure-bearing performance, and may also be plastic pipes that meet the requirements of corrosion and pressure-bearing.
  • the material of the heat exchange tube 3 is a metal or plastic material with strong thermal conductivity, good pressure bearing performance, and not easy to corrode.
  • the upper transverse plate 10, the lower transverse plate 11 and the two vertical plates 12 are made of a metal material with high strength and corrosion resistance.
  • the material of the condensate tank 15 is a plastic pipe with high strength, high hardness, impact resistance and corrosion resistance, such as polyvinyl chloride (PVC) and polypropylene (PP) with a thickness of 2-6 mm.
  • the cold / heat medium processed by the cold and heat source system enters the narrow annular heat exchange air-conditioning end device through the liquid inlet of the lower header 2, and the lower header 2 functions as a water separator,
  • the heat medium is distributed to each vertical heat exchange tube 3, and the heat exchange tube 3 and the lower header 2 are connected by a connection joint 4.
  • the cold / heat medium entering the heat exchange tube 3 is in the liquid flow channel of the heat exchange tube 3.
  • the inside of the liquid flow path 33 is indoor air, and the inside of the liquid flow path 33 is an air passage 34 formed by an inner pipe.
  • the air passage 34 is used for the air of the wind system to flow.
  • the heat medium is collected through the upper header 1, the upper header 1 functions as a water collector, and the upper header 1 is connected to the return pipe of the air conditioning system.
  • the inlet of the duct fan 7 sucks the indoor air, and the outlet of the duct fan 7 is connected to the main air pipe 5, and the diameter of the main air pipe 5 gradually decreases with the forward direction of the airflow to ensure that the speed of each air outlet is the same, to achieve uniform air supply.
  • the tube 5 and the heat exchange tube 3 are connected by a branch air duct 6, and the air entering the air flow path 34 of the heat exchange tube 3 exchanges heat with the cold / heat medium in the liquid flow path 33 and enters through the upper air outlet 8 at the upper end.
  • the air in the air flow channel 34 and the cold / heat medium in the liquid channel 33 perform heat exchange by forced convection, and the air flow channel 34
  • the air and the cold / heating medium in the liquid passage 33 can fully contact the heat transfer, and the heat exchange efficiency is high.
  • the cold / heat medium in the liquid passage 33 is exchanged with the indoor surface of the heat exchange tube 3 through natural convection and radiation through the outer surface of the heat exchange tube 3, thereby realizing the complete heat exchange process of the narrow-ring heat exchange air-conditioning terminal device.
  • Two types of heat exchange are provided to enhance the heat exchange effect and improve the heat exchange capacity of the terminal device of the air conditioner.
  • the narrow annular gap heat exchange air-conditioning terminal device of the present invention is suitable for various heating and air-conditioning buildings including ultra-low energy consumption buildings. Compared with the fan coil end devices widely used in current air-conditioning buildings, there is no mandatory The feeling of blowing caused by convection is easy to form a good and comfortable air environment. It can enhance the heat exchange effect under the premise that there is no obvious feeling of blowing in the working area of the personnel, improve the heat exchange capacity of the air-conditioning terminal device, and have both winter heating and summer cooling .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

本发明公开一种窄环隙换热空调末端装置,涉及暖通空调***末端装置的技术领域,包括安装框架、水***和风***,水***包括上部集管、下部集管和换热管,多个换热管竖直固定于安装框架上,换热管包括内管和外套管,内管固定于外套管内部,内管和外套管之间形成液体流道,内管内部形成空气流道,液体流道的两端分别与上部集管和下部集管连通;风***包括主风管和管道风扇,管道风扇与主风管连接,主风管与空气流道连通,换热管顶部的一侧开设有上风口,空气流道通过上风口与外界连通。该装置在保证人员工作区域没有明显吹风感的前提下能够加强换热效果,提高空调末端装置的换热能力,兼具冬季供暖和夏季供冷功能。

Description

一种窄环隙换热空调末端装置 技术领域
本发明涉及暖通空调***末端装置的技术领域,特别是涉及一种窄环隙换热空调末端装置。
背景技术
为应对全球变暖,减少碳排放和化石能源燃烧,从世界范围看,各国对应气候变化实施了可持续发展战略,不断提供建筑能效水平。我国实施了能源资源消费发展战略,推进城乡发展向低碳型转变。2015年8月31日,我国住房和城乡***、工信部出台了《促进绿色建材生产和应用行动方案》,明确指出要“发展超低能耗、近零能耗建筑”。在已发布的“十三五”规划纲要中,着重部署了降低能源消耗的工作。
近零能耗建筑以其超低能耗和高热舒适等特点,代表了未来建筑的发展趋势。暖通空调***的能耗是建筑能耗的最主要组成部分,在以低冷/热负荷为其重要特征的近零能耗建筑中,传统的暖通空调***也应做出相应的调整。目前,我国建筑内常见的能够实现冷热兼供的空调末端设备主要有风机盘管和辐射板等。风机盘管噪声等级一般在30dB-60dB之间,送风口速度在2-4m/s之间,容易产生吹风感,且不适用于对噪声控制要求较高的场合;辐射板在供冷时不允许表面结露,这样既限制了辐射板的供冷能力,又不能承担室内的空调湿负荷。专利“湿式辐射对流冷热交换器”(ZL201410012986.4)中针对近零能耗建筑低冷/热负荷的特点,提出了一种能同时满足冬季供暖和夏季供冷、并且在供冷时具有除湿功能的末端设备,但由于该冷热交换器与室内环境之间的换热通过自然对流和辐射方式进行,换热系数相对较低,因此在室内负荷较大时,需要该末端设备的面积也较大。因此,在保证人员工作区域没有明显吹风感的前提下,如何提高此类空调末端设备的换热能力,是亟需解决的问题。
发明内容
为解决以上技术问题,本发明提供一种窄环隙换热空调末端装置,在保证人员工作区域没有明显吹风感的前提下能够加强换热效果,提高空调 末端装置的换热能力,兼具冬季供暖和夏季供冷功能。
为实现上述目的,本发明提供了如下方案:
本发明提供一种窄环隙换热空调末端装置,包括安装框架、水***和风***,所述水***包括上部集管、下部集管和换热管,所述下部集管上开设有进液口,所述上部集管上开设有出液口,所述换热管设置有多个,所述换热管竖直固定于所述安装框架上,所述换热管包括内管和外套管,所述内管固定于所述外套管内部,所述内管和所述外套管之间形成液体流道,所述内管内部形成空气流道,所述液体流道的两端分别与所述上部集管和所述下部集管连通;所述风***包括主风管和管道风扇,所述主风管固定于所述安装框架下部的一侧,所述管道风扇与所述主风管连接,所述主风管与所述空气流道连通,所述换热管顶部的一侧开设有上风口,所述空气流道通过所述上风口与外界连通。
优选地,所述水***还包括连接接头,各所述换热管上端通过一个所述连接接头与所述上部集管连接,各所述换热管下端通过一个所述连接接头与所述下部集管连接,各所述液体流道的两端分别通过一个所述连接接头与所述上部集管和所述下部集管连通。
优选地,所述连接接头为中空结构,所述连接接头与所述换热管连接的一面设置有遮挡部,所述遮挡部上开设有连通槽,所述连通槽的形状与所述换热管两端的所述液体流道的形状一致,所述换热管两端的所述液体流道分别与一个所述连接接头的所述连通槽对接连通,所述连接接头为漏斗状。
优选地,所述风***还包括分支风管,所述换热管底部的一侧开设有下风口,所述下风口与所述空气流道连通,各所述下风口内设置有一个所述分支风管,所述主风管通过所述分支风管与所述空气流道连通。
优选地,所述分支风管的一端同轴套设于所述内管内并与所述内管之间形成缝隙。
优选地,所述安装框架包括上横向板、下横向板和两个竖向板,所述上横向板的两端分别与两个所述竖向板的上端固定连接,所述下横向板的两端分别与两个所述竖向板的下端固定连接,所述换热管与所述竖向板平行设置,所述换热管的上端由所述上横向板的上表面伸出,所述换热管的 下端由所述下横向板的下表面伸出。
优选地,还包括固定架和软接头,所述主风管通过所述固定架固定于一个所述竖向板上,所述管道风扇通过所述软接头与所述主风管连接,所述主风管的管径由靠近所述管道风扇的一端至远离所述管道风扇的一端逐渐变小。
优选地,还包括冷凝水槽,所述冷凝水槽的两端分别与两个所述竖向板固定连接,且所述冷凝水槽设置于所述下部集管的下方,所述冷凝水槽的外侧底部贴附有保温层。
优选地,所述上部集管的外表面、所述下部集管的外表面和所述换热管的外表面均涂覆有超憎水涂层,所述换热管外表面设置有纵向矩形微肋。
优选地,还包括排气阀,所述上部集管的最高点处安装有所述排气阀。
本发明相对于现有技术取得了以下技术效果:
本发明的窄环隙换热空调末端装置,换热管的结构形式为窄环隙套管,内管和外套管之间设有液体流道供冷/热媒流通换热,内管为风***的空气流道,供空气流通换热,进入空气流道的空气与进入液体流道的冷/热媒进行换热,经过换热过程之后空气由上风口进入室内,对室内环境进行冷却或加热,可见,空气流道中的空气与液体通道中的冷/热媒通过强制对流的方式进行换热,空气流道中的空气与液体通道中的冷/热媒可以充分接触传热,换热效率高。同时,液体通道中的冷/热媒通过换热管外表面与室内空气通过自然对流与辐射的方式进行换热,以此实现窄环隙换热空调末端装置的完整换热流程,通过设置两种换热形式以加强换热效果,提高空调末端装置的换热能力。本发明的窄环隙换热空调末端装置与当前空调建筑中广泛使用的风机盘管末端设备相比,可以保证人员工作区域没有明显吹风感,容易形成良好舒适的空气环境,适用于包括超低能耗建筑在内的各种供暖空调建筑。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出 创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明窄环隙换热空调末端装置的立体结构示意图;
图2为图1中A部分的剖视图;
图3为本发明换热管下部与连接接头连接处的结构示意图;
图4为本发明窄环隙换热空调末端装置的主视图;
图5为图4中的窄环隙换热空调末端装置的俯视图;
图6为图4中的窄环隙换热空调末端装置的右视图;
图7为本发明换热管的结构示意图;
图8为本发明连接接头的结构示意图;
图9为本发明连接接头的剖视图。
附图标记说明:1、上部集管;2、下部集管;3、换热管;31、外套管;32、内管;33、液体流道;34、空气流道;4、连接接头;41、遮挡部;42、连通槽;5、主风管;6、分支风管;7、管道风扇;8、上风口;9、下风口;10、上横向板;11、下横向板;12、竖向板;13、固定架;14、软接头;15、冷凝水槽;16、排气阀。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供一种窄环隙换热空调末端装置,在保证人员工作区域没有明显吹风感的前提下能够加强换热效果,提高空调末端装置的换热能力,兼具冬季供暖和夏季供冷功能。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
如图1-7所示,本实施例提供一种窄环隙换热空调末端装置,包括安装框架、水***和风***,水***包括上部集管1、下部集管2和换热管3,下部集管2上开设有进液口,上部集管1上开设有出液口,换热管3设置有多个,换热管3竖直固定于安装框架上,换热管3包括内管32和 外套管31,内管32固定于外套管31内部,内管32和外套管31之间形成液体流道33,内管32内部形成空气流道34,液体流道33的两端分别与上部集管1和下部集管2连通;风***包括主风管5和管道风扇7,主风管5固定于安装框架下部的一侧,管道风扇7与主风管5连接,主风管5与空气流道34连通,换热管3顶部的一侧开设有上风口8,空气流道34通过上风口8与外界连通。
水***还包括连接接头4,各换热管3上端通过一个连接接头4与上部集管1连接,各换热管3下端通过一个连接接头4与下部集管2连接,各液体流道33的两端分别通过一个连接接头4与上部集管1和下部集管2连通。
如图8、9所示,连接接头4为中空结构,连接接头4与换热管3连接的一面设置有遮挡部41,遮挡部41上开设有连通槽42,连通槽42的形状与换热管3两端的液体流道33的形状一致,换热管3两端的液体流道33分别与一个连接接头4的连通槽42对接连通。连接接头4为漏斗状,连接接头4为一体成型的结构。
风***还包括分支风管6,换热管3底部的一侧开设有下风口9,下风口9与空气流道34连通,各下风口9内设置有一个分支风管6,主风管5通过分支风管6与空气流道34连通。上风口8和下风口9的高度为6-10cm。
分支风管6的一端同轴套设于内管32内并与内管32之间形成缝隙。具体地,分支风管6***内管32的深度为5-10cm,分支风管6的管径比内管32的管径小1-2cm,以避免内管32内壁的冷凝水流进分支风管6再进入主风管5。
安装框架包括上横向板10、下横向板11和两个竖向板12,上横向板10的两端分别与两个竖向板12的上端固定连接,下横向板11的两端分别与两个竖向板12的下端固定连接,换热管3与竖向板12平行设置,换热管3的上端由上横向板10的上表面伸出,换热管3的下端由下横向板11的下表面伸出。
上部集管1和下部集管2为水平状态,与上横向板10为平行设置的关系,且下部集管2的一端固定于一侧的竖向板12上,下部集管2用于 供水,上部集管1用于回水。
相邻的换热管3管壁的间距为10mm,换热管3管径为50-80mm。外套管31的半径与内管32的半径之差为3-8mm。
液体流道33中的冷/热媒是水、乙二醇水溶液等比热容较大、凝固点不高于5℃、对金属无腐蚀且对人体无毒害的液体。
本实施例中还包括固定架13和软接头14,主风管5通过固定架13固定于一个竖向板12上,主风管5与下部集管2平行设置。管道风扇7通过软接头14与主风管5连接,软接头14的材料为帆布或具有耐高温特性的硅胶玻纤维,软连接长度为150-300mm,起到隔振和位移补偿的作用,其连接处严密,牢固可靠,安装完毕后留有伸缩量。
主风管5的管径由靠近管道风扇7的一端至远离管道风扇7的一端逐渐变小,以此保证每个出风口的出风速度相同,实现均匀送风。管道风扇7可实现变档调速,便于根据室内冷/热负荷调节风扇风量以此来调整换热强度,管道风扇7的最大噪音小于36dB,满足国家标准对卧室、起居室(厅)内噪声级的规定:昼间卧室、起居室(厅)内的等效连续A声级不应大于45dB,夜间卧室内的等效连续A声级不应大于37dB。
本实施例中还包括冷凝水槽15,冷凝水槽15的两端分别与两个竖向板12固定连接,且冷凝水槽15设置于下部集管2的下方,用于收集冷凝水。冷凝水槽15的外侧底部贴附有保温层,保温层用于防止供冷时冷凝水槽15的外侧底部结露及结露产生的凝水滴落,具体地,保温层的导热热阻不小于0.15(m 2·K/W)。
上部集管1的外表面、下部集管2的外表面和换热管3的外表面均涂覆有超憎水涂层,超憎水涂层可使冷凝水凝结形式变为珠状凝结,使得凝结的水滴在自身重力作用下沿外表面流进冷凝水槽15中。换热管3外表面设置有纵向矩形微肋,起到凝结水导流作用。当上部集管1的外表面、下部集管2的外表面和换热管3的外表面的温度低于室内空气的露点温度时,空气中的水蒸气会在冷表面上凝结成冷凝水,由于这些表面覆有超憎水性涂层,因而凝结的水滴在自身重力的作用下沿外表面流进下部的冷凝水槽15中,使得本实施例中的窄环隙换热空调末端装置具有除湿功能。
为了便于管道中的气体排出,在上部集管1的最高点处安装有排气阀 16。
于本具体实施例中,上部集管1和下部集管2的材料可为不锈钢、铜或铝合金等不易腐蚀且承压性能良好的金属材料,也可为符合腐蚀和承压要求的塑料管。换热管3的材料为导热性能强,承压性能良好且不易腐蚀的金属或塑料材料。上横向板10、下横向板11和两个竖向板12采用强度高且耐腐蚀的金属材料制成。冷凝水槽15的材料为厚度为2-6mm的聚氯乙烯(PVC)、聚丙烯(PP)等强度高、硬度大、耐冲击性和防腐性能良好的塑料类管材。
具体使用过程为:由冷热源***处理后的冷/热媒通过下部集管2的进液口进入窄环隙换热空调末端装置,下部集管2起到分水器作用,将冷/热媒分送到各竖直状态的换热管3,换热管3与下部集管2采用连接接头4连接,进入换热管3中的冷/热媒在换热管3的液体流道33内流动,液体流道33的外侧为室内空气,液体流道33内侧为内管形成的空气通道34,空气通道34用于风***的空气进行流动,经过换热管3换热后的冷/热媒通过上部集管1进行汇集,上部集管1起到集水器作用,上部集管1与空调***回水管连接。管道风扇7的入口吸入室内空气,管道风扇7的出口连接主风管5,主风管5的管径随气流前进方向逐渐变小以保证每个风口的速度相同,实现均匀送风,主风管5与换热管3通过分支风管6连接,进入换热管3的空气流道34内的空气与液体流道33中的冷/热媒进行换热,由上端的上出风口8进入室内,向室内送入冷风或热风,对室内环境进行冷却或加热,可见,空气流道34中的空气与液体通道33中的冷/热媒通过强制对流的方式进行换热,空气流道34中的空气与液体通道33中的冷/热媒可以充分接触传热,换热效率高。同时,液体通道33中的冷/热媒通过换热管3外表面与室内空气通过自然对流与辐射的方式进行换热,以此实现窄环隙换热空调末端装置的完整换热流程,通过设置两种换热形式以加强换热效果,提高空调末端装置的换热能力。
本发明的窄环隙换热空调末端装置适用于包括超低能耗建筑在内的各种供暖空调建筑,与当前空调建筑中广泛使用的风机盘管末端设备相比,使得人员工作区内无强制对流导致的吹风感,容易形成良好舒适的空气环境,在保证人员工作区域没有明显吹风感的前提下能够加强换热效 果,提高空调末端装置的换热能力,兼具冬季供暖和夏季供冷功能。
本说明书中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

  1. 一种窄环隙换热空调末端装置,其特征在于,包括安装框架、水***和风***,所述水***包括上部集管、下部集管和换热管,所述下部集管上开设有进液口,所述上部集管上开设有出液口,所述换热管设置有多个,所述换热管竖直固定于所述安装框架上,所述换热管包括内管和外套管,所述内管固定于所述外套管内部,所述内管和所述外套管之间形成液体流道,所述内管内部形成空气流道,所述液体流道的两端分别与所述上部集管和所述下部集管连通;所述风***包括主风管和管道风扇,所述主风管固定于所述安装框架下部的一侧,所述管道风扇与所述主风管连接,所述主风管与所述空气流道连通,所述换热管顶部的一侧开设有上风口,所述空气流道通过所述上风口与外界连通。
  2. 根据权利要求1所述的窄环隙换热空调末端装置,其特征在于,所述水***还包括连接接头,各所述换热管上端通过一个所述连接接头与所述上部集管连接,各所述换热管下端通过一个所述连接接头与所述下部集管连接,各所述液体流道的两端分别通过一个所述连接接头与所述上部集管和所述下部集管连通。
  3. 根据权利要求2所述的窄环隙换热空调末端装置,其特征在于,所述连接接头为中空结构,所述连接接头与所述换热管连接的一面设置有遮挡部,所述遮挡部上开设有连通槽,所述连通槽的形状与所述换热管两端的所述液体流道的形状一致,所述换热管两端的所述液体流道分别与一个所述连接接头的所述连通槽对接连通,所述连接接头为漏斗状。
  4. 根据权利要求3所述的窄环隙换热空调末端装置,其特征在于,所述风***还包括分支风管,所述换热管底部的一侧开设有下风口,所述下风口与所述空气流道连通,各所述下风口内设置有一个所述分支风管,所述主风管通过所述分支风管与所述空气流道连通。
  5. 根据权利要求4所述的窄环隙换热空调末端装置,其特征在于,所述分支风管的一端同轴套设于所述内管内并与所述内管之间形成缝隙。
  6. 根据权利要求1所述的窄环隙换热空调末端装置,其特征在于,所述安装框架包括上横向板、下横向板和两个竖向板,所述上横向板的两端 分别与两个所述竖向板的上端固定连接,所述下横向板的两端分别与两个所述竖向板的下端固定连接,所述换热管与所述竖向板平行设置,所述换热管的上端由所述上横向板的上表面伸出,所述换热管的下端由所述下横向板的下表面伸出。
  7. 根据权利要求6所述的窄环隙换热空调末端装置,其特征在于,还包括固定架和软接头,所述主风管通过所述固定架固定于一个所述竖向板上,所述管道风扇通过所述软接头与所述主风管连接,所述主风管的管径由靠近所述管道风扇的一端至远离所述管道风扇的一端逐渐变小。
  8. 根据权利要求6所述的窄环隙换热空调末端装置,其特征在于,还包括冷凝水槽,所述冷凝水槽的两端分别与两个所述竖向板固定连接,且所述冷凝水槽设置于所述下部集管的下方,所述冷凝水槽的外侧底部贴附有保温层。
  9. 根据权利要求1所述的窄环隙换热空调末端装置,其特征在于,所述上部集管的外表面、所述下部集管的外表面和所述换热管的外表面均涂覆有超憎水涂层,所述换热管外表面设置有纵向矩形微肋。
  10. 根据权利要求1所述的窄环隙换热空调末端装置,其特征在于,还包括排气阀,所述上部集管的最高点处安装有所述排气阀。
PCT/CN2018/107225 2018-09-10 2018-09-25 一种窄环隙换热空调末端装置 WO2020051945A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811049659.0A CN108981120B (zh) 2018-09-10 2018-09-10 一种窄环隙换热空调末端装置
CN201811049659.0 2018-09-10

Publications (1)

Publication Number Publication Date
WO2020051945A1 true WO2020051945A1 (zh) 2020-03-19

Family

ID=64545241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/107225 WO2020051945A1 (zh) 2018-09-10 2018-09-25 一种窄环隙换热空调末端装置

Country Status (2)

Country Link
CN (1) CN108981120B (zh)
WO (1) WO2020051945A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113130124A (zh) * 2021-04-19 2021-07-16 广州长江新能源科技股份有限公司 一种阻燃型耐磨通信电缆及其制造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109595726A (zh) * 2019-01-15 2019-04-09 大连理工大学 一种可除湿的冷辐射吊顶空调末端装置
CN113834146A (zh) * 2021-08-27 2021-12-24 河南沃德环境科技有限公司 一种利用地能的模块化空气处理装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1204283A (en) * 1968-03-14 1970-09-03 Jean Paul Florentz Heating radiator
JPS5512103Y2 (zh) * 1974-09-18 1980-03-15
CN103982968A (zh) * 2014-05-29 2014-08-13 重庆大学 主动式辐射板换热***及其换热处理方法
CN205090484U (zh) * 2015-09-16 2016-03-16 张贝 一种无风或微风空调室内机
CN205579729U (zh) * 2016-01-20 2016-09-14 张贝 一种具有强制对流功能的暖气片
CN106556059A (zh) * 2015-09-16 2017-04-05 张贝 一种无风或微风空调室内机
CN108225063A (zh) * 2018-02-24 2018-06-29 中国科学院理化技术研究所 一种三介质换热器及其制造方法、一种三介质换热设备
CN208720465U (zh) * 2018-09-10 2019-04-09 大连理工大学 一种窄环隙换热空调末端装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4266131B2 (ja) * 2003-06-05 2009-05-20 東芝キヤリア株式会社 空気調和機
CN202089891U (zh) * 2011-06-21 2011-12-28 重庆国际复合材料有限公司 一种玻璃纤维拉丝成型区空气处理***

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1204283A (en) * 1968-03-14 1970-09-03 Jean Paul Florentz Heating radiator
JPS5512103Y2 (zh) * 1974-09-18 1980-03-15
CN103982968A (zh) * 2014-05-29 2014-08-13 重庆大学 主动式辐射板换热***及其换热处理方法
CN205090484U (zh) * 2015-09-16 2016-03-16 张贝 一种无风或微风空调室内机
CN106556059A (zh) * 2015-09-16 2017-04-05 张贝 一种无风或微风空调室内机
CN205579729U (zh) * 2016-01-20 2016-09-14 张贝 一种具有强制对流功能的暖气片
CN108225063A (zh) * 2018-02-24 2018-06-29 中国科学院理化技术研究所 一种三介质换热器及其制造方法、一种三介质换热设备
CN208720465U (zh) * 2018-09-10 2019-04-09 大连理工大学 一种窄环隙换热空调末端装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113130124A (zh) * 2021-04-19 2021-07-16 广州长江新能源科技股份有限公司 一种阻燃型耐磨通信电缆及其制造方法
CN113130124B (zh) * 2021-04-19 2022-05-17 广州长江新能源科技股份有限公司 一种阻燃型耐磨通信电缆及其制造方法

Also Published As

Publication number Publication date
CN108981120A (zh) 2018-12-11
CN108981120B (zh) 2020-04-07

Similar Documents

Publication Publication Date Title
CN202769850U (zh) 太阳能烟囱复合露点间接蒸发冷却通风降温装置
CN103256673B (zh) 强化自然通风空调节能***
WO2020051945A1 (zh) 一种窄环隙换热空调末端装置
JP2012225517A (ja) 輻射冷暖房装置及び除加湿冷暖房システム
CN107906724B (zh) 一种增强换热式辐射对流冷热交换器
WO2022166053A1 (zh) 一种柔和送风的置换通风式建筑物
WO2022166054A1 (zh) 一种置换通风式被动房
CN109595726A (zh) 一种可除湿的冷辐射吊顶空调末端装置
CN104534578A (zh) 一种单冷水机组诱导送风与辐射一体化空调装置
CN208720465U (zh) 一种窄环隙换热空调末端装置
WO2020037836A1 (zh) 一种用于高大空间的新型空调末端***
CN204373109U (zh) 一种单冷水机组诱导送风与辐射一体化空调装置
CN106440288A (zh) 出风装置及吊顶辐射空调
CN103759363A (zh) 与被动式降温、采暖相结合的蒸发冷却空调***
CN102183069A (zh) 板盒(管)式辐射板空调
CN212006059U (zh) 一种新型辐射空调末端
CN207501337U (zh) 辐射换热器、空调室内机及空调器
CN106679027A (zh) 一种蒸发冷却置换通风装置及其参数确定方法
CN208858616U (zh) 房屋降温***
CN209445537U (zh) 一种可除湿的冷辐射吊顶空调末端装置
CN211316454U (zh) 一种利用太阳能跨季节地下储热技术换热的新风***
CN207635582U (zh) 一种增强换热式辐射对流冷热交换器
CN207501338U (zh) 辐射换热器、空调室内机及空调器
CN108180546A (zh) 一种可精确快速调控室内温湿度的辐射对流空调末端
CN219607227U (zh) 一种具有置换通风效果的供热空调末端装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18933133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18933133

Country of ref document: EP

Kind code of ref document: A1