WO2020050294A1 - Homologous recombination efficiency increasing agent, and use thereof - Google Patents

Homologous recombination efficiency increasing agent, and use thereof Download PDF

Info

Publication number
WO2020050294A1
WO2020050294A1 PCT/JP2019/034705 JP2019034705W WO2020050294A1 WO 2020050294 A1 WO2020050294 A1 WO 2020050294A1 JP 2019034705 W JP2019034705 W JP 2019034705W WO 2020050294 A1 WO2020050294 A1 WO 2020050294A1
Authority
WO
WIPO (PCT)
Prior art keywords
homologous recombination
cells
cell
recombination efficiency
dna
Prior art date
Application number
PCT/JP2019/034705
Other languages
French (fr)
Japanese (ja)
Inventor
岡野 栄之
誠司 塩澤
祥 吉松
Original Assignee
学校法人慶應義塾
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人慶應義塾 filed Critical 学校法人慶應義塾
Priority to JP2020541254A priority Critical patent/JPWO2020050294A1/en
Publication of WO2020050294A1 publication Critical patent/WO2020050294A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • C12N5/12Fused cells, e.g. hybridomas
    • C12N5/16Animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues

Definitions

  • the present invention relates to an agent for increasing the efficiency of homologous recombination and its use. More specifically, the present invention relates to an agent for increasing the efficiency of homologous recombination, a method for producing a cell having an increased efficiency of homologous recombination, and a method for producing a cell having genomic DNA modified by homologous recombination.
  • This application claims priority based on Japanese Patent Application No. 2018-165813 for which it applied to Japan on September 5, 2018, and uses those content here.
  • Homologous recombination means that when one double-stranded DNA of two different double-stranded DNAs is cleaved and a homologous DNA sequence exists near the cleavage site, crossover occurs in the homologous sequence, Refers to the exchange of DNA sequences between double-stranded DNA.
  • Genetic modification technology that uses a site-specific nuclease to cause DNA double-strand breaks in any genomic region and uses the DNA repair mechanism is called genome editing, and gene knock-in / knock-out at the cell or individual level is possible. .
  • Non-Patent Document 1 shows an example in which five genes are simultaneously mutated in mouse ES cells using genome editing technology.
  • NHEJ non-homologous end joining
  • HDR homology-directed DNA repair
  • the knock-in technique has an advantage over the knock-out technique in the production of human disease iPS cells and disease model mice.
  • Knock-in technology is also indispensable for advanced genetic modification such as spatio-temporal conditional knockout.
  • ⁇ DNA repair via NHEJ cannot control the DNA sequence to be inserted or deleted.
  • HDR-mediated DNA repair In order to insert a desired DNA fragment into a target site, it is necessary to use HDR-mediated DNA repair.
  • an object of the present invention is to provide a technique for improving the efficiency of homologous recombination.
  • the present invention includes the following aspects. [1] containing, as an active ingredient, a DNA cleavage repair-related protein or a nucleic acid encoding the protein, which has a higher expression level in marmoset cells than a cell of a species having a lower homologous recombination efficiency than a marmoset cell; Agent for increasing homologous recombination efficiency. [2] The species whose homologous recombination efficiency is lower than that of marmoset cells is selected from the group consisting of human, mouse, rat, rabbit, monkey, pig, goat, sheep, cow, ferret, dog, cat and chicken. The agent for increasing the efficiency of homologous recombination according to claim 1, which is used.
  • [3] The agent for increasing homologous recombination efficiency according to [1] or [2], wherein the DNA breakage repair-related protein is a RAD51 paralog and a homologous recombination factor involved in susceptibility to breast cancer.
  • [4] The agent for increasing homologous recombination efficiency according to [3], wherein the DNA breakage repair-related protein is selected from the group consisting of BRCA1, BRCA2, RAD51C, and RAD51D.
  • a production method comprising introducing the homologous recombination efficiency increasing agent according to any one of the above.
  • the species whose homologous recombination efficiency is lower than that of marmoset cells is selected from the group consisting of human, mouse, rat, rabbit, monkey, pig, goat, sheep, cow, ferret, dog, cat and chicken. Production method according to [5].
  • the species whose homologous recombination efficiency is lower than that of marmoset cells is selected from the group consisting of human, mouse, rat, rabbit, monkey, pig, goat, sheep, cow, ferret, dog, cat, and chicken.
  • a method for producing a cell in which genomic DNA has been modified by homologous recombination, wherein the cell is a species of a cell having a lower homologous recombination efficiency than a marmoset cell and [4] A production method, comprising: introducing the homologous recombination efficiency increasing agent according to any one of [4], introducing a donor DNA into the cell, and cutting the genomic DNA of the cell. .
  • the species having a lower homologous recombination efficiency as compared to marmoset cells is selected from the group consisting of human, mouse, rat, rabbit, monkey, pig, goat, sheep, cow, ferret, dog, cat, and chicken. Production method according to [9].
  • a technique for improving the efficiency of homologous recombination can be provided.
  • FIG. 8 is a diagram illustrating an experimental system in Experimental Example 2 for causing homologous recombination at the HPRT locus and calculating homologous recombination efficiency.
  • FIG. 9 shows the results of measuring the expression of the RAD51C gene in marmoset ES cells or human iPS / ES cells by real-time PCR in Experimental Example 2.
  • FIG. It is the result of having measured the expression of the RAD51D gene in the marmoset ES cell or the human iPS / ES cell in Experimental Example 2 by real-time PCR.
  • 5 shows the results of measuring the expression of the RAD51 gene in marmoset ES cells or human iPS / ES cells in real time PCR in Experimental Example 2.
  • FIG. 5 shows the results of real-time PCR measuring the expression of the BRCA1 gene in marmoset ES cells or human iPS / ES cells in Experimental Example 2.
  • 5 shows the results of measuring the expression of the BRCA2 gene in marmoset ES cells or human iPS / ES cells in real time PCR in Experimental Example 2.
  • FIG. 9 shows the results of calculating the homologous recombination efficiency of the HPRT gene when each DNA breakage repair-related protein was expressed in human iPS cells in Experimental Example 3.
  • FIG. 10 shows the results of calculating the homologous recombination efficiency in the HPRT gene in Experimental Example 3 when human iPS cells were expressed in combination with DNA breakage repair-related proteins (BRCA1, BRCA2, RAD51C, and RAD51D).
  • FIG. 9 is a diagram illustrating an experimental system for performing homologous recombination at the Sox2 locus in Experimental Example 4.
  • 9 is a microscope image of cells expressing SOX2 :: Venus fusion protein in the nucleus in Experimental Example 4.
  • 9 shows the results of calculating the Venus-positive colony rate in Experimental Example 4.
  • the present invention relates to a DNA breakage repair-related protein or a nucleic acid encoding the protein, which has a higher expression level in a cell of a marmoset than a cell of a species having a lower homologous recombination efficiency than a cell of a marmoset.
  • homologous recombination efficiency (example repaired by HDR) / ⁇ (example repaired by NHEJ) + (example repaired by HDR) ⁇ (1)
  • Marmosets (Callithrix jacchus) are a kind of new world monkeys classified as primates, and their body type is small, and their generation change time is as short as about one year, so they are regarded as primate model animals.
  • the inventors have found that the homologous recombination efficiency is less than 1% in human ES cells (embryonic stem cells) and iPS cells (inducible pluripotent stem cells) and 1% in mouse ES cells. It was found to be higher than 80% in marmoset ES cells compared to ⁇ 5%.
  • the cells to be compared for the efficiency of homologous recombination with marmosets may be, for example, pluripotent stem cells, differentiated cells, or established cells such as cancer cells. Is also good. Pluripotent stem cells include tissue stem cells, embryonic stem cells (ES cells), induced pluripotent stem cells (iPS cells), and the like.
  • Species having low homologous recombination efficiency include, but are not limited to, humans, mice, rats, rabbits, monkeys, pigs, goats, sheep, cows, ferrets, dogs, cats, chickens, and the like.
  • RNA sequencing RNA-Seq
  • microarray microarray
  • electrophoresis two-dimensional electrophoresis
  • DNA break repair-related proteins include RAD51 paralog, homologous recombination factor involved in susceptibility to breast cancer, and the like.
  • the protein may be a human protein, a marmoset protein, or a protein of another animal species.
  • RAD51 paralog examples include RAD51B, RAD51C, RAD51D, XRCC2 (RefSeq @ ID @ NP_005422.1), and XRCC3 (RefSeq @ ID @ NP_0010935888.1).
  • Examples of homologous recombination factors related to breast cancer susceptibility include ATM (RefSeq @ ID @ NP_000004.3), BARD1 (RefSeq @ ID @ NP_0004566.2), BRIP1 (RefSeq @ ID @ NP_114432.2), CHEK2 ([email protected]). (RefSeq @ ID @ NP_001317276.1), MSH6 (RefSeq @ ID @ NP_0001700.1), NBN (RefSeq @ ID @ NP_001019859.1), PALB2 (RefSeq @ ID @ NP_07895.12), PMS2 (RefSeqA ID50N2). 2) and the like, but are not limited thereto. .
  • ATM RefSeq @ ID @ NP_000004.3
  • BARD1 RefSeq @ ID @ NP_0004566.2
  • BRIP1 RefSeq @ ID @ NP
  • the DNA cleavage repair-related protein one of the above-mentioned proteins may be used alone, or two or more may be used in combination. Further, the homologous recombination efficiency increasing agent of the present embodiment is not limited to a protein, and may be RNA or DNA encoding the protein.
  • the DNA break repair-related protein may be RAD51C, RAD51D, BRCA1, BRCA2.
  • BRCA1 and BRCA2 may be used as a mixture
  • RAD51C and RAD51D may be used as a mixture
  • BRCA1, BRCA2, RAD51C and RAD51D may be used as a mixture
  • BRCA2, RAD51C, RAD51D and RAD51 may be used as a mixture.
  • Tables 1 and 2 show examples of BRCA1, BRCA2, RAD51C and RAD51D proteins of human, marmoset, and mouse, and NCBI accession numbers of mRNAs encoding the proteins.
  • the agent for increasing the efficiency of homologous recombination of the present embodiment is not limited to the DNA break repair-related proteins exemplified in Tables 1 and 2 and mutants of the nucleic acids encoding them, as long as they have the activity of increasing the efficiency of homologous recombination. Good.
  • homologous recombination efficiency increasing agent is a protein or RNA
  • homologous recombination efficiency can be increased by incorporating these into cells by a standard method such as microinjection or electroporation.
  • the homologous recombination efficiency increasing agent may be an expression construct in which a DNA encoding the above-mentioned DNA cleavage repair-related protein is linked to a promoter.
  • the promoter may be one having activity in a target cell or an expression-inducible promoter capable of inducing the activity by a drug or the like.
  • the promoter may be, for example, a cytomegalovirus promoter (CMV promoter) or a CMV early enhancer / chicken beta actin (CAG promoter) having strong promoter activity in almost all cells, or a tissue-specific promoter.
  • CMV promoter cytomegalovirus promoter
  • CAG promoter CMV early enhancer / chicken beta actin
  • a promoter having promoter activity may be used.
  • expression-inducible promoter examples include a doxycycline-inducible promoter (TetO promoter) which can artificially control the promoter activity.
  • TetO promoter doxycycline-inducible promoter
  • the expression construct may be, for example, one integrated into a transposon vector, an adenovirus vector, an adeno-associated virus vector, a plasmid vector, an episomal vector, or the like.
  • a vector that is not integrated into the genome or a vector that is temporarily integrated into the genome but can be removed from the genome by an artificial operation is preferable.
  • Examples of a method for introducing a vector into a cell include a lipofection method, a DEAE-dextran method, a calcium phosphate method, a microinjection method, an electroporation method, and a virus vector method.
  • the present invention relates to a method for producing a cell having an increased homologous recombination efficiency, wherein the cell is a species of a cell having a lower homologous recombination efficiency as compared to a marmoset cell,
  • a production method is provided, which comprises introducing a replacement efficiency increasing agent.
  • the species having a low homologous recombination efficiency as compared with the marmoset cells include, for example, human, mouse, rat, rabbit, monkey, pig, goat, sheep, cow, ferret, dog, cat, and chicken. It is selected from a group, but is not limited to this.
  • the present invention provides a species cell having a lower homologous recombination efficiency than a marmoset cell, into which the agent for increasing homologous recombination efficiency is introduced.
  • the cells of the present embodiment have an increased homologous recombination efficiency as compared with the case where the homologous recombination efficiency increasing agent is not introduced.
  • the species having a low homologous recombination efficiency as compared with the marmoset cells include, for example, human, mouse, rat, rabbit, monkey, pig, goat, sheep, cow, ferret, dog, cat, and chicken. It is selected from a group, but is not limited to this.
  • the present invention relates to a method for producing a cell in which genomic DNA has been modified by homologous recombination, wherein the cell is a cell of a species having a lower homologous recombination efficiency than a cell of a marmoset,
  • the present invention provides a production method, which comprises introducing the above-mentioned agent for increasing the efficiency of homologous recombination into a cell, introducing a donor DNA into the cell, and cutting the genomic DNA of the cell.
  • the species having a low homologous recombination efficiency as compared to cells of a marmoset are, for example, human, mouse, rat, rabbit, monkey, pig, goat, sheep, cow, ferret, dog, cat and chicken. Selected from, but not limited to.
  • the donor DNA may be a single-stranded DNA of about 50 to 5,000 base pairs or a double-stranded DNA of about 500 to 5,000 base pairs. It is preferable that the donor DNA has 90% or more, preferably 95% or more, more preferably 99% or more sequence identity with the region including the position of the double-stranded DNA break of the genomic DNA.
  • sequence identity is a value indicating a ratio of a target base sequence to a reference base sequence (reference base sequence).
  • the donor DNA may include, for example, a gene encoding a fluorescent protein or a protein tag.
  • the donor DNA may be designed by HDR such that the gene located near the genomic DNA break and the gene express a fusion protein.
  • genomic DNA breaks in cells is very low.
  • the genomic DNA can be specifically cleaved by causing cells to express an enzyme that cleaves the genomic DNA artificially.
  • the enzyme is not particularly limited as long as it cleaves genomic DNA in a target sequence-specific manner.
  • the length of the target sequence recognized by the enzyme that cuts genomic DNA may be, for example, about 10 to 40 bases.
  • the enzyme that cleaves genomic DNA may be an RNA-induced artificial nuclease or an artificial nuclease generally used in so-called genome editing.
  • RNA-induced artificial nuclease is an enzyme in which short RNA serving as a guide binds to a target sequence and nuclease cleaves DNA specifically in the target sequence.
  • RNA-induced artificial nucleases include, but are not limited to, Cas family proteins.
  • Artificial nuclease is an artificial restriction enzyme obtained by fusing a DNA binding domain that binds to a target sequence with the nuclease domain of restriction enzyme FokI.
  • Artificial nucleases include, but are not limited to, Zinc finger nuclease (ZFN), Transcription activator-like effector nuclease (TALEN), and the like.
  • nickase may be used as an enzyme that cuts genomic DNA.
  • Nickase is an enzyme that cuts one strand of double-stranded DNA. For example, at close locations on genomic DNA, a nickase nicks both strands of the double-stranded DNA, thereby forming a double-stranded DNA break.
  • BRCA1, BRCA2, RAD51C and RAD51D are more highly expressed in marmoset ES cells than in human ES / iPS cells.
  • DSY127 indicates the cell line name of marmoset embryonic stem cells.
  • 201B7, WD39 and etKA4 are iPS cell lines, and human iPSKhES-1 is a human ES cell line.
  • FIG. 2 shows the result of comparing the expression level of the RAD51C gene
  • FIG. 3 shows the result of comparing the expression level of the RAD51D gene
  • FIG. 4 shows the result of comparing the expression level of the RAD51 gene
  • FIG. Shows the results of comparing the expression levels of the BRCA1 gene
  • FIG. 6 shows the results of comparing the expression levels of the BRCA2 gene.
  • HPRT WT indicates a normal human HPRT locus
  • HPRT targeting vector indicates a targeting vector containing a neomycin resistance gene
  • HPRT Neo indicates an HPRT locus after homologous recombination.
  • 6-thioguanine 6-thioguanine
  • gentamicin analog G418 inhibits eukaryotic protein synthesis and kills cells, cells transformed with the neomycin resistance gene inserted can survive in the presence of G418.
  • Cas9 protein was used as an enzyme for cleaving genomic DNA.
  • As the sequence of the guide RNA one targeting exon 2 of the HPRT gene was used.
  • the nucleotide sequence of the target sequence of the guide RNA is shown in SEQ ID NO: 1.
  • a donor DNA having a sequence homologous to the HPRT locus and a neomycin resistance gene cassette was prepared.
  • the nucleotide sequence of the donor DNA is shown in SEQ ID NO: 2.
  • As the donor DNA a circular double-stranded DNA was used.
  • the cells were divided into two equal groups, one of which was supplemented with G418 alone and the other of which was supplemented with G418 and 6-TG, cultured and sorted. The number of colonies in each of the two groups was counted.
  • the number of G418-resistant clones in which the neomycin resistance gene cassette was inserted at any position on the genome reflects the total number of homologous recombinants and non-homologous recombinants.
  • the number of clones resistant to both G418 and 6-TG in which the neomycin gene cassette was inserted at the HPRT locus reflects the number of homologous recombinants.
  • the homologous recombination efficiency can be calculated by calculating the ratio of the number of colonies of cells resistant to both G418 and 6-TG to the number of colonies of G418-resistant cells from the following equation (3).
  • (Homologous recombination efficiency) (number of colonies of cells resistant to both G418 and 6-TG) / (number of colonies of G418-resistant cells) (3)
  • the NCBI accession number of the RAD51 mRNA is NM — 0028755.4, and the NCBI accession number of the RAD protein is NP — 0028666.2.
  • the NCBI accession numbers of BRCA1, BRCA2, RAD51C and RAD51D are as shown in Tables 1 and 2.
  • the expression constructs of the plurality of DNA-cutting repair-related proteins are mixed with the donor DNA construct and the expression construct of an enzyme that cuts genomic DNA, and introduced into human iPS cells. did.
  • the cells were divided into two equal groups, one of which was supplemented with G418 alone and the other of which was supplemented with G418 and 6-TG, cultured and sorted. The number of colonies in each of the two groups was counted.
  • Homologous recombination efficiency was calculated from the measured number of colonies using the above formula (3). The results are shown in FIG. 7 and FIG. The vertical axis in FIGS. 7 and 8 indicates the homologous recombination efficiency calculated by the above equation (3).
  • FIG. 7 shows the homologous recombination efficiency when one or two or more DNA break repair-related proteins are expressed. In FIGS. 7 and 8, mock shows the case where the DNA break repair-related protein was not expressed.
  • the homologous recombination efficiency is significantly increased when the DNA break repair-related proteins are expressed in combination, that is, when BRCA1 and BRCA2, RAD51C and RAD51D, and BRCA1 and BRCA2, RAD51C and RAD51D are expressed. It turned out to be.
  • Wild type indicates the Sox2 locus on the genomic DNA
  • Knock-in indicates the Sox2 locus after homologous recombination in which Venus was inserted in-frame at the Sox2 locus.
  • the Cas9 protein was used as an enzyme that cuts genomic DNA.
  • the guide RNA was designed to target around the stop codon of the SOX2 gene.
  • the EB3 strain was used as mouse ES cells.
  • a donor DNA having an ORF encoding Venus, about 500 base pairs upstream of the stop codon of the SOX2 gene, and about 500 base pairs downstream of the stop codon of the SOX2 gene was prepared.
  • the Venus ORF designed the donor DNA to ligate in frame with the SOX2 gene.
  • As the donor DNA a circular double-stranded DNA was used.
  • an expression construct for a DNA cleavage repair-related protein an expression construct in which a human BRCA1 gene, a human BRCA2 gene, a human RAD51C gene, a human RAD51D gene, and a human RAD51 gene were respectively linked to the downstream of a CAG promoter was used.
  • a mixture of an expression construct for a DNA cleavage repair-related protein, a donor DNA, and an expression construct for Cas9 protein and guide RNA was introduced into mouse ES cells by electroporation. Subsequently, the obtained cells were seeded and cultured. The results are shown in FIG.
  • FIG. 10 is a micrograph of cells expressing Venus after homologous recombination. As a result, it was revealed that in cells in which Venus was inserted into the Sox2 locus by homologous recombination, the SOX2 :: Venus fusion protein was localized in the nucleus.
  • the cells subjected to electroporation were cultured to form colonies. Among the formed colonies, the ratio of colonies having Venus-expressing cells (Venus positive colony ratio) was measured. The results are shown in FIG.
  • FIG. 11 shows the results showing the ratio of Venus-positive colonies in the case of expressing the DNA cleavage repair-related protein.
  • 4F shows the case where BRCA1, BRCA2, RAD51C and RAD51D are simultaneously expressed
  • 5F shows the case where BRCA1, BRCA2, RAD51C, RAD51D and RAD51 are simultaneously expressed.
  • Mock shows the case where the DNA break repair-related protein was not expressed.
  • a technique for improving the efficiency of homologous recombination can be provided.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Mycology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

A homologous recombination efficiency increasing agent containing a DNA break repair-related protein or a nucleic acid encoding the protein as an active ingredient, wherein the DNA break repair-related protein can be expressed in a larger amount in a cell in marmoset compared with a cell in a species in which the homologous recombination efficiency is lower compared with that in a cell in marmoset.

Description

相同組換え効率上昇剤及びその使用Agent for increasing homologous recombination efficiency and use thereof
 本発明は、相同組換え効率上昇剤及びその使用に関する。より詳細には、相同組換え効率上昇剤、相同組換え効率が上昇した細胞の製造方法及び相同組換えによりゲノムDNAが改変された細胞の製造方法に関する。本願は、2018年9月5日に日本に出願された特願2018-165813号に基づき優先権を主張し、それらの内容をここに援用する。 (4) The present invention relates to an agent for increasing the efficiency of homologous recombination and its use. More specifically, the present invention relates to an agent for increasing the efficiency of homologous recombination, a method for producing a cell having an increased efficiency of homologous recombination, and a method for producing a cell having genomic DNA modified by homologous recombination. This application claims priority based on Japanese Patent Application No. 2018-165813 for which it applied to Japan on September 5, 2018, and uses those content here.
 相同組換えとは、異なるふたつの二本鎖DNAのうち一方の二本鎖DNAが切断され、その切断箇所の近傍に相同なDNA配列が存在する場合に、その相同配列において交叉が起き、前記二本鎖DNAの間でDNA配列が交換されることを指す。 Homologous recombination means that when one double-stranded DNA of two different double-stranded DNAs is cleaved and a homologous DNA sequence exists near the cleavage site, crossover occurs in the homologous sequence, Refers to the exchange of DNA sequences between double-stranded DNA.
 部位特異的ヌクレアーゼを用いて任意のゲノム領域にDNA二本鎖切断を引き起こし、DNA修復機構を利用する遺伝子改変技術はゲノム編集と呼ばれ、細胞あるいは個体レベルでの遺伝子ノックイン・ノックアウトが可能である。 Genetic modification technology that uses a site-specific nuclease to cause DNA double-strand breaks in any genomic region and uses the DNA repair mechanism is called genome editing, and gene knock-in / knock-out at the cell or individual level is possible. .
 例えば、非特許文献1には、ゲノム編集技術を用いて、マウスES細胞において、5種の遺伝子を同時に変異させた例が示されている。 For example, Non-Patent Document 1 shows an example in which five genes are simultaneously mutated in mouse ES cells using genome editing technology.
 DNA修復機構には2種類あり、一つは非相同末端結合(Non-homologous end joining、NHEJ)である。この経路を用いたゲノム編集は、切断末端の修復過程において頻繁に起こる塩基の欠失・挿入等のエラーによるフレームシフトを利用し、遺伝子機能の喪失(ノックアウト)を起こすものである。 There are two types of DNA repair mechanisms, one of which is non-homologous end joining (NHEJ). Genome editing using this pathway utilizes a frame shift due to an error such as deletion or insertion of a base that frequently occurs in the process of repairing a cleaved end to cause loss of gene function (knockout).
 もう一つは相同指向性修復(Homology-directed DNA repair、HDR)であり、部位特異的DNA二本鎖切断の際に、標的部位と相同な配列を持つ1本鎖オリゴDNAあるいは二本鎖DNA等のドナーDNAを加えることで、相同組換えによって任意の変異あるいはDNA断片を標的部位に挿入(ノックイン)することが可能である。 The other is homology-directed DNA repair (HDR), which is a single-stranded oligo DNA or double-stranded DNA having a sequence homologous to a target site upon site-specific DNA double-strand breaks. By adding a donor DNA such as described above, it is possible to insert (knock-in) an arbitrary mutation or DNA fragment into a target site by homologous recombination.
 多くの遺伝性疾患においては、1塩基置換等の変異により引き起こされることが多いため、ヒト疾患iPS細胞や疾患モデルマウスの作製において、ノックイン技術はノックアウトと比較して優位性を持つ。また、時空間特異的なコンディショナル・ノックアウトなど高度な遺伝子改変を行う際にもノックイン技術は欠かせないものとなる。 た め Since many genetic diseases are often caused by mutations such as single nucleotide substitutions, the knock-in technique has an advantage over the knock-out technique in the production of human disease iPS cells and disease model mice. Knock-in technology is also indispensable for advanced genetic modification such as spatio-temporal conditional knockout.
 NHEJを介したDNA修復は、挿入・欠失させるDNA配列を制御することができない。標的部位に所望のDNA断片を挿入させるためには、HDRを介したDNA修復を利用する必要がある。 修復 DNA repair via NHEJ cannot control the DNA sequence to be inserted or deleted. In order to insert a desired DNA fragment into a target site, it is necessary to use HDR-mediated DNA repair.
 しかしながら、HDRによるDNA修復はNHEJよりも頻度が非常に低いため、一般にノックインの効率は単純ノックアウトよりもはるかに劣る。そこで、本発明では、相同組換え効率を改善する技術を提供することを目的とする。 However, DNA repair by HDR is much less frequent than NHEJ, so knock-in efficiency is generally much lower than simple knock-out. Therefore, an object of the present invention is to provide a technique for improving the efficiency of homologous recombination.
 本発明は、以下の態様を含む。
[1]マーモセットの細胞と比較して相同組換え効率が低い種の細胞よりも、マーモセットの細胞における発現量が高い、DNA切断修復関連タンパク質又は前記タンパク質をコードする核酸を有効成分として含有する、相同組換え効率上昇剤。
[2]マーモセットの細胞と比較して相同組換え効率が低い前記種が、ヒト、マウス、ラット、ウサギ、サル、ブタ、ヤギ、ヒツジ、ウシ、フェレット、イヌ、ネコ及びニワトリからなる群より選択される、請求項1に記載の相同組換え効率上昇剤。
[3]前記DNA切断修復関連タンパク質が、RAD51パラログ及び乳癌易罹患性に関わる相同組換え因子である[1]または[2]に記載の相同組換え効率上昇剤。
[4]前記DNA切断修復関連タンパク質が、BRCA1、BRCA2、RAD51C、RAD51Dからなる群より選択される、[3]に記載の相同組換え効率上昇剤。
[5]相同組換え効率が上昇した細胞の製造方法であって、前記細胞はマーモセットの細胞と比較して相同組換え効率が低い種の細胞であり、前記細胞に[1]~[4]のいずれか一項に記載の相同組換え効率上昇剤を導入することを含む、製造方法。
[6]マーモセットの細胞と比較して相同組換え効率が低い前記種が、ヒト、マウス、ラット、ウサギ、サル、ブタ、ヤギ、ヒツジ、ウシ、フェレット、イヌ、ネコ及びニワトリからなる群より選択される、[5]に記載の製造方法。
[7][1]~[4]のいずれか一項に記載の相同組換え効率上昇剤が導入された、マーモセットの細胞と比較して相同組換え効率が低い種の細胞。
[8]マーモセットの細胞と比較して相同組換え効率が低い前記種が、ヒト、マウス、ラット、ウサギ、サル、ブタ、ヤギ、ヒツジ、ウシ、フェレット、イヌ、ネコ及びニワトリからなる群より選択される、[7]に記載の細胞。
[9]相同組換えによりゲノムDNAが改変された細胞の製造方法であって、前記細胞はマーモセットの細胞と比較して相同組換え効率が低い種の細胞であり、前記細胞に[1]~[4]のいずれか一項に記載の相同組換え効率上昇剤を導入することと、前記細胞にドナーDNAを導入することと、前記細胞のゲノムDNAを切断することと、を含む、製造方法。
[10]マーモセットの細胞と比較して相同組換え効率が低い前記種が、ヒト、マウス、ラット、ウサギ、サル、ブタ、ヤギ、ヒツジ、ウシ、フェレット、イヌ、ネコ及びニワトリからなる群より選択される、[9]に記載の製造方法。
The present invention includes the following aspects.
[1] containing, as an active ingredient, a DNA cleavage repair-related protein or a nucleic acid encoding the protein, which has a higher expression level in marmoset cells than a cell of a species having a lower homologous recombination efficiency than a marmoset cell; Agent for increasing homologous recombination efficiency.
[2] The species whose homologous recombination efficiency is lower than that of marmoset cells is selected from the group consisting of human, mouse, rat, rabbit, monkey, pig, goat, sheep, cow, ferret, dog, cat and chicken. The agent for increasing the efficiency of homologous recombination according to claim 1, which is used.
[3] The agent for increasing homologous recombination efficiency according to [1] or [2], wherein the DNA breakage repair-related protein is a RAD51 paralog and a homologous recombination factor involved in susceptibility to breast cancer.
[4] The agent for increasing homologous recombination efficiency according to [3], wherein the DNA breakage repair-related protein is selected from the group consisting of BRCA1, BRCA2, RAD51C, and RAD51D.
[5] A method for producing a cell having an increased homologous recombination efficiency, wherein the cell is a species of a cell having a lower homologous recombination efficiency as compared to a marmoset cell, and the cells have [1] to [4]. A production method comprising introducing the homologous recombination efficiency increasing agent according to any one of the above.
[6] The species whose homologous recombination efficiency is lower than that of marmoset cells is selected from the group consisting of human, mouse, rat, rabbit, monkey, pig, goat, sheep, cow, ferret, dog, cat and chicken. Production method according to [5].
[7] A cell of a species having a lower homologous recombination efficiency than a marmoset cell, into which the agent for increasing a homologous recombination efficiency according to any one of [1] to [4] is introduced.
[8] The species whose homologous recombination efficiency is lower than that of marmoset cells is selected from the group consisting of human, mouse, rat, rabbit, monkey, pig, goat, sheep, cow, ferret, dog, cat, and chicken. The cell according to [7], which is obtained.
[9] A method for producing a cell in which genomic DNA has been modified by homologous recombination, wherein the cell is a species of a cell having a lower homologous recombination efficiency than a marmoset cell, and [4] A production method, comprising: introducing the homologous recombination efficiency increasing agent according to any one of [4], introducing a donor DNA into the cell, and cutting the genomic DNA of the cell. .
[10] The species having a lower homologous recombination efficiency as compared to marmoset cells is selected from the group consisting of human, mouse, rat, rabbit, monkey, pig, goat, sheep, cow, ferret, dog, cat, and chicken. Production method according to [9].
 本発明によれば、相同組換え効率を改善する技術を提供することができる。 According to the present invention, a technique for improving the efficiency of homologous recombination can be provided.
実験例2における、HPRT遺伝子座において相同組換えを引き起こし、相同組換え効率を算出する実験系について説明する図である。FIG. 8 is a diagram illustrating an experimental system in Experimental Example 2 for causing homologous recombination at the HPRT locus and calculating homologous recombination efficiency. 実験例2における、マーモセットES細胞又はヒトiPS/ES細胞においての、RAD51C遺伝子の発現をリアルタイムPCRによって測定した結果である。FIG. 9 shows the results of measuring the expression of the RAD51C gene in marmoset ES cells or human iPS / ES cells by real-time PCR in Experimental Example 2. FIG. 実験例2における、マーモセットES細胞又はヒトiPS/ES細胞においての、RAD51D遺伝子の発現をリアルタイムPCRによって測定した結果である。It is the result of having measured the expression of the RAD51D gene in the marmoset ES cell or the human iPS / ES cell in Experimental Example 2 by real-time PCR. 実験例2における、マーモセットES細胞又はヒトiPS/ES細胞においての、RAD51遺伝子の発現をリアルタイムPCRによって測定した結果である。5 shows the results of measuring the expression of the RAD51 gene in marmoset ES cells or human iPS / ES cells in real time PCR in Experimental Example 2. 実験例2における、マーモセットES細胞又はヒトiPS/ES細胞においての、BRCA1遺伝子の発現をリアルタイムPCRによって測定した結果である。5 shows the results of real-time PCR measuring the expression of the BRCA1 gene in marmoset ES cells or human iPS / ES cells in Experimental Example 2. 実験例2における、マーモセットES細胞又はヒトiPS/ES細胞においての、BRCA2遺伝子の発現をリアルタイムPCRによって測定した結果である。5 shows the results of measuring the expression of the BRCA2 gene in marmoset ES cells or human iPS / ES cells in real time PCR in Experimental Example 2. 実験例3における、ヒトiPS細胞に各DNA切断修復関連タンパク質を発現させた時の、HPRT遺伝子における相同組換え効率を算出した結果である。FIG. 9 shows the results of calculating the homologous recombination efficiency of the HPRT gene when each DNA breakage repair-related protein was expressed in human iPS cells in Experimental Example 3. FIG. 実験例3における、ヒトiPS細胞に各DNA切断修復関連タンパク質(BRCA1、BRCA2、RAD51C及びRAD51D)を組み合わせて発現させた時の、HPRT遺伝子における相同組換え効率を算出した結果である。FIG. 10 shows the results of calculating the homologous recombination efficiency in the HPRT gene in Experimental Example 3 when human iPS cells were expressed in combination with DNA breakage repair-related proteins (BRCA1, BRCA2, RAD51C, and RAD51D). 実験例4における、Sox2遺伝子座において相同組換えを行う実験系について説明する図である。FIG. 9 is a diagram illustrating an experimental system for performing homologous recombination at the Sox2 locus in Experimental Example 4. 実験例4における、核においてSOX2::Venus融合タンパク質を発現する細胞の顕微鏡像である。9 is a microscope image of cells expressing SOX2 :: Venus fusion protein in the nucleus in Experimental Example 4. 実験例4における、Venus陽性コロニー率を算出した結果である。9 shows the results of calculating the Venus-positive colony rate in Experimental Example 4.
[相同組換え効率上昇剤]
 1実施形態において、本発明は、マーモセットの細胞と比較して相同組換え効率が低い種の細胞よりも、マーモセットの細胞における発現量が高い、DNA切断修復関連タンパク質又は前記タンパク質をコードする核酸を有効成分として含有する、相同組換え効率上昇剤を提供する。
[Homologous recombination efficiency increasing agent]
In one embodiment, the present invention relates to a DNA breakage repair-related protein or a nucleic acid encoding the protein, which has a higher expression level in a cell of a marmoset than a cell of a species having a lower homologous recombination efficiency than a cell of a marmoset. An agent for increasing the efficiency of homologous recombination, which is contained as an active ingredient.
 本明細書において、相同組換え効率は、下記式(1)にしたがって求めることができる。
(相同組換え効率)=(HDRにより修復された例)/{(NHEJにより修復された例)+(HDRにより修復された例)} (1)
In the present specification, the homologous recombination efficiency can be determined according to the following formula (1).
(Homologous recombination efficiency) = (example repaired by HDR) / {(example repaired by NHEJ) + (example repaired by HDR)} (1)
 マーモセット(Callithrix jacchus)は、霊長目に分類される新世界ザルの一種であり、その体型は小型で、世代交代時間が約1年と短いことから、霊長類のモデル動物として位置づけられている。 Marmosets (Callithrix jacchus) are a kind of new world monkeys classified as primates, and their body type is small, and their generation change time is as short as about one year, so they are regarded as primate model animals.
 実施例において詳述するように、発明者らは、相同組換え効率は、ヒトES細胞(胚性幹細胞)及びiPS細胞(人工多能性幹細胞)では1%未満であり、マウスES細胞では1~5%であるのに対し、マーモセットES細胞では80%より高いことを見出した。 As described in detail in the examples, the inventors have found that the homologous recombination efficiency is less than 1% in human ES cells (embryonic stem cells) and iPS cells (inducible pluripotent stem cells) and 1% in mouse ES cells. It was found to be higher than 80% in marmoset ES cells compared to ~ 5%.
 マーモセットと相同組換え効率を比較する対象の細胞としては、例えば、多能性幹細胞であってもよいし、分化した細胞であってもよいし、癌細胞等の株化した細胞等であってもよい。多能性幹細胞としては、組織幹細胞、胚性幹細胞(ES細胞)及び人工多能性幹細胞(iPS細胞)等が挙げられる。 The cells to be compared for the efficiency of homologous recombination with marmosets may be, for example, pluripotent stem cells, differentiated cells, or established cells such as cancer cells. Is also good. Pluripotent stem cells include tissue stem cells, embryonic stem cells (ES cells), induced pluripotent stem cells (iPS cells), and the like.
 相同組換え効率が低い種としては、例えば、ヒト、マウス、ラット、ウサギ、サル、ブタ、ヤギ、ヒツジ、ウシ、フェレット、イヌ、ネコ及びニワトリ等が挙げられるが、これに限定されない。 種 Species having low homologous recombination efficiency include, but are not limited to, humans, mice, rats, rabbits, monkeys, pigs, goats, sheep, cows, ferrets, dogs, cats, chickens, and the like.
 発現量を比較する方法としては、例えば、RNAシーケンシング(RNA-Seq)、マイクロアレイ、二次元電気泳動などが挙げられるが、これに限定されない。 方法 Methods for comparing the expression levels include, but are not limited to, RNA sequencing (RNA-Seq), microarray, two-dimensional electrophoresis, and the like.
 DNA切断修復関連タンパク質としては、例えば、RAD51パラログ、乳癌易罹患性に関わる相同組換え因子等が挙げられる。前記タンパク質はヒトタンパク質であってもよいし、マーモセットタンパク質であってもよいし、他動物種のタンパク質であってもよい。 Examples of DNA break repair-related proteins include RAD51 paralog, homologous recombination factor involved in susceptibility to breast cancer, and the like. The protein may be a human protein, a marmoset protein, or a protein of another animal species.
 RAD51パラログとしては、RAD51B、RAD51C、RAD51D、XRCC2(RefSeq ID NP_005422.1)、XRCC3(RefSeq ID NP_001093588.1)等が挙げられる。 Examples of the RAD51 paralog include RAD51B, RAD51C, RAD51D, XRCC2 (RefSeq @ ID @ NP_005422.1), and XRCC3 (RefSeq @ ID @ NP_0010935888.1).
 乳癌易罹患性に関わる相同組換え因子としては、ATM(RefSeq ID NP_000042.3)、BARD1(RefSeq ID NP_000456.2)、BRIP1(RefSeq ID NP_114432.2)、CHEK2(RefSeq ID NP_001005735.1)、MRE11A(RefSeq ID NP_001317276.1)、MSH6(RefSeq ID NP_000170.1)、NBN(RefSeq ID NP_001019859.1)、PALB2(RefSeq ID NP_078951.2)、PMS2(RefSeq ID NP_000526.2)、RAD50(RefSeq ID NP_005723.2)等が挙げられるが、これに限定されない。 Examples of homologous recombination factors related to breast cancer susceptibility include ATM (RefSeq @ ID @ NP_000004.3), BARD1 (RefSeq @ ID @ NP_0004566.2), BRIP1 (RefSeq @ ID @ NP_114432.2), CHEK2 ([email protected]). (RefSeq @ ID @ NP_001317276.1), MSH6 (RefSeq @ ID @ NP_0001700.1), NBN (RefSeq @ ID @ NP_001019859.1), PALB2 (RefSeq @ ID @ NP_07895.12), PMS2 (RefSeqA ID50N2). 2) and the like, but are not limited thereto. .
 また、DNA切断修復関連タンパク質としては、上述したもののうち一種類を単独で用いてもよいし、二種類以上を混合して用いてもよい。さらに、本実施形態の相同組換え効率上昇剤は、タンパク質に限定されず、そのタンパク質をコードするRNAやDNAであってもよい。 As the DNA cleavage repair-related protein, one of the above-mentioned proteins may be used alone, or two or more may be used in combination. Further, the homologous recombination efficiency increasing agent of the present embodiment is not limited to a protein, and may be RNA or DNA encoding the protein.
 DNA切断修復関連タンパク質は、RAD51C、RAD51D、BRCA1、BRCA2であってもよい。
 DNA切断修復関連タンパク質としては、BRCA1及びBRCA2を混合して用いてもよく、RAD51C及びRAD51Dを混合して用いてもよく、BRCA1、BRCA2、RAD51C及びRAD51Dを混合して用いてもよく、BRCA1、BRCA2、RAD51C、RAD51D及びRAD51を混合して用いてもよい。
The DNA break repair-related protein may be RAD51C, RAD51D, BRCA1, BRCA2.
As the DNA cleavage repair-related protein, BRCA1 and BRCA2 may be used as a mixture, RAD51C and RAD51D may be used as a mixture, and BRCA1, BRCA2, RAD51C and RAD51D may be used as a mixture. BRCA2, RAD51C, RAD51D and RAD51 may be used as a mixture.
 ヒト、マーモセット、マウスのBRCA1、BRCA2、RAD51C及びRAD51Dタンパク質、及び、そのタンパク質をコードするmRNAのNCBIアクセッション番号の例を表1及び2に示す。 Tables 1 and 2 show examples of BRCA1, BRCA2, RAD51C and RAD51D proteins of human, marmoset, and mouse, and NCBI accession numbers of mRNAs encoding the proteins.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本実施形態の相同組換え効率上昇剤は、相同組換え効率を上昇させる活性を持つ限り、表1と表2に例示したDNA切断修復関連タンパク質及びそれらをコードする核酸の変異体であってもよい。 The agent for increasing the efficiency of homologous recombination of the present embodiment is not limited to the DNA break repair-related proteins exemplified in Tables 1 and 2 and mutants of the nucleic acids encoding them, as long as they have the activity of increasing the efficiency of homologous recombination. Good.
 相同組換え効率上昇剤がタンパク質又はRNAである場合には、マイクロインジェクション、エレクトロポレーション等の定法によりこれらを細胞に取り込ませることにより、相同組換え効率を上昇させることができる。 (4) When the homologous recombination efficiency increasing agent is a protein or RNA, homologous recombination efficiency can be increased by incorporating these into cells by a standard method such as microinjection or electroporation.
 相同組換え効率上昇剤は、上記DNA切断修復関連タンパク質をコードするDNAとプロモーターを連結した発現コンストラクトであってもよい。プロモーターとしては、対象細胞において活性を有するものであってもよいし、薬剤などにより活性を誘導可能な発現誘導型プロモーターであってもよい。 (4) The homologous recombination efficiency increasing agent may be an expression construct in which a DNA encoding the above-mentioned DNA cleavage repair-related protein is linked to a promoter. The promoter may be one having activity in a target cell or an expression-inducible promoter capable of inducing the activity by a drug or the like.
 プロモーターとしては、例えば、ほぼ全ての細胞において強いプロモーター活性を有する、サイトメガロウイルス・プロモーター(CMVプロモーター)やCMV early enhancer/chicken beta actin(CAGプロモーター)等であってもよいし、組織特異的なプロモーター活性を有するプロモーター等であってもよい。 The promoter may be, for example, a cytomegalovirus promoter (CMV promoter) or a CMV early enhancer / chicken beta actin (CAG promoter) having strong promoter activity in almost all cells, or a tissue-specific promoter. A promoter having promoter activity may be used.
 発現誘導型プロモーターとしては、人為的にプロモーター活性を制御することのできる、ドキシサイクリン誘導型プロモーター(TetOプロモーター)等が挙げられる。 Examples of the expression-inducible promoter include a doxycycline-inducible promoter (TetO promoter) which can artificially control the promoter activity.
 前記発現コンストラクトは、例えば、トランスポゾンベクター、アデノウイルスベクター、アデノ随伴ウイルスベクター、プラスミドベクター、エピソーマルベクター等に組み込まれたものであってもよい。 The expression construct may be, for example, one integrated into a transposon vector, an adenovirus vector, an adeno-associated virus vector, a plasmid vector, an episomal vector, or the like.
 ベクターとしては、ベクターがゲノムに組み込まれないもの、又は、一時的にゲノムに組み込まれるが、人為的な操作によってゲノムから除去することのできるベクターが好ましい。 As the vector, a vector that is not integrated into the genome or a vector that is temporarily integrated into the genome but can be removed from the genome by an artificial operation is preferable.
 ベクターを細胞に導入する方法としては、例えば、リポフェクション法、DEAE-デキストラン法、リン酸カルシウム法、マイクロインジェクション法、エレクトロポレーション法、ウイルスベクター法等が挙げられる。 方法 Examples of a method for introducing a vector into a cell include a lipofection method, a DEAE-dextran method, a calcium phosphate method, a microinjection method, an electroporation method, and a virus vector method.
[相同組換え効率が上昇した細胞の製造方法]
 1実施形態において、本発明は、相同組換え効率が上昇した細胞の製造方法であって、前記細胞はマーモセットの細胞と比較して相同組換え効率が低い種の細胞であり、上述した相同組換え効率上昇剤を導入することを含む、製造方法を提供する。
[Method for producing cells with increased homologous recombination efficiency]
In one embodiment, the present invention relates to a method for producing a cell having an increased homologous recombination efficiency, wherein the cell is a species of a cell having a lower homologous recombination efficiency as compared to a marmoset cell, A production method is provided, which comprises introducing a replacement efficiency increasing agent.
 本実施形態において、マーモセットの細胞と比較して相同組換え効率が低い種は、例えば、ヒト、マウス、ラット、ウサギ、サル、ブタ、ヤギ、ヒツジ、ウシ、フェレット、イヌ、ネコ及びニワトリからなる群より選択されるが、これに限定されない。 In the present embodiment, the species having a low homologous recombination efficiency as compared with the marmoset cells include, for example, human, mouse, rat, rabbit, monkey, pig, goat, sheep, cow, ferret, dog, cat, and chicken. It is selected from a group, but is not limited to this.
[相同組換え効率が上昇した細胞]
 1実施形態において、本発明は、前記の相同組換え効率上昇剤が導入された、マーモセットの細胞と比較して相同組換え効率が低い種の細胞を提供する。本実施形態の細胞は、前記相同組換え効率上昇剤が導入されない場合と比較して、相同組換え効率が上昇している。
[Cells with increased homologous recombination efficiency]
In one embodiment, the present invention provides a species cell having a lower homologous recombination efficiency than a marmoset cell, into which the agent for increasing homologous recombination efficiency is introduced. The cells of the present embodiment have an increased homologous recombination efficiency as compared with the case where the homologous recombination efficiency increasing agent is not introduced.
 本実施形態において、マーモセットの細胞と比較して相同組換え効率が低い種は、例えば、ヒト、マウス、ラット、ウサギ、サル、ブタ、ヤギ、ヒツジ、ウシ、フェレット、イヌ、ネコ及びニワトリからなる群より選択されるが、これに限定されない。 In the present embodiment, the species having a low homologous recombination efficiency as compared with the marmoset cells include, for example, human, mouse, rat, rabbit, monkey, pig, goat, sheep, cow, ferret, dog, cat, and chicken. It is selected from a group, but is not limited to this.
[相同組換えによりゲノムDNAが改変された細胞の製造方法]
 1実施形態において、本発明は、相同組換えによりゲノムDNAが改変された細胞の製造方法であって、前記細胞はマーモセットの細胞と比較して相同組換え効率が低い種の細胞であり、前記細胞に前記の相同組換え効率上昇剤を導入することと、前記細胞にドナーDNAを導入することと、前記細胞のゲノムDNAを切断することと、を含む、製造方法を提供する。
[Method for producing cells in which genomic DNA has been modified by homologous recombination]
In one embodiment, the present invention relates to a method for producing a cell in which genomic DNA has been modified by homologous recombination, wherein the cell is a cell of a species having a lower homologous recombination efficiency than a cell of a marmoset, The present invention provides a production method, which comprises introducing the above-mentioned agent for increasing the efficiency of homologous recombination into a cell, introducing a donor DNA into the cell, and cutting the genomic DNA of the cell.
 本実施形態において、マーモセットの細胞と比較して相同組換え効率が低い前記種は、例えば、ヒト、マウス、ラット、ウサギ、サル、ブタ、ヤギ、ヒツジ、ウシ、フェレット、イヌ、ネコ及びニワトリからなる群より選択されるが、これに限定されない。 In this embodiment, the species having a low homologous recombination efficiency as compared to cells of a marmoset are, for example, human, mouse, rat, rabbit, monkey, pig, goat, sheep, cow, ferret, dog, cat and chicken. Selected from, but not limited to.
 ドナーDNAは、50~5,000塩基程度の一本鎖DNAであってもよいし、500~5,000塩基対程度の二本鎖DNAであってもよい。ドナーDNAは、ゲノムDNAの二本鎖DNA切断の位置を含む領域と、90%以上、好ましくは95%以上、更に好ましくは99%以上の配列同一性を有することが好ましい。 The donor DNA may be a single-stranded DNA of about 50 to 5,000 base pairs or a double-stranded DNA of about 500 to 5,000 base pairs. It is preferable that the donor DNA has 90% or more, preferably 95% or more, more preferably 99% or more sequence identity with the region including the position of the double-stranded DNA break of the genomic DNA.
 本明細書において、配列同一性とは、対象の塩基配列が、基準となる塩基配列(基準塩基配列)に対して一致している割合を示す値である。基準塩基配列に対する、対象塩基配列の配列同一性は、例えば次のようにして求めることができる。まず、基準塩基配列及び対象塩基配列をアラインメントする。ここで、各塩基配列には、配列同一性が最大となるようにギャップを含めてもよい。続いて、基準塩基配列及び対象塩基配列において、一致した塩基の塩基数を算出し、下記式(2)にしたがって、配列同一性を求めることができる。
 配列同一性(%)=一致した塩基数/対象塩基配列の総塩基数×100 (2)
In the present specification, the sequence identity is a value indicating a ratio of a target base sequence to a reference base sequence (reference base sequence). The sequence identity of the target base sequence to the reference base sequence can be determined, for example, as follows. First, the reference base sequence and the target base sequence are aligned. Here, a gap may be included in each base sequence so that sequence identity is maximized. Subsequently, in the reference base sequence and the target base sequence, the number of bases that match is calculated, and sequence identity can be determined according to the following formula (2).
Sequence identity (%) = number of matched bases / total number of bases of target base sequence × 100 (2)
 ドナーDNAは、例えば、蛍光タンパク質やタンパク質タグをコードする遺伝子を含んでいてもよい。HDRにより、ゲノムDNA切断の近傍に位置する遺伝子と前記遺伝子が融合タンパク質を発現するように、ドナーDNAを設計してもよい。 The donor DNA may include, for example, a gene encoding a fluorescent protein or a protein tag. The donor DNA may be designed by HDR such that the gene located near the genomic DNA break and the gene express a fusion protein.
 通常の生育環境においては、細胞内でゲノムDNAの切断が起こる頻度は非常に低い。人為的にゲノムDNAを切断する酵素を細胞に発現させることにより、特異的にゲノムDNA切断を起こすことができる。 に お い て Under normal growth conditions, the frequency of genomic DNA breaks in cells is very low. The genomic DNA can be specifically cleaved by causing cells to express an enzyme that cleaves the genomic DNA artificially.
 前記酵素としては、ゲノムDNAを標的配列特異的に切断するものであれば特に制限されない。ゲノムDNAを切断する酵素が認識する標的配列の長さは、例えば、10~40塩基程度であってよい。 The enzyme is not particularly limited as long as it cleaves genomic DNA in a target sequence-specific manner. The length of the target sequence recognized by the enzyme that cuts genomic DNA may be, for example, about 10 to 40 bases.
 ゲノムDNAを切断する酵素は、いわゆるゲノム編集において一般的に用いられる、RNA誘導型人工ヌクレアーゼや人工ヌクレアーゼであってもよい。 酵素 The enzyme that cleaves genomic DNA may be an RNA-induced artificial nuclease or an artificial nuclease generally used in so-called genome editing.
 RNA誘導型人工ヌクレアーゼとは、ガイドとなる短鎖RNAが標的配列に結合し、ヌクレアーゼが標的配列特異的にDNAを切断する酵素である。RNA誘導型人工ヌクレアーゼとしては、Casファミリータンパク質が挙げられるが、これに限定されない。 RNA-induced artificial nuclease is an enzyme in which short RNA serving as a guide binds to a target sequence and nuclease cleaves DNA specifically in the target sequence. RNA-induced artificial nucleases include, but are not limited to, Cas family proteins.
 人工ヌクレアーゼは、標的配列に結合するDNA結合ドメインと、制限酵素 FokIのヌクレアーゼドメインを融合させた人工制限酵素である。人工ヌクレアーゼとしては、Zinc finger nuclease(ZFN)、Transcription activator-like effector nuclease(TALEN)等が挙げられるが、これらに限定されない。 Artificial nuclease is an artificial restriction enzyme obtained by fusing a DNA binding domain that binds to a target sequence with the nuclease domain of restriction enzyme FokI. Artificial nucleases include, but are not limited to, Zinc finger nuclease (ZFN), Transcription activator-like effector nuclease (TALEN), and the like.
 また、ゲノムDNAを切断する酵素として、例えばニッカーゼを用いてもよい。ニッカーゼとは、二本鎖DNAのうちの一本鎖を切断する酵素である。例えば、ゲノムDNA上の近接した位置において、ニッカーゼが二本鎖DNAの双方の鎖にニックを形成することにより、二本鎖DNA切断が形成される。 ニ Alternatively, for example, nickase may be used as an enzyme that cuts genomic DNA. Nickase is an enzyme that cuts one strand of double-stranded DNA. For example, at close locations on genomic DNA, a nickase nicks both strands of the double-stranded DNA, thereby forming a double-stranded DNA break.
 以下、実施例により本発明を説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to the following examples.
[実験例1]
(マーモセットES細胞の相同組換え効率)
 マーモセットES細胞の相同組換え効率を解析した。
 マーモセットES細胞株にCas9及びsgRNA発現ベクター及びターゲティングベクターをリポフェクション法により導入し、薬剤選別によりクローンを得た。それぞれのクローンを増幅し、PCRあるいはサザンブロッティングにより遺伝型を判定した。
[Experimental example 1]
(Homologous recombination efficiency of marmoset ES cells)
The homologous recombination efficiency of marmoset ES cells was analyzed.
Cas9 and sgRNA expression vectors and targeting vectors were introduced into the marmoset ES cell line by lipofection, and clones were obtained by drug selection. Each clone was amplified and its genotype was determined by PCR or Southern blotting.
 相同組換え効率は、ヒトES細胞(胚性幹細胞)及びiPS細胞(人工多能性幹細胞)では1%未満であり、マウスES細胞では1~5%であることが知られている。これに対し、マーモセットES細胞の相同組換え効率は、ヒトES/iPS細胞及びマウスES細胞の相同組換え効率よりも高いことが明らかとなった。 It is known that the homologous recombination efficiency is less than 1% for human ES cells (embryonic stem cells) and iPS cells (artificial pluripotent stem cells), and 1 to 5% for mouse ES cells. In contrast, it was revealed that the homologous recombination efficiency of marmoset ES cells was higher than that of human ES / iPS cells and mouse ES cells.
 ヒトとマーモセットは近縁種であるにもかかわらず、上述したように、相同組換え効率が大きく異なる。発明者らは、マーモセットにおいては、ヒトに比べて、DNA切断修復関連タンパク質が高発現し、このことが高い相同組換え効率に寄与している可能性を想定した。 Although humans and marmosets are closely related species, the homologous recombination efficiencies differ greatly as described above. The inventors assumed that marmosets express DNA breakage repair-related proteins at higher levels than humans, which may contribute to higher homologous recombination efficiency.
[実験例2]
(DNA切断修復関連タンパク質の発現解析)
 マーモセットES細胞の高い相同組換え効率に寄与するタンパク質を同定するために、マーモセットES細胞とヒトES/iPS細胞から、RNAを分離し、これらRNAについて、RNA-Seqにより解析を行った。
[Experimental example 2]
(Expression analysis of DNA break repair-related proteins)
In order to identify proteins that contribute to the high homologous recombination efficiency of marmoset ES cells, RNA was separated from marmoset ES cells and human ES / iPS cells, and these RNAs were analyzed by RNA-Seq.
 その結果、マーモセットES細胞においては、ヒトES/iPS細胞よりも、BRCA1、BRCA2、RAD51C及びRAD51Dが高発現していることが明らかになった。 As a result, it was revealed that BRCA1, BRCA2, RAD51C and RAD51D are more highly expressed in marmoset ES cells than in human ES / iPS cells.
 続いて、リアルタイムPCRにより、BRCA1、BRCA2、RAD51C及びRAD51D遺伝子の、マーモセットES細胞とヒトES/iPS細胞における発現量をより正確に解析した。 Subsequently, the expression levels of BRCA1, BRCA2, RAD51C and RAD51D genes in marmoset ES cells and human ES / iPS cells were more accurately analyzed by real-time PCR.
 マーモセットES細胞、ヒトiPS/ES細胞から、スピンカラムによりRNAを分離し、逆転写酵素によりcDNAを合成した。検出にはリアルタイムPCR装置(型式ViiA7、サーモフィッシャー社)を用いた。 RNA RNA was separated from marmoset ES cells and human iPS / ES cells by a spin column, and cDNA was synthesized by reverse transcriptase. For detection, a real-time PCR device (Model ViiA7, Thermo Fisher) was used.
 各細胞株における各遺伝子の発現量を評価するために、GAPDH遺伝子を内部標準とした相対値を算出した。結果を図2~6に示す。図中、DSY127はマーモセット胚性幹細胞の細胞株名を示す。201B7、WD39及びetKA4はiPS細胞株であり、ヒトiPSKhES-1はヒトES細胞株である。 相 対 To evaluate the expression level of each gene in each cell line, a relative value was calculated using the GAPDH gene as an internal standard. The results are shown in FIGS. In the figure, DSY127 indicates the cell line name of marmoset embryonic stem cells. 201B7, WD39 and etKA4 are iPS cell lines, and human iPSKhES-1 is a human ES cell line.
 図2は、RAD51C遺伝子の発現量を比較した結果を示し、図3は、RAD51D遺伝子の発現量を比較した結果を示し、図4は、RAD51遺伝子の発現量を比較した結果を示し、図5は、BRCA1遺伝子の発現量を比較した結果を示し、図6は、BRCA2遺伝子の発現量を比較した結果を示す。 FIG. 2 shows the result of comparing the expression level of the RAD51C gene, FIG. 3 shows the result of comparing the expression level of the RAD51D gene, FIG. 4 shows the result of comparing the expression level of the RAD51 gene, and FIG. Shows the results of comparing the expression levels of the BRCA1 gene, and FIG. 6 shows the results of comparing the expression levels of the BRCA2 gene.
 さらに、マーモセットES細胞については、他の複数のマーモセットES細胞においてもDSY127細胞と同様の結果が得られている。その結果、マーモセットES細胞において、RAD51、RAD51C、RAD51D、BRCA1及びBRCA2遺伝子は、ヒトES細胞又はヒトiPS細胞と比較して、優位に発現が高いことが確認された。 Furthermore, with respect to marmoset ES cells, results similar to those of DSY127 cells were obtained in other plural marmoset ES cells. As a result, it was confirmed that the RAD51, RAD51C, RAD51D, BRCA1, and BRCA2 genes were significantly higher in expression in the marmoset ES cells than in the human ES cells or human iPS cells.
 前記の遺伝子群がコードするタンパク質は、相同組換えに関わることから、前記遺伝子の高い発現レベルが、マーモセットES細胞における高い相同組換え効率に寄与している可能性が考えられた。 (4) Since the proteins encoded by the above genes are involved in homologous recombination, it was considered that high expression levels of the genes may contribute to high homologous recombination efficiency in marmoset ES cells.
[実験例3]
(相同組換え効率の制御)
 実験例2に示されたマーモセットで高発現するDNA切断修復関連タンパク質である、BRCA1、BRCA2、RAD51C及びRAD51DをヒトiPS細胞において発現させて、相同組換え効率への影響を検討した。
[Experimental example 3]
(Control of homologous recombination efficiency)
BRCA1, BRCA2, RAD51C and RAD51D, which are DNA break repair-related proteins highly expressed in marmosets shown in Experimental Example 2, were expressed in human iPS cells, and the effect on homologous recombination efficiency was examined.
《相同組換え効率の定量化》
 まず、相同組換え効率を定量化するために、ヒトiPS細胞において、hypoxanthine phosphoribosyl transferase(HPRT)遺伝子座にネオマイシン耐性遺伝子カセットを相同組換えにより挿入する実験系を用いた。この相同組換えの概略を図1に示した。
《Quantification of homologous recombination efficiency》
First, in order to quantify the efficiency of homologous recombination, an experimental system in which a neomycin resistance gene cassette was inserted by homologous recombination into a human iPS cell at the locus of hypoxanthine phosphoribosyl transferase (HPRT) was used. The outline of this homologous recombination is shown in FIG.
 図1中、HPRTWTは、正常なヒトHPRT遺伝子座を示し、HPRT targeting vectorは、ネオマイシン耐性遺伝子を含むターゲティングベクターを示し、HPRTNeoは、相同組換え後のHPRT遺伝子座を示す。 In FIG. 1, HPRT WT indicates a normal human HPRT locus, HPRT targeting vector indicates a targeting vector containing a neomycin resistance gene, and HPRT Neo indicates an HPRT locus after homologous recombination.
 HPRTが正常である細胞をグアニン類似体の6-チオグアニン(6-TG)存在下で培養すると、DNAに6-TGが誤って取り込まれてしまうため細胞は死滅するが、HPRT遺伝子が破壊された細胞は6-TG存在下でも生存可能である。 When cells with normal HPRT were cultured in the presence of the guanine analog, 6-thioguanine (6-TG), the cells were killed because 6-TG was erroneously incorporated into DNA, but the HPRT gene was destroyed. Cells can survive in the presence of 6-TG.
 また、ゲンタマイシン類似体のG418は、真核生物のタンパク質合成を阻害して細胞を死滅させるが、ネオマイシン耐性遺伝子が挿入され形質転換した細胞は、G418存在下でも生存可能である。 ゲ ン Although the gentamicin analog G418 inhibits eukaryotic protein synthesis and kills cells, cells transformed with the neomycin resistance gene inserted can survive in the presence of G418.
 また、ゲノムDNAを切断する酵素として、Cas9タンパク質を用いた。ガイドRNAの配列はHPRT遺伝子のエクソン2を標的とするものを用いた。ガイドRNAの標的配列の塩基配列を配列番号1に示す。Cas9タンパク質とガイドRNAを、それぞれ、CAGプロモーター又はU6プロモーター制御下で発現させるDNAコンストラクトを作製した。 C Further, Cas9 protein was used as an enzyme for cleaving genomic DNA. As the sequence of the guide RNA, one targeting exon 2 of the HPRT gene was used. The nucleotide sequence of the target sequence of the guide RNA is shown in SEQ ID NO: 1. A DNA construct for expressing the Cas9 protein and the guide RNA under the control of the CAG promoter or U6 promoter, respectively, was prepared.
 また、HPRT遺伝子座に相同な配列とネオマイシン耐性遺伝子カセットを有するドナーDNAを作製した。ドナーDNAの塩基配列を配列番号2に示す。ドナーDNAは環状二本鎖DNAを用いた。 ド ナ ー In addition, a donor DNA having a sequence homologous to the HPRT locus and a neomycin resistance gene cassette was prepared. The nucleotide sequence of the donor DNA is shown in SEQ ID NO: 2. As the donor DNA, a circular double-stranded DNA was used.
 前記のDNA切断修復関連タンパク質の発現コンストラクト、ドナーDNA、Cas9タンパク質とガイドRNAの発現コンストラクトを混合し、エレクトロポレーション法を用いて野生型ヒトiPS細胞へ導入した。 (4) The expression construct of the above-mentioned DNA cleavage repair-related protein, the donor DNA, the Cas9 protein and the expression construct of the guide RNA were mixed, and introduced into wild-type human iPS cells by electroporation.
 前記DNAを細胞へ導入した後、これら細胞を等量の2群に分け、一方にはG418のみを加え、他方にはG418と6-TGを加えて、培養し、選別を行った。この2群のコロニー数をそれぞれ計測した。 After the DNA was introduced into the cells, the cells were divided into two equal groups, one of which was supplemented with G418 alone and the other of which was supplemented with G418 and 6-TG, cultured and sorted. The number of colonies in each of the two groups was counted.
 ここで、ネオマイシン耐性遺伝子カセットがゲノム上のいずれかの位置に挿入されたG418耐性クローンの数は、相同組換え体と非相同組換え体の合計の数を反映する。一方、ネオマイシン遺伝子カセットがHPRT遺伝子座に挿入された、G418と6-TGの両方に耐性を持つクローンの数は、相同組換え体の数を反映する。 Here, the number of G418-resistant clones in which the neomycin resistance gene cassette was inserted at any position on the genome reflects the total number of homologous recombinants and non-homologous recombinants. On the other hand, the number of clones resistant to both G418 and 6-TG in which the neomycin gene cassette was inserted at the HPRT locus reflects the number of homologous recombinants.
 そして、G418と6-TGの両方に耐性を持つ細胞と、G418耐性細胞のコロニー数の比を下記式(3)から算出することにより、相同組換え効率を算出することができる。
(相同組換え効率)=(G418と6-TGの両方に耐性を持つ細胞のコロニー数)/(G418耐性細胞のコロニー数) (3)
Then, the homologous recombination efficiency can be calculated by calculating the ratio of the number of colonies of cells resistant to both G418 and 6-TG to the number of colonies of G418-resistant cells from the following equation (3).
(Homologous recombination efficiency) = (number of colonies of cells resistant to both G418 and 6-TG) / (number of colonies of G418-resistant cells) (3)
《DNA切断修復関連タンパク質の過剰発現》
 ヒトRAD51、ヒトRAD51C及びヒトRAD51Dをコードする遺伝子配列を、それぞれ、CAGプロモーターの下流に連結した発現コンストラクトを作製した。また、ヒトBRCA1及びヒトBRCA2をコードする遺伝子配列を、それぞれ、CMVプロモーターの下流に連結した発現コンストラクトを作製した。
<< Overexpression of DNA break repair-related proteins >>
Expression constructs were prepared in which gene sequences encoding human RAD51, human RAD51C and human RAD51D were respectively linked downstream of the CAG promoter. In addition, an expression construct in which gene sequences encoding human BRCA1 and human BRCA2 were respectively linked to the downstream of the CMV promoter was prepared.
 RAD51のmRNAのNCBIアクセッション番号はNM_002875.4であり、RADタンパク質のNCBIアクセッション番号はNP_002866.2である。BRCA1、BRCA2、RAD51C及びRAD51DのNCBIアクセッション番号は表1と2に示した通りである。 The NCBI accession number of the RAD51 mRNA is NM — 0028755.4, and the NCBI accession number of the RAD protein is NP — 0028666.2. The NCBI accession numbers of BRCA1, BRCA2, RAD51C and RAD51D are as shown in Tables 1 and 2.
 複数のDNA切断修復関連タンパク質を発現させる場合には、複数の前記DNA切断修復関連タンパク質の発現コンストラクトを、前記ドナーDNAコンストラクト、ゲノムDNAを切断する酵素の発現コンストラクトと共に混合し、ヒトiPS細胞に導入した。 When expressing a plurality of DNA-cutting repair-related proteins, the expression constructs of the plurality of DNA-cutting repair-related proteins are mixed with the donor DNA construct and the expression construct of an enzyme that cuts genomic DNA, and introduced into human iPS cells. did.
 前記DNAを細胞へ導入した後、これら細胞を等量の2群に分け、一方にはG418のみを加え、他方にはG418と6-TGを加えて、培養し、選別を行った。この2群のコロニー数をそれぞれ計測した。 After the DNA was introduced into the cells, the cells were divided into two equal groups, one of which was supplemented with G418 alone and the other of which was supplemented with G418 and 6-TG, cultured and sorted. The number of colonies in each of the two groups was counted.
 計測したコロニー数から、上記式(3)を用いて、相同組換え効率を算出した。結果を図7と図8に示す。図7と図8の縦軸は、上記式(3)により算出した相同組換え効率を示す。図7は1種類の、図8は2種以上のDNA切断修復関連タンパク質を発現させた場合の相同組換え効率を示す。図7及び図8中、mockはDNA切断修復関連タンパク質を発現させなかった場合を示す。 相同 Homologous recombination efficiency was calculated from the measured number of colonies using the above formula (3). The results are shown in FIG. 7 and FIG. The vertical axis in FIGS. 7 and 8 indicates the homologous recombination efficiency calculated by the above equation (3). FIG. 7 shows the homologous recombination efficiency when one or two or more DNA break repair-related proteins are expressed. In FIGS. 7 and 8, mock shows the case where the DNA break repair-related protein was not expressed.
 図7に示す結果から、CMVプロモーター制御下にヒトBRCA1及びヒトBRCA2を発現するヒトiPS細胞は、野生型ヒトiPS細胞に比べて、相同組換え効率が上昇することが明らかになった。 (7) The results shown in FIG. 7 revealed that the homologous recombination efficiency of human iPS cells expressing human BRCA1 and human BRCA2 under the control of the CMV promoter was higher than that of wild-type human iPS cells.
 図8に示す結果から、DNA切断修復関連タンパク質を組み合わせて発現させた場合、すなわちBRCA1とBRCA2、RAD51CとRAD51D、BRCA1とBRCA2とRAD51CとRAD51Dを発現させた場合、相同組換え効率は有意に上昇することが明らかになった。 From the results shown in FIG. 8, the homologous recombination efficiency is significantly increased when the DNA break repair-related proteins are expressed in combination, that is, when BRCA1 and BRCA2, RAD51C and RAD51D, and BRCA1 and BRCA2, RAD51C and RAD51D are expressed. It turned out to be.
 これらの結果から、BRCA1、BRCA2、RAD51C及びRAD51Dは、相同組換え効率上昇に寄与することが明らかになった。 These results revealed that BRCA1, BRCA2, RAD51C and RAD51D contribute to an increase in homologous recombination efficiency.
[実験例4]
 マウスES細胞に、BRCA1、BRCA2、RAD51C、RAD51D、RAD51を発現させ、Sox2遺伝子座にVenus遺伝子を相同組換えにより挿入して、相同組換え効率を算出した。
[Experimental example 4]
BRCA1, BRCA2, RAD51C, RAD51D, and RAD51 were expressed in mouse ES cells, and the Venus gene was inserted into the Sox2 locus by homologous recombination to calculate the homologous recombination efficiency.
 相同組換え効率を定量化するために、マウスES細胞において、Sox2遺伝子座に緑色蛍光タンパク質であるVenusを相同組換えにより挿入する実験系を利用した。この相同組換えの実験の概略を図9に示した。 (4) To quantify the homologous recombination efficiency, an experimental system in which Venus, a green fluorescent protein, was inserted into the Sox2 locus by homologous recombination in mouse ES cells was used. The outline of the experiment of this homologous recombination is shown in FIG.
 図9中、Wild typeはゲノムDNA上のSox2遺伝子座を示し、Knock-inは、VenusがSox2遺伝子座にインフレームで挿入された、相同組換え後のSox2遺伝子座を示す。 In FIG. 9, Wild type indicates the Sox2 locus on the genomic DNA, and Knock-in indicates the Sox2 locus after homologous recombination in which Venus was inserted in-frame at the Sox2 locus.
 ゲノムDNAを切断する酵素としてCas9タンパク質を用いた。また、ガイドRNAは、SOX2遺伝子の終止コドン周辺を標的とするように設計した。また、マウスES細胞として、EB3株を用いた。 C The Cas9 protein was used as an enzyme that cuts genomic DNA. The guide RNA was designed to target around the stop codon of the SOX2 gene. The EB3 strain was used as mouse ES cells.
 ドナーDNAとして、VenusをコードするORFと、SOX2遺伝子の終止コドンの上流の約500塩基対と、SOX2遺伝子の終止コドンの下流の約500塩基対とを有するものを作製した。VenusのORFは、SOX2遺伝子とインフレームで連結するように、ドナーDNAを設計した。ドナーDNAは環状二本鎖DNAを用いた。 A donor DNA having an ORF encoding Venus, about 500 base pairs upstream of the stop codon of the SOX2 gene, and about 500 base pairs downstream of the stop codon of the SOX2 gene was prepared. The Venus ORF designed the donor DNA to ligate in frame with the SOX2 gene. As the donor DNA, a circular double-stranded DNA was used.
 DNA切断修復関連タンパク質の発現コンストラクトとして、ヒトBRCA1遺伝子、ヒトBRCA2遺伝子、ヒトRAD51C遺伝子、ヒトRAD51D遺伝子、ヒトRAD51遺伝子を、それぞれ、CAGプロモーターの下流に連結した発現コンストラクトを用いた。 As an expression construct for a DNA cleavage repair-related protein, an expression construct in which a human BRCA1 gene, a human BRCA2 gene, a human RAD51C gene, a human RAD51D gene, and a human RAD51 gene were respectively linked to the downstream of a CAG promoter was used.
 DNA切断修復関連タンパク質の発現コンストラクトと、ドナーDNAと、Cas9タンパク質及びガイドRNAの発現コンストラクトとを混合したものを、エレクトロポレーション法によりマウスES細胞へ導入した。続いて、得られた細胞を播種して培養した。結果を図10に示す。 A mixture of an expression construct for a DNA cleavage repair-related protein, a donor DNA, and an expression construct for Cas9 protein and guide RNA was introduced into mouse ES cells by electroporation. Subsequently, the obtained cells were seeded and cultured. The results are shown in FIG.
 図10は、相同組換え後、Venusを発現する細胞を撮影した顕微鏡像である。その結果、相同組換えによりVenusがSox2遺伝子座に挿入された細胞においては、SOX2::Venus融合タンパク質が核に局在することが明らかになった。 FIG. 10 is a micrograph of cells expressing Venus after homologous recombination. As a result, it was revealed that in cells in which Venus was inserted into the Sox2 locus by homologous recombination, the SOX2 :: Venus fusion protein was localized in the nucleus.
 また、エレクトロポレーションを行った細胞を培養し、コロニーを形成させた。形成されたコロニーのうち、Venusを発現する細胞を有するコロニーの割合(Venus陽性コロニー率)を計測した。結果を図11に示す。 The cells subjected to electroporation were cultured to form colonies. Among the formed colonies, the ratio of colonies having Venus-expressing cells (Venus positive colony ratio) was measured. The results are shown in FIG.
 図11は、DNA切断修復関連タンパク質を発現させた場合の、Venus陽性コロニー率を示す結果である。図11中、4Fは、BRCA1、BRCA2、RAD51C及びRAD51Dを同時に発現させた場合を示し、5Fは、BRCA1、BRCA2、RAD51C、RAD51D及びRAD51を同時に発現させた場合を示す。図11中、MockはDNA切断修復関連タンパク質を発現させなかった場合を示す。 FIG. 11 shows the results showing the ratio of Venus-positive colonies in the case of expressing the DNA cleavage repair-related protein. In FIG. 11, 4F shows the case where BRCA1, BRCA2, RAD51C and RAD51D are simultaneously expressed, and 5F shows the case where BRCA1, BRCA2, RAD51C, RAD51D and RAD51 are simultaneously expressed. In FIG. 11, Mock shows the case where the DNA break repair-related protein was not expressed.
 その結果、BRCA1、BRCA2、RAD51C、RAD51Dを単独で発現させた場合、BRCA1、BRCA2、RAD51C及びRAD51Dを発現させた場合、並びに、BRCA1、BRCA2、RAD51C、RAD51D及びRAD51を発現させた場合、DNA切断修復関連タンパク質を発現させなかった場合と比較して、Venus陽性コロニー率が有意に上昇した。 As a result, when BRCA1, BRCA2, RAD51C, RAD51D were expressed alone, when BRCA1, BRCA2, RAD51C, and RAD51D were expressed, and when BRCA1, BRCA2, RAD51C, RAD51D, and RAD51D were expressed, DNA cleavage was observed. The Venus-positive colony rate was significantly increased compared to the case where the repair-related protein was not expressed.
 本発明によれば、相同組換え効率を改善する技術を提供することができる。 According to the present invention, a technique for improving the efficiency of homologous recombination can be provided.

Claims (10)

  1.  マーモセットの細胞と比較して相同組換え効率が低い種の細胞よりも、マーモセットの細胞における発現量が高い、DNA切断修復関連タンパク質又は前記タンパク質をコードする核酸を有効成分として含有する、相同組換え効率上昇剤。 Homologous recombination containing a DNA break repair-related protein or a nucleic acid encoding the protein as an active ingredient, which has a higher expression level in a marmoset cell than a cell of a species having a lower homologous recombination efficiency as compared to a marmoset cell. Efficiency enhancer.
  2.  マーモセットの細胞と比較して相同組換え効率が低い前記種が、ヒト、マウス、ラット、ウサギ、サル、ブタ、ヤギ、ヒツジ、ウシ、フェレット、イヌ、ネコ及びニワトリからなる群より選択される、請求項1に記載の相同組換え効率上昇剤。 Said species having a lower homologous recombination efficiency as compared to marmoset cells is selected from the group consisting of human, mouse, rat, rabbit, monkey, pig, goat, sheep, cow, ferret, dog, cat and chicken. The agent for increasing the efficiency of homologous recombination according to claim 1.
  3.  前記DNA切断修復関連タンパク質が、RAD51パラログ及び乳癌易罹患性に関わる相同組換え因子である請求項1または2に記載の相同組換え効率上昇剤。 (3) The agent for increasing the efficiency of homologous recombination according to claim 1 or 2, wherein the DNA breakage repair-related protein is a RAD51 paralog and a homologous recombination factor involved in susceptibility to breast cancer.
  4.  前記DNA切断修復関連タンパク質が、RAD51C、RAD51D、BRCA1、BRCA2からなる群より選択される、請求項3に記載の相同組換え効率上昇剤。 剤 The homologous recombination efficiency increasing agent according to claim 3, wherein the DNA cleavage repair-related protein is selected from the group consisting of RAD51C, RAD51D, BRCA1, and BRCA2.
  5.  相同組換え効率が上昇した細胞の製造方法であって、
     前記細胞はマーモセットの細胞と比較して相同組換え効率が低い種の細胞であり、
     前記細胞に請求項1~4のいずれか一項に記載の相同組換え効率上昇剤を導入することを含む、製造方法。
    A method for producing a cell having an increased homologous recombination efficiency,
    The cells are cells of a species having a lower homologous recombination efficiency as compared to marmoset cells,
    A production method, comprising introducing the homologous recombination efficiency increasing agent according to any one of claims 1 to 4 into the cells.
  6.  マーモセットの細胞と比較して相同組換え効率が低い前記種が、ヒト、マウス、ラット、ウサギ、サル、ブタ、ヤギ、ヒツジ、ウシ、フェレット、イヌ、ネコ及びニワトリからなる群より選択される、請求項5に記載の製造方法。 Said species having a lower homologous recombination efficiency as compared to marmoset cells is selected from the group consisting of human, mouse, rat, rabbit, monkey, pig, goat, sheep, cow, ferret, dog, cat and chicken. The method according to claim 5.
  7.  請求項1~4のいずれか一項に記載の相同組換え効率上昇剤が導入された、マーモセットの細胞と比較して相同組換え効率が低い種の細胞。 {Circle around (5)} A cell of a species into which the homologous recombination efficiency increasing agent according to any one of claims 1 to 4 has been introduced, which has a lower homologous recombination efficiency than marmosets cells.
  8.  マーモセットの細胞と比較して相同組換え効率が低い前記種が、ヒト、マウス、ラット、ウサギ、サル、ブタ、ヤギ、ヒツジ、ウシ、フェレット、イヌ、ネコ及びニワトリからなる群より選択される、請求項7に記載の細胞。 Said species having a lower homologous recombination efficiency as compared to marmoset cells is selected from the group consisting of human, mouse, rat, rabbit, monkey, pig, goat, sheep, cow, ferret, dog, cat and chicken. The cell according to claim 7.
  9.  相同組換えによりゲノムDNAが改変された細胞の製造方法であって、
     前記細胞はマーモセットの細胞と比較して相同組換え効率が低い種の細胞であり、
     前記細胞に請求項1~4のいずれか一項に記載の相同組換え効率上昇剤を導入することと、
     前記細胞にドナーDNAを導入することと、
     前記細胞のゲノムDNAを切断することと、
     を含む、製造方法。
    A method for producing a cell in which genomic DNA has been modified by homologous recombination,
    The cells are cells of a species having a lower homologous recombination efficiency as compared to marmoset cells,
    Introducing the homologous recombination efficiency increasing agent according to any one of claims 1 to 4 into the cells;
    Introducing a donor DNA into the cells;
    Cutting the genomic DNA of the cell;
    And a manufacturing method.
  10.  マーモセットの細胞と比較して相同組換え効率が低い前記種が、ヒト、マウス、ラット、ウサギ、サル、ブタ、ヤギ、ヒツジ、ウシ、フェレット、イヌ、ネコ及びニワトリからなる群より選択される、請求項9に記載の製造方法。 Said species having a lower homologous recombination efficiency as compared to marmoset cells is selected from the group consisting of human, mouse, rat, rabbit, monkey, pig, goat, sheep, cow, ferret, dog, cat and chicken. The method according to claim 9.
PCT/JP2019/034705 2018-09-05 2019-09-04 Homologous recombination efficiency increasing agent, and use thereof WO2020050294A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020541254A JPWO2020050294A1 (en) 2018-09-05 2019-09-04 Homologous recombination efficiency enhancer and its use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-165813 2018-09-05
JP2018165813 2018-09-05

Publications (1)

Publication Number Publication Date
WO2020050294A1 true WO2020050294A1 (en) 2020-03-12

Family

ID=69722349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034705 WO2020050294A1 (en) 2018-09-05 2019-09-04 Homologous recombination efficiency increasing agent, and use thereof

Country Status (2)

Country Link
JP (1) JPWO2020050294A1 (en)
WO (1) WO2020050294A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114014924A (en) * 2021-11-17 2022-02-08 安可来(重庆)生物医药科技有限公司 Method for improving homologous recombination efficiency in gene editing process through BRCA1 and BARD1 proteins

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060253918A1 (en) * 2003-12-02 2006-11-09 Syngenta Participations Ag Targeted integration and stacking of DNA through homologous recombination
JP2017018026A (en) * 2015-07-09 2017-01-26 国立研究開発法人医薬基盤・健康・栄養研究所 Method for gene-targeting of pluripotent stem cells
WO2017172775A1 (en) * 2016-04-01 2017-10-05 Children's Medical Center Corporation Methods and compositions relating to homology-directed repair
JP2017535271A (en) * 2014-11-21 2017-11-30 リジェネロン・ファーマシューティカルズ・インコーポレイテッドRegeneron Pharmaceuticals, Inc. Method and composition for genetic modification by targeting using a pair of guide RNAs

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060253918A1 (en) * 2003-12-02 2006-11-09 Syngenta Participations Ag Targeted integration and stacking of DNA through homologous recombination
JP2017535271A (en) * 2014-11-21 2017-11-30 リジェネロン・ファーマシューティカルズ・インコーポレイテッドRegeneron Pharmaceuticals, Inc. Method and composition for genetic modification by targeting using a pair of guide RNAs
JP2017018026A (en) * 2015-07-09 2017-01-26 国立研究開発法人医薬基盤・健康・栄養研究所 Method for gene-targeting of pluripotent stem cells
WO2017172775A1 (en) * 2016-04-01 2017-10-05 Children's Medical Center Corporation Methods and compositions relating to homology-directed repair

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
ANANTHA, R.W. ET AL.: "Functional and mutational landscapes of BRCA1 for homology-directed repair and therapy resistance", ELIFE, vol. 6, 2017 *
CHANG, S. ET AL.: "Expression of human BRCA1 variants in mouse ES cells allows functional analysis of BRCA1 mutations", J. CLIN. INVEST., vol. 119, no. 10, 2009, pages 3160 - 3171, XP055690762 *
CHUN, J. ET AL.: "Rad51 Paralog Complexes BCDX2 and CX3 Act at Different Stages in the BRCA1-BRCA2-Dependent Homologous Recombination Pathway", MOL. CELL . BIOL., vol. 33, no. 2, 2013, pages 387 - 395, XP055690754 *
DOMINGUEZ-BENDALA J. ET AL.: "Elevated expression of exogenous Rad51 leads to identical increases in gene -targeting frequency in murine embryonic stem (ES) cells with both functional and dysfunctional p53 genes", EXPERIMENTAL CELL RESEARCH, vol. 286, 2003, pages 298 - 307 *
GUIDUGLI, L. ET AL.: "A Classification Model for BRCA2 DNA Binding Domain Missense Variants Based on Homology- Directed Repair Activity", CANCER RES., vol. 73, 2012, pages 265 - 275, XP055690760 *
HATANAKA, A. ET AL.: "Similar Effects of Brca2 Truncation and Rad51 Paralog Deficiency on Immunoglobulin V gene Diversification in DT40 Cells Support an Early Role for Rad51 Paralogs in Homologous recombination", MOL. CELL . BIOL., vol. 25, no. 3, 2005, pages 1124 - 1134, XP055690755 *
LONGERICH, S. ET AL.: "Brcal in immunoglobulin gene conversion and somatic hypermutation", DNA REPAIR, vol. 7, no. 2, 2008, pages 253 - 266 *
NAGARAJU, G. ET AL.: "Differential Regulation of Short- and Long-Tract Gene Conversion between Sister Chromatids by Rad51C", MOL. CELL . BIOL., vol. 26, no. 21, 2006, pages 8075 - 8086, XP055690764 *
NARSINH, K.H. ET AL.: "Gene Correcction in Human Embryonic and Induced Pluripotent Stem Cells: Promises and Challenges Ahead", MOLECULAR THERAPY, vol. 18, no. 6, 2010, pages 1061 - 1063, XP055212478, DOI: 10.1038/mt.2010.92 *
ORDINARIO, E.C. ET AL.: "RAD51 paralogs promote homology-directed repair at diversifying immunoglobulin V regions", BMC MOL. BIOL., vol. 10, 2009, pages 1 - 13, XP021062363 *
PORTEUS, M.H. ET AL.: "A Look to Future Directions in Gene Therapy Research for Monogenic Disease", PLOS GENETICS, vol. 2, no. 9, 2006, pages 1285 - 1292, XP055626854, DOI: 10.1371/journal.pgen.0020133 *
TAKAYAMA, K. ET AL.: "Highly efficient biallelic genome editing of human ES /iPS cells using a CRISPR/Cas9 or TALEN system", NUCL. ACIDS RES., vol. 45, no. 9, 2017, pages 5198 - 5207, XP055390671, DOI: 10.1093/nar/gkx130 *
YOSHIMATSU, S. ET AL.: "Robust and efficient knock-in in embryonic stem cells and early-stage embryos of the common marmoset using the CRISPR-Cas9 system", SCI. REP., vol. 9, 6 February 2019 (2019-02-06), pages 1 - 12, XP055690753 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114014924A (en) * 2021-11-17 2022-02-08 安可来(重庆)生物医药科技有限公司 Method for improving homologous recombination efficiency in gene editing process through BRCA1 and BARD1 proteins
CN114014924B (en) * 2021-11-17 2022-06-10 安可来(重庆)生物医药科技有限公司 Method for improving homologous recombination efficiency in gene editing process through BRCA1 and BARD1 proteins

Also Published As

Publication number Publication date
JPWO2020050294A1 (en) 2021-08-30

Similar Documents

Publication Publication Date Title
JP7101211B2 (en) Methods and compositions of gene modification by targeting using a pair of guide RNAs
JP6878482B2 (en) Targeted genome editing in large livestock conjugations
EP3039145B1 (en) Efficient non-meiotic allele introgression
CA2989830A1 (en) Crispr enzyme mutations reducing off-target effects
JP2018532415A (en) Large genomic DNA knock-ins and uses thereof
JP2016507228A (en) Hornless livestock
JP6998656B2 (en) lincRNA deletion non-human animal
TW201542816A (en) Methods, cells &amp; organisms
MX2015000074A (en) Genetically modified animals and methods for making the same.
US20190223417A1 (en) Genetically modified animals having increased heat tolerance
Clark et al. A most formidable arsenal: genetic technologies for building a better mouse
CN108697068B (en) Selection of pluripotent cells for Generation of fertile XY female mice
US20210185990A1 (en) Non-meiotic allele introgression
JP2018531003A6 (en) Genetically modified animals with improved heat resistance
CN111699256A (en) Method for genetic mediated engineering of RNAi model
Ansai et al. Speciation and adaptation research meets genome editing
Schmouth et al. Modelling human regulatory variation in mouse: finding the function in genome-wide association studies and whole-genome sequencing
WO2020050294A1 (en) Homologous recombination efficiency increasing agent, and use thereof
JP2017533716A (en) A heterozygous modification of the tumor suppressor gene and a porcine model of neurofibromatosis type 1
Xiong et al. Identification of the CKM Gene as a Potential Muscle-Specific Safe Harbor Locus in Pig Genome. Genes 2022, 13, 921

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19857700

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020541254

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19857700

Country of ref document: EP

Kind code of ref document: A1