WO2020050155A1 - 組成物 - Google Patents

組成物 Download PDF

Info

Publication number
WO2020050155A1
WO2020050155A1 PCT/JP2019/034046 JP2019034046W WO2020050155A1 WO 2020050155 A1 WO2020050155 A1 WO 2020050155A1 JP 2019034046 W JP2019034046 W JP 2019034046W WO 2020050155 A1 WO2020050155 A1 WO 2020050155A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic solvent
particles
composition
mass
less
Prior art date
Application number
PCT/JP2019/034046
Other languages
English (en)
French (fr)
Inventor
翔 大高
和恵 上村
高志 阿久津
宮田 壮
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to JP2020541179A priority Critical patent/JPWO2020050155A1/ja
Publication of WO2020050155A1 publication Critical patent/WO2020050155A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives

Definitions

  • the present invention relates to a composition.
  • Patent Document 1 describes a filter medium for an air filter in which cellulose nanofibers having a number average fiber diameter of 1 to 50 nm are adhered at a predetermined ratio to a support having air permeability.
  • Patent Document 1 describes that the cellulose nanofiber used for the air filter material has a particle collecting performance.
  • the organic solvent has a property of gradually releasing the organic solvent to the outside with time (slow release) while taking in the organic solvent.
  • the formation of particles like capsules is required, and depending on the application, the property that the sustained release property can be stably maintained may be required.
  • the composition containing such particles generally supplies the organic solvent to the outside by suppressing the release of the organic solvent to the outside, and by applying pressure when necessary to break the outer shell of the particles. Therefore, the present invention can be applied to applications where such characteristics are required.
  • General cellulose fibrils have a function of replacing a surfactant and are amphiphilic materials having a hydrophilic group and a hydrophobic site. Therefore, it is possible to adsorb an organic solvent by using cellulose fibrils.
  • an organic solvent is adsorbed using a general cellulose fibril, it does not have a property of gradually releasing the adsorbed organic solvent to the outside over time, that is, a sustained release property.
  • the organic solvent is in a state of being adsorbed on the surface of the fibrous material of the cellulose fibrils, and particles such as capsules incorporating the organic solvent are not formed. Therefore, after a certain period of time, the organic solvent evaporates, and the remaining amount of the organic solvent in the composition becomes considerably small.
  • the present invention is a particle that incorporates an organic solvent, it is possible to stably maintain the sustained release property that is a property that can gradually release the organic solvent to the outside over time, and at a constant or higher pressure It is an object of the present invention to provide a composition containing particles capable of supplying an organic solvent to the outside when the outer shell is broken.
  • the present inventors have conducted various studies, cellulose nanofibers, water, and blended with an organic solvent, and a composition containing particles having an outer shell containing cellulose nanofibers, the composition of the particles, It has been found that the above problem can be solved by adjusting the average particle size and the standard deviation of the average particle size of the particles to a predetermined range.
  • the present invention has been completed based on this finding.
  • a composition comprising a cellulose nanofiber (A), water (B), and an organic solvent (C), An outer shell containing cellulose nanofiber (A), containing particles satisfying the following requirements (I) and (II); A composition in which at least a part of the organic solvent (C) is in a state of being incorporated in the particles.
  • Requirement (I) The average particle diameter of the particles is 1 to 60 ⁇ m.
  • -Requirement (II) The standard deviation of the average particle diameter of the particles is 20 ⁇ m or less.
  • the average fiber length of the cellulose nanofiber (A) is 0.01 to 10 ⁇ m.
  • the particles contained in the composition of the present invention are particles that incorporate an organic solvent, and can stably maintain a sustained release property that gradually releases the organic solvent to the outside over time, and can be constant or If the pressure is applied more than that, the outer shell is broken and the organic solvent can be supplied to the outside.
  • FIG. 9 is an image obtained when the composition prepared in Example 7 was observed with a digital microscope. It is a schematic diagram of the measurement sample for observing the composition prepared by the Example with a digital microscope, (a) is a schematic plan view of the measurement sample in the middle of manufacture, (b) is the manufactured measurement sample FIG.
  • the composition of the present invention comprises cellulose nanofiber (A), water (B), and an organic solvent (C), and comprises particles having an outer shell containing cellulose nanofiber (A). contains.
  • the cellulose nanofiber (A), water (B), and organic solvent (C) may be collectively referred to as “components (A) to (C)”.
  • FIG. 1 is an image obtained when the composition prepared in Example 7 described below was observed with a digital microscope. As shown in FIG. 1, the composition of the present invention contains particles, which are composed of an outer shell containing cellulose nanofibers (A).
  • the organic solvent (C) is in a state of being taken in by the particles, and specifically, in a state of being included in the particles, and in an outer shell of the particles. It is preferable that at least one of the state in which the cellulose nanofiber (A) is adsorbed is present.
  • the state in which the organic solvent (C) is included in the particles means that hollow particles are formed from the outer shell containing the cellulose nanofiber (A), and the organic solvent (C) is formed in the hollow portion of the hollow particles. ) Means the state is taken in. At this time, the organic solvent (C) is separated from the outside of the hollow particles by the outer shell constituting the hollow particles.
  • the particles contain the organic solvent (C), and the cellulose nanofibers (A) constituting the outer shell of the particles adsorb the organic solvent (C). It may be in the state where it is.
  • the outer shell composed of the cellulose nanofiber (A) adsorbs the organic solvent (C) means that the organic solvent is contained in the network structure of the outer shell composed of the cellulose nanofiber (A). (C) means that it exists.
  • Cellulose nanofibers (A) contained in the outer shell of the particles have a fine structure as compared with general cellulose fibrils such as pulp, and therefore have a large surface area per unit mass.
  • the amount of the organic solvent (C) attracted to the surface of the cellulose nanofiber (A) also increases. Further, the cellulose nanofiber (A) has a large force to attract the organic solvent (C) to the surface because a plurality of fibers are entangled with each other to form an outer shell. It is easy to maintain the state where the organic solvent (C) is taken into the network structure (that is, the state where the organic solvent (C) is adsorbed).
  • the organic solvent (C) is incorporated into the particles (ie, within the network structure of the outer shell, unless intentionally applying a constant or higher pressure).
  • the state in which the organic solvent (C) is present in the space inside the outer shell) is maintained, and it becomes difficult for a large amount of the organic solvent (C) to be released to the outside.
  • the organic solvent (C) taken in the particles is not completely sealed with the outside of the particles, but can be gradually released to the outside of the particles over time. That is, the particles contained in the composition of the present invention have the outer shell containing the cellulose nanofiber (A) as described above. Since the cellulose nanofiber (A) is a fibrous material, the outer shell containing the cellulose nanofiber (A) has many voids. Then, the organic solvent (C) taken into the particles can be released to the outside of the particles over time from the void.
  • the outer shell of the particles contains the cellulose nanofibers (A), the film strength is high, and it is difficult to break under normal conditions of no load or low load.
  • the particles can be easily broken by applying a certain or more pressure, and the captured organic solvent (C) can be supplied to the outside at once. Note that in the composition of one embodiment of the present invention, an organic solvent (C) that is not incorporated into the particles may be present.
  • water (B) may be incorporated into the particles together with the organic solvent (C).
  • a gas such as air may be taken into the particles.
  • a gas such as air is mixed into the composition, but it is conceivable that a gas such as air is taken into the inside of the outer shell constituting the particles.
  • the cellulose nanofiber (A) forms a hydrogen bond with water (B), and thus has a high affinity for water (B). Therefore, the outer shell containing the cellulose nanofibers (A) of the particles may be in a state of adsorbing water (B). That is, the particles may be in a state in which the organic solvent (C) is taken inside and the water (B) is held in the outer shell.
  • the particles having the outer shell containing the cellulose nanofibers, and the cellulose nanofibers that do not form the particles and are dispersed in water retain water so that the water interacts with a large number of water molecules as a dispersion medium. Therefore, it is considered that the amount of liquid composed of water (B) present separately from the cellulose nanofiber (A) is reduced.
  • the solid content ratio in the composition is preferably as large as possible.
  • the solid content in the composition of one embodiment of the present invention is preferably from 80 to 100% by mass, more preferably from 90 to 100% by mass, and still more preferably from 95 to 100% by mass, based on the total amount (100% by mass) of the composition. -100% by mass, more preferably 98-100% by mass.
  • the “solid content ratio” in the composition refers to the ratio of the solid content remaining on the tetron mesh after the composition is applied on a tetron mesh (# 200 mesh) and allowed to stand. And specifically, a value measured by the method described in Examples.
  • the solid content remaining on the tetron mesh described above includes not only the cellulose nanofiber (A), but also the organic solvent (C) incorporated in the particles, and the water ( B), and the mass of water (B) and the like retained in the cellulose nanofibers (A) that are not involved in the formation of the outer shell of the particles. Therefore, a composition having a high solid content means at least one of the following [A] and [B].
  • a large amount of at least one of water (B) and the organic solvent (C) is taken into the three-dimensional network structure of the outer shell constituted by the cellulose nanofiber (A) and the space inside the outer shell. ing.
  • At least one of a large amount of water (B) and an organic solvent (C) is held in the cellulose nanofiber (A) which is not involved in the formation of the outer shell of the particles.
  • the particles contained in the composition of the present invention satisfy the following requirements (I) and (II).
  • Requirement (I) The average particle diameter of the particles is 1 to 60 ⁇ m.
  • -Requirement (II) The standard deviation of the average particle diameter of the particles is 20 ⁇ m or less. Since the particles satisfy the above requirements (I) and (II), the composition can stably maintain the sustained release property that gradually releases the organic solvent to the outside over time.
  • the average particle diameter of the particles is less than 1 ⁇ m, the particles are aggregated with each other in the composition, and the organic solvent is difficult to be released to the outside over time, and stable sustained release is difficult to be exhibited. There is fear. Further, when the average particle diameter of the particles is more than 60 ⁇ m, the particles are likely to settle in the composition, which may adversely affect the expression of stable sustained release.
  • the average particle size of the particles which is defined by the requirement (I), is 1 ⁇ m or more, preferably 5 ⁇ m or more, from the viewpoint of suppressing aggregation of the particles in the composition. It is preferably at least 7 ⁇ m, more preferably at least 10 ⁇ m, even more preferably at least 15 ⁇ m, and from the viewpoint of suppressing the floating of particles in the composition, is at most 60 ⁇ m, preferably at most 50 ⁇ m, more preferably at least 40 ⁇ m. Hereinafter, it is more preferably 35 ⁇ m or less, and still more preferably 30 ⁇ m or less.
  • the standard deviation of the average particle diameter of the particles is more than 20 ⁇ m, the difference in the amount of the organic solvent taken in for each particle is large, and the amount of the organic solvent released over time varies. In addition, it is difficult to achieve stable sustained release. Furthermore, when the outer shell of the particles is broken by applying a certain or more pressure, there is a possibility that the amount of the organic solvent incorporated in the particles to the outside may be different.
  • the standard deviation with respect to the average particle diameter of the particles defined by the above requirement (II) is 20 ⁇ m or less, preferably 18 ⁇ m or less, more preferably 15 ⁇ m or less, further preferably, from the above viewpoint. Is 12 ⁇ m or less, and is usually 1 ⁇ m or more.
  • the average particle diameter of the particles defined by the above requirement (I) and the standard deviation with respect to the average particle diameter defined by the above requirement (II) are obtained by using a digital microscope for the target composition. It can be calculated from the image obtained when observed at a magnification of 500 to 1000 times.
  • the average value of the particle diameters (outer diameters of the outer shells constituting the particles) of the 36 particles arbitrarily selected among the particles displayed in the image is defined as the “average particle diameter”. it can.
  • the “standard deviation with respect to the average particle size” can be calculated from the value of the particle size of each of the 36 particles.
  • the standard deviation is the standard deviation of the population. In the above calculation, the standard deviation is calculated for all 36 particle size values.
  • the average thickness of the outer shell of the particles contained in the composition of one embodiment of the present invention is preferably 10 nm or more, more preferably 50 nm or more, and still more preferably, from the viewpoint of improving the shape stability of the particles. Is 75 nm or more, and from the viewpoint of easily breaking the outer shell of the particle by applying a constant or more pressure, preferably 2000 nm or less, more preferably 1750 nm or less, still more preferably 1500 nm or less, even more preferably It is 1250 nm or less.
  • the thickness of the outer shell of the particles, the target composition, after coating and drying on a support material such as a polyethylene terephthalate film to form a coating, the cross-section of the coating can be calculated based on an image obtained when observed using a scanning electron microscope (SEM) or the like.
  • SEM scanning electron microscope
  • the average value of the outer shells of the particle diameters of the 36 particles arbitrarily selected among the particles shown in the image can be the above-mentioned “average of outer shell thickness”.
  • the viscosity of the composition of one embodiment of the present invention at 23 ° C. and a rotation speed of 50 rpm is preferably 500 mPa ⁇ s or more, and more preferably, from the viewpoint of improving storage stability and suppressing sedimentation when stored in a container. 1000 mPa ⁇ s or more, more preferably 1200 mPa ⁇ s or more, and from the viewpoint of improving the ease of stirring and taking out of the container, preferably 20,000 mPa ⁇ s or less, more preferably 15000 mPa ⁇ s or less, and still more preferably. Is 12000 mPa ⁇ s or less.
  • the TI value of the composition of one embodiment of the present invention at 23 ° C. indicates good storage stability and suppresses sedimentation when stored in a container. From the viewpoint, it is preferably 1.2 or more, more preferably 2 or more, still more preferably 3 or more, and still more preferably 4 or more, and preferably 20 or less from the viewpoint of improving the removability from the container. It is more preferably 15 or less, further preferably 10 or less, and still more preferably 8 or less.
  • the viscosity of the composition means a value measured using a B-type viscometer according to JIS Z 8803: 2011.
  • the pH of the composition of one embodiment of the present invention is preferably 4 or more, more preferably 5 or more, and still more preferably 6 or more, from the viewpoint that the formed particles are stable and the dispersion state is easily maintained in the composition. And preferably 10 or less, more preferably 9 or less, and still more preferably 8 or less.
  • the pH of a composition means the value measured based on the method of an Example in 23 degreeC and 50% of relative humidity environment.
  • the composition of one embodiment of the present invention may contain components other than the above components (A) to (C).
  • the total content of the cellulose nanofiber (A), water (B), and organic solvent (C) is preferably based on the total amount of the composition (100% by mass). Is from 60 to 100% by mass, more preferably from 65 to 100% by mass, further preferably from 70 to 100% by mass, even more preferably from 80 to 100% by mass.
  • the active ingredient concentration of the composition of one embodiment of the present invention is preferably such that the particles are easily formed and the film strength of the formed particles is improved with respect to the total amount of the composition (100% by mass). It is preferably at least 0.5% by mass, more preferably at least 0.7% by mass, still more preferably at least 1.0% by mass, and still more preferably at least 1.5% by mass. From the viewpoint of appropriately adjusting the viscosity of the composition, the content is preferably 50% by mass or less, more preferably 20% by mass or less, further preferably 15% by mass or less, and further more preferably 10% by mass or less.
  • active ingredient means the component except water (B) and organic solvent (C) among the components contained in a composition, and specifically, a cellulose nanofiber ( A), polysaccharides other than cellulose nanofiber (A), and various additives. In other words, it differs from the above-mentioned “solid content” in that the mass of the organic solvent (C) and water (B) taken into the cellulose nanofiber (A) is not included.
  • the particles having the outer shell containing the cellulose nanofiber (A), taking in the organic solvent (C), and satisfying the above requirements (I) and (II) are the particles (diameter, fiber) of the blended cellulose nanofiber (A). Length, aspect ratio), the compounding amounts of each of the components (A) to (C), the compounding ratio of the cellulose nanofiber (A) and the organic solvent (C), and the mixing amount of water (B) and the organic solvent (C). By appropriately adjusting the compounding ratio, the type of the organic solvent (C), and the like, formation can be facilitated.
  • the details of each component will be described focusing on a specific method for forming the particles satisfying the requirements (I) and (II).
  • ⁇ Cellulose nanofiber (A)> As a raw material of the cellulose nanofiber (A) used in one embodiment of the present invention, for example, wood-derived kraft pulp or sulfite pulp; powdered cellulose obtained by grinding kraft pulp or sulfite pulp with a high-pressure homogenizer or a mill; Microcrystalline cellulose powder obtained by purifying pulp by chemical treatment such as acid hydrolysis; bast fiber pulp such as mulberry, ganpi, mitsumata, etc .; cellulosic raw material derived from plants such as cotton pulp, kenaf, hemp, rice, bacas, bamboo; Cellulose-based raw materials.
  • wood-derived kraft pulp or sulfite pulp powdered cellulose obtained by grinding kraft pulp or sulfite pulp with a high-pressure homogenizer or a mill
  • Microcrystalline cellulose powder obtained by purifying pulp by chemical treatment such as acid hydrolysis
  • bast fiber pulp such as mulberry, ganpi, mitsumata
  • a cellulose-based raw material obtained by removing lignin from these raw materials is preferable. Further, the above-mentioned cellulose-based raw material may be used as finely divided by a high-speed rotation type, colloid mill type, high pressure type, roll mill type, ultrasonic type or other dispersing device, wet type high pressure or ultra high pressure homogenizer, or the like.
  • these cellulosic raw materials may be those having improved functionality by chemical modification and / or physical modification.
  • the chemical modification includes acetylation, carboxylation, carboxysodiumation, esterification, cyanoethylation, acetalization, etherification, arylation, alkylation, acryloylation, addition of a functional group by isocyanation, etc.
  • an inorganic substance such as silicate or titanate is compounded or coated by a chemical reaction, a sol-gel method, or the like.
  • a metal or ceramic raw material is subjected to a physical vapor deposition method (PVD method) such as vacuum deposition, ion plating, and sputtering, a chemical vapor deposition method (CVD method), and a plating method such as electroless plating and electrolytic plating.
  • PVD method physical vapor deposition method
  • CVD method chemical vapor deposition method
  • plating method such as electroless plating and electrolytic plating.
  • Surface coating may be performed either at the time of defibrating the cellulose-based material or before or after defibrating.
  • the above-mentioned cellulose-based material can be made into cellulose nanofibers by defibrating and forming nanofibers.
  • a shear force is applied to the cellulose-based material to obtain a dispersion containing cellulose nanofibers.
  • a shearing force is applied to the cellulosic material, after adding the cellulosic material to a dispersion medium such as water, using a high-speed rotation type, a colloid mill type, a high pressure type, a roll mill type, an ultrasonic type or the like, The method of preparation is preferred.
  • the pressure applied to the dispersion is preferably 50 MPa or more, more preferably 100 MPa or more, and still more preferably 140 MPa or more. From the viewpoint of applying a strong shearing force to the cellulosic material under such a high pressure, it is preferable to use a wet high-pressure or ultra-high-pressure homogenizer.
  • the average of the diameter (thickness) of the cellulose nanofiber (A) used in one embodiment of the present invention facilitates the formation of the particles satisfying the requirements (I) and (II), and the film strength of the formed particles. From the viewpoint of improving, it is preferably at least 1.0 nm, more preferably at least 1.5 nm, further preferably at least 2.0 nm, still more preferably at least 2.5 nm, and also preferably at most 1,000 nm, It is preferably at most 500 nm, more preferably at most 200 nm, even more preferably at most 100 nm.
  • the average fiber length of the cellulose nanofibers (A) used in one embodiment of the present invention facilitates the formation of the particles satisfying the requirements (I) and (II), and improves the film strength of the formed particles. From the viewpoint, it is preferably 0.01 ⁇ m or more, more preferably 0.1 ⁇ m or more, still more preferably 0.2 ⁇ m or more, even more preferably 0.3 ⁇ m, and preferably 10 ⁇ m or less, more preferably 7.0 ⁇ m or less. , More preferably 5.0 ⁇ m or less, even more preferably 2.5 ⁇ m or less.
  • the average aspect ratio of the cellulose nanofiber (A) used in one embodiment of the present invention facilitates formation of the particles satisfying the requirements (I) and (II), and improves the film strength of the formed particles. Therefore, it is preferably 5 or more, more preferably 10 or more, still more preferably 15 or more, and preferably 10,000 or less, more preferably 5,000 or less, still more preferably 3,000 or less, and still more preferably 1,000 or less. Or less, particularly preferably 500 or less.
  • the “aspect ratio” is a ratio of the length to the thickness of the target cellulose nanofiber [length / thickness], and the “length” of the cellulose nanofiber is the most of the cellulose nanofiber. Refers to the distance between two distant points. If a part of the target cellulose nanofiber is in contact with another cellulose nanofiber and it is difficult to determine the “length”, only the part of the target cellulose nanofiber whose thickness can be measured can be used. Is measured, and the aspect ratio of the portion may be within the above range.
  • the diameter (thickness) and fiber length of the cellulose nanofiber (A) can be measured using a transmission electron microscope.
  • the average of the diameter (thickness) and the average of the fiber length of the cellulose nanofibers (A) are obtained by measuring the diameter (thickness) and the fiber length of a plurality of arbitrarily selected cellulose nanofibers, and calculating the average value of each. It is obtained by calculating.
  • the average aspect ratio of the cellulose nanofiber (A) can be calculated using the thus obtained average of the diameter (thickness) and the average of the fiber length.
  • the diameter (thickness), fiber length, average value, and average aspect ratio of the cellulose nanofiber (A) can be specifically calculated by the methods described in Examples.
  • the blending amount of the cellulose nanofiber (A) is such that the particles satisfying the requirements (I) and (II) are formed with respect to the total amount (100% by mass) of the composition.
  • the viewpoint of facilitating and improving the film strength of the formed particles preferably 0.7% by mass or more, more preferably 0.8% by mass or more, still more preferably 1.0% by mass or more, further more preferably 1.2% by mass or more, and preferably from 15% by mass or less, from the viewpoint of appropriately adjusting the viscosity of the composition so that the particles satisfying the requirements (I) and (II) are easily formed. It is more preferably at most 10% by mass, further preferably at most 7% by mass, still more preferably at most 5% by mass, particularly preferably at most 3% by mass.
  • Water (B)> In the composition of one embodiment of the present invention, most of the water (B) is adsorbed on the outer shell of the particle, or is present outside the particle. However, a part of the water (B) may be included together with the organic solvent (C) inside the particles.
  • the amount of the water (B) is as follows: , Based on the total amount of the composition (100% by mass), preferably 15% by mass or more, more preferably 30% by mass or more, still more preferably 50% by mass or more, even more preferably 60% by mass or more; , Preferably 99% by mass or less, more preferably 98.7% by mass or less, still more preferably 98.5% by mass or less.
  • the composition of one embodiment of the present invention from the viewpoint of preparing a composition having an appropriate viscosity and easily forming the particles satisfying the requirements (I) and (II), 100 mass% of the cellulose nanofiber (A) is used.
  • the mixing ratio of water (B) to the parts is preferably at least 500 parts by mass, more preferably at least 1,000 parts by mass, still more preferably at least 2,000 parts by mass, even more preferably at least 3,000 parts by mass, and preferably at least 3,000 parts by mass. It is at most 20,000 parts by mass, more preferably at most 15,000 parts by mass, further preferably at most 10,000 parts by mass.
  • the composition of one embodiment of the present invention is preferably formed by mixing an organic solvent (C) with an aqueous dispersion containing cellulose nanofibers (A) and water (B).
  • an organic solvent (C) After preparing the aqueous dispersion in advance, by blending the organic solvent (C), the cellulose nanofiber (A) can easily take in the organic solvent (C) and satisfy the requirements (I) and (II). Particles are easily formed.
  • the aqueous dispersion is prepared by blending the respective components such that the blending ratio of the cellulose nanofiber (A) and the water (B) is within the above range.
  • the aqueous dispersion may contain components other than the components (A) to (C) together with the cellulose nanofiber (A) and the water (B).
  • Organic solvent (C) used in one embodiment of the present invention can be appropriately selected depending on the use of the composition.
  • organic solvent (C) it is preferable to use an organic solvent represented by the following formula (1) and having a distance Ra of the Hansen solubility parameter at 25 ° C. of 5.80 MPa 1/2 or less.
  • ⁇ D is a dispersion component of the Hansen solubility parameter of the organic solvent (C)
  • ⁇ P is the polar component of the Hansen solubility parameter of the organic solvent (C)
  • ⁇ H indicates the hydrogen bonding component of the Hansen solubility parameter of the organic solvent (C).
  • the Hansen solubility parameter is obtained by dividing the solubility parameter introduced by Hildebrand into three components of Hansen, ⁇ D (dispersion component), ⁇ P (polar component), and ⁇ H (hydrogen bonding component). It is shown in a dimensional space. Note that the values of ⁇ D, ⁇ P, and ⁇ H are values specific to each organic solvent, and are values calculated from specific calculations. More specifically, the definition and calculation method of the Hansen solubility parameter are as described in "Hansen Solubility Parameters: A Users Handbook (by Charles M. Hansen, CRC Press, 2007)".
  • ⁇ D, ⁇ P, and ⁇ H are calculated in a database included in calculation software “Hansen Solubility Parameters in Practice (HSPiP) Version4.1.03” (Steven Abbott, Charles M. Hansen, Hiroshi Yamamoto). Was used.
  • Hansen Solubility Parameters in Practice (HSPiP) Version4.1.03 (Steven Abbott, Charles M. Hansen, Hiroshi Yamamoto).
  • the values of ⁇ D, ⁇ P, and ⁇ H of a typical organic solvent used in Examples described later, and the distance Ra calculated from the above formula (1) (all units are “MPa 1/2 ”) are shown. It is shown in FIG.
  • ⁇ D, ⁇ P, and ⁇ H of the organic solvent other than those shown in Table 1 can be calculated from the molecular structure of the organic solvent or the like, or ⁇ D, ⁇ P, and The value of ⁇ H can also be calculated by conducting an experiment on the solubility with an organic solvent known from various literatures.
  • the distance Ra calculated from Expression (1) means the distance between the plot of the target organic solvent and the center of the sphere in the three-dimensional space of the Hansen solubility parameter. That is, if the distance Ra is equal to or less than the radius of the sphere “5.80 MPa 1/2 ”, the plot of the target organic solvent is located inside the sphere, and the particles are easily formed. Can be determined.
  • the organic solvent (C) used in the composition of the present invention may be used alone or as a mixed solvent using two or more kinds.
  • the organic solvent (C) is a mixed solvent
  • the values of the three components ( ⁇ D, ⁇ P, ⁇ H) of the weighted average Hansen solubility parameter are determined from the mixing ratio (volume ratio) of the mixed solvent, and calculated from the above equation (1). It is sufficient that the determined distance Ra is equal to or less than 5.80 MPa 1/2 .
  • the organic solvent (C) when using a mixed solvent composed of an organic solvent ⁇ and beta, 3-component [delta] D m Hansen parameter of the mixed solvent, [delta] P m, delta] H m can be calculated as follows . That is, the three components of Hansen parameters of the organic solvent ⁇ ⁇ D ⁇ , ⁇ P ⁇ , and delta] H alpha, the three components of Hansen parameters of the organic solvents beta [delta] D beta, [delta] P beta, and delta] H beta, the volume of the organic solvent alpha the rate v alpha, if the volume fraction of organic solvents beta was v ⁇ , ⁇ D m, ⁇ P m , ⁇ H m can be calculated from the following equation.
  • organic solvent (C) capable of forming the particles can be obtained by mixing the mixture at an appropriate volume ratio and preparing a mixed solvent prepared so that the distance Ra is 5.80 MPa 1/2 or less.
  • a composition containing particles incorporating an organic solvent having a distance Ra of more than 5.80 MPa 1/2 by one type alone another organic solvent having a distance Ra of 5.80 MPa 1/2 or less It is thought that it can be prepared by using the above-mentioned mixed solvent prepared by mixing with.
  • the Hansen solubility parameter represented by a vector in three-dimensional space as described above the first organic solvent alone distance Ra of 5.80MPa 1/2 than alone distance Ra is 5.80MPa 1 / a second organic solvent comprising a 2 exceeds even by mixing a second organic solvent which is positioned on the opposite side of the first organic solvent with respect to the center of the sphere in the 3-dimensional space as described above, A mixed solvent having a distance Ra of 5.80 MPa 1/2 or less can be prepared.
  • the organic solvent (C) used in one embodiment of the present invention preferably contains an organic solvent (C1) having less than 20 carbon atoms.
  • the organic solvent (C1) having less than 20 carbon atoms is easily taken into the cellulose nanofiber (A), and the particles satisfying the requirements (I) and (II) are easily formed. That is, in an organic solvent having a large number of carbon atoms, molecules of the organic solvent are likely to collect with each other, and since the viscosity is high, it is difficult to form particles close to a true sphere. As a result, it is considered that such an organic solvent is not taken into the cellulose nanofiber (A), but remains at a higher rate outside the particles.
  • the carbon number of the organic solvent (C1) is preferably less than 20, more preferably 1 to 18, and still more preferably 1 to 16.
  • the blending ratio of the organic solvent (C1) in the organic solvent (C) is preferably 20% by mass or more, more preferably 35% by mass or more based on the total amount (100% by mass) of the organic solvent (C). , More preferably 50% by mass or more, even more preferably 70% by mass or more.
  • organic solvents (C1) one or more organic solvents (C2) selected from heptane, n-hexadecane, toluene, cyclohexanone, methyl ethyl ketone, and n-dodecane are preferred.
  • the particles satisfying the requirements (I) and (II) can be more easily formed.
  • the blending ratio of the organic solvent (C2) in the organic solvent (C) is determined based on the total amount of the organic solvent (C) (100% by mass). On a basis, it is preferably 20% by mass or more, more preferably 35% by mass or more, further preferably 50% by mass or more, and still more preferably 70% by mass or more.
  • the viscosity of the organic solvent (C) at 25 ° C is preferably 0.1 mPa ⁇ from the viewpoint of facilitating the formation of the particles satisfying the requirements (I) and (II). s or more, more preferably 0.15 mPa ⁇ s or more, still more preferably 0.2 mPa ⁇ s or more, even more preferably 0.25 mPa ⁇ s or more, and preferably 30 mPa ⁇ s or less, more preferably 10 mPa ⁇ s or less. s or less, more preferably 6.0 mPa ⁇ s or less, even more preferably 2.8 mPa ⁇ s or less.
  • the compounding amount of the organic solvent (C) is set to the total amount of the composition (100% by mass). Is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, still more preferably 0.5% by mass or more, even more preferably 0.8% by mass or more, and preferably It is 80% by mass or less, more preferably 60% by mass or less, more preferably 45% by mass or less, further preferably 42% by mass or less, further preferably 40% by mass or less, and still more preferably 38% by mass or less.
  • the compounding ratio of the organic solvent (C) to the cellulose nanofiber (A) [(C ) / (A)] is preferably at least 0.01, more preferably at least 0.05, more preferably at least 0.1, further preferably at least 0.5, further preferably at least 0.75, by mass ratio. And still more preferably 0.9 parts by mass or more, and preferably 60 or less, more preferably 45 or less, more preferably 40 or less, and still more preferably 35 or less.
  • the mixing ratio of water (B) to the organic solvent (C) [(B) / (C)] is preferably not less than 0.1, more preferably not less than 0.5, still more preferably not less than 1.0, still more preferably not less than 1.5, and preferably not more than 1000 in terms of mass ratio. , More preferably 700 or less, still more preferably 500 or less, even more preferably 300 or less, and particularly preferably 100 or less.
  • composition of one embodiment of the present invention may contain components other than the components (A) to (C) as long as the effects of the present invention are not impaired.
  • Such other components are appropriately selected according to the use of the composition, and include, for example, a colorant, an antioxidant, a pH adjuster, a sweetener, a flavor, a preservative, an ultraviolet absorber, and a polymerization inhibitor.
  • a surfactant may be contained.
  • the content of the surfactant is preferably as small as possible.
  • the content of the surfactant is preferably less than 10 parts by mass, more preferably 1 part by mass, based on 100 parts by mass of the total amount of the cellulose nanofiber (A). Less than 0.1 part by mass, more preferably less than 0.01 part by mass, particularly preferably less than 0.001 part by mass, and most preferably 0 part by mass.
  • the composition of one embodiment of the present invention may contain a polysaccharide other than the cellulose nanofiber (A), but from the viewpoint of improving the thermal stability of the particles and facilitating the formation of the particles.
  • the content of the polysaccharide other than the cellulose nanofibers (A) is preferably less than 10 parts by mass relative to 100 parts by mass of the total amount of the cellulose nanofibers (A). , More preferably less than 1 part by mass, further preferably less than 0.1 part by mass, still more preferably less than 0.01 part by mass, particularly preferably 0 part by mass.
  • Step (1) a step of preparing an aqueous dispersion containing the cellulose nanofiber (A) and water (B).
  • Step (2) a step of adding an organic solvent (C) to the aqueous dispersion obtained in Step (1).
  • the details of the components (A) to (C) used in the steps (1) and (2) are as described above.
  • Step (1) is a step of preparing an aqueous dispersion containing cellulose nanofibers (A) and water (B).
  • the step may be omitted.
  • the cellulose nanofiber (A) or water (B) is added to the commercially available aqueous dispersion, and a desired blending is performed. It may be prepared in a volume of aqueous dispersion.
  • components other than the components (A) to (C) When components other than the components (A) to (C) are blended, they may be blended in the preparation of the aqueous dispersion in the step (1), and the steps (1) and (2) May be added during the step (2), may be added during the step (2), or may be added after the step (2).
  • the pH of the aqueous dispersion obtained in the step (1) is preferably from the viewpoint of suppressing aggregation of the cellulose nanofibers (A) in the aqueous dispersion and reducing variations in the shape and size of the formed particles. It is 4 or more, more preferably 5 or more, still more preferably 6 or more, and preferably 10 or less, more preferably 9 or less, and still more preferably 8 or less.
  • Step (2) is a step of adding an organic solvent (C) to the aqueous dispersion obtained in step (1).
  • organic solvent (C) it is preferable to add the organic solvent (C) while stirring the aqueous dispersion using a stirrer equipped with a stirring blade such as a homodisper, a mixer, or a paddle blade.
  • the stirring speed (rotation speed) when stirring the aqueous dispersion suppresses the aggregation of the cellulose nanofibers (A), reduces the variation in the shape and size of the formed particles, and satisfies the requirements (I) and (II).
  • the temperature of the aqueous dispersion suppresses the aggregation of the cellulose nanofiber (A), reduces the variation in the shape and size of the formed particles, and facilitates the formation of particles satisfying the requirements (I) and (II).
  • it is preferably 5 ° C. or higher, more preferably 10 ° C. or higher, and still more preferably 15 ° C. or higher, and from the viewpoint of suppressing the volatilization of the added organic solvent (C), preferably 45 ° C. or lower.
  • it is 40 ° C. or lower, more preferably 35 ° C. or lower.
  • the addition amount of the organic solvent (C) every 10 seconds is preferably at least 0.1 part by mass, more preferably at least 1 part by mass, further preferably at least 3 parts by mass based on 100 parts by mass of the total amount of the aqueous dispersion. It is at least 5 parts by mass, more preferably at least 5 parts by mass, and preferably at most 20 parts by mass, more preferably at most 15 parts by mass, further preferably at most 10 parts by mass, even more preferably at most 7 parts by mass. .
  • the stirring time from the start of the addition of the organic solvent (C) is preferably 3 minutes or more, more preferably 5 minutes or more, and still more preferably 10 minutes, from the viewpoint of easily forming particles satisfying the requirements (I) and (II). Minutes or more, preferably 180 minutes or less, more preferably 120 minutes or less, further preferably 60 minutes or less, still more preferably 40 minutes or less, and particularly preferably 20 minutes or less.
  • the stirring time refers to the time from the addition of the organic solvent (C) to the end of the stirring.
  • the particles contained in the composition of the present invention are particles containing an organic solvent, and can stably maintain a sustained release property, which is a property capable of gradually releasing the organic solvent to the outside over time.
  • a sustained release property which is a property capable of gradually releasing the organic solvent to the outside over time.
  • a composition containing particles having such properties can be used in the fields of agriculture, food, cosmetics, medicine, and the like. Specifically, a liquid fragrance supplied according to the pressure, a liquid fragrance supplied according to the temperature, a foodstuff whose taste changes on the tongue according to the temperature, a coolant gradually released according to the temperature , A pressure-sensitive adhesive, a drug delivery system, and the like.
  • a mixture of the active ingredients (flavors, nutrients, functional substances, drugs, etc.) for each of the above uses in an appropriate organic solvent is incorporated into the hollow particles formed of the outer shell containing the cellulose nanofibers described above.
  • the composition can be prepared and used for each application.
  • Viscosity and TI value of composition According to JIS Z 8803: 2011, the viscosity of the composition was measured using a B-type viscometer at 23 ° C, rotation speed of 5 rpm and 50 rpm. The ratio of [viscosity at 5 rpm] / [viscosity at 50 rpm] was defined as the TI value.
  • Aqueous dispersion (1) Product name "BiNFi-s AMa 10002", manufactured by Sugino Machine Co., Ltd.
  • the aqueous dispersion (1) contained 4900 parts by mass of water with respect to 100 parts by mass of the cellulose nanofiber, and the pH of the aqueous dispersion (1) was 7.0.
  • -Aqueous dispersion (2) Product name "TEMPO oxidized CNF", manufactured by Nippon Paper Industries. An aqueous dispersion containing 1% by mass of chemically treated cellulose nanofibers having an average diameter (thickness) of 3.8 nm, an average length of 0.7 ⁇ m, and an average aspect ratio of 184. The aqueous dispersion (2) contained 9900 parts by mass of water with respect to 100 parts by mass of the cellulose nanofibers, and the pH of the aqueous dispersion (2) was 7.0.
  • the amount of the organic solvent shown in Table 2 is added to the aqueous dispersion (1) or (2) with respect to 100 parts by mass of the cellulose nanofiber in the aqueous dispersion (1) or (2).
  • stirring blade homodisper (manufactured by the company, blade diameter 35 mm)).
  • the organic solvents shown in Table 2 were added at a rate of 5 parts by mass every 10 seconds to 100 parts by mass of the total amount of the aqueous dispersion (1) or (2). Stirring was continued after the addition of the organic solvent, and the stirring was stopped 10 minutes after the start of stirring to prepare a composition.
  • compositions prepared in the examples were measured and calculated for viscosity (viscosity at 5 rpm and 50 rpm, TI value), and evaluated and measured as follows. Table 3 shows the results.
  • test sample was prepared by putting 100 g of the prepared composition in a cylindrical transparent glass container having a diameter of 4.2 cm.
  • a comparative sample was prepared by putting an organic solvent having a mass contained in 100 g of the composition to be measured in the same type of transparent container as described above. Then, the test sample and the comparative sample were left uncovered at 23 ° C. and a relative humidity of 50%, and allowed to stand in a continuously operated draft for 6 hours. Five evaluators confirmed the odor of the test sample and the comparative sample taken out of the draft after standing still. Table 3 shows the number of evaluators who judged that the test sample smelled better than the comparative sample. Even after 6 hours, it can be said that the larger the number of the evaluators, the more stable the sustained release of the particles.
  • FIG. 1 is an image obtained when the composition of Example 7 was observed with a digital microscope, and it can be seen that particles were present. In the compositions of Examples 1 to 6 and 8 to 13, the presence of similar particles was confirmed. And it was also confirmed that the sustained release properties of these particles were stably maintained.
  • the composition of Example 7 had a pH of 7.0.
  • each of the compositions prepared in Examples 7 and 10 was applied onto the surface of an easily adhesive layer of a PET film (Cosmoshine (registered trademark) manufactured by Toyobo Co., Ltd., product number “A4100”, thickness: 50 ⁇ m) as a support material. And dried at 120 ° C. for 10 minutes to form a coating film having a thickness of 50 ⁇ m, and an image obtained by observing a cross section of the coating film with a scanning electron microscope (SEM) (S-4700 manufactured by Hitachi, Ltd.) I got Then, among the particles projected on the image, the thicknesses of the outer shells of 36 particles arbitrarily selected are measured, and the average value thereof is calculated as the above-mentioned “average of outer shell thickness”. did. As a result, the average of the outer shell thickness of the particles in the composition was “1202 nm” in Example 7 and “93 nm” in Example 10.
  • SEM scanning electron microscope

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

有機溶剤を取り込んだ粒子であって、経時的に有機溶剤を少しずつ外部へ放出することができる性質である徐放性を安定して持続し得ると共に、一定又はそれ以上の圧力をかけると外殻が破れて有機溶剤を外部へ供給することができる粒子を含み、かつ、セルロースナノファイバー(A)、水(B)、及び、有機溶剤(C)を配合してなる組成物であって、セルロースナノファイバー(A)を含む外殻を備え、下記要件(I)及び(II)を満たす粒子を含有し、有機溶剤(C)の少なくとも一部が、前記粒子に取り込まれている状態である、組成物。 ・要件(I):前記粒子の平均粒子径が、1~60μmである。 ・要件(II):前記粒子の平均粒子径に対する標準偏差が、20μm以下である。

Description

組成物
 本発明は、組成物に関する。
 繊維状多糖の一つであるセルロース原繊維は、農業、食品、化粧品、薬剤、フィルタ等の広範な用途への適用が検討されている。特に、近年、このセルロース原繊維を種々の方法で微細化したセルロースナノファイバーが、新材料として注目されている。
 例えば、特許文献1には、通気性を有する支持体に、数平均繊維径が1~50nmのセルロースナノファイバーを所定の割合で付着させた、エアフィルタ用濾材について記載されている。
 特許文献1には、当該エアフィルタ用濾材に用いるセルロースナノファイバーは、粒子捕集性能を有する旨の記載がある。
特開2017-177091号公報
 ところで、例えば、農業、食品、化粧品、薬剤等の分野において、有機溶剤を取り込みつつ、経時的に当該有機溶剤を少しずつ外部へ放出する性質(徐放性)を有し、有機溶剤を取り込んだカプセルのような粒子の形成が求められる場合があり、用途によっては、徐放性を安定して持続し得るという特性が求められることもある。
 また、このような粒子を含む組成物は、通常は有機溶剤の外部への放出を抑えつつも、必要時に圧力が加えられて粒子の外殻が破られることで、有機溶剤を外部へ供給することもできるため、このような特性が必要とされる用途への適用も可能である。
 一般的なセルロース原繊維は、界面活性剤を代替し得る機能を有し、親水基と疎水性部位とを有する両親媒性材料である。そのため、セルロース原繊維を用いることによって、有機溶剤を吸着することは可能である。
 しかしながら、一般的なセルロース原繊維を用いて有機溶剤を吸着させた場合、吸着した有機溶剤を経時的に徐々に外部へ放出する性質、つまり徐放性までは有していない。
 また、当該有機溶剤は、セルロース原繊維の繊維状物の表面に吸着された状態であって、当該有機溶剤を取り込んだカプセルのような粒子は形成されない。そのため、一定時間経過後には、有機溶剤は、気化して、組成物中の有機溶剤の残存量はかなり少なくなる。
 本発明は、有機溶剤を取り込んだ粒子であって、経時的に有機溶剤を少しずつ外部へ放出することができる性質である徐放性を安定して持続し得ると共に、一定又はそれ以上の圧力をかけると外殻が破れて有機溶剤を外部へ供給することができる粒子を含む組成物を提供することを目的とする。
 本発明者らは、様々な検討を行った結果、セルロースナノファイバー、水、及び、有機溶剤を配合して、セルロースナノファイバーを含む外殻を備える粒子を含む組成物とすると共に、当該粒子の平均粒子径、及び、当該粒子の平均粒子径に対する標準偏差を所定の範囲に調整することで、上記課題が解決し得ることを見い出した。本発明は、当該知見に基づき完成されたものである。
 すなわち、本発明は、下記[1]~[12]に関する。
[1]セルロースナノファイバー(A)、水(B)、及び、有機溶剤(C)を配合してなる組成物であって、
 セルロースナノファイバー(A)を含む外殻を備え、下記要件(I)及び(II)を満たす粒子を含有し、
 有機溶剤(C)の少なくとも一部が、前記粒子に取り込まれている状態である、組成物。
・要件(I):前記粒子の平均粒子径が、1~60μmである。
・要件(II):前記粒子の平均粒子径に対する標準偏差が、20μm以下である。
[2]有機溶剤(C)の少なくとも一部が、前記粒子に内包されている状態、及び、前記粒子の外殻を形成しているセルロースナノファイバー(A)に吸着されている状態の少なくとも一方である、上記[1]に記載の組成物。
[3]前記組成物中の固形分率が、当該組成物の全量に対して、80~100質量%である、上記[1]又は[2]に記載の組成物。
[4]前記組成物の23℃、50rpmにおける粘度が、500~20000mPa・sである、上記[1]~[3]のいずれか一つに記載の組成物。
[5]前記組成物の23℃でのTI値(回転数5rpmにおける粘度/回転数50rpmにおける粘度)が、1.2~20である、上記[1]~[4]のいずれか一つに記載の組成物。
[6]セルロースナノファイバー(A)の直径(太さ)の平均が、1~1000nmである、上記[1]~[5]のいずれか一つに記載の組成物。
[7]セルロースナノファイバー(A)の繊維長の平均が、0.01~10μmである、上記[1]~[6]のいずれか一つに記載の組成物。
[8]有機溶剤(C)の配合量が、前記組成物の全量に対して、0.05~80質量%である、上記[1]~[7]のいずれか一つに記載の組成物。
[9]水(B)と有機溶剤(C)との配合量比〔(B)/(C)〕が、質量比で、0.1~1000である、上記[1]~[8]のいずれか一つに記載の組成物。
[10]有機溶剤(C)が、炭素数20未満の有機溶剤(C1)を含む、上記[1]~[9]のいずれか一つに記載の組成物。
[11]界面活性剤の含有量が、セルロースナノファイバー(A)の全量100質量部に対して、10質量部未満である、上記[1]~[10]のいずれか一つに記載の組成物。
[12]セルロースナノファイバー(A)以外の多糖類の含有量が、セルロースナノファイバー(A)の全量100質量部に対して、10質量部未満である、上記[1]~[11]のいずれか一つに記載の組成物。
 本発明の組成物に含まれる粒子は、有機溶剤を取り込んだ粒子であって、経時的に有機溶剤を少しずつ外部へ放出する性質である徐放性を安定して持続し得ると共に、一定又はそれ以上の圧力をかけると外殻が破れて有機溶剤を外部へ供給することができる。
実施例7で調製した組成物をデジタル顕微鏡で観察した際に取得した画像である。 実施例で調製した組成物をデジタル顕微鏡で観察するための測定サンプルの模式図であって、(a)は、作製途中の測定サンプルの平面模式図であり、(b)は、作製した測定サンプルの正面模式図である。
〔組成物〕
 本発明の組成物は、セルロースナノファイバー(A)、水(B)、及び、有機溶剤(C)を配合してなるものであって、セルロースナノファイバー(A)を含む外殻を備える粒子を含有する。以下、セルロースナノファイバー(A)、水(B)、及び、有機溶剤(C)をまとめて「成分(A)~(C)」と称することがある。
 図1は、後述の実施例7で調製した組成物をデジタル顕微鏡で観察した際に取得した画像である。
 図1に示すように、本発明の組成物は、粒子を含有し、当該粒子は、セルロースナノファイバー(A)を含む外殻から構成されている。
 本発明の組成物において、有機溶剤(C)の少なくとも一部は、当該粒子に取り込まれた状態であり、具体的には、前記粒子に内包されている状態、及び、前記粒子の外殻を形成しているセルロースナノファイバー(A)に吸着されている状態の少なくとも一方であることが好ましい。
 ここで、「有機溶剤(C)が前記粒子に内包されている状態」とは、セルロースナノファイバー(A)を含む外殻から中空粒子が形成され、当該中空粒子の中空部分に有機溶剤(C)が取り込まれた状態を意味する。この際、中空粒子を構成する外殻によって、有機溶剤(C)は、中空粒子の外側とは隔てられた状態となっている。
 本発明の一態様の組成物において、前記粒子は、有機溶剤(C)を内包しつつ、且つ、当該粒子の外殻を構成するセルロースナノファイバー(A)は、有機溶剤(C)を吸着している状態であってもよい。本明細書において、「セルロースナノファイバー(A)によって構成される外殻が有機溶剤(C)を吸着する」とは、セルロースナノファイバー(A)によって構成される外殻の網目構造内に有機溶剤(C)が存在することを意味する。
 前記粒子の外殻に含まれるセルロースナノファイバー(A)は、パルプ等の一般的なセルロース原繊維に比べて、微細な構造を有しているため、単位質量あたりの表面積が大きく、結果として、セルロースナノファイバー(A)の表面に引きつけられる有機溶剤(C)の量も多くなる。
 更に、セルロースナノファイバー(A)は、複数の繊維が互いに絡み合って外殻を形成するため、表面に有機溶剤(C)を引きつける力が大きく、セルロースナノファイバー(A)によって構成される外殻の網目構造内に有機溶剤(C)を取り込んだ状態(つまり、有機溶剤(C)を吸着した状態)を保ち易い。
 そのため、前記粒子の形成時及び形成からしばらくの間は、意図的に一定又はそれ以上の圧力を加えない限り、有機溶剤(C)の当該粒子への取り込み(すなわち、外殻の網目構造内、及び、外殻より内側の空間に有機溶剤(C)が存在する状態)が保たれ、多量の有機溶剤(C)が外部へ放出され難くなる。
 その一方で、前記粒子に取り込まれた有機溶剤(C)は、粒子の外側と完全に密閉されたわけではなく、経時的に、徐々に粒子の外側へ放出し得る。
 つまり、本発明の組成物に含まれる粒子は、上記のとおり、セルロースナノファイバー(A)を含む外殻を備えている。セルロースナノファイバー(A)は繊維状物であるため、このセルロースナノファイバー(A)を含む外殻は多数の空隙を有する。そして、当該粒子に取り込まれた有機溶剤(C)は、この空隙から経時的に粒子の外側へ放出し得る。
 以上のことから、前記粒子は、形成後に取り込んだ有機溶剤(C)が短期間もしくは負荷がかからない状態では多量に外部へ放出され難いが、経時的に徐々に有機溶剤(C)を外部へ放出する性質である徐放性を有するものといえる。
 加えて、粒子の外殻は、セルロースナノファイバー(A)を含むため、膜強度は高く、無負荷又は低負荷の通常時には破断し難い。その一方で、当該粒子は、一定又はそれ以上の圧力が加えられることで容易に破断させることができ、取り込まれていた有機溶剤(C)を外部へ一度に供給させ得ることも可能である。
 なお、本発明の一態様の組成物において、前記粒子に取り込まれない有機溶剤(C)が存在していてもよい。
 また、前記粒子には、有機溶剤(C)と共に、水(B)が取り込まれていてもよい。
 更に、前記粒子には、空気等の気体も取り込まれていてもよい。当該粒子の形成時の撹拌工程にて、組成物中には空気等の気体が混入するが、前記粒子を構成する外殻の内部に、空気等の気体が取り込まれることも考えられる。
 ところで、セルロースナノファイバー(A)は、水(B)と水素結合を形成するため、水(B)との親和性が高い。
 そのため、前記粒子のセルロースナノファイバー(A)を含む外殻は、水(B)を吸着した状態であってもよい。つまり、前記粒子は、内部に有機溶剤(C)を取り込みつつ、且つ、水(B)が外殻に保持された状態であってもよい。
 本発明の組成物中において、有機溶剤(C)が前記粒子に取り込まれる量が多くなるほど、前記粒子とは分離して存在する有機溶剤(C)から構成される液体の量は少なくなる。
 また、セルロースナノファイバーを含む外殻を備える前記粒子や、前記粒子を形成しておらず水に分散しているセルロースナノファイバーが、分散媒である水分子と多く相互作用する程、水を保持しやすくなるため、セルロースナノファイバー(A)とは分離して存在する水(B)から構成される液体の量は少なくなると考えられる。粒子から離れて存在する液体の量を少なくすることによって粒子の沈降や凝集を防ぐ観点から、当該組成物中の固形分率は、多いほど好ましい。
 本発明の一態様の組成物中の固形分率は、当該組成物の全量(100質量%)に対して、好ましくは80~100質量%、より好ましくは90~100質量%、更に好ましくは95~100質量%、より更に好ましくは98~100質量%である。
 本明細書において、組成物中の「固形分率」とは、テトロンメッシュ(#200メッシュ)上に組成物を塗布して静置した後に、テトロンメッシュ上に残存している固形分の割合を指し、具体的には、実施例に記載の方法により測定された値を意味する。
 なお、上述のテトロンメッシュ上に残存している固形分には、セルロースナノファイバー(A)だけでなく、前記粒子に取り込まれた有機溶剤(C)、前記粒子の外殻に保持された水(B)、及び、前記粒子の外殻の形成には関与していないセルロースナノファイバー(A)に保持された水(B)等の質量も含まれる。
 そのため、固形分率が多い組成物は、下記[イ]及び[ロ]のうち、少なくとも一方であることを意味する。
[イ]セルロースナノファイバー(A)により構成される外殻の3次元網目構造内や該外殻より内側の空間内に、多くの水(B)及び有機溶剤(C)の少なくとも一方が取り込まれている。
[ロ]前記粒子の外殻の形成には関与していないセルロースナノファイバー(A)に、多くの水(B)及び有機溶剤(C)の少なくとも一方が保持されている。
 本発明の組成物に含まれる前記粒子は、下記要件(I)及び(II)を満たす。
・要件(I):前記粒子の平均粒子径が、1~60μmである。
・要件(II):前記粒子の平均粒子径に対する標準偏差が、20μm以下である。
 前記粒子が、上記要件(I)及び(II)を満たすため、経時的に有機溶剤を少しずつ外部へ放出する性質である徐放性を安定して持続し得る組成物とすることができる。
 前記粒子の平均粒子径が1μm未満であると、組成物中で、前記粒子が互いに凝集してしまい、経時的に有機溶剤が外部へ放出され難くなり、安定した徐放性が発現され難くなる恐れがある。
 また、前記粒子の平均粒子径が60μm超であると、組成物中で前記粒子が沈降し易く、安定した徐放性の発現に悪影響を与え得る。
 本発明の一態様において、上記要件(I)で規定する、前記粒子の平均粒子径は、組成物中で粒子同士の凝集を抑制する観点から、1μm以上であるが、好ましくは5μm以上、より好ましくは7μm以上、更に好ましくは10μm以上、より更に好ましくは15μm以上であり、また、組成物中で粒子の浮上を抑制する観点から、60μm以下であるが、好ましくは50μm以下、より好ましくは40μm以下、更に好ましくは35μm以下、より更に好ましくは30μm以下である。
 また、前記粒子の平均粒子径に対する標準偏差が20μm超であると、粒子ごとに取り込まれている有機溶剤の量の違いが大きく、経時的に放出される有機溶剤の量にバラツキが生じてしまい、安定した徐放性の発現が難しくなる。更に、一定又はそれ以上の圧力をかけて粒子の外殻を破断させた際に、粒子に取り込まれている有機溶剤の外部への放出量にも違いが生じてしまう恐れがある。
 本発明の一態様において、上記要件(II)で規定する、前記粒子の平均粒子径に対する標準偏差は、上記観点から、20μm以下であるが、好ましくは18μm以下、より好ましくは15μm以下、更に好ましくは12μm以下であり、また、通常1μm以上である。
 なお、本明細書において、上記要件(I)で規定する前記粒子の平均粒子径、及び、上記要件(II)で規定する平均粒子径に対する標準偏差は、対象となる組成物をデジタル顕微鏡を用いて倍率500~1000倍にて観察した際に取得した画像から算出することができる。
 つまり、当該画像に写し出された前記粒子のうち、任意に選択した36個の粒子の粒径(粒子を構成する外殻の外径)の平均値を上記の「平均粒子径」とすることができる。また、36個の各粒子の粒径の値から、「平均粒子径に対する標準偏差」も算出することができる。上記標準偏差は母集団の標準偏差であり、上記計算においては、36個の粒径の値の全てを対象として標準偏差を算出する。
 本発明の一態様の組成物に含まれる、前記粒子の外殻の厚さの平均は、前記粒子の形状安定性を良好とする観点から、好ましくは10nm以上、より好ましくは50nm以上、更に好ましくは75nm以上であり、また、一定又はそれ以上の圧力をかけて粒子の外殻を破断させ易くする観点から、好ましくは2000nm以下、より好ましくは1750nm以下、更に好ましくは1500nm以下、より更に好ましくは1250nm以下である。
 なお、本明細書において、前記粒子の外殻の厚さは、対象となる組成物を、ポリエチレンテレフタレートフィルム等の支持材上に塗布及び乾燥して塗膜を形成した後、当該塗膜の断面を、走査型電子顕微鏡(SEM)等を用いて観察した際に取得した画像を基に算出することができる。
 つまり、当該画像に写し出された前記粒子のうち、任意に選択した36個の粒子の粒径の外殻の平均値を、上記の「外殻の厚さの平均」とすることができる。
 本発明の一態様の組成物の23℃、回転数50rpmにおける粘度は、貯蔵安定性を良好とし、容器内に保存した際に沈降を抑制する観点から、好ましくは500mPa・s以上、より好ましくは1000mPa・s以上、更に好ましくは1200mPa・s以上であり、また、撹拌容易性及び容器からの取り出し性を良好とする観点から、好ましくは20000mPa・s以下、より好ましくは15000mPa・s以下、更に好ましくは12000mPa・s以下である。
 また、本発明の一態様の組成物の23℃でのTI値(回転数5rpmにおける粘度/回転数50rpmにおける粘度)は、貯蔵安定性を良好とし、容器内に保存した際に沈降を抑制する観点から、好ましくは1.2以上、より好ましくは2以上、更に好ましくは3以上、より更に好ましくは4以上であり、また、容器からの取り出し性を良好とする観点から、好ましくは20以下、より好ましくは15以下、更に好ましくは10以下、より更に好ましくは8以下である。
 また、本明細書において、組成物の粘度は、JIS Z 8803:2011に準拠して、B型粘度計を用いて測定した値を意味する。
 本発明の一態様の組成物のpHは、形成される粒子が安定し、組成物中で分散状態を維持し易いという観点から、好ましくは4以上、より好ましくは5以上、更に好ましくは6以上であり、また、好ましくは10以下、より好ましくは9以下、更に好ましくは8以下である。
 なお、本明細書において、組成物のpHは、23℃、相対湿度50%の環境下にて、実施例に記載の方法に基づき測定した値を意味する。
 本発明の一態様の組成物は、上記成分(A)~(C)以外の成分を含有してもよい。
 ただし、本発明の一態様の組成物において、セルロースナノファイバー(A)、水(B)及び有機溶剤(C)の合計含有量は、前記組成物の全量(100質量%)に対して、好ましくは60~100質量%、より好ましくは65~100質量%、更に好ましくは70~100質量%、より更に好ましくは80~100質量%である。
 本発明の一態様の組成物の有効成分濃度は、前記組成物の全量(100質量%)に対して、前記粒子を形成し易くすると共に、形成された粒子の膜強度を向上させる観点から、好ましくは0.5質量%以上、より好ましくは0.7質量%以上、更に好ましくは1.0質量%以上、より更に好ましくは1.5質量%以上であり、また、前記粒子を形成し易くするように、組成物の粘度を適切に調整する観点から、好ましくは50質量%以下、より好ましくは20質量%以下、更に好ましくは15質量%以下、より更に好ましくは10質量%以下である。
 なお、本明細書において、「有効成分」とは、組成物に含まれる成分のうち、水(B)及び有機溶剤(C)を除いた成分を意味し、具体的には、セルロースナノファイバー(A)、セルロースナノファイバー(A)以外の多糖類、及び各種添加剤等を指す。つまり、セルロースナノファイバー(A)に取り込まれた有機溶剤(C)及び水(B)の質量は含まれない点で、上述の「固形分率」とは異なる。
 セルロースナノファイバー(A)を含む外殻を備え、有機溶剤(C)を取り込み、上記要件(I)及び(II)を満たす前記粒子は、配合するセルロースナノファイバー(A)の形状(直径、繊維長、アスペクト比)、成分(A)~(C)のそれぞれの配合量、セルロースナノファイバー(A)と有機溶剤(C)との配合量比、水(B)と有機溶剤(C)との配合量比、並びに有機溶剤(C)の種類等を適宜調整することで、より形成させ易くすることもできる。
 以下、上記要件(I)及び(II)を満たす前記粒子を形成するための具体的な手法を中心に、各成分の詳細について説明する。
<セルロースナノファイバー(A)>
 本発明の一態様で用いるセルロースナノファイバー(A)の原料としては、例えば、木材由来のクラフトパルプ又はサルファイトパルプ;クラフトパルプ又はサルファイトパルプを高圧ホモジナイザーやミル等で粉砕した粉末セルロース;粉末セルロースを酸加水分解などの化学処理により精製した微結晶セルロース粉末;コウゾ、雁皮、三椏等の靭皮繊維パルプ;コットンパルプ、ケナフ、麻、イネ、バカス、竹等の植物由来のセルロース系原料;等のセルロース系原料が挙げられる。
 なお、これらの原料中にリグニンが多く残留してしまうと、当該原料の酸化反応を阻害する恐れがあるため、これらの原料に対して、リグニンの除去を施した、セルロース系原料が好ましい。
 また、上述のセルロース系原料を高速回転式、コロイドミル式、高圧式、ロールミル式、超音波式などの分散装置、湿式の高圧または超高圧ホモジナイザー等で微細化したものを使用することもできる。
 また、これらのセルロース系原料は、化学修飾及び/又は物理修飾して機能性を高めたものであってもよい。ここで、化学修飾としては、アセチル化、カルボキシ化、カルボキシナトリウム化、エステル化、シアノエチル化、アセタール化、エーテル化、アリール化、アルキル化、アクリロイル化、イソシアネート化等によって官能基を付加させること、及び、シリケートやチタネート等の無機物を化学反応やゾルゲル法等によって複合化や被覆化させること等が挙げられる。
 また、物理修飾としては、金属やセラミック原料を、真空蒸着、イオンプレーティング、スパッタリング等の物理蒸着法(PVD法)、化学蒸着法(CVD法)、無電解メッキや電解メッキ等のメッキ法等によって表面被覆させることが挙げられる。
 なお、これらの変性処理は、セルロース系原料を解繊時もしくは解繊する前後のいずれに行ってもよい。
 上述のセルロース系原料は、解繊してナノファイバー化することで、セルロースナノファイバーとすることができる。
 具体的な方法としては、セルロース系原料が水等の分散媒に分散している分散液を調製した後、セルロース系原料にせん断力を印加することで、セルロースナノファイバーを含む分散液とする方法が挙げられる。
 セルロース系原料にせん断力を印加する方法としては、水等の分散媒にセルロース系原料を添加した後、高速回転式、コロイドミル式、高圧式、ロールミル式、超音波式等の装置を用いて調製する方法が好ましい。
 この際、分散液にかかる圧力は、好ましくは50MPa以上、より好ましくは100MPa以上、更に好ましくは140MPa以上である。
 このような高圧下で、セルロース系原料に強力なせん断力を印加する観点から、湿式の高圧又は超高圧ホモジナイザーを用いることが好ましい。
 本発明の一態様で用いる、セルロースナノファイバー(A)の直径(太さ)の平均は、要件(I)及び(II)を満たす前記粒子を形成し易くすると共に、形成された粒子の膜強度を向上させる観点から、好ましくは1.0nm以上、より好ましくは1.5nm以上、更に好ましくは2.0nm以上、より更に好ましくは2.5nm以上であり、また、また、好ましくは1000nm以下、より好ましくは500nm以下、更に好ましくは200nm以下、より更に好ましくは100nm以下である。
 本発明の一態様で用いる、セルロースナノファイバー(A)の繊維長の平均は、要件(I)及び(II)を満たす前記粒子を形成し易くすると共に、形成された粒子の膜強度を向上させる観点から、好ましくは0.01μm以上、より好ましくは0.1μm以上、更に好ましくは0.2μm以上、より更に好ましくは0.3μmであり、また、好ましくは10μm以下、より好ましくは7.0μm以下、更に好ましくは5.0μm以下、より更に好ましくは2.5μm以下である。
 本発明の一態様で用いる、セルロースナノファイバー(A)の平均アスペクト比は、要件(I)及び(II)を満たす前記粒子を形成し易くすると共に、形成された粒子の膜強度を向上させる観点から、好ましくは5以上、より好ましくは10以上、更に好ましくは15以上であり、また、好ましくは10000以下であり、より好ましくは5000以下であり、更に好ましくは、3000以下、より更に好ましくは1000以下、特に好ましくは500以下である。
 なお、「アスペクト比」とは、対象であるセルロースナノファイバーの太さに対する長さの割合〔長さ/太さ〕であり、セルロースナノファイバーの「長さ」とは、当該セルロースナノファイバーの最も離れた2点間の距離を指す。
 また、対象となるセルロースナノファイバーの一部分が、他のセルロースナノファイバーと接触して「長さ」の認定が難しい場合には、対象のセルロースナノファイバーのうち、太さの測定が可能な部分のみの長さを測定し、当該部分のアスペクト比が上記範囲であればよい。
 セルロースナノファイバー(A)の直径(太さ)及び繊維長は、透過型電子顕微鏡を用いて測定することができる。また、セルロースナノファイバー(A)の直径(太さ)の平均及び繊維長の平均は、任意に選択した複数のセルロースナノファイバーの直径(太さ)及び繊維長を測定し、それぞれの平均値を算出することで得られる。セルロースナノファイバー(A)の平均アスペクト比は、こうして得られた直径(太さ)の平均と繊維長の平均とを用いて算出することができる。セルロースナノファイバー(A)の直径(太さ)、繊維長、これらの平均値、及び、平均アスペクト比は具体的には実施例に示す方法で算出することができる。
 本発明の一態様の組成物において、セルロースナノファイバー(A)の配合量は、当該組成物の全量(100質量%)に対して、要件(I)及び(II)を満たす前記粒子を形成し易くすると共に、形成された粒子の膜強度を向上させる観点から、好ましくは0.7質量%以上、より好ましくは0.8質量%以上、更に好ましくは1.0質量%以上、より更に好ましくは1.2質量%以上であり、また、要件(I)及び(II)を満たす前記粒子を形成し易くするように、組成物の粘度を適切に調整する観点から、好ましくは15質量%以下、より好ましくは10質量%以下、更に好ましくは7質量%以下、より更に好ましくは5質量%以下、特に好ましくは3質量%以下である。
<水(B)>
 本発明の一態様の組成物において、水(B)は、そのほとんどが、前記粒子が備える外殻に吸着されているか、又は、前記粒子の外側に存在している。
 ただし、水(B)の一部が、前記粒子の内部で有機溶剤(C)と共に内包されていてもよい。
 本発明の一態様の組成物において、適度な粘度を有する組成物を調製すると共に、要件(I)及び(II)を満たす前記粒子を形成し易くする観点から、水(B)の配合量は、当該組成物の全量(100質量%)に対して、好ましくは15質量%以上、より好ましくは30質量%以上、更に好ましくは50質量%以上、より更に好ましくは60質量%以上であり、また、好ましくは99質量%以下、より好ましくは98.7質量%以下、更に好ましくは98.5質量%以下である。
 本発明の一態様の組成物において、適度な粘度を有する組成物を調製すると共に、要件(I)及び(II)を満たす前記粒子を形成し易くする観点から、セルロースナノファイバー(A)100質量部に対する、水(B)の配合割合は、好ましくは500質量部以上、より好ましくは1000質量部以上、更に好ましくは2000質量部以上、より更に好ましくは3000質量部以上であり、また、好ましくは20000質量部以下、より好ましくは15000質量部以下、更に好ましくは10000質量部以下である。
 なお、本発明の一態様の組成物は、セルロースナノファイバー(A)及び水(B)を含む水分散液に、有機溶剤(C)を配合してなるものであることが好ましい。
 予め、前記水分散液を調製した後、有機溶剤(C)を配合することで、セルロースナノファイバー(A)が有機溶剤(C)を取り込み易くなり、要件(I)及び(II)を満たす前記粒子が形成され易くなる。
 当該水分散液は、セルロースナノファイバー(A)と水(B)との配合量比が上記範囲となるように、各成分を配合して調製することが好ましい。
 また、当該水分散液には、セルロースナノファイバー(A)及び水(B)と共に、成分(A)~(C)以外の他の成分を含有してもよい。
<有機溶剤(C)>
 本発明の一態様で用いる有機溶剤(C)としては、組成物の用途に応じて適宜選択することができ、例えば、ヘプタン、n-ヘキサデカン、トルエン、シクロヘキサノン、メチルエチルケトン、n-ドデカン、テトラヒドロフラン、キシレン、酢酸ブチル、シクロヘキサン、1,4-ジオキサン、スチレン、ノルマルヘキサン、ガソリン、テレビン油、フェノール等が挙げられる。
 有機溶剤(C)は、下記式(1)で表される、25℃における、ハンセン溶解度パラメータの距離Raが5.80MPa1/2以下である有機溶剤を用いることが好ましい。
Figure JPOXMLDOC01-appb-M000001

(前記式中、δDは、有機溶剤(C)のハンセン溶解度パラメータの分散成分、
 δPは、有機溶剤(C)のハンセン溶解度パラメータの極性成分、
 δHは、有機溶剤(C)のハンセン溶解度パラメータの水素結合成分を示す。)
 ハンセン溶解度パラメータは、ヒルデブランド(Hildebrand)によって導入された溶解度パラメータを、ハンセン(Hansen)が、δD(分散成分)、δP(極性成分)、δH(水素結合成分)の3成分に分割し、3次元空間に示したものである。
 なお、δD、δP、及びδHの値は、有機溶剤ごとに固有の値であって、特定の計算から算出された値である。
 より具体的には、ハンセン溶解度パラメータの定義および計算方法は、「Hansen Solubility Parameters: A Users Handbook(Charles M. Hansen著、CRCプレス、2007年)」に記載されたとおりである。
 また、本明細書において、δD、δP、及びδHの値は、計算ソフト「Hansen Solubility Parameters in Practice (HSPiP) Version4.1.03」(Steven Abbott,Charles M. Hansen,Hiroshi Yamamoto著)に含まれる、データベースの値を用いた。
 後述の実施例で用いた、代表的な有機溶剤のδD、δP、及びδHの値、並びに、上記式(1)から算出される距離Ra(いずれも単位は「MPa1/2」)を表1に示す。
Figure JPOXMLDOC01-appb-T000002
 なお、表1に示された以外の有機溶剤のδD、δP、及びδHの値は、その有機溶剤の分子構造等から算出することができ、もしくは、表1に示すようなδD、δP、及びδHの値が各種文献等により既知である有機溶剤との溶解性についての実験を行うことでも算出可能である。
 粒子を形成しやすい有機溶剤のハンセン溶解度パラメータを3次元空間にプロットしたところ、ある領域に密集して分布していることがわかった。
 そこで、前記粒子が形成された有機溶剤のプロットが全て内側に含まれ、前記粒子が形成され難かった有機溶剤のプロットが外側にくるような、最大の球を作図したところ、当該球の半径は「5.80MPa1/2」となった。
 式(1)から算出される距離Raは、ハンセン溶解度パラメータの3次元空間における、対象となる有機溶剤のプロットと、当該球の中心との距離を意味する。つまり、距離Raが、当該球の半径である「5.80MPa1/2」以下であれば、対象となる有機溶剤のプロットは、当該球の内側に位置しており、前記粒子を形成し易くなると判断し得る。
 なお、本発明の組成物で用いる有機溶剤(C)は、単独で用いてもよく、2種以上を併用した混合溶剤としてもよい。
 有機溶剤(C)が混合溶剤の場合、混合溶剤の混合比(体積比)から、加重平均のハンセン溶解度パラメータの3成分(δD、δP、δH)の値を求め、上記式(1)から算出した距離Raが5.80MPa1/2以下となればよい。
 例えば、有機溶剤(C)として、有機溶剤α及びβからなる混合溶剤を用いる場合、混合溶剤のハンセン溶解度パラメータの3成分δD、δP、δHは、以下のように算出することができる。
 つまり、有機溶剤αのハンセン溶解度パラメータの3成分をδDα、δPα、δHαとし、有機溶剤βのハンセン溶解度パラメータの3成分をδDβ、δPβ、δHβとし、有機溶剤αの体積分率をvα、有機溶剤βの体積分率をvβとした場合、δD、δP、δHは下記式から算出できる。
・δD=(vα×δDα+vβ×δDβ)/(vα+vβ
・δP=(vα×δPα+vβ×δPβ)/(vα+vβ
・δH=(vα×δHα+vβ×δHβ)/(vα+vβ
 そして、上記式から算出したδD、δP、δHの値を用いて、前記式(1)から距離Raを求めることができる。
 そのため、1種単独では距離Raが5.80MPa1/2超となる有機溶剤であっても、当該有機溶剤に、距離Raが5.80MPa1/2以下の有機溶剤等の他の有機溶剤と、適切な体積比で混合し、距離Raを5.80MPa1/2以下となるように調製した混合溶剤とすることで、前記粒子を形成し得る有機溶剤(C)とすることも可能である。
 例えば、1種単独では距離Raが5.80MPa1/2超となる有機溶剤を取り込んだ粒子を含む組成物を得たい場合には、距離Raが5.80MPa1/2以下の他の有機溶剤と混合して調製した、上記のような混合溶剤を用いることで、調製可能と考えられる。
 また、ハンセン溶解度パラメータは上述した3次元空間におけるベクトルで表現されるため、単独で距離Raが5.80MPa1/2超となる第1の有機溶剤と、単独で距離Raが5.80MPa1/2超となる第2の有機溶剤であって、上述した3次元空間における球の中心に対して第1の有機溶剤とは反対側に位置する第2の有機溶剤とを混合することによっても、距離Raが5.80MPa1/2以下となる混合溶剤を調製し得る。
 本発明の一態様で用いる有機溶剤(C)は、炭素数20未満の有機溶剤(C1)を含むことが好ましい。
 炭素数20未満の有機溶剤(C1)は、セルロースナノファイバー(A)に取り込まれ易く、要件(I)及び(II)を満たす前記粒子が形成され易い。
 つまり、炭素数が大きい有機溶剤は、有機溶剤の分子同士が集まり易く、また、粘度が高いため、真球に近い粒子の形成が行われ難くなる。その結果、このような有機溶剤は、セルロースナノファイバー(A)に取り込まれずに、前記粒子の外側に残存する割合が多くなると考えられる。
 なお、有機溶剤(C1)の炭素数は、好ましくは20未満、より好ましくは1~18、さらに好ましくは1~16である。
 上記観点から、有機溶剤(C)中の有機溶剤(C1)の配合割合は、有機溶剤(C)の全量(100質量%)基準で、好ましくは20質量%以上、より好ましくは35質量%以上、更に好ましくは50質量%以上、より更に好ましくは70質量%以上である。
 また、有機溶剤(C1)の中でも、ヘプタン、n-ヘキサデカン、トルエン、シクロヘキサノン、メチルエチルケトン、及びn-ドデカンから選ばれる1種以上の有機溶剤(C2)が好ましい。
 これらの有機溶剤(C2)を含むことで、要件(I)及び(II)を満たす前記粒子をより形成し易くすることができる。
 要件(I)及び(II)を満たす前記粒子をより形成し易くする観点から、有機溶剤(C)中の有機溶剤(C2)の配合割合は、有機溶剤(C)の全量(100質量%)基準で、好ましくは20質量%以上、より好ましくは35質量%以上、更に好ましくは50質量%以上、より更に好ましくは70質量%以上である。
 また、本発明の一態様の組成物において、要件(I)及び(II)を満たす前記粒子を形成し易くする観点から、有機溶剤(C)の25℃における粘度は、好ましくは0.1mPa・s以上、より好ましくは0.15mPa・s以上、更に好ましくは0.2mPa・s以上、より更に好ましくは0.25mPa・s以上であり、また、好ましくは30mPa・s以下、より好ましくは10mPa・s以下、更に好ましくは6.0mPa・s以下、より更に好ましくは2.8mPa・s以下である。
 本発明の一態様の組成物において、要件(I)及び(II)を満たす前記粒子を形成し易くする観点から、有機溶剤(C)の配合量は、当該組成物の全量(100質量%)に対して、好ましくは0.05質量%以上、より好ましくは0.1質量%以上、更に好ましくは0.5質量%以上、より更に好ましくは0.8質量%以上であり、また、好ましくは80質量%以下、より好ましくは60質量%以下、より好ましくは45質量%以下、更に好ましくは42質量%以下、更に好ましくは40質量%以下、更に好ましくは38質量%以下である。
 本発明の一態様の組成物において、要件(I)及び(II)を満たす前記粒子を形成し易くする観点から、有機溶剤(C)とセルロースナノファイバー(A)との配合量比〔(C)/(A)〕は、質量比で、好ましくは0.01以上、より好ましくは0.05以上、より好ましくは0.1以上、更に好ましくは0.5以上、更に好ましくは0.75以上、より更に好ましくは0.9質量部以上であり、また、好ましくは60以下、より好ましくは45以下、より好ましくは40以下、更に好ましくは35以下である。
 本発明の一態様の組成物において、要件(I)及び(II)を満たす前記粒子を形成し易くする観点から、水(B)と有機溶剤(C)との配合量比〔(B)/(C)〕は、質量比で、好ましくは0.1以上、より好ましくは0.5以上、更に好ましくは1.0以上、より更に好ましくは1.5以上であり、また、好ましくは1000以下、より好ましくは700以下、更に好ましくは500以下、より更に好ましくは300以下、特に好ましくは100以下である。
<成分(A)~(C)以外の他の成分>
 本発明の一態様の組成物において、本発明の効果を損なわない範囲で、成分(A)~(C)以外の他の成分を含有してもよい。
 このような他の成分としては、前記組成物の用途に応じて適宜選択されるが、例えば、着色剤、酸化防止剤、pH調整剤、甘味料、香料、防腐剤、紫外線吸収剤、重合禁止剤、防菌剤、殺虫剤、消泡剤、気泡剤、凝集剤、増粘剤、可塑剤、改質剤、防炎剤、難燃剤等が挙げられる。
 本発明の一態様の組成物において、界面活性剤を含有してもよい。
 ただし、界面活性剤を含む組成物を人体に触れる用途に使用する場合、特に、敏感肌の使用者にとって、当該界面活性剤は浸透剤及び刺激的な刺激物ともなる。また、界面活性剤を含む組成物は、当該組成物の物性の安定性に影響を与える懸念もある。
 そのため、本発明一態様の組成物において、界面活性剤の含有量は少ないほど好ましい。
 上記観点から、本発明の一態様の組成物において、界面活性剤の含有量は、セルロースナノファイバー(A)の全量100質量部に対して、好ましくは10質量部未満、より好ましくは1質量部未満、更に好ましくは0.1質量部未満、より更に好ましくは0.01質量部未満、特に好ましくは0.001質量部未満、最も好ましくは0質量部である。
 また、本発明の一態様の組成物において、セルロースナノファイバー(A)以外の多糖類を含有してもよいが、前記粒子の熱的安定性を向上させると共に、粒子を形成し易くする観点から、当該多糖類の含有量は少ないほど好ましい。
 上記観点から、本発明の一態様の組成物において、セルロースナノファイバー(A)以外の多糖類の含有量は、セルロースナノファイバー(A)の全量100質量部に対して、好ましくは10質量部未満、より好ましくは1質量部未満、更に好ましくは0.1質量部未満、より更に好ましくは0.01質量部未満、特に好ましくは0質量部である。
〔組成物の製造方法〕
 本発明の組成物の製造方法としては、特に制限はないが、要件(I)及び(II)を満たす前記粒子を形成し易くする観点から、下記工程(1)~(2)を有する方法が好ましい。
・工程(1):セルロースナノファイバー(A)及び水(B)を含む水分散液を調製する工程。
・工程(2):工程(1)で得た水分散液に、有機溶剤(C)を添加する工程。
 なお、工程(1)及び(2)で用いる、成分(A)~(C)の詳細は、上述のとおりである。
<工程(1)>
 工程(1)は、セルロースナノファイバー(A)及び水(B)を含む水分散液を調製する工程である。
 本工程において、市販の水分散液を用いる場合には、当該工程は省略してもよく、また、市販の水分散液に、セルロースナノファイバー(A)又は水(B)を加え、所望の配合量とした水分散液に調製してもよい。
 また、成分(A)~(C)以外の他の成分を配合する場合には、工程(1)の水分散液の調製の際に配合してもよく、工程(1)と工程(2)との間に配合してもよく、工程(2)の際に配合してもよく、工程(2)の後に配合してもよい。
 工程(1)で得られた水分散液のpHは、水分散液中でセルロースナノファイバー(A)の凝集を抑え、形成される粒子の形状及び大きさのばらつきを小さくする観点から、好ましくは4以上、より好ましくは5以上、更に好ましくは6以上であり、また、好ましくは10以下、より好ましくは9以下、更に好ましくは8以下である。
<工程(2)>
 工程(2)は、工程(1)で得た水分散液に、有機溶剤(C)を添加する工程である。
 本工程において、ホモディスパー、ミキサー、パドル翼等の撹拌翼を取り付けた撹拌装置を用いて、水分散液を撹拌しながら、有機溶剤(C)を添加することが好ましい。
 水分散液を撹拌する際の撹拌速度(回転数)は、セルロースナノファイバー(A)の凝集を抑え、形成される粒子の形状及び大きさのばらつきを小さくし、要件(I)及び(II)を満たす粒子を形成し易くする観点から、好ましくは500rpm以上、より好ましくは1000rpm以上、更に好ましくは1500rpm以上、より更に好ましくは2000rpm以上であり、また、好ましくは5000rpm以下、より好ましくは4500rpm以下、より好ましくは4000rpm以下、更に好ましくは3500rpm以下、より更に好ましくは3000rpm以下である。
 また、水分散液の温度は、セルロースナノファイバー(A)の凝集を抑え、形成される粒子の形状及び大きさのばらつきを小さくし、要件(I)及び(II)を満たす粒子を形成し易くする観点から、好ましくは5℃以上、より好ましくは10℃以上、更に好ましくは15℃以上であり、また、添加した有機溶剤(C)の揮発を抑制する観点から、好ましくは45℃以下、より好ましくは40℃以下、更に好ましくは35℃以下である。
 有機溶剤(C)の添加方法としては、要件(I)及び(II)を満たす粒子を形成し易くする観点から、一定時間ごとに一定量ずつ添加する方法が好ましい。
 具体的には、水分散液の全量100質量部に対する、10秒ごとの有機溶剤(C)の添加量は、好ましくは0.1質量部以上、より好ましくは1質量部以上、更に好ましくは3質量部以上、より更に好ましくは5質量部以上であり、また、好ましくは20質量部以下、より好ましくは15質量部以下、更に好ましくは10質量部以下、より更に好ましくは7質量部以下である。
 有機溶剤(C)の添加開始からの撹拌時間は、要件(I)及び(II)を満たす粒子を形成し易くする観点から、好ましくは3分以上、より好ましくは5分以上、更に好ましくは10分以上であり、また、好ましくは180分以下、より好ましくは120分以下、更に好ましくは60分以下、より更に好ましくは40分以下、特に好ましくは20分以下である。なお、撹拌時間とは、有機溶剤(C)の添加から撹拌を終了するまでの時間を指す。有機溶剤(C)を十分に分散させるとともに粒子の形成を促進させるため、必要量の有機溶剤(C)の添加終了後も、有機溶剤(C)添加開始からの上記時間が経過するまで撹拌を継続することが望ましい。
<組成物の用途>
 本発明の組成物に含まれる粒子は、有機溶剤を内包する粒子であって、経時的に有機溶剤を少しずつ外部へ放出することができる性質である徐放性を安定して持続し得ると共に、一定又はそれ以上の圧力をかけると外殻が破れて有機溶剤を外部へ供給することができる。
 このような特性を有する粒子を含む組成物は、農業、食品、化粧品、薬剤等の分野において使用し得る。
 具体的には、加圧に応じて供給される液体香料、温度に応じて供給される液体香料、温度に応じて舌の上で味が変化する食材、温度に応じて徐放される冷却材、感圧型接着剤、ドラックデリバリーシステム等が挙げられる。
 より具体的には、上記各用途における有効成分(香料、栄養分、機能性物質、薬剤等)を適当な有機溶剤に混合したものを、上述したセルロースナノファイバーを含む外殻からなる中空粒子に取り込ませた組成物を調製して、それぞれの用途に用いることができる。
 本発明について、以下の実施例により具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、下記物性値の測定法は、以下のとおりである。
(1)セルロースナノファイバーの直径(太さ)の平均、長さの平均、平均アスペクト比
 透過型電子顕微鏡(カールツァイス社製、製品名「LEO912」)を用いて、任意に選択した10本のセルロースナノファイバーの直径(太さ)及び長さを測定し、10本の平均値を、対象となるセルロースナノファイバーの「直径(太さ)の平均」及び「長さの平均」とした。また、「長さの平均/直径(太さ)の平均」を平均アスペクト比とした。
(2)水分散液、組成物のpH
 23℃、相対湿度50%の環境下、コンパクトpHメータ(株式会社堀場アドバンスドテクノ製、製品名「LAQUAtwin pH-22B」)を用いて、pH4.01標準液とpH6.86標準液の2点校正を行った後、平面センサ全体を覆うように試料を滴下して測定した。
(3)有機溶剤の粘度
 JIS Z 8803:2011に準拠して、B型粘度計を用いて、23℃、回転数5rpmにて測定した。
(4)組成物の粘度、TI値
 JIS Z 8803:2011に準拠して、B型粘度計を用いて、23℃、回転数5rpm及び50rpmにおける組成物の粘度を測定した。また、〔回転数5rpmにおける粘度〕/〔回転数50rpmにおける粘度〕の比をTI値とした。
実施例1~13
 組成物の調製に際し、下記の市販品のセルロースナノファイバーを含む水分散液(1)又は(2)を使用した。
・水分散液(1):製品名「BiNFi-s AMa 10002」、株式会社スギノマシン製。直径(太さ)の平均=76.8nm、長さの平均=1.4μm、平均アスペクト比=18.2である、機械処理型のセルロースナノファイバーを2質量%含む水分散液。
 水分散液(1)は、セルロースナノファイバー100質量部に対して、水を4900質量部含有するものであり、水分散液(1)のpH=7.0であった。
・水分散液(2):製品名「TEMPO酸化CNF」、日本製紙株式会社製。直径(太さ)の平均=3.8nm、長さの平均=0.7μm、平均アスペクト比=184である、化学処理型のセルロースナノファイバーを1質量%含む水分散液。
 水分散液(2)は、セルロースナノファイバー100質量部に対して、水を9900質量部含有するものであり、水分散液(2)のpH=7.0であった。
 上記水分散液(1)又は(2)に、表2に示す種類の有機溶剤を、水分散液(1)又は(2)中のセルロースナノファイバー100質量部に対して表2に示す配合量となるように添加した。
 具体的には、超高速マルチ撹拌システム(プライミクス株式会社製、製品名「ラボ・リューション(登録商標)」、撹拌羽:ホモディスパー(同社製、羽の直径35mm))を用いて、23℃の水分散液を、回転数3000rpmで撹拌した。撹拌開始後、表2に記載の有機溶剤を、水分散液(1)又は(2)の全量100質量部に対して、10秒毎に5質量部の速さで添加した。有機溶剤を添加後も撹拌を続け、撹拌開始から10分後に撹拌を終了し、組成物を調製した。
Figure JPOXMLDOC01-appb-T000003
 実施例で調製した組成物について、粘性(5rpm及び50rpmにおける粘度、TI値)を測定及び算出すると共に、下記の評価及び測定を行った。これらの結果を表3に示す。
(1)組成物中の固形分率の測定
 上底面の直径7.2cm、下底面の直径6.8cm、高さ8cmの円錐台形のコップを用いて、コップの上底面に、一辺10cmの正方形に切断したテトロンメッシュ(#200メッシュ)を載せて、クリップでコップの淵とテトロンメッシュを固定し、測定用容器を作製した。
 実施例で調製した組成物10gを、この測定用容器のテトロンメッシュ上に薄く広げるように塗布し1分間静置した。そして、測定用容器内に落下した組成物中の液体の質量w[g]を測定し、下記式から、組成物中の固形分率を算出した。
・固形分率[質量%]=100-(w[g]/10[g]×100)
(2)粒子の存在の有無の観察
 図2(a)に示す平面模式図のように、スライドガラス11の表面上に、各厚さ125μmの2枚の帯状のポリエチレンテレフタレート(PET)フィルム21、22を、水平方向に5cm離れるように平行に設置し、2枚のPETフィルム21、22で挟まれた隙間30を設け、隙間30に、調製した組成物を約0.06ml滴下した。
 そして、図2(b)に示す正面模式図のように、別のスライドガラス12を、2枚のPETフィルム21、22と、隙間30に満たした組成物40とを覆うように積層し、測定サンプル100を作製した。
 上記測定サンプルを用いて、デジタル顕微鏡(キーエンス社製、製品名「VHX-5000」)を用いて、倍率500倍にて、組成物を観察した際のデジタル画像を取得した。そして、当該デジタル画像から、セルロースナノファイバーを含む外殻を備える粒子の存在を確認し、以下の基準で評価した。
・A:前記粒子の存在が確認できた。
・F:前記粒子の存在が確認できなかった。
 なお、以下の(3)~(5)の評価は、前記粒子が確認できた組成物についてのみ行った。
(3)粒子の平均粒子径、及び、粒子の平均粒子径に対する標準偏差の算出
 上記(2)で得たデジタル画像から、任意に選択した36個の粒子の粒径(粒子を構成する外殻の外径)を測定し、粒子の平均粒子径、及び、粒子の平均粒子径に対する標準偏差を算出した。
(4)粒子に有機溶剤が取り込まれているか否かの確認
 23℃、50%RH(相対湿度)の環境下で、調製した組成物をガラス板の表面に着滴し、組成物の表面をガラス棒で叩いた際に、粒子が割れて有機溶剤が放出されるか否かの様子を、デジタル顕微鏡(キーエンス社製、製品名「VHX-5000」)を用いて、倍率500倍で観察しながら確認し、下記基準で評価した。
・A:粒子が割れて有機溶剤が放出される様子が確認された。
・F:粒子に変化は起こらず、有機溶剤が放出される様子は確認できなかった。
(5)粒子の徐放性の確認
 直径4.2cmの円柱状のガラス製の透明容器に、調製した組成物を100g入れたものを試験サンプルとした。また、測定対象となる組成物100g中に含まれる質量の有機溶剤を、上記の同じ種類の透明容器に入れたものを比較サンプルとした。
 そして、試験サンプル及び比較サンプルを、蓋をしていない状態で、23℃で、相対湿度50%とし、連続作動させたドラフト内で、6時間静置した。
 静置後にドラフトから取り出した試験サンプル及び比較サンプルの臭いを、5人の評価者が確認した。そして、表3には「比較サンプルに比べて試験サンプルの方が臭いがする」と判断した評価者の数を記載した。6時間経過後においても、当該評価者の数が多いほど、粒子の徐放性が安定して持続しているといえる。
Figure JPOXMLDOC01-appb-T000004
 図1は、実施例7の組成物をデジタル顕微鏡で観察した際に取得した画像であり、粒子が存在していることが分かる。実施例1~6及び8~13の組成物においても、同様の粒子の存在が確認された。そして、これらの粒子においては、徐放性が安定して持続していることも確認された。
 なお、実施例7の組成物のpHは7.0であった。
 また、実施例7及び10で調製した組成物をそれぞれ、支持材であるPETフィルム(東洋紡株式会社製コスモシャイン(登録商標)、品番「A4100」、厚さ:50μm)の易接着層面上に塗布し、120℃で10分間乾燥して、厚さ50μmの塗膜を形成し、当該塗膜の断面を走査型電子顕微鏡(SEM)(株式会社日立製作所製 S-4700)で観察した際の画像を取得した。そして、画像に写し出された前記粒子のうち、任意に選択した36個の粒子の外殻の厚さをそれぞれ測定し、これらの平均値を、上記の「外殻の厚さの平均」として算出した。
 その結果、組成物中の前記粒子の外殻の厚さの平均は、実施例7で「1202nm」であり、実施例10で「93nm」であった。

Claims (12)

  1.  セルロースナノファイバー(A)、水(B)、及び、有機溶剤(C)を配合してなる組成物であって、
     セルロースナノファイバー(A)を含む外殻を備え、下記要件(I)及び(II)を満たす粒子を含有し、
     有機溶剤(C)の少なくとも一部が、前記粒子に取り込まれている状態である、組成物。
    ・要件(I):前記粒子の平均粒子径が、1~60μmである。
    ・要件(II):前記粒子の平均粒子径に対する標準偏差が、20μm以下である。
  2.  有機溶剤(C)の少なくとも一部が、前記粒子に内包されている状態、及び、前記粒子の外殻を形成しているセルロースナノファイバー(A)に吸着されている状態の少なくとも一方である、請求項1に記載の組成物。
  3.  前記組成物中の固形分率が、当該組成物の全量に対して、80~100質量%である、請求項1又は2に記載の組成物。
  4.  前記組成物の23℃、50rpmにおける粘度が、500~20000mPa・sである、請求項1~3のいずれか一項に記載の組成物。
  5.  前記組成物の23℃でのTI値(回転数5rpmにおける粘度/回転数50rpmにおける粘度)が、1.2~20である、請求項1~4のいずれか一項に記載の組成物。
  6.  セルロースナノファイバー(A)の直径(太さ)の平均が、1~1000nmである、請求項1~5のいずれか一項に記載の組成物。
  7.  セルロースナノファイバー(A)の繊維長の平均が、0.01~10μmである、請求項1~6のいずれか一項に記載の組成物。
  8.  有機溶剤(C)の配合量が、前記組成物の全量に対して、0.05~80質量%である、請求項1~7のいずれか一項に記載の組成物。
  9.  水(B)と有機溶剤(C)との配合量比〔(B)/(C)〕が、質量比で、0.1~1000である、請求項1~8のいずれか一項に記載の組成物。
  10.  有機溶剤(C)が、炭素数20未満の有機溶剤(C1)を含む、請求項1~9のいずれか一項に記載の組成物。
  11.  界面活性剤の含有量が、セルロースナノファイバー(A)の全量100質量部に対して、10質量部未満である、請求項1~10のいずれか一項に記載の組成物。
  12.  セルロースナノファイバー(A)以外の多糖類の含有量が、セルロースナノファイバー(A)の全量100質量部に対して、10質量部未満である、請求項1~11のいずれか一項に記載の組成物。
PCT/JP2019/034046 2018-09-03 2019-08-30 組成物 WO2020050155A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020541179A JPWO2020050155A1 (ja) 2018-09-03 2019-08-30 組成物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-164850 2018-09-03
JP2018-164859 2018-09-03
JP2018164850 2018-09-03
JP2018164859 2018-09-03

Publications (1)

Publication Number Publication Date
WO2020050155A1 true WO2020050155A1 (ja) 2020-03-12

Family

ID=69722294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034046 WO2020050155A1 (ja) 2018-09-03 2019-08-30 組成物

Country Status (2)

Country Link
JP (1) JPWO2020050155A1 (ja)
WO (1) WO2020050155A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015057277A (ja) * 2013-08-12 2015-03-26 日本合成化学工業株式会社 マイクロカプセル、および固体物質内包型マイクロカプセルならびにその製法
WO2015059179A1 (en) * 2013-10-24 2015-04-30 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Capsule, namely nanocapsule, microcapsule or macrocapsule, having a very low oxygen permeability
JP2017043750A (ja) * 2015-11-25 2017-03-02 第一工業製薬株式会社 セルロースエステル水性分散体
WO2017126566A1 (ja) * 2016-01-20 2017-07-27 日本製紙株式会社 ポリウレタン樹脂組成物、及びその製造方法
WO2017138574A1 (ja) * 2016-02-08 2017-08-17 日本製紙株式会社 変性カルボキシメチル化セルロースナノファイバー分散液およびその製造方法
JP2018076495A (ja) * 2016-10-28 2018-05-17 日本製紙株式会社 分散樹脂組成物及びその用途
JP2018104502A (ja) * 2016-12-22 2018-07-05 日本製紙株式会社 エステル化セルロースナノファイバー分散液の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6363340B2 (ja) * 2013-11-19 2018-07-25 中越パルプ工業株式会社 ナノ微細化した繊維状多糖を含むエマルション、材料及びそれらの製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015057277A (ja) * 2013-08-12 2015-03-26 日本合成化学工業株式会社 マイクロカプセル、および固体物質内包型マイクロカプセルならびにその製法
WO2015059179A1 (en) * 2013-10-24 2015-04-30 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Capsule, namely nanocapsule, microcapsule or macrocapsule, having a very low oxygen permeability
JP2017043750A (ja) * 2015-11-25 2017-03-02 第一工業製薬株式会社 セルロースエステル水性分散体
WO2017126566A1 (ja) * 2016-01-20 2017-07-27 日本製紙株式会社 ポリウレタン樹脂組成物、及びその製造方法
WO2017138574A1 (ja) * 2016-02-08 2017-08-17 日本製紙株式会社 変性カルボキシメチル化セルロースナノファイバー分散液およびその製造方法
JP2018076495A (ja) * 2016-10-28 2018-05-17 日本製紙株式会社 分散樹脂組成物及びその用途
JP2018104502A (ja) * 2016-12-22 2018-07-05 日本製紙株式会社 エステル化セルロースナノファイバー分散液の製造方法

Also Published As

Publication number Publication date
JPWO2020050155A1 (ja) 2021-08-26

Similar Documents

Publication Publication Date Title
Xu et al. Structure, physical and antioxidant properties of chitosan-gum arabic edible films incorporated with cinnamon essential oil
Wongkanya et al. Electrospinning of alginate/soy protein isolated nanofibers and their release characteristics for biomedical applications
Tan et al. Hierarchical porous protein scaffold templated from high internal phase emulsion costabilized by gelatin and gelatin nanoparticles
JP5666837B2 (ja) ナノファイバシート
Wu et al. Silver nanoparticle/bacterial cellulose gel membranes for antibacterial wound dressing: investigation in vitro and in vivo
Kriegel et al. Nanofibers as carrier systems for antimicrobial microemulsions. Part I: Fabrication and characterization
Amin et al. Bacterial cellulose film coating as drug delivery system: physicochemical, thermal and drug release properties
Kolakovic et al. Nanofibrillar cellulose films for controlled drug delivery
TWI313278B (en) Porous cellulose agglomerate and molded composition thereof
FI130619B (en) Matrix for controlled release of bioactive substances
Yan et al. Sustained-release multiple-component cellulose acetate nanofibers fabricated using a modified coaxial electrospinning process
De Moura et al. Miniaturization of cellulose fibers and effect of addition on the mechanical and barrier properties of hydroxypropyl methylcellulose films
Wang et al. Preparation, antimicrobial and release behaviors of nisin-poly (vinyl alcohol)/wheat gluten/ZrO 2 nanofibrous membranes
Wen et al. Preparation and characterization of protein-loaded electrospun fiber mat and its release kinetics
Çallıoğlu et al. Emulsion electrospinning of bicomponent poly (vinyl pyrrolidone)/gelatin nanofibers with thyme essential oil
Guo et al. Depletion effects and stabilization of Pickering emulsions prepared from a dual nanocellulose system
Fattahi et al. A comparative study on the effect of homogenization conditions on the properties of the film-forming emulsions and the resultant films
Sun et al. Biomass-based edible film with enhanced mass barrier capacity and gas permeable selectivity
Aimonen et al. Effect of surface modification on the pulmonary and systemic toxicity of cellulose nanofibrils
WO2020050155A1 (ja) 組成物
Wang et al. Hydro‐spinning: A novel technology for making alginate/chitosan fibrous scaffold
WO2020050152A1 (ja) 組成物
WO2020050154A1 (ja) 組成物
WO2020050153A1 (ja) 組成物
Tien et al. Responsive nanofibers with embedded hierarchical lipid self-assemblies

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19857831

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020541179

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19857831

Country of ref document: EP

Kind code of ref document: A1