WO2020050146A1 - Evaluation method of carbon concentration in silicon sample, evaluation method of silicon wafer manufacturing process, manufacturing method of silicon wafers, and manufacturing process of silicon single crystal ingot - Google Patents

Evaluation method of carbon concentration in silicon sample, evaluation method of silicon wafer manufacturing process, manufacturing method of silicon wafers, and manufacturing process of silicon single crystal ingot Download PDF

Info

Publication number
WO2020050146A1
WO2020050146A1 PCT/JP2019/034035 JP2019034035W WO2020050146A1 WO 2020050146 A1 WO2020050146 A1 WO 2020050146A1 JP 2019034035 W JP2019034035 W JP 2019034035W WO 2020050146 A1 WO2020050146 A1 WO 2020050146A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
evaluation
carbon concentration
sample
evaluated
Prior art date
Application number
PCT/JP2019/034035
Other languages
French (fr)
Japanese (ja)
Inventor
貴史 大戸
和隆 江里口
三次 伯知
佐俣 秀一
Original Assignee
株式会社Sumco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Sumco filed Critical 株式会社Sumco
Priority to CN201980057209.2A priority Critical patent/CN112640070B/en
Priority to KR1020217008292A priority patent/KR102513721B1/en
Priority to DE112019004412.5T priority patent/DE112019004412T5/en
Publication of WO2020050146A1 publication Critical patent/WO2020050146A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere

Definitions

  • the present invention relates to a method for evaluating the carbon concentration of a silicon sample, a method for manufacturing a silicon wafer, a method for manufacturing a silicon wafer, and a method for manufacturing a silicon single crystal ingot.
  • Patent Document 1 In recent years, it has been studied to evaluate the carbon concentration of a silicon sample (for example, see Patent Document 1).
  • a silicon wafer used as a semiconductor substrate reduce impurity contamination that causes deterioration of device characteristics.
  • One object of one embodiment of the present invention is to provide a new method for evaluating the carbon concentration of a silicon sample.
  • One embodiment of the present invention provides Introducing hydrogen atoms into the silicon sample to be evaluated,
  • the evaluation target silicon sample into which the hydrogen atoms have been introduced is subjected to an evaluation by an evaluation method for evaluating a trap level in a silicon band gap, and Ec (conduction band) is included in the evaluation results obtained by the evaluation.
  • Ec conduction band
  • Including Further comprising performing a heat treatment of heating the silicon sample to be evaluated to a heating temperature in the range of 35 ° C. to 80 ° C. using a heating means between the introduction of the hydrogen atoms and the evaluation.
  • Evaluation method hereinafter also referred to as “carbon concentration evaluation method”
  • the temperature of the silicon sample surface may change.
  • the heating temperature relating to the heat treatment of the silicon sample refers to the maximum temperature of the surface of the silicon sample heated by the heat treatment.
  • the evaluation target silicon sample into which the hydrogen atoms have been introduced can be subjected to the evaluation without performing the electron beam irradiation treatment.
  • the carbon concentration of the silicon sample to be evaluated can be evaluated based on the evaluation result regarding the trap level density of Ec-0.15 eV among the evaluation results obtained by the above evaluation.
  • the introduction of the hydrogen atoms can be performed by immersing the silicon sample to be evaluated in a solution.
  • the solution may be a solution containing HF (hydrogen fluoride).
  • the evaluation method may be a DLTS method (Deep-Level ⁇ Transient ⁇ Spectroscopy).
  • a diode before the evaluation by the DLTS method, can be manufactured by forming a semiconductor junction and an ohmic layer on the silicon sample to be evaluated into which the hydrogen atoms have been introduced. It can be evaluated by the law.
  • the heat treatment can be performed before or after the diode is manufactured.
  • the heat treatment can be performed within 18 hours from the introduction of the hydrogen atoms.
  • One embodiment of the present invention provides Evaluating the carbon concentration of the silicon wafer manufactured in the silicon wafer manufacturing process to be evaluated by the above carbon concentration evaluation method, and evaluating the degree of carbon contamination in the silicon wafer manufacturing process to be evaluated based on the result of the above evaluation , (Hereinafter, also referred to as “manufacturing process evaluation method”). About.
  • One embodiment of the present invention provides Evaluating the silicon wafer manufacturing process by the above manufacturing process evaluation method, and, in the silicon wafer manufacturing process where the degree of carbon contamination is determined to be an allowable level as a result of the above evaluation, or as a result of the above evaluation, the degree of carbon contamination After performing a carbon contamination reduction process on a silicon wafer manufacturing process that is determined to exceed the allowable level, in this silicon wafer manufacturing process, manufacturing a silicon wafer, Including, a method of manufacturing a silicon wafer, About.
  • One embodiment of the present invention provides Growing silicon single crystal ingots, The carbon concentration of the silicon sample cut from the silicon single crystal ingot is evaluated by the carbon concentration evaluation method, Based on the results of the above evaluation, determine the production conditions of the silicon single crystal ingot, and, Growing a silicon single crystal ingot under determined manufacturing conditions, Including, a method for producing a silicon single crystal ingot, About.
  • a new method for evaluating the carbon concentration of a silicon sample can be provided.
  • a hydrogen atom is introduced into a silicon sample to be evaluated, and the silicon sample to be evaluated into which the hydrogen atom has been introduced is subjected to evaluation by an evaluation method for evaluating a trap level in a band gap of silicon. And among the evaluation results obtained by the above evaluation, the evaluation results regarding the density of at least one trap level selected from the group consisting of Ec-0.10 eV, Ec-0.13 eV and Ec-0.15 eV Evaluating the carbon concentration of the silicon sample to be evaluated based on the heating temperature of the silicon sample to be evaluated in a range of 35 ° C. to 80 ° C. using a heating means between the introduction of the hydrogen atoms and the evaluation.
  • the present invention relates to a method for evaluating the carbon concentration of a silicon sample, further comprising performing a heat treatment for heating the silicon sample.
  • the trap level of Ec By the introduction of hydrogen atoms performed in the carbon concentration evaluation method, the trap level of Ec can be formed in the band gap of silicon. In this way, it is possible to obtain an evaluation result regarding the density of trap levels of Ec. As an example of such an evaluation result, a peak intensity (DLTS signal intensity) obtained by the evaluation by the DLTS method can be cited. Details of this point will be described later.
  • the trap level of Ec in the band gap of silicon after the introduction of hydrogen atoms is a carbon-related level, and the density of this trap level correlates with the carbon concentration of the silicon sample.
  • the evaluation result regarding the trap level density of Ec obtained by the evaluation performed after the introduction of the hydrogen atom that is, the evaluation result correlated with the trap level density correlates with the carbon concentration of the silicon sample. Furthermore, as a result of intensive studies by the present inventors, subjecting the silicon sample to be evaluated after the introduction of hydrogen atoms to the above heat treatment contributes to increasing the density of trap levels of Ec evaluated by the above evaluation method. It was newly found to do. This is presumed to be due to the fact that the heat treatment promotes the formation of a complex that causes the trap level of Ec. As the density of trap levels increases, for example, in the DLTS method, the value of the measured DLTS signal intensity increases.
  • a value of the trap level density can be obtained as a higher density value for a silicon sample having a certain carbon concentration, even a trace amount of carbon can be detected and evaluated with high sensitivity. That is, it is considered that subjecting the silicon sample to be evaluated after the introduction of the hydrogen atoms to the above-described heat treatment contributes to an improvement in sensitivity of the carbon concentration evaluation.
  • the carbon concentration evaluation method will be described in more detail.
  • the silicon sample to be evaluated by the carbon concentration evaluation method can be, for example, a silicon sample cut out from a silicon single crystal ingot.
  • a sample obtained by further cutting a part of a sample cut into a wafer shape from a silicon single crystal ingot can be subjected to evaluation.
  • the silicon sample to be evaluated can be a silicon sample cut out from various silicon wafers (for example, a polished wafer, an epitaxial wafer, etc.) used as a semiconductor substrate.
  • the silicon wafer may be a silicon wafer that has been subjected to various processings (for example, polishing, etching, cleaning, etc.) that are usually performed on the silicon wafer.
  • the silicon sample may be n-type silicon or p-type silicon.
  • the resistivity of the silicon sample can be, for example, about 1 to 1000 ⁇ cm, but is not particularly limited.
  • the concentration of interstitial oxygen Oi of the silicon sample to be evaluated is not particularly limited.
  • the oxygen concentration of the silicon sample to be evaluated is, for example, 1.0 ⁇ 10 17 atoms / cm 3 or more (eg, 1.0 ⁇ 10 17 to 27.5 ⁇ 10 17 atoms / cm 3 ). it can.
  • the oxygen concentration here is a value measured by the FT-IR method (Fourier Transform Infrared Spectroscopy).
  • FT-IR method Frier Transform Infrared Spectroscopy
  • a silicon sample derived from a silicon single crystal grown by the Czochralski method (CZ method) usually contains oxygen.
  • Patent Document 1 Japanese Patent Application Laid-Open No.
  • the quantified carbon concentration depends on the oxygen concentration.
  • the conventionally proposed luminescence method requires electron beam irradiation. Therefore, in the luminescence method, the accuracy of the carbon concentration evaluation tends to decrease as the silicon sample has a higher oxygen concentration.
  • the carbon-related levels can be formed in an activated state without performing electron beam irradiation. As a result, the carbon concentration can be evaluated without depending on the oxygen concentration.
  • the carbon concentration of a silicon sample having a relatively high oxygen concentration for example, a silicon sample having an oxygen concentration in the above range can be evaluated with high accuracy.
  • do not perform electron beam irradiation treatment means not performing a process of actively irradiating an electron beam to a silicon sample, and is inevitable under sunlight, lighting, or the like. It is assumed that the electron beam irradiation occurring in the above is allowed.
  • An electron beam is a flow of electrons obtained by applying an accelerating voltage to electrons.
  • the electron beam irradiation treatment has problems in that the lead time is long, large-scale equipment is required, the cost is increased, and in addition to the electron beam irradiation step, the production of a protective oxide film and the like are required, and the number of steps is increased.
  • the carbon concentration of the silicon sample can be evaluated without performing the electron beam irradiation treatment.
  • the oxygen concentration of the silicon sample to be evaluated by the above carbon concentration evaluation method is not limited to the range exemplified above.
  • electron beam irradiation can be performed by a known method.
  • Hydrogen atoms are introduced into the silicon sample to be evaluated.
  • a trap level of Ec which is a carbon-related level
  • the introduction of hydrogen atoms may be performed by a dry process (dry process) or a wet process (wet process, that is, use of a solution).
  • introduction of hydrogen atoms by dry treatment can be performed by an ion implantation method, hydrogen plasma, or the like. Note that the introduction of a hydrogen atom in the present invention and the present specification includes an embodiment in which a hydrogen atom is introduced in an ion or plasma state.
  • the solution used here may be an acid solution or a base solution as long as the solution contains a hydrogen atom in any state such as an ionized state (ion) or a salt state.
  • the acid solution include a solution containing HF such as hydrofluoric acid (aqueous hydrofluoric acid), a mixed solution of hydrofluoric acid and nitric acid (hydrofluoric nitric acid), a mixed solution of sulfuric acid and hydrogen peroxide, and a mixed solution of hydrochloric acid and hydrogen peroxide.
  • HF hydrofluoric acid
  • hydrofluoric acid and nitric acid hydrofluoric acid
  • hydrofluoric nitric acid hydrofluoric acid
  • sulfuric acid and hydrogen peroxide a mixed solution of sulfuric acid and hydrogen peroxide
  • hydrochloric acid and hydrogen peroxide hydrochloric acid and hydrogen peroxide
  • the base solution examples include a sodium hydroxide solution, a potassium hydroxide solution, a mixed solution of aqueous ammonia and hydrogen peroxide, and the like.
  • the above-mentioned various solutions are preferably aqueous solutions (solutions containing water), and more preferably aqueous solutions.
  • the acid concentration of the acid solution and the base concentration of the base solution are not particularly limited.
  • the introduction of hydrogen atoms by hydrofluoric acid can be performed by immersing the silicon sample to be measured in 1 to 25% by mass hydrofluoric acid for 1 to 10 minutes.
  • the introduction of hydrogen atoms by hydrofluoric nitric acid involves measuring a silicon sample to be measured using hydrofluoric nitric acid (for example, nitric acid (aqueous nitric acid solution) having an HNO 3 concentration of 69% by mass and hydrofluoric acid (aqueous hydrofluoric acid solution having an HF concentration of 50% by mass). ) For 1 to 10 minutes. After the immersion, the sample to be measured may be subjected to post-treatment such as washing with water and drying as necessary.
  • hydrofluoric nitric acid for example, nitric acid (aqueous nitric acid solution) having an HNO 3 concentration of 69% by mass and hydrofluoric acid (aqueous hydrofluoric acid solution having an HF concentration of 50% by mass).
  • the silicon sample to be evaluated into which hydrogen atoms have been introduced is subjected to a heat treatment, which will be described in detail later, and then subjected to an evaluation by an evaluation method for evaluating a trap level in a band gap of silicon. Details of the heat treatment will be described later.
  • a trap level of Ec-0.10 eV, Ec-0.13 eV, or Ec-0.15 eV is used as the carbon-related level. It is considered that trap levels of Ec-0.10 eV, Ec-0.13 eV and Ec-0.15 eV are formed in an activated state which can be detected by various evaluation methods by introducing hydrogen atoms. It is presumed that the formation is promoted by the heat treatment. Thus, the carbon concentration can be evaluated based on the density of the trap levels (carbon-related levels). The evaluation of the trap level density can be performed by various evaluation methods capable of evaluating the trap level in the band gap of silicon.
  • Examples of such an evaluation method include a DLTS method, a lifetime method, an ICTS method (Isothermal Capacitance Transient Spectroscopy), a low-temperature photoluminescence (PL) method, a cathodoluminescence (CL) method, and the like.
  • ICTS method Isothermal Capacitance Transient Spectroscopy
  • PL low-temperature photoluminescence
  • CL cathodoluminescence
  • carbon concentration evaluation method since the trap level of Ec is formed in an activated state by the introduction of hydrogen atoms, the density of the trap level can be increased without performing the electron beam irradiation treatment. , It is possible to evaluate the carbon concentration.
  • Known techniques can be applied without any limitation to the measurement method using various evaluation methods.
  • the DLTS method is a preferable evaluation method from the viewpoint of enabling more sensitive carbon quantification.
  • Ec-0.10 eV, Ec-0.13 eV, or Ec-0.10 eV is obtained by fitting a DLTS spectrum obtained as the sum of each peak obtained by the DLTS method by a known method.
  • the DLTS spectrum of the trap level of 15 eV can be separated.
  • the trap level density of Ec-0.10 eV is a peak near 76 K
  • the trap level density of Ec-0.13 eV is a peak near 87 K
  • the trap level of Ec-0.15 eV is As for the potential density
  • the carbon concentration can be determined based on the peak intensity (DLTS signal intensity) of the peak near 101K.
  • the peak used to determine the carbon concentration is at least one of the above three peaks, and two or three peaks may be used. Normally, it can be determined that the higher the peak intensity value, the higher the carbon concentration. From the viewpoint of performing a more accurate carbon concentration evaluation, it is preferable to obtain the carbon concentration of the silicon sample to be evaluated based on the evaluation results at Ec-0.13 eV and / or Ec-0.15 eV.
  • the silicon sample to be evaluated is heated to a heating temperature in the range of 35 ° C. to 80 ° C. by using a heating means between the introduction of hydrogen atoms and the above evaluation. Processing is performed. Although the formation process and the annihilation process of the trap level of Ec are competing with each other, the silicon sample to be evaluated after the introduction of the hydrogen atoms is heated to a heating temperature in the above range by using a heating means, whereby the trap of Ec is trapped. It is presumed that the ability to promote the level formation process leads to an increase in the density of trap levels evaluated by the above evaluation method.
  • a heating means for example, a hot plate or the like can be used.
  • a silicon sample to be evaluated after introducing hydrogen atoms can be placed on a hot plate and heated to a heating temperature in the above temperature range.
  • the heating temperature for heating the silicon sample to be evaluated after the introduction of the hydrogen atoms is preferably 40 ° C. or higher from the viewpoint of further increasing the density of the trap level, and is preferably 70 ° C. or lower from the same viewpoint.
  • the atmosphere in which the heat treatment is performed is not particularly limited.
  • the heat treatment can be performed, for example, under an air atmosphere. Further, in the heat treatment, for example, in order to bring the surface temperature of the silicon sample to a desired maximum temperature, for example, the silicon sample to be evaluated after introducing hydrogen atoms is placed on a hot plate set to a predetermined temperature.
  • the silicon sample to be evaluated during the period from the introduction of the hydrogen atoms to the heat treatment and the period from the heat treatment to the evaluation can be placed, for example, in an air atmosphere at room temperature.
  • room temperature can be, for example, a temperature in the range of 15 ° C. to 30 ° C. It is thought that the trap levels of Ec-0.10 eV, Ec-0.13 eV, and Ec-0.15 eV are provided by a complex composed of carbon and hydrogen.
  • the diffusion of the hydrogen atoms follows the complementary error function.
  • the hydrogen atoms are distributed at a high concentration near the silicon sample surface.
  • the supply source of the hydrogen atoms is cut off after the introduction of the hydrogen atoms, it is assumed that the introduced hydrogen atoms diffuse into the silicon sample according to the Gaussian function in the silicon sample to be evaluated.
  • evaluation by various evaluation methods is usually performed on a region (measurement region) having a predetermined depth from the surface of the silicon sample to be evaluated. If the heat treatment is performed while more hydrogen atoms are present in the measurement region, the heat treatment will further promote the formation of the complex (that is, the formation of the trap level of Ec). Conceivable. In consideration of the above points and the diffusion rate of hydrogen atoms in silicon, the above heat treatment is preferably performed within 18 hours (that is, 18 hours or shorter) after the introduction of hydrogen atoms.
  • the evaluation is performed by the DLTS method.
  • a diode semiconductor junction (Schottky junction or pn junction) and an ohmic layer on a measurement sample obtained by cutting out a part of a silicon sample to be evaluated is measured ( DLTS measurement).
  • DLTS measurement a measurement sample obtained by cutting out a part of a silicon sample to be evaluated.
  • the surface of a sample subjected to DLTS measurement has high smoothness. Therefore, the silicon sample to be evaluated before the sample for measurement or the sample for measurement cut out from the silicon sample to be evaluated can be arbitrarily subjected to etching, polishing, or the like for improving the surface smoothness.
  • the etching is preferably mirror etching.
  • the polishing preferably includes a mirror polishing.
  • the silicon sample to be evaluated is a silicon single crystal ingot or a part of an ingot
  • the polishing process a known polishing process applied to a silicon wafer, such as a mirror polishing process, can be performed.
  • a silicon wafer is usually obtained through polishing such as mirror polishing. Therefore, when the silicon sample to be evaluated is a silicon wafer, the surface of the measurement sample cut from the silicon wafer usually has high smoothness without polishing.
  • the heat treatment can be performed before the diode is manufactured in one embodiment, and can be performed after the diode is manufactured in another embodiment. In one embodiment, the heat treatment can be performed before and after the diode is manufactured. As described above, in consideration of the diffusion of hydrogen atoms in silicon, the heat treatment can be performed while more hydrogen atoms are present in the measurement region close to the surface. It is considered that this further promotes the formation of the trap level of Ec. From this point, it is considered that performing the heat treatment before manufacturing the diode is preferable from the viewpoint of further promoting the formation of the trap level of Ec and increasing the trap level density.
  • DLTS measurement is usually performed by the following method.
  • a semiconductor junction Schottky junction or pn junction
  • pn junction Schottky junction or pn junction
  • the transient response of the capacitance (capacitance) of the sample element is measured by periodically applying a voltage while performing a temperature sweep.
  • the application of the voltage is usually performed by alternately and periodically applying a reverse voltage for forming a depletion layer and a pulse voltage for filling a trap level in the depletion layer with carriers.
  • the preferred position and width of the depletion layer formation region depend on the resistivity of the silicon sample.
  • the depletion layer can be formed, for example, with a width of about 1 to 50 ⁇ m, preferably about 1 to 10 ⁇ m, in a region with a depth of about 1 ⁇ m to 60 ⁇ m from the surface of the silicon sample to be evaluated. .
  • the thickness of the silicon sample to be evaluated can be, for example, about 100 to 1000 ⁇ m. However, it is not limited to this range.
  • the position (measurement depth) of the measurement region can be controlled by a reverse voltage applied to form a depletion layer. Further, the width of the formed depletion layer can also be controlled by the reverse voltage.
  • the carbon concentration based on the evaluation result regarding the density of at least one trap level selected from the group consisting of Ec-0.10 eV, Ec-0.13 eV and Ec-0.15 eV can be evaluated using a calibration curve or without a calibration curve.
  • the carbon concentration can be evaluated by a relative criterion for determining that the larger the value obtained as the evaluation result is, the higher the carbon concentration is. For example, it can be determined that the higher the value of the DLTS spectrum peak intensity (DLTS signal intensity), the higher the carbon concentration.
  • the calibration curve may be, for example, a correlation between the density of the trap level obtained from the evaluation result (eg, DLTS signal intensity) obtained for the silicon sample to be evaluated and the known carbon concentration. It is preferable to create a calibration curve as shown.
  • a relational expression for obtaining the density of trap levels from various evaluation results is known.
  • the above-mentioned known carbon concentration can be obtained by measuring by a method other than the evaluation method used for evaluating the silicon sample to be evaluated.
  • the known carbon concentration can be obtained by, for example, the SIMS method or the FT-IR method. Relational expressions for obtaining the carbon concentration from the evaluation results obtained by these methods are also known.
  • the silicon sample to be evaluated by the same evaluation method as the silicon sample to be evaluated to prepare the calibration curve (silicon sample for preparing the calibration curve) and the silicon sample for obtaining the known carbon concentration are the same silicon sample (for example, It is preferable that the sample is a silicon sample cut from the same ingot, the same wafer, or the like) or a silicon sample that has undergone the same manufacturing process. Regarding the preparation of the calibration curve, reference can also be made to paragraphs 0038 to 0040 of Patent Document 1 (JP-A-2017-191800). It is preferable that the silicon sample for preparing the calibration curve is a silicon sample that has been subjected to various processes such as a hydrogen atom introduction process and a heating process in the same manner as the silicon sample to be evaluated.
  • One aspect of the present invention is to evaluate the carbon concentration of a silicon wafer manufactured in a silicon wafer manufacturing process to be evaluated by the carbon concentration evaluation method, and in the silicon wafer manufacturing process to be evaluated based on the result of the evaluation.
  • the present invention relates to a method for evaluating a silicon wafer manufacturing process including evaluating a degree of carbon contamination.
  • one embodiment of the present invention is to evaluate a silicon wafer manufacturing process by the above-described method for evaluating a silicon wafer manufacturing process, and as a result of the evaluation, a silicon wafer manufacturing process in which the degree of carbon contamination is determined to be an allowable level.
  • a silicon wafer manufacturing process in which the degree of carbon contamination is determined to be an allowable level.
  • the silicon wafer manufacturing process to be evaluated in the above-described manufacturing process evaluation method can be a part of or the entire process of manufacturing a product silicon wafer.
  • the production process of a product silicon wafer is generally performed by cutting a wafer from a silicon single crystal ingot (slicing), surface treatment such as polishing and etching, a cleaning process, and a post-process (epitaxial layer) performed as necessary according to the use of the wafer. Formation, etc.). Each of these steps and each process is known.
  • carbon contamination may occur in the silicon wafer due to contact between the silicon wafer and members used in the manufacturing process.
  • degree of carbon contamination By assessing the degree of carbon contamination by evaluating the carbon concentration of the silicon wafers manufactured in the manufacturing process to be evaluated, the tendency of carbon contamination to occur in the product silicon wafer due to the silicon wafer manufacturing process to be evaluated is evaluated. You can figure out. That is, it can be determined that the higher the carbon concentration of the silicon wafer manufactured in the manufacturing process to be evaluated, the more likely it is that carbon contamination occurs in the manufacturing process to be evaluated.
  • the allowable level of the carbon concentration is set in advance, and if the carbon concentration obtained for the silicon wafer manufactured in the silicon wafer manufacturing process of the evaluation target exceeds the allowable level, the manufacturing process of the evaluation target is Therefore, it can be determined that carbon is not likely to be used in the production process of a product silicon wafer because of a high tendency to generate carbon contamination. It is preferable that the silicon wafer manufacturing process to be evaluated, which is determined as described above, be used for manufacturing a product silicon wafer after performing a carbon contamination reduction process. Details of this point will be further described later.
  • the carbon concentration of the silicon wafer manufactured in the silicon wafer manufacturing process to be evaluated is obtained by the above-described carbon concentration evaluation method according to one embodiment of the present invention.
  • the details of the carbon concentration evaluation method are as described in detail above.
  • the silicon wafer to be subjected to the carbon concentration evaluation is at least one silicon wafer manufactured in the silicon wafer manufacturing process to be evaluated, and may be two or more silicon wafers.
  • the carbon concentration of two or more silicon wafers is obtained, for example, the average value, the maximum value, and the like of the obtained carbon concentrations can be used for evaluating the silicon wafer manufacturing process to be evaluated.
  • the silicon wafer may be subjected to carbon concentration evaluation as it is, or a part thereof may be cut out and subjected to carbon concentration evaluation.
  • the average value, maximum value, and the like of the carbon concentrations obtained for the two or more samples are determined as the carbon concentration of the silicon wafer. be able to.
  • the silicon wafer manufacturing process is evaluated by the manufacturing process evaluation method, and as a result of the evaluation, the silicon wafer is manufactured in the silicon wafer manufacturing process in which the degree of carbon contamination is determined to be an allowable level. I do. This makes it possible to ship a high-quality silicon wafer having a low carbon contamination level as a product wafer.
  • a silicon wafer manufacturing process is evaluated by the manufacturing process evaluation method, and as a result of the evaluation, a silicon wafer manufacturing process in which the degree of carbon contamination is determined to exceed an allowable level is determined. After performing the carbon contamination reduction process in the process, a silicon wafer is manufactured in this silicon wafer manufacturing process.
  • the carbon contamination reduction processing includes replacement and cleaning of members included in a silicon wafer manufacturing process.
  • a susceptor made of SiC is used as a susceptor that is a member on which a silicon wafer is placed in a silicon wafer manufacturing process
  • a portion of a contact with the susceptor may be carbon-contaminated due to deterioration of a susceptor used repeatedly. .
  • carbon contamination caused by the susceptor can be reduced.
  • One embodiment of the present invention is to grow a silicon single crystal ingot, to evaluate the carbon concentration of a silicon sample cut out from the silicon single crystal ingot by the carbon concentration evaluation method, based on the result of the evaluation, silicon
  • the present invention relates to a method for manufacturing a silicon single crystal ingot, including determining manufacturing conditions for a single crystal ingot, and growing a silicon single crystal ingot under the determined manufacturing conditions.
  • the silicon single crystal ingot can be grown by a known method such as a CZ method (Czochralski method) and an FZ method (Floating Zone Melting method).
  • carbon may be mixed into a silicon single crystal ingot grown by the CZ method due to carbon mixed in the source polysilicon, CO gas generated during the growth, and the like. It is preferable to evaluate such a mixed carbon concentration and determine the manufacturing conditions based on the evaluation result in order to manufacture a silicon single crystal ingot in which the mixed carbon is suppressed. Therefore, the above-described method for evaluating the concentration of carbon according to one embodiment of the present invention is suitable as a method for evaluating the concentration of mixed carbon.
  • the number of silicon samples subjected to the carbon concentration evaluation is at least one, and may be two or more.
  • the carbon concentrations of two or more silicon samples are obtained, for example, the average value, the maximum value, and the like of the obtained carbon concentrations can be used for determining the manufacturing conditions of the silicon single crystal ingot. For example, if the obtained carbon concentration is at a predetermined allowable level, the silicon single crystal ingot is grown under the manufacturing conditions when the silicon single crystal ingot obtained by cutting out the silicon sample whose carbon concentration has been evaluated is grown.
  • a silicon single crystal ingot with less carbon contamination can be manufactured.
  • the carbon single crystal ingot is grown under the determined production conditions by adopting a means for reducing the carbon concentration, thereby reducing the carbon content. It is possible to manufacture a silicon single crystal ingot with less contamination.
  • means for reducing carbon contamination for example, one or more of the following means (1) to (3) can be adopted for the CZ method. Further, for example, for the FZ method, one or more of the following means (4) to (6) can be adopted. (1) Use a high-grade product with less carbon contamination as the raw material polysilicon.
  • a silicon single crystal ingot and a silicon wafer having a low carbon concentration can be provided.
  • a silicon single crystal pulling apparatus 10 shown in FIG. 1 includes a chamber 11, a support rotation shaft 12 penetrating vertically through a bottom center of the chamber 11, and a graphite susceptor fixed to an upper end of the support rotation shaft 12. 13, a quartz crucible 14 accommodated in the graphite susceptor 13, a heater 15 provided around the graphite susceptor 13, a support shaft drive mechanism 16 for raising and lowering and rotating the support rotation shaft 12, and a seed crystal.
  • a gas inlet 24 for introducing Ar gas into the chamber 11 is provided at an upper portion of the chamber 11. Ar gas is introduced into the chamber 11 from the gas inlet 24 through the gas pipe 25, and the amount of Ar gas is controlled by the conductance valve 26.
  • a gas outlet 27 for exhausting Ar gas in the chamber 11 is provided at the bottom of the chamber 11.
  • Ar gas in the sealed chamber 11 is discharged from the gas discharge port 27 to the outside via the exhaust gas pipe 28.
  • a conductance valve 29 and a vacuum pump 30 are provided in the middle of the exhaust gas pipe 28.
  • the Ar gas in the chamber 11 is sucked by the vacuum pump 30 and the flow rate is controlled by the conductance valve 29 to reduce the pressure in the chamber 11. The state is maintained.
  • a magnetic field supply device 31 for applying a magnetic field to the silicon melt 21 is provided outside the chamber 11.
  • the magnetic field supplied from the magnetic field supply device 31 may be a horizontal magnetic field or a cusp magnetic field.
  • a wafer-shaped sample was cut out from the silicon single crystal ingot grown in the above and processed into a silicon wafer by processing such as mirror polishing.
  • the resistivity was 10-13 ⁇ cm. From this silicon wafer, a silicon sample for SIMS measurement, a silicon sample for oxygen concentration measurement, and a plurality of silicon samples for DLTS measurement were obtained.
  • Carbon concentration measurement by SIMS method and oxygen concentration measurement by FT-IR method The carbon concentration of the above silicon sample for SIMS measurement was evaluated by SIMS method (raster change method). 14 atms / cm 3 .
  • the oxygen concentration of the silicon sample for oxygen concentration measurement determined by the FT-IR method was in the range of 2.0 ⁇ 10 17 to 12.0 ⁇ 10 17 atoms / cm 3 .
  • Example 1 to 3 and Comparative Examples 2 to 4 the produced diodes were placed on a hot plate set at a predetermined temperature for 60 minutes and subjected to the following heat treatment (D).
  • the plurality of silicon samples for DLTS measurement were subjected to heat treatment at different heating temperatures as heat treatment (D) below.
  • the heat treatment of the following (D) was performed within 18 hours after the treatment of the following (A).
  • Comparative Example 1 the following processes (A) to (C) were sequentially performed without performing the following process (D).
  • A immersed in hydrofluoric nitric acid (a mixed solution of nitric acid (aqueous nitric acid solution) having an HNO 3 concentration of 69% by mass and hydrofluoric acid (aqueous hydrofluoric acid solution) having an HF concentration of 50% by mass) for 5 minutes, and then washed with water for 10 minutes
  • B Schottky electrode (Au electrode) formation by vacuum evaporation
  • C Backside ohmic layer formation by gallium rubbing
  • D Arrangement on hot plate (heat treatment)
  • Example 1 to 3 and Comparative Examples 2 to 4 the surface of the silicon sample was applied to the diode Schottky junction after the treatment (D), and in Comparative Example 1, to the diode Schottky junction after the treatment (C). And a reverse voltage for forming a depletion layer having a width of 6 ⁇ m in a region having a depth of 2 ⁇ m and a pulse voltage for capturing carriers in the depletion layer were alternately and periodically applied. The transient response of the capacitance (capacitance) of the diode generated corresponding to the above voltage was measured. The above-described voltage application and capacitance measurement were performed while sweeping the sample temperature within a predetermined temperature range.
  • DLTS signal strength ⁇ C was plotted against temperature to obtain a DLTS spectrum.
  • the measurement frequency was 250 Hz.
  • the obtained DLTS spectrum was subjected to fitting processing (True shape fitting processing) using a program manufactured by SEMILAB, and separated into DLTS spectra having a trap level of Ec-0.15 eV (peak position: temperature 101 K). From the DLTS signal intensity at this peak position, the trap level density was determined by a known relational expression. Table 1 shows the trap level densities obtained for each heat treatment.
  • the trap level densities obtained in Examples 1 to 3 exceeded the value of the trap level density Nt in Comparative Example 1 in which the heat treatment using the heating means was not performed. On the other hand, no peak was detected in Comparative Examples 2 to 4 in which the heating process was performed at a heating temperature exceeding 80 ° C. using the heating means. Can be confirmed to have disappeared. From the above results, it can be confirmed that the heat treatment performed in Examples 1 to 3 can increase the trap state density. If the trap level density can be increased, the carbon concentration can be evaluated with higher sensitivity. An example of the carbon concentration evaluation is as follows.
  • a plurality of silicon single crystal ingots having different carbon concentrations are manufactured by changing at least one manufacturing condition selected from the group consisting of a raw material polysilicon grade, a pulling device, and a growing condition.
  • the silicon samples cut out from each silicon single crystal ingot were subjected to the above-described processes (A) to (D) and DLTS measurement similar to those in the above-described embodiment, and Ec-0.10 eV, Ec-0.13 eV and Ec For one or more trap levels selected from the group consisting of -0.15 eV, the DLTS signal strength at the peak position is determined.
  • the carbon concentration of the silicon sample can be evaluated by a relative criterion for determining that the larger the value of the DLTS signal strength thus obtained is, the higher the carbon concentration is.
  • the processes (A) to (D) and the DLTS measurement similar to those in the above embodiment are performed on a plurality of silicon samples having different carbon concentrations.
  • a calibration curve can be created. The calibration curve thus created can be used to evaluate the carbon concentration of a silicon sample whose carbon concentration is unknown.
  • the present invention is useful in the technical field of silicon single crystal ingots and silicon wafers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

An evaluation method of the carbon concentration in a silicon sample is provided in which hydrogen atoms are introduced into the silicon sample under evaluation; the silicon sample under evaluation, into which the hydrogen atoms were introduced, is subjected to evaluation with an evaluation method that evaluates the trap level in the band gap of the silicon; and, on the basis of the evaluation results obtained in the aforementioned evaluation that relate to the density of at least one trap level selected from the group consisting of Ec (the energy at the bottom of the conduction band)-0.10eV, Ec-0.13eV and Ec-0.15eV, the carbon concentration of the silicon sample under evaluation is evaluated. Between the aforementioned introduction of hydrogen atoms and the aforementioned evaluation, the method further involves heating treatment carried out using a heating means to heat the silicon sample under evaluation to a heating temperature within the range 35-80°C.

Description

シリコン試料の炭素濃度評価方法、シリコンウェーハ製造工程の評価方法、シリコンウェーハの製造方法およびシリコン単結晶インゴットの製造方法Method for evaluating carbon concentration of silicon sample, method for evaluating silicon wafer manufacturing process, method for manufacturing silicon wafer, and method for manufacturing silicon single crystal ingot
 本発明は、シリコン試料の炭素濃度評価方法、シリコンウェーハ製造工程の評価方法、シリコンウェーハの製造方法およびシリコン単結晶インゴットの製造方法に関する。 The present invention relates to a method for evaluating the carbon concentration of a silicon sample, a method for manufacturing a silicon wafer, a method for manufacturing a silicon wafer, and a method for manufacturing a silicon single crystal ingot.
 近年、シリコン試料の炭素濃度を評価することが検討されている(例えば特許文献1参照)。 In recent years, it has been studied to evaluate the carbon concentration of a silicon sample (for example, see Patent Document 1).
特開2017-191800号公報JP-A-2017-191800
 半導体基板として使用されるシリコンウェーハには、デバイス特性の低下を引き起こす不純物汚染を低減することが望まれる。近年、シリコンウェーハに含まれる不純物として炭素が注目され、シリコンウェーハの炭素汚染を低減することが検討されている。 シ リ コ ン It is desired that a silicon wafer used as a semiconductor substrate reduce impurity contamination that causes deterioration of device characteristics. In recent years, attention has been paid to carbon as an impurity contained in a silicon wafer, and reduction of carbon contamination of the silicon wafer has been studied.
 炭素汚染低減のためには、シリコン試料の炭素濃度を評価し、評価結果に基づき、シリコンウェーハの製造工程やシリコンウェーハを切り出すシリコン単結晶インゴットの製造工程を、製造工程で混入する炭素を低減するように管理することが望ましい。シリコン試料の炭素濃度を評価するための新たな方法を見出すことは、そのような工程管理を行ううえで有用である。 To reduce carbon contamination, evaluate the carbon concentration of the silicon sample, and based on the evaluation results, reduce the carbon that is mixed in the silicon wafer manufacturing process and the silicon single crystal ingot manufacturing process that cuts the silicon wafer in the manufacturing process. It is desirable to manage it. Finding a new method for evaluating the carbon concentration of a silicon sample is useful in performing such a process control.
 本発明の一態様は、シリコン試料の炭素濃度を評価するための新たな方法を提供することを目的とする。 One object of one embodiment of the present invention is to provide a new method for evaluating the carbon concentration of a silicon sample.
 本発明の一態様は、
 評価対象シリコン試料に水素原子を導入すること、
 上記水素原子が導入された評価対象シリコン試料を、シリコンのバンドギャップ中のトラップ準位を評価する評価法による評価に付すこと、および
 上記評価により得られた評価結果の中で、Ec(伝導帯の底のエネルギー)-0.10eV、Ec-0.13eVおよびEc-0.15eVからなる群から選ばれる少なくとも1つのトラップ準位の密度に関する評価結果に基づき、上記評価対象シリコン試料の炭素濃度を評価すること、
 を含み、
 上記水素原子の導入から上記評価までの間に、評価対象シリコン試料を加熱手段を用いて35℃~80℃の範囲の加熱温度に加熱する加熱処理を行うことを更に含む、シリコン試料の炭素濃度評価方法(以下、「炭素濃度評価方法」とも記載する。)、
 に関する。
One embodiment of the present invention provides
Introducing hydrogen atoms into the silicon sample to be evaluated,
The evaluation target silicon sample into which the hydrogen atoms have been introduced is subjected to an evaluation by an evaluation method for evaluating a trap level in a silicon band gap, and Ec (conduction band) is included in the evaluation results obtained by the evaluation. Based on the evaluation result of the density of at least one trap level selected from the group consisting of −0.10 eV, Ec−0.13 eV and Ec−0.15 eV. To evaluate,
Including
Further comprising performing a heat treatment of heating the silicon sample to be evaluated to a heating temperature in the range of 35 ° C. to 80 ° C. using a heating means between the introduction of the hydrogen atoms and the evaluation. Evaluation method (hereinafter also referred to as “carbon concentration evaluation method”),
About.
 上記加熱処理中、シリコン試料表面の温度は変化し得る。上記のシリコン試料の加熱処理に関する加熱温度は、加熱処理により加熱されたシリコン試料表面の最高温度をいうものとする。 中 During the heat treatment, the temperature of the silicon sample surface may change. The heating temperature relating to the heat treatment of the silicon sample refers to the maximum temperature of the surface of the silicon sample heated by the heat treatment.
 一態様では、上記炭素濃度評価方法において、上記水素原子が導入された評価対象シリコン試料を、電子線照射処理を行うことなく、上記評価に付すことができる。 In one aspect, in the carbon concentration evaluation method, the evaluation target silicon sample into which the hydrogen atoms have been introduced can be subjected to the evaluation without performing the electron beam irradiation treatment.
 一態様では、上記評価対象シリコン試料の炭素濃度の評価を、上記評価により得られた評価結果の中で、Ec-0.15eVのトラップ準位の密度に関する評価結果に基づいて行うことができる。 In one aspect, the carbon concentration of the silicon sample to be evaluated can be evaluated based on the evaluation result regarding the trap level density of Ec-0.15 eV among the evaluation results obtained by the above evaluation.
 一態様では、上記水素原子の導入は、評価対象シリコン試料を溶液に浸漬することにより行うことができる。 In one aspect, the introduction of the hydrogen atoms can be performed by immersing the silicon sample to be evaluated in a solution.
 一態様では、上記溶液は、HF(フッ化水素)を含む溶液であることができる。 態 様 In one embodiment, the solution may be a solution containing HF (hydrogen fluoride).
 一態様では、上記評価法は、DLTS法(Deep-Level Transient Spectroscopy)であることができる。 In one aspect, the evaluation method may be a DLTS method (Deep-Level \ Transient \ Spectroscopy).
 一態様では、上記DLTS法による評価の前に、上記水素原子が導入された評価対象シリコン試料に半導体接合およびオーミック層を形成することによりダイオードを作製することができ、作製されたダイオードを上記DLTS法による評価に付すことができる。 In one embodiment, before the evaluation by the DLTS method, a diode can be manufactured by forming a semiconductor junction and an ohmic layer on the silicon sample to be evaluated into which the hydrogen atoms have been introduced. It can be evaluated by the law.
 一態様では、上記加熱処理を、上記ダイオードの作製前または後に行うことができる。 In one embodiment, the heat treatment can be performed before or after the diode is manufactured.
 一態様では、上記加熱処理を、上記水素原子の導入から18時間以内に行うことができる。 In one aspect, the heat treatment can be performed within 18 hours from the introduction of the hydrogen atoms.
 本発明の一態様は、
 評価対象のシリコンウェーハ製造工程において製造されたシリコンウェーハの炭素濃度を上記炭素濃度評価方法により評価すること、および
 上記評価の結果に基づき評価対象のシリコンウェーハ製造工程における炭素汚染の程度を評価すること、
 を含む、シリコンウェーハ製造工程の評価方法(以下、「製造工程評価方法」とも記載する。)、
 に関する。
One embodiment of the present invention provides
Evaluating the carbon concentration of the silicon wafer manufactured in the silicon wafer manufacturing process to be evaluated by the above carbon concentration evaluation method, and evaluating the degree of carbon contamination in the silicon wafer manufacturing process to be evaluated based on the result of the above evaluation ,
(Hereinafter, also referred to as “manufacturing process evaluation method”).
About.
 本発明の一態様は、
 上記製造工程評価方法によりシリコンウェーハ製造工程の評価を行うこと、および
 上記評価の結果、炭素汚染の程度が許容レベルと判定されたシリコンウェーハ製造工程において、または、上記評価の結果、炭素汚染の程度が許容レベルを超えると判定されたシリコンウェーハ製造工程に炭素汚染低減処理を施した後に、このシリコンウェーハ製造工程において、シリコンウェーハを製造すること、
 を含む、シリコンウェーハの製造方法、
 に関する。
One embodiment of the present invention provides
Evaluating the silicon wafer manufacturing process by the above manufacturing process evaluation method, and, in the silicon wafer manufacturing process where the degree of carbon contamination is determined to be an allowable level as a result of the above evaluation, or as a result of the above evaluation, the degree of carbon contamination After performing a carbon contamination reduction process on a silicon wafer manufacturing process that is determined to exceed the allowable level, in this silicon wafer manufacturing process, manufacturing a silicon wafer,
Including, a method of manufacturing a silicon wafer,
About.
 本発明の一態様は、
 シリコン単結晶インゴットを育成すること、
 上記シリコン単結晶インゴットから切り出されたシリコン試料の炭素濃度を、上記炭素濃度評価方法により評価すること、
 上記評価の結果に基づき、シリコン単結晶インゴットの製造条件を決定すること、および、
 決定された製造条件下でシリコン単結晶インゴットを育成すること、
 を含む、シリコン単結晶インゴットの製造方法、
 に関する。
One embodiment of the present invention provides
Growing silicon single crystal ingots,
The carbon concentration of the silicon sample cut from the silicon single crystal ingot is evaluated by the carbon concentration evaluation method,
Based on the results of the above evaluation, determine the production conditions of the silicon single crystal ingot, and,
Growing a silicon single crystal ingot under determined manufacturing conditions,
Including, a method for producing a silicon single crystal ingot,
About.
 本発明の一態様によれば、シリコン試料の炭素濃度を評価するための新たな方法を提供することができる。 According to one embodiment of the present invention, a new method for evaluating the carbon concentration of a silicon sample can be provided.
実施例で使用されたシリコン単結晶引き上げ装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the silicon single crystal pulling apparatus used in the Example.
[シリコン試料の炭素濃度評価方法]
 本発明の一態様は、評価対象シリコン試料に水素原子を導入すること、上記水素原子が導入された評価対象シリコン試料を、シリコンのバンドギャップ中のトラップ準位を評価する評価法による評価に付すこと、および上記評価により得られた評価結果の中で、Ec-0.10eV、Ec-0.13eVおよびEc-0.15eVからなる群から選ばれる少なくとも1つのトラップ準位の密度に関する評価結果に基づき、上記評価対象シリコン試料の炭素濃度を評価することを含み、上記水素原子の導入から上記評価までの間に、評価対象シリコン試料を加熱手段を用いて35℃~80℃の範囲の加熱温度に加熱する加熱処理を行うことを更に含むシリコン試料の炭素濃度評価方法に関する。
[Method for evaluating carbon concentration of silicon sample]
In one embodiment of the present invention, a hydrogen atom is introduced into a silicon sample to be evaluated, and the silicon sample to be evaluated into which the hydrogen atom has been introduced is subjected to evaluation by an evaluation method for evaluating a trap level in a band gap of silicon. And among the evaluation results obtained by the above evaluation, the evaluation results regarding the density of at least one trap level selected from the group consisting of Ec-0.10 eV, Ec-0.13 eV and Ec-0.15 eV Evaluating the carbon concentration of the silicon sample to be evaluated based on the heating temperature of the silicon sample to be evaluated in a range of 35 ° C. to 80 ° C. using a heating means between the introduction of the hydrogen atoms and the evaluation. The present invention relates to a method for evaluating the carbon concentration of a silicon sample, further comprising performing a heat treatment for heating the silicon sample.
 上記炭素濃度評価方法において行われる水素原子の導入により、シリコンのバンドギャップ中に上記Ecのトラップ準位を形成することができる。こうして、上記Ecのトラップ準位の密度に関する評価結果を得ることが可能となる。そのような評価結果の一例としては、DLTS法による評価によって得られるピーク強度(DLTS信号強度)を挙げることができる。この点について詳細は後述する。
 トラップ準位に関しては、水素原子導入後のシリコンのバンドギャップ中の上記Ecのトラップ準位は炭素関連準位であり、このトラップ準位の密度はシリコン試料の炭素濃度と相関する。したがって、水素原子導入後に行われる評価により得られる上記Ecのトラップ準位の密度に関する評価結果、即ち、トラップ準位の密度と相関する評価結果は、シリコン試料の炭素濃度と相関する。更に、本発明者らの鋭意検討の結果、水素原子導入後の評価対象シリコン試料を上記加熱処理に付すことは、上記評価法によって評価される上記Ecのトラップ準位の密度を高めることに寄与することが新たに見出された。これは、上記加熱処理が、上記Ecのトラップ準位をもたらす複合体の形成を促進するためと推察される。トラップ準位の密度が高くなるほど、例えばDLTS法においては、測定されるDLTS信号強度の値は大きくなる。例えば、ある炭素濃度のシリコン試料について、トラップ準位密度の値をより高密度の値として得ることができれば、微量炭素であっても高感度に検出および評価することが可能になる。即ち、水素原子導入後の評価対象シリコン試料を上記加熱処理に付すことは、炭素濃度の評価の感度向上に寄与すると考えられる。
 以下、上記炭素濃度評価方法について、更に詳細に説明する。
By the introduction of hydrogen atoms performed in the carbon concentration evaluation method, the trap level of Ec can be formed in the band gap of silicon. In this way, it is possible to obtain an evaluation result regarding the density of trap levels of Ec. As an example of such an evaluation result, a peak intensity (DLTS signal intensity) obtained by the evaluation by the DLTS method can be cited. Details of this point will be described later.
Regarding the trap level, the trap level of Ec in the band gap of silicon after the introduction of hydrogen atoms is a carbon-related level, and the density of this trap level correlates with the carbon concentration of the silicon sample. Therefore, the evaluation result regarding the trap level density of Ec obtained by the evaluation performed after the introduction of the hydrogen atom, that is, the evaluation result correlated with the trap level density correlates with the carbon concentration of the silicon sample. Furthermore, as a result of intensive studies by the present inventors, subjecting the silicon sample to be evaluated after the introduction of hydrogen atoms to the above heat treatment contributes to increasing the density of trap levels of Ec evaluated by the above evaluation method. It was newly found to do. This is presumed to be due to the fact that the heat treatment promotes the formation of a complex that causes the trap level of Ec. As the density of trap levels increases, for example, in the DLTS method, the value of the measured DLTS signal intensity increases. For example, if a value of the trap level density can be obtained as a higher density value for a silicon sample having a certain carbon concentration, even a trace amount of carbon can be detected and evaluated with high sensitivity. That is, it is considered that subjecting the silicon sample to be evaluated after the introduction of the hydrogen atoms to the above-described heat treatment contributes to an improvement in sensitivity of the carbon concentration evaluation.
Hereinafter, the carbon concentration evaluation method will be described in more detail.
<評価対象シリコン試料>
 上記炭素濃度評価方法の評価対象とされるシリコン試料は、例えば、シリコン単結晶インゴットから切り出されたシリコン試料であることができる。例えば、シリコン単結晶インゴットからウェーハ形状に切り出した試料から更に一部を切り出して得た試料を、評価に付すことができる。また、評価対象シリコン試料は、半導体基板として用いられる各種シリコンウェーハ(例えば、ポリッシュドウェーハ、エピタキシャルウェーハ等)から切り出したシリコン試料であることもできる。上記シリコンウェーハは、シリコンウェーハに通常行われる各種加工処理(例えば、研磨、エッチング、洗浄等)が付されたシリコンウェーハであることもできる。シリコン試料は、n型シリコンであってもp型シリコンであってもよい。また、シリコン試料の抵抗率は、例えば1~1000Ωcm程度であることができるが、特に限定されない。
<Evaluation silicon sample>
The silicon sample to be evaluated by the carbon concentration evaluation method can be, for example, a silicon sample cut out from a silicon single crystal ingot. For example, a sample obtained by further cutting a part of a sample cut into a wafer shape from a silicon single crystal ingot can be subjected to evaluation. Further, the silicon sample to be evaluated can be a silicon sample cut out from various silicon wafers (for example, a polished wafer, an epitaxial wafer, etc.) used as a semiconductor substrate. The silicon wafer may be a silicon wafer that has been subjected to various processings (for example, polishing, etching, cleaning, etc.) that are usually performed on the silicon wafer. The silicon sample may be n-type silicon or p-type silicon. The resistivity of the silicon sample can be, for example, about 1 to 1000 Ωcm, but is not particularly limited.
 評価対象シリコン試料の格子間酸素Oiの濃度(以下、「酸素濃度」と記載する。)は、特に限定されるものではない。一態様では、評価対象シリコン試料の酸素濃度は、例えば、1.0×1017atoms/cm以上(例えば1.0×1017~27.5×1017atoms/cm)であることができる。ここでいう酸素濃度は、FT-IR法(Fourier Transform Infrared Spectroscopy)により測定される値とする。例えばチョクラルスキー法(CZ法)により育成されたシリコン単結晶に由来するシリコン試料は、通常、酸素を含んでいる。一方、特許文献1(特開2017-191800号公報)に記載されているように、シリコン試料の炭素濃度評価方法として従来提案されていたルミネッセンス法では、定量される炭素濃度が酸素濃度に依存してしまう。これは、従来提案されていたルミネッセンス法では、電子線照射を要するためである。そのため、ルミネッセンス法では、酸素濃度が高いシリコン試料ほど、炭素濃度の評価の精度は低下する傾向がある。これに対し、水素原子の導入を行った後であれば、電子線照射を行わなくとも、上記の炭素関連準位を、活性化した状態で形成することができる。その結果、酸素濃度に依存することなく、炭素濃度を評価することが可能になる。これにより、酸素濃度が比較的高いシリコン試料、例えば酸素濃度が上記範囲であるシリコン試料の炭素濃度も、高精度に評価することができる。本発明および本明細書における「電子線照射処理を行わない」とは、シリコン試料に対して積極的に電子線を照射する処理を行わないことをいい、太陽光、照明等の下で不可避的に生じる電子線照射は許容されるものとする。また、電子線とは、電子に加速電圧を加えて得られる電子の流れである。電子線照射処理は、リードタイムが長い、大規模設備を要する、コスト増を招く、電子線照射工程に加えて保護酸化膜の作製等を要し工程数が増える等の点で課題がある。したがって、電子線照射処理を行わなくともシリコン試料の炭素濃度を評価できることは好ましい。ただし、上記炭素濃度評価方法の評価対象シリコン試料の酸素濃度は、先に例示した範囲に限定されるものではない。また、上記炭素濃度評価方法の一態様では、公知の方法により電子線照射を行うこともできる。 The concentration of interstitial oxygen Oi of the silicon sample to be evaluated (hereinafter, referred to as “oxygen concentration”) is not particularly limited. In one embodiment, the oxygen concentration of the silicon sample to be evaluated is, for example, 1.0 × 10 17 atoms / cm 3 or more (eg, 1.0 × 10 17 to 27.5 × 10 17 atoms / cm 3 ). it can. The oxygen concentration here is a value measured by the FT-IR method (Fourier Transform Infrared Spectroscopy). For example, a silicon sample derived from a silicon single crystal grown by the Czochralski method (CZ method) usually contains oxygen. On the other hand, as described in Patent Document 1 (Japanese Patent Application Laid-Open No. 2017-191800), in the luminescence method conventionally proposed as a method for evaluating the carbon concentration of a silicon sample, the quantified carbon concentration depends on the oxygen concentration. Would. This is because the conventionally proposed luminescence method requires electron beam irradiation. Therefore, in the luminescence method, the accuracy of the carbon concentration evaluation tends to decrease as the silicon sample has a higher oxygen concentration. On the other hand, after the introduction of hydrogen atoms, the carbon-related levels can be formed in an activated state without performing electron beam irradiation. As a result, the carbon concentration can be evaluated without depending on the oxygen concentration. Thus, the carbon concentration of a silicon sample having a relatively high oxygen concentration, for example, a silicon sample having an oxygen concentration in the above range can be evaluated with high accuracy. In the present invention and in the present specification, "do not perform electron beam irradiation treatment" means not performing a process of actively irradiating an electron beam to a silicon sample, and is inevitable under sunlight, lighting, or the like. It is assumed that the electron beam irradiation occurring in the above is allowed. An electron beam is a flow of electrons obtained by applying an accelerating voltage to electrons. The electron beam irradiation treatment has problems in that the lead time is long, large-scale equipment is required, the cost is increased, and in addition to the electron beam irradiation step, the production of a protective oxide film and the like are required, and the number of steps is increased. Therefore, it is preferable that the carbon concentration of the silicon sample can be evaluated without performing the electron beam irradiation treatment. However, the oxygen concentration of the silicon sample to be evaluated by the above carbon concentration evaluation method is not limited to the range exemplified above. In one embodiment of the carbon concentration evaluation method, electron beam irradiation can be performed by a known method.
<シリコン試料への水素原子の導入>
 評価対象シリコン試料には、水素原子が導入される。水素原子を導入することにより、炭素関連準位である上記Ecのトラップ準位を形成することができる。水素原子の導入は、ドライ処理(乾式)で行ってもよく、ウェット処理(湿式、即ち溶液の使用)で行ってもよい。例えば、ドライ処理による水素原子の導入は、イオン注入法、水素プラズマ等によって行うことができる。なお本発明および本明細書における水素原子の導入には、イオンまたはプラズマの状態で水素原子が導入される態様も包含されるものとする。
<Introduction of hydrogen atoms into silicon sample>
Hydrogen atoms are introduced into the silicon sample to be evaluated. By introducing a hydrogen atom, a trap level of Ec, which is a carbon-related level, can be formed. The introduction of hydrogen atoms may be performed by a dry process (dry process) or a wet process (wet process, that is, use of a solution). For example, introduction of hydrogen atoms by dry treatment can be performed by an ion implantation method, hydrogen plasma, or the like. Note that the introduction of a hydrogen atom in the present invention and the present specification includes an embodiment in which a hydrogen atom is introduced in an ion or plasma state.
 ウェット処理による水素原子の導入は、シリコン試料を溶液に接触させる(例えば浸漬する)ことによって行うことができる。ここで使用される溶液は、水素原子を電離した状態(イオン)または塩の状態等のいずれかの状態で含む溶液であれば、酸溶液であっても塩基溶液であってもよい。一例として、酸溶液としては、フッ酸(フッ化水素酸水溶液)、フッ酸と硝酸との混合溶液(フッ硝酸)等のHFを含む溶液、硫酸と過酸化水素との混合溶液、塩酸と過酸化水素との混合溶液等を挙げることができる。また、塩基溶液としては水酸化ナトリウム溶液、水酸化カリウム溶液、アンモニア水と過酸化水素との混合溶液等を挙げることができる。上記の各種溶液は、好ましくは水系溶液(水を含む溶液)であり、水溶液であることがより好ましい。酸溶液の酸濃度および塩基溶液の塩基濃度は、特に限定されるものではない。一例として、フッ酸による水素原子導入は、測定対象シリコン試料を、1~25質量%フッ酸に1~10分間浸漬することにより行うことができる。また、一例として、フッ硝酸による水素原子導入は、測定対象シリコン試料を、フッ硝酸(例えばHNO濃度69質量%の硝酸(硝酸水溶液)とHF濃度50質量%のフッ酸(フッ化水素酸水溶液)との混合溶液)に1~10分間浸漬することにより行うことができる。浸漬後、必要に応じて測定対象試料を水洗、乾燥等の後処理に付してもよい。 Introduction of hydrogen atoms by wet treatment can be performed by bringing a silicon sample into contact with a solution (for example, immersion). The solution used here may be an acid solution or a base solution as long as the solution contains a hydrogen atom in any state such as an ionized state (ion) or a salt state. Examples of the acid solution include a solution containing HF such as hydrofluoric acid (aqueous hydrofluoric acid), a mixed solution of hydrofluoric acid and nitric acid (hydrofluoric nitric acid), a mixed solution of sulfuric acid and hydrogen peroxide, and a mixed solution of hydrochloric acid and hydrogen peroxide. A mixed solution with hydrogen oxide and the like can be given. Examples of the base solution include a sodium hydroxide solution, a potassium hydroxide solution, a mixed solution of aqueous ammonia and hydrogen peroxide, and the like. The above-mentioned various solutions are preferably aqueous solutions (solutions containing water), and more preferably aqueous solutions. The acid concentration of the acid solution and the base concentration of the base solution are not particularly limited. As an example, the introduction of hydrogen atoms by hydrofluoric acid can be performed by immersing the silicon sample to be measured in 1 to 25% by mass hydrofluoric acid for 1 to 10 minutes. As an example, the introduction of hydrogen atoms by hydrofluoric nitric acid involves measuring a silicon sample to be measured using hydrofluoric nitric acid (for example, nitric acid (aqueous nitric acid solution) having an HNO 3 concentration of 69% by mass and hydrofluoric acid (aqueous hydrofluoric acid solution having an HF concentration of 50% by mass). ) For 1 to 10 minutes. After the immersion, the sample to be measured may be subjected to post-treatment such as washing with water and drying as necessary.
 水素原子が導入された評価対象シリコン試料は、詳細を後述する加熱処理が施された後、シリコンのバンドギャップ中のトラップ準位を評価する評価法による評価に付される。加熱処理の詳細は後述する。 (4) The silicon sample to be evaluated into which hydrogen atoms have been introduced is subjected to a heat treatment, which will be described in detail later, and then subjected to an evaluation by an evaluation method for evaluating a trap level in a band gap of silicon. Details of the heat treatment will be described later.
<水素原子を導入したシリコン試料の評価>
 上記炭素濃度評価方法では、炭素関連準位として、Ec-0.10eV、Ec-0.13eVまたはEc-0.15eVのトラップ準位を用いる。Ec-0.10eV、Ec-0.13eVおよびEc-0.15eVのトラップ準位は、水素原子の導入によって、各種評価法により検出可能な活性化した状態で形成されると考えられ、更に、その形成は上記加熱処理によって促進されると推察される。こうして、上記トラップ準位(炭素関連準位)の密度に基づいて、炭素濃度を評価することが可能となる。トラップ準位密度に関する評価は、シリコンのバンドギャップ中のトラップ準位を評価することができる各種評価法によって行うことができる。そのような評価法としては、DLTS法、ライフタイム法、ICTS法(Isothermal Capacitance Transient Spectroscopy)、低温フォトルミネッセンス(PL)法、カソードルミネッセンス(CL)法等を挙げることができる。なお従来のPL法およびCL法(ルミネッセンス法)による炭素濃度の評価では、電子線照射処理が不可欠であった。これに対し上記炭素濃度評価方法によれば、水素原子の導入により上記Ecのトラップ準位が活性化した状態で形成されることによって、電子線照射処理を行わなくとも、上記トラップ準位の密度に基づき炭素濃度を評価することが可能となる。各種評価法による測定の手法については、公知技術を何ら制限なく適用できる。
<Evaluation of silicon sample with hydrogen atoms>
In the carbon concentration evaluation method, a trap level of Ec-0.10 eV, Ec-0.13 eV, or Ec-0.15 eV is used as the carbon-related level. It is considered that trap levels of Ec-0.10 eV, Ec-0.13 eV and Ec-0.15 eV are formed in an activated state which can be detected by various evaluation methods by introducing hydrogen atoms. It is presumed that the formation is promoted by the heat treatment. Thus, the carbon concentration can be evaluated based on the density of the trap levels (carbon-related levels). The evaluation of the trap level density can be performed by various evaluation methods capable of evaluating the trap level in the band gap of silicon. Examples of such an evaluation method include a DLTS method, a lifetime method, an ICTS method (Isothermal Capacitance Transient Spectroscopy), a low-temperature photoluminescence (PL) method, a cathodoluminescence (CL) method, and the like. In the evaluation of carbon concentration by the conventional PL method and CL method (luminescence method), electron beam irradiation treatment was indispensable. On the other hand, according to the carbon concentration evaluation method, since the trap level of Ec is formed in an activated state by the introduction of hydrogen atoms, the density of the trap level can be increased without performing the electron beam irradiation treatment. , It is possible to evaluate the carbon concentration. Known techniques can be applied without any limitation to the measurement method using various evaluation methods.
 例えばDLTS法は、より高感度な炭素定量を可能にする観点から、好ましい評価法である。評価法としてDLTS法を用いる場合、DLTS法により得られる各ピークの合計として得られるDLTSスペクトルを公知の方法でフィッティング処理することにより、Ec-0.10eV、Ec-0.13eVまたはEc-0.15eVのトラップ準位のDLTSスペクトルを分離することができる。例えば、周波数250HzでのDLTS測定では、Ec-0.10eVのトラップ準位密度は76K付近のピーク、Ec-0.13eVのトラップ準位密度は87K付近のピーク、Ec-0.15eVのトラップ準位密度は101K付近のピークのピーク強度(DLTS信号強度)に基づき炭素濃度を求めることができる。炭素濃度を求めるために用いるピークは、上記3つのピークの少なくとも1つであり、2つまたは3つのピークを用いてもよい。通常、ピーク強度の値が大きいほど炭素濃度が高いと判定することができる。より高精度な炭素濃度評価を行う観点からは、Ec-0.13eVおよび/またはEc-0.15eVにおける評価結果に基づき、評価対象シリコン試料の炭素濃度を求めることが好ましい。 For example, the DLTS method is a preferable evaluation method from the viewpoint of enabling more sensitive carbon quantification. When the DLTS method is used as the evaluation method, Ec-0.10 eV, Ec-0.13 eV, or Ec-0.10 eV is obtained by fitting a DLTS spectrum obtained as the sum of each peak obtained by the DLTS method by a known method. The DLTS spectrum of the trap level of 15 eV can be separated. For example, in the DLTS measurement at a frequency of 250 Hz, the trap level density of Ec-0.10 eV is a peak near 76 K, the trap level density of Ec-0.13 eV is a peak near 87 K, and the trap level of Ec-0.15 eV is As for the potential density, the carbon concentration can be determined based on the peak intensity (DLTS signal intensity) of the peak near 101K. The peak used to determine the carbon concentration is at least one of the above three peaks, and two or three peaks may be used. Normally, it can be determined that the higher the peak intensity value, the higher the carbon concentration. From the viewpoint of performing a more accurate carbon concentration evaluation, it is preferable to obtain the carbon concentration of the silicon sample to be evaluated based on the evaluation results at Ec-0.13 eV and / or Ec-0.15 eV.
<加熱処理>
 上記炭素濃度評価方法において、評価対象シリコン試料には、水素原子の導入から上記評価までの間に、評価対象シリコン試料を加熱手段を用いて35℃~80℃の範囲の加熱温度に加熱する加熱処理が施される。上記Ecのトラップ準位の形成過程と消滅過程とは競合しているが、水素原子導入後の評価対象シリコン試料を加熱手段を用いて上記範囲の加熱温度に加熱することにより、上記Ecのトラップ準位の形成過程を促進できることが、上記評価法により評価されるトラップ準位の密度を高めることにつながると推察される。加熱手段としては例えばホットプレート等を用いることができる。例えば、水素原子導入後の評価対象シリコン試料をホットプレート上に配置して上記温度範囲の加熱温度に加熱することができる。水素原子導入後の評価対象シリコン試料を加熱する加熱温度は、上記トラップ準位の密度をより高める観点から40℃以上であることが好ましく、また同様の観点から70℃以下であることが好ましい。加熱処理を行う雰囲気は特に限定されない。上記加熱処理は、例えば大気雰囲気下で行うことができる。また、上記加熱処理は、例えば、シリコン試料の表面温度を所望の最高温度に到達させるために、例えば所定の設定温度に設定されたホットプレート上に、水素原子導入後の評価対象シリコン試料を1~60分間程度配置することによって行うことができる。水素原子導入から上記加熱処理までの間および上記加熱処理から上記評価までの間の評価対象シリコン試料は、例えば、室温の大気雰囲気中に配置することができる。ここで室温とは、例えば15℃~30℃の範囲の温度であることができる。Ec-0.10eV、Ec-0.13eVおよびEc-0.15eVのトラップ準位は、炭素と水素とを構成成分とする複合体によってもたらされると考えられる。一方、水素原子導入中(水素原子供給中)は水素原子の拡散が補誤差関数にしたがうため、水素原子はシリコン試料表面近傍に高濃度で分布すると推察される。これに対し、水素原子導入後は水素原子の供給源が断たれるため、評価対象シリコン試料中では、導入された水素原子がガウス関数にしたがってシリコン試料内部に拡散すると推察される。他方、各種評価法による評価は、通常、評価対象シリコン試料の表面から所定深さの領域(測定領域)について行われる。この測定領域により多くの水素原子が存在する間に上記加熱処理を行うことが、上記加熱処理によって上記複合体の形成(即ち上記Ecのトラップ準位の形成)をより一層促進することにつながると考えられる。以上の点およびシリコン中の水素原子の拡散速度を考慮すると、上記加熱処理は、水素原子導入から18時間以内(即ち、18時間またはそれより短時間)に行うことが好ましい。
<Heat treatment>
In the carbon concentration evaluation method, the silicon sample to be evaluated is heated to a heating temperature in the range of 35 ° C. to 80 ° C. by using a heating means between the introduction of hydrogen atoms and the above evaluation. Processing is performed. Although the formation process and the annihilation process of the trap level of Ec are competing with each other, the silicon sample to be evaluated after the introduction of the hydrogen atoms is heated to a heating temperature in the above range by using a heating means, whereby the trap of Ec is trapped. It is presumed that the ability to promote the level formation process leads to an increase in the density of trap levels evaluated by the above evaluation method. As a heating means, for example, a hot plate or the like can be used. For example, a silicon sample to be evaluated after introducing hydrogen atoms can be placed on a hot plate and heated to a heating temperature in the above temperature range. The heating temperature for heating the silicon sample to be evaluated after the introduction of the hydrogen atoms is preferably 40 ° C. or higher from the viewpoint of further increasing the density of the trap level, and is preferably 70 ° C. or lower from the same viewpoint. The atmosphere in which the heat treatment is performed is not particularly limited. The heat treatment can be performed, for example, under an air atmosphere. Further, in the heat treatment, for example, in order to bring the surface temperature of the silicon sample to a desired maximum temperature, for example, the silicon sample to be evaluated after introducing hydrogen atoms is placed on a hot plate set to a predetermined temperature. It can be carried out by placing it for about 60 minutes. The silicon sample to be evaluated during the period from the introduction of the hydrogen atoms to the heat treatment and the period from the heat treatment to the evaluation can be placed, for example, in an air atmosphere at room temperature. Here, room temperature can be, for example, a temperature in the range of 15 ° C. to 30 ° C. It is thought that the trap levels of Ec-0.10 eV, Ec-0.13 eV, and Ec-0.15 eV are provided by a complex composed of carbon and hydrogen. On the other hand, during the introduction of the hydrogen atoms (during the supply of the hydrogen atoms), the diffusion of the hydrogen atoms follows the complementary error function. Therefore, it is assumed that the hydrogen atoms are distributed at a high concentration near the silicon sample surface. On the other hand, since the supply source of the hydrogen atoms is cut off after the introduction of the hydrogen atoms, it is assumed that the introduced hydrogen atoms diffuse into the silicon sample according to the Gaussian function in the silicon sample to be evaluated. On the other hand, evaluation by various evaluation methods is usually performed on a region (measurement region) having a predetermined depth from the surface of the silicon sample to be evaluated. If the heat treatment is performed while more hydrogen atoms are present in the measurement region, the heat treatment will further promote the formation of the complex (that is, the formation of the trap level of Ec). Conceivable. In consideration of the above points and the diffusion rate of hydrogen atoms in silicon, the above heat treatment is preferably performed within 18 hours (that is, 18 hours or shorter) after the introduction of hydrogen atoms.
 一態様では、上記評価はDLTS法によって行われる。DLTS法では、通常、評価対象シリコン試料の一部を切り出して得た測定用試料に、半導体接合(ショットキー接合またはpn接合)およびオーミック層を形成して作製したダイオード(試料素子)について測定(DLTS測定)が行われる。一般に、DLTS測定に付される試料の表面は平滑性が高いことが好ましい。したがって、測定用試料を切り出す前の評価対象シリコン試料、または評価対象シリコン試料から切り出した測定用試料に、表面平滑性向上のためにエッチング、研磨加工等を任意に行うこともできる。エッチングは、ミラーエッチングが好ましい。また、研磨加工は鏡面研磨加工を含むことが好ましい。例えば、評価対象シリコン試料がシリコン単結晶インゴットまたはインゴットの一部の場合、かかる評価対象シリコン試料から切り出した測定用試料を研磨加工した後に試料素子を作製することが好ましく、鏡面研磨加工した後に試料素子を作製することがより好ましい。研磨加工としては、鏡面研磨加工等のシリコンウェーハに施される公知の研磨加工を行うことができる。一方、通常、シリコンウェーハは鏡面研磨加工等の研磨加工を経て得られる。したがって、評価対象シリコン試料がシリコンウェーハである場合、シリコンウェーハから切り出した測定用試料の表面は、研磨加工なしでも高い平滑性を有することが通常である。 In one aspect, the evaluation is performed by the DLTS method. In the DLTS method, usually, a diode (sample element) manufactured by forming a semiconductor junction (Schottky junction or pn junction) and an ohmic layer on a measurement sample obtained by cutting out a part of a silicon sample to be evaluated is measured ( DLTS measurement). Generally, it is preferable that the surface of a sample subjected to DLTS measurement has high smoothness. Therefore, the silicon sample to be evaluated before the sample for measurement or the sample for measurement cut out from the silicon sample to be evaluated can be arbitrarily subjected to etching, polishing, or the like for improving the surface smoothness. The etching is preferably mirror etching. The polishing preferably includes a mirror polishing. For example, when the silicon sample to be evaluated is a silicon single crystal ingot or a part of an ingot, it is preferable to manufacture a sample element after polishing a measurement sample cut out from the silicon sample to be evaluated, and to perform a sample after mirror polishing. It is more preferable to manufacture an element. As the polishing process, a known polishing process applied to a silicon wafer, such as a mirror polishing process, can be performed. On the other hand, a silicon wafer is usually obtained through polishing such as mirror polishing. Therefore, when the silicon sample to be evaluated is a silicon wafer, the surface of the measurement sample cut from the silicon wafer usually has high smoothness without polishing.
 上記加熱処理は、一態様では上記ダイオードの作製前に行うことができ、他の一態様では上記ダイオードの作製後に行うことができる。また、一態様では、上記加熱処理は、上記ダイオードの作製前および作製後に行うこともできる。先に記載したように、シリコン中の水素原子の拡散を考慮すると、表面に近い測定領域により多くの水素原子が存在する間に上記加熱処理を行うことが、上記加熱処理によって上記複合体の形成(即ち上記Ecのトラップ準位の形成)をより一層促進することにつながると考えられる。この点からは、上記加熱処理を上記ダイオードの作製前に行うことは、上記Ecのトラップ準位の形成をより一層促進してトラップ準位密度を高める観点から好ましいと考えられる。 加熱 The heat treatment can be performed before the diode is manufactured in one embodiment, and can be performed after the diode is manufactured in another embodiment. In one embodiment, the heat treatment can be performed before and after the diode is manufactured. As described above, in consideration of the diffusion of hydrogen atoms in silicon, the heat treatment can be performed while more hydrogen atoms are present in the measurement region close to the surface. It is considered that this further promotes the formation of the trap level of Ec. From this point, it is considered that performing the heat treatment before manufacturing the diode is preferable from the viewpoint of further promoting the formation of the trap level of Ec and increasing the trap level density.
 DLTS測定は、通常、以下の方法によって行われる。シリコン試料の一方の表面に半導体接合(ショットキー接合またはpn接合)を形成し、他方の表面にオーミック層を形成してダイオード(試料素子)を作製する。この試料素子の容量(キャパシタンス)の過渡応答を、温度掃引を行いながら周期的に電圧を印加し測定する。電圧の印加は、通常、空乏層を形成する逆方向電圧と空乏層中のトラップ準位にキャリアを充填するためのパルス電圧を、交互かつ周期的に印加して行われる。好ましい空乏層形成領域の位置および幅は、シリコン試料の抵抗率に依存する。空乏層は、例えば、評価対象シリコン試料の表面から深さ1μm~60μm程度の領域に、1~50μm程度の幅で形成することができ、好ましくは1~10μm程度の幅で形成することができる。一方、評価対象シリコン試料の厚みは、例えば100~1000μm程度であることができる。ただし、この範囲に限定されるものではない。測定領域の位置(測定深さ)は、空乏層を形成するために印加される逆方向電圧によって制御することができる。また、形成される空乏層の幅も、逆方向電圧によって制御することができる。温度に対してDLTS信号をプロットすることにより、DLTSスペクトルを得ることができる。DLTS測定により検出された各ピークの合計として得られるDLTSスペクトルを公知の方法でフィッティング処理することにより、各トラップ準位のDLTSスペクトルを分離しピークを検出することができる。 DLTS measurement is usually performed by the following method. A semiconductor junction (Schottky junction or pn junction) is formed on one surface of a silicon sample, and an ohmic layer is formed on the other surface to produce a diode (sample element). The transient response of the capacitance (capacitance) of the sample element is measured by periodically applying a voltage while performing a temperature sweep. The application of the voltage is usually performed by alternately and periodically applying a reverse voltage for forming a depletion layer and a pulse voltage for filling a trap level in the depletion layer with carriers. The preferred position and width of the depletion layer formation region depend on the resistivity of the silicon sample. The depletion layer can be formed, for example, with a width of about 1 to 50 μm, preferably about 1 to 10 μm, in a region with a depth of about 1 μm to 60 μm from the surface of the silicon sample to be evaluated. . On the other hand, the thickness of the silicon sample to be evaluated can be, for example, about 100 to 1000 μm. However, it is not limited to this range. The position (measurement depth) of the measurement region can be controlled by a reverse voltage applied to form a depletion layer. Further, the width of the formed depletion layer can also be controlled by the reverse voltage. By plotting the DLTS signal against temperature, a DLTS spectrum can be obtained. By subjecting the DLTS spectrum obtained as the sum of each peak detected by the DLTS measurement to fitting processing by a known method, the DLTS spectrum of each trap level can be separated and the peak can be detected.
<炭素濃度の評価>
 評価法としていずれの方法を用いる場合にも、Ec-0.10eV、Ec-0.13eVおよびEc-0.15eVからなる群から選ばれる少なくとも1つのトラップ準位の密度に関する評価結果に基づく炭素濃度の評価は、検量線を用いて行うことができ、または検量線を用いずに行うことができる。検量線を用いない場合、例えば、評価結果として得られた値が大きいほど、炭素濃度が高いと判定する相対的な判定基準によって、炭素濃度を評価することができる。例えば、DLTSスペクトルのピーク強度(DLTS信号強度)の値が大きいほど炭素濃度が高いと判定することができる。また、検量線を用いる場合には、検量線としては、例えば、評価対象シリコン試料について得られた評価結果(例えばDLTS信号強度)から求められるトラップ準位の密度と既知炭素濃度との相関関係を示す検量線を作成することが好ましい。各種評価結果からトラップ準位の密度を求める関係式は、公知である。また、上記の既知炭素濃度は、評価対象シリコン試料の評価に用いる評価法以外の方法によって測定して求めることができる。例えば、評価対象シリコン試料をDLTS法により評価する場合、上記の既知炭素濃度は、例えばSIMS法やFT-IR法により求めることができる。これらの方法によって求められた評価結果から炭素濃度を求める関係式も公知である。検量線を作成するために評価対象シリコン試料と同じ評価法による評価に付されるシリコン試料(検量線作成用シリコン試料)と既知炭素濃度を求めるためのシリコン試料とは、同じシリコン試料(例えば、同じインゴット、同じウェーハ等)から切り出されたシリコン試料であるか、または同じ製造工程を経たシリコン試料であることが好ましい。検量線作成に関しては、特許文献1(特開2017-191800号公報)の段落0038~0040も参照できる。検量線作成用シリコン試料は、水素原子導入処理、加熱処理等の各種処理を評価対象シリコン試料と同様に施されたシリコン試料であることが好ましい。
<Evaluation of carbon concentration>
Whichever method is used as the evaluation method, the carbon concentration based on the evaluation result regarding the density of at least one trap level selected from the group consisting of Ec-0.10 eV, Ec-0.13 eV and Ec-0.15 eV Can be evaluated using a calibration curve or without a calibration curve. When the calibration curve is not used, for example, the carbon concentration can be evaluated by a relative criterion for determining that the larger the value obtained as the evaluation result is, the higher the carbon concentration is. For example, it can be determined that the higher the value of the DLTS spectrum peak intensity (DLTS signal intensity), the higher the carbon concentration. When a calibration curve is used, the calibration curve may be, for example, a correlation between the density of the trap level obtained from the evaluation result (eg, DLTS signal intensity) obtained for the silicon sample to be evaluated and the known carbon concentration. It is preferable to create a calibration curve as shown. A relational expression for obtaining the density of trap levels from various evaluation results is known. Further, the above-mentioned known carbon concentration can be obtained by measuring by a method other than the evaluation method used for evaluating the silicon sample to be evaluated. For example, when the silicon sample to be evaluated is evaluated by the DLTS method, the known carbon concentration can be obtained by, for example, the SIMS method or the FT-IR method. Relational expressions for obtaining the carbon concentration from the evaluation results obtained by these methods are also known. The silicon sample to be evaluated by the same evaluation method as the silicon sample to be evaluated to prepare the calibration curve (silicon sample for preparing the calibration curve) and the silicon sample for obtaining the known carbon concentration are the same silicon sample (for example, It is preferable that the sample is a silicon sample cut from the same ingot, the same wafer, or the like) or a silicon sample that has undergone the same manufacturing process. Regarding the preparation of the calibration curve, reference can also be made to paragraphs 0038 to 0040 of Patent Document 1 (JP-A-2017-191800). It is preferable that the silicon sample for preparing the calibration curve is a silicon sample that has been subjected to various processes such as a hydrogen atom introduction process and a heating process in the same manner as the silicon sample to be evaluated.
[シリコンウェーハ製造工程の評価方法およびシリコンウェーハの製造方法]
 本発明の一態様は、評価対象のシリコンウェーハ製造工程において製造されたシリコンウェーハの炭素濃度を上記炭素濃度評価方法により評価すること、および、上記評価の結果に基づき評価対象のシリコンウェーハ製造工程における炭素汚染の程度を評価すること、を含むシリコンウェーハ製造工程の評価方法に関する。
[Evaluation method of silicon wafer manufacturing process and silicon wafer manufacturing method]
One aspect of the present invention is to evaluate the carbon concentration of a silicon wafer manufactured in a silicon wafer manufacturing process to be evaluated by the carbon concentration evaluation method, and in the silicon wafer manufacturing process to be evaluated based on the result of the evaluation. The present invention relates to a method for evaluating a silicon wafer manufacturing process including evaluating a degree of carbon contamination.
 また、本発明の一態様は、上記シリコンウェーハ製造工程の評価方法によりシリコンウェーハ製造工程の評価を行うこと、および、上記評価の結果、炭素汚染の程度が許容レベルと判定されたシリコンウェーハ製造工程において、または、上記評価の結果、炭素汚染の程度が許容レベルを超えると判定されたシリコンウェーハ製造工程に炭素汚染低減処理を施した後に、このシリコンウェーハ製造工程において、シリコンウェーハを製造すること、を含むシリコンウェーハの製造方法に関する。 Further, one embodiment of the present invention is to evaluate a silicon wafer manufacturing process by the above-described method for evaluating a silicon wafer manufacturing process, and as a result of the evaluation, a silicon wafer manufacturing process in which the degree of carbon contamination is determined to be an allowable level. In, or, as a result of the above evaluation, after performing a carbon contamination reduction process on the silicon wafer manufacturing process determined that the degree of carbon contamination exceeds the allowable level, in this silicon wafer manufacturing process, to manufacture a silicon wafer, The present invention relates to a method for manufacturing a silicon wafer including:
 上記製造工程評価方法における評価対象のシリコンウェーハ製造工程は、製品シリコンウェーハを製造する一部の工程または全部の工程であることができる。製品シリコンウェーハの製造工程は、一般に、シリコン単結晶インゴットからのウェーハの切り出し(スライシング)、研磨やエッチング等の表面処理、洗浄工程、更にウェーハの用途に応じて必要により行われる後工程(エピタキシャル層形成等)を含む。これらの各工程および各処理はいずれも公知である。 The silicon wafer manufacturing process to be evaluated in the above-described manufacturing process evaluation method can be a part of or the entire process of manufacturing a product silicon wafer. The production process of a product silicon wafer is generally performed by cutting a wafer from a silicon single crystal ingot (slicing), surface treatment such as polishing and etching, a cleaning process, and a post-process (epitaxial layer) performed as necessary according to the use of the wafer. Formation, etc.). Each of these steps and each process is known.
 シリコンウェーハの製造工程では、製造工程で用いられる部材とシリコンウェーハとの接触等により、シリコンウェーハに炭素汚染が発生し得る。評価対象の製造工程において製造されたシリコンウェーハの炭素濃度を評価して炭素汚染の程度を把握することにより、評価対象のシリコンウェーハ製造工程に起因して製品シリコンウェーハに炭素汚染が発生する傾向を把握することができる。即ち、評価対象の製造工程において製造されたシリコンウェーハの炭素濃度が高いほど、評価対象の製造工程において炭素汚染が発生し易い傾向があると判定することができる。したがって、例えば、あらかじめ炭素濃度の許容レベルを設定しておき、評価対象のシリコンウェーハ製造工程において製造されたシリコンウェーハについて求められた炭素濃度が許容レベルを超えたならば、評価対象の製造工程を、炭素汚染発生傾向が高く製品シリコンウェーハの製造工程としては使用不可と判定することができる。そのように判定された評価対象のシリコンウェーハ製造工程は、炭素汚染低減処理を施した後に製品シリコンウェーハの製造に用いることが好ましい。この点の詳細は、更に後述する。 In the silicon wafer manufacturing process, carbon contamination may occur in the silicon wafer due to contact between the silicon wafer and members used in the manufacturing process. By assessing the degree of carbon contamination by evaluating the carbon concentration of the silicon wafers manufactured in the manufacturing process to be evaluated, the tendency of carbon contamination to occur in the product silicon wafer due to the silicon wafer manufacturing process to be evaluated is evaluated. You can figure out. That is, it can be determined that the higher the carbon concentration of the silicon wafer manufactured in the manufacturing process to be evaluated, the more likely it is that carbon contamination occurs in the manufacturing process to be evaluated. Therefore, for example, the allowable level of the carbon concentration is set in advance, and if the carbon concentration obtained for the silicon wafer manufactured in the silicon wafer manufacturing process of the evaluation target exceeds the allowable level, the manufacturing process of the evaluation target is Therefore, it can be determined that carbon is not likely to be used in the production process of a product silicon wafer because of a high tendency to generate carbon contamination. It is preferable that the silicon wafer manufacturing process to be evaluated, which is determined as described above, be used for manufacturing a product silicon wafer after performing a carbon contamination reduction process. Details of this point will be further described later.
 評価対象のシリコンウェーハ製造工程において製造されたシリコンウェーハの炭素濃度は、上記の本発明の一態様にかかる炭素濃度評価方法によって求められる。上記炭素濃度評価方法の詳細は、先に詳述した通りである。炭素濃度評価に付すシリコンウェーハは、評価対象のシリコンウェーハ製造工程で製造された少なくとも1枚のシリコンウェーハであり、2枚以上のシリコンウェーハであってもよい。2枚以上のシリコンウェーハの炭素濃度を求めた場合には、例えば、求められた炭素濃度の平均値、最大値等を、評価対象のシリコンウェーハ製造工程の評価のために用いることができる。また、シリコンウェーハは、ウェーハ形状のまま炭素濃度評価に付してもよく、その一部を切り出して炭素濃度評価に付してもよい。1枚のシリコンウェーハから2つ以上の試料を切り出して炭素濃度評価に付す場合、2つ以上の試料について求められた炭素濃度の平均値、最大値等を、そのシリコンウェーハの炭素濃度として決定することができる。 炭素 The carbon concentration of the silicon wafer manufactured in the silicon wafer manufacturing process to be evaluated is obtained by the above-described carbon concentration evaluation method according to one embodiment of the present invention. The details of the carbon concentration evaluation method are as described in detail above. The silicon wafer to be subjected to the carbon concentration evaluation is at least one silicon wafer manufactured in the silicon wafer manufacturing process to be evaluated, and may be two or more silicon wafers. When the carbon concentration of two or more silicon wafers is obtained, for example, the average value, the maximum value, and the like of the obtained carbon concentrations can be used for evaluating the silicon wafer manufacturing process to be evaluated. In addition, the silicon wafer may be subjected to carbon concentration evaluation as it is, or a part thereof may be cut out and subjected to carbon concentration evaluation. When two or more samples are cut out from one silicon wafer and subjected to carbon concentration evaluation, the average value, maximum value, and the like of the carbon concentrations obtained for the two or more samples are determined as the carbon concentration of the silicon wafer. be able to.
 上記シリコンウェーハの製造方法の一態様では、上記製造工程評価方法によりシリコンウェーハ製造工程の評価を行い、評価の結果、炭素汚染の程度が許容レベルと判定されたシリコンウェーハ製造工程においてシリコンウェーハを製造する。これにより、炭素汚染レベルが低い高品質なシリコンウェーハを製品ウェーハとして出荷することが可能となる。また、上記シリコンウェーハの製造方法の他の一態様では、上記製造工程評価方法によりシリコンウェーハ製造工程の評価を行い、評価の結果、炭素汚染の程度が許容レベルを超えると判定されたシリコンウェーハ製造工程に炭素汚染低減処理を施した後に、このシリコンウェーハ製造工程においてシリコンウェーハを製造する。これにより、製造工程に起因する炭素汚染を低減することができるため、炭素汚染レベルが低い高品質なシリコンウェーハを製品ウェーハとして出荷することが可能となる。上記の許容レベルは、製品ウェーハに求められる品質に応じて適宜設定することができる。また、炭素汚染低減処理とは、シリコンウェーハ製造工程に含まれる部材の交換、洗浄等を挙げることができる。一例として、シリコンウェーハの製造工程においてシリコンウェーハを載置する部材であるサセプタとしてSiC製サセプタを用いる場合、繰り返し使用されたサセプタの劣化により、サセプタとの接触部分が炭素汚染されることが起こり得る。このような場合には、例えばサセプタを交換することによりサセプタ起因の炭素汚染を低減することができる。 In one aspect of the method for manufacturing a silicon wafer, the silicon wafer manufacturing process is evaluated by the manufacturing process evaluation method, and as a result of the evaluation, the silicon wafer is manufactured in the silicon wafer manufacturing process in which the degree of carbon contamination is determined to be an allowable level. I do. This makes it possible to ship a high-quality silicon wafer having a low carbon contamination level as a product wafer. In another aspect of the method of manufacturing a silicon wafer, a silicon wafer manufacturing process is evaluated by the manufacturing process evaluation method, and as a result of the evaluation, a silicon wafer manufacturing process in which the degree of carbon contamination is determined to exceed an allowable level is determined. After performing the carbon contamination reduction process in the process, a silicon wafer is manufactured in this silicon wafer manufacturing process. Thus, carbon contamination due to the manufacturing process can be reduced, so that a high-quality silicon wafer having a low carbon contamination level can be shipped as a product wafer. The above-mentioned tolerance level can be appropriately set according to the quality required for the product wafer. In addition, the carbon contamination reduction processing includes replacement and cleaning of members included in a silicon wafer manufacturing process. As an example, when a susceptor made of SiC is used as a susceptor that is a member on which a silicon wafer is placed in a silicon wafer manufacturing process, a portion of a contact with the susceptor may be carbon-contaminated due to deterioration of a susceptor used repeatedly. . In such a case, for example, by replacing the susceptor, carbon contamination caused by the susceptor can be reduced.
[シリコン単結晶インゴットの製造方法]
 本発明の一態様は、シリコン単結晶インゴットを育成すること、上記シリコン単結晶インゴットから切り出されたシリコン試料の炭素濃度を、上記炭素濃度評価方法により評価すること、上記評価の結果に基づき、シリコン単結晶インゴットの製造条件を決定すること、および、決定された製造条件下でシリコン単結晶インゴットを育成すること、を含むシリコン単結晶インゴットの製造方法に関する。
[Method of manufacturing silicon single crystal ingot]
One embodiment of the present invention is to grow a silicon single crystal ingot, to evaluate the carbon concentration of a silicon sample cut out from the silicon single crystal ingot by the carbon concentration evaluation method, based on the result of the evaluation, silicon The present invention relates to a method for manufacturing a silicon single crystal ingot, including determining manufacturing conditions for a single crystal ingot, and growing a silicon single crystal ingot under the determined manufacturing conditions.
 シリコン単結晶インゴットの育成は、CZ法(チョクラルスキー法)、FZ法(浮遊帯域溶融(Floating Zone)法)等の公知の方法により行うことができる。例えば、CZ法により育成されるシリコン単結晶インゴットには、原料ポリシリコンの混入炭素、育成中に発生するCOガス等に起因して、炭素が混入する可能性がある。このような混入炭素濃度を評価し、評価結果に基づき製造条件を決定することは、炭素の混入が抑制されたシリコン単結晶インゴットを製造するために好ましい。そのために混入炭素濃度を評価する方法として、上記の本発明の一態様にかかる炭素濃度評価方法は好適である。 The silicon single crystal ingot can be grown by a known method such as a CZ method (Czochralski method) and an FZ method (Floating Zone Melting method). For example, carbon may be mixed into a silicon single crystal ingot grown by the CZ method due to carbon mixed in the source polysilicon, CO gas generated during the growth, and the like. It is preferable to evaluate such a mixed carbon concentration and determine the manufacturing conditions based on the evaluation result in order to manufacture a silicon single crystal ingot in which the mixed carbon is suppressed. Therefore, the above-described method for evaluating the concentration of carbon according to one embodiment of the present invention is suitable as a method for evaluating the concentration of mixed carbon.
 シリコン単結晶インゴットから切り出されるシリコン試料の形状等の詳細については、上記炭素濃度評価方法の評価対象シリコン試料に関する先の記載を参照できる。炭素濃度評価に付されるシリコン試料の数は、少なくとも1つであり、2つ以上であってもよい。2つ以上のシリコン試料の炭素濃度を求めた場合には、例えば、求められた炭素濃度の平均値、最大値等を、シリコン単結晶インゴットの製造条件決定のために用いることができる。例えば、得られた炭素濃度が、あらかじめ定めた許容レベルであった場合には、炭素濃度を評価したシリコン試料を切り出したシリコン単結晶インゴットを育成した際の製造条件においてシリコン単結晶インゴットを育成することにより、炭素汚染が少ないシリコン単結晶インゴットを製造することができる。他方、例えば、得られた炭素濃度が許容レベルを超えた場合には、炭素濃度を低減するための手段を採用して決定された製造条件の下でシリコン単結晶インゴットを育成することにより、炭素汚染が少ないシリコン単結晶インゴットを製造することが可能となる。炭素汚染を低減するための手段としては、例えば、CZ法については、下記手段(1)~(3)の1つ以上を採用することができる。また、例えば、FZ法については、下記手段(4)~(6)の1つ以上を採用することができる。
(1)原料ポリシリコンとしてより炭素混入の少ない高グレード品を使用すること。
(2)ポリシリコン融液へのCO溶解を抑制するために引き上げ速度および/または結晶引き上げ時のアルゴン(Ar)ガス流量を適切に調整すること。
(3)引き上げ装置に含まれる炭素製部材の設計変更、取り付け位置の変更等を行うこと。 
(4)シリコン原料として、より炭素混入の少ない高グレード品を使用すること。
(5)単結晶製造装置内に導入するガス流量を多くすることによって雰囲気ガスからの炭素の取り込みを抑制すること。
(6)単結晶製造装置に含まれる炭素含有材料製の部材の交換、部材の設計変更、取り付け位置の変更等を行うこと。
For details such as the shape of the silicon sample cut out from the silicon single crystal ingot, the above description regarding the silicon sample to be evaluated by the above carbon concentration evaluation method can be referred to. The number of silicon samples subjected to the carbon concentration evaluation is at least one, and may be two or more. When the carbon concentrations of two or more silicon samples are obtained, for example, the average value, the maximum value, and the like of the obtained carbon concentrations can be used for determining the manufacturing conditions of the silicon single crystal ingot. For example, if the obtained carbon concentration is at a predetermined allowable level, the silicon single crystal ingot is grown under the manufacturing conditions when the silicon single crystal ingot obtained by cutting out the silicon sample whose carbon concentration has been evaluated is grown. As a result, a silicon single crystal ingot with less carbon contamination can be manufactured. On the other hand, for example, when the obtained carbon concentration exceeds the allowable level, the carbon single crystal ingot is grown under the determined production conditions by adopting a means for reducing the carbon concentration, thereby reducing the carbon content. It is possible to manufacture a silicon single crystal ingot with less contamination. As means for reducing carbon contamination, for example, one or more of the following means (1) to (3) can be adopted for the CZ method. Further, for example, for the FZ method, one or more of the following means (4) to (6) can be adopted.
(1) Use a high-grade product with less carbon contamination as the raw material polysilicon.
(2) The pulling speed and / or the flow rate of argon (Ar) gas at the time of crystal pulling are appropriately adjusted to suppress the dissolution of CO in the polysilicon melt.
(3) To change the design of the carbon member included in the lifting device, change the mounting position, and the like.
(4) Use high-grade products with less carbon contamination as silicon raw materials.
(5) To suppress the incorporation of carbon from the atmospheric gas by increasing the flow rate of the gas introduced into the single crystal manufacturing apparatus.
(6) Replacement of a member made of a carbon-containing material included in the single crystal manufacturing apparatus, change in the design of the member, change in the mounting position, and the like.
 こうして本発明の一態様によれば、低炭素濃度のシリコン単結晶インゴットおよびシリコンウェーハを提供することができる。 し て Thus, according to one embodiment of the present invention, a silicon single crystal ingot and a silicon wafer having a low carbon concentration can be provided.
 以下に、本発明を実施例に基づき更に説明する。ただし本発明は実施例に示す態様に限定されるものではない。以下の処理および操作は、特記しない限り、室温の大気雰囲気下で実施した。 本 Hereinafter, the present invention will be further described based on examples. However, the present invention is not limited to the embodiments shown in the examples. The following treatments and operations were performed at room temperature under an air atmosphere unless otherwise specified.
1.CZ法によるシリコン単結晶インゴットの育成
 図1に示す構成のシリコン単結晶引き上げ装置を用いて、シリコン単結晶インゴット(n型シリコン)を育成した。
 以下、図1に示すシリコン単結晶引き上げ装置の詳細を説明する。
 図1に示すシリコン単結晶引き上げ装置10は、チャンバー11と、チャンバー11の底部中央を貫通して鉛直方向に設けられた支持回転軸12と、支持回転軸12の上端部に固定されたグラファイトサセプタ13と、グラファイトサセプタ13内に収容された石英るつぼ14と、グラファイトサセプタ13の周囲に設けられたヒーター15と、支持回転軸12を昇降および回転させるための支持軸駆動機構16と、種結晶を保持するシードチャック17と、シードチャック17を吊設する引き上げワイヤー18と、引き上げワイヤー18を巻き取るためのワイヤー巻き取り機構19と、ヒーター15および石英るつぼ14からの輻射熱によるシリコン単結晶インゴット20の加熱を防止すると共にシリコン融液21の温度変動を抑制するための熱遮蔽部材22と、各部を制御する制御装置23とを備えている。
 チャンバー11の上部には、Arガスをチャンバー11内に導入するためのガス導入口24が設けられている。Arガスはガス管25を介してガス導入口24からチャンバー11内に導入され、その導入量はコンダクタンスバルブ26により制御される。
 チャンバー11の底部には、チャンバー11内のArガスを排気するためのガス排出口27が設けられている。密閉したチャンバー11内のArガスはガス排出口27から排ガス管28を経由して外へと排出される。排ガス管28の途中にはコンダクタンスバルブ29および真空ポンプ30が設置されており、真空ポンプ30でチャンバー11内のArガスを吸引しながらコンダクタンスバルブ29でその流量を制御することでチャンバー11内の減圧状態が保たれている。
 さらに、チャンバー11の外側にはシリコン融液21に磁場を印加するための磁場供給装置31が設けられている。磁場供給装置31から供給される磁場は、水平磁場であっても構わないし、カスプ磁場であっても構わない。
1. Growing Silicon Single Crystal Ingot by CZ Method A silicon single crystal ingot (n-type silicon) was grown using a silicon single crystal pulling apparatus having the configuration shown in FIG.
Hereinafter, the silicon single crystal pulling apparatus shown in FIG. 1 will be described in detail.
A silicon single crystal pulling apparatus 10 shown in FIG. 1 includes a chamber 11, a support rotation shaft 12 penetrating vertically through a bottom center of the chamber 11, and a graphite susceptor fixed to an upper end of the support rotation shaft 12. 13, a quartz crucible 14 accommodated in the graphite susceptor 13, a heater 15 provided around the graphite susceptor 13, a support shaft drive mechanism 16 for raising and lowering and rotating the support rotation shaft 12, and a seed crystal. The holding of the seed chuck 17, the pulling wire 18 for suspending the seed chuck 17, the wire winding mechanism 19 for winding the pulling wire 18, and the silicon single crystal ingot 20 by the radiant heat from the heater 15 and the quartz crucible 14. It prevents heating and suppresses temperature fluctuation of the silicon melt 21. And the heat shield member 22, and a control unit 23 that controls each unit.
A gas inlet 24 for introducing Ar gas into the chamber 11 is provided at an upper portion of the chamber 11. Ar gas is introduced into the chamber 11 from the gas inlet 24 through the gas pipe 25, and the amount of Ar gas is controlled by the conductance valve 26.
A gas outlet 27 for exhausting Ar gas in the chamber 11 is provided at the bottom of the chamber 11. Ar gas in the sealed chamber 11 is discharged from the gas discharge port 27 to the outside via the exhaust gas pipe 28. A conductance valve 29 and a vacuum pump 30 are provided in the middle of the exhaust gas pipe 28. The Ar gas in the chamber 11 is sucked by the vacuum pump 30 and the flow rate is controlled by the conductance valve 29 to reduce the pressure in the chamber 11. The state is maintained.
Further, a magnetic field supply device 31 for applying a magnetic field to the silicon melt 21 is provided outside the chamber 11. The magnetic field supplied from the magnetic field supply device 31 may be a horizontal magnetic field or a cusp magnetic field.
2.シリコン試料の切り出し
 上記1.で育成したシリコン単結晶インゴットからウェーハ形状サンプルを切り出し、鏡面研磨加工等の加工処理を行いシリコンウェーハに加工した。抵抗率は10~13Ωcmであった。このシリコンウェーハから、SIMS測定用シリコン試料、酸素濃度測定用シリコン試料および複数のDLTS測定用シリコン試料を得た。
2. Cutting out a silicon sample A wafer-shaped sample was cut out from the silicon single crystal ingot grown in the above and processed into a silicon wafer by processing such as mirror polishing. The resistivity was 10-13 Ωcm. From this silicon wafer, a silicon sample for SIMS measurement, a silicon sample for oxygen concentration measurement, and a plurality of silicon samples for DLTS measurement were obtained.
3.SIMS法による炭素濃度測定およびFT-IR法による酸素濃度測定
 上記のSIMS測定用シリコン試料について、SIMS法(ラスター変化法)により炭素濃度を評価したところ、求められた炭素濃度は2.40×1014atms/cmであった。
 上記の酸素濃度測定用シリコン試料のFT-IR法により求められた酸素濃度は、2.0×1017~12.0×1017atoms/cmの範囲であった。
3. Carbon concentration measurement by SIMS method and oxygen concentration measurement by FT-IR method The carbon concentration of the above silicon sample for SIMS measurement was evaluated by SIMS method (raster change method). 14 atms / cm 3 .
The oxygen concentration of the silicon sample for oxygen concentration measurement determined by the FT-IR method was in the range of 2.0 × 10 17 to 12.0 × 10 17 atoms / cm 3 .
4.DLTS法による測定
 実施例1~3および比較例2~4では、上記のDLTS測定用シリコン試料に、下記の(A)、(B)、(C)および(D)の処理を順次実施した。比較例1では、上記のDLTS測定用シリコン試料に下記の(A)~(C)の処理を順次実施し、下記の(D)の処理は実施しなかった。
 下記(A)の処理(ウェット処理)により、DLTS測定用シリコン試料に水素原子が導入された。下記(B)の処理によりシリコン試料の一方の面にショットキー接合を形成し、下記(C)の処理により他方の面にオーミック層(Ga層)を形成することにより、ダイオードを作製した。実施例1~3および比較例2~4では、作製されたダイオードを所定の設定温度に設定されたホットプレート上に60分間配置して下記(D)の加熱処理を施した。上記の複数のDLTS測定用シリコン試料について、下記(D)の加熱処理として異なる加熱温度での加熱処理を施した。下記(D)の加熱処理は、下記(A)の処理後18時間以内に実施した。比較例1では、下記の(D)の処理は実施せず、下記の(A)~(C)の処理を順次実施した。
 (A)フッ硝酸(HNO濃度69質量%の硝酸(硝酸水溶液)とHF濃度50質量%のフッ酸(フッ化水素酸水溶液)との混合溶液)に5分間浸漬した後、10分間水洗
 (B)真空蒸着によるショットキー電極(Au電極)形成
 (C)ガリウム擦込みによる裏面オーミック層形成
 (D)ホットプレート上に配置(加熱処理)
4. Measurement by DLTS Method In Examples 1 to 3 and Comparative Examples 2 to 4, the following processes (A), (B), (C), and (D) were sequentially performed on the silicon sample for DLTS measurement. In Comparative Example 1, the following processes (A) to (C) were sequentially performed on the silicon sample for DLTS measurement, and the following process (D) was not performed.
By the following process (A) (wet process), hydrogen atoms were introduced into the silicon sample for DLTS measurement. A diode was manufactured by forming a Schottky junction on one surface of the silicon sample by the following process (B) and forming an ohmic layer (Ga layer) on the other surface by the following process (C). In Examples 1 to 3 and Comparative Examples 2 to 4, the produced diodes were placed on a hot plate set at a predetermined temperature for 60 minutes and subjected to the following heat treatment (D). The plurality of silicon samples for DLTS measurement were subjected to heat treatment at different heating temperatures as heat treatment (D) below. The heat treatment of the following (D) was performed within 18 hours after the treatment of the following (A). In Comparative Example 1, the following processes (A) to (C) were sequentially performed without performing the following process (D).
(A) immersed in hydrofluoric nitric acid (a mixed solution of nitric acid (aqueous nitric acid solution) having an HNO 3 concentration of 69% by mass and hydrofluoric acid (aqueous hydrofluoric acid solution) having an HF concentration of 50% by mass) for 5 minutes, and then washed with water for 10 minutes ( B) Schottky electrode (Au electrode) formation by vacuum evaporation (C) Backside ohmic layer formation by gallium rubbing (D) Arrangement on hot plate (heat treatment)
 実施例1~3および比較例2~4では上記(D)の処理後のダイオードのショットキー接合に、比較例1では上記(C)の処理後のダイオードのショットキー接合に、シリコン試料の表面から2μmの深さの領域に幅6μmの空乏層を形成する逆方向電圧と空乏層にキャリアを捕獲するためのパルス電圧を交互かつ周期的に印加した。上記電圧に対応して発生するダイオードの容量(キャパシタンス)の過渡応答を測定した。
 上記の電圧印加および容量の測定を、試料温度を所定温度範囲で掃引しながら行った。DLTS信号強度ΔCを温度に対してプロットして、DLTSスペクトルを得た。測定周波数は250Hzとした。
 得られたDLTSスペクトルを、SEMILAB社製プログラムを用いてフィッティング処理(True shape fitting処理)し、Ec-0.15eVのトラップ準位(ピーク位置:温度101K)のDLTSスペクトルに分離した。このピーク位置でのDLTS信号強度から公知の関係式によりトラップ準位密度を求めた。表1に、各加熱処理について求められたトラップ準位密度を示す。
In Examples 1 to 3 and Comparative Examples 2 to 4, the surface of the silicon sample was applied to the diode Schottky junction after the treatment (D), and in Comparative Example 1, to the diode Schottky junction after the treatment (C). And a reverse voltage for forming a depletion layer having a width of 6 μm in a region having a depth of 2 μm and a pulse voltage for capturing carriers in the depletion layer were alternately and periodically applied. The transient response of the capacitance (capacitance) of the diode generated corresponding to the above voltage was measured.
The above-described voltage application and capacitance measurement were performed while sweeping the sample temperature within a predetermined temperature range. DLTS signal strength ΔC was plotted against temperature to obtain a DLTS spectrum. The measurement frequency was 250 Hz.
The obtained DLTS spectrum was subjected to fitting processing (True shape fitting processing) using a program manufactured by SEMILAB, and separated into DLTS spectra having a trap level of Ec-0.15 eV (peak position: temperature 101 K). From the DLTS signal intensity at this peak position, the trap level density was determined by a known relational expression. Table 1 shows the trap level densities obtained for each heat treatment.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~3で求められたトラップ準位密度は、加熱手段を用いる加熱処理を行わなかった比較例1におけるトラップ準位密度Ntの値を上回った。
 一方、加熱手段を用いて80℃を超える加熱温度での加熱処理を行った比較例2~4ではピークが検出されなかったことから、比較例2~4で行われた加熱処理によってトラップ準位が消滅したことが確認できる。
 以上の結果から、実施例1~3で行われた加熱処理によって、トラップ準位密度を高めることができたことが確認できる。トラップ準位密度を高めることができれば、炭素濃度をより高感度で評価することが可能になる。
 炭素濃度評価の一例は、以下の通りである。
 例えば、CZ法において、原料ポリシリコンのグレード、引き上げ装置および育成条件からなる群から選ばれる1つ以上の製造条件を変更して炭素濃度が異なる複数のシリコン単結晶インゴットを作製する。各シリコン単結晶インゴットからから切り出されたシリコン試料について、上記実施例と同様の上記(A)~(D)の処理およびDLTS測定を実施し、Ec-0.10eV、Ec-0.13eVおよびEc-0.15eVからなる群から選ばれる1つ以上のトラップ準位について、ピーク位置でのDLTS信号強度を求める。こうして求められるDLTS信号強度の値が大きいほど炭素濃度が高いと判定する相対的な判定基準によって、シリコン試料の炭素濃度を評価することができる。
 または、例えば、上記実施例と同様の上記(A)~(D)の処理およびDLTS測定を、炭素濃度が異なる複数のシリコン試料について実施する。こうして求められるトラップ準位密度を、上記の炭素濃度が異なる複数のシリコン試料のそれぞれと同じシリコン単結晶インゴットから切り出されたシリコン試料のSIMS法により求められた炭素濃度に対してプロットすることにより、検量線を作成することができる。こうして作成される検量線は、炭素濃度が未知のシリコン試料の炭素濃度を評価するために用いることができる。
 上記実施例では、炭素濃度の評価において、トラップ準位としてEc-0.15eVのトラップ準位を用いたが、特許文献1(特開2017-191800号公報)に記載されているように、Ec-0.10eVおよびEc-0.13eVのトラップ準位も、炭素濃度評価のために用いることができる。
The trap level densities obtained in Examples 1 to 3 exceeded the value of the trap level density Nt in Comparative Example 1 in which the heat treatment using the heating means was not performed.
On the other hand, no peak was detected in Comparative Examples 2 to 4 in which the heating process was performed at a heating temperature exceeding 80 ° C. using the heating means. Can be confirmed to have disappeared.
From the above results, it can be confirmed that the heat treatment performed in Examples 1 to 3 can increase the trap state density. If the trap level density can be increased, the carbon concentration can be evaluated with higher sensitivity.
An example of the carbon concentration evaluation is as follows.
For example, in the CZ method, a plurality of silicon single crystal ingots having different carbon concentrations are manufactured by changing at least one manufacturing condition selected from the group consisting of a raw material polysilicon grade, a pulling device, and a growing condition. The silicon samples cut out from each silicon single crystal ingot were subjected to the above-described processes (A) to (D) and DLTS measurement similar to those in the above-described embodiment, and Ec-0.10 eV, Ec-0.13 eV and Ec For one or more trap levels selected from the group consisting of -0.15 eV, the DLTS signal strength at the peak position is determined. The carbon concentration of the silicon sample can be evaluated by a relative criterion for determining that the larger the value of the DLTS signal strength thus obtained is, the higher the carbon concentration is.
Alternatively, for example, the processes (A) to (D) and the DLTS measurement similar to those in the above embodiment are performed on a plurality of silicon samples having different carbon concentrations. By plotting the trap level density determined in this way with respect to the carbon concentration determined by SIMS of a silicon sample cut out from the same silicon single crystal ingot as each of the plurality of silicon samples having different carbon concentrations, A calibration curve can be created. The calibration curve thus created can be used to evaluate the carbon concentration of a silicon sample whose carbon concentration is unknown.
In the above embodiment, a trap level of Ec-0.15 eV was used as a trap level in the evaluation of the carbon concentration. However, as described in Patent Document 1 (Japanese Patent Application Laid-Open No. 2017-191800), Ec Trap levels of −0.10 eV and Ec−0.13 eV can also be used for carbon concentration evaluation.
 本発明は、シリコン単結晶インゴットおよびシリコンウェーハの技術分野において有用である。 The present invention is useful in the technical field of silicon single crystal ingots and silicon wafers.

Claims (12)

  1. 評価対象シリコン試料に水素原子を導入すること、
    前記水素原子が導入された評価対象シリコン試料を、シリコンのバンドギャップ中のトラップ準位を評価する評価法による評価に付すこと、および
    前記評価により得られた評価結果の中で、Ec-0.10eV、Ec-0.13eVおよびEc-0.15eVからなる群から選ばれる少なくとも1つのトラップ準位の密度に関する評価結果に基づき、前記評価対象シリコン試料の炭素濃度を評価すること、
    を含み、
    前記水素原子の導入から前記評価までの間に、評価対象シリコン試料を加熱手段を用いて35℃~80℃の範囲の加熱温度に加熱する加熱処理を行うことを更に含む、シリコン試料の炭素濃度評価方法。
    Introducing hydrogen atoms into the silicon sample to be evaluated,
    The evaluation target silicon sample into which the hydrogen atoms have been introduced is subjected to evaluation by an evaluation method for evaluating a trap level in the band gap of silicon, and among the evaluation results obtained by the evaluation, Ec-0. Evaluating the carbon concentration of the silicon sample to be evaluated based on the evaluation result regarding the density of at least one trap level selected from the group consisting of 10 eV, Ec-0.13 eV, and Ec-0.15 eV;
    Including
    Further comprising performing a heat treatment of heating the silicon sample to be evaluated to a heating temperature in a range of 35 ° C. to 80 ° C. using a heating means between the introduction of the hydrogen atoms and the evaluation; Evaluation method.
  2. 前記水素原子が導入された評価対象シリコン試料を、電子線照射処理を行うことなく、前記評価に付す、請求項1に記載のシリコン試料の炭素濃度評価方法。 2. The method for evaluating a carbon concentration of a silicon sample according to claim 1, wherein the evaluation target silicon sample into which the hydrogen atoms have been introduced is subjected to the evaluation without performing an electron beam irradiation process.
  3. 前記評価対象シリコン試料の炭素濃度の評価を、前記評価により得られた評価結果の中で、Ec-0.15eVのトラップ準位の密度に関する評価結果に基づいて行う、請求項1または2に記載のシリコン試料の炭素濃度評価方法。 3. The evaluation according to claim 1, wherein the evaluation of the carbon concentration of the silicon sample to be evaluated is performed based on an evaluation result regarding a trap level density of Ec−0.15 eV among evaluation results obtained by the evaluation. Method for evaluating carbon concentration of silicon sample.
  4. 前記水素原子の導入を、評価対象シリコン試料を溶液に浸漬することにより行う、請求項1~3のいずれか1項に記載のシリコン試料の炭素濃度評価方法。 4. The method for evaluating a carbon concentration of a silicon sample according to claim 1, wherein the introduction of the hydrogen atoms is performed by immersing the silicon sample to be evaluated in a solution.
  5. 前記溶液はHFを含む溶液である、請求項4に記載のシリコン試料の炭素濃度評価方法。 The method according to claim 4, wherein the solution is a solution containing HF.
  6. 前記評価法はDLTS法である、請求項1~5のいずれか1項に記載のシリコン試料の炭素濃度評価方法。 The method for evaluating carbon concentration of a silicon sample according to any one of claims 1 to 5, wherein the evaluation method is a DLTS method.
  7. 前記DLTS法による評価の前に、前記水素原子が導入された評価対象シリコン試料に半導体接合およびオーミック層を形成することによりダイオードを作製し、前記作製されたダイオードを前記DLTS法による評価に付す、請求項6に記載のシリコン試料の炭素濃度評価方法。 Before the evaluation by the DLTS method, a diode is manufactured by forming a semiconductor junction and an ohmic layer on the silicon sample to be evaluated in which the hydrogen atoms are introduced, and the manufactured diode is subjected to the evaluation by the DLTS method. The method for evaluating the carbon concentration of a silicon sample according to claim 6.
  8. 前記加熱処理を、前記ダイオードの作製前または後に行う、請求項7に記載のシリコン試料の炭素濃度評価方法。 The method for evaluating the carbon concentration of a silicon sample according to claim 7, wherein the heat treatment is performed before or after manufacturing the diode.
  9. 前記水素原子の導入から18時間以内に、前記加熱処理を行う、請求項1~8のいずれか1項に記載のシリコン試料の炭素濃度評価方法。 9. The method for evaluating the carbon concentration of a silicon sample according to claim 1, wherein the heat treatment is performed within 18 hours from the introduction of the hydrogen atoms.
  10. 評価対象のシリコンウェーハ製造工程において製造されたシリコンウェーハの炭素濃度を請求項1~9のいずれか1項に記載の方法により評価すること、および
    前記評価の結果に基づき評価対象のシリコンウェーハ製造工程における炭素汚染の程度を評価すること、
    を含む、シリコンウェーハ製造工程の評価方法。
    10. A method for evaluating the carbon concentration of a silicon wafer manufactured in a silicon wafer manufacturing process to be evaluated by the method according to any one of claims 1 to 9, and a silicon wafer manufacturing process to be evaluated based on a result of the evaluation. Assessing the extent of carbon contamination in
    And a method for evaluating a silicon wafer manufacturing process.
  11. 請求項10に記載の評価方法によりシリコンウェーハ製造工程の評価を行うこと、および
    前記評価の結果、炭素汚染の程度が許容レベルと判定されたシリコンウェーハ製造工程において、または、前記評価の結果、炭素汚染の程度が許容レベルを超えると判定されたシリコンウェーハ製造工程に炭素汚染低減処理を施した後に該シリコンウェーハ製造工程において、シリコンウェーハを製造すること、
    を含む、シリコンウェーハの製造方法。
    An evaluation of the silicon wafer manufacturing process by the evaluation method according to claim 10, and in the silicon wafer manufacturing process in which the degree of carbon contamination is determined to be an allowable level as a result of the evaluation, or as a result of the evaluation, After performing a carbon contamination reduction process on the silicon wafer manufacturing process determined that the degree of contamination exceeds the allowable level, in the silicon wafer manufacturing process, manufacturing a silicon wafer,
    A method for manufacturing a silicon wafer, comprising:
  12. シリコン単結晶インゴットを育成すること、
    前記シリコン単結晶インゴットから切り出されたシリコン試料の炭素濃度を、請求項1~9のいずれか1項に記載の方法により評価すること、
    前記評価の結果に基づき、シリコン単結晶インゴットの製造条件を決定すること、および、
    決定された製造条件下でシリコン単結晶インゴットを育成すること、
    を含む、シリコン単結晶インゴットの製造方法。
     
    Growing silicon single crystal ingots,
    Evaluating the carbon concentration of a silicon sample cut from the silicon single crystal ingot by the method according to any one of claims 1 to 9;
    Based on the result of the evaluation, determining the production conditions of the silicon single crystal ingot, and,
    Growing a silicon single crystal ingot under determined manufacturing conditions,
    A method for producing a silicon single crystal ingot, comprising:
PCT/JP2019/034035 2018-09-03 2019-08-30 Evaluation method of carbon concentration in silicon sample, evaluation method of silicon wafer manufacturing process, manufacturing method of silicon wafers, and manufacturing process of silicon single crystal ingot WO2020050146A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980057209.2A CN112640070B (en) 2018-09-03 2019-08-30 Method for evaluating carbon concentration of silicon sample, method for evaluating silicon wafer production process, method for producing silicon wafer, and method for producing silicon single crystal ingot
KR1020217008292A KR102513721B1 (en) 2018-09-03 2019-08-30 Carbon concentration evaluation method of silicon sample, silicon wafer manufacturing process evaluation method, silicon wafer manufacturing method, and silicon single crystal ingot manufacturing method
DE112019004412.5T DE112019004412T5 (en) 2018-09-03 2019-08-30 Method for evaluating the carbon concentration of a silicon sample, method for evaluating the silicon wafer manufacturing process, method for manufacturing a silicon wafer and method for manufacturing a silicon single crystal ingot

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-164533 2018-09-03
JP2018164533A JP6645546B1 (en) 2018-09-03 2018-09-03 Method for evaluating carbon concentration of silicon sample, method for evaluating silicon wafer manufacturing process, method for manufacturing silicon wafer, and method for manufacturing silicon single crystal ingot

Publications (1)

Publication Number Publication Date
WO2020050146A1 true WO2020050146A1 (en) 2020-03-12

Family

ID=69568207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034035 WO2020050146A1 (en) 2018-09-03 2019-08-30 Evaluation method of carbon concentration in silicon sample, evaluation method of silicon wafer manufacturing process, manufacturing method of silicon wafers, and manufacturing process of silicon single crystal ingot

Country Status (6)

Country Link
JP (1) JP6645546B1 (en)
KR (1) KR102513721B1 (en)
CN (1) CN112640070B (en)
DE (1) DE112019004412T5 (en)
TW (1) TWI716091B (en)
WO (1) WO2020050146A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021199126A1 (en) * 2020-03-30 2021-10-07 三菱電機株式会社 Method for measuring carbon concentration of silicon substrate
JP7363762B2 (en) 2020-12-28 2023-10-18 株式会社Sumco Method for evaluating carbon concentration of silicon sample, method for evaluating silicon wafer manufacturing process, method for manufacturing silicon wafer, and method for manufacturing silicon single crystal ingot
JP7447786B2 (en) 2020-12-28 2024-03-12 株式会社Sumco Method for evaluating carbon concentration of silicon sample, method for evaluating silicon wafer manufacturing process, method for manufacturing silicon wafer, and method for manufacturing silicon single crystal ingot

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016082170A (en) * 2014-10-21 2016-05-16 信越半導体株式会社 Electrode forming method and electrode structure
JP2017191800A (en) * 2016-04-11 2017-10-19 株式会社Sumco Method for measuring carbon concentration of silicon sample, method for manufacturing silicon single crystal ingot, silicon single crystal ingot, and silicon wafer
JP2018041755A (en) * 2016-09-05 2018-03-15 株式会社Sumco Deterioration evaluation method and method of manufacturing silicon material
JP2018095526A (en) * 2016-12-15 2018-06-21 信越半導体株式会社 Carbon concentration measuring method for silicon crystal

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6075307B2 (en) * 2014-02-20 2017-02-08 信越半導体株式会社 Method for evaluating carbon concentration in silicon single crystal and method for manufacturing semiconductor device
CN104120491A (en) * 2014-08-14 2014-10-29 无锡尚品太阳能电力科技有限公司 Manufacturing process of polycrystalline silicon cast ingot
DE102014116666B4 (en) * 2014-11-14 2022-04-21 Infineon Technologies Ag A method of forming a semiconductor device
JP6631498B2 (en) * 2016-12-26 2020-01-15 株式会社Sumco Method of evaluating silicon material manufacturing process and method of manufacturing silicon material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016082170A (en) * 2014-10-21 2016-05-16 信越半導体株式会社 Electrode forming method and electrode structure
JP2017191800A (en) * 2016-04-11 2017-10-19 株式会社Sumco Method for measuring carbon concentration of silicon sample, method for manufacturing silicon single crystal ingot, silicon single crystal ingot, and silicon wafer
JP2018041755A (en) * 2016-09-05 2018-03-15 株式会社Sumco Deterioration evaluation method and method of manufacturing silicon material
JP2018095526A (en) * 2016-12-15 2018-06-21 信越半導体株式会社 Carbon concentration measuring method for silicon crystal

Also Published As

Publication number Publication date
TW202016370A (en) 2020-05-01
CN112640070A (en) 2021-04-09
KR20210043683A (en) 2021-04-21
DE112019004412T5 (en) 2021-07-15
TWI716091B (en) 2021-01-11
KR102513721B1 (en) 2023-03-23
JP6645546B1 (en) 2020-02-14
CN112640070B (en) 2024-02-09
JP2020038874A (en) 2020-03-12

Similar Documents

Publication Publication Date Title
CN108886005B (en) Method for measuring carbon concentration of silicon sample, method for producing silicon single crystal ingot, and silicon wafer
WO2020050146A1 (en) Evaluation method of carbon concentration in silicon sample, evaluation method of silicon wafer manufacturing process, manufacturing method of silicon wafers, and manufacturing process of silicon single crystal ingot
US11047800B2 (en) Method of evaluating carbon concentration of silicon sample, method of evaluating silicon wafer manufacturing process, method of manufacturing silicon wafer, method of manufacturing silicon single crystal ingot, silicon single crystal ingot and silicon wafer
JP6729445B2 (en) Method for evaluating carbon concentration of silicon sample, method for evaluating silicon wafer manufacturing process, method for manufacturing silicon wafer, and method for manufacturing silicon single crystal ingot
JP5621612B2 (en) Silicon single crystal inspection method and manufacturing method
TWI614808B (en) Process for the production of high precipitate density wafers by activation of inactive oxygen precipitate nuclei
JP6645545B1 (en) Method for evaluating carbon concentration of silicon sample, method for evaluating silicon wafer manufacturing process, method for manufacturing silicon wafer, and method for manufacturing silicon single crystal ingot
JP2003086597A (en) Silicon semiconductor substrate and method for manufacturing the same
JP7413992B2 (en) Method for evaluating carbon concentration of silicon sample, method for evaluating silicon wafer manufacturing process, method for manufacturing silicon wafer, and method for manufacturing silicon single crystal ingot
JP7363762B2 (en) Method for evaluating carbon concentration of silicon sample, method for evaluating silicon wafer manufacturing process, method for manufacturing silicon wafer, and method for manufacturing silicon single crystal ingot
JP7447786B2 (en) Method for evaluating carbon concentration of silicon sample, method for evaluating silicon wafer manufacturing process, method for manufacturing silicon wafer, and method for manufacturing silicon single crystal ingot
JP2023091219A (en) Method of evaluating carbon concentration of silicon sample, method of evaluating silicon wafer manufacturing process, method of manufacturing silicon wafer, and method of manufacturing silicon single crystal ingot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19858378

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217008292

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19858378

Country of ref document: EP

Kind code of ref document: A1