WO2020048551A1 - 一种空调器 - Google Patents

一种空调器 Download PDF

Info

Publication number
WO2020048551A1
WO2020048551A1 PCT/CN2019/112036 CN2019112036W WO2020048551A1 WO 2020048551 A1 WO2020048551 A1 WO 2020048551A1 CN 2019112036 W CN2019112036 W CN 2019112036W WO 2020048551 A1 WO2020048551 A1 WO 2020048551A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
air conditioner
valve
heat exchanger
preset value
Prior art date
Application number
PCT/CN2019/112036
Other languages
English (en)
French (fr)
Inventor
李丛来
辛电波
王战术
Original Assignee
青岛海信日立空调***有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信日立空调***有限公司 filed Critical 青岛海信日立空调***有限公司
Publication of WO2020048551A1 publication Critical patent/WO2020048551A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/28Means for preventing liquid refrigerant entering into the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present application belongs to the technical field of air conditioners, and particularly relates to an air conditioner that supplements air and increases enthalpy.
  • the operation principle of the refrigeration system for supplementing air and increasing enthalpy in the field of air conditioners is as follows:
  • the air conditioner mainly consists of four basic components: a compressor, a condenser, an evaporator, and an expansion valve.
  • the air-enriched and enthalpy-added air-conditioning system refers to an air-conditioning system formed by replacing a common compressor in a conventional air-conditioning system with a compressor having an air-enriched and enthalpy-added function, and adding an air-enriched circuit to the main circuit.
  • An embodiment of the present application provides an air conditioner including a compressor having an intermediate cavity; an auxiliary heat exchanger; a gas-liquid separator; the auxiliary heat exchanger communicates with an intermediate cavity of the compressor through an air supplement valve, and the air supplement
  • the valve is used to open the communication between the auxiliary heat exchanger and the intermediate cavity of the compressor when the preset air supply condition is satisfied; when the preset air supply condition is not satisfied, close the middle of the auxiliary heat exchanger and the compressor
  • the auxiliary heat exchanger communicates with the gas-liquid separator through a drain valve, and the drain valve is used to open the auxiliary heat exchanger and the gas-liquid separator when the preset supplemental gas conditions are not met. Communication; when the preset gas supply conditions are met, the communication between the auxiliary heat exchanger and the gas-liquid separator is turned off.
  • An embodiment of the present application provides an air conditioner.
  • the auxiliary heat exchanger includes a first channel and a second channel communicated through an external pipe, and a refrigerant flow control is provided on an external pipe connected to the first channel and the second channel. Device.
  • An embodiment of the present application provides an air conditioner including a plurality of compressors connected in parallel.
  • An embodiment of the present application provides an air conditioner configured to control opening and closing of the make-up valve and the relief valve according to an exhaust pressure and an intake pressure of the compressor.
  • An embodiment of the present application provides an air conditioner.
  • the air conditioner When the air conditioner is configured in a cooling mode, when the discharge pressure of the compressor is less than or equal to a first preset value and the suction pressure of the compressor is less than or equal to a second preset value At this time, the make-up valve is opened and the drain valve is closed; when the discharge pressure of the compressor is greater than the first preset value or the compressor's suction pressure is greater than the second preset value, the drain valve is opened and the make-up valve shut down.
  • An embodiment of the present application provides an air conditioner.
  • the air conditioner is configured in a heating mode.
  • the discharge pressure of the compressor is less than or equal to a third preset value
  • the suction pressure of the compressor is greater than or equal to the third preset value.
  • the make-up valve is opened and the drain valve is closed; when the exhaust pressure of the compressor is greater than the third preset value, or the compressor's suction pressure is greater than the fourth
  • the drain valve is opened and the make-up valve is closed.
  • An embodiment of the present application provides an air conditioner, and a range of a first preset value is 3.2 MPa to 3.4 MPa.
  • An embodiment of the present application provides an air conditioner, and a range of a second preset value is 0.7 MPa to 0.9 MPa.
  • An embodiment of the present application provides an air conditioner, and a third preset value ranges from 2.7 MPa to 2.9 MPa.
  • An embodiment of the present application provides an air conditioner, and a range of a fourth preset value is 0.7 MPa to 0.9 MPa.
  • An embodiment of the present application provides an air conditioner, and a fifth preset value ranges from 0.6 MPa to 0.62 MPa.
  • An embodiment of the present application provides an air conditioner configured such that an opening degree of a refrigerant flow controller is not less than a first flow set value before the supplementary valve or the drain valve is opened.
  • An embodiment of the present application provides an air conditioner, and a range of a first flow setting value is 60 pls to 100 pls.
  • An embodiment of the present application provides an air conditioner including a plurality of compressors.
  • the air conditioner is configured to reduce an exhaust temperature difference of a compressor unit by adjusting an opening degree of a refrigerant flow controller after a supplementary gas valve is opened.
  • An embodiment of the present application provides an air conditioner.
  • the air conditioner is configured to adjust a refrigerant flow rate when a difference between exhaust gas temperatures of at least two compressors is not lower than a preset temperature difference after a supplementary gas valve is opened.
  • the opening of the controller reduces the temperature difference of the exhaust of the compressor unit.
  • An embodiment of the present application provides an air conditioner, and the preset temperature difference ranges from 8 to 11 ° C.
  • An embodiment of the present application provides a refrigeration system for supplementing air and increasing enthalpy, including a compressor unit having an intermediate cavity, an auxiliary heat exchanger having a plurality of ports, and a gas-liquid separator.
  • One port of the auxiliary heat exchanger is connected to
  • An air supply valve is provided between the intermediate cavity of the compressor unit and the gas-liquid separator, the auxiliary heat exchanger and the compressor, and a drain valve is provided between the auxiliary heat exchanger and the gas-liquid separator.
  • the auxiliary heat exchanger includes a first channel and a second channel that are communicated through an external pipe, and an electronic expansion valve is disposed on an external pipe that is in communication with the second channel.
  • the compressor group includes two compressors connected in parallel.
  • the present application also provides an air conditioner including the refrigeration system for supplementing air and increasing enthalpy.
  • the present application also provides a method for controlling an air conditioner, which includes: controlling the opening and closing of a make-up valve and a relief valve according to a compressor exhaust pressure Pd and an intake pressure Ps in a compressor group.
  • the steps of controlling the opening and closing of the make-up valve and the relief valve according to the compressor discharge pressure Pd and the suction pressure Ps in the compressor group are specifically:
  • b, p, c, and f are set values, the range of b is 2.7 MPa to 2.9 MPa, the range of c is 0.7 MPa to 0.9 MPa, and the range of p is 0.6 MPa to 0.62 MPa.
  • the value of f ranges from 3.2 MPa to 3.4 MPa.
  • the steps of controlling the opening and closing of the make-up valve and the relief valve according to the compressor discharge pressure Pd and the suction pressure Ps include the following steps:
  • the opening degree of the control electronic expansion valve is not less than the set value A;
  • the value of A ranges from 60 pls to 100 pls.
  • the steps of controlling the opening and closing of the make-up valve and the relief valve according to the compressor exhaust pressure Pd and the suction pressure Ps in the compressor group specifically include the following steps:
  • the supplemental gas valve After the supplemental gas valve is opened, it is detected whether there are multiple supplemental gas valves opened. If so, the temperature difference of the compressor exhaust gas is reduced by adjusting the opening degree of the electronic expansion valve; otherwise, the test is ended.
  • the steps of controlling the opening and closing of the make-up valve and the relief valve according to the compressor exhaust pressure Pd and the suction pressure Ps in the compressor group specifically include the following steps:
  • the opening degree of the electronic expansion valve By adjusting the opening degree of the electronic expansion valve, the temperature difference of the compressor exhaust is reduced, specifically: detecting whether the difference of the exhaust temperature is not lower than the set value T, and if so, adjusting the opening degree of the electronic expansion valve by a value ⁇ EVB , ⁇ EVB is obtained according to the calculation formula; otherwise, the opening degree of the electronic expansion valve remains unchanged;
  • ⁇ EVB -EVB ( n-1) / K, K ranges from 2 to 3.
  • FIG. 1 is a schematic structural diagram of a refrigeration system that supplements air and increases enthalpy provided by some embodiments of the present application;
  • FIG. 2 is a flowchart of a method for controlling an air conditioner provided by some embodiments of the present application
  • FIG. 3 is a schematic diagram of a circuit when a refrigerant is injected to a compressor in a cooling mode provided by some embodiments of the present application;
  • FIG. 4 is a schematic diagram of a circuit when a refrigerant is injected into a gas-liquid separator in a cooling mode provided by some embodiments of the present application;
  • FIG. 5 is a schematic diagram of a circuit when a refrigerant is injected into a compressor in a heating mode provided by some embodiments of the present application;
  • FIG. 6 is a schematic diagram of a circuit when a refrigerant is injected into a gas-liquid separator in a heating mode provided by some embodiments of the present application;
  • Refrigeration systems with supplemental air and enthalpy mostly spray refrigerant from the auxiliary heat exchanger to the middle cavity of the compressor, increasing the enthalpy difference and improving energy efficiency.
  • the indoor heat load of the air-cooled multi-connected air-conditioning unit is suddenly greatly reduced, the frequency of the compressor is reduced, and the refrigerant injected into the compressor circuit cannot be evaporated to an overheated state in the auxiliary heat exchanger.
  • Refrigerant is injected into the middle cavity of the compressor, which will cause liquid hammer, which will damage the compressor.
  • the air pressure from the compressor to the compressor will increase the system pressure ratio.
  • the refrigerant injected by the compressor will exceed the compressor's operating range and affect the performance of the compressor.
  • FIG. 1 is an air conditioner provided by some embodiments of the present application.
  • the refrigeration system of the air conditioner uses the technology of supplementing air and increasing enthalpy.
  • the air conditioner includes an indoor unit and an outdoor unit.
  • An indoor heat exchanger 11 is provided in the indoor unit.
  • the refrigeration system is connected by a gas-liquid separator 1, a compressor 2, an oil separator 3, a one-way valve 4, a four-way reversing valve 5, an outdoor heat exchanger 6, an auxiliary heat exchanger 7, and an indoor heat exchanger 11. It is used for the circulation of the refrigerant, and then realizes the heating mode for heating the room and the cooling mode for cooling the room.
  • the auxiliary heat exchanger 7 may be a plate heat exchanger.
  • the auxiliary heat exchanger 7 includes a first channel and a second channel, and the first channel connects the outdoor heat exchanger 6 and the indoor heat exchanger 11 to form a refrigerant main circulation circuit; the second channel of the first channel of the auxiliary heat exchanger 7
  • a refrigerant flow control device 8 is provided on a channel where the port a2 is connected to the first port b1 of the second channel.
  • the second port b2 from the second channel of the auxiliary heat exchanger 7 communicates with the intermediate cavity of the compressor 2 and the gas-liquid separator 1, respectively.
  • a supplementary valve 9 is provided on the channel between the second port b2 and the compressor 2.
  • a drain valve 10 is provided on the channel between the two port b2 and the gas-liquid separator 1.
  • the refrigerant flow control device 8 is an electronic expansion valve.
  • a parallel injection circuit is formed between the auxiliary heat exchanger 7 and the compressor 2 and the gas-liquid separator 1.
  • the refrigerant flow control device 8 is used to control the on and off of the injection circuit and control the inflow of refrigerant.
  • the make-up valve 9 is used to control the opening or closing of the circuit injected to the compressor 2, and the drain valve 10 is used to control the opening or closing of the circuit injected to the gas-liquid separator 1. By controlling the opening and closing of the make-up valve 9 and the drain valve 10, the refrigerant can be selected to be injected into the compressor 2 or the gas-liquid separator 1.
  • the gas-liquid separator 1 By providing a parallel injection circuit between the auxiliary heat exchanger 7 and the compressor 2 and the gas-liquid separator 1, when the refrigerant is injected into the compressor 2 and the performance of the compressor 2 is affected, the gas-liquid separator 1 can be injected. .
  • refrigerant is injected to gas-liquid separator 1 to unload the system pressure and place the system under a small thermal load in the room
  • Excess refrigerant is stored in the gas-liquid separator 1; and injection into the gas-liquid separator 1 circuit can also reduce the superheat of intake air, increase the mass flow rate of the circulating refrigerant, and increase the subcooling of the refrigerant in the main circuit and increase Refrigeration performance.
  • the system includes two compressors 2 connected in parallel.
  • the suction ports of the compressor 2 are connected to the gas-liquid separator 1 respectively, and the exhaust ports of the compressor 2 are sequentially
  • Each is connected to the oil separator 3 and the inlet of the one-way valve 4.
  • the outlets of the two one-way valves 4 communicate with the same port of the four-way reversing valve 5, from the middle cavity of each compressor 2 to the injection channel of the auxiliary heat exchanger 7. Both are provided with supplemental gas valve 9.
  • the make-up valve 9 and the relief valve 10 in some embodiments of the present application may be solenoid valves or electronic expansion valves.
  • the air conditioner provided in this application includes the above-mentioned refrigeration system for supplementing air and increasing enthalpy.
  • certain embodiments of the present application further provide a control method for an air conditioner.
  • the pressure in the cooling mode, if the refrigerant is injected into the compressor 2 when the discharge pressure of the compressor 2 is high, the pressure may be further increased, and the frequency of the compressor 2 may be reduced, which affects the cooling capacity; When the discharge pressure of the compressor 2 is not high, the refrigerant is injected into the compressor 2 to improve the cooling capacity;
  • the refrigerant in the heating mode if it is at the threshold of the defrost operation condition, that is, when the suction pressure of the compressor 2 is not high, the refrigerant is sprayed to the compressor 2 to further reduce the suction pressure and cause heat exchange.
  • the device is frosted and its capacity is attenuated.
  • the injection of the gas-liquid separator 1 can increase the suction pressure. If the air-conditioning unit's suction pressure is high, it is injected into compressor 2. At low temperatures, the refrigerant in the injection circuit absorbs the heat of the refrigerant entering the evaporator, so that the specific enthalpy of the refrigerant injected into compressor 2 increases and enters the evaporation.
  • the specific enthalpy of the refrigerant in the evaporator is reduced, which can increase the exhaust enthalpy and refrigerant flow, and increase the enthalpy difference between the inlet and outlet of the evaporator, so that the outdoor evaporator can absorb more heat from the air and improve heating. ability.
  • the air conditioner control method includes: controlling the opening and closing of the make-up valve 9 and the relief valve 10 according to the exhaust pressure Pd and the suction pressure Ps of the compressor 2.
  • control method of the air conditioner is implemented as follows:
  • A is the first flow setting value
  • b is the third preset value
  • c1 is the second preset value
  • c2 is the fourth preset value
  • f is the first preset value
  • p is the fifth preset value.
  • c1 c22, that is, the second preset value is equal to the fourth preset value.
  • the electronic expansion valve EVB8 is a direct-acting valve, and the value of A ranges from 60 to 100 pls.
  • the value of b ranges from 2.7 MPa to 2.9 MPa
  • the value of c1 and c2 ranges from 0.7 MPa to 0.9 MPa
  • the value of p ranges from 0.6 MPa to 0.62 MPa
  • the value of f The range is 3.2MPa ⁇ 3.4MPa. According to the above range of values, not only can liquid strikes be avoided, but system performance and reliability can be optimized.
  • FIG. 3 a schematic diagram of a circuit when a refrigerant is injected to a compressor in a cooling mode.
  • the detection of the exhaust pressure Pd and the suction pressure Ps meets the set conditions then the make-up valve SVJ9 is opened, the relief valve SVS10 is closed, and the refrigerant is injected into the middle cavity of the compressor 2, increasing the refrigerant circulation amount and improving Cooling capacity.
  • the make-up valve SVJ9 is opened, the relief valve SVS10 is closed, and the refrigerant is injected into the middle cavity of the compressor 2, increasing the refrigerant circulation amount and improving Cooling capacity.
  • the corresponding refrigerant circulation circuit is as follows: after the refrigerant is compressed by the compressor 2, it passes through the oil separator 3, the check valve 4, the four-way switching valve 5, and the outdoor heat exchanger 6 to reach After the auxiliary heat exchanger 7 is divided into two, one of them passes through the electronic expansion valve 8 to be throttled and decompressed, and then flows back to the auxiliary heat exchanger 7 to cool the main circuit refrigerant, and then is injected to the compressor 2 through the open supplemental valve SVJ9. The refrigerant in the main circuit is sub-cooled and then circulated by returning to the compressor 2 after passing through the indoor heat exchanger 11, the four-way reversing valve 5, and the gas-liquid separator 1.
  • the corresponding refrigerant circulation circuit is as follows: after the refrigerant is compressed by the compressor 2, it passes through the oil separator 3, the check valve 4, the four-way switching valve 5, and the outdoor heat exchanger 6 to reach After the auxiliary heat exchanger 7, it is divided into two. One of them passes through the electronic expansion valve 8 to reduce the pressure and then flows back to the auxiliary heat exchanger 7 to cool the main refrigerant. In the compressor 1, the refrigerant in the main circuit is subcooled, passes through the indoor heat exchanger 11, the four-way reversing valve 5, and the gas-liquid separator 1, and then returns to the compressor 2 to perform circulation.
  • FIG. 5 a schematic diagram of a circuit when a refrigerant is injected into a compressor in a heating mode.
  • the heating mode if the detected exhaust pressure Pd and the suction pressure Ps meet the set conditions, the make-up valve SVJ9 is opened, the relief valve SVS10 is closed, and the refrigerant is injected into the middle cavity of the compressor 2.
  • the heat of the refrigerant in the outdoor heat exchanger 6 increases the specific enthalpy of the refrigerant injected into the compressor 2 and decreases the specific enthalpy of the refrigerant entering the outdoor heat exchanger 6, increasing the exhaust enthalpy and the refrigerant flow rate.
  • the enthalpy difference between the inlet and outlet of the outdoor heat exchanger 6 can be increased, so that the outdoor heat exchanger 6 can absorb more heat from the air.
  • the low-temperature refrigerant is injected into the middle cavity of the compressor 2, which can effectively reduce the compressor 2 rows. Air temperature, increase compressor 2 speed, increase refrigerant circulation flow. Referring to FIG.
  • the corresponding refrigerant circulation circuit is as follows: after the refrigerant is compressed by the compressor 2, it passes through the oil separator 3, the check valve 4, the four-way switching valve 5, and the indoor heat exchanger 11 to reach After the auxiliary heat exchanger 7 is divided into two, one of them passes through the electronic expansion valve 8 to be throttled and decompressed, and then flows back to the auxiliary heat exchanger 7 to cool the main circuit refrigerant, and then is injected to the compressor 2 through the open supplemental valve SVJ9. The refrigerant in the main circuit is subcooled, and then circulates by going back to the compressor 2 after passing through the outdoor heat exchanger 6, the four-way reversing valve 5, and the gas-liquid separator 1.
  • FIG. 6 a schematic diagram of a circuit when a refrigerant is injected into a gas-liquid separator in a heating mode.
  • the heating mode if the detected exhaust pressure Pd and suction pressure Ps do not meet the set conditions, the relief valve SVS10 is opened, the supplemental valve SVJ9 is closed, and the refrigerant is injected into the gas-liquid separator 1, which can increase the low-pressure pressure. Preventing the injection to the compressor 2 causes the compressor 2's capacity to be severely attenuated.
  • the corresponding refrigerant circulation circuit is as follows: after the refrigerant is compressed by the compressor 2, it passes through the oil separator 3, the check valve 4, the four-way switching valve 5, and the indoor heat exchanger 11 to reach After the auxiliary heat exchanger 7, it is divided into two. One of them passes through the electronic expansion valve 8 to reduce the pressure and then flows back to the auxiliary heat exchanger 7 to cool the main refrigerant. Then it is injected to the gas-liquid separation through the opened relief valve SVS10. In the compressor 1, the refrigerant in the main circuit is subcooled, passes through the outdoor heat exchanger 6, the four-way reversing valve 5, and the gas-liquid separator 1, and then returns to the compressor 2 to perform circulation.
  • the air conditioner control method includes: reducing the temperature difference by adjusting the opening degree of the electronic expansion valve EVB8.
  • the method when the heating mode air supply valve SVJ9 is opened, the method includes: two air supply valves SVJ9 are opened at the same time, and the exhaust of the compressor 2 is detected Temperature and calculate whether the temperature difference
  • the air conditioner, refrigeration system and air conditioner control method design a dual injection circuit of the refrigerant to be injected into the compressor or the gas-liquid separator after the auxiliary heat exchanger is designed. It can be injected into the gas-liquid separator to realize the leakage of the refrigerant without affecting the performance of the compressor. At the same time, it can use the subcooling of the refrigerant to optimize the system performance and reliability.
  • the suction pressure and discharge pressure of the compressor By detecting the suction pressure and discharge pressure of the compressor to control the opening and closing of the make-up valve and the relief valve, that is, to control whether the refrigerant is injected into the compressor or the gas-liquid separator according to the suction pressure and the discharge pressure, it can It can effectively avoid the compressor capacity degradation caused by the liquid strike and the defrost working condition when the suction pressure is not high, and at the same time can improve the cooling and heating capacity of the system.
  • the opening degree of the electronic expansion valve By adjusting the opening degree of the electronic expansion valve to effectively control the problem of large exhaust temperature difference caused by imbalance of supplementary air when multiple compressors are working at the same time, the system can exert better capabilities.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调器,包括压缩机(2),具有中间腔;辅助换热器(7);气液分离器(1);该辅助换热器(7)通过补气阀(9)与该压缩机(2)的中间腔连通,该辅助换热器(7)通过泄流阀(10)与该气液分离器(1)连通,并根据是否满足预设的补气条件,控制补气阀(9)和泄流阀(10)的开闭。

Description

一种空调器 技术领域
本申请属于空调器技术领域,尤其涉及一种补气增焓的空调器。
背景技术
应用于空调器领域的补气增焓的制冷***运行原理如下:空调主要有压缩机、冷凝器、蒸发器和膨胀阀四个基本部件组成。补气增焓空调***是指:将常规空调***中的普通压缩机改为具有补气增焓功能的压缩机,并在主回路的基础上增加补气回路后形成的空调***。
发明内容
本申请实施例提供了一种空调器,包括压缩机,具有中间腔;辅助换热器;气液分离器;该辅助换热器通过补气阀与该压缩机的中间腔连通,该补气阀用于当满足预设补气条件时,开启该辅助换热器和该压缩机的中间腔的连通;当不满足预设补气条件时,关闭该辅助换热器和该压缩机的中间腔的连通;该辅助换热器通过泄流阀与该气液分离器连通,该泄流阀用于当不满足预设补气条件时,开启该辅助换热器和该气液分离器的连通;当满足预设补气条件时,关闭该辅助换热器和该气液分离器的连通。
本申请实施例提供了一种空调器,该辅助换热器包括通过外部管道连通的第一通道和第二通道,该第一通道与该第二通道连通的外部管道上设置有制冷剂流量控制器。
本申请实施例提供了一种空调器,包括有多个并联的压缩机。
本申请实施例提供了一种空调器,该空调器被配置为根据该压缩机排气压力和吸气压力控制该补气阀和该泄流阀的开启和关闭。
本申请实施例提供了一种空调器,述空调器被配置制冷模式下,当该压缩机的排气压力小于等于第一预设值且该压缩机的吸气压力小于等于第二预设值时,补气阀开启,泄流阀关闭;当该压缩机的排气压力大于第一预设值或该压缩机的吸气压力大于第二预设值时,泄流阀开启,补气阀关闭。
本申请实施例提供了一种空调器,该空调器被配置在制热模式下,当该压缩机的排气压力小于等于第三预设值,且该该压缩机的吸气压力大于等于第五预设值并小于等于第四预设值时,补气阀开启,泄流阀关闭;当该压缩机的排气压力大于第三预设值,或该压缩机的吸气压力大于第四预设值或者小于第五预设值时,泄流阀开启,补气阀关闭。
本申请实施例提供了一种空调器,第一预设值的取值范围是3.2MPa~3.4MPa。
本申请实施例提供了一种空调器,第二预设值的取值范围是0.7MPa~0.9MPa。
本申请实施例提供了一种空调器,第三预设值的取值范围是2.7MPa~2.9MPa。
本申请实施例提供了一种空调器,第四预设值的取值范围是0.7MPa~0.9MPa。
本申请实施例提供了一种空调器,第五预设值的取值范围是0.6MPa~0.62MPa。
本申请实施例提供了一种空调器,该空调器被配置为,该补气阀或该泄流阀开启前,制冷剂流量控制器的开度不小于第一流量设定值。
本申请实施例提供了一种空调器,第一流量设定值的取值范围是60pls~100pls。
本申请实施例提供了一种空调器,包括多个压缩机,该空调器被配置为,补气阀开启后通过调节制冷剂流量控制器的开度减小压缩机组排气温差。
本申请实施例提供了一种空调器,该空调器被配置为,补气阀开启后,且至少两个压缩机的排气温度的差值不低于预设温差时,通过调节制冷剂流量控制器的开度减小压缩机组排气温差。
本申请实施例提供了一种空调器,该预设温差的取值范围是8~11℃。
本申请实施例提供了一种补气增焓的制冷***,包括具有中间腔的压缩机组,具有多个端口的辅助换热器,以及气液分离器,该辅助换热器的一端口连通于该压缩机组的中间腔和该气液分离器,该辅助换热器与该压缩机之间设置有补气阀,该辅助换热器与该气液分离器之间设置有泄流阀。
本申请某些实施例中,该辅助换热器包括通过外部管道连通的第一通道和第二通道,该第一通道与该第二通道连通的外部管道上设置有电子膨胀阀。
本申请某些实施例中,该压缩机组包括有两个并联的压缩机。
本申请还提供一种空调器,包括上述补气增焓的制冷***。
基于上述的空调器,本申请还提供一种空调器控制方法,包括:根据压缩机组中的压缩机排气压力Pd和吸气压力Ps控制补气阀和泄流阀的开启和关闭。
本申请某些实施例中,在根据压缩机组中的压缩机排气压力Pd和吸气压力Ps控制补气阀和泄流阀的开启和关闭的步骤中,具体为:
在制热模式下,判断是否满足Pd≤b,p≤Ps≤c,如是,补气阀开启,泄流阀关闭;反之,泄流阀开启,补气阀关闭;
在制冷模式下,判断是否满足Pd≤f,Ps≤c,如是,补气阀开启,泄流阀关闭;反之,泄流阀开启,补气阀关闭;
其中,b、p、c、f为设定值,b的取值范围是2.7MPa~2.9MPa,c的取值范围是0.7MPa~0.9MPa,p的取值范围是0.6MPa~0.62MPa,f的取值范围是3.2MPa~3.4MPa。
本申请某些实施例中,在根据压缩机排气压力Pd和吸气压力Ps控制补气阀和泄流阀的开启和关闭步骤中,具体包括以下步骤:
补气阀或泄流阀开启前,控制电子膨胀阀的开度不小于设定值A;
其中,A的取值范围是60pls~100pls。
本申请某些实施例中,在根据压缩机组中的压缩机排气压力Pd和吸气压力Ps控制补气阀和泄流阀的开启和关闭的步骤中,具体包括以下步骤:
补气阀开启后,检测是否存在多个补气阀开启,如是,通过调节电子膨胀阀的开度减小压缩机排气温差;反之,结束本次检测。
本申请某些实施例中,在根据压缩机组中的压缩机排气压力Pd和吸气压力Ps控制补气阀和泄流阀的开启和关闭的步骤中,具体包括以下步骤:
通过调节电子膨胀阀的开度减小压缩机排气温差,具体为:检测排气温度的差值是否不低于设定值T,如是,则将电子膨胀阀的开度调节一个数值△EVB,△EVB依据计算公式得到;反之,电子膨胀阀的开度保持不变;
其中,T的范围是8~11℃;计算公式为△EVB=-EVB(n-1)/K,EVB(n)是本回开度,K为大于1的控制常量。
本申请某些实施例中,在根据压缩机组中的压缩机排气压力Pd和吸气压力Ps控制补气阀和泄流阀的开启和关闭的步骤中,计算公式中△EVB=-EVB(n-1)/K,K的取值范围是2~3。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述 中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请某些实施例所提供的一种补气增焓的制冷***的结构示意图;
图2为本申请某些实施例所提供的一种空调器控制方法的流程图;
图3为本申请某些实施例所提供的在制冷模式下制冷剂喷射至压缩机时的回路示意图;
图4为本申请某些实施例所提供的在制冷模式下制冷剂喷射至气液分离器时的回路示意图;
图5为本申请某些实施例所提供的在制热模式下制冷剂喷射至压缩机时的回路示意图;
图6为本申请某些实施例所提供的在制热模式下制冷剂喷射至气液分离器时的回路示意图;
以上各图中:1、气液分离器;2、压缩机;3、油分离器;4、单向阀;5、四通换向阀;6、室外换热器;7、辅助换热器;8、电子膨胀阀;9、补气阀;10、泄流阀;11、室内换热器。
具体实施方式
下面,通过示例性的实施方式对本申请进行具体描述。然而应当理解,在没有进一步叙述的情况下,一个实施方式中的元件、结构和特征也可以有益地结合到其他实施方式中。除非另有说明,“多个”的含义是两个或两个以上。
补气增焓的制冷***多是从辅助换热器向压缩机的中间腔喷射制冷剂,增加焓差,提高能效。在研究过程发现如果风冷多联机空调机组的室内所需热负荷突然大幅度降低时,压缩机的频率降低,喷射至压缩机回路的制冷剂在辅助换热器中无法蒸发至过热状态,液态制冷剂被喷射进压缩机中间腔会导致液击,从而损坏压缩机;另外,在压缩机可靠性方面,喷气至压缩机会加大***压比,在压缩机运行在压比界限附近时,向压缩机喷射制冷剂会超出压缩机运行范围,影响压缩机的性能。
针对以上两方面的问题,如何能够有效控制喷射回路防止液击和避免压缩机运行在压比界限附近时喷射对压缩机性能的影响,同时又能够有效利用补气增焓技术的过冷,是本申请所要解决的问题。
图1为本申请某些实施例提供的一种空调器,该空调器的制冷***利用了补气增焓的技术,如图1所示,空调器包括室内机和室外机,室外机设置有气液分离器1、压缩机2、油分离器3、单向阀4,四通换向阀5,室外换热器6、,辅助换热器7。室内机中设置有室内换热器11。制冷***由气液分离器1、压缩机2、油分离器3、单向阀4,四通换向阀5,室外换热器6、,辅助换热器7、室内换热器11等连通,用于制冷剂的循环,进而实现对室内进行加热的制热模式和对室内进行制冷的制冷模式。
在某些实施例中,辅助换热器7可以为板式换热器。
其中,辅助换热器7包括第一通道和第二通道,第一通道连通室外换热器6和室内换热器11组成制冷剂主循环回路;辅助换热器7的第一通道的第二端口a2与第二通道的第一端口b1连接的通道上设置制冷剂流量控制装置8。从辅助换热器7第二通道的第二端口b2分别与压缩机2的中间腔、气液分离器1连通,在第二端口b2与压缩机2的通道上设置补气阀9,在第二端口b2与气液分离器1的通道上设置泄流阀10。
在某些实施例中,制冷剂流量控制装置8为电子膨胀阀。
辅助换热器7与压缩机2、气液分离器1之间形成并联喷射回路,制冷剂流量控制装置8用于控制喷射回路的导通、关闭,并可以控制制冷剂的流入量。补气阀9用于控制喷射至压缩机2回路的导通或关闭,泄流阀10用于控制喷射至气液分离器1回路的导通或关闭。通过控制补气阀9和泄流阀10的开启和关闭,可以选择制冷剂喷射至压缩机2或者气液分离器1。
通过在辅助换热器7与压缩机2、气液分离器1之间设置并联喷射回路,在制冷剂喷射至压缩机2而影响压缩机2性能的情况下,可以喷射到气液分离器1。示例性的:
1)在制冷运行时,空调机组室内负荷大幅度降低时,比如室内仅开很少的机器、室内有耗热设备关闭、或者室外工况温度降低的情况下,将制冷剂喷射至气液分离器1,避免液态制冷剂被喷射至压缩机2中间腔,防止压缩机2液击的产生;同时制冷剂喷射至气液分离器1,可以卸载***压力,并将室内小热负荷下的***多余制冷剂存储至气液分离器1中;而且喷射至气液分离器1回路,还可以降低吸气过热度,增加循环制冷剂的质量流量,并提高主回路制冷剂的过冷度,提高制冷性能。
2)制热运行时,室外环温较低时,较低的低压压力会造成室外换热器6结霜,压缩机2能力衰减,将制冷剂喷射至气液分离器1,从而提高低压压力,防止喷射至压缩机2后,导致压缩机2能力衰减。
以上是示例说明制冷剂喷射至压缩机2而影响压缩机2性能的情况,本申请通过设计并联双回路喷射,在制冷剂不能喷射至压缩机2时可以选择喷射至气液分离器1,不但能够避免对压缩机2的损害,还能够充分利用过冷作用,使***性能和可靠性达到最佳。
在某些实施例中,继续参见图1所示,该***包括两个并联的压缩机2,压缩机2的吸气口分别连接至气液分离器1,压缩机2的排气口顺次各连接油分离器3、单向阀4进口,两个单向阀4的出口与四通换向阀5同一端口连通,从每个压缩机2中间腔到辅助换热器7的喷射通道上都设置补气阀9。
本申请某些实施例中的补气阀9和泄流阀10可以为电磁阀,也可以为电子膨胀阀。
本申请所提供的空调器,该空调器包括上述的补气增焓的制冷***。
基于上述补气增焓的制冷***和空调器,本申请某些实施例还提供了空调器的控制方法。
本申请某些实施例中,制冷模式下,若压缩机2排气压力较高时制冷剂喷射至压缩机2,可能导致压力进一步升高,而降低压缩机2频率,影响到制冷能力;当压缩机2排气压力不高的情况下制冷剂喷射至压缩机2,能够提高制冷能力;
本申请某些实施例中,制热模式下,若处于融霜工况的临界即压缩机2吸气压力不高时,制冷剂喷射至压缩机2,可进一步降低吸气压力,造成换热器结霜而能力衰减,此时喷射气液分离器1,可以提高吸气压力。若空调机组吸气压力较高时喷射至压缩机2,在低温的情况下,喷射回路制冷剂吸收进入蒸发器的制冷剂的热量,使喷射至压缩机2制冷剂的比焓增加,进入蒸发器的制冷剂比焓降低,可提高排气焓值及制冷剂流量,同时增大了蒸发器进出口的焓差,能使室外蒸发器从空气中的吸热更多的热量,提高制热能力。
基于以上原理本申请某些实施例中,空调器控制方法包括:根据压缩机2的排气压力Pd和吸气压力Ps控制补气阀9和泄流阀10的开启和关闭。
本申请某些实施例中,参见图2所示,空调器的控制方法按照如下实现:
S1a、若当前工作模式为制冷运行,调节电子膨胀阀EVB8开度满足≥A,同时检测排气压力Pd和吸气压力Ps,若满足Pd≤f,Ps≤c,则补气阀SVJ9开启,泄流阀SVS10关闭,将制冷剂喷射至压缩机2;若不满足Pd≤f,Ps≤c,则泄流阀SVS10开启,补气阀SVJ9关闭,将制冷剂喷射至气液分离器1。
或者,
S1b、若当前工作模式为制热运行,调节电子膨胀阀EVB8开度满足≥A,同时检测排气压力Pd和吸气压力Ps,若满足Pd≤b,p≤Ps≤c2,则补气阀SVJ9开启,泄流阀SVS10关闭,将制冷剂喷射至压缩机2;若不满足Pd≤b,p≤Ps≤c1,则泄流阀SVS10开启,补气阀SVJ9关闭,将制冷剂喷射至气液分离器1。
其中,上述的A、b、c1、c2,f、p为设定值。A为第一流量设定值,b为第三预设值,c1为第二预设值;c2第四预设值,f为第一预设值,p为第五预设值。
在本申请某些实施例中,c1=c2,即为第二预设值与第四预设值相等。
在本申请某些实施例中,电子膨胀阀EVB8为直动阀形式,A的取值范围为60~100pls。
本申请某些实施例中,b的取值范围是2.7MPa~2.9MPa,c1和c2的取值范围是0.7MPa~0.9MPa,p的取值范围是0.6MPa~0.62MPa,f的取值范围是3.2MPa~3.4MPa。按照以上取值范围既可以避免液击又可以使***性能及可靠性最佳。
在本申请某些实施例中,如图3所示,在制冷模式下制冷剂喷射至压缩机时的回路示意图。在制冷模式下,检测排气压力Pd和吸气压力Ps满足设定条件,则补气阀SVJ9开启,泄流阀SVS10关闭,制冷剂喷射至压缩机2中间腔,增加制冷剂循环量,提高制冷能力。参见图3所示,对应的制冷剂的循环回路如下:在制冷剂被压缩机2压缩后,经过油分离器3、单向阀4、四通换向阀5、室外换热器6,到达辅助换热器7之后一分为二,其中一路经过电子膨胀阀8节流降压后再流回辅助换热器7冷却主路制冷剂后,经过打开的补气阀SVJ9喷射至压缩机2,主路制冷剂被过冷经室内换热器11、四通换向阀5、气液分离器1后回到压缩机2,以此进行循环。
在本申请某些实施例中,如图4所示,在制冷模式下制冷剂喷射至气液分离器时的回路示意图。在制冷模式下,检测排气压力Pd和吸气压力Ps不满足 设定条件,则泄流阀SVS10开启,补气阀SVJ9关闭。制冷剂喷射至气液分离器1,可以卸载***压力,并将室内小热负荷下的多余制冷剂存储至气液分离器1,还可以降低吸气过热度,提高主回路制冷剂的过冷度,提高制冷能力。参见图4所示,对应的制冷剂的循环回路如下:在制冷剂被压缩机2压缩后,经过油分离器3、单向阀4、四通换向阀5、室外换热器6,到达辅助换热器7之后一分为二,其中一路经过电子膨胀阀8节流降压后再流回辅助换热器7冷却主路制冷剂后,经过打开的泄流阀SVS10喷射至气液分离器1,主路制冷剂被过冷经室内换热器11、四通换向阀5、气液分离器1后回到压缩机2,以此进行循环。
在本申请某些实施例中,如图5所示,在制热模式下制冷剂喷射至压缩机时的回路示意图。在制热模式下,检测排气压力Pd和吸气压力Ps满足设定条件,则补气阀SVJ9开启,泄流阀SVS10关闭,制冷剂喷射至压缩机2中间腔,喷射回路制冷剂吸收进入室外换热器6(蒸发器)的制冷剂的热量,使喷射至压缩机2制冷剂的比焓增加,进入室外换热器6的制冷剂比焓降低,提高排气焓值及制冷剂流量,同时增大了室外换热器6进出口焓差,能使室外换热器6从空气吸收更多的热量,另外,低温制冷剂喷射至压缩机2中间腔,可有效降低压缩机2排气温度,提高压缩机2转速,增大制冷剂循环流量。参见图5所示,对应的制冷剂的循环回路如下:在制冷剂被压缩机2压缩后,经过油分离器3、单向阀4、四通换向阀5、室内换热器11,到达辅助换热器7之后一分为二,其中一路经过电子膨胀阀8节流降压后再流回辅助换热器7冷却主路制冷剂后,经过打开的补气阀SVJ9喷射至压缩机2,主路制冷剂被过冷经室外换热器6、四通换向阀5、气液分离器1后回到压缩机2,以此进行循环。
在本申请某些实施例中,如图6所示,在制热模式下制冷剂喷射至气液分离器时的回路示意图。在制热模式下,检测排气压力Pd和吸气压力Ps不满足设定条件,则泄流阀SVS10开启,补气阀SVJ9关闭,制冷剂喷射至气液分离器1,可以提高低压压力,防止喷射至压缩机2从而导致压缩机2能力衰减严重。参见图6所示,对应的制冷剂的循环回路如下:在制冷剂被压缩机2压缩后,经过油分离器3、单向阀4、四通换向阀5、室内换热器11,到达辅助换热器7之后一分为二,其中一路经过电子膨胀阀8节流降压后再流回辅助换热器7冷却主路制冷剂后,经过打开的泄流阀SVS10喷射至气液分离器1,主路制 冷剂被过冷经室外换热器6、四通换向阀5、气液分离器1后回到压缩机2,以此进行循环。
在本申请某些实施例中,采用多台压缩机时,可能会存在补气不平衡问题,从而导致排气温度差距较大。针对排气温度差距大的问题,在本申请某些实施例中所提供的空调器控制方法包括:通过调节电子膨胀阀EVB8的开度来减小温差。
在本申请某些实施例中,继续参见图2所示,在制热模式补气阀SVJ9开启的情况下,该方法包括:存在两个补气阀SVJ9同时开启,检测压缩机2的排气温度并计算温差|Td1-Td|是否大于设定值T,若大于T,将电子膨胀阀8的开度调节一个数值△EVB,直到温差不超过T。
在本申请某些实施例中,T的范围是8~11℃;计算公式为△EVB=-EVB(n-1)/K,其中EVB(n-1)是上一回的开度,K为控制常量,K>1,优选的,K的取值范围为2~3。
综上,本申请实施例提供的空调器、制冷***和空调器控制方法通过设计制冷剂自辅助换热器之后喷射至压缩机或气液分离器的双喷射回路,在不能喷射至压缩机时,能够喷射至气液分离器,实现制冷剂的泄流,不会影响压缩机的性能,同时又能利用制冷剂的过冷,实现***性能和可靠性优化。通过检测压缩机的吸气压力和排气压力来控制补气阀和泄流阀的开启和关闭,即根据吸气压力和排气压力来控制制冷剂喷射至压缩机还是气液分离器,能够有效避免液击以及融霜工况吸气压力不高时喷射至压缩机造成的压缩机能力衰减,同时又能够提高***的制冷制热能力。通过调节电子膨胀阀的开度来有效控制多台压缩机组同时工作时,补气不平衡导致的排气温差大的问题,使***发挥更好的能力。
以上所述,仅是本申请的较佳实施例而已,并非是对本申请作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例应用于其它领域,但是凡是未脱离本申请技术方案内容,依据本申请的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本申请技术方案的保护范围。

Claims (16)

  1. 一种空调器,包括,
    压缩机,具有中间腔;
    辅助换热器,
    气液分离器;
    所述辅助换热器通过补气阀与所述压缩机的中间腔连通,所述补气阀用于当满足预设补气条件时,开启所述辅助换热器和所述压缩机的中间腔的连通;当不满足预设补气条件时,关闭所述辅助换热器和所述压缩机的中间腔的连通;
    所述辅助换热器通过泄流阀与所述气液分离器连通,所述泄流阀用于当不满足预设补气条件时,开启所述辅助换热器和所述气液分离器的连通;当满足预设补气条件时,关闭所述辅助换热器和所述气液分离器的连通。
  2. 根据权利要求1所述的空调器,其特征在于:所述辅助换热器包括通过外部管道连通的第一通道和第二通道,所述第一通道与所述第二通道连通的外部管道上设置有制冷剂流量控制器。
  3. 根据权利要求1所述的空调器,其特征在于:包括有多个并联的压缩机。
  4. 根据权利要求1所述的空调器,其特征在于,所述空调器被配置为根据所述压缩机排气压力和吸气压力控制所述补气阀和所述泄流阀的开启和关闭。
  5. 根据权利要求4所述的空调器,其特征在于,所述空调器被配置制冷模式下,
    当所述压缩机的排气压力小于等于第一预设值且所述压缩机的吸气压力小于等于第二预设值时,补气阀开启,泄流阀关闭;
    当所述压缩机的排气压力大于第一预设值或所述压缩机的吸气压力大于第二预设值时,泄流阀开启,补气阀关闭。
  6. 根据权利要求4所述的空调器,其特征在于,所述空调器被配置在制热模式下,
    当所述压缩机的排气压力小于等于第三预设值,且所述所述压缩机的吸气压力大于等于第五预设值并小于等于第四预设值时,补气阀开启,泄流阀关闭;
    当所述压缩机的排气压力大于第三预设值,或所述压缩机的吸气压力大于第四预设值或者小于第五预设值时,泄流阀开启,补气阀关闭。
  7. 根据权力要求5所述的空调器,其特征在于,第一预设值的取值范围是3.2MPa~3.4MPa。
  8. 根据权力要求5所述的空调器,其特征在于,第二预设值的取值范围是0.7MPa~0.9MPa。
  9. 根据权力要求6所述的空调器,其特征在于,第三预设值的取值范围是2.7MPa~2.9MPa。
  10. 根据权力要求6所述的空调器,其特征在于,第四预设值的取值范围是0.7MPa~0.9MPa。
  11. 根据权力要求6所述的空调器,其特征在于,第五预设值的取值范围是0.6MPa~0.62MPa。
  12. 根据权利要求1所述的空调器,其特征在于,所述空调器被配置为,所述补气阀或所述泄流阀开启前,制冷剂流量控制器的开度不小于第一流量设定值。
  13. 根据权利要求12所述的空调器,其特征在于,第一流量设定值的取值范围是60pls~100pls。
  14. 根据权利要求12所述的空调器,其特征在于,包括多个压缩机,所述空调器被配置为,补气阀开启后通过调节制冷剂流量控制器的开度减小压缩机组排气温差。
  15. 根据权利要求14所述的空调器,其特征在于,所述空调器被配置为,补气阀开启后,且至少两个压缩机的排气温度的差值不低于预设温差时,通过调节制冷剂流量控制器的开度减小压缩机组排气温差。
  16. 根据权利要求15所述的空调器,其特征在于,所述预设温差的取值范围是8~11℃。
PCT/CN2019/112036 2018-09-07 2019-10-18 一种空调器 WO2020048551A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811044700.5A CN109099610B (zh) 2018-09-07 2018-09-07 补气增焓的制冷***、空调器及空调器控制方法
CN201811044700.5 2018-09-07

Publications (1)

Publication Number Publication Date
WO2020048551A1 true WO2020048551A1 (zh) 2020-03-12

Family

ID=64865625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112036 WO2020048551A1 (zh) 2018-09-07 2019-10-18 一种空调器

Country Status (2)

Country Link
CN (1) CN109099610B (zh)
WO (1) WO2020048551A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114165933A (zh) * 2021-11-04 2022-03-11 珠海格力节能环保制冷技术研究中心有限公司 压缩机的补气方法、装置、设备和温度调整***
CN114576825A (zh) * 2020-11-30 2022-06-03 广东美的制冷设备有限公司 空调器控制方法、空调器及可读存储介质

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109099610B (zh) * 2018-09-07 2021-10-08 青岛海信日立空调***有限公司 补气增焓的制冷***、空调器及空调器控制方法
CN110285535B (zh) * 2019-06-24 2020-11-17 珠海格力电器股份有限公司 空调***的增焓控制方法和装置
CN110925874A (zh) * 2019-11-27 2020-03-27 南京天加环境科技有限公司 一种含双喷气增焓压缩机的多联机***
CN111156651B (zh) * 2020-01-14 2021-02-26 珠海格力电器股份有限公司 补气阀控制方法、压缩机、空调器、存储器及控制器
CN112229086A (zh) * 2020-10-13 2021-01-15 青岛海信日立空调***有限公司 空调器
CN115420006A (zh) * 2022-09-05 2022-12-02 宁波奥克斯电气股份有限公司 一种空调器及其控制方法、装置和可读存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0854161A (ja) * 1994-08-11 1996-02-27 Sanyo Electric Co Ltd 冷凍装置の冷媒漏洩検出方法
CN203857702U (zh) * 2014-04-18 2014-10-01 青岛海信日立空调***有限公司 一种补气增焓的空调***
CN106801954A (zh) * 2017-01-04 2017-06-06 海信(山东)空调有限公司 一种补气增焓***及其控制方法、空调器
CN107144036A (zh) * 2017-05-19 2017-09-08 青岛海信日立空调***有限公司 补气增焓的制冷剂循环***、空调器及空调器控制方法
CN107621047A (zh) * 2017-08-15 2018-01-23 珠海格力电器股份有限公司 空调机组的控制方法及装置
WO2018105039A1 (ja) * 2016-12-06 2018-06-14 三菱電機株式会社 空気調和装置
CN109099610A (zh) * 2018-09-07 2018-12-28 青岛海信日立空调***有限公司 补气增焓的制冷***、空调器及空调器控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080084091A (ko) * 2007-03-14 2008-09-19 삼성전자주식회사 냉동시스템 및 이를 갖춘 공기조화기
JP5463192B2 (ja) * 2010-04-20 2014-04-09 三菱重工業株式会社 エコノマイザ回路付き冷凍装置
CN105004090A (zh) * 2015-07-09 2015-10-28 广东美的暖通设备有限公司 一种多联机空调***及该***过冷和喷气增焓的方法
CN105485767A (zh) * 2015-12-22 2016-04-13 珠海格力电器股份有限公司 多联机空调***和控制方法
CN105627613B (zh) * 2016-01-04 2018-01-23 广东美的暖通设备有限公司 空调器的室外机及空调器
CN105526683B (zh) * 2016-02-19 2018-09-07 珠海格力电器股份有限公司 一种空调***的控制方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0854161A (ja) * 1994-08-11 1996-02-27 Sanyo Electric Co Ltd 冷凍装置の冷媒漏洩検出方法
CN203857702U (zh) * 2014-04-18 2014-10-01 青岛海信日立空调***有限公司 一种补气增焓的空调***
WO2018105039A1 (ja) * 2016-12-06 2018-06-14 三菱電機株式会社 空気調和装置
CN106801954A (zh) * 2017-01-04 2017-06-06 海信(山东)空调有限公司 一种补气增焓***及其控制方法、空调器
CN107144036A (zh) * 2017-05-19 2017-09-08 青岛海信日立空调***有限公司 补气增焓的制冷剂循环***、空调器及空调器控制方法
CN107621047A (zh) * 2017-08-15 2018-01-23 珠海格力电器股份有限公司 空调机组的控制方法及装置
CN109099610A (zh) * 2018-09-07 2018-12-28 青岛海信日立空调***有限公司 补气增焓的制冷***、空调器及空调器控制方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114576825A (zh) * 2020-11-30 2022-06-03 广东美的制冷设备有限公司 空调器控制方法、空调器及可读存储介质
CN114576825B (zh) * 2020-11-30 2023-11-28 广东美的制冷设备有限公司 空调器控制方法、空调器及可读存储介质
CN114165933A (zh) * 2021-11-04 2022-03-11 珠海格力节能环保制冷技术研究中心有限公司 压缩机的补气方法、装置、设备和温度调整***

Also Published As

Publication number Publication date
CN109099610B (zh) 2021-10-08
CN109099610A (zh) 2018-12-28

Similar Documents

Publication Publication Date Title
WO2020048551A1 (zh) 一种空调器
EP3734167B1 (en) Air conditioner system
CN110332635B (zh) 一种双级压缩多补气制冷热泵***、控制方法和空调器
EP2325577B1 (en) Heat pump
US8671706B2 (en) Heat pump
RU2660234C2 (ru) Холодильный аппарат
WO2019091241A1 (zh) 空调制冷循环***及空调器
WO2020186906A1 (zh) 空调器化霜控制方法及空调器
US10928105B2 (en) Air conditioner
CA3006572A1 (en) Positive-displacement compressor, two-stage compressor system, and control method thereof
US9267720B2 (en) Air conditioner and method of controlling the same
US20190154320A1 (en) Exhaust heat recovery type of air-conditioning apparatus
WO2021228020A1 (zh) 多联式空调***的控制方法
US11971038B2 (en) Single-stage enthalpy enhancing rotary compressor and air conditioner having same
WO2020192087A1 (zh) 多联机空调及其控制方法
CN109869941B (zh) 热泵***、吸气过热度及气液分离器积液蒸发控制方法
WO2019091240A1 (zh) 空调制热循环***及空调器
CN109386985B (zh) 两管制喷气增焓室外机及多联机***
US11892209B2 (en) Multi-air conditioner for heating and cooling including a shut-off valve between indoor and outdoor units and control method thereof
CN108800393B (zh) 空调***
CN110631286B (zh) 换热***及控制方法
CN108375255B (zh) 空调器***
CN113776223B (zh) 双喷气增焓制冷***
CN109682105B (zh) 空调***
CN109163469A (zh) 空调***及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19858337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19858337

Country of ref document: EP

Kind code of ref document: A1