WO2020045570A1 - Self-assembly for activating immunity - Google Patents

Self-assembly for activating immunity Download PDF

Info

Publication number
WO2020045570A1
WO2020045570A1 PCT/JP2019/033920 JP2019033920W WO2020045570A1 WO 2020045570 A1 WO2020045570 A1 WO 2020045570A1 JP 2019033920 W JP2019033920 W JP 2019033920W WO 2020045570 A1 WO2020045570 A1 WO 2020045570A1
Authority
WO
WIPO (PCT)
Prior art keywords
self
assembly
compound
formula
shows
Prior art date
Application number
PCT/JP2019/033920
Other languages
French (fr)
Japanese (ja)
Inventor
志成 上杉
ブー・フエ・ティ
大樹 吉田
尚孝 野田
ジン・シュウユウ
晶 山▲崎▼
徹 島根
石井 健
仰 日置
Original Assignee
国立大学法人京都大学
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学, 国立大学法人大阪大学 filed Critical 国立大学法人京都大学
Priority to JP2020539590A priority Critical patent/JPWO2020045570A1/en
Publication of WO2020045570A1 publication Critical patent/WO2020045570A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/575Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of three or more carbon atoms, e.g. cholane, cholestane, ergosterol, sitosterol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/07Tetrapeptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J9/00Normal steroids containing carbon, hydrogen, halogen or oxygen substituted in position 17 beta by a chain of more than two carbon atoms, e.g. cholane, cholestane, coprostane
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/02Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing at least one abnormal peptide link

Definitions

  • the present invention relates to a novel compound forming a self-assembly, the self-assembly, a method for producing the same, and a pharmaceutical use.
  • Self-assembly which is the spontaneous self-assembly of molecules, plays an important role in the formation of biological hierarchical structures in living organisms.
  • DNA, lipid membranes, cytoskeletal fibers, and the like are examples of natural self-assemblies.
  • a single compound molecule has a single function
  • a self-assembly has complex physical or chemical properties and functions depending on the surrounding environment (Non-Patent Document 1). Therefore, the synthesis of a new self-assembly has attracted attention as one of new methods for drug development that regulates the function and biological activity of biological systems.
  • Non-Patent Document 2 synthetic oligonucleotides containing unmethylated CG sequences (CpG- ODN) is known (Non-Patent Document 2). As described above, several self-assemblies that mimic the natural self-assembly structure have been reported, but most of them use peptides as constituent units of the self-assembly.
  • Non-Patent Documents 3 to 10 Although some examples of self-assembly of non-peptide synthetic chemical molecules are also known, their biological activities are mainly related to cytotoxicity and cell death (Non-Patent Documents 3 to 10). Therefore, new and useful self-assembly of synthetic chemical molecules that exhibit biological activity is desired.
  • One of the problems to be solved by the present invention is to provide a novel compound which forms a self-assembly, the self-assembly, a method for producing the same, and a pharmaceutical use.
  • the present inventors have conducted intensive studies to solve the above problems, and as a result, a small molecule compound having a partial structure in which a specific chemical modification has been made to bile acid forms a new self-assembly, and the self-assembly concerned Showed that they exhibited an immunostimulatory effect, and thus completed the present invention.
  • the self-assembled substance formed by linking the compounds of the formula (I) can exhibit a biological activity, for example, an immunostimulatory action, and can be useful as an adjuvant.
  • FIG. 1 shows the hydrodynamic diameter (nm) (vertical axis) of a compound (Hit @ compounds) that formed a self-assembly in the compound library.
  • FIG. 2 shows the hydrodynamic radii (average R h (nm)) (vertical axis) of self-assemblies of the compounds of Example 1, Reference Example 2 and Reference Example 3 in DMEM solutions at various concentrations ( ⁇ M).
  • FIG. 3 shows the IL-6 production amount (ng / mL) (vertical axis) of the self-assembly of the compound of Example 1 in DMEM solutions at various concentrations ( ⁇ M).
  • FIG. 1 shows the hydrodynamic diameter (nm) (vertical axis) of a compound (Hit @ compounds) that formed a self-assembly in the compound library.
  • FIG. 2 shows the hydrodynamic radii (average R h (nm)) (vertical axis) of self-assemblies of the compounds of Example 1, Reference
  • FIG. 4 shows the IL-6 production amount (ng / mL) (vertical axis) of the compounds of Example 1 and Reference Examples 1 to 3 in a 30 ⁇ M @DMEM solution.
  • DCA shows the result for deoxycholic acid.
  • NC is a negative control of 1% (v / v) DMSO, and LPS is a positive control.
  • FIG. 5 shows the relative value (vertical axis) of the amount of IL-6 produced by the self-assembly of each example compound in a 30 ⁇ M @DMEM solution when the negative control (DMSO) is set to 1.
  • FIG. 6 shows the particle size distribution (%) of the self-assembly of the compound of Example 1 in a 30 ⁇ M @DMEM solution (right side).
  • FIG. 9 shows the results of an IL-6 ⁇ ELISA assay (ng / mL) using FcR ⁇ / MyD88 double knockout BMDC (right) and wild-type BMDC (WT) (left).
  • FIG. 12 shows IL-6 production (pg / mL) of wild-type (WT) and TLR7 knockout (Tlr7 ⁇ / ⁇ ) mice.
  • the bar on the left side of each test substance shows the result of the wild type, and the bar on the right side shows the result of the TLR7 knockout mouse.
  • FIG. 18 shows the production amount (ng / mL) of the anti-OVA antibody (IgE). Each bar in each test substance shows the results at 1, 10 and 100 ⁇ g from the left, respectively.
  • FIG. 20A shows the relationship between the number of days after influenza infection (horizontal axis) and the weight loss rate (%) (vertical axis).
  • indicates a self-assembly of the compound of Example 1
  • indicates a self-assembly of the compound of Example 7
  • indicates a self-assembly of the compound of Example 10
  • indicates DCA
  • indicates 1% DMSO
  • indicates an aluminum salt.
  • FIG. 20B shows the relationship between the number of days after influenza infection (horizontal axis) and the survival rate (%) (vertical axis).
  • indicates a self-assembly of the compound of Example 1
  • indicates a self-assembly of the compound of Example 7
  • indicates data when DCA
  • indicates 1% DMSO
  • FIG. 21A shows the number of days after influenza SV injection (horizontal axis) and weight loss rate (%) (vertical axis) for each dose ( ⁇ : 1 ⁇ g, ⁇ : 10 ⁇ g, ⁇ : 100 ⁇ g) of the self-assembly of the compound of Example 10. Shows the relationship.
  • indicates data when 1% DMSO was used, and ⁇ indicates data when aluminum salt was used.
  • FIG. 23 shows the results of a SEAP assay for null and no TLR9 using HEK293 cells.
  • FIG. 24 shows the results of a SEAP assay for TLR2 and TLR4 using HEK293 cells without an agonist (null).
  • FIG. 25 shows the results of the IL-6 quantitative PCR assay (qPCR).
  • Item 2 The self-assembly according to Item 1, wherein R x is the same as R y .
  • R x is of the formula (II ′): Is a group represented by R y has the formula (III ′): Item 3.
  • Item 4 The self-assembly according to any one of Items 1 to 3, wherein R 3 and R 4 are each independently C 1-3 alkyl.
  • Item 3 The self-assembly according to Item 1 or 2, wherein R x and R y are both H.
  • Item 6 The self-assembly according to any one of Items 1 to 5, wherein n is an integer of 5 to 10.
  • Item 7 The self-assembly according to any one of Items 1 to 6, which forms an aggregate having a hydrodynamic size of 40 nm to 12,000 nm.
  • Item 8 An immunostimulator comprising the self-assembly according to any one of Items 1 to 7.
  • Item 9 The immunostimulant according to Item 8, which is an adjuvant.
  • Item 10 A vaccine composition comprising the immunostimulating agent according to Item 9 and an antigen.
  • Item 11 The vaccine composition according to Item 10, for treating and / or preventing a disease selected from the group consisting of cancer, infectious disease, allergic disease, autoimmune disease, hypertension and Alzheimer's disease.
  • R x is H or formula (II): Is a group represented by R y is H or formula (III): Is a group represented by R 1 , R 2 , R 3 and R 4 are each independently H, C 1-6 alkyl or C 1-6 haloalkyl; Wavy lines indicate binding sites, n is an integer of 1 to 12]
  • C 1-12 alkyl refers to a linear or branched saturated hydrocarbon group having 1 to 12 carbon atoms.
  • “C 1-12 alkyl” includes methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, neopentyl, 1,1-dimethylpropyl, -Ethylpropyl, n-hexyl, isohexyl, 3,3-dimethylbutyl, 2,2-dimethylbutyl, 1,1-dimethylbutyl, 2-ethylbutyl, n-heptyl, 2-methylhexyl, 2,2-dimethylpentyl , 2,2,3-trimethylbutyl, n-octyl, 3,4-dimethylhexyl, 2,2,4-trimethylpentyl, n
  • C 1-6 alkyl includes methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, neopentyl, 1,1-dimethylpropyl, -Ethylpropyl, n-hexyl, isohexyl, 3,3-dimethylbutyl, 2,2-dimethylbutyl, 1,1-dimethylbutyl, 2-ethylbutyl and the like.
  • C 1-12 haloalkyl refers to a C 1-12 alkyl in which one or more optional hydrogen atoms have been replaced with the same or different halogen.
  • C 1-12 haloalkyl includes difluoromethyl, trifluoromethyl, 2-fluoroethyl, 2-chloroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, pentafluoroethyl, 1,1 -Difluoropropyl, 3,3,3-trifluoropropyl, 2,2,2-trifluoro-1-methyl-ethyl, 1,1-difluoro-2-methylpropyl, 4-chlorobutyl, 5-fluoropentyl and the like No.
  • halo or “halogen” includes fluoro, chloro, bromo, iodo and the like.
  • self-assembly refers to an assembly formed by self-assembling, defined as the spontaneous self-assembly of a molecule, and comprising the molecule as a constituent unit, and two or more molecules. Is a micellar, fibrous, crystalline, colloidal, or particulate aggregate formed by non-covalent bonding.
  • non-covalent bond include a hydrophobic bond, ⁇ - ⁇ stacking, a hydrogen bond, a van der Waals bond, and an arbitrary combination thereof.
  • the molecules constituting the self-assembly include small molecule compounds having a partial structure in which bile acid is chemically modified, and preferably a compound of the formula (I).
  • the self-assembly may have a plurality of hydrophobic pockets, and through this hydrophobic pocket, various substances such as other molecules and antigens can be incorporated into the assembly structure.
  • a self-assembly may also be an aggregate of compounds of formula (I) having different structures based on the differences in R x , R y and R 1 -R 4 , and compounds other than compounds of formula (I) Mixed together to form an aggregate.
  • the structure and properties of the self-assembly can be appropriately controlled by chemical modification of a molecule serving as a structural unit.
  • Self-assemblies may exhibit immunostimulatory effects through interaction with membrane proteins.
  • the hydrodynamic size of the self-assembly is not particularly limited and may depend on the surrounding environment such as the concentration in the medium, the concentration in the blood and the concentration in the tissue, but is, for example, 40 to 12,000 nm, and is preferably It is 45 to 5,000 nm, more preferably 100 to 1,000 nm, further preferably 140 to 800 nm, and particularly preferably 150 to 500 nm.
  • the term "hydrodynamic size" refers to the hydrodynamic diameter, which may be measured, for example, using dynamic light scattering (DLS).
  • the self-assembly may also have an increased immunostimulatory effect as its concentration in the medium, blood or tissue increases.
  • immunostimulatory effect refers to endogenous or exogenous agonist activity for a pattern recognition receptor on the cell surface.
  • agonist activity antigen presenting cells such as macrophages and dendritic cells can be activated to produce cytokines such as interleukins.
  • the immunostimulatory activity is preferably an agonist activity for a Toll-like receptor (TLR), more preferably a TLR7 agonist activity or a TLR9 agonist activity, and particularly preferably a TLR7 agonist activity.
  • TLR Toll-like receptor
  • Immunostimulatory effects can also be increased as the hydrodynamic size of the self-assembly increases.
  • TLR7 stimulates the production of interferon and the like by sensing single-stranded RNA or synthetic small molecule ligand derived from virus. Therefore, TLR7 agonist has an immunostimulatory effect, for example, various diseases such as infectious diseases and autoimmune diseases. May be useful as therapeutics for Since TLR9 is commonly found in bacteria and viruses and plays a role in stimulating innate and adaptive immune responses to unmethylated DNA, TLR9 agonists can improve the immunogenicity of antigens used in vaccine compositions.
  • immunostimulant refers to a substance or composition that exhibits an immunostimulatory effect, and can be used for immunotherapy of various diseases.
  • the immunostimulant may contain a self-assembly.
  • an immunostimulant is used in combination with an antigen or a vaccine composition containing the antigen, immunogenicity to the antigen can be obtained or enhanced, and the duration of immunity can be prolonged.
  • the immunostimulant may be administered alone, may be used to be administered separately, sequentially or simultaneously at an interval from the antigen or vaccine composition comprising the antigen, or May be used as a component of the product. Examples of the immunostimulant include an adjuvant.
  • the amount of the self-assembly contained in the immunostimulant is not particularly limited as long as it is an immunologically acceptable amount, but is, for example, 0.1 to 20 w / w%, preferably 0.2 to 20 w / w%. It is 15 w / w%, more preferably 0.3 to 10 w / w%, particularly preferably 0.5 to 5 w / w%.
  • antigen refers to a substance that provokes an immune response, such as a peptide or protein.
  • Antigens include cancer antigens, viral antigens, bacterial antigens, fungal antigens, protozoal or parasite antigens, allergy-related antigens, and disease-related antigens.
  • the term “vaccine composition” refers to a composition containing an antigen, and can be used for immunotherapy of various diseases.
  • the vaccine composition may be administered alone, may be used so that it is administered separately, sequentially or simultaneously at an interval from the immunostimulant, or a vaccine containing the immunostimulant. It may be used as a composition.
  • the vaccine composition may also include a pharmaceutically acceptable carrier.
  • Such pharmaceutically acceptable carriers include additives commonly used in the art, such as excipients, isotonic agents, buffers, pH adjusters, suspending agents, preservatives, and the like.
  • the vaccine composition may be administered by administration routes commonly used in the art.
  • administration route examples include oral administration; and parenteral administration such as intravenous injection, intraarterial injection, subcutaneous injection, intradermal injection, intramuscular injection, intrathecal administration, and transdermal administration.
  • parenteral administration such as intravenous injection, intraarterial injection, subcutaneous injection, intradermal injection, intramuscular injection, intrathecal administration, and transdermal administration.
  • the amount of each component contained in the vaccine composition is not particularly limited as long as it is an immunologically acceptable amount usually used in the art.
  • disease includes cancer (eg, leukemia, lymphoma, neurological tumor, melanoma, breast cancer, lung cancer, head and neck cancer, stomach cancer, colon cancer, liver cancer, pancreatic cancer, cervical cancer, uterine cancer, ovarian cancer, vaginal cancer , Testicular cancer, prostate cancer, penile cancer, bone tumor, vascular tumor, lip cancer, nasopharyngeal cancer, pharyngeal cancer, esophageal cancer, rectal cancer, gallbladder cancer, bile duct cancer, laryngeal cancer, lung cancer, bladder cancer, kidney cancer, brain tumor Thyroid cancer, Hodgkin's disease, non-Hodgkin's lymphoma, etc., infectious diseases (eg, influenza, human immunodeficiency syndrome (HIV), hepatitis such as viral hepatitis, viral infections such as Ebola hemorrhagic fever; pertussis, diphtheria, tetanus, tubercul
  • infectious diseases
  • -Bacterial infections caused by H. pylori, pneumococci, etc . fungal infections such as Candida; protozoal or parasite infections such as malaria; allergic diseases (eg, atopic dermatitis, allergic nose) , Asthma, etc.), autoimmune diseases (including, for example, diabetes mellitus (type 1 diabetes and type 2 diabetes), multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, psoriasis, etc.), hypertension, Alzheimer's disease.
  • allergic diseases eg, atopic dermatitis, allergic nose
  • Asthma Asthma
  • autoimmune diseases including, for example, diabetes mellitus (type 1 diabetes and type 2 diabetes), multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, psoriasis, etc.
  • hypertension Alzheimer's disease.
  • R x and R y are both H.
  • R 1 and R 2 are preferably the same.
  • R 1 and R 2 are preferably H, C 1-3 alkyl or C 1-3 haloalkyl, more preferably H or isopropyl. Particularly preferably, R 1 and R 2 are both H.
  • R 3 and R 4 are preferably the same.
  • R 3 and R 4 are preferably C 1-3 alkyl or C 1-3 haloalkyl, more preferably C 1-3 alkyl, and particularly preferably methyl or ethyl.
  • ⁇ n is preferably from 2 to 12, more preferably from 5 to 10, and particularly preferably from 5 to 8.
  • the compound of formula (I) preferably has the formula (I-1): [Wherein, R x , R y and n have the same meanings as in formula (I)] It is a compound shown by these.
  • R a -COOH is a bile acid, such as a primary bile acid or a secondary bile acid, preferably deoxycholic acid
  • R b is C 1-12 alkyl, preferably C 2-10 alkyl, more preferably C 5-10 alkyl, particularly preferably C 5-8 alkyl
  • R c is H, C 1-6 alkyl or C 1-6 haloalkyl
  • the compounds of formula (I) can be obtained by subjecting compounds (a), (b), (c) and (d) to a condensation reaction in a solvent.
  • the condensation reaction may be performed by mixing the compounds (b) and (c) to obtain an imine intermediate, and then adding the compounds (a) and (d) to the mixture.
  • the solvent include alcohols such as methanol and ethanol, and aprotic polar solvents such as DMF, and ethanol is preferable.
  • the reaction temperature is from room temperature to 60 ° C.
  • the compound of formula (I) can also be prepared when R x and R y are both H, for example according to the following method.
  • the compound of formula (I) can be obtained by subjecting compound (a), compound (b) and the dehydrating condensing agent to a condensation reaction in a solvent in the presence of a base as appropriate.
  • the dehydrating condensing agent include carbodiimides such as WSCI ⁇ HCl and N, N′-dicyclohexylcarbodiimide.
  • the base include DMAP.
  • the solvent include a non-polar solvent such as dichloromethane.
  • the reaction temperature is from room temperature to 40 ° C.
  • the self-assembly of the compound of the formula (I) can be produced from the compound of the formula (I) produced as described above, for example, according to the following method. After dissolving the compound of formula (I) in an aprotic polar solvent (eg, DMSO), the solution is added to a tissue culture medium (eg, DMEM) containing an additive (eg, serum) as appropriate. Mix. The mixed solution is allowed to stand to obtain a self-assembly of the compound of the formula (I).
  • an aprotic polar solvent eg, DMSO
  • DMEM tissue culture medium
  • an additive eg, serum
  • the formation of the self-assembly can be confirmed by mixing the self-assembly with the environment-sensitive fluorescent probe in an aqueous solvent (for example, water) and measuring the fluorescence intensity of the mixture.
  • aqueous solvent for example, water
  • Environmentally sensitive fluorescent probes are essentially non-fluorescent in aqueous solvents, but show fluorescence in less polar solvents or in hydrophobic environments.
  • Hydrophobic environments include, for example, self-assembled hydrophobic pockets.
  • Examples of the environmentally sensitive fluorescent probe include 8-anilino-1-naphthalenesulfonic acid (ANS) and Nile Red.
  • Deoxycholic acid (0.12 mmol) and ethyl isocyanoacetate (14.1 ⁇ l, 0.12 mmol) were added to the reaction mixture and stirred for 12 hours.
  • the EtOH was distilled off under a nitrogen atmosphere and the crude was dissolved in dichloromethane. After washing with 1 M hydrochloric acid, 2 M NaOH aqueous solution and saturated saline, the organic layer was filled in a preparative TLC and developed with chloroform / methanol (10/1).
  • the silica containing the product was scraped and placed in a flat-bottomed glass bottle containing the acetonitrile / EtOH solution. Powdered with a stir bar and filtered. The solution was concentrated under reduced pressure and dried under vacuum to obtain the title compound (1.3 mg, 0.0011 mmol).
  • WSCI ⁇ HCl 230 mg, 1.2 mmol
  • DMAP 122.17 mg, 1.0 mmol
  • extraction was performed three times with chloroform.
  • the organic layer was washed with a 2M aqueous NaOH solution, 1M hydrochloric acid and saturated saline, and the solvent was distilled off under reduced pressure.
  • the crude product was purified by column chromatography, the solution was concentrated under reduced pressure, and dried under vacuum to obtain the title compound (160 mg, 0.19 mmol).
  • Deoxycholic acid (0.12 mmol) and ethyl isocyanoacetate (14.1 ⁇ l, 0.12 mmol) were added to the reaction mixture and stirred for 12 hours.
  • the EtOH was distilled off under a nitrogen atmosphere and the crude was dissolved in dichloromethane. After washing with 1 M hydrochloric acid, 2 M NaOH aqueous solution and saturated saline, the organic layer was filled in a preparative TLC and developed with chloroform / methanol (20/1).
  • the silica containing the product was scraped and placed in a flat-bottomed glass bottle containing the acetonitrile / EtOH solution. Powdered with a stir bar and filtered. The solution was concentrated under reduced pressure and dried under vacuum to obtain the title compound (25 mg, 0.046 mmol).
  • Each self-assembly was produced from the above example compound and reference example compound according to the following method.
  • Each compound was dissolved in DMSO to prepare a 10 mM stock solution. After preparing a 3 mM DMSO solution (20 ⁇ l) of each compound from the stock solution, each solution was added to DMEM (2 ml) containing 10% FBS and 1% penicillin-streptomycin solution at room temperature, and mixed by pipetting. The mixed solution was allowed to stand for 1 hour to obtain a self-assembly of each compound.
  • mice MyD88-deficient mice (Oriental Yeast Co., Ltd.) and C57BL / 6 (CLEA Japan) background FcR ⁇ -deficient mice (RIKEN) were used.
  • cell RAW-Blue TM cells (InvivoGen) expressed the secreted fetal alkaline phosphatase (SEAP) reporter gene by NF- ⁇ B and AP-1 activation.
  • SEAP secreted fetal alkaline phosphatase
  • Bone marrow-derived dendritic cells were prepared according to the method described in Ishikawa et al., Cell Host & Microbe, April 17, 2013, 13, 477-488.
  • bone marrow cells were cultured in RPMI1640 medium supplemented with 10% (v / v) FBS and ⁇ -mercaptoethanol together with GM-CSF released from MGM-5 at 37 ° C. for 10 days, Bone marrow-derived dendritic cells were prepared.
  • RAW 264.7 cells American Type Culture Collection
  • DMEM DMEM containing 10% FBS and 1% penicillin-streptomycin solution.
  • Trehalose-6,6′-dimicolate (reagent) Trehalose-6,6′-dimicolate (TDM; Sigma) was dissolved at 1 mg / mL in a chloroform: methanol solution (2: 1 (v / v)) and diluted with 2-propanol to a final concentration of 50 ⁇ g / mL. After coating on a 96-well plate at 20 ⁇ L / well, the solvent was distilled off. The amount of TDM coated was 1 ⁇ g / well.
  • Lipopolysaccharide (LPS; L4516; Sigma) and curdlan (InvivoGen) were diluted with RPMI or DMEM containing 5% or 10% FBS and used for immunostimulation property measurement.
  • FIG. 1 shows the hydrodynamic diameter of a compound that formed a self-assembly in the compound library.
  • Test Example 1-2 Measurement of hydrodynamic size of self-assembly (2) For each example compound, a self-assembly was formed according to the method of Test Example 1-1. Samples were prepared at various concentrations in DMEM medium containing 10% FBS (Biowest) and 1% penicillin-streptomycin (Nacalai Tesque Inc.) at 25 ° C., and 100 ⁇ L in a 96-well UV plate (Corning Inc.). / Well.
  • the hydrodynamic radius of the self-assembly was measured using a DynaPro Plate reader II (Wyatt Technology Corp .; 165 °; automatic decay mode at 25 ° C .; laser wavelength 830 nm; scattering angle 58 °; data acquisition time 10 seconds / well; 10 acquisitions / measurements).
  • Hydrodynamic diameter converted from the self-assembly of 30 [mu] M DMEM solution measured hydrodynamic radius in (R h) and the R h values of the Example compounds are as follows.
  • FIG. 2 shows the results of the Rh values of the self-assembly of the compound of Example 1 and the compound of Reference Example in a DMEM solution.
  • the compound of Reference Example 1 did not form a self-assembly.
  • Immunostimulation properties (1) The immunostimulatory properties of the self-assembly were assayed using the amount of IL-6 produced as an index. 20,000 RAW 264.7 cells / well were seeded in 96-well tissue culture plates in DMEM containing 10% FBS at 37 ° C. for 24 hours. The cell culture medium was then replaced with a DMEM solution of the test compound (containing 10% FBS and 1% final concentration of DMS0). 1% (v / v) DMSO and 100 pg / mL LPS were used as negative and positive controls, respectively.
  • FIG. 4 shows the result of comparison between the self-assembly of the compound of Example 1 and the compound of Reference Example.
  • FIG. 5 shows the results of the self-assembly of each example compound.
  • the particle size distribution of the self-assembly of the compound of Example 1 in a 30 ⁇ M DMEM solution is shown in FIG.
  • Immunostimulation properties (3) The immunostimulatory properties of the self-assembly were assayed using the amount of IL-6 produced as an index. After seeding BMDCs at 1 ⁇ 10 6 cells / well in RPMI 1640 containing 5% FBS in 96-well tissue culture plates, compounds of Examples 1, 7, 7 and 10 at 5, 10, 30, 50 and 100 ⁇ M respectively Of a self-assembled RPMI solution (containing 5% FBS) was added.
  • the mouse IL-6 concentration in the supernatant was measured using a Bio-Plex Pro Mouse Cytokine Grp I Panel 23-Plex (Bio-Rad Laboratories, Inc.).
  • Deoxycholic acid (DCA) and DMSO (1%) were used as negative controls, and LPS (20 ng) and R848 (2 ⁇ g) were used as positive controls.
  • DCA Deoxycholic acid
  • DMSO DMSO
  • LPS (20 ng) and R848 (2 ⁇ g) were used as positive controls.
  • the result is shown in FIG.
  • the results show that the immunostimulatory effect induced by the self-assembly is TLR7-dependent, as is the positive control R848 (TLR7 agonist).
  • the test was performed in the same manner as in 3-2. Specifically, solutions of the self-assembly of the compounds of Examples 1, 7 and 10 at 10, 30, 50 and 100 ⁇ M, respectively, were added to a 96-well plate, and 1 ⁇ 10 6 in the presence of 5% FBS. Cells / well of BMDC were cultured with or without self-assembly for 24 hours. The IL-6 concentration of the mice in the supernatant was measured by ELISA.
  • FIG. 13 shows the results.
  • Test examples to evaluate the agonistic activity on self-assembling of IL-6 production using T57-9 of T57-9 using C57BL / 6J (WT) or Tlr 9 ⁇ / ⁇ bone marrow-derived dendritic cells The test was performed in the same manner as in 3-2. Specifically, solutions of the self-assembly of the compounds of Examples 1, 7 and 10 at 10, 30, 50 and 100 ⁇ M, respectively, were added to a 96-well plate, and 1 ⁇ 10 6 in the presence of 5% FBS. Cells / well of BMDC were cultured with or without self-assembly for 24 hours. The IL-6 concentration of the mice in the supernatant was measured by ELISA.
  • FIG. 14 shows the results.
  • Example 7 compound 1, 10 and 100 ⁇ g
  • Example 10 compound 1, 10 and 100 ⁇ g
  • deoxycholic acid 1, 10 and 100 ⁇ g
  • Deoxycholic acid and PBS were used as a negative control
  • aluminum salt Al salt
  • a 96-well plate was coated with 10 ⁇ g / mL OVA at 4 ° C. overnight. After washing, the plates were incubated with blocking buffer for 1 hour at room temperature. Plates were washed and incubated with diluted serum for 2 hours. The plates were then washed and horseradish peroxidase-conjugated anti-mouse total IgG, IgG1 or IgG2c antibodies (Southern Biotech) were each added to the plates. One hour later, the plate was washed and TMB Microwell Peroxidase Substrate System (KPL) was added to the wells. After 20 min incubation, the reaction was stopped by adding 2N H 2 SO 4.
  • KPL TMB Microwell Peroxidase Substrate System
  • the production amounts of anti-OVA total IgG, IgG1 and IgG2c are shown in FIGS. 15 to 17, respectively.
  • Anti-OVA total IgE was measured using a DS mouse IgE ELISA (OVA) kit (DS Pharma Biomedical).
  • FIG. 18 shows the amount of anti-OVA IgE produced.
  • mice were treated on day 0 and day 14 with influenza SV (1 ⁇ g), DMSO (final concentration: 1%), Example 1 compound (1, 10 and 100 ⁇ g), Example 7 compound (1, 10 And 100 ⁇ g) or a self-assembly of the compound of Example 10 (1, 10 and 100 ⁇ g), 100 ⁇ l / shot of a PBS solution containing either deoxycholic acid (1, 10 and 100 ⁇ g) or an aluminum salt (500 ⁇ g) subcutaneously.
  • mice were infected intranasally with 10 LD50 of clinically isolated A / Puerto Rico / 8/1934 influenza (H1N1) virus.
  • Anti-HA IgG1 and IgG2c in sera collected on day 21 were measured by ELISA.
  • the production amounts of anti-HA IgG1 and IgG2c are shown in FIGS. 19A and 19B. Mice were followed for body weight and survival 21 days after influenza infection on day 34.
  • Influenza SV (1 ⁇ g), self-assembly of DMSO (final concentration: 1%), Example 1 compound (100 ⁇ g), Example 7 compound (100 ⁇ g) or Example 10 compound (100 ⁇ g), deoxycholic acid (100 ⁇ g) Changes in body weight and viability for each mouse using either subcutaneous immunization, or with aluminum salt (500 ⁇ g) are shown in FIGS. 20A and 20B.
  • FIGS. 21A and 21B changes in body weight and survival rate are shown.
  • TLR293 cells In order to elucidate the SEAP assay signal pathway using HEK293 cells , several major TLRs were used using human embryonic kidney cells (HEK293) stably transfected with an NF- ⁇ B-responsive SEAP reporter gene.
  • HEK cells expressing TLR2, TLR4 or TLR9 are seeded at 3 ⁇ 10 4 cells / well in 96-well tissue culture plates in DMEM (100 ⁇ l) containing 10% FBS and self-assembled with the compound of Example 1 at 37 ° C. Stimulation was for 24 or 48 hours.
  • SEAP in the culture supernatant was stained with an alkaline phosphatase detection reagent QUANTI-Blue (InvivoGen) for 3 hours or 6 hours, and optical density (630 nm) was measured with a Multiskan microplate reader (Thermo Fisher Scientific Inc.). OD value) was measured.
  • DMSO was used as a negative control (NC)
  • oligodeoxynucleotide ODN1826; tlrl-1826; InvivoGen
  • TLR2 agonist Pam3 Pam3CSK4; InvivoGen
  • LPS Self-assembled SEAP responses were elevated in TLR9.
  • IL-6 Quantitative PCR assay RAW264.7 cells were seeded 24 hours 6 ⁇ 10 5 cells / well in DMEM containing 10% FBS at six-well tissue culture plates at 37 ° C.. The cell culture medium was then replaced with a DMEM solution of the test compound (containing 10% FBS and 1% final concentration of DMS0). 1% DMSO and 100 ng / mL LPS were used as negative and positive controls, respectively. After 4 hours, the cells were washed twice with PBS. Cells were lysed with ISOGENE (1 mL / well; Nippon Gene Co., Ltd.) for 5 minutes. Then, chloroform (200 ⁇ L) was added.
  • the mixture was mixed for 15 minutes by inverting the test tube and then centrifuged at 14,000 rpm for 15 minutes at 4 ° C.
  • the upper 400 ⁇ L of the aqueous layer was collected in another 1.5 mL test tube and mixed with 500 ⁇ L of isopropanol.
  • the test tube was centrifuged again at 14,000 rpm, and the supernatant was removed.
  • the residue was washed twice with ethanol (700 ⁇ L), air-dried and redissolved in TE buffer (pH 5.2).
  • PrimeScript (TM) II 1 st strand cDNA Synthesis Kit Takara Bio Inc.
  • reverse transcribed total mRNA samples (2 [mu] g)
  • Quantitative real-time PCR was performed using the Fast CYBR Green Master Mix kit (Thermo Fisher Scientific Inc.). All assays were performed in triplicate and TNF- ⁇ and ⁇ -actin were used as internal standards. All primers for specific target genes are shown below: The results are shown in FIG.
  • a self-assembly obtained by linking the compounds of the formula (I) can be useful as an adjuvant, and is expected to be used as a vaccine composition for treating and / or preventing various diseases.

Abstract

Provided are: a novel compound that forms a self-assembly; the self-assembly; production methods for the compound and the self-assembly; and pharmaceutical use of the compound and the self-assembly. The compound is represented by formula (I) [in the formula, Rx represents H or a group represented by formula (II), Ry represents H or a group represented by formula (III), R1, R2, R3, and R4 each independently represent H, C1-6 alkyl, or C1-6 haloalkyl, a wavy line represents a binding site, and n represents an integer of 1-12]. The self-assembly is formed by the composition. The production methods are for the compound and the self-assembly, and the pharmaceutical use are for the compound and the self-assembly.

Description

免疫を賦活化する自己集合体Self-assembly that activates immunity
 本発明は、自己集合体を形成する新規化合物、その自己集合体並びにこれらの製法及び医薬用途に関する。 (4) The present invention relates to a novel compound forming a self-assembly, the self-assembly, a method for producing the same, and a pharmaceutical use.
 生体における生物学的階層構造の形成において、分子の自発的な自己組織化である自己集合は重要な役割を担っている。例えば、DNA、脂質膜や細胞骨格線維等は天然の自己集合体の一例である。一般に、単一の化合物分子は単一の機能を有するのに対し、自己集合体は周囲環境に応じて複雑な物理的又は化学的な特性や機能を有する(非特許文献1)。そのため、新たな自己集合体の合成は、生物系の機能や生物活性を調節する医薬品開発の新たな手法の一つとして注目されている。 自己 Self-assembly, which is the spontaneous self-assembly of molecules, plays an important role in the formation of biological hierarchical structures in living organisms. For example, DNA, lipid membranes, cytoskeletal fibers, and the like are examples of natural self-assemblies. Generally, a single compound molecule has a single function, whereas a self-assembly has complex physical or chemical properties and functions depending on the surrounding environment (Non-Patent Document 1). Therefore, the synthesis of a new self-assembly has attracted attention as one of new methods for drug development that regulates the function and biological activity of biological systems.
 生物活性のうち免疫賦活作用に関して、1920年代にアルミニウム化合物を用いたアジュバントが開発されて以来、種々の免疫賦活剤がジフテリアやインフルエンザ等の感染症等の疾患のワクチンに用いられている。これらの免疫賦活剤には、トール様受容体(TLR)等のパターン認識受容体に作用することにより免疫細胞を活性化するものがあり、例えば非メチル化CG配列を含む合成オリゴヌクレオチド(CpG-ODN)等が知られている(非特許文献2)。このように、天然の自己集合構造を模した自己集合体がいくつか報告されているが、そのほとんどがペプチドを自己集合体の構成単位としている。非ペプチド合成化学分子の自己集合体の例もいくつか知られているが、それらの生物活性は主に細胞毒性や細胞死に関するものである(非特許文献3~10)。したがって、生物活性を示す新規かつ有用なさらなる合成化学分子の自己集合体が望まれている。 Regarding immunostimulatory activity among biological activities, since an adjuvant using an aluminum compound was developed in the 1920s, various immunostimulants have been used in vaccines for diseases such as infectious diseases such as diphtheria and influenza. Some of these immunostimulants activate immune cells by acting on pattern recognition receptors such as Toll-like receptor (TLR). For example, synthetic oligonucleotides containing unmethylated CG sequences (CpG- ODN) is known (Non-Patent Document 2). As described above, several self-assemblies that mimic the natural self-assembly structure have been reported, but most of them use peptides as constituent units of the self-assembly. Although some examples of self-assembly of non-peptide synthetic chemical molecules are also known, their biological activities are mainly related to cytotoxicity and cell death (Non-Patent Documents 3 to 10). Therefore, new and useful self-assembly of synthetic chemical molecules that exhibit biological activity is desired.
 本発明が解決しようとする課題の一つは、自己集合体を形成する新規化合物、その自己集合体並びにこれらの製法及び医薬用途を提供することである。 課題 One of the problems to be solved by the present invention is to provide a novel compound which forms a self-assembly, the self-assembly, a method for producing the same, and a pharmaceutical use.
 本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、胆汁酸に特定の化学修飾がなされた部分構造をもつ小分子化合物が新たな自己集合体を形成し、当該自己集合体が免疫賦活作用を示すことを見出し、本発明を完成した。 The present inventors have conducted intensive studies to solve the above problems, and as a result, a small molecule compound having a partial structure in which a specific chemical modification has been made to bile acid forms a new self-assembly, and the self-assembly concerned Showed that they exhibited an immunostimulatory effect, and thus completed the present invention.
 ある態様において、式(I):
Figure JPOXMLDOC01-appb-C000009
[式中、Rは、H又は式(II):
Figure JPOXMLDOC01-appb-C000010
で示される基であり、
 Rは、H又は式(III):
Figure JPOXMLDOC01-appb-C000011
で示される基であり、
 R、R、R及びRは、それぞれ独立して、H、C1-6アルキル又はC1-6ハロアルキルであり、
 波線は結合部位を示し、
 nは1~12の整数である]
で示される化合物が非共有結合により連結してなる自己集合体が提供される。
In some embodiments, formula (I):
Figure JPOXMLDOC01-appb-C000009
Wherein R x is H or formula (II):
Figure JPOXMLDOC01-appb-C000010
Is a group represented by
R y is H or formula (III):
Figure JPOXMLDOC01-appb-C000011
Is a group represented by
R 1 , R 2 , R 3 and R 4 are each independently H, C 1-6 alkyl or C 1-6 haloalkyl;
Wavy lines indicate binding sites,
n is an integer of 1 to 12]
And a self-assembly obtained by linking the compounds represented by the following formulas by a non-covalent bond.
 別の態様において、式(I)の化合物が連結してなる自己集合体の医薬用途が提供される。 In another aspect, there is provided a pharmaceutical use of a self-assembly obtained by linking the compounds of the formula (I).
 さらに別の態様において、式(I)の化合物が提供される。 In yet another aspect, there is provided a compound of formula (I).
 さらに別の態様において、式(I)の化合物が連結してなる自己集合体の製造方法が提供される。 In still another aspect, a method for producing a self-assembly obtained by linking the compounds of the formula (I) is provided.
 式(I)の化合物が連結してなる自己集合体は、生物活性、例えば免疫賦活作用を示すことができ、アジュバントとして有用であり得る。 (5) The self-assembled substance formed by linking the compounds of the formula (I) can exhibit a biological activity, for example, an immunostimulatory action, and can be useful as an adjuvant.
図1は化合物ライブラリーのうち自己集合体を形成した化合物(Hit compounds)の流体力学的直径(nm)(縦軸)を示す。FIG. 1 shows the hydrodynamic diameter (nm) (vertical axis) of a compound (Hit @ compounds) that formed a self-assembly in the compound library. 図2は種々の濃度(μM)のDMEM溶液中の実施例1化合物、参考例2化合物及び参考例3化合物の自己集合体の流体力学的半径(平均R(nm))(縦軸)を示す。FIG. 2 shows the hydrodynamic radii (average R h (nm)) (vertical axis) of self-assemblies of the compounds of Example 1, Reference Example 2 and Reference Example 3 in DMEM solutions at various concentrations (μM). Show. 図3は種々の濃度(μM)のDMEM溶液中の実施例1化合物の自己集合体のIL-6産生量(ng/mL)(縦軸)を示す。FIG. 3 shows the IL-6 production amount (ng / mL) (vertical axis) of the self-assembly of the compound of Example 1 in DMEM solutions at various concentrations (μM). 図4は30μM DMEM溶液中の実施例1及び参考例1~3化合物のIL-6産生量(ng/mL)(縦軸)を示す。DCAはデオキシコール酸の結果を示す。NCは陰性対照である1%(v/v)DMSO、LPSは陽性対照である。FIG. 4 shows the IL-6 production amount (ng / mL) (vertical axis) of the compounds of Example 1 and Reference Examples 1 to 3 in a 30 μM @DMEM solution. DCA shows the result for deoxycholic acid. NC is a negative control of 1% (v / v) DMSO, and LPS is a positive control. 図5は30μM DMEM溶液中の各実施例化合物の自己集合体のIL-6産生量について陰性対照(DMSO)を1とした場合の相対値(縦軸)を示す。FIG. 5 shows the relative value (vertical axis) of the amount of IL-6 produced by the self-assembly of each example compound in a 30 μM @DMEM solution when the negative control (DMSO) is set to 1. 図6は30μM DMEM溶液中の実施例1化合物の自己集合体の粒度分布(%)を示す(右側)。左側の分布は血清由来の粒度分布(%)を示す。FIG. 6 shows the particle size distribution (%) of the self-assembly of the compound of Example 1 in a 30 μM @DMEM solution (right side). The distribution on the left shows the particle size distribution (%) derived from serum. 図7は実施例1化合物の自己集合体の各濃度について左から遠心分離前及び後のIL-6産生量(ng/mL)を示す。エラーバーは標準偏差(n=3)を示す。FIG. 7 shows the amount of IL-6 produced (ng / mL) before and after centrifugation from the left for each concentration of the self-assembly of the compound of Example 1. Error bars indicate standard deviation (n = 3). 図8はBMDCにおけるIL-6産生量(pg/mL)を示す。各試験物質における各プロットは、左からそれぞれ5、10、30、50及び100μMでの結果を示す。エラーバーは標準偏差(n=1~2)を示す。FIG. 8 shows the amount of IL-6 produced in BMDC (pg / mL). Each plot for each test substance shows the results at 5, 10, 30, 50 and 100 μM, respectively, from the left. Error bars indicate standard deviation (n = 1 to 2). 図9はFcRγ/MyD88ダブルノックアウトBMDC(右)及び野生型BMDC(WT)(左)を用いたIL-6 ELISAアッセイ結果(ng/mL)を示す。実施例1化合物の自己集合体は30μM DMEM溶液、LPSは100ng/mL、カードランは100ng/mL、TDMは1μg/ウェルにて用いた。データは平均値±標準偏差を示す。エラーバーは標準偏差(n=2)を示す。FIG. 9 shows the results of an IL-6Δ ELISA assay (ng / mL) using FcRγ / MyD88 double knockout BMDC (right) and wild-type BMDC (WT) (left). The self-assembly of the compound of Example 1 was used in a 30 μM DMEM solution, LPS was used at 100 ng / mL, curdlan was used at 100 ng / mL, and TDM was used at 1 μg / well. Data show mean ± standard deviation. Error bars indicate standard deviation (n = 2). 図10は野生型(左)及びFcRγノックアウトBMDC(右)を用いた実施例1化合物の自己集合体(30μM DMEM溶液)のIL-6産生量(ng/mL)を示す。データは平均値±標準偏差を示す。エラーバーは標準偏差(n=3)を示す。FIG. 10 shows the amount of IL-6 produced (ng / mL) of the self-assembly of the compound of Example 1 (30 μM in DMEM) using wild-type (left) and FcRγ knockout BMDC (right). Data show mean ± standard deviation. Error bars indicate standard deviation (n = 3). 図11は野生型(左)及びMyD88ノックアウトBMDC(右)を実施例1化合物の自己集合体(30μM DMEM溶液)のIL-6産生量(pg/mL)を示す。データは平均値±標準偏差を示す。エラーバーは標準偏差(n=2)を示す。FIG. 11 shows the amount of IL-6 production (pg / mL) of the wild type (left) and the self-assembly of the compound of Example 1 (30 μM in DMEM) with MyD88 knockout BMDC (right). Data show mean ± standard deviation. Error bars indicate standard deviation (n = 2). 図12は野生型(WT)及びTLR7ノックアウト(Tlr7)マウスのIL-6産生量(pg/mL)を示す。各試験物質における左側のバーは野生型の結果を示し、右側のバーはTLR7ノックアウトマウスの結果を示す。FIG. 12 shows IL-6 production (pg / mL) of wild-type (WT) and TLR7 knockout (Tlr7 / ) mice. The bar on the left side of each test substance shows the result of the wild type, and the bar on the right side shows the result of the TLR7 knockout mouse. 図13は野生型(WT)及びTLR7ノックアウト(KO)マウスのIL-6産生量(ng/mL)を示す。エラーバーは標準偏差(n=1~3)を示す。FIG. 13 shows IL-6 production (ng / mL) of wild-type (WT) and TLR7 knockout (KO) mice. Error bars indicate standard deviation (n = 1 to 3). 図14は野生型(WT)及びTLR9ノックアウト(KO)マウスのIL-6産生量(ng/mL)を示す。エラーバーは標準偏差(n=1~3)を示す。FIG. 14 shows the amount of IL-6 produced (ng / mL) in wild type (WT) and TLR9 knockout (KO) mice. Error bars indicate standard deviation (n = 1 to 3). 図15は抗OVA総抗体(IgG)価(10)を示す。各試験物質における各プロットは、左からそれぞれ1、10及び100μgでの結果を示す。エラーバーは標準偏差(n=4)を示す。DCA(100μg)に対する有意差として、*はp<0.05を示し、**はp<0.01を示し、***はp<0.001を示す。FIG. 15 shows anti-OVA total antibody (IgG) titers (10 n ). Each plot for each test substance shows the results at 1, 10, and 100 μg, respectively, from the left. Error bars indicate standard deviation (n = 4). * Indicates p <0.05, ** indicates p <0.01, and *** indicates p <0.001 as a significant difference with respect to DCA (100 μg). 図16は抗OVA抗体(IgG1)価(10)を示す。各試験物質における各プロットは、左からそれぞれ1、10及び100μgでの結果を示す。エラーバーは標準偏差(n=4)を示す。DCA(100μg)に対する有意差として、*はp<0.05を示し、**はp<0.01を示し、***はp<0.001を示す。FIG. 16 shows the anti-OVA antibody (IgG1) titer (10 n ). Each plot for each test substance shows the results at 1, 10, and 100 μg, respectively, from the left. Error bars indicate standard deviation (n = 4). * Indicates p <0.05, ** indicates p <0.01, and *** indicates p <0.001 as a significant difference with respect to DCA (100 μg). 図17は抗OVA抗体(IgG2c)価(10)を示す。各試験物質における各プロットは、左からそれぞれ1、10及び100μgでの結果を示す。エラーバーは標準偏差(n=4)を示す。DCA(100μg)に対する有意差として、*はp<0.05を示す。FIG. 17 shows the anti-OVA antibody (IgG2c) titer (10 n ). Each plot for each test substance shows the results at 1, 10, and 100 μg, respectively, from the left. Error bars indicate standard deviation (n = 4). * Indicates p <0.05 as a significant difference with respect to DCA (100 μg). 図18は抗OVA抗体(IgE)の産生量(ng/mL)を示す。各試験物質における各バーは、左からそれぞれ1、10及び100μgでの結果を示す。エラーバーは標準偏差(n=4)を示す。FIG. 18 shows the production amount (ng / mL) of the anti-OVA antibody (IgE). Each bar in each test substance shows the results at 1, 10 and 100 μg from the left, respectively. Error bars indicate standard deviation (n = 4). 図19Aは抗HA抗体(IgG1)価(10)を示す。各試験物質における各バーは、左からそれぞれ1、10及び100μgでの結果を示す。エラーバーは標準偏差(n=3)を示す。FIG. 19A shows the anti-HA antibody (IgG1) titer (10 n ). Each bar in each test substance shows the results at 1, 10 and 100 μg from the left, respectively. Error bars indicate standard deviation (n = 3). 図19Bは抗HA抗体(IgG2c)価(10)を示す。各試験物質における各バーは、左からそれぞれ1、10及び100μgでの結果を示す。エラーバーは標準偏差(n=3)を示す。FIG. 19B shows the anti-HA antibody (IgG2c) titer (10 n ). Each bar in each test substance shows the results at 1, 10 and 100 μg from the left, respectively. Error bars indicate standard deviation (n = 3). 図20Aはインフルエンザ感染後の日数(横軸)と体重減少率(%)(縦軸)の関係を示す。●は実施例1化合物の自己集合体、■は実施例7化合物の自己集合体、▲は実施例10化合物の自己集合体、◆はDCA、×は1%DMSO、▼はアルミニウム塩をそれぞれ用いた場合のデータを示す。エラーバーは標準偏差(n=3)を示す。FIG. 20A shows the relationship between the number of days after influenza infection (horizontal axis) and the weight loss rate (%) (vertical axis). ● indicates a self-assembly of the compound of Example 1, ■ indicates a self-assembly of the compound of Example 7, ▲ indicates a self-assembly of the compound of Example 10, ◆ indicates DCA, × indicates 1% DMSO, and ▼ indicates an aluminum salt. Here is the data when there is Error bars indicate standard deviation (n = 3). 図20Bはインフルエンザ感染後の日数(横軸)と生存率(%)(縦軸)の関係を示す。●は実施例1化合物の自己集合体、■は実施例7化合物の自己集合体、◆はDCA、×は1%DMSO、▼はアルミニウム塩をそれぞれ用いた場合のデータを示す。エラーバーは標準偏差(n=3)を示す。FIG. 20B shows the relationship between the number of days after influenza infection (horizontal axis) and the survival rate (%) (vertical axis). ● indicates a self-assembly of the compound of Example 1, ■ indicates a self-assembly of the compound of Example 7, ◆ indicates data when DCA, × indicates 1% DMSO, and ▼ indicates data when an aluminum salt was used. Error bars indicate standard deviation (n = 3). 図21Aは実施例10化合物の自己集合体の各投与量(●:1μg、▲:10μg、■:100μg)に対するインフルエンザSV注射後の日数(横軸)と体重減少率(%)(縦軸)の関係を示す。×は1%DMSO、▼はアルミニウム塩をそれぞれ用いた場合のデータを示す。エラーバーは標準偏差(n=3)を示す。FIG. 21A shows the number of days after influenza SV injection (horizontal axis) and weight loss rate (%) (vertical axis) for each dose (●: 1 μg, ▲: 10 μg, Δ: 100 μg) of the self-assembly of the compound of Example 10. Shows the relationship. × indicates data when 1% DMSO was used, and ▼ indicates data when aluminum salt was used. Error bars indicate standard deviation (n = 3). 図21Bは実施例10化合物の自己集合体の各投与量(●:1μg、▲:10μg、■:100μg)に対するインフルエンザSV注射後の日数(横軸)と生存率(%)(縦軸)の関係を示す。×は1%DMSO、▼はアルミニウム塩をそれぞれ用いた場合のデータを示す。エラーバーは標準偏差(n=3)を示す。FIG. 21B shows the number of days (horizontal axis) and the survival rate (%) (vertical axis) after influenza SV injection for each dose (●: 1 μg, ▲: 10 μg, Δ: 100 μg) of the self-assembly of the compound of Example 10. Show the relationship. × indicates data when 1% DMSO was used, and ▼ indicates data when aluminum salt was used. Error bars indicate standard deviation (n = 3). 図22Aはインフルエンザ感染後の日数(横軸)と体重減少率(%)(縦軸)の関係についての実施例10化合物の自己集合体(▲)と対照(◆:DCA)の比較を示す。エラーバーは標準偏差(n=3)を示す。*はp<0.05を示す。FIG. 22A shows a comparison between the self-assembly of the compound of Example 10 (▲) and the control (◆: DCA) regarding the relationship between the number of days after influenza infection (horizontal axis) and the weight loss rate (%) (vertical axis). Error bars indicate standard deviation (n = 3). * Indicates p <0.05. 図22Bはインフルエンザ感染後の日数(横軸)と生存率(%)(縦軸)の関係についての実施例10化合物の自己集合体(▲)と対照(◆:DCA)の比較を示す。エラーバーは標準偏差(n=3)を示す。FIG. 22B shows a comparison between the self-assembly of the compound of Example 10 (▲) and the control (◆: DCA) regarding the relationship between the number of days after influenza infection (horizontal axis) and the survival rate (%) (vertical axis). Error bars indicate standard deviation (n = 3). 図23はHEK293細胞を用いた、アゴニストなし(null)及びTLR9に対するSEAPアッセイ結果を示す。横軸の濃度はDMEM溶液中の実施例1化合物の自己集合体の濃度(μM)を示す。エラーバーは標準偏差(n=2)を示す。FIG. 23 shows the results of a SEAP assay for null and no TLR9 using HEK293 cells. The concentration on the horizontal axis indicates the concentration (μM) of the self-assembly of the compound of Example 1 in the DMEM solution. Error bars indicate standard deviation (n = 2). 図24はHEK293細胞を用いた、アゴニストなし(null)、TLR2及びTLR4に対するSEAPアッセイ結果を示す。横軸の濃度はDMEM溶液中の実施例1化合物の自己集合体の濃度(μM)を示す。データは平均値±標準偏差を示す。エラーバーは標準偏差(n=2)を示す。FIG. 24 shows the results of a SEAP assay for TLR2 and TLR4 using HEK293 cells without an agonist (null). The concentration on the horizontal axis indicates the concentration (μM) of the self-assembly of the compound of Example 1 in the DMEM solution. Data show mean ± standard deviation. Error bars indicate standard deviation (n = 2). 図25はIL-6定量的PCRアッセイ結果(qPCR)を示す。FIG. 25 shows the results of the IL-6 quantitative PCR assay (qPCR).
 本発明の具体的態様を以下に例示する。
[項1]
 式(I):
Figure JPOXMLDOC01-appb-C000012
[式中、Rは、H又は式(II):
Figure JPOXMLDOC01-appb-C000013
で示される基であり、
 Rは、H又は式(III):
Figure JPOXMLDOC01-appb-C000014
で示される基であり、
 R、R、R及びRは、それぞれ独立して、H、C1-6アルキル又はC1-6ハロアルキルであり、
 波線は結合部位を示し、
 nは1~12の整数である]
で示される化合物が非共有結合により連結してなる、自己集合体。
Specific embodiments of the present invention will be exemplified below.
[Item 1]
Formula (I):
Figure JPOXMLDOC01-appb-C000012
Wherein R x is H or formula (II):
Figure JPOXMLDOC01-appb-C000013
Is a group represented by
R y is H or formula (III):
Figure JPOXMLDOC01-appb-C000014
Is a group represented by
R 1 , R 2 , R 3 and R 4 are each independently H, C 1-6 alkyl or C 1-6 haloalkyl;
Wavy lines indicate binding sites,
n is an integer of 1 to 12]
A self-assembly comprising a compound represented by the formula (1) linked by a non-covalent bond.
[項2]
 RがRと同一である、項1に記載の自己集合体。
[Item 2]
Item 2. The self-assembly according to Item 1, wherein R x is the same as R y .
[項3]
 Rが式(II’):
Figure JPOXMLDOC01-appb-C000015
で示される基であり、
 Rが式(III’):
Figure JPOXMLDOC01-appb-C000016
で示される基である、項1又は2に記載の自己集合体。
[Item 3]
R x is of the formula (II ′):
Figure JPOXMLDOC01-appb-C000015
Is a group represented by
R y has the formula (III ′):
Figure JPOXMLDOC01-appb-C000016
Item 3. The self-assembly according to Item 1 or 2, which is a group represented by the formula:
[項4]
 R及びRがそれぞれ独立してC1-3アルキルである、項1~3のいずれかに記載の自己集合体。
[Item 4]
Item 4. The self-assembly according to any one of Items 1 to 3, wherein R 3 and R 4 are each independently C 1-3 alkyl.
[項5]
 R及びRがともにHである、項1又は2に記載の自己集合体。
[Item 5]
Item 3. The self-assembly according to Item 1 or 2, wherein R x and R y are both H.
[項6]
 nが5~10の整数である、項1~5のいずれかに記載の自己集合体。
[Item 6]
Item 6. The self-assembly according to any one of Items 1 to 5, wherein n is an integer of 5 to 10.
[項7]
 流体力学的サイズ40nm~12,000nmを有する凝集体を形成する、項1~6のいずれかに記載の自己集合体。
[Item 7]
Item 7. The self-assembly according to any one of Items 1 to 6, which forms an aggregate having a hydrodynamic size of 40 nm to 12,000 nm.
[項8]
 項1~7のいずれかに記載の自己集合体を含む、免疫賦活剤。
[Item 8]
Item 8. An immunostimulator comprising the self-assembly according to any one of Items 1 to 7.
[項9]
 アジュバントである、項8に記載の免疫賦活剤。
[Item 9]
Item 9. The immunostimulant according to Item 8, which is an adjuvant.
[項10]
 項9に記載の免疫賦活剤及び抗原を含む、ワクチン組成物。
[Item 10]
Item 10. A vaccine composition comprising the immunostimulating agent according to Item 9 and an antigen.
[項11]
 がん、感染症、アレルギー疾患、自己免疫疾患、高血圧症及びアルツハイマー病からなる群から選択される疾患の治療及び/又は予防のための、項10に記載のワクチン組成物。
[Item 11]
Item 11. The vaccine composition according to Item 10, for treating and / or preventing a disease selected from the group consisting of cancer, infectious disease, allergic disease, autoimmune disease, hypertension and Alzheimer's disease.
[項12]
 式(I):
Figure JPOXMLDOC01-appb-C000017
[式中、Rは、H又は式(II):
Figure JPOXMLDOC01-appb-C000018
で示される基であり、
 Rは、H又は式(III):
Figure JPOXMLDOC01-appb-C000019
で示される基であり、
 R、R、R及びRは、それぞれ独立して、H、C1-6アルキル又はC1-6ハロアルキルであり、
 波線は結合部位を示し、
 nは1~12の整数である]
で示される化合物。
[Item 12]
Formula (I):
Figure JPOXMLDOC01-appb-C000017
Wherein R x is H or formula (II):
Figure JPOXMLDOC01-appb-C000018
Is a group represented by
R y is H or formula (III):
Figure JPOXMLDOC01-appb-C000019
Is a group represented by
R 1 , R 2 , R 3 and R 4 are each independently H, C 1-6 alkyl or C 1-6 haloalkyl;
Wavy lines indicate binding sites,
n is an integer of 1 to 12]
A compound represented by the formula:
 用語「C1-12アルキル」とは、炭素数1~12の直鎖状又は分枝鎖状の飽和炭化水素基をいう。「C1-12アルキル」としては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、sec-ブチル、tert-ブチル、n-ペンチル、イソペンチル、ネオペンチル、1,1-ジメチルプロピル、1-エチルプロピル、n-ヘキシル、イソヘキシル、3,3-ジメチルブチル、2,2-ジメチルブチル、1,1-ジメチルブチル、2-エチルブチル、n-ヘプチル、2-メチルヘキシル、2,2-ジメチルペンチル、2,2,3-トリメチルブチル、n-オクチル、3,4-ジメチルヘキシル、2,2,4-トリメチルペンチル、n-ノニル、n-デカニル、n-ウンデカニル、n-ドデカニル等が挙げられる。「C1-6アルキル」としては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、sec-ブチル、tert-ブチル、n-ペンチル、イソペンチル、ネオペンチル、1,1-ジメチルプロピル、1-エチルプロピル、n-ヘキシル、イソヘキシル、3,3-ジメチルブチル、2,2-ジメチルブチル、1,1-ジメチルブチル、2-エチルブチル等が挙げられる。 The term “C 1-12 alkyl” refers to a linear or branched saturated hydrocarbon group having 1 to 12 carbon atoms. “C 1-12 alkyl” includes methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, neopentyl, 1,1-dimethylpropyl, -Ethylpropyl, n-hexyl, isohexyl, 3,3-dimethylbutyl, 2,2-dimethylbutyl, 1,1-dimethylbutyl, 2-ethylbutyl, n-heptyl, 2-methylhexyl, 2,2-dimethylpentyl , 2,2,3-trimethylbutyl, n-octyl, 3,4-dimethylhexyl, 2,2,4-trimethylpentyl, n-nonyl, n-decanyl, n-undecanyl, n-dodecanyl and the like. “C 1-6 alkyl” includes methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, neopentyl, 1,1-dimethylpropyl, -Ethylpropyl, n-hexyl, isohexyl, 3,3-dimethylbutyl, 2,2-dimethylbutyl, 1,1-dimethylbutyl, 2-ethylbutyl and the like.
 用語「C1-12ハロアルキル」とは、1つ以上の任意の水素原子が同一又は異なるハロゲンで置き換えられたC1-12アルキルをいう。「C1-12ハロアルキル」としては、ジフルオロメチル、トリフルオロメチル、2-フルオロエチル、2-クロロエチル、2,2-ジフルオロエチル、2,2,2-トリフルオロエチル、ペンタフルオロエチル、1,1-ジフルオロプロピル、3,3,3-トリフルオロプロピル、2,2,2-トリフルオロ-1-メチル-エチル、1,1-ジフルオロ-2-メチルプロピル、4-クロロブチル、5-フルオロペンチル等が挙げられる。 The term “C 1-12 haloalkyl” refers to a C 1-12 alkyl in which one or more optional hydrogen atoms have been replaced with the same or different halogen. “C 1-12 haloalkyl” includes difluoromethyl, trifluoromethyl, 2-fluoroethyl, 2-chloroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, pentafluoroethyl, 1,1 -Difluoropropyl, 3,3,3-trifluoropropyl, 2,2,2-trifluoro-1-methyl-ethyl, 1,1-difluoro-2-methylpropyl, 4-chlorobutyl, 5-fluoropentyl and the like No.
 用語「ハロ」又は「ハロゲン」としては、フルオロ、クロロ、ブロモ、ヨード等が挙げられる。 The term “halo” or “halogen” includes fluoro, chloro, bromo, iodo and the like.
 用語「自己集合体」とは、分子の自発的な自己組織化として定義される自己集合(self-assembling)により形成される、当該分子を構成単位とする集合体をいい、2つ以上の分子が非共有結合により連結して形成される、ミセル状、繊維状、結晶状、コロイド状又は粒子状の凝集体である。ここで、非共有結合としては、疎水結合、π-πスタッキング、水素結合、ファンデルワールス結合及びこれらの任意の組合せが挙げられる。自己集合体を構成する分子としては、胆汁酸に特定の化学修飾がなされた部分構造をもつ小分子化合物が挙げられ、好ましくは式(I)の化合物である。自己集合体は、複数の疎水性ポケットを有していてもよく、この疎水性ポケットを介して他の分子及び抗原等の種々の物質を集合体構造中に取り込むことができる。自己集合体はまた、R、R及びR~Rの相違に基づく異なる構造を有する式(I)の化合物の集合体であってもよく、また式(I)の化合物以外の化合物が混入して集合体を形成したものも包含される。自己集合体はまた、構成単位となる分子の化学修飾により、その構造及び特性を適宜コントロールすることができる。自己集合体は、膜タンパク質との相互作用を通じて免疫賦活作用を示してもよい。自己集合体の流体力学的サイズは、特に限定されるものではなく、培地中濃度、血中濃度及び組織中濃度等の周囲環境に依存しうるが、例えば40~12,000nmであり、好ましくは45~5,000nmであり、より好ましくは100~1,000nmであり、さらに好ましくは140~800nmであり、特に好ましくは150~500nmである。ここで、用語「流体力学的サイズ」は、流体力学的直径をいい、例えば動的光散乱法(DLS)を用いて測定してもよい。自己集合体はまた、その培地中濃度、血中濃度又は組織中濃度が上昇するに従い、免疫賦活作用が上昇しうる。 The term "self-assembly" refers to an assembly formed by self-assembling, defined as the spontaneous self-assembly of a molecule, and comprising the molecule as a constituent unit, and two or more molecules. Is a micellar, fibrous, crystalline, colloidal, or particulate aggregate formed by non-covalent bonding. Here, examples of the non-covalent bond include a hydrophobic bond, π-π stacking, a hydrogen bond, a van der Waals bond, and an arbitrary combination thereof. Examples of the molecules constituting the self-assembly include small molecule compounds having a partial structure in which bile acid is chemically modified, and preferably a compound of the formula (I). The self-assembly may have a plurality of hydrophobic pockets, and through this hydrophobic pocket, various substances such as other molecules and antigens can be incorporated into the assembly structure. A self-assembly may also be an aggregate of compounds of formula (I) having different structures based on the differences in R x , R y and R 1 -R 4 , and compounds other than compounds of formula (I) Mixed together to form an aggregate. The structure and properties of the self-assembly can be appropriately controlled by chemical modification of a molecule serving as a structural unit. Self-assemblies may exhibit immunostimulatory effects through interaction with membrane proteins. The hydrodynamic size of the self-assembly is not particularly limited and may depend on the surrounding environment such as the concentration in the medium, the concentration in the blood and the concentration in the tissue, but is, for example, 40 to 12,000 nm, and is preferably It is 45 to 5,000 nm, more preferably 100 to 1,000 nm, further preferably 140 to 800 nm, and particularly preferably 150 to 500 nm. Here, the term "hydrodynamic size" refers to the hydrodynamic diameter, which may be measured, for example, using dynamic light scattering (DLS). The self-assembly may also have an increased immunostimulatory effect as its concentration in the medium, blood or tissue increases.
 用語「免疫賦活作用」とは、細胞表面にあるパターン認識受容体に対する内因性又は外因性アゴニスト活性をいう。当該アゴニスト活性によりマクロファージや樹状細胞等の抗原提示細胞が活性化されてインターロイキン等のサイトカインが産生されうる。免疫賦活作用は、好ましくはトール様受容体(TLR)に対するアゴニスト活性であり、より好ましくはTLR7アゴニスト活性又はTLR9アゴニスト活性であり、特に好ましくはTLR7アゴニスト活性である。免疫賦活作用はまた、自己集合体の流体力学的サイズが大きくなると、増大しうる。TLR7はウイルス由来の一本鎖RNA又は合成低分子リガンドを感知することにより、インターフェロン等の産生を促すため、TLR7アゴニストは免疫賦活作用を示し、例えば、感染症及び自己免疫疾患等の種々の疾患の治療薬として有用でありうる。TLR9は一般にバクテリア及びウイルスに見られ、非メチル化DNAに対する自然免疫応答及び適応免疫応答を刺激する役割を担うため、TLR9アゴニストはワクチン組成物に用いられる抗原の免疫原性を向上しうる。 The term "immunostimulatory effect" refers to endogenous or exogenous agonist activity for a pattern recognition receptor on the cell surface. By the agonist activity, antigen presenting cells such as macrophages and dendritic cells can be activated to produce cytokines such as interleukins. The immunostimulatory activity is preferably an agonist activity for a Toll-like receptor (TLR), more preferably a TLR7 agonist activity or a TLR9 agonist activity, and particularly preferably a TLR7 agonist activity. Immunostimulatory effects can also be increased as the hydrodynamic size of the self-assembly increases. TLR7 stimulates the production of interferon and the like by sensing single-stranded RNA or synthetic small molecule ligand derived from virus. Therefore, TLR7 agonist has an immunostimulatory effect, for example, various diseases such as infectious diseases and autoimmune diseases. May be useful as therapeutics for Since TLR9 is commonly found in bacteria and viruses and plays a role in stimulating innate and adaptive immune responses to unmethylated DNA, TLR9 agonists can improve the immunogenicity of antigens used in vaccine compositions.
 用語「免疫賦活剤」とは、免疫賦活作用を示す物質又は組成物をいい、種々の疾患の免疫療法に用いうる。免疫賦活剤は、自己集合体を含有してもよい。免疫賦活剤を、抗原又は抗原を含むワクチン組成物と併用した場合、その抗原に対する免疫原性が獲得又は増強され、免疫持続期間が延長されうる。免疫賦活剤は、それのみで投与してもよく、抗原又は抗原を含むワクチン組成物と一定間隔を空けて別々に、連続して又は同時に投与されるように用いてもよく、或いは、ワクチン組成物の含有成分として用いてもよい。免疫賦活剤としては、例えばアジュバントが挙げられる。免疫賦活剤に含有される自己集合体の量は、免疫学的に許容される量であれば特に制限されるものではないが、例えば0.1~20w/w%、好ましくは0.2~15w/w%、より好ましくは0.3~10w/w%、特に好ましくは0.5~5w/w%である。 The term “immunostimulant” refers to a substance or composition that exhibits an immunostimulatory effect, and can be used for immunotherapy of various diseases. The immunostimulant may contain a self-assembly. When an immunostimulant is used in combination with an antigen or a vaccine composition containing the antigen, immunogenicity to the antigen can be obtained or enhanced, and the duration of immunity can be prolonged. The immunostimulant may be administered alone, may be used to be administered separately, sequentially or simultaneously at an interval from the antigen or vaccine composition comprising the antigen, or May be used as a component of the product. Examples of the immunostimulant include an adjuvant. The amount of the self-assembly contained in the immunostimulant is not particularly limited as long as it is an immunologically acceptable amount, but is, for example, 0.1 to 20 w / w%, preferably 0.2 to 20 w / w%. It is 15 w / w%, more preferably 0.3 to 10 w / w%, particularly preferably 0.5 to 5 w / w%.
 用語「抗原」とは、免疫応答を生じさせる物質をいい、例えばペプチド又はタンパク質が挙げられる。抗原としては、がん抗原、ウイルス抗原、細菌性抗原、真菌性抗原、原虫性又は寄生虫性抗原、アレルギー関連抗原、疾患関連抗原が挙げられる。 The term "antigen" refers to a substance that provokes an immune response, such as a peptide or protein. Antigens include cancer antigens, viral antigens, bacterial antigens, fungal antigens, protozoal or parasite antigens, allergy-related antigens, and disease-related antigens.
 用語「ワクチン組成物」とは、抗原を含む組成物をいい、種々の疾患の免疫療法に用いうる。ワクチン組成物は、それのみで投与してもよく、免疫賦活剤と一定間隔を空けて別々に、連続して又は同時に投与されるように用いてもよく、或いは、免疫賦活剤を含有するワクチン組成物として用いてもよい。ワクチン組成物はまた、医薬的に許容される担体を含んでもよい。当該医薬的に許容される担体としては、当分野で通常用いられる賦形剤、等張化剤、緩衝剤、pH調節剤、懸濁化剤、保存剤等の添加物が挙げられる。ワクチン組成物は、当分野で通常用いられる投与経路で投与してもよい。当該投与経路としては、経口投与;又は静脈内注射、動脈内注射、皮下注射、皮内注射、筋肉内注射、髄腔内投与、経皮投与等の非経口投与が挙げられる。ワクチン組成物に含有される各成分の量は、当分野で通常用いられる、免疫学的に許容される量であれば、特に制限されない。 The term “vaccine composition” refers to a composition containing an antigen, and can be used for immunotherapy of various diseases. The vaccine composition may be administered alone, may be used so that it is administered separately, sequentially or simultaneously at an interval from the immunostimulant, or a vaccine containing the immunostimulant. It may be used as a composition. The vaccine composition may also include a pharmaceutically acceptable carrier. Such pharmaceutically acceptable carriers include additives commonly used in the art, such as excipients, isotonic agents, buffers, pH adjusters, suspending agents, preservatives, and the like. The vaccine composition may be administered by administration routes commonly used in the art. Examples of the administration route include oral administration; and parenteral administration such as intravenous injection, intraarterial injection, subcutaneous injection, intradermal injection, intramuscular injection, intrathecal administration, and transdermal administration. The amount of each component contained in the vaccine composition is not particularly limited as long as it is an immunologically acceptable amount usually used in the art.
 用語「疾患」としては、がん(例えば白血病、リンパ腫、神経性腫瘍、メラノーマ、乳癌、肺癌、頭頸部癌、胃癌、結腸癌、肝癌、膵癌、子宮頸癌、子宮癌、卵巣癌、腟癌、精巣癌、前立腺癌、陰茎癌、骨腫瘍、血管腫瘍、***癌、上咽頭癌、咽頭癌、食道癌、直腸癌、胆嚢癌、胆管癌、喉頭癌、肺癌、膀胱癌、腎臓癌、脳腫瘍、甲状腺癌、ホジキン病、非ホジキンリンパ腫等)、感染症(例えばインフルエンザ、ヒト免疫不全症候群(HIV)、ウイルス性肝炎等の肝炎、エボラ出血熱等のウイルス感染症;百日咳、ジフテリア、破傷風、結核、ヘリコバクター・ピロリ、肺炎球菌等による細菌感染症;カンジダ等の真菌感染症;マラリア等の原虫性又は寄生虫性感染症等)、アレルギー疾患(例えばアトピー性皮膚炎、アレルギー性鼻炎、喘息等)、自己免疫疾患(例えば糖尿病(1型糖尿病及び2型糖尿病を含む)、多発性硬化症、関節リウマチ、全身性エリテマトーデス、乾癬等)、高血圧症、アルツハイマー病が挙げられる。 The term “disease” includes cancer (eg, leukemia, lymphoma, neurological tumor, melanoma, breast cancer, lung cancer, head and neck cancer, stomach cancer, colon cancer, liver cancer, pancreatic cancer, cervical cancer, uterine cancer, ovarian cancer, vaginal cancer , Testicular cancer, prostate cancer, penile cancer, bone tumor, vascular tumor, lip cancer, nasopharyngeal cancer, pharyngeal cancer, esophageal cancer, rectal cancer, gallbladder cancer, bile duct cancer, laryngeal cancer, lung cancer, bladder cancer, kidney cancer, brain tumor Thyroid cancer, Hodgkin's disease, non-Hodgkin's lymphoma, etc., infectious diseases (eg, influenza, human immunodeficiency syndrome (HIV), hepatitis such as viral hepatitis, viral infections such as Ebola hemorrhagic fever; pertussis, diphtheria, tetanus, tuberculosis, Helicobacter. -Bacterial infections caused by H. pylori, pneumococci, etc .; fungal infections such as Candida; protozoal or parasite infections such as malaria; allergic diseases (eg, atopic dermatitis, allergic nose) , Asthma, etc.), autoimmune diseases (including, for example, diabetes mellitus (type 1 diabetes and type 2 diabetes), multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, psoriasis, etc.), hypertension, Alzheimer's disease.
 ある態様において、R及びRはともにHである。 In some embodiments, R x and R y are both H.
 R及びRは、好ましくは同一である。R及びRは、好ましくはH、C1-3アルキル又はC1-3ハロアルキルであり、より好ましくはH又はイソプロピルである。特に好ましくは、R及びRはともにHである。 R 1 and R 2 are preferably the same. R 1 and R 2 are preferably H, C 1-3 alkyl or C 1-3 haloalkyl, more preferably H or isopropyl. Particularly preferably, R 1 and R 2 are both H.
 R及びRは、好ましくは同一である。R及びRは、好ましくはC1-3アルキル又はC1-3ハロアルキルであり、より好ましくはC1-3アルキルであり、特に好ましくはメチル又はエチルである。 R 3 and R 4 are preferably the same. R 3 and R 4 are preferably C 1-3 alkyl or C 1-3 haloalkyl, more preferably C 1-3 alkyl, and particularly preferably methyl or ethyl.
 nは、好ましくは2~12であり、より好ましくは5~10であり、特に好ましくは5~8である。 Δn is preferably from 2 to 12, more preferably from 5 to 10, and particularly preferably from 5 to 8.
 式(I)の化合物は、好ましくは式(I-1):
Figure JPOXMLDOC01-appb-C000020
[式中、R、R及びnは式(I)におけるものと同義である]
で示される化合物である。
The compound of formula (I) preferably has the formula (I-1):
Figure JPOXMLDOC01-appb-C000020
[Wherein, R x , R y and n have the same meanings as in formula (I)]
It is a compound shown by these.
 本明細書において、以下の略語を用いることがある。
Ex.:実施例化合物、又は試験例においては当該実施例化合物の自己集合体を示す場合もある。
REx.:参考例
ANS:8-アニリノ-1-ナフタレンスルホン酸
BMDC:骨髄由来樹状細胞
DMAP:N,N-ジメチル-4-アミノピリジン
DMEM:ダルベッコ改変イーグル培地
DMSO:ジメチルスルホキシド
Et:エチル
EtOH:エタノール
FBS:ウシ胎児血清
GM-CSF:顆粒球単球コロニー刺激因子
iPr:イソプロピル
LPS:リポ多糖
MGM-5:
OVA:オボアルブミン
PBS:リン酸緩衝生理食塩水
RPMI:ロズウェルパーク記念研究所培地
TDM:トレハロース-6,6’-ジミコレート
TLC:薄層クロマトグラフィー
WSCI・HCl:1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩
WT:野生型
In this specification, the following abbreviations may be used.
Ex. : In some cases, a self-assembly of an example compound or a test example is shown in the test examples.
REx. Reference Example ANS: 8-anilino-1-naphthalenesulfonic acid BMDC: bone marrow-derived dendritic cells DMAP: N, N-dimethyl-4-aminopyridine DMEM: Dulbecco's modified Eagle's medium DMSO: dimethyl sulfoxide Et: ethyl EtOH: ethanol FBS : Fetal calf serum GM-CSF: granulocyte monocyte colony stimulating factor iPr: isopropyl LPS: lipopolysaccharide MGM-5:
OVA: Ovalbumin PBS: Phosphate buffered saline RPMI: Roswell Park Memorial Laboratory Medium TDM: Trehalose-6,6′-dimicolate TLC: Thin-layer chromatography WSCI.HCl: 1-ethyl-3- (3-dimethyl Aminopropyl) carbodiimide hydrochloride WT: wild type
[一般製法1]
 式(I)の化合物は、例えば以下のスキームで示されるウギ反応に従い製造することができる。
Figure JPOXMLDOC01-appb-C000021
[スキーム中、R-COOHは胆汁酸、例えば一次胆汁酸又は二次胆汁酸、好ましくはデオキシコール酸であり、
 RはC1-12アルキルであり、好ましくはC2-10アルキルであり、より好ましくはC5-10アルキルであり、特に好ましくはC5-8アルキルであり、
 RはH、C1-6アルキル又はC1-6ハロアルキルであり、
 RはCHC(=O)O-R又はCHC(=O)O-Rであり、
 R及びRは前記定義されるとおりである]
 化合物(a)、(b)、(c)及び(d)を溶媒中で縮合反応させることにより式(I)の化合物を得ることができる。縮合反応は、化合物(b)及び(c)を混合してイミン中間体を得た後、当該混合物に化合物(a)及び(d)を添加して行ってもよい。溶媒としては、メタノール又はエタノール等のアルコール、DMF等の非プロトン性極性溶媒が挙げられ、好ましくはエタノールである。反応温度は、室温から60℃である。
[General manufacturing method 1]
The compound of the formula (I) can be produced, for example, according to the Ugi reaction shown in the following scheme.
Figure JPOXMLDOC01-appb-C000021
[In the scheme, R a -COOH is a bile acid, such as a primary bile acid or a secondary bile acid, preferably deoxycholic acid;
R b is C 1-12 alkyl, preferably C 2-10 alkyl, more preferably C 5-10 alkyl, particularly preferably C 5-8 alkyl,
R c is H, C 1-6 alkyl or C 1-6 haloalkyl;
R d is CH 2 C (= O) OR 3 or CH 2 C (= O) OR 4 ,
R 3 and R 4 are as defined above.
The compounds of formula (I) can be obtained by subjecting compounds (a), (b), (c) and (d) to a condensation reaction in a solvent. The condensation reaction may be performed by mixing the compounds (b) and (c) to obtain an imine intermediate, and then adding the compounds (a) and (d) to the mixture. Examples of the solvent include alcohols such as methanol and ethanol, and aprotic polar solvents such as DMF, and ethanol is preferable. The reaction temperature is from room temperature to 60 ° C.
[一般製法2]
 式(I)の化合物はまた、R及びRがともにHである場合、例えば以下の方法に従い製造することができる。
 化合物(a)、化合物(b)及び脱水縮合剤を、溶媒中、適宜塩基存在下にて縮合反応させることにより式(I)の化合物を得ることができる。脱水縮合剤としては、WSCI・HCl、N,N’-ジシクロヘキシルカルボジイミド等のカルボジイミドが挙げられる。塩基としては、DMAPが挙げられる。溶媒としては、ジクロロメタン等の非極性溶媒が挙げられる。反応温度は、室温から40℃である。
[General manufacturing method 2]
The compound of formula (I) can also be prepared when R x and R y are both H, for example according to the following method.
The compound of formula (I) can be obtained by subjecting compound (a), compound (b) and the dehydrating condensing agent to a condensation reaction in a solvent in the presence of a base as appropriate. Examples of the dehydrating condensing agent include carbodiimides such as WSCI · HCl and N, N′-dicyclohexylcarbodiimide. Examples of the base include DMAP. Examples of the solvent include a non-polar solvent such as dichloromethane. The reaction temperature is from room temperature to 40 ° C.
[自己集合体の製造]
 式(I)の化合物の自己集合体は、上記のようにして製造した式(I)の化合物から、例えば以下の方法に従い製造することができる。
 式(I)の化合物を非プロトン性極性溶媒(例えば、DMSO)に溶解させた後、当該溶液を、適宜、添加物(例えば、血清)を含む組織培養用培地(例えば、DMEM)に加えて混和する。混和した溶液を静置させて、式(I)の化合物の自己集合体を得る。
[Manufacture of self-assembly]
The self-assembly of the compound of the formula (I) can be produced from the compound of the formula (I) produced as described above, for example, according to the following method.
After dissolving the compound of formula (I) in an aprotic polar solvent (eg, DMSO), the solution is added to a tissue culture medium (eg, DMEM) containing an additive (eg, serum) as appropriate. Mix. The mixed solution is allowed to stand to obtain a self-assembly of the compound of the formula (I).
 自己集合体の生成は、自己集合体と環境感受性蛍光プローブとを水性溶媒(例えば水)中で混合し、当該混合物の蛍光強度を測定することにより確認することができる。環境感受性蛍光プローブは、本質的には水性溶媒中で非蛍光性であるが、低極性溶媒中又は疎水性環境中では蛍光性を示す。疎水性環境としては、例えば自己集合体の疎水性ポケットが挙げられる。環境感受性蛍光プローブとしては、例えば8-アニリノ-1-ナフタレンスルホン酸(ANS)、ナイルレッドが挙げられる。 生成 The formation of the self-assembly can be confirmed by mixing the self-assembly with the environment-sensitive fluorescent probe in an aqueous solvent (for example, water) and measuring the fluorescence intensity of the mixture. Environmentally sensitive fluorescent probes are essentially non-fluorescent in aqueous solvents, but show fluorescence in less polar solvents or in hydrophobic environments. Hydrophobic environments include, for example, self-assembled hydrophobic pockets. Examples of the environmentally sensitive fluorescent probe include 8-anilino-1-naphthalenesulfonic acid (ANS) and Nile Red.
 以下に実施例及び試験例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。 本 The present invention will be described in more detail with reference to examples and test examples below, but the present invention is not limited to these.
[実施例1]ジエチル 6,12-ビス(4-((3R,5R,8R,9S,10S,12S,13R,14S,17S)-3,12-ジヒドロキシ-10,13-ジメチルヘキサデカヒドロ-1H-シクロペンタ[a]フェナントレン-17-イル)ペンタノイル)-4,14-ジオキソ-3,6,12,15-テトラアザヘプタデカンジオエートの製造
 ホルムアルデヒド(3.6 mg, 0.12 mmol)、カダベリン(0.06 mmol)及びEtOH(1 ml)をガラス管に充填した。混合物を40℃にて15分間撹拌した。デオキシコール酸(0.12 mmol)及びイソシアノ酢酸エチル(14.1μl, 0.12 mmol)を反応混合物に添加し、12時間撹拌した。窒素雰囲気下EtOHを留去し、粗製物をジクロロメタンに溶解させた。1M塩酸、2M NaOH水溶液及び飽和食塩水で洗浄し、有機層を分取用TLCに充填し、クロロホルム/メタノール(10/1)で展開させた。生成物を含むシリカを掻き取り、アセトニトリル/EtOH溶液の入った平底ガラス瓶に入れた。撹拌棒で粉末化し、ろ過した。溶液を減圧濃縮し、真空乾燥して標題化合物(1.3 mg, 0.0011 mmol)を得た。
Example 1 Diethyl 6,12-bis (4-((3R, 5R, 8R, 9S, 10S, 12S, 13R, 14S, 17S) -3,12-dihydroxy-10,13-dimethylhexadecahydro- Preparation of 1H-cyclopenta [a] phenanthrene-17-yl) pentanoyl) -4,14-dioxo-3,6,12,15-tetraazaheptadecandioate formaldehyde (3.6 mg, 0.12 mmol), cadaverine (0.06 mmol) ) And EtOH (1 ml) were filled into glass tubes. The mixture was stirred at 40 ° C. for 15 minutes. Deoxycholic acid (0.12 mmol) and ethyl isocyanoacetate (14.1 μl, 0.12 mmol) were added to the reaction mixture and stirred for 12 hours. The EtOH was distilled off under a nitrogen atmosphere and the crude was dissolved in dichloromethane. After washing with 1 M hydrochloric acid, 2 M NaOH aqueous solution and saturated saline, the organic layer was filled in a preparative TLC and developed with chloroform / methanol (10/1). The silica containing the product was scraped and placed in a flat-bottomed glass bottle containing the acetonitrile / EtOH solution. Powdered with a stir bar and filtered. The solution was concentrated under reduced pressure and dried under vacuum to obtain the title compound (1.3 mg, 0.0011 mmol).
 実施例1の方法に従い、以下の実施例化合物を製造した。
Figure JPOXMLDOC01-appb-T000022

According to the method of Example 1, the following example compounds were produced.
Figure JPOXMLDOC01-appb-T000022

[実施例10](4R,4'R)-N,N'-(ペンタン-1,5-ジイル)ビス(4-((3R,5S,8R,9S,10S,12S,13R,17R)-3,12-ジヒドロキシ-10,13-ジメチルヘキサデカヒドロ-1H-シクロペンタ[a]フェナントレン-17-イル)ペンタアミド)の製造
Figure JPOXMLDOC01-appb-C000023
 デオキシコール酸(382 mg, 0.97 mmol)、カダベリン(5 mmol)及びジクロロメタン(5 ml)をガラス管に充填し、撹拌した。混合液へWSCI・HCl(230 mg, 1.2 mmol)及びDMAP(122.17 mg, 1.0 mmol)を加えて室温で3時間撹拌した。水を加えて反応を停止させたのちに、クロロホルムで三回抽出を行った。有機層を2M NaOH水溶液、1M 塩酸及び飽和食塩水で洗浄し、減圧下で溶媒を留去した。粗生成物をカラムクロマトグラフィーで精製し、溶液を減圧濃縮し、真空乾燥して標題化合物(160 mg, 0.19 mmol)を得た。
Example 10 (4R, 4'R) -N, N '-(pentane-1,5-diyl) bis (4-((3R, 5S, 8R, 9S, 10S, 12S, 13R, 17R)- Preparation of 3,12-dihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta [a] phenanthren-17-yl) pentaamide)
Figure JPOXMLDOC01-appb-C000023
Deoxycholic acid (382 mg, 0.97 mmol), cadaverine (5 mmol) and dichloromethane (5 ml) were charged into a glass tube and stirred. WSCI · HCl (230 mg, 1.2 mmol) and DMAP (122.17 mg, 1.0 mmol) were added to the mixture, and the mixture was stirred at room temperature for 3 hours. After water was added to stop the reaction, extraction was performed three times with chloroform. The organic layer was washed with a 2M aqueous NaOH solution, 1M hydrochloric acid and saturated saline, and the solvent was distilled off under reduced pressure. The crude product was purified by column chromatography, the solution was concentrated under reduced pressure, and dried under vacuum to obtain the title compound (160 mg, 0.19 mmol).
 各実施例化合物の物性データを以下に示す。
Figure JPOXMLDOC01-appb-T000024


Figure JPOXMLDOC01-appb-I000025


Figure JPOXMLDOC01-appb-I000026


Figure JPOXMLDOC01-appb-I000027

The physical property data of each example compound is shown below.
Figure JPOXMLDOC01-appb-T000024


Figure JPOXMLDOC01-appb-I000025


Figure JPOXMLDOC01-appb-I000026


Figure JPOXMLDOC01-appb-I000027

[参考例1]エチル N-((R)-4-((3R,5R,8R,9S,10S,12S,13R,14S,17R)-3,12-ジヒドロキシ-10,13-ジメチルヘキサデカヒドロ-1H-シクロペンタ[a]フェナントレン-17-イル)ペンタノイル)-N-メチルグリシルグリシネートの製造
Figure JPOXMLDOC01-appb-C000028
 ホルムアルデヒド(3.6 mg, 0.12 mmol)、メチルアミン(0.12 mmol)及びEtOH(1 ml)をガラス管に充填した。混合物を40℃にて15分間撹拌した。デオキシコール酸(0.12 mmol)及びイソシアノ酢酸エチル(14.1μl, 0.12 mmol)を反応混合物に添加し、12時間撹拌した。窒素雰囲気下EtOHを留去し、粗製物をジクロロメタンに溶解させた。1M塩酸、2M NaOH水溶液及び飽和食塩水で洗浄し、有機層を分取用TLCに充填し、クロロホルム/メタノール(20/1)で展開させた。生成物を含むシリカを掻き取り、アセトニトリル/EtOH溶液の入った平底ガラス瓶に入れた。撹拌棒で粉末化し、ろ過した。溶液を減圧濃縮し、真空乾燥して標題化合物(25 mg, 0.046 mmol)を得た。
Reference Example 1 Ethyl N-((R) -4-((3R, 5R, 8R, 9S, 10S, 12S, 13R, 14S, 17R) -3,12-dihydroxy-10,13-dimethylhexadecahydro Preparation of -1H-cyclopenta [a] phenanthrene-17-yl) pentanoyl) -N-methylglycylglycinate
Figure JPOXMLDOC01-appb-C000028
Formaldehyde (3.6 mg, 0.12 mmol), methylamine (0.12 mmol) and EtOH (1 ml) were charged into a glass tube. The mixture was stirred at 40 ° C. for 15 minutes. Deoxycholic acid (0.12 mmol) and ethyl isocyanoacetate (14.1 μl, 0.12 mmol) were added to the reaction mixture and stirred for 12 hours. The EtOH was distilled off under a nitrogen atmosphere and the crude was dissolved in dichloromethane. After washing with 1 M hydrochloric acid, 2 M NaOH aqueous solution and saturated saline, the organic layer was filled in a preparative TLC and developed with chloroform / methanol (20/1). The silica containing the product was scraped and placed in a flat-bottomed glass bottle containing the acetonitrile / EtOH solution. Powdered with a stir bar and filtered. The solution was concentrated under reduced pressure and dried under vacuum to obtain the title compound (25 mg, 0.046 mmol).
[参考例2]ジエチル 6,12-ビス(4-((3R,5R,8R,9S,10S,13R,14S,17S)-3-ヒドロキシ-10,13-ジメチルヘキサデカヒドロ-1H-シクロペンタ[a]フェナントレン-17-イル)ペンタノイル)-4,14-ジオキソ-3,6,12,15-テトラアザヘプタデカンジオエートの製造
Figure JPOXMLDOC01-appb-C000029
 ホルムアルデヒド(3.6 mg, 0.12 mmol)、カダベリン(0.06 mmol)及びEtOH(1 ml)をガラス管に充填した。混合物を40℃にて15分間撹拌した。リトコール酸(0.12 mmol)及びイソシアノ酢酸エチル(14.1μl, 0.12 mmol)を反応混合物に添加し、12時間撹拌した。窒素雰囲気下EtOHを留去し、粗製物をジクロロメタンに溶解させた。1M塩酸、2M NaOH水溶液及び飽和食塩水で洗浄し、有機層を分取用TLCに充填し、クロロホルム/メタノール(20/1)で展開させた。生成物を含むシリカを掻き取り、アセトニトリル/EtOH溶液の入った平底ガラス瓶に入れた。撹拌棒で粉末化し、ろ過した。溶液を減圧濃縮し、真空乾燥して標題化合物(1.7 mg, 0.0015 mmol)を得た。
Reference Example 2 Diethyl 6,12-bis (4-((3R, 5R, 8R, 9S, 10S, 13R, 14S, 17S) -3-hydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta [ a) Preparation of phenanthrene-17-yl) pentanoyl) -4,14-dioxo-3,6,12,15-tetraazaheptadecandioate
Figure JPOXMLDOC01-appb-C000029
Formaldehyde (3.6 mg, 0.12 mmol), cadaverine (0.06 mmol) and EtOH (1 ml) were charged into a glass tube. The mixture was stirred at 40 ° C. for 15 minutes. Lithocholic acid (0.12 mmol) and ethyl isocyanoacetate (14.1 μl, 0.12 mmol) were added to the reaction mixture and stirred for 12 hours. The EtOH was distilled off under a nitrogen atmosphere and the crude was dissolved in dichloromethane. After washing with 1 M hydrochloric acid, 2 M NaOH aqueous solution and saturated saline, the organic layer was filled in a preparative TLC and developed with chloroform / methanol (20/1). The silica containing the product was scraped and placed in a flat-bottomed glass bottle containing the acetonitrile / EtOH solution. Powdered with a stir bar and filtered. The solution was concentrated under reduced pressure and dried under vacuum to obtain the title compound (1.7 mg, 0.0015 mmol).
[参考例3]ジエチル 4,14-ジオキソ-6,12-ビス((R)-4-((3R,5S,7R,8R,9S,10S,12S,13R,14S,17R)-3,7,12-トリヒドロキシ-10,13-ジメチルヘキサデカヒドロ-1H-シクロペンタ[a]フェナントレン-17-イル)ペンタノイル)-3,6,12,15-テトラアザヘプタデカンジオエートの製造
Figure JPOXMLDOC01-appb-C000030
 ホルムアルデヒド(3.6 mg, 0.12 mmol)、カダベリン(0.06 mmol)及びEtOH(1 ml)をガラス管に充填した。混合物を40℃にて15分間撹拌した。コール酸(0.12 mmol)及びイソシアノ酢酸エチル(14.1μl, 0.12 mmol)を反応混合物に添加し、12時間撹拌した。窒素雰囲気下EtOHを留去し、粗製物をジクロロメタンに溶解させた。1M塩酸、2M NaOH水溶液及び飽和食塩水で洗浄し、有機層を分取用TLCに充填し、クロロホルム/メタノール(20/3)で展開させた。生成物を含むシリカを掻き取り、アセトニトリル/EtOH溶液の入った平底ガラス瓶に入れた。撹拌棒で粉末化し、ろ過した。溶液を減圧濃縮し、真空乾燥して標題化合物(0.4 mg, 0.00034 mmol)を得た。
Reference Example 3 Diethyl 4,14-dioxo-6,12-bis ((R) -4-((3R, 5S, 7R, 8R, 9S, 10S, 12S, 13R, 14S, 17R) -3,7) Preparation of (12,12-trihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta [a] phenanthrene-17-yl) pentanoyl) -3,6,12,15-tetraazaheptadecandioate
Figure JPOXMLDOC01-appb-C000030
Formaldehyde (3.6 mg, 0.12 mmol), cadaverine (0.06 mmol) and EtOH (1 ml) were charged into a glass tube. The mixture was stirred at 40 ° C. for 15 minutes. Cholic acid (0.12 mmol) and ethyl isocyanoacetate (14.1 μl, 0.12 mmol) were added to the reaction mixture and stirred for 12 hours. The EtOH was distilled off under a nitrogen atmosphere and the crude was dissolved in dichloromethane. After washing with 1M hydrochloric acid, 2M aqueous NaOH solution and saturated saline, the organic layer was filled in a preparative TLC and developed with chloroform / methanol (20/3). The silica containing the product was scraped and placed in a flat-bottomed glass bottle containing the acetonitrile / EtOH solution. Powdered with a stir bar and filtered. The solution was concentrated under reduced pressure and dried under vacuum to obtain the title compound (0.4 mg, 0.00034 mmol).
 各参考例化合物の物性データを以下に示す。
Figure JPOXMLDOC01-appb-T000031

Physical property data of each reference example compound is shown below.
Figure JPOXMLDOC01-appb-T000031

 上記実施例化合物及び参考例化合物から以下の方法に従い、それぞれの自己集合体を製造した。
 それぞれの化合物をDMSOに溶解させ、10mMのストック溶液を調製した。当該ストック溶液から各化合物の3mM DMSO溶液(20μl)を調製した後、それぞれの溶液を室温にて10%FBS及び1%ペニシリン-ストレプトマイシン溶液を含むDMEM(2ml)に加え、ピペッティングにより混和した。混和した溶液を1時間静置させ、各化合物の自己集合体を得た。
Each self-assembly was produced from the above example compound and reference example compound according to the following method.
Each compound was dissolved in DMSO to prepare a 10 mM stock solution. After preparing a 3 mM DMSO solution (20 μl) of each compound from the stock solution, each solution was added to DMEM (2 ml) containing 10% FBS and 1% penicillin-streptomycin solution at room temperature, and mixed by pipetting. The mixed solution was allowed to stand for 1 hour to obtain a self-assembly of each compound.
[試験例]
 試験例では、特に明記しない場合、以下の動物、細胞及び試薬を用いた。
(マウス)
 MyD88欠損マウス(オリエンタル酵母工業株式会社)及びC57BL/6(日本クレア株式会社)バックグラウンドのFcRγ欠損マウス(理化学研究所)を用いた。
(細胞)
 RAW-Blue(商標)細胞(InvivoGen社)に、NF-κB及びAP-1活性化により分泌型胎児性アルカリホスファターゼ(SEAP)レポーター遺伝子を発現させた。
 骨髄由来樹状細胞は、Ishikawa et al., Cell Host & Microbe, April 17, 2013, 13, 477-488に記載の方法に従い調製した。具体的には、10%(v/v)FBS及びβ-メルカプトエタノールを補充したRPMI1640培地にて骨髄細胞を、MGM-5から放出されるGM-CSFとともに、37℃にて10日間培養し、骨髄由来樹状細胞を調製した。
 10%FBS及び1%ペニシリン-ストレプトマイシン溶液を含むDMEMにてRAW264.7細胞(American Type Culture Collection社)を培養した。
(試薬)
 トレハロース-6,6’-ジミコレート(TDM;シグマ社)を1mg/mLにてクロロホルム:メタノール溶液(2:1(v/v))に溶解し、2-プロパノールで最終濃度50μg/mLまで希釈し、96ウェルプレートに20μL/ウェルにてコーティングした後、溶媒を留去した。コーティングしたTDMの量は1μg/ウェルとした。
 リポ多糖(LPS;L4516;シグマ社)及びカードラン(InvivoGen社)を5%又は10%FBSを含むRPMI又はDMEMで希釈し、免疫刺激特性測定に用いた。
[Test example]
In the test examples, the following animals, cells and reagents were used unless otherwise specified.
(mouse)
MyD88-deficient mice (Oriental Yeast Co., Ltd.) and C57BL / 6 (CLEA Japan) background FcRγ-deficient mice (RIKEN) were used.
(cell)
RAW-Blue ™ cells (InvivoGen) expressed the secreted fetal alkaline phosphatase (SEAP) reporter gene by NF-κB and AP-1 activation.
Bone marrow-derived dendritic cells were prepared according to the method described in Ishikawa et al., Cell Host & Microbe, April 17, 2013, 13, 477-488. Specifically, bone marrow cells were cultured in RPMI1640 medium supplemented with 10% (v / v) FBS and β-mercaptoethanol together with GM-CSF released from MGM-5 at 37 ° C. for 10 days, Bone marrow-derived dendritic cells were prepared.
RAW 264.7 cells (American Type Culture Collection) were cultured in DMEM containing 10% FBS and 1% penicillin-streptomycin solution.
(reagent)
Trehalose-6,6′-dimicolate (TDM; Sigma) was dissolved at 1 mg / mL in a chloroform: methanol solution (2: 1 (v / v)) and diluted with 2-propanol to a final concentration of 50 μg / mL. After coating on a 96-well plate at 20 μL / well, the solvent was distilled off. The amount of TDM coated was 1 μg / well.
Lipopolysaccharide (LPS; L4516; Sigma) and curdlan (InvivoGen) were diluted with RPMI or DMEM containing 5% or 10% FBS and used for immunostimulation property measurement.
[試験例1-1]自己集合体の流体力学的サイズ測定(1)
 上記のように製造した自己集合体の流体力学的直径を、キュムラント相関関数を用いた動的光散乱光度計(ELS-Z2;165°;オートアジャストモード;大塚電子株式会社)により測定した。
 具体的には、上記実施例1化合物を含む化合物ライブラリーの試験化合物のPBS(pH 7.4;Thermo Fisher Scientific社)溶液(50μM)を、1%(v/v)最終濃度のDMSOを含むように、Coster V底ポリプロピレン96ウェルプレートにて調製した。各サンプルをピペッティングにより混合し、室温にて15分間インキュベーションした。インキュベーションの後、各サンプルに蛍光試薬(1μL)を加え、ピペッティングにより混合した。さらに15分間インキュベーションした後、マイクロプレートリーダーにより蛍光強度を記録した。蛍光試薬として、ANSの1.5mM PBS溶液(励起波長=365 nm、発光波長=450 nm)またはナイルレッドの0.3mM DMSO溶液(励起波長=550 nm、発光波長=610 nm)のいずれかを用いた。全サンプルについて、50μM PBS溶液を25℃にて調製し、流体力学的直径を測定した。
 化合物ライブラリーのうち自己集合体を形成した化合物の流体力学的直径を図1に示す。
[Test Example 1-1] Measurement of hydrodynamic size of self-assembly (1)
The hydrodynamic diameter of the self-assembly produced as described above was measured by a dynamic light scattering photometer (ELS-Z2; 165 °; auto-adjust mode; Otsuka Electronics Co., Ltd.) using a cumulant correlation function.
Specifically, a PBS (pH 7.4; Thermo Fisher Scientific) solution (50 μM) of a test compound in the compound library containing the compound of Example 1 was added so as to contain 1% (v / v) final concentration of DMSO. And Coster V-bottom polypropylene 96-well plate. Each sample was mixed by pipetting and incubated for 15 minutes at room temperature. After incubation, a fluorescent reagent (1 μL) was added to each sample and mixed by pipetting. After a further 15 minute incubation, the fluorescence intensity was recorded with a microplate reader. As a fluorescent reagent, either a 1.5 mM PBS solution of ANS (excitation wavelength = 365 nm, emission wavelength = 450 nm) or a 0.3 mM DMSO solution of Nile Red (excitation wavelength = 550 nm, emission wavelength = 610 nm) was used. Using. For all samples, a 50 μM PBS solution was prepared at 25 ° C. and the hydrodynamic diameter was measured.
FIG. 1 shows the hydrodynamic diameter of a compound that formed a self-assembly in the compound library.
[試験例1-2]自己集合体の流体力学的サイズ測定(2)
 各実施例化合物について、試験例1-1の方法に従い、自己集合体を形成させた。サンプルは10%FBS(Biowest社)及び1%ペニシリン-ストレプトマイシン(Nacalai Tesque Inc.社)を含むDMEM培地中25℃にて種々の濃度で調製し、96ウェルUVプレート(Corning Inc.社)に100μL/ウェルにて移した。自己集合体の流体力学的半径を、DynaPro Plate reader II(Wyatt Technology Corp.社;165°;25℃での自動減衰モード;レーザー波長830 nm;散乱角度58°;データ取得時間10秒/ウェル;10取得/測定)を用いて測定した。
 各実施例化合物の自己集合体の30μM DMEM溶液中で測定した流体力学的半径(R)及び当該R値から換算した流体力学的直径は以下のとおりである。
Figure JPOXMLDOC01-appb-T000032

 また、実施例1化合物及び参考例化合物の自己集合体のDMEM溶液中のR値の結果を図2に示す。なお、参考例1化合物は自己集合体を形成しなかった。
[Test Example 1-2] Measurement of hydrodynamic size of self-assembly (2)
For each example compound, a self-assembly was formed according to the method of Test Example 1-1. Samples were prepared at various concentrations in DMEM medium containing 10% FBS (Biowest) and 1% penicillin-streptomycin (Nacalai Tesque Inc.) at 25 ° C., and 100 μL in a 96-well UV plate (Corning Inc.). / Well. The hydrodynamic radius of the self-assembly was measured using a DynaPro Plate reader II (Wyatt Technology Corp .; 165 °; automatic decay mode at 25 ° C .; laser wavelength 830 nm; scattering angle 58 °; data acquisition time 10 seconds / well; 10 acquisitions / measurements).
Hydrodynamic diameter converted from the self-assembly of 30 [mu] M DMEM solution measured hydrodynamic radius in (R h) and the R h values of the Example compounds are as follows.
Figure JPOXMLDOC01-appb-T000032

FIG. 2 shows the results of the Rh values of the self-assembly of the compound of Example 1 and the compound of Reference Example in a DMEM solution. The compound of Reference Example 1 did not form a self-assembly.
[試験例1-3]自己集合体の流体力学的サイズ測定(3)
 実施例10化合物について、試験例1-1の方法に従い、自己集合体を形成させた。自己集合体の流体力学的直径を、ゼータサイザーナノS(英国マルバーン・パナリティカル社製)を用いて測定し(auto-attenuationモード、散乱角173度、レーザー波長633 nm)、粒子からの散乱光より得られた自己相関関数をキュムラント法で解析することにより得た。サンプルは蒸留水中25℃にて種々の濃度で調製し、40μL小容量キュベット(英国マルバーン・パナリティカル社製)を用いて測定した。実施例10の蒸留水中各濃度における自己集合体の流体力学的直径(Diameter)は以下のとおりである。
Figure JPOXMLDOC01-appb-T000033
[Test Example 1-3] Measurement of hydrodynamic size of self-assembly (3)
For the compound of Example 10, a self-assembly was formed according to the method of Test Example 1-1. The hydrodynamic diameter of the self-assembly was measured using Zetasizer Nano S (manufactured by Malvern Panalytical, UK) (auto-attenuation mode, scattering angle 173 degrees, laser wavelength 633 nm), and the scattered light from the particles The obtained autocorrelation function was obtained by analyzing by the cumulant method. Samples were prepared at various concentrations at 25 ° C. in distilled water and measured using a 40 μL small-volume cuvette (manufactured by Malvern Panalytical Co., UK). The hydrodynamic diameter (Diameter) of the self-assembly at each concentration in the distilled water of Example 10 is as follows.
Figure JPOXMLDOC01-appb-T000033
[試験例2-1]免疫刺激特性(1)
 自己集合体の免疫刺激特性を、IL-6産生量を指標としてアッセイした。96ウェル組織培養プレートにて10%FBSを含むDMEM中で20,000RAW264.7細胞/ウェルを37℃にて24時間播種した。次いで、細胞培地を試験化合物のDMEM溶液(10%FBS及び最終濃度1%のDMSOを含む)で置き換えた。1%(v/v)DMSO及び100 pg/mLのLPSをそれぞれ陰性及び陽性対照として用いた。24時間後、試験化合物を含む細胞培地を回収し、20,000rpm(4℃)にて遠心分離して微粒子を除去し、-30℃にて貯蔵するか、又はそのままアッセイした。アッセイは、製造業者のプロトコールに従い、IL-6 ELISAキット(R&Dシステムズ社)を用いて三重又は二重に行った。
 DMEM溶液(0、1、3、10、15、20、30及び50μM)中の実施例1化合物の自己集合体の結果を図3に示す。実施例1化合物と参考例化合物の自己集合体の比較結果を図4に示す。各実施例化合物の自己集合体の結果を図5に示す。実施例1化合物の自己集合体の30μM DMEM溶液中での粒度分布を図6に示す。
[Test Example 2-1] Immunostimulation properties (1)
The immunostimulatory properties of the self-assembly were assayed using the amount of IL-6 produced as an index. 20,000 RAW 264.7 cells / well were seeded in 96-well tissue culture plates in DMEM containing 10% FBS at 37 ° C. for 24 hours. The cell culture medium was then replaced with a DMEM solution of the test compound (containing 10% FBS and 1% final concentration of DMS0). 1% (v / v) DMSO and 100 pg / mL LPS were used as negative and positive controls, respectively. Twenty-four hours later, the cell culture medium containing the test compound was collected, centrifuged at 20,000 rpm (4 ° C.) to remove microparticles, and stored at −30 ° C. or assayed as is. Assays were performed in triplicate or duplicate using an IL-6 ELISA kit (R & D Systems) according to the manufacturer's protocol.
The results of self-assembly of the compound of Example 1 in DMEM solution (0, 1, 3, 10, 15, 20, 30, and 50 μM) are shown in FIG. FIG. 4 shows the result of comparison between the self-assembly of the compound of Example 1 and the compound of Reference Example. FIG. 5 shows the results of the self-assembly of each example compound. The particle size distribution of the self-assembly of the compound of Example 1 in a 30 μM DMEM solution is shown in FIG.
[試験例2-2]免疫刺激特性(2)
 自己集合体のIL-6産生量を、遠心分離(14,000rpm)の前後で比較した。実施例1化合物の自己集合体のDMEM溶液(0、3、10、30及び50μM)について、遠心分離前のサンプルではIL-6産生が見られたのに対し、遠心分離後の溶液から微粒子を除去すると免疫応答が消失した。結果を図7に示す。
[Test Example 2-2] Immunostimulation properties (2)
Self-assembled IL-6 production was compared before and after centrifugation (14,000 rpm). In a DMEM solution (0, 3, 10, 30, and 50 μM) of a self-assembled compound of Example 1, IL-6 production was observed in the sample before centrifugation, whereas fine particles were removed from the solution after centrifugation. Removal eliminated the immune response. FIG. 7 shows the results.
[試験例2-3]免疫刺激特性(3)
 自己集合体の免疫刺激特性を、IL-6産生量を指標としてアッセイした。96ウェル組織培養プレートに5%FBSを含むRPMI1640中で1×10細胞/ウェルのBMDCを播種後、それぞれ5、10、30、50及び100μMの実施例1、実施例7及び実施例10化合物の自己集合体のRPMI溶液(5%FBSを含む)を添加した。0.37pg/mLのLPS(SIGMA社)、K3 CpG(TLR9アゴニスト;Gene Design社;200ng)、D35 CpG(TLR9アゴニスト;Gene Design社;200ng)、R848(TLR7アゴニスト;Enzo Life Sciences;2μg)、poly IC(TLR3アゴニスト;SIGMA社;1μg)及びDMSO(1%)をそれぞれ対照として用いた。24時間後、試験化合物を含む細胞培地を回収し、-30℃にて貯蔵するか、又はそのままアッセイした。アッセイは、製造業者のプロトコールに従い、IL-6 ELISAキット(R&Dシステムズ社)を用いて行った。結果を図8に示す。
[Test Example 2-3] Immunostimulation properties (3)
The immunostimulatory properties of the self-assembly were assayed using the amount of IL-6 produced as an index. After seeding BMDCs at 1 × 10 6 cells / well in RPMI 1640 containing 5% FBS in 96-well tissue culture plates, compounds of Examples 1, 7, 7 and 10 at 5, 10, 30, 50 and 100 μM respectively Of a self-assembled RPMI solution (containing 5% FBS) was added. 0.37 pg / mL LPS (SIGMA), K3 CpG (TLR9 agonist; Gene Design, 200 ng), D35 CpG (TLR9 agonist; Gene Design, 200 ng), R848 (TLR7 agonist; Enzo Life Sciences; 2 μg), Poly IC (TLR3 agonist; SIGMA; 1 μg) and DMSO (1%) were used as controls, respectively. Twenty-four hours later, the cell culture medium containing the test compound was collected and stored at −30 ° C. or assayed directly. The assay was performed using an IL-6 ELISA kit (R & D Systems) according to the manufacturer's protocol. FIG. 8 shows the results.
[試験例3-1]FcRγ/MyD88ダブルノックアウト骨髄由来樹状細胞を用いたIL-6産生量測定
 自己集合体が標的する免疫受容体を評価するために、FcRγ/MyD88ダブルノックアウト骨髄由来樹状細胞(BMDC)を用いてIL-6産生量を測定した。FcRγ及びMyD88はそれぞれC型レクチン受容体(CLR)及びTLRの下流シグナルタンパク質である。
 実施例1化合物の自己集合体のDMSO溶液を5%又は10%RPMIで希釈し、96ウェルプレートに100μl/ウェルにて加えた。1×10BMDCを24時間37℃にて自己集合体とともに又はなしで培養した。上清中のIL-6濃度をELISA(BDバイオサイエンス社)で測定した。陰性対照としてDMSOを用い、陽性対照としてLPS、カードラン及びTDM(シグマ社)を用いた。結果を図9に示す。
 次に、FcRγノックアウト細胞及びMyD88ノックアウト細胞を用いたアッセイを行った。陰性対照としてDMSOを用いた。結果を図10及び図11に示す(図中、LPS及びTDMは陽性対照である)。
 結果は、自己集合体が少なくともTLRファミリーメンバーとの相互作用を通じて免疫刺激作用を奏することを示す。
[Test Example 3-1] Measurement of IL-6 production using FcRγ / MyD88 double knockout bone marrow-derived dendritic cells In order to evaluate the immunoreceptor targeted by the self-assembly, FcRγ / MyD88 double knockout bone marrow-derived dendrites were used. The amount of IL-6 produced was measured using cells (BMDC). FcRγ and MyD88 are C-type lectin receptor (CLR) and TLR downstream signal proteins, respectively.
A DMSO solution of a self-assembly of the compound of Example 1 was diluted with 5% or 10% RPMI and added to a 96-well plate at 100 μl / well. 1 × 10 5 BMDCs were cultured for 24 hours at 37 ° C. with or without self-assembly. The concentration of IL-6 in the supernatant was measured by ELISA (BD Bioscience). DMSO was used as a negative control, and LPS, curdlan and TDM (Sigma) were used as positive controls. FIG. 9 shows the results.
Next, an assay was performed using FcRγ knockout cells and MyD88 knockout cells. DMSO was used as a negative control. The results are shown in FIGS. 10 and 11 (in the figures, LPS and TDM are positive controls).
The results indicate that self-assembly exerts an immunostimulatory effect at least through interaction with TLR family members.
[試験例3-2]C57BL/6J(WT)又はTlr7 骨髄由来樹状細胞を用いたIL-6産生量測定
 自己集合体のTLR-7に対するアゴニスト活性を評価するために、C57BL/6J(WT)又はTlr7骨髄由来樹状細胞(BMDC)を用いてIL-6産生量を測定した。
 C57BL/6J(WT)、Tlr7、Tlr7、Tlr9又はTlr9マウスの脛骨及び大腿骨から骨髄細胞を単離し、これらの細胞を20ng/mLのGM-CSF(PeproTech社)と共に7日間培養することによってBMDCを調製した。
 5%FBSの存在下、それぞれ10、30及び100μMの実施例1、実施例7及び実施例10化合物の自己集合体のRPMI1640溶液96ウェルプレートに100μl/ウェルにて加えた。1×10細胞/ウェルのBMDCを24時間37℃にて自己集合体とともに又はなしで培養した。上清中のマウスのIL-6濃度をBio-Plex Pro Mouse Cytokine Grp I Panel 23-Plex(Bio-Rad Laboratories, Inc.)を用いて測定した。陰性対照としてデオキシコール酸(DCA)及びDMSO(1%)を用い、陽性対照としてLPS(20ng)及びR848(2μg)を用いた。結果を図12に示す。結果は、自己集合体により誘導される免疫刺激作用が、陽性対照であるR848(TLR7アゴニスト)と同様にTLR7依存性であることを示す。
[Test Example 3-2] To evaluate the agonistic activity of C57BL / 6J (WT) or Tlr7 / bone marrow-derived dendritic cells on TLR-7 in self-assembly for measuring the amount of IL-6 production , C57BL / J- IL-6 production was measured using 6J (WT) or Tlr7 / bone marrow-derived dendritic cells (BMDC).
C57BL / 6J (WT), Tlr7 + / -, Tlr7 - / -, Tlr9 + / - or TLR9 - / - mouse tibia and femur of isolated bone marrow cells single, GM-CSF of the cells 20 ng / mL BMDC were prepared by culturing with (PeproTech) for 7 days.
RPMI1640 solutions of self-assembled compounds of Examples 1, 7, and 10 at 10, 30, and 100 μM, respectively, were added at 100 μl / well in the presence of 5% FBS. 1 × 10 6 cells / well of BMDC were cultured for 24 hours at 37 ° C. with or without self-assembly. The mouse IL-6 concentration in the supernatant was measured using a Bio-Plex Pro Mouse Cytokine Grp I Panel 23-Plex (Bio-Rad Laboratories, Inc.). Deoxycholic acid (DCA) and DMSO (1%) were used as negative controls, and LPS (20 ng) and R848 (2 μg) were used as positive controls. The result is shown in FIG. The results show that the immunostimulatory effect induced by the self-assembly is TLR7-dependent, as is the positive control R848 (TLR7 agonist).
[試験例3-3]C57BL/6J(WT)又はTlr7 骨髄由来樹状細胞を用いたIL-6産生量測定
 自己集合体のTLR-7に対するアゴニスト活性を評価するために、試験例3-2と同様に試験を行った。具体的には、それぞれ10、30、50及び100μMの実施例1、実施例7及び実施例10化合物の自己集合体の溶液を96ウェルプレートに加え、5%FBSの存在下、1×10細胞/ウェルのBMDCを24時間自己集合体とともに又はなしで培養した。上清中のマウスのIL-6濃度をELISAによって測定した。1%(v/v)DMSOを陰性対照、またLPS(20ng)、R848(2μg)、K3 CpG(200ng)、c-di-AMP(STINGアゴニスト;ヤマサ醤油株式会社;2μg)、D35 CpG(200ng)をそれぞれ陽性対照として用いた。結果を図13に示す。
[Test Example 3-3] Test Examples to evaluate the agonistic activity on self-assembling of IL-6 production using T57-7 for TLR-7 using dendritic cells derived from bone marrow derived from C57BL / 6J (WT) or Tlr7 - / - The test was performed in the same manner as in 3-2. Specifically, solutions of the self-assembly of the compounds of Examples 1, 7 and 10 at 10, 30, 50 and 100 μM, respectively, were added to a 96-well plate, and 1 × 10 6 in the presence of 5% FBS. Cells / well of BMDC were cultured with or without self-assembly for 24 hours. The IL-6 concentration of the mice in the supernatant was measured by ELISA. 1% (v / v) DMSO was used as a negative control, and LPS (20 ng), R848 (2 μg), K3 CpG (200 ng), c-di-AMP (STING agonist; Yamasa Shoyu Co., Ltd .; 2 μg), D35 CpG (200 ng) ) Were used as positive controls. FIG. 13 shows the results.
[試験例3-4]C57BL/6J(WT)又はTlr9 骨髄由来樹状細胞を用いたIL-6産生量測定
 自己集合体のTLR-9に対するアゴニスト活性を評価するために、試験例3-2と同様に試験を行った。具体的には、それぞれ10、30、50及び100μMの実施例1、実施例7及び実施例10化合物の自己集合体の溶液を96ウェルプレートに加え、5%FBSの存在下、1×10細胞/ウェルのBMDCを24時間自己集合体とともに又はなしで培養した。上清中のマウスのIL-6濃度をELISAによって測定した。1%(v/v)DMSO及びを陰性対照、またLPS(20ng)、R848(2μg)、K3 CpG(200ng)、c-di-AMP(2μg)、D35 CpG(200ng)をそれぞれ陽性対照として用いた。結果を図14に示す。
[Test Example 3-4] Test examples to evaluate the agonistic activity on self-assembling of IL-6 production using T57-9 of T57-9 using C57BL / 6J (WT) or Tlr 9 / bone marrow-derived dendritic cells The test was performed in the same manner as in 3-2. Specifically, solutions of the self-assembly of the compounds of Examples 1, 7 and 10 at 10, 30, 50 and 100 μM, respectively, were added to a 96-well plate, and 1 × 10 6 in the presence of 5% FBS. Cells / well of BMDC were cultured with or without self-assembly for 24 hours. The IL-6 concentration of the mice in the supernatant was measured by ELISA. 1% (v / v) DMSO and a negative control, LPS (20 ng), R848 (2 μg), K3 CpG (200 ng), c-di-AMP (2 μg) and D35 CpG (200 ng) were used as positive controls, respectively. Was. FIG. 14 shows the results.
[試験例4]マウスモデルにおけるOVA抗原特異的抗体価の測定
 自己集合体のアジュバント活性を評価するために、野生型(C57BL/6JJcl)マウス(クレア社)を用いて、OVA特異的抗体反応による抗OVA総IgG、IgG1、IgG2c及びIgE力価を測定した。
 マウスを、第0日目及び第14日目において、10μg OVA(関東化学株式会社;ロット番号:01103-31)と、DMSO(最終濃度:1%)、実施例1化合物(1、10及び100μg)、実施例7化合物(1、10及び100μg)若しくは実施例10化合物(1、10及び100μg)の自己集合体、デオキシコール酸(1、10及び100μg)又は500μg ミョウバンのいずれかを含む、100μl/ショットのPBS溶液で皮下免疫化した(それぞれの群について、n=4マウス)。陰性対照として、デオキシコール酸及びPBSを用い、陽性対照として、アルミニウム塩(Alum)を用いた。最初の免疫化から21日後に、血清を回収し、OVA特異的抗体反応に用いた。
 血清中の抗原特異的総IgG、IgG1及びIgG2cを、ELISAによって測定した。具体的には、96ウェルプレートを、10μg/mL OVAで、4℃で一晩コーティングした。洗浄後、プレートをブロッキング緩衝液と共に、室温で1時間インキュベートした。プレートを洗浄し、希釈血清と共に2時間インキュベートした。次いで、プレートを洗浄し、西洋ワサビペルオキシダーゼ結合抗マウス総IgG、IgG1又はIgG2c抗体(Southern Biotech社)をそれぞれ、プレートに加えた。1時間後、プレートを洗浄し、TMB Microwell Peroxidase Substrate System(KPL)をウェルに加えた。20分間インキュベートした後、2N HSOを加えて反応を停止させた。抗体価は、100倍希釈した血清を5倍ずつ7段階希釈して、それぞれの吸光度をプロットして標準曲線を描き、OD=0.2に対応する希釈値の逆数をその検体の抗体価とした。抗OVA 総IgG、IgG1及びIgG2cの産生量をそれぞれ図15~17に示す。
 DSマウスIgE ELISA(OVA)キット(DSファーマバイオメディカル社)を用いて、抗OVA 総IgEを測定した。抗OVA IgEの産生量を図18に示す。
[Test Example 4] Measurement of OVA antigen-specific antibody titer in mouse model In order to evaluate the adjuvant activity of the self-assembly, a wild-type (C57BL / 6JJcl) mouse (CLEA) was used to evaluate the OVA-specific antibody reaction. Anti-OVA total IgG, IgG1, IgG2c and IgE titers were measured.
On day 0 and day 14, mice were challenged with 10 μg OVA (Kanto Chemical Co., Ltd .; lot number: 01103-31), DMSO (final concentration: 1%), Example 1 compound (1, 10 and 100 μg). 100 μl containing self-assembly of Example 7 compound (1, 10 and 100 μg) or Example 10 compound (1, 10 and 100 μg), deoxycholic acid (1, 10 and 100 μg) or 500 μg alum / Shot was immunized subcutaneously with PBS solution (n = 4 mice for each group). Deoxycholic acid and PBS were used as a negative control, and aluminum salt (Alum) was used as a positive control. Twenty-one days after the first immunization, serum was collected and used for OVA-specific antibody reactions.
Antigen-specific total IgG, IgG1 and IgG2c in serum were measured by ELISA. Specifically, a 96-well plate was coated with 10 μg / mL OVA at 4 ° C. overnight. After washing, the plates were incubated with blocking buffer for 1 hour at room temperature. Plates were washed and incubated with diluted serum for 2 hours. The plates were then washed and horseradish peroxidase-conjugated anti-mouse total IgG, IgG1 or IgG2c antibodies (Southern Biotech) were each added to the plates. One hour later, the plate was washed and TMB Microwell Peroxidase Substrate System (KPL) was added to the wells. After 20 min incubation, the reaction was stopped by adding 2N H 2 SO 4. The antibody titer was obtained by diluting 100-fold diluted serum five-fold in seven steps, plotting the absorbance of each, drawing a standard curve, and calculating the reciprocal of the dilution value corresponding to OD = 0.2 as the antibody titer of the sample. did. The production amounts of anti-OVA total IgG, IgG1 and IgG2c are shown in FIGS. 15 to 17, respectively.
Anti-OVA total IgE was measured using a DS mouse IgE ELISA (OVA) kit (DS Pharma Biomedical). FIG. 18 shows the amount of anti-OVA IgE produced.
[試験例5]ウイルス感染モデルにおける、自己集合体により免疫賦活化されたインフルエンザスプリットワクチン(SV)の有効性
 インフルエンザSV(A/New Caledonia/20/1999 (H1N1))に対する自己集合体のアジュバント活性を評価するために、野生型(C57BL/6JJcl)マウス(クレア社)を用いて、インフルエンザウイルス特異的抗体反応による抗HA-IgG1及びIgG2力価を測定した。
 マウスを、第0日目及び第14日目において、インフルエンザSV(1μg)と、DMSO(最終濃度:1%)、実施例1化合物(1、10及び100μg)、実施例7化合物(1、10及び100μg)若しくは実施例10化合物(1、10及び100μg)の自己集合体、デオキシコール酸(1、10及び100μg)又はアルミニウム塩(500μg)のいずれかを含む、100μl/ショットのPBS溶液で皮下免疫化した(それぞれの群について、n=3マウス)。陰性対照として、デオキシコール酸及びPBSを用い、陽性対照として、アルミニウム塩を用いた。第21日目において、血清を回収し、第34日目においてマウスに、10 LD50の臨床的に単離したA/Puerto Rico/8/1934インフルエンザ(H1N1)ウイルスを鼻腔内感染させた。
 第21日目に回収した血清中の、抗HA IgG1及びIgG2cをELISAによって測定した。抗HA IgG1及びIgG2cの産生量を、図19A及びBに示す。
 第34日目のインフルエンザ感染後21日間、マウスの体重及び生存率を追跡した。インフルエンザSV(1μg)と、DMSO(最終濃度:1%)、実施例1化合物(100μg)、実施例7化合物(100μg)若しくは実施例10化合物(100μg)の自己集合体、デオキシコール酸(100μg)又はアルミニウム塩(500μg)のいずれかを皮下免疫化に用いたそれぞれのマウスについて、体重及び生存率の変化を、図20A及びBに示す。
 インフルエンザSV(1μg)と、DMSO(最終濃度:1%)、実施例10化合物の自己集合体(1、10又は100μg)又はアルミニウム塩(500μg)のいずれかを皮下免疫化に用いたそれぞれのマウスについて、体重及び生存率の変化を、図21A及びBに示す。
 インフルエンザSV(1μg)と、実施例10化合物(100μg)又は陰性対照としてデオキシコール酸(100μg)のいずれかを皮下免疫化に用いたそれぞれのマウスについて、体重及び生存率の変化を、図22A及びBに示す。
[Test Example 5] Effectiveness of influenza split vaccine (SV) immunostimulated by self-assembly in virus infection model Adjuvant activity of self-assembly against influenza SV (A / New Caledonia / 20/1999 (H1N1)) In order to evaluate, anti-HA-IgG1 and IgG2 titers by influenza virus-specific antibody reaction were measured using wild-type (C57BL / 6JJcl) mice (CLEA).
Mice were treated on day 0 and day 14 with influenza SV (1 μg), DMSO (final concentration: 1%), Example 1 compound (1, 10 and 100 μg), Example 7 compound (1, 10 And 100 μg) or a self-assembly of the compound of Example 10 (1, 10 and 100 μg), 100 μl / shot of a PBS solution containing either deoxycholic acid (1, 10 and 100 μg) or an aluminum salt (500 μg) subcutaneously. Immunized (n = 3 mice for each group). Deoxycholic acid and PBS were used as a negative control, and an aluminum salt was used as a positive control. On day 21, serum was collected and on day 34, mice were infected intranasally with 10 LD50 of clinically isolated A / Puerto Rico / 8/1934 influenza (H1N1) virus.
Anti-HA IgG1 and IgG2c in sera collected on day 21 were measured by ELISA. The production amounts of anti-HA IgG1 and IgG2c are shown in FIGS. 19A and 19B.
Mice were followed for body weight and survival 21 days after influenza infection on day 34. Influenza SV (1 μg), self-assembly of DMSO (final concentration: 1%), Example 1 compound (100 μg), Example 7 compound (100 μg) or Example 10 compound (100 μg), deoxycholic acid (100 μg) Changes in body weight and viability for each mouse using either subcutaneous immunization, or with aluminum salt (500 μg) are shown in FIGS. 20A and 20B.
Each mouse used for subcutaneous immunization with influenza SV (1 μg), DMSO (final concentration: 1%), self-assembly of the compound of Example 10 (1, 10 or 100 μg) or aluminum salt (500 μg) For FIGS. 21A and 21B, changes in body weight and survival rate are shown.
Changes in body weight and viability for each mouse using subcutaneous immunization with influenza SV (1 μg) and either Example 10 compound (100 μg) or deoxycholic acid (100 μg) as a negative control are shown in FIG. 22A and FIG. B.
[試験例6]HEK293細胞を用いたSEAPアッセイ
 シグナル経路を解明するために、NF-κB応答SEAPレポーター遺伝子で安定にトランスフェクトしたヒト胎児腎臓細胞(HEK293)を用いて、いくつかの主なTLRについて試験した。
 TLR2、TLR4又はTLR9発現HEK細胞を96ウェル組織培養プレートにて10%FBSを含むDMEM(100μl)中で3×10細胞/ウェルにて播種し、実施例1化合物の自己集合体で37℃24時間又は48時間刺激させた。培養液の上清中のSEAPをアルカリホスファターゼ検出試薬QUANTI-Blue(InvivoGen社)で3時間又は6時間かけて染色し、Multiskanマイクロプレートリーダー(Thermo Fisher Scientific Inc.)により630 nmにて光学濃度(OD値)を測定した。
 結果を図23及び図24に示す。陰性対照(NC)としてDMSOを用い、陽性対照として図23ではオリゴデオキシヌクレオチド(ODN1826;tlrl-1826;InvivoGen社)を、図24ではTLR2アゴニストPam3(Pam3CSK4;InvivoGen社)及びLPSを用いた。自己集合体によるSEAP応答はTLR9で上昇した。
[Test Example 6] In order to elucidate the SEAP assay signal pathway using HEK293 cells , several major TLRs were used using human embryonic kidney cells (HEK293) stably transfected with an NF-κB-responsive SEAP reporter gene. Was tested.
HEK cells expressing TLR2, TLR4 or TLR9 are seeded at 3 × 10 4 cells / well in 96-well tissue culture plates in DMEM (100 μl) containing 10% FBS and self-assembled with the compound of Example 1 at 37 ° C. Stimulation was for 24 or 48 hours. SEAP in the culture supernatant was stained with an alkaline phosphatase detection reagent QUANTI-Blue (InvivoGen) for 3 hours or 6 hours, and optical density (630 nm) was measured with a Multiskan microplate reader (Thermo Fisher Scientific Inc.). OD value) was measured.
The results are shown in FIGS. DMSO was used as a negative control (NC), and oligodeoxynucleotide (ODN1826; tlrl-1826; InvivoGen) was used in FIG. 23 as a positive control, and TLR2 agonist Pam3 (Pam3CSK4; InvivoGen) and LPS were used in FIG. Self-assembled SEAP responses were elevated in TLR9.
[試験例7]IL-6定量的PCRアッセイ
 RAW264.7細胞について、6ウェル組織培養プレートにて10%FBSを含むDMEM中で6×10細胞/ウェルを37℃にて24時間播種した。次いで、細胞培地を試験化合物のDMEM溶液(10%FBS及び最終濃度1%のDMSOを含む)で置き換えた。1%DMSO及び100 ng/mLのLPSをそれぞれ陰性及び陽性対照として用いた。4時間後、細胞をPBSで2回洗浄した。細胞をISOGENE(1mL/ウェル;Nippon Gene Co., Ltd.)で5分間溶解させた。次いで、クロロホルム(200μL)を加えた。試験管を逆さにすることにより混合物を15分間混合した後、14,000rpmで4℃にて15分間遠心分離した。水層の上部400μLを別の1.5mL試験管に回収し、イソプロパノール500μLと混合した。試験管を14,000rpmにて再度遠心分離し、上清を除去した。残渣をエタノール(700μL)で2回洗浄し、空気乾燥し、TE緩衝液に再溶解した(pH5.2)。PrimeScript(商標)II 1st strand cDNA Synthesis Kit(タカラバイオ株式会社)により全mRNAサンプル(2μg)を逆転写し、cDNAの合成に用いた。定量的リアルタイムPCRをFast CYBR Green Master Mixキット(Thermo Fisher Scientific Inc.)を用いて行った。全アッセイは三重に行い、TNF-α及びβ-アクチンを内部標準として用いた。特異的な標的遺伝子についての全プライマーを以下に示す:
Figure JPOXMLDOC01-appb-T000034


 結果を図25に示す。
For Test Example 7] IL-6 Quantitative PCR assay RAW264.7 cells were seeded 24 hours 6 × 10 5 cells / well in DMEM containing 10% FBS at six-well tissue culture plates at 37 ° C.. The cell culture medium was then replaced with a DMEM solution of the test compound (containing 10% FBS and 1% final concentration of DMS0). 1% DMSO and 100 ng / mL LPS were used as negative and positive controls, respectively. After 4 hours, the cells were washed twice with PBS. Cells were lysed with ISOGENE (1 mL / well; Nippon Gene Co., Ltd.) for 5 minutes. Then, chloroform (200 μL) was added. The mixture was mixed for 15 minutes by inverting the test tube and then centrifuged at 14,000 rpm for 15 minutes at 4 ° C. The upper 400 μL of the aqueous layer was collected in another 1.5 mL test tube and mixed with 500 μL of isopropanol. The test tube was centrifuged again at 14,000 rpm, and the supernatant was removed. The residue was washed twice with ethanol (700 μL), air-dried and redissolved in TE buffer (pH 5.2). PrimeScript (TM) II 1 st strand cDNA Synthesis Kit ( Takara Bio Inc.) by reverse transcribed total mRNA samples (2 [mu] g), were used for the synthesis of cDNA. Quantitative real-time PCR was performed using the Fast CYBR Green Master Mix kit (Thermo Fisher Scientific Inc.). All assays were performed in triplicate and TNF-α and β-actin were used as internal standards. All primers for specific target genes are shown below:
Figure JPOXMLDOC01-appb-T000034


The results are shown in FIG.
 式(I)の化合物が連結してなる自己集合体はアジュバントとして有用であり得、種々の疾患の治療及び/又は予防のためのワクチン組成物としての利用が期待される。 (5) A self-assembly obtained by linking the compounds of the formula (I) can be useful as an adjuvant, and is expected to be used as a vaccine composition for treating and / or preventing various diseases.

Claims (12)

  1.  式(I):
    Figure JPOXMLDOC01-appb-C000001
    [式中、Rは、H又は式(II):
    Figure JPOXMLDOC01-appb-C000002
    で示される基であり、
     Rは、H又は式(III):
    Figure JPOXMLDOC01-appb-C000003
    で示される基であり、
     R、R、R及びRは、それぞれ独立して、H、C1-6アルキル又はC1-6ハロアルキルであり、
     波線は結合部位を示し、
     nは1~12の整数である]
    で示される化合物が非共有結合により連結してなる、自己集合体。
    Formula (I):
    Figure JPOXMLDOC01-appb-C000001
    Wherein R x is H or formula (II):
    Figure JPOXMLDOC01-appb-C000002
    Is a group represented by
    R y is H or formula (III):
    Figure JPOXMLDOC01-appb-C000003
    Is a group represented by
    R 1 , R 2 , R 3 and R 4 are each independently H, C 1-6 alkyl or C 1-6 haloalkyl;
    Wavy lines indicate binding sites,
    n is an integer of 1 to 12]
    A self-assembly comprising a compound represented by the formula (1) linked by a non-covalent bond.
  2.  RがRと同一である、請求項1に記載の自己集合体。 2. The self-assembly according to claim 1, wherein Rx is the same as Ry .
  3.  Rが式(II’):
    Figure JPOXMLDOC01-appb-C000004
    で示される基であり、
     Rが式(III’):
    Figure JPOXMLDOC01-appb-C000005
    で示される基である、請求項1又は2に記載の自己集合体。
    R x is of the formula (II ′):
    Figure JPOXMLDOC01-appb-C000004
    Is a group represented by
    R y has the formula (III ′):
    Figure JPOXMLDOC01-appb-C000005
    The self-assembly according to claim 1, which is a group represented by the formula:
  4.  R及びRがそれぞれ独立してC1-3アルキルである、請求項1~3のいずれかに記載の自己集合体。 4. The self-assembly according to claim 1, wherein R 3 and R 4 are each independently C 1-3 alkyl.
  5.  R及びRがともにHである、請求項1又は2に記載の自己集合体。 The self-assembly according to claim 1, wherein R x and R y are both H.
  6.  nが5~10の整数である、請求項1~5のいずれかに記載の自己集合体。 The self-assembly according to any one of claims 1 to 5, wherein n is an integer of 5 to 10.
  7.  流体力学的サイズ40nm~12,000nmを有する凝集体を形成する、請求項1~6のいずれかに記載の自己集合体。 The self-assembly according to any one of claims 1 to 6, which forms an aggregate having a hydrodynamic size of 40 nm to 12,000 nm.
  8.  請求項1~7のいずれかに記載の自己集合体を含む、免疫賦活剤。 (8) An immunostimulator comprising the self-assembly according to any one of (1) to (7).
  9.  アジュバントである、請求項8に記載の免疫賦活剤。 The immunostimulator according to claim 8, which is an adjuvant.
  10.  請求項9に記載の免疫賦活剤及び抗原を含む、ワクチン組成物。 ワ ク チ ン A vaccine composition comprising the immunostimulant according to claim 9 and an antigen.
  11.  がん、感染症、アレルギー疾患、自己免疫疾患、高血圧症及びアルツハイマー病からなる群から選択される疾患の治療及び/又は予防のための、請求項10に記載のワクチン組成物。 11. The vaccine composition according to claim 10, for treating and / or preventing a disease selected from the group consisting of cancer, infectious disease, allergic disease, autoimmune disease, hypertension and Alzheimer's disease.
  12.  式(I):
    Figure JPOXMLDOC01-appb-C000006
    [式中、Rは、H又は式(II):
    Figure JPOXMLDOC01-appb-C000007
    で示される基であり、
     Rは、H又は式(III):
    Figure JPOXMLDOC01-appb-C000008
    で示される基であり、
     R、R、R及びRは、それぞれ独立して、H、C1-6アルキル又はC1-6ハロアルキルであり、
     波線は結合部位を示し、
     nは1~12の整数である]
    で示される化合物。
    Formula (I):
    Figure JPOXMLDOC01-appb-C000006
    Wherein R x is H or formula (II):
    Figure JPOXMLDOC01-appb-C000007
    Is a group represented by
    R y is H or formula (III):
    Figure JPOXMLDOC01-appb-C000008
    Is a group represented by
    R 1 , R 2 , R 3 and R 4 are each independently H, C 1-6 alkyl or C 1-6 haloalkyl;
    Wavy lines indicate binding sites,
    n is an integer of 1 to 12]
    A compound represented by the formula:
PCT/JP2019/033920 2018-08-30 2019-08-29 Self-assembly for activating immunity WO2020045570A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020539590A JPWO2020045570A1 (en) 2018-08-30 2019-08-29 Self-assembly that activates immunity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-161582 2018-08-30
JP2018161582 2018-08-30

Publications (1)

Publication Number Publication Date
WO2020045570A1 true WO2020045570A1 (en) 2020-03-05

Family

ID=69643643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033920 WO2020045570A1 (en) 2018-08-30 2019-08-29 Self-assembly for activating immunity

Country Status (2)

Country Link
JP (1) JPWO2020045570A1 (en)
WO (1) WO2020045570A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050222115A1 (en) * 2004-03-30 2005-10-06 Salunke Deepak B Bile acid derived steroidal dimers with novel amphiphilic topology having antifungal activity
US20060003974A1 (en) * 2004-06-30 2006-01-05 Council Of Scientific And Industrial Research Bile acid derived steroidal dimers with amphiphilic topology having antiproliferative activity
WO2015079952A1 (en) * 2013-11-29 2015-06-04 テルモ株式会社 Adjuvant composition, vaccine composition comprising same, and method for producing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050222115A1 (en) * 2004-03-30 2005-10-06 Salunke Deepak B Bile acid derived steroidal dimers with novel amphiphilic topology having antifungal activity
US20060003974A1 (en) * 2004-06-30 2006-01-05 Council Of Scientific And Industrial Research Bile acid derived steroidal dimers with amphiphilic topology having antiproliferative activity
WO2015079952A1 (en) * 2013-11-29 2015-06-04 テルモ株式会社 Adjuvant composition, vaccine composition comprising same, and method for producing same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LI, YAN ET AL.: "Design, synthesis and antitumor activity of dimeric bile acid-amino acid conjugates", LETT IN ORG CHEM, vol. 4, no. 6, 2007, pages 414 - 418, XP055697317 *
OYAMA, SHOHEI ET AL.: "The necessity and safety of vaccine adjuvant", JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, vol. 234, no. 3, 2010, pages 217 - 221 *
SALUNKE, DEEPAK B. ET AL.: "New steroidal dimers with antifungal and antiproliferative activity", JOURNAL OF MEDICINAL CHEMISTRY, vol. 47, no. 6, 2004, pages 1591 - 1594, XP055697288 *

Also Published As

Publication number Publication date
JPWO2020045570A1 (en) 2021-08-12

Similar Documents

Publication Publication Date Title
Chen et al. The use of self-adjuvanting nanofiber vaccines to elicit high-affinity B cell responses to peptide antigens without inflammation
US10144933B2 (en) Chiral nucleic acid adjuvant having immunity induction activity, and immunity induction activator
Chan et al. Synthesis and immunological characterization of toll-like receptor 7 agonistic conjugates
CN102264394B (en) Lipidated imidazoquinoline derivatives
US9617547B2 (en) Chiral nucleic acid adjuvant
CN108368028A (en) Novel lipid and lipid nanoparticle preparation for delivering nucleic acid
Benne et al. Atomic force microscopy measurements of anionic liposomes reveal the effect of liposomal rigidity on antigen-specific regulatory T cell responses
RU2011118880A (en) NICOTINE IMMUNONOTHERAPEUTIC MEDICINES
CN104244929A (en) Mesoporous silica compositions for modulating immune responses
JP6840332B2 (en) Immunostimulatory oligonucleotide complex
Córdoba et al. Glycodendrimers as new tools in the search for effective anti-HIV DC-based immunotherapies
JP2020022465A (en) For drug delivery in vivo nucleic acid nanostructure
JP2010534200A5 (en)
WO2007139190A1 (en) Immunostimulatory oligonucleotide and pharmaceutical application thereof
US9861702B2 (en) Lipid-conjugated rhamnose for immune system recruitment and oncotherapy
TW202229228A (en) Ionizable lipids and methods of manufacture and use thereof
JPWO2007099981A1 (en) Galactose derivatives, drug carriers and pharmaceutical compositions
CN108348618B (en) Adenine conjugate compounds and their use as vaccine adjuvants
US7790189B2 (en) Immunostimulating agents
WO2020045570A1 (en) Self-assembly for activating immunity
CN103467590A (en) Biological couplet, purine compounds for preparing biological couplet, synthetic method for preparing biological couplet, pharmaceutical preparation prepared from biological couplet and application of biological couplet in immune adjustment
Abdelwahab et al. Co-adsorption of synthetic Mincle agonists and antigen to silica nanoparticles for enhanced vaccine activity: A formulation approach to co-delivery
Chan et al. Structure–activity relationship studies to identify affinity probes in bis-aryl sulfonamides that prolong immune stimuli
Zheng et al. Aptamer-functionalized nanovaccines: targeting in vivo DC subsets for enhanced antitumor immunity
Uvyn et al. Hapten/Myristoyl Functionalized Poly (propyleneimine) Dendrimers as Potent Cell Surface Recruiters of Antibodies for Mediating Innate Immune Killing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19853484

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020539590

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19853484

Country of ref document: EP

Kind code of ref document: A1