WO2020045420A1 - 管理システム、及び、セル監視回路 - Google Patents

管理システム、及び、セル監視回路 Download PDF

Info

Publication number
WO2020045420A1
WO2020045420A1 PCT/JP2019/033494 JP2019033494W WO2020045420A1 WO 2020045420 A1 WO2020045420 A1 WO 2020045420A1 JP 2019033494 W JP2019033494 W JP 2019033494W WO 2020045420 A1 WO2020045420 A1 WO 2020045420A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
power
cell
cell monitoring
secondary battery
Prior art date
Application number
PCT/JP2019/033494
Other languages
English (en)
French (fr)
Inventor
小林 仁
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP19855312.5A priority Critical patent/EP3846310A4/en
Priority to JP2020539492A priority patent/JP7470638B2/ja
Publication of WO2020045420A1 publication Critical patent/WO2020045420A1/ja
Priority to US17/185,385 priority patent/US20210184481A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a management system and a cell monitoring circuit used for the management system.
  • Patent Document 1 relates to a battery system having a plurality of battery cells, and particularly discloses a cell balancing system for a battery system having a plurality of battery cells and a prior art method for balancing battery cells.
  • the present disclosure provides a management system capable of suppressing a cell balance from being lost due to a variation in operation power of a cell monitoring circuit, and a cell monitoring circuit used for the management system.
  • a management system includes a plurality of cell monitoring circuits connected to an AC power line, and a management device connected to the AC power line, wherein the management device includes a plurality of cell monitoring circuits. Controlling at least one of the plurality of cell monitoring circuits to control the storage amount of the storage cell monitored by the cell monitoring circuit based on the information indicating the storage amount of the storage cell monitored by the cell monitoring circuit.
  • An information processing unit for instructing is provided.
  • a cell monitoring circuit is a cell monitoring circuit that monitors a power storage cell, and includes an insulating element that receives power supply from an AC power line in a non-contact manner, and a management device that manages a state of the power storage cell.
  • a communication circuit that receives an instruction to control the amount of storage of the storage cell from a management device connected to the AC power line via an insulating element, and controls the amount of storage of the storage cell based on the instruction. And a circuit to perform.
  • a management system capable of suppressing a cell balance from being disrupted due to a variation in operation power of a cell monitoring circuit, and a cell monitoring circuit used for the management system are realized.
  • FIG. 1 is a diagram schematically illustrating a functional configuration of the BMS according to the first embodiment.
  • FIG. 2 is a flowchart of the operation of the BMS according to the first embodiment.
  • FIG. 3 is a diagram illustrating an outline of a functional configuration of the BMS according to the second embodiment.
  • FIG. 4 is a flowchart of the operation of the BMS according to the second embodiment.
  • FIG. 5 is a diagram illustrating an outline of a functional configuration of the BMS according to the third embodiment.
  • FIG. 6 is a flowchart of the operation of the BMS according to the third embodiment.
  • FIG. 7 is a diagram schematically illustrating a functional configuration of the BMS according to the fourth embodiment.
  • FIG. 8 is a flowchart of the operation of the BMS according to the fourth embodiment.
  • FIG. 1 is a diagram schematically illustrating a functional configuration of the BMS according to the first embodiment.
  • the BMS 100 is mounted on a vehicle such as an electric vehicle, for example.
  • the BMS 100 includes a BMU (Battery Management Unit), a plurality of secondary battery cells 21, and a plurality of cell monitoring circuits (CSC: Cell Supervising Circuit) 30 corresponding to the plurality of secondary battery cells 21.
  • BMU Battery Management Unit
  • CSC Cell Supervising Circuit
  • FIG. 1 two battery packs 20 and two cell monitoring circuits 30 are shown, but the number of secondary battery cells 21 and cell monitoring circuits 30 is not limited to two, and may be three or more. Good.
  • the BMS 100 may include only one each of the secondary battery cell 21 and the cell monitoring circuit 30.
  • Each of the BMU 10 and the plurality of cell monitoring circuits 30 is connected to an AC power line 50 via a transformer.
  • the BMU 10 monitors the state of the plurality of secondary battery cells 21 and controls charging of the plurality of secondary battery cells 21.
  • the secondary battery cell 21 is an example of a power storage cell.
  • the secondary battery cell 21 is specifically a lithium ion battery, but may be another battery such as a nickel hydride battery.
  • the plurality of secondary battery cells 21 are connected in series, for example, but may be partially or entirely connected in parallel.
  • the plurality of secondary battery cells 21 constitute an assembled battery.
  • the BMS 100 may include a plurality of storage capacitor cells instead of the plurality of secondary battery cells 21.
  • a storage capacitor cell is another example of a storage cell.
  • the storage capacitor cell is specifically an electric double layer capacitor, but may be a lithium ion capacitor or the like.
  • the BMU 10 specifically includes a plurality of communication circuits 11, an AC power supply 12, a control microcomputer 13, and a transformer 14.
  • the BMU 10 only needs to include at least the control microcomputer 13.
  • the communication circuit 11 is an example of a second communication circuit, and is a circuit for the BMU 10 to communicate with each of the plurality of cell monitoring circuits 30 via the AC power line 50.
  • the communication circuit 11 specifically includes a transmission circuit for transmitting a signal, a filter, and an amplification circuit, and a reception circuit, a filter, and an amplification circuit for receiving a signal.
  • the AC power line 50 used for communication is a power line shared by the BMU 10 and the plurality of cell monitoring circuits 30, and is connected to each of the BMU 10 and the plurality of cell monitoring circuits 30 via a transformer.
  • the AC power line 50 is used for supplying power from the AC power supply 12 to the plurality of cell monitoring circuits 30.
  • the AC power supply 12 supplies AC power to each of the plurality of cell monitoring circuits 30 via the AC power line 50. As described above, in the BMS 100, AC power is supplied from the BMU 10 to each of the plurality of cell monitoring circuits 30 beyond the galvanic isolation boundary. In other words, the cell monitoring circuit 30 operates not with the battery pack 20 but with the power supplied by the AC power supply 12.
  • the control microcomputer 13 monitors the state of the plurality of secondary battery cells 21 and controls the plurality of assembled batteries 20.
  • the control microcomputer 13 is an example of an information processing unit.
  • the plurality of cell monitoring circuits 30 are circuits corresponding to the plurality of secondary battery cells 21 on a one-to-one basis. That is, one cell monitoring circuit 30 monitors only one secondary battery cell 21.
  • the cell monitoring circuit 30 is a circuit module, and is formed by mounting circuit components on a substrate. Specifically, the cell monitoring circuit 30 includes a measurement circuit 31, a communication circuit 37, a transformer 38, a conversion circuit 39, a clock generation circuit 40, and a charging circuit 41.
  • the measurement circuit 31 measures the charged amount of the secondary battery cell 21 to be monitored. Specifically, the measurement circuit 31 measures the voltage value of the monitored secondary battery cell 21 as a parameter indicating the amount of power stored in the secondary battery cell 21.
  • the measurement circuit 31 includes a switching element 32, an AD converter 34, a storage unit 35, and a control circuit 36. Note that the measurement circuit 31 may measure a parameter indicating the amount of stored power directly or indirectly.
  • the switching element 32 discharges the connected secondary battery cell 21 by being turned on, and adjusts the charged amount.
  • the AD converter 34 converts an analog voltage value of the secondary battery cell 21 into a digital voltage value.
  • the storage unit 35 is, for example, a nonvolatile semiconductor memory, and stores an address (in other words, identification information or an identification code) for identifying the cell monitoring circuit 30 from other cell monitoring circuits 30. This address can also be considered as identification information for identifying the secondary battery cell 21 from other secondary battery cells 21.
  • the storage unit 35 is illustrated as a part of the measurement circuit 31 (that is, provided by the measurement circuit 31), but is configured as a different component from the measurement circuit 31. Is also good.
  • the control circuit 36 outputs information (also described as information indicating the amount of stored power measured by the measurement circuit 31) obtained by adding an address stored in the storage unit 35 to the digital voltage value output from the AD converter 34.
  • the generated information is output to the communication circuit 37.
  • the control circuit 36 is, in other words, a control logic circuit.
  • the communication circuit 37 is an example of a first communication circuit, and transmits information indicating the amount of stored power measured by the measurement circuit 31 to the BMU 10 that manages the state of the battery pack 20 via the transformer 38.
  • the communication circuit 37 specifically includes a transmission circuit for transmitting a signal, a filter, and an amplification circuit, and a reception circuit, a filter, and an amplification circuit for receiving a signal.
  • the transformer 38 is an insulating element for the measuring circuit 31 to receive power supply from the AC power supply 12 which is a power supply different from the battery pack 20 in a non-contact manner.
  • the cell monitoring circuit 30 may include another coil element as an insulating element instead of the transformer 38.
  • the conversion circuit 39 converts AC power supplied from the AC power supply 12 via the transformer 38 to DC power, and supplies the DC power to the measurement circuit 31, the communication circuit 37, the clock generation circuit 40, and the charging circuit 41. .
  • the conversion circuit 39 is specifically configured by a full-wave rectification circuit, a smoothing circuit, a regulator, and the like.
  • the frequency of the AC power supplied by the AC power supply 12 is, for example, several hundred kHz, and more specifically, for example, 350 kHz.
  • the effective value of the AC voltage is, for example, 5V.
  • the frequency and the effective value of the AC power supply 12 are not particularly limited.
  • the clock generation circuit 40 generates a clock signal synchronized with the frequency of the AC power.
  • the measurement circuit 31 measures the voltage value of the secondary battery cell 21 based on the generated clock signal.
  • the clock generation circuit 40 is specifically realized by a phase synchronization circuit (in other words, a PLL (Phase Locked Loop) circuit). According to the clock generation circuit 40, the system clocks of the plurality of cell monitoring circuits 30 can be synchronized.
  • the charging circuit 41 charges the secondary battery cell 21 with the DC power output from the conversion circuit 39.
  • the operation of the charging circuit 41 is controlled by the control circuit 36, for example.
  • a general BMS includes a plurality of secondary batteries for suppressing heat generation, ignition, explosion, and deterioration due to overcharge of the secondary battery cells 21 and maximizing the amount of power stored in the secondary battery cells by charging.
  • the battery pack 20 is charged after performing a cell balance process for equalizing the state of charge (SOC) of the cells.
  • the BMU performs data communication (daisy-chain connection) with a plurality of cell monitoring circuits in order to manage the storage amount of the secondary battery cells (in other words, the voltage value of the secondary battery cells).
  • each of the plurality of cell monitoring circuits 30 receives power supply from a secondary battery cell monitored by the cell monitoring circuit.
  • variations in the operating power of the plurality of cell monitoring circuits cause a cell balance to be lost.
  • a variation in operating power caused by a difference in the communication frequency of a plurality of cell monitoring circuits is a major factor in disrupting cell balance.
  • a method of supplying power to the cell monitoring circuit from a different power source for example, a 12 V battery when the BMS is used in a vehicle
  • a different power source for example, a 12 V battery when the BMS is used in a vehicle
  • the separate power source and the secondary battery cell need to be galvanically isolated.
  • a method of supplying power from another power supply to the cell monitoring circuit is, specifically, power supply to the cell monitoring circuit by an isolated DC-DC converter using a transformer.
  • the BMS 100 uses the power supply path (the AC power line 50 and the transformer 38) by the AC power supply 12 also as the communication path of the BMU 10 and the cell monitoring circuit 30, there is no need to separately provide a power supply path. That is, the BMS 100 can suppress an increase in the number of parts, an increase in weight, and the like, and can suppress a cell balance from being disrupted due to a variation in operation power of the cell monitoring circuit 30.
  • the frequency band used in communication is higher than the frequency of AC power. That is, the communication circuit 11 and the communication circuit 37 perform communication using a frequency band higher than the frequency of the AC power.
  • the carrier frequency of the communication is, for example, 20 MHz.
  • the frequency band used for communication may be divided into a plurality of frequency channels.
  • each of the plurality of cell monitoring circuits 30 uses a part of the frequency band as a communication channel assigned to the cell monitoring circuit 30. Thereby, communication speed and communication quality can be improved.
  • FIG. 2 is a flowchart of the operation of the BMS 100.
  • each of the plurality of cell monitoring circuits 30 transmits, using the communication circuit 37, information indicating the amount of power stored in the secondary battery cell 21 measured by the measurement circuit 31.
  • the communication circuit 11 of the BMU 10 receives, from each of the plurality of cell monitoring circuits 30, information indicating the storage amount of the secondary battery cell 21 to be monitored by the cell monitoring circuit 30 (S11). As described above, since the information includes the address, the BMU 10 (control microcomputer 13) can distinguish the storage amounts of the plurality of secondary battery cells 21.
  • control microcomputer 13 of the BMU 10 instructs at least one of the plurality of cell monitoring circuits 30 to charge the secondary battery cell 21 using the AC power obtained from the AC power line 50 based on the received information. (S12).
  • control microcomputer 13 specifies, as the target cell, the secondary battery cell 21 having the largest amount of charge based on the information indicating the amount of charge received in step S11. Subsequently, the control microcomputer 13 causes the cell monitoring circuit 30 that is monitoring the secondary battery cells 21 other than the target cell to charge the storage amount of the secondary battery cell 21 monitored by the cell monitoring circuit 30 with the power storage of the target cell. Instructs to charge until substantially equal to the amount.
  • This instruction is performed by communication between the communication circuit 11 and the communication circuit 37 (that is, communication using the AC power line 50), and the control circuit 36 of the cell monitoring circuit 30 that has received the instruction sends the secondary battery cell to the charging circuit 41. 21 is charged.
  • the BMS 100 can achieve a uniform cell balance of the plurality of secondary battery cells 21 connected to the cell monitoring circuits 30 different from each other by charging the secondary battery cells 21.
  • the active-type cell balancing process realized by the BMS 100 can suppress heat generation which is a problem in the passive-type cell balancing process in which the secondary battery cells 21 are forcibly discharged and converted into thermal energy.
  • FIG. 3 is a diagram illustrating an outline of a functional configuration of the BMS according to the second embodiment.
  • the description will be made focusing on the differences from the first embodiment, and the description of the items described in the first embodiment will be omitted or simplified as appropriate.
  • the BMS 100a includes the BMU 10, a plurality of assembled batteries 20, and a plurality of cell monitoring circuits 30a corresponding to the plurality of assembled batteries 20.
  • the difference between the cell monitoring circuit 30 and the cell monitoring circuit 30a is that the cell monitoring circuit 30a monitors the assembled battery 20 including the plurality of secondary battery cells 21.
  • the plurality of secondary battery cells 21 are connected in series with each other, but may be partially connected in parallel.
  • the number of the secondary battery cells 21 included in the battery pack 20 is not particularly limited.
  • the measurement circuit 31a included in the cell monitoring circuit 30a includes a plurality of switching elements 32 and a multiplexer 33. Prepare.
  • the multiplexer 33 selectively turns on the plurality of switching elements 32 to measure the voltage value at both ends of the secondary battery cell 21 corresponding to the turned on switching element 32.
  • the multiplexer 33 measures the voltage value of each of the plurality of secondary battery cells 21 included in one assembled battery 20, for example, by selectively turning on the plurality of switching elements 32 in a predetermined order.
  • the cell monitoring circuit 30 a includes a charging circuit 42 instead of the charging circuit 41.
  • Charging circuit 42 includes a conversion circuit 42a and a selection circuit 43a.
  • Conversion circuit 42a converts AC power obtained from AC power line 50 into DC power.
  • the conversion circuit 42a specifically includes a transformer, a full-wave rectifier circuit that converts AC power supplied through the transformer into DC power (DC voltage), and a DC voltage output from the full-wave rectifier circuit. And a smoothing circuit for smoothing.
  • the conversion circuit 42a is a conversion circuit different from the conversion circuit 39.
  • the selection circuit 42b is a circuit for selectively charging the plurality of secondary battery cells 21 to be monitored by the cell monitoring circuit 30a. Specifically, the selection circuit 42b switches to which of the plurality of secondary battery cells 21 the two output terminals of the full-wave rectifier circuit included in the conversion circuit 42a are electrically connected. That is, the selection circuit 42b switches the secondary battery cell 21 to be charged.
  • the selection circuit 42b is realized by a plurality of switching elements, and the control of ON and OFF of the plurality of switching elements is performed by the control circuit 36, for example.
  • the cell monitoring circuit monitors a plurality of secondary battery cells connected in series to each other, the plurality of secondary battery cells have different reference potentials. Therefore, in order to selectively charge a plurality of secondary battery cells, the reference voltage is raised from the lowest potential (GND) of the cell monitoring circuit by using an inverter, a DC-DC converter, a charge pump, or the like. Need to be charged. That is, it is necessary to perform a voltage shift.
  • GND lowest potential
  • the power supplied to the cell monitoring circuit 30a is AC power.
  • the charging circuit 42 can easily perform a voltage shift by utilizing the supply of AC power.
  • FIG. 4 is a flowchart of the operation of the BMS 100a.
  • each of the plurality of cell monitoring circuits 30 a transmits, using the communication circuit 37, information indicating the storage amount of the plurality of secondary battery cells 21 measured by the measurement circuit 31.
  • the communication circuit 11 of the BMU 10 receives, from each of the plurality of cell monitoring circuits 30a, information indicating the storage amounts of the plurality of secondary battery cells 21 to be monitored by the cell monitoring circuit 30a (S21).
  • the BMU 10 the control microcomputer 13
  • the cell monitoring circuit 30a sequentially transmits information indicating the storage amounts of the plurality of secondary battery cells 21 to be monitored.
  • the distinction of the plurality of secondary battery cells 21 to be monitored by the cell monitoring circuit 30a (the distinction of the plurality of secondary battery cells 21 included in one assembled battery 20) is performed in this order, for example.
  • control microcomputer 13 of the BMU 10 instructs at least one of the plurality of cell monitoring circuits 30a to charge the secondary battery cells 21 using the AC power obtained from the AC power line 50 based on the received information. (S22).
  • control microcomputer 13 specifies the secondary battery cell 21 having the largest storage amount as the target cell based on the information indicating the storage amount received in step S21. Subsequently, the control microcomputer 13 causes the cell monitoring circuit 30a that is monitoring the secondary battery cells 21 other than the target cell to charge the storage amount of the secondary battery cell 21 monitored by the cell monitoring circuit 30a with the power storage of the target cell. Instructs to charge until substantially equal to the amount.
  • This instruction is performed by communication between the communication circuit 11 and the communication circuit 37 (that is, communication using the AC power line 50), and the control circuit 36 of the cell monitoring circuit 30a that has received the instruction sends the secondary battery cell to the charging circuit 42. 21 is charged. That is, the charging circuit 42 discharges the secondary battery cell 21 to the AC power line 50 based on the instruction from the BMU 10.
  • the BMS 100a can achieve uniform cell balance of the secondary battery cells 21 by charging the secondary battery cells 21.
  • the active-type cell balance processing realized by the BMS 100a can suppress heat generation which is a problem in the passive-type cell balance processing.
  • FIG. 5 is a diagram illustrating an outline of a functional configuration of the BMS according to the third embodiment.
  • description will be made mainly on differences from the first and second embodiments, and the description of the items described in the first and second embodiments will be omitted or simplified as appropriate. .
  • the BMS 100b includes the BMU 10, a plurality of assembled batteries 20, a plurality of cell monitoring circuits 30b corresponding to the plurality of assembled batteries 20, and an assembled battery charging circuit 60.
  • a difference between the cell monitoring circuit 30a and the cell monitoring circuit 30b is that the cell monitoring circuit 30b includes a discharging circuit 43 instead of the charging circuit 42.
  • Discharge circuit 43 includes a selection circuit 43a and a conversion circuit 43b.
  • the selection circuit 43a is a circuit for selectively discharging the plurality of secondary battery cells 21 to be monitored by the cell monitoring circuit 30b. Specifically, the selection circuit 43a switches to which of the plurality of secondary battery cells 21 the two input terminals of the conversion circuit 43b are electrically connected. That is, the selection circuit 43a switches the secondary battery cell 21 to be discharged.
  • the selection circuit 43a is realized by a plurality of switching elements, and the control of ON and OFF of the plurality of switching elements is performed by the control circuit 36, for example.
  • the conversion circuit 43b converts DC power obtained by discharging the secondary battery cell 21 into AC power and outputs the AC power to the AC power line 50.
  • the conversion circuit 43b is, specifically, an inverter circuit composed of four switching elements. The on / off control of the four switching elements is performed by the control circuit 36, for example.
  • the BMS 100b includes the battery pack charging circuit 60.
  • the battery pack charging circuit 60 uses the AC power obtained from the AC power line 50 by the discharge of the discharge circuit 43 to assemble the battery pack 20 including the secondary battery cells 21 (more specifically, the plurality of battery packs 20 connected in series). Is a circuit for charging.
  • the battery pack charging circuit 60 is output by a transformer connected to the AC power line 50, a full-wave rectifier circuit that converts AC power supplied through the transformer into DC power, and a full-wave rectifier circuit. It includes a smoothing circuit for smoothing a DC voltage, a charge control unit for controlling ON and OFF of charging, and the like.
  • FIG. 6 is a flowchart of the operation of the BMS 100b.
  • each of the plurality of cell monitoring circuits 30b transmits, using the communication circuit 37, information indicating the amount of charge stored in the plurality of secondary battery cells 21 measured by the measurement circuit 31.
  • the communication circuit 11 of the BMU 10 receives, from each of the plurality of cell monitoring circuits 30b, information indicating the charged amount of the plurality of secondary battery cells 21 to be monitored by the cell monitoring circuit 30b (S31).
  • the BMU 10 the control microcomputer 13
  • the cell monitoring circuit 30b the battery pack 20
  • the cell monitoring circuit 30b sequentially transmits information indicating the storage amounts of the plurality of monitored secondary battery cells 21.
  • the plurality of secondary battery cells 21 to be monitored by the cell monitoring circuit 30b are distinguished (that is, the plurality of secondary battery cells 21 included in one battery pack 20 are distinguished), for example, in this order.
  • control microcomputer 13 of the BMU 10 instructs at least one of the plurality of cell monitoring circuits 30b to discharge the secondary battery cells 21 using the AC power obtained from the AC power line 50, based on the received information. (S32).
  • the control microcomputer 13 specifies the secondary battery cell 21 having the smallest storage amount as a target cell based on the information indicating the storage amount received in step S31. Subsequently, the control microcomputer 13 causes the cell monitoring circuit 30b, which is monitoring the secondary battery cells 21 other than the target cell, to charge the storage amount of the secondary battery cell 21 monitored by the cell monitoring circuit 30b to the power storage of the target cell. Instruct the discharge to take place until the volume is substantially equal.
  • This instruction is performed by communication between the communication circuit 11 and the communication circuit 37 (that is, communication using the AC power line 50), and the control circuit 36 of the cell monitoring circuit 30b that has received the instruction sends the secondary battery cell to the discharge circuit 43. 21 is discharged. That is, the discharge circuit 43 discharges the secondary battery cell 21 to the AC power line 50 based on the instruction from the BMU 10.
  • the discharge circuit 43 discharges (in other words, adds AC power) to the AC power line 50
  • the frequency and phase of the discharge power need to be adjusted to the frequency and phase of the AC power supply 12.
  • the cell monitoring circuit 30b (specifically, the control circuit 36 and the like) monitors the AC power and controls the discharge circuit 43, so that the frequency and phase of the discharge power are changed to the frequency and phase of the AC power supply 12. Can be easily adapted.
  • the direction of the current of the discharge power is also adjusted appropriately using an ammeter (a component represented by the symbol “A” in FIG. 5).
  • the power discharged to the AC power line 50 discharged by the discharge circuit 43 may be used in any manner, but in the BMS 100b, it is regenerated to the battery pack 20. That is, the battery pack 20 is charged (S33).
  • the battery pack charging circuit 60 (charging control unit) is turned on by an instruction from the BMU 10 (control microcomputer 13) via a communication path (not shown in FIG. 5) using the AC power line 50.
  • the BMS 100b can achieve uniform cell balance of the secondary battery cells 21 by discharging the secondary battery cells 21.
  • the active-type cell balancing process realized by the BMS 100b can suppress heat generation which is a problem in the passive-type cell balancing process.
  • the BMS 100b In the general active-type cell balancing process, how to treat the discharge power is an issue. However, the BMS 100b outputs the discharge power to the AC power line 50, and thereby the discharge power to the battery pack 20 is reduced. Regeneration can be easily realized.
  • the BMS 100b match the sum of the discharge power (power added in the cell balance process), the AC power output from the AC power supply 12, and the regenerative power to the power consumed by the entire system. .
  • FIG. 7 is a diagram schematically illustrating a functional configuration of the BMS according to the fourth embodiment.
  • the description will be made focusing on the differences from the first to third embodiments, and the description of the items described in the first to third embodiments will be omitted or simplified as appropriate. .
  • the BMS 100c includes the BMU 10, a plurality of battery packs 20, a plurality of cell monitoring circuits 30b corresponding to the plurality of battery packs 20, and a battery charging circuit 70.
  • the difference between the BMS 100b and the BMS 100c is that the BMS 100c includes a battery charging circuit 70 instead of the battery pack charging circuit 60.
  • the battery charging circuit 70 is a circuit for charging a battery 80 different from the battery pack 20 (secondary battery cell 21) using AC power obtained from the AC power line 50 by discharging of the discharging circuit 43.
  • the battery 80 is, for example, a 12V battery for vehicle use, and is galvanically isolated from the battery pack 20.
  • the battery charging circuit 70 includes, specifically, a transformer connected to the AC power line 50, a full-wave rectifier circuit for converting AC power supplied through the transformer to DC power, and a DC output from the full-wave rectifier circuit. It includes a smoothing circuit for smoothing the voltage, a charge control unit for controlling ON and OFF of charging, and the like.
  • FIG. 8 is a flowchart of the operation of the BMS 100c.
  • the communication circuit 11 of the BMU 10 receives, from each of the plurality of cell monitoring circuits 30b, information indicating the charged amount of the plurality of secondary battery cells 21 to be monitored by the cell monitoring circuit 30b (S41).
  • the processing in step S41 is the same as the processing in step S31.
  • control microcomputer 13 of the BMU 10 instructs at least one of the plurality of cell monitoring circuits 30b to discharge the secondary battery cells 21 using the AC power obtained from the AC power line 50, based on the received information.
  • the processing in step S42 is the same as the processing in step S32.
  • the power discharged to the AC power line 50 discharged by the discharge circuit 43 is regenerated to a battery 80 different from the battery pack 20 beyond the galvanic isolation boundary. That is, the battery 80 is charged (S43).
  • the battery charging circuit 70 (charging control unit) is turned on by an instruction from the BMU 10 (control microcomputer 13) via a communication path (not shown in FIG. 7) using the AC power line 50.
  • the BMS 100c can achieve uniform cell balance of the secondary battery cells 21 by discharging the secondary battery cells 21.
  • the active-type cell balancing process realized by the BMS 100c can suppress heat generation which is a problem in the passive-type cell balancing process.
  • the BMS 100c outputs the discharge power to the AC power line 50, and thereby the discharge power to the battery 80 is reduced. Regeneration (that is, regeneration of power beyond the galvanic isolation boundary) can be easily realized.
  • the BMS 100c match the sum of the discharge power (power added in the cell balancing process), the AC power output from the AC power supply 12, and the regenerative power to the power consumed by the entire system. .
  • the BMS 100 includes the plurality of cell monitoring circuits 30 connected to the AC power line 50, and the BMU 10 connected to the AC power line 50.
  • the BMU 10 sends the cell monitoring information to at least one of the plurality of cell monitoring circuits 30 based on the information indicating the amount of power stored in the storage cell 21 to be monitored by the cell monitoring circuit 30 in each of the plurality of cell monitoring circuits 30.
  • the control microcomputer 13 instructs the control of the storage amount of the secondary battery cell 21 to be monitored by the circuit 30.
  • the BMS 100 is an example of a management system
  • the transformer 38 and the transformer 14 are examples of an insulating element
  • the BMU 10 is an example of a management device.
  • the secondary battery cell 21 is an example of a power storage cell
  • the control microcomputer 13 is an example of an information processing unit.
  • the control of the charged amount is, in other words, the adjustment of the charged amount.
  • Such a BMS 100 can make the cell balance of the plurality of secondary battery cells 21 connected to the different cell monitoring circuits 30 uniform. Further, in the BMS 100, the cell monitoring circuit 30 can operate by supplying power from the AC power supply 12 which is a power source different from the secondary battery cell 21, and thus the cell balance is broken due to a variation in the operating power of the cell monitoring circuit 30. Can be suppressed.
  • each of the plurality of cell monitoring circuits 30 includes a communication circuit 37 for transmitting information.
  • the BMU 10 further includes a communication circuit 11 that receives information. Communication between the communication circuit 37 and the communication circuit 11 is performed via the AC power line 50.
  • the communication circuit 37 is an example of a first communication circuit
  • the communication circuit 11 is an example of a second communication circuit.
  • the BMS 100 also uses a power supply path from the AC power supply 12 which is a power supply different from the secondary battery cell 21 to the cell monitoring circuit 30 as a communication path between the BMU 10 and the cell monitoring circuit 30. For this reason, the BMS 100 can suppress the cell balance from being disrupted due to the variation in the operation power of the cell monitoring circuit 30 while suppressing the addition of components related to communication.
  • each of the plurality of cell monitoring circuits 30 monitors only one secondary battery cell 21.
  • Such a BMS 100 can make the cell balance of the plurality of secondary battery cells 21 connected to the different cell monitoring circuits 30 uniform.
  • Each of the plurality of cell monitoring circuits 30 includes a conversion circuit 39 that converts AC power obtained from the AC power line 50 into DC power, and charges the secondary battery cell 21 to be monitored by the cell monitoring circuit 30 using the DC power. And a charging circuit 41 for charging.
  • Such a BMS 100 can make the cell balance of the plurality of secondary battery cells 21 connected to the different cell monitoring circuits 30 uniform by charging the secondary battery cells 21.
  • each of the plurality of cell monitoring circuits 30a monitors the plurality of secondary battery cells 21.
  • Such a BMS 100a controls the cell balance of the plurality of secondary battery cells 21 connected to different cell monitoring circuits 30a and the cell balance of the plurality of secondary battery cells 21 connected to one cell monitoring circuit 30a. It can be made uniform.
  • the control microcomputer 13 instructs charging as control of the charged amount.
  • Each of the plurality of cell monitoring circuits 30a selectively converts a conversion circuit 42a that converts AC power obtained from the AC power line 50 into DC power and a plurality of secondary battery cells 21 to be monitored by the cell monitoring circuit 30a.
  • a selection circuit 42b for performing the operation is included in the BMS 100a.
  • such a BMS 100a balances the cells of the plurality of secondary battery cells 21 connected to the different cell monitoring circuits 30a and the plurality of BMSs 100a connected to one cell monitoring circuit 30a.
  • the cell balance of the secondary battery cells 21 can be made uniform.
  • Each of the plurality of cell monitoring circuits 30b includes a selection circuit 43a for selectively discharging the plurality of secondary battery cells 21 to be monitored by the cell monitoring circuit 30b, and a DC power obtained by the discharging to an AC power. And a conversion circuit 43b for converting and outputting to the AC power line 50.
  • Such a BMS 100a discharges the secondary battery cell 21 and causes the cell balance of the plurality of secondary battery cells 21 connected to different cell monitoring circuits 30a, and the plurality of BMS 100a connected to one cell monitoring circuit 30a.
  • the cell balance of the secondary battery cells 21 can be made uniform.
  • the control microcomputer 13 instructs discharge to the AC power line 50 as control of the charged amount.
  • the BMS 100b further includes a battery pack charging circuit 60 for charging the battery pack 20 including the secondary battery cells 21 using AC power obtained from the AC power line 50 by discharging.
  • Such a BMS 100b regenerates discharge power to the battery pack 20 by discharging the secondary battery cells 21 while making the cell balance of the plurality of secondary battery cells 21 connected to the different cell monitoring circuits 30b uniform. Can be.
  • the control microcomputer 13 instructs the discharge to the AC power line 50 as the control of the charged amount.
  • the BMS 100c further includes a battery charging circuit 70 for charging a battery 80 different from the secondary battery cell 21 using AC power obtained from the AC power line 50 by discharging.
  • Such a BMS 100b can regenerate discharge power to the battery 80 by discharging the secondary battery cells 21 while making the cell balance of the plurality of secondary battery cells 21 connected to the different cell monitoring circuits 30b uniform. it can.
  • the cell monitoring circuit 30 for monitoring the secondary battery cell 21 includes a transformer 38 for receiving power from the AC power line 50 in a non-contact manner, and a BMU 10 for managing the state of the secondary battery cell 21.
  • a communication circuit 37 that receives an instruction to control the amount of power stored in the secondary battery cell 21 from the BMU 10 connected to the battery 50 via the transformer 14; and a circuit that controls the amount of power stored in the secondary battery cell 21 based on the instruction.
  • Such a cell monitoring circuit 30 can be operated by supplying power from the AC power supply 12 which is a different power supply from the secondary battery cell 21, the cell balance may be lost due to a variation in the operating power of the cell monitoring circuit 30. Can be suppressed.
  • the circuit is a charging circuit 41 that charges the secondary battery cell 21 using AC power obtained from the AC power line 50 based on the instruction.
  • the circuit is a charging circuit 42 that charges the secondary battery cell 21 using AC power obtained from the AC power line 50 based on the instruction.
  • Such a cell monitoring circuit 30 charges the secondary battery cell 21 based on the instruction, thereby forming a cell between the secondary battery cell 21 and the secondary battery cell 21 connected to another cell monitoring circuit 30.
  • the balance can be made uniform. The same applies to the cell monitoring circuit 30a.
  • the circuit is a discharge circuit 43 that discharges the secondary battery cell 21 to the AC power line 50 based on the instruction.
  • Such a cell monitoring circuit 30b discharges the secondary battery cell 21 based on the instruction, thereby forming a cell between the secondary battery cell 21 and the secondary battery cell 21 connected to another cell monitoring circuit 30b.
  • the balance can be made uniform.
  • the communication between the BMU and each of the plurality of cell monitoring circuits was performed using the AC power line, but this communication was performed using a dedicated communication line different from the AC power line. May be. That is, it is not essential that communication is performed using the AC power line.
  • the first to fourth embodiments may be arbitrarily combined.
  • the cell monitoring circuit may include a discharge circuit.
  • the cell monitoring circuit may include both a discharging circuit and a charging circuit.
  • the transformer is exemplified as the insulating element, but the insulating element may be another insulating element such as an electromagnetic resonance coupler.
  • the battery pack used for the electric vehicle is managed, but the BMS may manage the battery for any purpose.
  • the circuit configuration described in the above embodiment is an example, and the present disclosure is not limited to the circuit configuration. That is, similarly to the above-described circuit configuration, a circuit that can realize the characteristic function of the present disclosure is also included in the present disclosure. For example, an element in which a switching element (transistor), a resistor, a capacitor, or the like is connected to a certain element in series or in parallel to the extent that a function similar to the above circuit configuration can be realized is also described in the present disclosure. included.
  • the components included in the cell monitoring circuit may be integrated in any manner.
  • the measurement circuit and the communication circuit may be realized as a single integrated circuit, or may be realized as separate integrated circuits.
  • the cell monitoring circuit is realized by hardware.
  • some of the components included in the cell monitoring circuit may be realized by executing a software program suitable for the components.
  • Some of the components included in the cell monitoring circuit are realized by a program execution unit such as a CPU (Central Processing Unit) or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory. May be done.
  • a program execution unit such as a CPU (Central Processing Unit) or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory. May be done.
  • the information processing unit is realized by the microcomputer. That is, the function of the information processing unit is realized by a program execution unit such as a CPU or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
  • the information processing unit may be partially realized by hardware.
  • another processing unit may execute the process executed by the specific processing unit.
  • the order of a plurality of processes may be changed, or the plurality of processes may be performed in parallel.
  • the present disclosure may be realized as a BMU, a storage capacitor management system, a storage capacitor management unit, or the like.
  • the present disclosure may be realized as a vehicle such as an electric vehicle equipped with the cell monitoring circuit or the BMS of the above embodiment.
  • the present disclosure may be realized as a device other than the vehicle, which is equipped with the cell monitoring circuit or the BMS of the above embodiment.
  • the BMS of the present disclosure and the cell monitoring circuit used for the BMS can be widely used for, for example, in-vehicle applications.
  • Communication circuit (first communication circuit) 12 AC power supply 13
  • Control microcomputer 14, 38 Transformer 20 Battery pack 21 Secondary battery cell 30, 30a, 30b Cell monitoring circuit 31, 31a Measurement circuit 32 Switching element 33 Multiplexer 34 A / D converter 35 Storage unit 36
  • Control circuit 37 Communication circuit ( Second communication circuit) 39, 42a, 43b Conversion circuit 40 Clock generation circuit 41, 42 Charging circuit 42b, 43a Selection circuit 43 Discharge circuit 50 AC power line 60 Battery pack charging circuit 70 Battery charging circuit 80 Battery 100, 100a, 100b, 100c BMS

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

BMS(100)は、交流電力線(50)にトランス(38)を介して接続された複数のセル監視回路(30)と、交流電力線(50)にトランス(14)を介して接続されたBMU(10)とを備える。BMU(10)は、複数のセル監視回路(30)のそれぞれにおける、当該セル監視回路(30)の監視対象の二次電池セル(21)の蓄電量を示す情報に基づいて、複数のセル監視回路(30)の少なくとも1つに、当該セル監視回路(30)の監視対象の二次電池セル(21)の蓄電量の制御を指示する制御マイコン(13)を備える。

Description

管理システム、及び、セル監視回路
 本開示は、管理システム、及び、これに用いられるセル監視回路に関する。
 特許文献1は、複数の電池セルを備えた電池システムに関し、特に複数の電池セルを備えた電池システム用のセル平衡化システムおよび電池セルの平衡を保つ従来技術の方法を開示している。
米国特許第9153973号明細書
 本開示は、セル監視回路の動作電力のばらつきによってセルバランスが崩れることを抑制することができる管理システム、及び、これに用いられるセル監視回路を提供する。
 本開示の一態様に係る管理システムは、交流電力線に接続された複数のセル監視回路と、前記交流電力線に接続された管理装置とを備え、前記管理装置は、前記複数のセル監視回路のそれぞれにおける、当該セル監視回路の監視対象の蓄電セルの蓄電量を示す情報に基づいて、前記複数のセル監視回路の少なくとも1つに、当該セル監視回路の監視対象の蓄電セルの蓄電量の制御を指示する情報処理部を備える。
 本開示の一態様に係るセル監視回路は、蓄電セルを監視するセル監視回路であって、交流電力線から非接触で電力供給を受けるための絶縁素子と、前記蓄電セルの状態を管理する管理装置であって、前記交流電力線に絶縁素子を介して接続された管理装置から、前記蓄電セルの蓄電量の制御の指示を受ける通信回路と、前記指示に基づいて、前記蓄電セルの蓄電量を制御する回路とを備える。
 本開示によれば、セル監視回路の動作電力のばらつきによってセルバランスが崩れることを抑制することができる管理システム、及び、これに用いられるセル監視回路が実現される。
図1は、実施の形態1に係るBMSの機能構成の概略を示す図である。 図2は、実施の形態1に係るBMSの動作のフローチャートである。 図3は、実施の形態2に係るBMSの機能構成の概略を示す図である。 図4は、実施の形態2に係るBMSの動作のフローチャートである。 図5は、実施の形態3に係るBMSの機能構成の概略を示す図である。 図6は、実施の形態3に係るBMSの動作のフローチャートである。 図7は、実施の形態4に係るBMSの機能構成の概略を示す図である。 図8は、実施の形態4に係るBMSの動作のフローチャートである。
 (実施の形態1)
 [構成]
 以下、実施の形態1に係るBMS(Battery Management System、バッテリマネジメントシステム)について説明する。まず、実施の形態1に係るBMSの構成について説明する。図1は、実施の形態1に係るBMSの機能構成の概略を示す図である。
 実施の形態1に係るBMS100は、例えば、電気自動車などの車両に搭載される。BMS100は、BMU(Battery Management Unit)10と、複数の二次電池セル21と、複数の二次電池セル21に対応する複数のセル監視回路(CSC:Cell Supervising Circuit)30とを備える。図1では、組電池20及びセル監視回路30は、2つずつ図示されているが、二次電池セル21及びセル監視回路30の数は2つに限定されず、3つ以上であってもよい。また、BMS100は、二次電池セル21及びセル監視回路30のそれぞれを1つだけ備えてもよい。BMU10、及び、複数のセル監視回路30のそれぞれは、トランスを介して交流電力線50に接続されている。
 BMU10は、複数の二次電池セル21の状態の監視、及び、複数の二次電池セル21の充電制御を行う。二次電池セル21は、蓄電セルの一例である。二次電池セル21は、具体的には、リチウムイオン電池であるが、ニッケル水素電池などその他の電池であってもよい。複数の二次電池セル21は、例えば、直列接続されるが、一部または全部が並列接続されていてもよい。複数の二次電池セル21は、組電池を構成する。
 なお、BMS100は、複数の二次電池セル21に代えて、複数の蓄電キャパシタセルを備えてもよい。蓄電キャパシタセルは、蓄電セルの別の一例である。蓄電キャパシタセルは、具体的には、電気二重層コンデンサであるが、リチウムイオンキャパシタなどであってもよい。
 BMU10は、具体的には、複数の通信回路11と、交流電源12と、制御マイコン13と、トランス14とを備える。なお、BMU10は、少なくとも制御マイコン13を備えていればよい。
 通信回路11は、第二通信回路の一例であり、BMU10が複数のセル監視回路30のそれぞれと交流電力線50を介して通信を行うための回路である。通信回路11は、具体的には、信号を送信するための送信回路、フィルタ、及び、増幅回路、並びに、信号を受信するための受信回路、フィルタ、及び、増幅回路などを含む。通信に用いられる交流電力線50は、BMU10、及び、複数のセル監視回路30で共用される電力線であり、BMU10、及び、複数のセル監視回路30のそれぞれにトランスを介して接続される。交流電力線50は、交流電源12から複数のセル監視回路30への電力供給に用いられる。
 交流電源12は、交流電力線50を介して複数のセル監視回路30のそれぞれに交流電力を供給する。このようにBMS100では、BMU10から複数のセル監視回路30のそれぞれにガルバニックアイソレーション境界を超えて交流電力が供給される。言い換えれば、セル監視回路30は、組電池20ではなく、交流電源12によって供給される電力によって動作する。
 制御マイコン13は、複数の二次電池セル21の状態の監視、及び、複数の組電池20の制御を行う。制御マイコン13は、情報処理部の一例である。
 複数のセル監視回路30は、複数の二次電池セル21に1対1で対応する回路である。つまり、1つのセル監視回路30は、1つの二次電池セル21のみを監視対象とする。セル監視回路30は、回路モジュールであり、基板に回路部品が実装されることによって形成される。セル監視回路30は、具体的には、計測回路31と、通信回路37と、トランス38と、変換回路39と、クロック生成回路40と、充電回路41とを備える。
 計測回路31は、監視対象の二次電池セル21の蓄電量を計測する。計測回路31は、具体的には、監視対象の二次電池セル21の電圧値を当該二次電池セル21の蓄電量を示すパラメータとして計測する。計測回路31は、スイッチング素子32と、AD変換器34と、記憶部35と、制御回路36とを備える。なお、計測回路31は、蓄電量を直接または間接に示すパラメータを計測すればよい。
 スイッチング素子32は、オンすることで接続する二次電池セル21を放電させて蓄電量を調整する。
 AD変換器34は、二次電池セル21のアナログの電圧値をデジタルの電圧値に変換する。
 記憶部35は、例えば、不揮発性の半導体メモリであり、セル監視回路30を他のセル監視回路30と識別するためのアドレス(言い換えれば、識別情報または認識符号)が記憶される。このアドレスは、二次電池セル21を他の二次電池セル21と識別するための識別情報と考えることもできる。なお、図1の例では、記憶部35は、計測回路31の一部として図示されている(つまり、計測回路31によって備えられている)が、計測回路31とは別の構成要素とされてもよい。
 制御回路36は、AD変換器34から出力されるデジタルの電圧値に、記憶部35に記憶されたアドレスを付与した情報(計測回路31によって計測された蓄電量を示す情報とも記載される)を生成し、生成した情報を通信回路37に出力する。制御回路36は、言い換えれば、制御ロジック回路である。
 通信回路37は、第一通信回路の一例であり、組電池20の状態を管理するBMU10に、計測回路31によって計測された蓄電量を示す情報を、トランス38を介して送信する。通信回路37は、具体的には、信号を送信するための送信回路、フィルタ、及び、増幅回路、並びに、信号を受信するための受信回路、フィルタ、及び、増幅回路などを含む。
 トランス38は、計測回路31が組電池20とは異なる電源である交流電源12から非接触で電力供給を受けるための絶縁素子である。なお、セル監視回路30は、トランス38に代えて他のコイル素子を絶縁素子として備えてもよい。
 変換回路39は、交流電源12からトランス38を介して供給される交流電力を直流電力に変換し、直流電力を計測回路31、通信回路37、クロック生成回路40、及び、充電回路41に供給する。変換回路39は、具体的には、全波整流回路、平滑回路、及び、レギュレータなどによって構成される。
 なお、交流電源12によって供給される交流電力の周波数は、例えば、数百kHzであり、より具体的には、例えば、350kHzである。交流電圧の実効値は、例えば、5Vである。なお、交流電源12の周波数、及び、実効値は特に限定されない。
 クロック生成回路40は、交流電力の周波数に同期したクロック信号を生成する。計測回路31は、生成されたクロック信号に基づいて二次電池セル21の電圧値を計測する。クロック生成回路40は、具体的には、位相同期回路(言い換えれば、PLL(Phase Locked Loop)回路)によって実現される。クロック生成回路40によれば、複数のセル監視回路30それぞれのシステムクロックを同期させることができる。
 充電回路41は、変換回路39によって出力される直流電力により、二次電池セル21を充電する。充電回路41の動作は、例えば、制御回路36によって制御される。
 [一般的なBMSとの構成の違い]
 一般的なBMSは、二次電池セル21の過充電による発熱、発火、爆発、及び、劣化を抑制し、かつ、充電によって二次電池セルの蓄電量を最大化するために複数の二次電池セルの蓄電量(SOC:State Of Charge)を均等化するセルバランス処理を行った上で組電池20を充電する。このとき、BMUは、二次電池セルの蓄電量(言い換えれば、二次電池セルの電圧値)を管理するために、複数のセル監視回路と、デージ(数珠つなぎ)通信を実施する。
 一般的なBMSにおいては、複数のセル監視回路30のそれぞれは、当該セル監視回路の監視対象の二次電池セルから電力の供給を受ける。このような構成においては、複数のセル監視回路の動作電力のばらつきがセルバランスを崩す要因となる。特に、複数のセル監視回路の通信頻度の違いによって生じる動作電力のばらつきは、セルバランスが崩れる大きな要因となる。
 セルバランスが崩れることを抑制するため、二次電池セルと異なる別電源(BMSが車載用途の場合は、12Vバッテリなど)からセル監視回路へ電力を供給する方法が考えられる。この方法においては、上記別電源と二次電池セルとは、ガルバニックアイソレーションされる必要がある。別電源からセル監視回路へ電力を供給する方法は、具体的には、トランスを用いた絶縁型DC-DCコンバータによるセル監視回路への給電などである。
 しかしながら、別電源からセル監視回路へ電力を供給する方法を一般的なBMSに適用する場合、複数のセル監視回路とBMUとの間に、電力供給経路(例えば、配線またはハーネスなど)を設ける必要がある。そうすると、部品点数の増加、及び、重量の増大などの新たな課題が生じる。
 これに対し、BMS100は、交流電源12による電力供給経路(交流電力線50及びトランス38)を、BMU10及びセル監視回路30の通信経路としても使用するため、電力供給経路を別途設ける必要がない。つまり、BMS100は、部品点数の増加、及び、重量の増大などを抑制し、かつ、セル監視回路30の動作電力のばらつきによってセルバランスが崩れることを抑制することができる。
 なお、通信において使用される周波数帯域は、交流電力の周波数よりも高い。つまり、通信回路11及び通信回路37は、交流電力の周波数よりも高い周波数帯域を使用して通信を行う。通信の搬送波周波数は、例えば、20MHzである。
 また、通信に使用される周波数帯域は、複数の周波数チャンネルに分割されてもよい。例えば、複数のセル監視回路30のそれぞれは、周波数帯域のうちの一部を当該セル監視回路30に割り当てられた通信チャンネルとして使用する。これにより、通信速度及び通信品質を向上することができる。
 [動作]
 また、BMS100では、アクティブ方式のセルバランス処理を容易に行うことができる。以下、このようなBMS100の動作について説明する。図2は、BMS100の動作のフローチャートである。
 まず、複数のセル監視回路30のそれぞれは、計測回路31によって計測された二次電池セル21の蓄電量を示す情報を通信回路37を用いて送信する。BMU10の通信回路11は、複数のセル監視回路30のそれぞれから、当該セル監視回路30の監視対象の二次電池セル21の蓄電量を示す情報を受信する(S11)。上述のように、この情報にはアドレスが含まれるため、BMU10(制御マイコン13)は、複数の二次電池セル21の蓄電量を区別することができる。
 次に、BMU10の制御マイコン13は、受信された情報に基づいて、複数のセル監視回路30の少なくとも1つに交流電力線50から得られる交流電力を用いた二次電池セル21の充電を指示する(S12)。
 制御マイコン13は、具体的には、ステップS11で受信された蓄電量を示す情報に基づいて、最も蓄電量の大きい二次電池セル21を対象セルとして特定する。続いて、制御マイコン13は、対象セル以外の二次電池セル21を監視対象としているセル監視回路30に、当該セル監視回路30の監視対象の二次電池セル21の蓄電量が対象セルの蓄電量と実質的に等しくなるまで充電を行うように指示する。この指示は、通信回路11及び通信回路37の通信(つまり、交流電力線50を用いた通信)によって行われ、指示を受けたセル監視回路30の制御回路36は、充電回路41に二次電池セル21の充電を行わせる。
 以上説明したように、BMS100は、各々が互いに異なるセル監視回路30に接続された複数の二次電池セル21のセルバランスの均一化を、二次電池セル21の充電により実現することができる。BMS100によって実現されるアクティブ方式のセルバランス処理は、二次電池セル21を強制放電して熱エネルギーに変換するパッシブ方式のセルバランス処理で問題となる発熱を抑制することができる。
 (実施の形態2)
 [構成]
 以下、実施の形態2に係るBMSについて説明する。まず、実施の形態2に係るBMSの構成について説明する。図3は、実施の形態2に係るBMSの機能構成の概略を示す図である。なお、実施の形態2では、実施の形態1との相違点を中心に説明が行われ、実施の形態1で説明された事項については、適宜、説明が省略または簡略化される。
 実施の形態2に係るBMS100aは、BMU10と、複数の組電池20と、複数の組電池20に対応する複数のセル監視回路30aとを備える。
 セル監視回路30とセル監視回路30aとの相違点は、セル監視回路30aは、複数の二次電池セル21を含む組電池20を監視対象としている点である。複数の二次電池セル21は、互いに直列接続されているが、一部が並列接続されていてもよい。また、組電池20に含まれる二次電池セル21の数は特に限定されない。
 また、このようにセル監視回路30aが複数の二次電池セル21を監視対象とすることに対応して、セル監視回路30aが備える計測回路31aは、複数のスイッチング素子32と、マルチプレクサ33とを備える。
 マルチプレクサ33は、複数のスイッチング素子32を選択的にオンすることにより、オンされたスイッチング素子32に対応する二次電池セル21の両端の電圧値を計測する。マルチプレクサ33は、例えば、複数のスイッチング素子32を所定の順序で選択的にオンすることにより、1つの組電池20に含まれる複数の二次電池セル21それぞれの電圧値を計測する。
 また、セル監視回路30aは、充電回路41に代えて、充電回路42を備えている。充電回路42は、変換回路42aと、選択回路43aとを含む。
 変換回路42aは、交流電力線50から得られる交流電力を直流電力に変換する。変換回路42aは、具体的には、トランスと、このトランスを介して供給される交流電力を直流電力(直流電圧)に変換する全波整流回路と、全波整流回路から出力される直流電圧を平滑化する平滑回路とを含む。変換回路42aは、変換回路39とは別の変換回路である。
 選択回路42bは、セル監視回路30aの監視対象の複数の二次電池セル21を選択的に充電するための回路である。選択回路42bは、具体的には、変換回路42aに含まれる全波整流回路の2つの出力端子を、複数の二次電池セル21のいずれに電気的に接続するかを切り替える。つまり、選択回路42bは、充電の対象となる二次電池セル21を切り替える。選択回路42bは、複数のスイッチング素子によって実現され、複数のスイッチング素子のオン及びオフの制御は、例えば、制御回路36によって行われる。
 一般的に、互いに直列接続された複数の二次電池セルをセル監視回路が監視する場合、複数の二次電池セルはそれぞれ基準電位が異なる。このため、複数の二次電池セルを選択的に充電するためには、インバータ、DC-DCコンバータ、または、チャージポンプ等を用いて、セル監視回路の最下位電位(GND)から基準電圧を持ち上げて充電を行う必要がある。つまり、電圧シフトを行う必要がある。
 これに対し、BMS100aでは、セル監視回路30aに供給される電力が交流電力である。充電回路42は、上記の回路構成により、交流電力が供給されることを利用して容易に電圧シフトを行うことができる。
 [動作]
 以下、BMS100aの動作について説明する。図4は、BMS100aの動作のフローチャートである。
 まず、複数のセル監視回路30aのそれぞれは、計測回路31によって計測された複数の二次電池セル21の蓄電量を示す情報を、通信回路37を用いて送信する。BMU10の通信回路11は、複数のセル監視回路30aのそれぞれから、当該セル監視回路30aの監視対象の複数の二次電池セル21の蓄電量を示す情報を受信する(S21)。上述のように、この情報にはアドレスが含まれるため、BMU10(制御マイコン13)は、情報の送信元のセル監視回路30a(組電池20)を特定することができる。なお、セル監視回路30aは、監視対象の複数の二次電池セル21の蓄電量を示す情報を順番に送信する。セル監視回路30aの監視対象の複数の二次電池セル21の区別(1つの組電池20に含まれる複数の二次電池セル21の区別)は、例えば、この順番によって行われる。
 次に、BMU10の制御マイコン13は、受信された情報に基づいて、複数のセル監視回路30aの少なくとも1つに交流電力線50から得られる交流電力を用いた二次電池セル21の充電を指示する(S22)。
 制御マイコン13は、具体的には、ステップS21で受信された蓄電量を示す情報に基づいて、最も蓄電量の大きい二次電池セル21を対象セルとして特定する。続いて、制御マイコン13は、対象セル以外の二次電池セル21を監視対象としているセル監視回路30aに、当該セル監視回路30aの監視対象の二次電池セル21の蓄電量が対象セルの蓄電量と実質的に等しくなるまで充電を行うように指示する。この指示は、通信回路11及び通信回路37の通信(つまり、交流電力線50を用いた通信)によって行われ、指示を受けたセル監視回路30aの制御回路36は、充電回路42に二次電池セル21の充電を行わせる。つまり、充電回路42は、BMU10からの指示に基づいて、二次電池セル21から交流電力線50への放電を行う。
 以上説明したように、BMS100aは、二次電池セル21のセルバランスの均一化を、二次電池セル21の充電により実現することができる。BMS100aによって実現されるアクティブ方式のセルバランス処理は、パッシブ方式のセルバランス処理で問題となる発熱を抑制することができる。
 (実施の形態3)
 [構成]
 以下、実施の形態3に係るBMSについて説明する。まず、実施の形態3に係るBMSの構成について説明する。図5は、実施の形態3に係るBMSの機能構成の概略を示す図である。なお、実施の形態3では、実施の形態1及び2との相違点を中心に説明が行われ、実施の形態1及び2で説明された事項については、適宜、説明が省略または簡略化される。
 実施の形態3に係るBMS100bは、BMU10と、複数の組電池20と、複数の組電池20に対応する複数のセル監視回路30bと、組電池充電回路60とを備える。
 セル監視回路30aとセル監視回路30bとの相違点は、セル監視回路30bは、充電回路42に代えて、放電回路43を備えている点である。放電回路43は、選択回路43aと、変換回路43bとを含む。
 選択回路43aは、セル監視回路30bの監視対象の複数の二次電池セル21を選択的に放電するための回路である。選択回路43aは、具体的には、変換回路43bの2つの入力端子を、複数の二次電池セル21のいずれに電気的に接続するかを切り替える。つまり、選択回路43aは、放電の対象となる二次電池セル21を切り替える。選択回路43aは、複数のスイッチング素子によって実現され、複数のスイッチング素子のオン及びオフの制御は、例えば、制御回路36によって行われる。
 変換回路43bは、二次電池セル21の放電によって得られる直流電力を交流電力に変換して交流電力線50に出力する。変換回路43bは、具体的には、4つのスイッチング素子によって構成されるインバータ回路である。4つのスイッチング素子のオン及びオフの制御は、例えば、制御回路36によって行われる。
 また、BMS100bは、組電池充電回路60を備えている。組電池充電回路60は、放電回路43の放電によって交流電力線50から得られる交流電力を用いて二次電池セル21を含む組電池20(より詳細には、直列接続された複数の組電池20)を充電するための回路である。組電池充電回路60は、具体的には、交流電力線50に接続されるトランス、このトランスを介して供給される交流電力を直流電力に変換する全波整流回路、全波整流回路によって出力される直流電圧を平滑化する平滑回路、及び、充電のオン及びオフを制御する充電制御部などを含む。
 [動作]
 以下、BMS100bの動作について説明する。図6は、BMS100bの動作のフローチャートである。
 まず、複数のセル監視回路30bのそれぞれは、計測回路31によって計測された複数の二次電池セル21の蓄電量を示す情報を、通信回路37を用いて送信する。BMU10の通信回路11は、複数のセル監視回路30bのそれぞれから、当該セル監視回路30bの監視対象の複数の二次電池セル21の蓄電量を示す情報を受信する(S31)。上述のように、この情報にはアドレスが含まれるため、BMU10(制御マイコン13)は、情報の送信元のセル監視回路30b(組電池20)を特定することができる。
 なお、セル監視回路30bは、監視対象の複数の二次電池セル21の蓄電量を示す情報を順番に送信する。セル監視回路30bの監視対象の複数の二次電池セル21の区別(つまり、1つの組電池20に含まれる複数の二次電池セル21の区別)は、例えば、この順番によって行われる。
 次に、BMU10の制御マイコン13は、受信された情報に基づいて、複数のセル監視回路30bの少なくとも1つに交流電力線50から得られる交流電力を用いた二次電池セル21の放電を指示する(S32)。
 制御マイコン13は、具体的には、ステップS31で受信された蓄電量を示す情報に基づいて、最も蓄電量の小さい二次電池セル21を対象セルとして特定する。続いて、制御マイコン13は、対象セル以外の二次電池セル21を監視対象としているセル監視回路30bに、当該セル監視回路30bの監視対象の二次電池セル21の蓄電量が対象セルの蓄電量と実質的に等しくなるまで放電を行うように指示する。この指示は、通信回路11及び通信回路37の通信(つまり、交流電力線50を用いた通信)によって行われ、指示を受けたセル監視回路30bの制御回路36は、放電回路43に二次電池セル21の放電を行わせる。つまり、放電回路43は、BMU10からの指示に基づいて、二次電池セル21から交流電力線50への放電を行う。
 なお、放電回路43によって交流電力線50へ放電(言い換えれば、交流電力の加算)を行う場合、放電電力の周波数及び位相は、交流電源12の周波数及び位相に合わせられる必要がある。BMS100bでは、セル監視回路30bにトランス38を介して交流電力が供給されている。このため、セル監視回路30b(具体的には、制御回路36など)は、交流電力をモニタして放電回路43を制御することで、放電電力の周波数及び位相を交流電源12の周波数及び位相に容易に合わせることができる。なお、交流電力の加算においては、適宜、電流計(図5中で記号「A」で表される構成要素)を用いて、放電電力の電流の向きについても調整される。
 ここで、放電回路43によって放電された交流電力線50に放電された電力は、どのように使用されてもよいが、BMS100bでは、組電池20に回生される。つまり、組電池20が充電される(S33)。具体的には、例えば、BMU10(制御マイコン13)による、交流電力線50を用いた通信経路(図5で不図示)を介した指示により組電池充電回路60(充電制御部)がオンされる。
 以上説明したように、BMS100bは、二次電池セル21のセルバランスの均一化を、二次電池セル21の放電により実現することができる。BMS100bによって実現されるアクティブ方式のセルバランス処理は、パッシブ方式のセルバランス処理で問題となる発熱を抑制することができる。
 また、一般的なアクティブ方式のセルバランス処理では、放電電力をどのように処理するかが課題となるが、BMS100bは、放電電力を交流電力線50に出力することで、組電池20への放電電力の回生を容易に実現することができる。
 なお、BMS100bは、放電電力(セルバランス処理で加算される電力)と、交流電源12が出力する交流電力と、回生電力との総和を、システム全体で消費される電力に一致させることがより好ましい。
 (実施の形態4)
 [構成]
 以下、実施の形態4に係るBMSについて説明する。まず、実施の形態4に係るBMSの構成について説明する。図7は、実施の形態4に係るBMSの機能構成の概略を示す図である。なお、実施の形態4では、実施の形態1~3との相違点を中心に説明が行われ、実施の形態1~3で説明された事項については、適宜、説明が省略または簡略化される。
 実施の形態4に係るBMS100cは、BMU10と、複数の組電池20と、複数の組電池20に対応する複数のセル監視回路30bと、バッテリ充電回路70とを備える。
 BMS100bとBMS100cとの相違点は、BMS100cは、組電池充電回路60に代えてバッテリ充電回路70を備えている点である。
 バッテリ充電回路70は、放電回路43の放電によって交流電力線50から得られる交流電力を用いて組電池20(二次電池セル21)と異なるバッテリ80を充電するための回路である。バッテリ80は、例えば、車載用の12Vバッテリであり、組電池20とは、ガルバニックアイソレーションされている。バッテリ充電回路70は、具体的には、交流電力線50に接続されるトランス、このトランスを介して供給される交流電力を直流電力に変換する全波整流回路、全波整流回路によって出力される直流電圧を平滑化する平滑回路、及び、充電のオン及びオフを制御する充電制御部などを含む。
 [動作]
 以下、BMS100cの動作について説明する。図8は、BMS100cの動作のフローチャートである。
 まず、BMU10の通信回路11は、複数のセル監視回路30bのそれぞれから、当該セル監視回路30bの監視対象の複数の二次電池セル21の蓄電量を示す情報を受信する(S41)。ステップS41の処理は、ステップS31の処理と同様である。
 次に、BMU10の制御マイコン13は、受信された情報に基づいて、複数のセル監視回路30bの少なくとも1つに交流電力線50から得られる交流電力を用いた二次電池セル21の放電を指示する(S42)。ステップS42の処理は、ステップS32の処理と同様である。
 BMS100cでは、放電回路43によって放電された交流電力線50に放電された電力は、ガルバニックアイソレーション境界を超えて組電池20とは別のバッテリ80に回生される。つまり、バッテリ80が充電される(S43)。具体的には、例えば、BMU10(制御マイコン13)による、交流電力線50を用いた通信経路(図7で不図示)を介した指示によりバッテリ充電回路70(充電制御部)がオンされる。
 以上説明したように、BMS100cは、二次電池セル21のセルバランスの均一化を、二次電池セル21の放電により実現することができる。BMS100cによって実現されるアクティブ方式のセルバランス処理は、パッシブ方式のセルバランス処理で問題となる発熱を抑制することができる。
 また、一般的なアクティブ方式のセルバランス処理では、放電電力をどのように処理するかが課題となるが、BMS100cは、放電電力を交流電力線50に出力することで、バッテリ80への放電電力の回生(つまり、ガルバニックアイソレーション境界を超えた電力の回生)を容易に実現することができる。
 なお、BMS100cは、放電電力(セルバランス処理で加算される電力)と、交流電源12が出力する交流電力と、回生電力との総和を、システム全体で消費される電力に一致させることがより好ましい。
 (まとめ)
 以上説明したように、BMS100は、交流電力線50に接続された複数のセル監視回路30と、交流電力線50に接続されたBMU10とを備える。BMU10は、複数のセル監視回路30のそれぞれにおける、当該セル監視回路30の監視対象の蓄電セル21の蓄電量を示す情報に基づいて、複数のセル監視回路30の少なくとも1つに、当該セル監視回路30の監視対象の二次電池セル21の蓄電量の制御を指示する制御マイコン13とを備える。BMS100は、管理システムの一例であり、トランス38及びトランス14は、絶縁素子の一例であり、BMU10は、管理装置の一例である。二次電池セル21は、蓄電セルの一例であり、制御マイコン13は、情報処理部の一例である。蓄電量の制御は、言い換えれば、蓄電量の調整である。
 このようなBMS100は、互いに異なるセル監視回路30に接続された複数の二次電池セル21のセルバランスを均一化することができる。また、BMS100は、二次電池セル21とは別の電源である交流電源12からの電力供給によってセル監視回路30が動作可能であるため、セル監視回路30の動作電力のばらつきによってセルバランスが崩れることを抑制することができる。
 また、例えば、複数のセル監視回路30のそれぞれは、情報を送信する通信回路37を備える。BMU10は、情報を受信する通信回路11を更に備える。通信回路37及び通信回路11の通信は、交流電力線50を介して行われる。通信回路37は、第一通信回路の一例であり、通信回路11は、第二通信回路の一例である。
 このようなBMS100は、二次電池セル21とは別の電源である交流電源12からセル監視回路30への電力供給経路を、BMU10とセル監視回路30との通信経路としても使用する。このため、BMS100は、通信に関する構成要素の追加を抑制しつつ、セル監視回路30の動作電力のばらつきによってセルバランスが崩れることを抑制することができる。
 また、例えば、複数のセル監視回路30のそれぞれは、1つの二次電池セル21のみを監視対象とする。
 このようなBMS100は、互いに異なるセル監視回路30に接続された複数の二次電池セル21のセルバランスを均一化することができる。
 また、例えば、制御マイコン13は、蓄電量の制御として充電を指示する。複数のセル監視回路30のそれぞれは、交流電力線50から得られる交流電力を直流電力に変換する変換回路39と、直流電力を用いて当該セル監視回路30の監視対象の二次電池セル21を充電するための充電回路41とを備える。
 このようなBMS100は、二次電池セル21の充電により、互いに異なるセル監視回路30に接続された複数の二次電池セル21のセルバランスを均一化することができる。
 また、例えば、BMS100aにおいては、複数のセル監視回路30aのそれぞれは、複数の二次電池セル21を監視対象とする。
 このようなBMS100aは、互いに異なるセル監視回路30aに接続された複数の二次電池セル21のセルバランス、及び、1つのセル監視回路30aに接続された複数の二次電池セル21のセルバランスを均一化することができる。
 また、例えば、BMS100aにおいては、制御マイコン13は、蓄電量の制御として充電を指示する。複数のセル監視回路30aのそれぞれは、交流電力線50から得られる交流電力を直流電力に変換する変換回路42aと、当該セル監視回路30aの監視対象の複数の二次電池セル21を選択的に充電するための選択回路42bとを備える。
 このようなBMS100aは、二次電池セル21の充電により、互いに異なるセル監視回路30aに接続された複数の二次電池セル21のセルバランス、及び、1つのセル監視回路30aに接続された複数の二次電池セル21のセルバランスを均一化することができる。
 また、例えば、BMS100bにおいては、制御マイコン13は、蓄電量の制御として放電を指示する。複数のセル監視回路30bのそれぞれは、当該セル監視回路30bの監視対象の複数の二次電池セル21を選択的に放電するための選択回路43aと、当該放電によって得られる直流電力を交流電力に変換して交流電力線50に出力する変換回路43bとを備える。
 このようなBMS100aは、二次電池セル21の放電により、互いに異なるセル監視回路30aに接続された複数の二次電池セル21のセルバランス、及び、1つのセル監視回路30aに接続された複数の二次電池セル21のセルバランスを均一化することができる。
 また、例えば、BMS100bにおいては、制御マイコン13は、蓄電量の制御として交流電力線50への放電を指示する。BMS100bは、さらに、放電によって交流電力線50から得られる交流電力を用いて二次電池セル21を含む組電池20を充電するための組電池充電回路60を備える。
 このようなBMS100bは、二次電池セル21の放電により、互いに異なるセル監視回路30bに接続された複数の二次電池セル21のセルバランスを均一化しつつ、放電電力を組電池20に回生することができる。
 また、例えば、BMS100cにおいては、制御マイコン13は、蓄電量の制御として交流電力線50への放電を指示する。BMS100cは、さらに、放電によって交流電力線50から得られる交流電力を用いて二次電池セル21と異なるバッテリ80を充電するためのバッテリ充電回路70を備える。
 このようなBMS100bは、二次電池セル21の放電により、互いに異なるセル監視回路30bに接続された複数の二次電池セル21のセルバランスを均一化しつつ、放電電力をバッテリ80に回生することができる。
 また、二次電池セル21を監視するセル監視回路30は、交流電力線50から非接触で電力供給を受けるためのトランス38と、二次電池セル21の状態を管理するBMU10であって、交流電力線50にトランス14を介して接続されたBMU10から、二次電池セル21の蓄電量の制御の指示を受ける通信回路37と、上記指示に基づいて、二次電池セル21の蓄電量を制御する回路とを備える。
 このようなセル監視回路30は、二次電池セル21とは別の電源である交流電源12からの電力供給によって動作可能であるため、セル監視回路30の動作電力のばらつきによってセルバランスが崩れることを抑制することができる。
 また、例えば、セル監視回路30においては、上記回路は、上記指示に基づいて、交流電力線50から得られる交流電力を用いた二次電池セル21の充電を行う充電回路41である。また、セル監視回路30aにおいては、上記回路は、上記指示に基づいて、交流電力線50から得られる交流電力を用いた二次電池セル21の充電を行う充電回路42である。
 このようなセル監視回路30は、指示に基づいて二次電池セル21を充電することにより、当該二次電池セル21と、他のセル監視回路30に接続された二次電池セル21とのセルバランスを均一化することができる。セル監視回路30aも同様である。
 また、例えば、セル監視回路30bにおいては、上記回路は、上記指示に基づいて、二次電池セル21から交流電力線50への放電を行う放電回路43である。
 このようなセル監視回路30bは、指示に基づいて二次電池セル21を放電することにより、当該二次電池セル21と、他のセル監視回路30bに接続された二次電池セル21とのセルバランスを均一化することができる。
 (その他の実施の形態)
 以上、実施の形態について説明したが、本開示は、上記実施の形態に限定されるものではない。
 例えば、上記実施の形態では、BMUと複数のセル監視回路のそれぞれとの通信は、交流電力線を用いて行われたが、この通信は、交流電力線とは別の専用の通信線を用いて行われてもよい。つまり、交流電力線を用いて通信が行われることは必須ではない。
 また、上記実施の形態1~4は、任意に組み合わされてよい。例えば、1つのセル監視回路の監視対象が1つの二次電池セルのみである構成において、当該セル監視回路が放電回路を備えてもよい。また、セル監視回路は、放電回路及び充電回路の両方を備えてもよい。
 例えば、上記実施の形態では、絶縁素子としてトランスが例示されたが、絶縁素子は、電磁共鳴結合器などの他の絶縁素子であってもよい。
 また、上記実施の形態では、電気自動車に用いられる組電池が管理対象とされたが、BMSは、どのような用途の電池を管理してもよい。
 また、上記実施の形態で説明された回路構成は、一例であり、本開示は上記回路構成に限定されない。つまり、上記回路構成と同様に、本開示の特徴的な機能を実現できる回路も本開示に含まれる。例えば、上記回路構成と同様の機能を実現できる範囲で、ある素子に対して、直列又は並列に、スイッチング素子(トランジスタ)、抵抗素子、または容量素子等の素子が接続されたものも本開示に含まれる。
 また、上記実施の形態において、セル監視回路に含まれる構成要素は、どのように集積化されてもよい。例えば、計測回路、及び、通信回路は、単一の集積回路として実現されてもよいし、それぞれ別の集積回路として実現されてもよい。
 また、上記実施の形態では、セル監視回路は、ハードウェアによって実現された。しかしながら、セル監視回路に含まれる構成要素の一部は、当該構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。セル監視回路に含まれる構成要素の一部は、CPU(Central Processing Unit)またはプロセッサなどのプログラム実行部が、ハードディスクまたは半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。
 また、上記実施の形態では、情報処理部は、マイクロコンピュータによって実現された。つまり、情報処理部の機能は、CPUまたはプロセッサなどのプログラム実行部が、ハードディスクまたは半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現された。しかしながら、情報処理部は、一部がハードウェアによって実現されてもよい。
 また、上記実施の形態において、特定の処理部が実行する処理を別の処理部が実行してもよい。また、上記実施の形態において説明された動作において、複数の処理の順序が変更されてもよいし、複数の処理が並行して行われてもよい。
 その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態、または、本開示の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本開示に含まれる。
 例えば、本開示は、BMU、蓄電キャパシタマネジメントシステム、または、蓄電キャパシタマネジメントユニットなどとして実現されてもよい。本開示は、上記実施の形態のセル監視回路またはBMSを搭載した電気自動車などの車両として実現されてもよい。本開示は、上記実施の形態のセル監視回路またはBMSを搭載した、車両以外の機器として実現されてもよい。
 本開示のBMS、及び、これに用いられるセル監視回路は、車載用途などに幅広く利用できる。
 10 BMU
 11、通信回路(第一通信回路)
 12 交流電源
 13 制御マイコン
 14、38 トランス
 20 組電池
 21 二次電池セル
 30、30a、30b セル監視回路
 31、31a 計測回路
 32 スイッチング素子
 33 マルチプレクサ
 34 AD変換器
 35 記憶部
 36 制御回路
 37 通信回路(第二通信回路)
 39、42a、43b 変換回路
 40 クロック生成回路
 41、42 充電回路
 42b、43a 選択回路
 43 放電回路
 50 交流電力線
 60 組電池充電回路
 70 バッテリ充電回路
 80 バッテリ
 100、100a、100b、100c BMS

Claims (12)

  1.  交流電力線に接続された複数のセル監視回路と、
     前記交流電力線に接続された管理装置とを備え、
     前記管理装置は、
     前記複数のセル監視回路のそれぞれにおける、当該セル監視回路の監視対象の蓄電セルの蓄電量を示す情報に基づいて、前記複数のセル監視回路の少なくとも1つに、当該セル監視回路の監視対象の蓄電セルの蓄電量の制御を指示する情報処理部を備える
     管理システム。
  2.  前記複数のセル監視回路のそれぞれは、前記情報を送信する第一通信回路を備え、
     前記管理装置は、前記情報を受信する第二通信回路を更に備え、
     前記第一通信回路及び前記第二通信回路の通信は、前記交流電力線を介して行われる
     請求項1に記載の管理システム。
  3.  前記複数のセル監視回路のそれぞれは、1つの蓄電セルのみを監視対象とする
     請求項1または2に記載の管理システム。
  4.  前記情報処理部は、前記蓄電量の制御として充電を指示し、
     前記複数のセル監視回路のそれぞれは、
     前記交流電力線から得られる交流電力を直流電力に変換する変換回路と、
     前記直流電力を用いて当該セル監視回路の監視対象の蓄電セルを充電するための充電回路とを備える
     請求項3に記載の管理システム。
  5.  前記複数のセル監視回路のそれぞれは、複数の蓄電セルを監視対象とする
     請求項1または2に記載の管理システム。
  6.  前記情報処理部は、前記蓄電量の制御として充電を指示し、
     前記複数のセル監視回路のそれぞれは、
     前記交流電力線から得られる交流電力を直流電力に変換する変換回路と、
     当該セル監視回路の監視対象の複数の蓄電セルを選択的に充電するための選択回路とを備える
     請求項5に記載の管理システム。
  7.  前記情報処理部は、前記蓄電量の制御として放電を指示し、
     前記複数のセル監視回路のそれぞれは、
     当該セル監視回路の監視対象の複数の蓄電セルを選択的に放電するための選択回路と、
     当該放電によって得られる直流電力を交流電力に変換して前記交流電力線に出力する変換回路とを備える
     請求項5に記載の管理システム。
  8.  前記情報処理部は、前記蓄電量の制御として前記交流電力線への放電を指示し、
     前記管理システムは、さらに、前記放電によって前記交流電力線から得られる交流電力を用いて前記蓄電セルを含む組電池を充電するための組電池充電回路を備える
     請求項1または2に記載の管理システム。
  9.  前記情報処理部は、前記蓄電量の制御として前記交流電力線への放電を指示し、
     前記管理システムは、さらに、前記放電によって前記交流電力線から得られる交流電力を用いて前記蓄電セルと異なるバッテリを充電するためのバッテリ充電回路を備える
     請求項1または2に記載の管理システム。
  10.  蓄電セルを監視するセル監視回路であって、
     交流電力線から非接触で電力供給を受けるための絶縁素子と、
     前記蓄電セルの状態を管理する管理装置であって、前記交流電力線に絶縁素子を介して接続された管理装置から、前記蓄電セルの蓄電量の制御の指示を受ける通信回路と、
     前記指示に基づいて、前記蓄電セルの蓄電量を制御する回路とを備える
     セル監視回路。
  11.  前記回路は、前記指示に基づいて、前記交流電力線から得られる交流電力を用いた前記蓄電セルの充電を行う充電回路である
     請求項10に記載のセル監視回路。
  12.  前記回路は、前記指示に基づいて、前記蓄電セルから前記交流電力線への放電を行う放電回路である
     請求項10に記載のセル監視回路。
PCT/JP2019/033494 2018-08-29 2019-08-27 管理システム、及び、セル監視回路 WO2020045420A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19855312.5A EP3846310A4 (en) 2018-08-29 2019-08-27 CELL MANAGEMENT SYSTEM AND MONITORING CIRCUIT
JP2020539492A JP7470638B2 (ja) 2018-08-29 2019-08-27 管理システム、及び、セル監視回路
US17/185,385 US20210184481A1 (en) 2018-08-29 2021-02-25 Battery management system and cell supervising circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-160143 2018-08-29
JP2018160143 2018-08-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/185,385 Continuation US20210184481A1 (en) 2018-08-29 2021-02-25 Battery management system and cell supervising circuit

Publications (1)

Publication Number Publication Date
WO2020045420A1 true WO2020045420A1 (ja) 2020-03-05

Family

ID=69644289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033494 WO2020045420A1 (ja) 2018-08-29 2019-08-27 管理システム、及び、セル監視回路

Country Status (4)

Country Link
US (1) US20210184481A1 (ja)
EP (1) EP3846310A4 (ja)
JP (1) JP7470638B2 (ja)
WO (1) WO2020045420A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010124682A (ja) * 2008-11-19 2010-06-03 Huawei Device Co Ltd 電池システムのための電圧等化装置および電圧等化方法
JP2013162661A (ja) * 2012-02-07 2013-08-19 Toyota Industries Corp 補機電池への充電が可能な電池均等化装置および方法
JP2014211402A (ja) * 2013-04-22 2014-11-13 株式会社リブ技術研究所 複合セル状態監視装置、複合セル状態監視システムおよび複合セル状態監視方法
US9153973B2 (en) 2011-06-13 2015-10-06 Mehmet Kadri Nalbant Active cell balancing
JP2016535489A (ja) * 2013-10-25 2016-11-10 ヴィート エヌブイ バス上にパルス電力とデータを供給するための方法およびシステム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7928691B2 (en) * 2004-11-10 2011-04-19 EaglePicher Technologies Method and system for cell equalization with isolated charging sources
US9851412B2 (en) * 2010-11-09 2017-12-26 International Business Machines Corporation Analyzing and controlling performance in a composite battery module
JP5718731B2 (ja) * 2011-05-31 2015-05-13 ルネサスエレクトロニクス株式会社 電圧監視システム及び電圧監視モジュール
US20140062192A1 (en) * 2012-09-05 2014-03-06 Axion Power International, Inc. Grid interactive double conversion inverter
US9225191B2 (en) * 2013-02-19 2015-12-29 Freescale Semiconductor, Inc. Circuit and method for voltage equalization in large batteries
WO2016134658A1 (zh) * 2015-02-24 2016-09-01 刘光辰 智能电池、电能分配总线***、电池充放电方法以及电能分配方法
WO2017109226A1 (en) * 2015-12-24 2017-06-29 Vito Nv Method, system and device for balancing individual electric energy storage cells
WO2019208163A1 (ja) 2018-04-25 2019-10-31 三洋電機株式会社 管理装置、電源システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010124682A (ja) * 2008-11-19 2010-06-03 Huawei Device Co Ltd 電池システムのための電圧等化装置および電圧等化方法
US9153973B2 (en) 2011-06-13 2015-10-06 Mehmet Kadri Nalbant Active cell balancing
JP2013162661A (ja) * 2012-02-07 2013-08-19 Toyota Industries Corp 補機電池への充電が可能な電池均等化装置および方法
JP2014211402A (ja) * 2013-04-22 2014-11-13 株式会社リブ技術研究所 複合セル状態監視装置、複合セル状態監視システムおよび複合セル状態監視方法
JP2016535489A (ja) * 2013-10-25 2016-11-10 ヴィート エヌブイ バス上にパルス電力とデータを供給するための方法およびシステム

Also Published As

Publication number Publication date
US20210184481A1 (en) 2021-06-17
JP7470638B2 (ja) 2024-04-18
EP3846310A1 (en) 2021-07-07
JPWO2020045420A1 (ja) 2021-08-26
EP3846310A4 (en) 2021-07-07

Similar Documents

Publication Publication Date Title
US11718188B2 (en) Wireless battery management system and battery pack including same
US10205327B2 (en) Battery system and energy storage system including distribution controller for selecting battery banks for charging/discharging
US20190265304A1 (en) Wireless battery management system and battery pack including same
US20210184474A1 (en) Cell supervising circuit and battery management system
TWI672889B (zh) 控制裝置、蓄電裝置、蓄電系統以及記錄媒體
WO2012160638A1 (ja) 蓄電器制御回路
US9225191B2 (en) Circuit and method for voltage equalization in large batteries
JP2019511182A (ja) 等化回路、充電対象機器及び充電制御方法
JP7101484B2 (ja) バッテリへの電力供給の制御
TWI804503B (zh) 蓄電系統以及電氣機器
JP6764673B2 (ja) バッテリ制御装置、バッテリモジュール、バッテリパック、及びバッテリ制御方法
JP2014187766A (ja) 充電装置
CN106030964B (zh) 用于通过使用频率调制设置标识符的电池管理单元和方法
US20110198929A1 (en) Power distribution network based on multiple charge storage components
CN113016117A (zh) 单电池控制器、蓄电池控制器、电池管理***和电池***
US20150162831A1 (en) Integrated circuit adapted to perform power path control in a mobile equipment
JPWO2020022344A1 (ja) 電源システム、及び管理装置
WO2020045420A1 (ja) 管理システム、及び、セル監視回路
WO2023015316A1 (en) System and method for dynamically balancing power from distributed power sources in a battery pack
JP2018152928A (ja) 充放電制御装置、充放電装置及び充放電制御プログラム
JP7499699B2 (ja) セル監視回路、及び、管理システム
JP5515997B2 (ja) 電源監視制御装置
JP2020120493A (ja) 制御システム、プログラム
JP5481367B2 (ja) 組電池モジュール、および、車両
US20220399737A1 (en) Battery system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19855312

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020539492

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019855312

Country of ref document: EP

Effective date: 20210329