WO2020044411A1 - Laser light search system - Google Patents

Laser light search system Download PDF

Info

Publication number
WO2020044411A1
WO2020044411A1 PCT/JP2018/031620 JP2018031620W WO2020044411A1 WO 2020044411 A1 WO2020044411 A1 WO 2020044411A1 JP 2018031620 W JP2018031620 W JP 2018031620W WO 2020044411 A1 WO2020044411 A1 WO 2020044411A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser light
retroreflective
reflected
tag
identification information
Prior art date
Application number
PCT/JP2018/031620
Other languages
French (fr)
Japanese (ja)
Inventor
佳伸 前田
Original Assignee
光トライオード株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 光トライオード株式会社 filed Critical 光トライオード株式会社
Priority to PCT/JP2018/031620 priority Critical patent/WO2020044411A1/en
Priority to JP2020539185A priority patent/JPWO2020044411A1/en
Publication of WO2020044411A1 publication Critical patent/WO2020044411A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/74Systems using reradiation of electromagnetic waves other than radio waves, e.g. IFF, i.e. identification of friend or foe

Definitions

  • the present invention relates to a laser beam search system for searching for a search target existing on the ground or on the water surface while irradiating a laser beam from the air to the ground or the water surface.
  • a laser generator that generates a laser beam, a beam scanning device that scans the laser beam, and scans the laser beam in a predetermined search pattern, and receives a reflected laser beam reflected from a target object that is a tracked object
  • a laser beam searching system including a beam scanning device that changes the search pattern in response to the reflected laser beam.
  • a laser pointing device for tracking a target described in Patent Literature 1 is such.
  • the laser light search system described in Patent Document 1 includes a receiving device that reduces a search pattern in response to receiving a reflected laser light from an object to be searched, and constantly updates the received pattern based on the received reflected laser light. It is configured to accurately track the target object using the tracking data to be obtained.
  • Patent Document 1 When the laser beam search system disclosed in Patent Document 1 is used for a wide range search, a reflected laser beam reflected from a search target and received by a receiving device with respect to a laser beam scanned in a predetermined search pattern
  • the signal tends to be weak due to the size and shape of the object to be searched and the reception gain is low
  • the search for the object to be searched may not be performed accurately.
  • the reflected laser light does not include information for identifying the object to be searched, it is difficult to identify whether or not the target object to be searched from among a large number of reflected lights, and It was difficult to use it for the purpose of extracting individually.
  • the present invention has been made in view of the above circumstances, and it is an object of the present invention to accurately search for a search target existing on the ground, in the snow, underwater, or the like using laser light from the air. It is an object of the present invention to provide a laser light search system that can perform the search.
  • the present inventor has made various studies on the background described above, and as a result, while using a laser light transmitting device that emits laser light in a predetermined scanning range as search light, the search target receives the laser light.
  • a retroreflector that reflects the reflected laser light toward the laser light transmitting device is attached, and an identification code is provided on the reflection surface of the retroreflector, so that a predetermined irradiation area is irradiated with laser light from the air. It has been found that the object to be searched can be individually and accurately searched based on the identification code included in the reflected laser light obtained when scanning.
  • the present invention has been made based on such knowledge.
  • the gist of the present invention for achieving the object is to reflect laser light output from the laser light transmitting device toward the ground or the water surface to an optical tag attached to the object to be searched, and the optical tag A laser beam search system for searching for the object to be searched by receiving a reflected laser beam reflected by a laser beam receiver installed together with the laser beam transmitter, wherein (a) the optical tag transmits reflected laser beam A retroreflective tag reflecting toward the laser light transmitting device, wherein (b) the retroreflective tag adds predetermined identification information related to the object to be searched to the reflected laser light. And (c) an identification information extracting unit that receives the reflected laser light and extracts the identification information from the received reflected laser light.
  • the laser light output toward the ground or the water surface is reflected by the optical tag attached to the object to be searched, and the reflected laser light reflected by the optical tag is reflected by the laser light.
  • a laser light search system for searching for the object to be searched for which is received by a laser light receiver installed together with a transmitter, wherein (a) the optical tag reflects reflected laser light toward the laser light transmitter. (B) a retroreflective light reflection tag that adds predetermined identification information related to the object to be searched to the reflected laser light, and (c) the reflected laser light. And identification information extracting means for extracting the identification information from the received reflected laser light.
  • the reflected laser light is reflected from the retroreflective tag, the reception gain is relatively high, so that the search target existing on the ground, in the snow, or in the water can be accurately searched.
  • the reflected laser light contains information for identifying the object to be searched, it is possible to identify whether or not the target object to be searched from among a large number of reflected lights, Can be individually extracted.
  • the retroreflective tag is provided on the retroreflective layer that reflects the reflected laser light toward the laser beam transmitting device, and indicates the identification information. Since it has an identification pattern, by extracting the identification pattern included in the reflected laser light from the retroreflective light reflection tag, based on the identification information related to the search target represented by the identification pattern, The search for the search target existing on the ground, in the snow, or in the water can be accurately performed, and the search target can be individually extracted.
  • This identification information includes the name of the person to be searched, which is indicated by characters, symbols, barcodes, etc., the name of the part to be mounted on the object to be searched, the manufacturing information such as model, size, manufacturer, manufacturing time, and the like. It is directly or indirectly related to the search object.
  • the identification pattern provided on the retroreflective tag is a matrix type two-dimensional code.
  • the matrix type two-dimensional code is a so-called QR code (registered trademark) and includes a lot of information. Therefore, it is possible to accurately search for a search target existing on the ground, in the snow, or in the water, and The search objects can be individually extracted.
  • QR code registered trademark
  • the search objects can be individually extracted. For example, in the above matrix type two-dimensional code, if the object to be searched is clothing worn by a missing person, the name and model number of the clothing, the size of the clothing, the manufacturer, time of manufacture or manufacturing of the clothing Information on lots, stores, and the like is included.
  • the retroreflective tag is a retroreflective layer that reflects the reflected laser light toward the laser light transmitting device, and laminated on the retroreflective layer, the identification information And a modulation layer that modulates the reflected laser light reflected by the retroreflective layer.
  • the identification information can be obtained by extracting the modulation signal from the modulated reflected laser light, so that the search for the search target existing on the ground, in snow, or underwater can be accurately performed based on the identification information.
  • the search target can be individually extracted.
  • the modulation layer has a liquid crystal plate laminated on the retroreflective layer and modulating the reflected laser light reflected by the retroreflective layer to represent the identification information.
  • the identification information can be obtained by extracting the modulation signal from the modulated reflected laser light, so that the search for the search target existing on the ground, in snow, or underwater can be accurately performed based on the identification information.
  • the search target can be individually extracted.
  • the liquid crystal display device further comprises a liquid crystal drive circuit for driving the liquid crystal plate on and off using a pulsed drive signal modulated by intensity modulation or phase modulation so as to represent the identification information.
  • the identification information can be obtained by extracting the modulation signal from the reflected laser light that has been pulse-likely modulated on and off, so that the search target existing on the ground, in snow, or in the water can be obtained based on the identification information.
  • the search can be performed accurately, and the objects to be searched can be individually extracted.
  • the laser light transmitting device outputs the laser light having a wavelength selected from a wavelength band from violet to green having a very low absorptivity in water, toward a water surface or a snow surface. It is.
  • the identification information can be obtained from the reflected laser light.
  • the search for the object to be searched for in the water can be performed accurately, and the objects to be searched can be individually extracted.
  • the laser light receiving device receives the reflected laser light reflected from the retroreflective light reflection tag, and captures an identification pattern included in the reflected laser light and indicating the identification information.
  • (Charge-Coupled @ Device) camera and the identification information extracting means extracts identification information indicated by the identification pattern from the identification pattern. From this, the identification pattern can be easily extracted from the reflected laser light by the CCD camera, and the identification pattern exists on the ground, in the snow, or in the water based on the identification information related to the object to be searched represented by the identification pattern.
  • the search for the search target can be accurately performed, and the search target can be individually extracted.
  • the laser light receiving device and the laser light transmitting device are mounted on a monitoring tower, a flying object, or an artificial satellite. Accordingly, the laser light receiving device and the laser light transmitting device are mounted on a monitoring tower, an flying object, or an artificial satellite, which is selected according to the type or property of the object to be searched.
  • the object to be searched can be searched accurately and economically.
  • the flying object is a drone, a helicopter, or an airplane.
  • the laser light receiving device and the laser light transmitting device are mounted on a drone, a helicopter, or an airplane, which is selected according to the type and nature of the object to be searched. The search for the object to be searched can be accurately performed.
  • the retroreflective tag is attached to a person's clothing, a hat, or shoes, a terrestrial organism, an aquatic organism, a flying object, a part, a product, or a package of the part or the product. It is.
  • the object to be searched is a person (human), a terrestrial organism, or an aquatic organism, the search can be accurately performed, and the object to be searched can be individually extracted.
  • a large-scale distribution warehouse can be used to immediately search for a desired part or product from a large number of parts or products and ship it promptly. Become.
  • the laser light receiving device and the laser light transmitting device are mounted on a flying object, and the laser light transmitting device includes an optical deflector that scans the laser light, and the laser light receiving device is A CCD camera for receiving the reflected laser light from the retroreflective tag, and imaging an identification pattern related to the retroreflective tag included in the reflected laser beam;
  • Tag position calculation means for calculating and outputting a ground position of the retroreflective tag provided with the identification pattern.
  • the laser light transmitting device includes an optical deflector that scans the laser light, receives the reflected laser light from the retroreflective tag, and includes the reflected laser light included in the reflected laser light.
  • the laser light receiving device that extracts identification information related to the light reflection tag, and the position and height of the artificial satellite when the identification information is extracted from the reflected laser light from the retroreflective light reflection tag, Tag position calculating means for calculating and outputting a ground position of the retroreflective light reflection tag from which the identification information is extracted, from a transmission direction of the laser light from the laser light transmitting device of the artificial satellite,
  • the laser light receiving device and the laser light transmitting device are mounted on an artificial satellite. As a result, the ground position of the object to be searched is easily determined, and the search for the object to be searched can be performed quickly.
  • FIG. 2 is a diagram illustrating a configuration of a laser light transmitting device, a laser light receiving device, and the like mounted on the drone in the laser light search system of FIG. 1.
  • FIG. 2 is a diagram illustrating a configuration of a receiving device mounted on the drone operation transmitting device in FIG. 1.
  • FIG. 2 is a diagram illustrating a configuration of a retroreflective tag attached to a jacket worn by a person (human) used in the laser light search system of FIG. 1.
  • FIG. 5 is a diagram showing a matrix type two-dimensional code which is an example of an identification pattern provided on a part of a reflection surface of the retroreflective light reflection tag of FIG. 4.
  • FIG. 5 is a diagram showing a one-dimensional barcode as another example of the identification pattern provided on a part of the reflection surface of the retroreflective tag of FIG. 4.
  • FIG. 9 is a diagram illustrating another configuration example of the retroreflective light reflection tag of FIG. 4.
  • FIG. 9 is a diagram illustrating another configuration example of the retroreflective light reflection tag of FIG. 4. It is the schematic explaining the laser beam search system using the artificial satellite which is another Example of this invention.
  • FIG. 5 is a diagram showing a matrix type two-dimensional code which is an example of an identification pattern provided on a part of a reflection surface of the retroreflective light reflection tag of FIG. 4.
  • FIG. 5 is a diagram showing a one-dimensional barcode as another example of the identification pattern provided on a part of the reflection surface of the retroreflect
  • FIG. 10 is a schematic diagram illustrating a configuration example of a laser light transmitting / receiving device used in the laser light search system of FIG. 9, showing a case where the laser light receiving device uses direct detection.
  • FIG. 10 is a schematic diagram illustrating a configuration example of a laser light transmitting / receiving device used in the laser light searching system of FIG. 9, showing a case where the laser light receiving device uses homodyne phase detection.
  • FIG. 10 is a perspective view illustrating a configuration of a tag used in the laser light search system of FIG. 9.
  • FIG. 10 is a diagram illustrating the relationship between the time required for reflected laser light to reach the artificial satellite from the tag and the distance traveled by the artificial satellite in the laser light search system of FIG. 9.
  • FIG. 10 is a schematic diagram illustrating a configuration example of a laser light transmitting / receiving device used in the laser light search system of FIG. 9, showing a case where the laser light receiving device uses direct detection.
  • FIG. 10 is a schematic diagram illustrating a configuration example of
  • FIG. 14 is a time chart for explaining a tag information reception time range of the artificial satellite based on the relationship of FIG. 13. It is a figure explaining other examples of a laser beam search system of the present invention.
  • FIG. 11 is a diagram illustrating still another embodiment of the laser light search system of the present invention.
  • FIG. 17 is a diagram illustrating a laser light transmitting / receiving device, an arithmetic processing device, and a display mounted on the airplane of the embodiment in FIG. 16.
  • FIG. 1 is a schematic diagram showing a main part of a configuration of a laser light search system 10 according to an embodiment of the present invention.
  • FIG. 2 is an example of a laser light transmitting / receiving device 14 mounted on the drone 12
  • FIG. 4 is a diagram showing a laser light transmitting device 26 and a laser light receiving device 28 fixed together.
  • a drone 12 which is a flying object that flies at a predetermined altitude from the ground, is equipped with a laser light transmitting / receiving device 14, and a radio wave representing a signal related to the reflected laser light Lr is transmitted by a transmitter 16 and an antenna.
  • the data is transmitted to the data receiving device 25 on the ground via the communication terminal 18.
  • a receiver 46 having an antenna 20 for receiving a radio wave transmitted from the antenna 18 of the drone 12, an arithmetic processing unit 24 for processing a signal received by the receiver 46, and a signal processed by the arithmetic processing unit 24
  • a data receiving device 25 including a display 50 for outputting information is provided.
  • the data receiving device 25 may be mounted on a vehicle or the like, but is provided in the drone control transmitter 30 shown in FIG. 1 in the present embodiment.
  • FIG. 2 shows the basic configuration of the laser light transmitting device 26 and the laser light receiving device 28.
  • the laser light transmitting device 26 has a wavelength selected from a relatively short wavelength band such as violet, blue, and green having a low absorptivity in water or snow, for example, a wavelength selected from a wavelength band of 355 to 560 nm, or red / infrared.
  • a laser light source 26a that outputs light toward a water surface, a snow surface, and the like; and an optical deflector that deflects the laser light Lo output from the laser light source 26a so that a spot on the ground surface is scanned in a straight line or in a grid.
  • the optical deflector 26b is, for example, of a type that changes the angle of a deflecting mirror at a predetermined frequency by driving by a piezoelectric element, or a laser beam propagating in a semiconductor optical waveguide by an electro-optic effect or an acousto-optic effect for a predetermined period. It is composed of a type that deflects by. When a desired spot diameter is obtained by the configuration of the laser light source 26a, the condenser lens device 26c is not necessarily provided.
  • the laser light receiving device 28 is a telephoto lens device that collects reflected laser light Lr from a retroreflective light reflection tag 40 attached to a clothing to be searched, for example, a person (human) 32, for example, a jacket 34 or a hat 36. 28a, and a CCD camera 28b that captures an image of the retroreflective tag 40 from the reflected laser light Lr that has passed through the telephoto lens device 28a.
  • the drone 12 receives a GPS radio wave and sequentially calculates and outputs the position (the angle of the east longitude and the west longitude) of the drone 12 and a drone based on the atmospheric pressure or the reflection time of sound waves from the ground.
  • An altimeter 44 that sequentially calculates and outputs twelve altitudes (m) is mounted.
  • the optical deflector 26b outputs a signal indicating a laser light output angle indicating the output direction of the laser light Lo with reference to a direction determined by a gyro (not shown).
  • the transmitter 16 transmits a signal regarding the position of the drone 12, the altitude of the drone 12, and the output direction of the laser light Lo to the receiving device 28.
  • FIG. 3 is a diagram illustrating the data receiving device 25 provided in the drone operation transmitter 30.
  • the data receiving device 25 includes a receiver 46 that receives a radio wave from the transmitter 16, and the position of the drone 12, the altitude of the drone 12, and the laser light Lo, which are information received from the transmitter 16 by the receiver 46.
  • the arithmetic processing unit 24 calculates the position of the retroreflective tag 40 by processing the signal related to the output direction of the optical tag 40, and the display 50 displays the position of the retroreflective tag 40.
  • the retroreflective tag 40 of this embodiment is attached to a jacket (clothing) 34 and a hat 36 of a person (human) 32, but may be shoes, or directly attached to terrestrial or aquatic organisms. May be done.
  • the arithmetic processing device 24 is a so-called microcomputer (electronic control device) including a CPU, a ROM, a RAM, an input / output interface, etc., processes input signals in accordance with a program stored in advance, and controls the position of the retroreflective tag 40. Is displayed on the display device 50.
  • the arithmetic processing unit 24 functions as identification information extracting means for extracting identification information included in the reflected laser light Lr.
  • the arithmetic processing unit 24 sets which information to be searched as search information from the identification information represented by the identification pattern included in the reflected laser light Lr from the retroreflective tag 40 according to an external input operation, for example, a key input operation.
  • Search condition setting means 52, identification pattern detection means 54 for detecting whether or not the search information set by search condition setting means 52 is included in reflected laser light Lr, and identification pattern detection means 54 The position of the retroreflective tag 40, that is, the position of the person (human) 32, is calculated based on the position of the drone 12, the altitude of the drone 12, and the output direction of the laser light Lo.
  • a tag position calculating means 56 for displaying the position of 40 is functionally provided.
  • FIG. 4 is a schematic cross-sectional view illustrating a main part of the retroreflective tag 40 in an enlarged manner.
  • the retroreflective tag 40 includes a flexible resin base 60 made of a synthetic resin fiber or a synthetic resin film, an adhesive layer 62 provided on the back surface of the resin base 60, A plurality of small spherical beads 66 made of glass or synthetic resin such as acrylic resin adhered to one surface via a reflective film 64 on the surface, and the reflected laser light is incident at the same angle as the incident angle of the incident laser light Lo.
  • This is an optical tag that emits Lr.
  • the plurality of beads 66 constitute a retroreflective layer and function as a reflective surface.
  • the part 68 of the reflection surface of the retroreflective tag 40 is provided so as to be locally non-reflective so as to represent the identification pattern of the matrix type two-dimensional code shown in FIG.
  • a part 68 of the reflection surface of the retroreflective tag 40 is made non-reflective by, for example, thermally deforming the beads 66.
  • the matrix type two-dimensional code is called, for example, a QR code (registered trademark), and stores data composed of several orders, English characters, and Chinese characters.
  • manufacturing information such as a product name, a model, a size, a manufacturer, and a manufacturing time of the jacket 34 or the hat 36
  • sales information such as a store name and a selling time
  • a person (human) who is a purchaser of the jacket 34 or the hat 36 Is stored in the matrix type two-dimensional code as identification information.
  • a bar code shown in FIG. 6 may be used instead of the matrix type two-dimensional code shown in FIG. May be provided directly.
  • the laser light Lo output toward the ground or the water surface is reflected by the retroreflective light reflection tag 40 attached to the person (search target) 32, and the retroreflective light is reflected.
  • the person (search target) 32 is searched for by receiving the reflected laser light Lr reflected by the reflection tag 40.
  • the retroreflective light reflection tag 40 transmits the reflected laser light Lr to the laser light transmitting / receiving device 14.
  • the retroreflective tag applies predetermined identification information related to the person (search target) 32 to the reflected laser beam Lr.
  • an arithmetic processing unit (identification information extracting means) 24 for receiving the reflected laser light Lr and extracting identification information from the received reflected laser light Lr.
  • the reflected laser light Lr is reflected from the retroreflective light reflection tag and has a relatively high reception gain, so that the search for the person (search target) 32 existing on the ground, in snow, or in water is performed. Can be done accurately.
  • the reflected laser light Lr includes information for identifying the person (the object to be searched) 32, it is determined whether or not the target person (the object to be searched) 32 is among a large number of reflected lights. It is possible to extract the person (search target) 32 individually.
  • the retroreflective tag 40 includes the beads (retroreflective layer) 66 that reflects the reflected laser light Lr toward the laser light transmitting / receiving device 14 and the beads (retroreflective layer).
  • (Retroreflective layer) 66 is provided locally on a part 68 of the retroreflective layer 66 and has an identification pattern indicating identification information. , It is possible to accurately search for the person (search target) 32 existing on the ground, in snow, or in the water based on the identification information related to the person (search target) 32 represented by the identification pattern. It is possible to individually extract the person (search target) 32.
  • the identification pattern locally provided on the retroreflective tag 40 is a matrix type two-dimensional code.
  • This matrix type two-dimensional code is a so-called QR code (registered trademark) and includes a lot of information, so that a person (search target) 32 existing on the ground or in the water can be accurately searched. The person (search target) 32 can be individually extracted.
  • the laser light transmitting device 26 transmits the laser light Lo having a wavelength selected from the violet to green wavelength band having extremely low absorptivity in water to the surface of the water. Or it is output to the snow surface.
  • the retroreflective tag 40 attached to the person (search target) 32 is underwater or in ice or snow, identification information can be obtained from the reflected laser light Lr.
  • the search for the person (search target) 32 existing on the ground or in the water can be performed accurately, and the person (search target) 32 can be individually extracted.
  • the reflected laser light Lr reflected from the retroreflective light reflection tag 40 is received, and the identification pattern included in the reflected laser light Lr and indicating the identification information is imaged.
  • An arithmetic processing unit (identification information extracting means) 24 is provided with a laser light receiving device 28 having a CCD camera 28b, and extracts identification information indicated by the identification pattern from the identification pattern.
  • the identification pattern can be easily extracted from the reflected laser beam Lr by the CCD camera 28b, based on the identification information related to the person (search target) 32 represented by the identification pattern, the ground, in the snow, or the like.
  • the search for the person (search target) 32 existing in the water can be accurately performed, and the person (search target) 32 can be individually extracted.
  • the laser light receiving device 28 and the laser light transmitting device 26 are mounted on a monitoring tower, a flying object, or an artificial satellite. Accordingly, the laser light receiving device 28 and the laser light transmitting device 26 are mounted on a monitoring tower, an flying object, or an artificial satellite that is selected according to the type or property of the object to be searched.
  • the object to be searched can be searched accurately and economically.
  • the flying object is a drone, a helicopter, or an airplane.
  • the laser light receiving device 28 and the laser light transmitting device 26 are mounted on a drone, a helicopter, or an airplane that is selected according to the type and properties of the object to be searched, so that the operation is efficient and economical.
  • the search for the object to be searched can be accurately performed.
  • the retroreflective tag 40 is attached to a person's (human) clothing, hat, or shoes, a terrestrial organism, or an aquatic organism.
  • the search can be accurately performed, and the object to be searched can be individually extracted.
  • the laser light receiving device 28 and the laser light transmitting device 26 are mounted on the drone (flying object) 12, and the laser light transmitting device 26 scans the laser light Lo.
  • the laser light receiving device 28 receives the reflected laser light Lr from the retroreflective tag 40 and converts the identification pattern related to the retroreflective tag 40 included in the reflected laser light Lr.
  • a laser light receiving device 28 is provided when the CCD camera 28b of the laser light receiving device 28 captures an image and detects an identification pattern related to the person (search target) 32 from the reflected laser light Lr by the CCD camera 28b of the laser light receiving device 28.
  • the ground position of the person (search target) 32 can be easily determined, and the search for the person (search target) 32 can be performed quickly.
  • the retroreflective tag 70 shown in FIG. 7 can be used in place of the retroreflective tag 40 of FIG.
  • a plurality of beads 66 forming a reflective surface are formed on a part 68 of the reflective surface of the retroreflective tag 40 so as to represent a matrix type two-dimensional code pattern.
  • a part was made non-reflective by being thermally deformed.
  • a plurality of beads constituting the reflective surface are formed so that a part 68 of the reflective surface of the retroreflective tag 70 represents the pattern of the matrix type two-dimensional code.
  • the part corresponding to a part 68 of the part 66 is removed to be non-reflective.
  • a retroreflective tag 72 shown in FIG. 8 can be used in place of the retroreflective tag 40 of FIG.
  • a plurality of beads 66 forming a reflective surface are formed so that a part 68 of the reflective surface of the retroreflective tag 72 represents a pattern of a matrix type two-dimensional code.
  • the part of the beads 66 corresponding to the part 68 is covered with the return light shielding layer 74 to be non-reflective.
  • the return light shielding layer 74 is formed by, for example, printing a black resin or a transparent resin or the like on the beads 66 corresponding to the part 68 in a flat manner.
  • FIG. 9 is a schematic view showing a main part of a configuration of a laser beam search system 110 according to another embodiment of the present invention.
  • a low-orbit artificial satellite 112 about 300 km above the earth E is equipped with a laser light transmitting / receiving device 114 described later, and a communication device (not shown) for transmitting a radio wave representing a signal related to the reflected laser light Lr. And transmitted to the ground via the antenna 116.
  • an arithmetic processing unit 122 including a ground antenna 120 that receives a radio wave transmitted from the antenna 116 of the artificial satellite 112 is arranged.
  • the arithmetic processing unit 122 based on a signal related to the reflected laser light Lr represented by a radio wave sequentially transmitted from the artificial satellite 112, travels in the ocean W such as a tuna, a whale, and a sea turtle, which are the objects to be searched. Tracking data is sequentially calculated based on the reflected laser light Lr from the retro-reflective tag 130 attached to the living thing 124, and migration data of the marine life is generated.
  • FIG. 10 is an example of a laser light transmitting / receiving device 114 mounted on the artificial satellite 112, which includes a laser light transmitting device 132 and a laser light receiving device 134 fixed to the artificial satellite 112 together.
  • FIG. 11 shows a basic configuration of the laser light transmitting device 132 and the laser light receiving device 134 when the coherent detection method, that is, the self-homodyne detection method is adopted.
  • the laser light transmitting device 132 outputs a pulsed irradiation laser light Lo having a wavelength selected from a wavelength band including violet, blue, and green having a low absorptivity in water, for example, a wavelength band of 355 to 560 nm.
  • 132a which is composed of, for example, a half mirror, passes the irradiation laser light Lo output from the laser light source 132a to the output side, and divides the remaining irradiation laser light Lo into the laser light receiving device 134 as local transmission light.
  • Light deflection that is configured similarly to the beam splitter 132b and the optical deflector 126b, deflects the irradiation laser light Lo that has passed from the beam splitter 132b to the output side, and scans the spot position on the ground surface in a grid pattern.
  • Device 132c and the irradiation laser light Lo deflected by the optical deflector 132c have a predetermined spot diameter on the ground surface.
  • a condensing lens unit 132d for sea urchin condensing it includes.
  • the laser light receiving device 134 includes a telephoto lens device 134a that collects the reflected laser light Lr from the retroreflective tag 130 attached to the marine life 124 such as a migrating tuna that is the object to be searched, and a telephoto lens device.
  • a pre-amplifier 134b that amplifies the reflected laser light Lr that has passed through 134a, and multiplexes (mixes) the reflected laser light Lr amplified by the pre-light amplifier 134b with the local transmission light E LO split by the beam splitter 32b.
  • FIG. 12 is a perspective view illustrating the configuration of the retroreflective tag 130 attached to the marine life 124.
  • the retroreflective tag 130 of this embodiment has a retroreflective function.
  • the retroreflective tag 130 has flexibility as a whole so that it can be attached to a curved surface.
  • the retroreflective tag 130 includes a flexible base sheet 142 having an adhesive layer 40 on the back surface, a retroreflective layer 144 and a liquid crystal plate 146 sequentially laminated on the top surface of the base sheet 142, and an upper surface of the base sheet 142. And a liquid crystal driving device 148 fixed to the device.
  • the retroreflective layer 144 has a property of reflecting the reflected laser light Lr toward the light source of the irradiation laser light Lo, and a prism-type or spherical glass bead using regular tetrahedral particles is encapsulated in a transparent capsule. It is composed of a capsule lens type, an encapsulated lens type in which a spherical glass bead is sealed in a transparent resin, an exposed lens type in which a spherical glass bead is fixed to an exposed surface, and the like.
  • the liquid crystal plate 146 modulates, for example, an on / off signal to the reflected laser light Lr reflected from the retroreflective layer 144 and passing through the liquid crystal plate 146.
  • the liquid crystal plate 146 functions as an optical shutter, and is made of, for example, a nematic liquid crystal.
  • the liquid crystal driving device 148 includes, for example, a ROM, and stores a code memory 150 in which a preset unique code signal of the marine life 124 is written, and reflects a unique code of the marine life 124 stored in the code memory 150.
  • the liquid crystal plate 146 is entirely covered with a pulse-like drive signal having a frequency sufficiently lower than the pulse frequency of the irradiation laser light Lo, that is, a period sufficiently longer than the pulse period of the irradiation laser light Lo, so as to be included in the laser light Lr.
  • a power supply unit 156 for supplying includes.
  • the liquid crystal plate 146 functions as a modulation layer that modulates the reflected laser light Lr.
  • a communication device mounted on the artificial satellite 112 represents a unique identification code (pulse signal) of the marine life 124 included in the reflected laser light Lr output from the laser light transmitting / receiving device 114.
  • the electric signal Sout and a position signal indicating the spot position on the ground of the irradiation laser light Lo when receiving the electric signal Sout are transmitted by radio waves.
  • the arithmetic processing unit 122 provided on the ground receives the radio wave via the ground antenna 120, and also receives the signal representing the unique identification code of the marine life 124 and the reflected laser light Lr from the retroreflective layer 144.
  • the position of the marine life 124 is specified based on the spot position of the irradiation laser light Lo on the ground at the time of the irradiation, and the marine life 124 is tracked. For example, the trajectory of the marine life 124 is displayed in real time on a map showing the ocean W of the earth E.
  • the arithmetic processing unit 122 functions as a tag position calculating unit and an identification information extracting unit.
  • FIG. 13 is a diagram used to explain the operation of the laser light search system 110
  • FIG. 14 is a diagram showing a transmission time chart.
  • the distance of the low-orbit satellite 112 from the surface of the earth is 300 km
  • the irradiation laser light Lo emitted from the satellite 112 is applied to the retroreflective tag 130 attached to the marine life 124 in the ocean W.
  • the moving speed of the artificial satellite 112 is 10 km / sec, the satellite 112 moves 20 m in 2 msec.
  • the spread angle of the reflected laser light Lr reflected from the retroreflective tag 130 attached to the marine life 124 is 3.3 mrad
  • the light is reflected within a range of 1000 m on the orbit of the low-orbit artificial satellite 112.
  • the laser light Lr spreads. Since the time when the artificial satellite 112 passes through this area is 50 msec, a sufficient time can be secured for detecting the reflected laser light La. It is necessary for the artificial satellite 112 to detect information about the retroreflective tag 130 within this 50 msec area.
  • FIG. 14 shows an example of a transmission time chart of information regarding the retroreflective tag 130 in consideration of these conditions.
  • the irradiation start time of the irradiation laser light Lo emitted from the artificial satellite 112 is set to 0.
  • the reception time is set to 50 msec when the artificial satellite 112 exists inside the spot of the reflected laser light Lr, and for example, 10 to 100 bits of information are received within 1 msec within the reception time. That is, this is an example in which a communication speed of 10 to 100 kbit / sec is realized.
  • the irradiation laser light Lo has a wavelength selected from a wavelength band having water permeability
  • the retroreflective tag 130 includes: A retroreflective layer 144 that reflects the reflected laser light Lr toward the laser light transmitting devices 26 and 32, and a reflective laser light Lr that is stacked on the retroreflective layer 144 and that is reflected by the retroreflective layer 144.
  • This is an optical tag having a liquid crystal plate 146.
  • the irradiation laser light Lo having underwater transparency that has reached the retroreflective light reflection tag 30 attached to the marine life (tracked object) 124 existing in the water is reflected by the retroreflection layer 144 by the irradiation laser light Lo.
  • the reflected laser light Lr from the marine life 124 is received by the artificial satellite 112 with a relatively high reception gain by being reflected toward the artificial satellite 112 with the light source.
  • the reflected laser light Lr is modulated by passing through the liquid crystal plate 146, the reflected laser light Lr can include information for identifying the marine life 124. It becomes easy to search for 124. As a result, the marine life 124 can be individually searched for and tracked, and the new ecology of the marine life 24 becomes clear, which can contribute to the sustainability of fishery resources.
  • the 15 shows an example in which the tracking system 110 is applied to the tracking and search of a flying object such as an airplane, a helicopter, an airship, and the like, such as an airplane 180, which have been accidentally landed.
  • the artificial satellite 112 has a laser light transmitting / receiving device 114 mounted thereon, and the airplane 180 has a retroreflective light reflection tag 130 mounted at one or more predetermined positions on the surface of the airplane 180.
  • the retroreflective tag 130 attached to the airplane 180 By detecting or searching for the airplane 180 based on the identification information included in the reflected laser light Lr, the emergency landing position can be specified. As a result, it is possible to promptly start rescue of the life of the accidentally landed airplane 180, which can contribute to the construction of a safe and secure society.
  • the crash landing airplane 180 can float for some time, and passengers may be drifting using lifecraft or liferafts.
  • FIGS. 16 and 17 show a case where the laser beam search system 210 is applied to tracking or searching for a person (human) 82.
  • the laser light transmitting / receiving device 114 is mounted on a flying object such as an airplane, helicopter, airship, etc., for example, a small airplane 184, and the retroreflective tag 130 is mounted on a hat or limbs of a person (human) 82. You.
  • the laser light transmitting / receiving device 114 and the arithmetic processing device 122 are mounted on a small aircraft 184.
  • the laser beam transmitting / receiving device 114 and the arithmetic processing device 122 may be provided on a relatively high ground structure such as a tower or a building at which a person 182 to be searched stays, for example, a beach, can be overlooked.
  • the tracking system 110 of the present embodiment for example, when a person (human) 82 drowns at a beach and goes missing, the retroreflective light attached to the hat or limbs of the person (human) 182.
  • the position of the person 182 can be specified.
  • the rescue of the person (human) 182 who has been lost during bathing can be started at an early stage, so that rescue of human life becomes possible, which can contribute to the construction of a safe and secure society. .
  • the pattern representing the identification code shown in FIG. 5 or FIG. 6 is displayed on the liquid crystal plate 146 of the retroreflective tag 130, and the pattern shown in FIG. 2 may be provided.
  • an identification pattern illustrated in FIG. 5 or FIG. 6 may be provided on a part 68 of the reflective surface of the retroreflective layer 144 of the retroreflective tag 130.
  • the identification information represented by the modulation of the reflected laser Lr reflected from the retroreflective layer 144 by providing both the system configuration shown in the first embodiment and the second embodiment having the CCD camera 28b. And the identification information represented by the identification pattern included in the reflected laser Lr.
  • the retroreflective layers of the retroreflective tags 40, 70, and 72 of the above-described embodiments are composed of the beads 66, but may be composed of a prism layer in which a large number of tetrahedral grains are arranged. .
  • the laser light transmitting / receiving devices 14 and 114 are mounted on the drone 12, the artificial satellite 112, and the airplane 180.
  • the laser light transmitting and receiving devices 14 and 114 are provided on a ground structure having a relatively large height such as a monitoring tower. Is also good.
  • the objects to be searched are not limited to humans (humans), marine life, terrestrial life, and flying objects such as aircraft and helicopters. Any object to which the retroreflective light reflection tags 40, 70, 72, and 130 can be attached may be used, and a large or small aquatic creature that lives in freshwater may be used.
  • the laser light transmitting / receiving devices 14 and 114 shown in FIGS. 2 and 3 and FIGS. 10 and 11 only show the basic configuration. Additional or additional devices may be added.
  • a signal amplifier for amplifying the signal Sout may be provided after the envelope detecting element 128c instead of or in addition to the pre-optical amplifier 128b.
  • the base sheet 142 may not be used. Further, the retroreflective tag 130 does not have to have flexibility as a whole.
  • Laser beam search system 12 Drone (flying object) 24, 122: arithmetic processing unit (identification information extraction means) (tag position calculation means) 26, 126, 132: laser light transmitters 28, 128, 134: laser light receivers 26b, 126b, 132c: light deflector 28b: CCD camera 32: person (search target) 40, 70, 72, 130: Retroreflective light reflection tag (optical tag) 56: tag position calculating means 66: beads (retroreflective layer) 68: Part of reflection surface (identification pattern) 124: Marine life (subject) 144: retroreflective layer 146: liquid crystal plate (modulation layer) 152: ON / OFF drive liquid crystal drive circuit (liquid crystal drive circuit) 180: Airplane (flying object, tracked object) 182: person (tracked body) 184: Small airplane (flying object)

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

Provided is a laser light search system whereby a search object that is present on land or in water can be accurately searched for using laser light from the air. An optical tag 40 of a laser light search system 10 is a retroreflective light-reflecting tag for reflecting reflected laser light Lr toward a laser light transmission/reception device, and imparts identification information set in advance which relates to a person (search object) 32 to the reflected laser light Lr, and the laser light search system 10 includes a computational processing device for receiving the reflected laser light Lr and extracting the identification information from the received reflected laser light Lr. The reflected laser light Lr is reflected from the abovementioned retroreflective light-reflecting tag, and has a relatively high reception gain, and it is therefore possible to accurately search for a person (search object) 32 present on land or in snow or water. Information for identifying the person (search object) 32 is included in the reflected laser light Lr and can be individually extracted.

Description

レーザ光探索システムLaser light search system
 本発明は、地上或いは水面に存在する被探索体を、レーザ光を空中から地上或いは水面に向かって照射しつつ探索するレーザ光探索システムに関するものである。 The present invention relates to a laser beam search system for searching for a search target existing on the ground or on the water surface while irradiating a laser beam from the air to the ground or the water surface.
 レーザビームを生成するレーザ発生器と、前記レーザビームを走査し、且つレーザビームを所定の探索パターンで走査させるビーム走査装置と、被追尾体である標的物体から反射した反射レーザ光を受信し、その反射レーザ光に応答して上記ビーム走査装置に前記探索パターンを変化させる受信装置とを備えた、レーザ光探索システムが提案されている。たとえば、特許文献1に記載された標的追尾用レーザ指示装置がそれである。 A laser generator that generates a laser beam, a beam scanning device that scans the laser beam, and scans the laser beam in a predetermined search pattern, and receives a reflected laser beam reflected from a target object that is a tracked object, There has been proposed a laser beam searching system including a beam scanning device that changes the search pattern in response to the reflected laser beam. For example, a laser pointing device for tracking a target described in Patent Literature 1 is such.
 この特許文献1に記載されたレーザ光探索システムは、被探索体からの反射レーザ光を受信すると、それに応答して探索パターンを縮小させる受信デバイスを備え、受信した反射レーザ光に基づいて絶えず更新される追尾データを利用して標的物体を正確に追尾するように構成されている。 The laser light search system described in Patent Document 1 includes a receiving device that reduces a search pattern in response to receiving a reflected laser light from an object to be searched, and constantly updates the received pattern based on the received reflected laser light. It is configured to accurately track the target object using the tracking data to be obtained.
特開平11-118929号公報JP-A-11-118929
 特許文献1に開示されているレーザ光探索システムを、広範囲の探索に使用した場合、所定の探索パターンで走査したレーザビームに対して被探索体から反射して受信デバイスに受信される反射レーザ光は、被探索体の大きさや形状に起因して微弱な信号となり易く受信ゲインが低いため、被探索体の探索を正確に行なえない場合があった。また、反射レーザ光には、被探索体を識別する情報が含まれていないため、多数の反射光中から目的とする被探索体であるか否かを識別することが難しく、被探索体を個別に抽出する用途に用いることが困難であった。 When the laser beam search system disclosed in Patent Document 1 is used for a wide range search, a reflected laser beam reflected from a search target and received by a receiving device with respect to a laser beam scanned in a predetermined search pattern However, since the signal tends to be weak due to the size and shape of the object to be searched and the reception gain is low, the search for the object to be searched may not be performed accurately. In addition, since the reflected laser light does not include information for identifying the object to be searched, it is difficult to identify whether or not the target object to be searched from among a large number of reflected lights, and It was difficult to use it for the purpose of extracting individually.
 本発明は以上の事情を背景としてなされたものであり、その目的とするところは、地上、雪中或いは水中等に存在する被探索体を、空中からレーザ光を用いて正確に探索することができるレーザ光探索システムを提供することにある。 The present invention has been made in view of the above circumstances, and it is an object of the present invention to accurately search for a search target existing on the ground, in the snow, underwater, or the like using laser light from the air. It is an object of the present invention to provide a laser light search system that can perform the search.
 本発明者は、以上の事情を背景として種々検討を重ねた結果、探索光としてレーザ光を所定の走査範囲で放射するレーザ光送信装置を用いるとともに、被探索体には、前記レーザ光を受けて前記レーザ光送信装置に向かって反射レーザ光を反射する再帰性反射器を装着し、その再帰性反射器の反射面に識別符号を設けると、空中からレーザ光を所定の照射領域に照射しつつ走査したときに得られた反射レーザ光内に含まれる前記識別符号に基づいて、被探索体を個別に正確に探索することができることを見いだした。本発明は斯かる知見に基づいて為されたものである。 The present inventor has made various studies on the background described above, and as a result, while using a laser light transmitting device that emits laser light in a predetermined scanning range as search light, the search target receives the laser light. A retroreflector that reflects the reflected laser light toward the laser light transmitting device is attached, and an identification code is provided on the reflection surface of the retroreflector, so that a predetermined irradiation area is irradiated with laser light from the air. It has been found that the object to be searched can be individually and accurately searched based on the identification code included in the reflected laser light obtained when scanning. The present invention has been made based on such knowledge.
 かかる目的を達成するための本発明の要旨とするところは、レーザ光送信装置から地上または水面に向かって出力されたレーザ光を被探索体に装着された光タグに反射させ、前記光タグにより反射された反射レーザ光を前記レーザ光送信装置と共に設置されたレーザ光受信装置により受けて前記被探索体を探索するレーザ光探索システムであって、(a)前記光タグは、反射レーザ光を前記レーザ光送信装置へ向かって反射する再帰性光反射タグであり、(b)再帰性光反射タグは、前記反射レーザ光に前記被探索体に関連する予め定められた識別情報を付与するものであり、(c)前記反射レーザ光を受信し、受信した前記反射レーザ光から前記識別情報を抽出する識別情報抽出手段を、含むことにある。 The gist of the present invention for achieving the object is to reflect laser light output from the laser light transmitting device toward the ground or the water surface to an optical tag attached to the object to be searched, and the optical tag A laser beam search system for searching for the object to be searched by receiving a reflected laser beam reflected by a laser beam receiver installed together with the laser beam transmitter, wherein (a) the optical tag transmits reflected laser beam A retroreflective tag reflecting toward the laser light transmitting device, wherein (b) the retroreflective tag adds predetermined identification information related to the object to be searched to the reflected laser light. And (c) an identification information extracting unit that receives the reflected laser light and extracts the identification information from the received reflected laser light.
 本発明のレーザ光探索システムによれば、地上または水面に向かって出力されたレーザ光を被探索体に装着された光タグに反射させ、前記光タグにより反射された反射レーザ光を前記レーザ光送信装置と共に設置されたレーザ光受信装置により受けて前記被探索体を探索するレーザ光探索システムであって、(a)前記光タグは、反射レーザ光を前記レーザ光送信装置へ向かって反射する再帰性光反射タグであり、(b)再帰性光反射タグは、前記反射レーザ光に前記被探索体に関連する予め定められた識別情報を付与するものであり、(c)前記反射レーザ光を受信し、受信した前記反射レーザ光から前記識別情報を抽出する識別情報抽出手段を、含む。これにより、反射レーザ光は、再帰性光反射タグから反射されることから、受信ゲインが比較的高いため、地上、雪中或いは水中に存在する被探索体の探索を正確に行なうことができる。また、反射レーザ光には、被探索体を識別する情報が含まれているため、多数の反射光中から目的とする被探索体であるか否かを識別することが可能となり、被探索体を個別に抽出することが可能となる。 According to the laser light search system of the present invention, the laser light output toward the ground or the water surface is reflected by the optical tag attached to the object to be searched, and the reflected laser light reflected by the optical tag is reflected by the laser light. A laser light search system for searching for the object to be searched for, which is received by a laser light receiver installed together with a transmitter, wherein (a) the optical tag reflects reflected laser light toward the laser light transmitter. (B) a retroreflective light reflection tag that adds predetermined identification information related to the object to be searched to the reflected laser light, and (c) the reflected laser light. And identification information extracting means for extracting the identification information from the received reflected laser light. Thereby, since the reflected laser light is reflected from the retroreflective tag, the reception gain is relatively high, so that the search target existing on the ground, in the snow, or in the water can be accurately searched. In addition, since the reflected laser light contains information for identifying the object to be searched, it is possible to identify whether or not the target object to be searched from among a large number of reflected lights, Can be individually extracted.
 ここで、好適には、前記再帰性光反射タグは、前記反射レーザ光を前記レーザ光送信装置に向かって反射する再帰性反射層と、前記再帰性反射層に設けられ、前記識別情報を示す識別パターンとを有するものであることから、その再帰性光反射タグからの反射レーザ光からそれに含まれる識別パターンを抽出することで、識別パターンが表す被探索体に関連する識別情報に基づいて、地上、雪中或いは水中に存在する被探索体の探索を正確に行なうことができ、被探索体を個別に抽出することが可能となる。この識別情報は、文字、記号、バーコード等により示される被探索者自体の名称、被探索体に装着される部品の名称、型式、サイズ、製造者、製造時期等の製造情報等の、被探索体に直接的或いは間接的に関連するものである。 Here, preferably, the retroreflective tag is provided on the retroreflective layer that reflects the reflected laser light toward the laser beam transmitting device, and indicates the identification information. Since it has an identification pattern, by extracting the identification pattern included in the reflected laser light from the retroreflective light reflection tag, based on the identification information related to the search target represented by the identification pattern, The search for the search target existing on the ground, in the snow, or in the water can be accurately performed, and the search target can be individually extracted. This identification information includes the name of the person to be searched, which is indicated by characters, symbols, barcodes, etc., the name of the part to be mounted on the object to be searched, the manufacturing information such as model, size, manufacturer, manufacturing time, and the like. It is directly or indirectly related to the search object.
 また、好適には、前記再帰性光反射タグに設けられた前記識別パターンは、マトリックス型二次元コードであることにある。このマトリックス型二次元コードは、所謂QRコード(登録商標)であって、多くの情報が含まれるので、地上、雪中或いは水中に存在する被探索体の探索を正確に行なうことができ、被探索体を個別に抽出することが可能となる。たとえば、上記のマトリックス型二次元コードには、被探索体が行方不明者が装着した被服であれば、その被服の名称および型式番号、その被服のサイズ、その被服の製造メーカー、製造時期或いは製造ロット、販売店等の情報が、含まれる。 Preferably, the identification pattern provided on the retroreflective tag is a matrix type two-dimensional code. The matrix type two-dimensional code is a so-called QR code (registered trademark) and includes a lot of information. Therefore, it is possible to accurately search for a search target existing on the ground, in the snow, or in the water, and The search objects can be individually extracted. For example, in the above matrix type two-dimensional code, if the object to be searched is clothing worn by a missing person, the name and model number of the clothing, the size of the clothing, the manufacturer, time of manufacture or manufacturing of the clothing Information on lots, stores, and the like is included.
 また、好適には、前記再帰性光反射タグは、前記反射レーザ光を前記レーザ光送信装置に向かって反射する再帰性反射層と、前記再帰性反射層の上に積層され、前記識別情報を表すように前記再帰性反射層により反射された反射レーザ光を変調する変調層とを有する。これにより、変調された反射レーザ光から変調信号を抽出することで前記識別情報を得ることができるので、その識別情報に基づいて地上、雪中或いは水中に存在する被探索体の探索を正確に行なうことができ、被探索体を個別に抽出することが可能となる。 Also, preferably, the retroreflective tag is a retroreflective layer that reflects the reflected laser light toward the laser light transmitting device, and laminated on the retroreflective layer, the identification information And a modulation layer that modulates the reflected laser light reflected by the retroreflective layer. Thus, the identification information can be obtained by extracting the modulation signal from the modulated reflected laser light, so that the search for the search target existing on the ground, in snow, or underwater can be accurately performed based on the identification information. The search target can be individually extracted.
 また、好適には、前記変調層は、前記再帰性反射層の上に積層され、前記識別情報を表すように前記再帰性反射層により反射された反射レーザ光を変調する液晶板を有するものであることにある。これにより、変調された反射レーザ光から変調信号を抽出することで前記識別情報を得ることができるので、その識別情報に基づいて地上、雪中或いは水中に存在する被探索体の探索を正確に行なうことができ、被探索体を個別に抽出することが可能となる。 Preferably, the modulation layer has a liquid crystal plate laminated on the retroreflective layer and modulating the reflected laser light reflected by the retroreflective layer to represent the identification information. There is to be. Thus, the identification information can be obtained by extracting the modulation signal from the modulated reflected laser light, so that the search for the search target existing on the ground, in snow, or underwater can be accurately performed based on the identification information. The search target can be individually extracted.
 また、好適には、前記識別情報を表すように強度変調或いは位相変調により変調されたパルス状駆動信号を用いて前記液晶板をオンオフ駆動する液晶駆動回路を有するものである。これにより、パルス状にオンオフ変調された反射レーザ光から変調信号を抽出することで前記識別情報を得ることができるので、その識別情報に基づいて地上、雪中或いは水中に存在する被探索体の探索を正確に行なうことができ、被探索体を個別に抽出することが可能となる。 Preferably, the liquid crystal display device further comprises a liquid crystal drive circuit for driving the liquid crystal plate on and off using a pulsed drive signal modulated by intensity modulation or phase modulation so as to represent the identification information. Thus, the identification information can be obtained by extracting the modulation signal from the reflected laser light that has been pulse-likely modulated on and off, so that the search target existing on the ground, in snow, or in the water can be obtained based on the identification information. The search can be performed accurately, and the objects to be searched can be individually extracted.
 また、好適には、前記レーザ光送信装置は、水中での吸収率がきわめて低い紫色から緑色までの波長帯から選択された波長を有する前記レーザ光を、水面または雪面に向かって出力するものである。これにより、被探索体に装着された再帰性光反射タグが水中或いは氷雪中にあっても、反射レーザ光から前記識別情報を得ることができるので、その識別情報に基づいて地上、雪中或いは水中に存在する被探索体の探索を正確に行なうことができ、被探索体を個別に抽出することが可能となる。 Preferably, the laser light transmitting device outputs the laser light having a wavelength selected from a wavelength band from violet to green having a very low absorptivity in water, toward a water surface or a snow surface. It is. Thereby, even if the retroreflective tag attached to the object to be searched is in water or in ice or snow, the identification information can be obtained from the reflected laser light. The search for the object to be searched for in the water can be performed accurately, and the objects to be searched can be individually extracted.
 また、好適には、前記レーザ光受信装置は、前記再帰性光反射タグから反射された反射レーザ光を受信し、前記反射レーザ光に含まれる、前記識別情報を示す識別パターンを撮像するCCD(Charge-Coupled Device)カメラを有し、前記識別情報抽出手段は、前記識別パターンから前記識別パターンにより示された識別情報を抽出するものである。このことから、CCDカメラにより前記反射レーザ光から識別パターンを容易に抽出することができるので、その識別パターンが表す被探索体に関連する識別情報に基づいて、地上、雪中或いは水中に存在する被探索体の探索を正確に行なうことができ、被探索体を個別に抽出することが可能となる。 Preferably, the laser light receiving device receives the reflected laser light reflected from the retroreflective light reflection tag, and captures an identification pattern included in the reflected laser light and indicating the identification information. (Charge-Coupled @ Device) camera, and the identification information extracting means extracts identification information indicated by the identification pattern from the identification pattern. From this, the identification pattern can be easily extracted from the reflected laser light by the CCD camera, and the identification pattern exists on the ground, in the snow, or in the water based on the identification information related to the object to be searched represented by the identification pattern. The search for the search target can be accurately performed, and the search target can be individually extracted.
 また、好適には、前記レーザ光受信装置および前記レーザ光送信装置は、監視塔、飛翔体、または人工衛星に搭載されるものである。これにより、前記レーザ光受信装置および前記レーザ光送信装置は、監視塔、飛翔体、または人工衛星のうちから、被探索体の種類や性質に応じて選択されたものに搭載されるので、効率的且つ経済的に被探索体の探索を正確に行なうことができる。 Preferably, the laser light receiving device and the laser light transmitting device are mounted on a monitoring tower, a flying object, or an artificial satellite. Accordingly, the laser light receiving device and the laser light transmitting device are mounted on a monitoring tower, an flying object, or an artificial satellite, which is selected according to the type or property of the object to be searched. The object to be searched can be searched accurately and economically.
 また、好適には、前記飛翔体は、ドローン、ヘリコプター、または飛行機である。これにより、前記レーザ光受信装置および前記レーザ光送信装置は、ドローン、ヘリコプター、または飛行機のうちから、被探索体の種類や性質に応じて選択されたものに搭載されるので、効率的且つ経済的に被探索体の探索を正確に行なうことができる。 Preferably, the flying object is a drone, a helicopter, or an airplane. Accordingly, the laser light receiving device and the laser light transmitting device are mounted on a drone, a helicopter, or an airplane, which is selected according to the type and nature of the object to be searched. The search for the object to be searched can be accurately performed.
 また、好適には、前記再帰性光反射タグは、人の被服、帽子、或いは靴、陸上生物、水棲生物、飛翔体、部品、製品、または、前記部品或いは前記製品の梱包に装着されるものである。これにより、被探索体が人(ヒト)、陸上生物、または水棲生物であっても、その探索を正確に行なうことができ、被探索体を個別に抽出することが可能となる。また、被探索体が部品または製品或いはその梱包である場合には、大規模な物流倉庫内において多量の部品或いは製品から所望の部品或いは製品を直ちに探索し、速やかに出荷することができるようになる。 Preferably, the retroreflective tag is attached to a person's clothing, a hat, or shoes, a terrestrial organism, an aquatic organism, a flying object, a part, a product, or a package of the part or the product. It is. Thus, even if the object to be searched is a person (human), a terrestrial organism, or an aquatic organism, the search can be accurately performed, and the object to be searched can be individually extracted. Further, when the object to be searched is a part or a product or its packaging, a large-scale distribution warehouse can be used to immediately search for a desired part or product from a large number of parts or products and ship it promptly. Become.
 また、好適には、前記レーザ光受信装置および前記レーザ光送信装置は、飛翔体に搭載され、前記レーザ光送信装置は、前記レーザ光を走査する光偏向器を備え、前記レーザ光受信装置は、前記再帰性光反射タグからの反射レーザ光を受けて、前記反射レーザ光に含まれる前記再帰性光反射タグに関連する識別パターンを撮像するCCDカメラを備え、前記レーザ光受信装置のCCDカメラにより前記反射レーザ光から前記識別パターンが撮像されたときの、前記レーザ光受信装置および前記レーザ光送信装置の位置および地上高と、前記レーザ光送信装置からのレーザ光の送信方向とから、前記識別パターンが設けられた前記再帰性光反射タグの地上位置を算出して出力するタグ位置算出手段とが、備えられる。これにより、被探索体の地上位置が容易に決定されるので、被探索体の捜索が速やかに行なわれ得る。 Preferably, the laser light receiving device and the laser light transmitting device are mounted on a flying object, and the laser light transmitting device includes an optical deflector that scans the laser light, and the laser light receiving device is A CCD camera for receiving the reflected laser light from the retroreflective tag, and imaging an identification pattern related to the retroreflective tag included in the reflected laser beam; When the identification pattern is imaged from the reflected laser light, the position and the ground height of the laser light receiving device and the laser light transmitting device, and the transmission direction of the laser light from the laser light transmitting device, Tag position calculation means for calculating and outputting a ground position of the retroreflective tag provided with the identification pattern. As a result, the ground position of the object to be searched is easily determined, and the search for the object to be searched can be performed quickly.
 また、好適には、前記レーザ光送信装置は、前記レーザ光を走査する光偏向器を備え、前記再帰性光反射タグからの反射レーザ光を受けて、前記反射レーザ光に含まれる前記再帰性光反射タグに関連する識別情報を抽出する前記レーザ光受信装置と、前記再帰性光反射タグからの前記反射レーザ光から前記識別情報が抽出されたときの前記人工衛星の位置および地上高と、前記人工衛星の前記レーザ光送信装置からのレーザ光の送信方向とから、前記識別情報が抽出された前記再帰性光反射タグの地上位置を算出して出力するタグ位置算出手段とを、備え、前記レーザ光受信装置および前記レーザ光送信装置は、人工衛星に搭載される。これにより、被探索体の地上位置が容易に決定されるので、被探索体の捜索が速やかに行なわれ得る。 Also preferably, the laser light transmitting device includes an optical deflector that scans the laser light, receives the reflected laser light from the retroreflective tag, and includes the reflected laser light included in the reflected laser light. The laser light receiving device that extracts identification information related to the light reflection tag, and the position and height of the artificial satellite when the identification information is extracted from the reflected laser light from the retroreflective light reflection tag, Tag position calculating means for calculating and outputting a ground position of the retroreflective light reflection tag from which the identification information is extracted, from a transmission direction of the laser light from the laser light transmitting device of the artificial satellite, The laser light receiving device and the laser light transmitting device are mounted on an artificial satellite. As a result, the ground position of the object to be searched is easily determined, and the search for the object to be searched can be performed quickly.
本発明の一実施例である、飛翔体としてドローンを用いたレーザ光探索システムを説明する概略図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic explaining the laser beam search system which used the drone as a flying object which is one Example of this invention. 図1のレーザ光探索システムにおいて、ドローンに搭載されたレーザ光送信装置およびレーザ光受信装置等の構成を説明する図である。FIG. 2 is a diagram illustrating a configuration of a laser light transmitting device, a laser light receiving device, and the like mounted on the drone in the laser light search system of FIG. 1. 図1のドローン操縦用送信装置に搭載された受信装置の構成を説明する図である。FIG. 2 is a diagram illustrating a configuration of a receiving device mounted on the drone operation transmitting device in FIG. 1. 図1のレーザ光探索システムに用いられる、人(ヒト)が着たジャケットに装着された再帰性光反射タグの構成を説明する図である。FIG. 2 is a diagram illustrating a configuration of a retroreflective tag attached to a jacket worn by a person (human) used in the laser light search system of FIG. 1. 図4の再帰性光反射タグの反射面の一部に設けられた識別パターンの一例であるマトリックス型二次元コードを示す図である。FIG. 5 is a diagram showing a matrix type two-dimensional code which is an example of an identification pattern provided on a part of a reflection surface of the retroreflective light reflection tag of FIG. 4. 図4の再帰性光反射タグの反射面の一部に設けられた識別パターンの他の例である一次元型のバーコードを示す図である。FIG. 5 is a diagram showing a one-dimensional barcode as another example of the identification pattern provided on a part of the reflection surface of the retroreflective tag of FIG. 4. 図4の再帰性光反射タグの他の構成例を説明する図である。FIG. 9 is a diagram illustrating another configuration example of the retroreflective light reflection tag of FIG. 4. 図4の再帰性光反射タグの他の構成例を説明する図である。FIG. 9 is a diagram illustrating another configuration example of the retroreflective light reflection tag of FIG. 4. 本発明の他の実施例である、人工衛星を用いたレーザ光探索システムを説明する概略図である。It is the schematic explaining the laser beam search system using the artificial satellite which is another Example of this invention. 図9のレーザ光探索システムに用いられるレーザ光送受信装置の構成例を説明する概略図であって、レーザ光受信装置が直接検波を用いる場合を示している。FIG. 10 is a schematic diagram illustrating a configuration example of a laser light transmitting / receiving device used in the laser light search system of FIG. 9, showing a case where the laser light receiving device uses direct detection. 図9のレーザ光探索システムに用いられるレーザ光送受信装置の構成例を説明する概略図であって、レーザ光受信装置がホモダイン位相検波を用いる場合を示している。FIG. 10 is a schematic diagram illustrating a configuration example of a laser light transmitting / receiving device used in the laser light searching system of FIG. 9, showing a case where the laser light receiving device uses homodyne phase detection. 図9のレーザ光探索システムに用いられるタグの構成を説明する斜視図である。FIG. 10 is a perspective view illustrating a configuration of a tag used in the laser light search system of FIG. 9. 図9のレーザ光探索システムにおいて、反射レーザ光がタグから人工衛星へ到達するまでの時間と人工衛星の移動距離との関係を説明する図である。FIG. 10 is a diagram illustrating the relationship between the time required for reflected laser light to reach the artificial satellite from the tag and the distance traveled by the artificial satellite in the laser light search system of FIG. 9. 図13の関係を前提とした人工衛星のタグ情報受信時間範囲を説明するタイムチャートである。FIG. 14 is a time chart for explaining a tag information reception time range of the artificial satellite based on the relationship of FIG. 13. 本発明のレーザ光探索システムの他の実施例を説明する図である。It is a figure explaining other examples of a laser beam search system of the present invention. 本発明のレーザ光探索システムのさらに他の実施例を説明する図である。FIG. 11 is a diagram illustrating still another embodiment of the laser light search system of the present invention. 図16の実施例の飛行機に搭載されたレーザ光送受信装置、演算処理装置、および、表示器を示す図である。FIG. 17 is a diagram illustrating a laser light transmitting / receiving device, an arithmetic processing device, and a display mounted on the airplane of the embodiment in FIG. 16.
 以下、本発明の一実施例を図面を参照して説明する。尚、以下の説明に用いる図面において各部の寸法比等は必ずしも正確に描かれていない。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the drawings used in the following description, the dimensional ratios and the like of the respective parts are not necessarily drawn accurately.
 図1は、本発明の一実施例のレーザ光探索システム10の構成の要部を示す略図であり、図2は、ドローン12に搭載されるレーザ光送受信装置14の一例であって、ドローン12に共に固定されたレーザ光送信装置26およびレーザ光受信装置28を示す図である。図1において、たとえば地上から所定の高度を飛翔する飛翔体であるドローン12には、レーザ光送受信装置14が搭載されており、反射レーザ光Lrに関連する信号を表す電波が送信器16およびアンテナ18を介して地上のデータ受信装置25へ送信されるようになっている。地上には、ドローン12のアンテナ18から送信された電波を受けるアンテナ20を備える受信器46と、受信機46で受信された信号を処理する演算処理装置24と、演算処理装置24で処理された情報を出力する表示器50とを備えるデータ受信装置25が、配設されている。データ受信装置25は車両等に搭載されてもよいが、本実施例では図1に示すドローン操縦用送信機30に設けられている。 FIG. 1 is a schematic diagram showing a main part of a configuration of a laser light search system 10 according to an embodiment of the present invention. FIG. 2 is an example of a laser light transmitting / receiving device 14 mounted on the drone 12, FIG. 4 is a diagram showing a laser light transmitting device 26 and a laser light receiving device 28 fixed together. In FIG. 1, for example, a drone 12, which is a flying object that flies at a predetermined altitude from the ground, is equipped with a laser light transmitting / receiving device 14, and a radio wave representing a signal related to the reflected laser light Lr is transmitted by a transmitter 16 and an antenna. The data is transmitted to the data receiving device 25 on the ground via the communication terminal 18. On the ground, a receiver 46 having an antenna 20 for receiving a radio wave transmitted from the antenna 18 of the drone 12, an arithmetic processing unit 24 for processing a signal received by the receiver 46, and a signal processed by the arithmetic processing unit 24 A data receiving device 25 including a display 50 for outputting information is provided. The data receiving device 25 may be mounted on a vehicle or the like, but is provided in the drone control transmitter 30 shown in FIG. 1 in the present embodiment.
 図2では、レーザ光送信装置26およびレーザ光受信装置28の原理的な構成が示されている。レーザ光送信装置26は、たとえば水中や雪中での吸収率が低い紫色、青色、緑色などの比較的短い波長帯、たとえば355~560nmの波長帯内から選択された波長、或いは赤色・赤外(700nm~2600nm)の波長帯から選択された波長、好適にはアイセーフと称される目にやさしい波長(1400nm~2600nm)の波長帯から選択された波長中のパルス状のレーザ光Loを地上、水面、雪面等へ向かって出力するレーザ光源26aと、レーザ光源26aから出力されたレーザ光Loを偏向して地表面でのスポットが直線状或いは格子状に走査されるようにする光偏向器26bと、光偏向器26bにより偏向されたレーザ光Loを地表上で所定の大きさのスポット径となるように集光する集光レンズ装置26cとを、備えている。 FIG. 2 shows the basic configuration of the laser light transmitting device 26 and the laser light receiving device 28. The laser light transmitting device 26 has a wavelength selected from a relatively short wavelength band such as violet, blue, and green having a low absorptivity in water or snow, for example, a wavelength selected from a wavelength band of 355 to 560 nm, or red / infrared. (700 nm to 2600 nm), preferably a pulse-shaped laser light Lo in a wavelength selected from the wavelength range of an eye-friendly wavelength (1400 nm to 2600 nm) called an eye-safe, A laser light source 26a that outputs light toward a water surface, a snow surface, and the like; and an optical deflector that deflects the laser light Lo output from the laser light source 26a so that a spot on the ground surface is scanned in a straight line or in a grid. 26b, and a condenser lens device 26c for condensing the laser light Lo deflected by the optical deflector 26b so as to have a spot diameter of a predetermined size on the ground. There.
 光偏向器26bは、たとえば、圧電素子による駆動によって偏向ミラーの角度を所定の周波数で変化させる形式のものや、電気光学効果或いは音響光学効果により半導体光導波路内を伝播するレーザ光を所定の周期で偏向させる形式のものから構成される。なお、レーザ光源26aの構成によって所望のスポット径が得られる場合には、集光レンズ装置26cは必ずしも設けられていなくてもよい。 The optical deflector 26b is, for example, of a type that changes the angle of a deflecting mirror at a predetermined frequency by driving by a piezoelectric element, or a laser beam propagating in a semiconductor optical waveguide by an electro-optic effect or an acousto-optic effect for a predetermined period. It is composed of a type that deflects by. When a desired spot diameter is obtained by the configuration of the laser light source 26a, the condenser lens device 26c is not necessarily provided.
 レーザ光受信装置28は、被探索体たとえば人(ヒト)32に装着される被服たとえばジャケット34や帽子36に装着された再帰性光反射タグ40からの反射レーザ光Lrを集光する望遠レンズ装置28aと、望遠レンズ装置28aを通過した反射レーザ光Lrから再帰性光反射タグ40を撮像するCCDカメラ28bとを、備えている。 The laser light receiving device 28 is a telephoto lens device that collects reflected laser light Lr from a retroreflective light reflection tag 40 attached to a clothing to be searched, for example, a person (human) 32, for example, a jacket 34 or a hat 36. 28a, and a CCD camera 28b that captures an image of the retroreflective tag 40 from the reflected laser light Lr that has passed through the telephoto lens device 28a.
 また、ドローン12には、GPS電波を受信してドローン12の位置(東経および西経の角度)を逐次算出し出力するGPS位置検出器42と、気圧或いは地上からの音波の反射時間に基づいてドローン12の高度(m)を逐次算出して出力する高度計44とが搭載されている。また、光偏向器26bは、図示しないジャイロで定められる方角を基準としたレーザ光Loの出力方向を示すレーザ光出力度角を示す信号を出力する。送信器16は、ドローン12の位置、ドローン12の高度、およびレーザ光Loの出力方向に関する信号を、受信装置28へ送信する。 Further, the drone 12 receives a GPS radio wave and sequentially calculates and outputs the position (the angle of the east longitude and the west longitude) of the drone 12 and a drone based on the atmospheric pressure or the reflection time of sound waves from the ground. An altimeter 44 that sequentially calculates and outputs twelve altitudes (m) is mounted. The optical deflector 26b outputs a signal indicating a laser light output angle indicating the output direction of the laser light Lo with reference to a direction determined by a gyro (not shown). The transmitter 16 transmits a signal regarding the position of the drone 12, the altitude of the drone 12, and the output direction of the laser light Lo to the receiving device 28.
 図3は、ドローン操縦用送信機30に設けられたデータ受信装置25を説明する図である。データ受信装置25は、送信器16からの電波を受信する受信器46と、受信器46に受けられた送信器16からの情報である、ドローン12の位置、ドローン12の高度、およびレーザ光Loの出力方向に関する信号を処理して再帰性光反射タグ40の位置を算出する演算処理装置24と、再帰性光反射タグ40の位置を表示する表示器50とを備えている。本実施例の再帰性光反射タグ40は、人(ヒト)32のジャケット(被服)34および帽子36に装着されているが、靴であってもよいし、陸上生物、または水棲生物に直接装着されてもよい。 FIG. 3 is a diagram illustrating the data receiving device 25 provided in the drone operation transmitter 30. The data receiving device 25 includes a receiver 46 that receives a radio wave from the transmitter 16, and the position of the drone 12, the altitude of the drone 12, and the laser light Lo, which are information received from the transmitter 16 by the receiver 46. The arithmetic processing unit 24 calculates the position of the retroreflective tag 40 by processing the signal related to the output direction of the optical tag 40, and the display 50 displays the position of the retroreflective tag 40. The retroreflective tag 40 of this embodiment is attached to a jacket (clothing) 34 and a hat 36 of a person (human) 32, but may be shoes, or directly attached to terrestrial or aquatic organisms. May be done.
 演算処理装置24は、CPU、ROM、RAM、入出力インターフェースなどを含む所謂マイクロコンピュータ(電子制御装置)であって、予め記憶されたプログラムに従って入力信号を処理し、再帰性光反射タグ40の位置を示す情報を表示器50に表示させる。演算処理装置24は、反射レーザ光Lrに含まれる識別情報を抽出する識別情報抽出手段として機能するものである。 The arithmetic processing device 24 is a so-called microcomputer (electronic control device) including a CPU, a ROM, a RAM, an input / output interface, etc., processes input signals in accordance with a program stored in advance, and controls the position of the retroreflective tag 40. Is displayed on the display device 50. The arithmetic processing unit 24 functions as identification information extracting means for extracting identification information included in the reflected laser light Lr.
 演算処理装置24は、再帰性光反射タグ40からの反射レーザ光Lrに含まれる識別パターンが表す識別情報の中からどの情報を探索情報として探索するかを外部入力操作たとえばキー入力操作に従って設定する探索条件設定手段52と、探索条件設定手段52により設定された探索情報が反射レーザ光Lrに含まれるか否かを検出する識別パターン検出手段54と、識別パターン検出手段54により識別されたときの、ドローン12の位置、ドローン12の高度、およびレーザ光Loの出力方向に基づいて再帰性光反射タグ40の位置すなわち人(ヒト)32の位置を算出し、表示器50に再帰性光反射タグ40の位置を表示させるタグ位置算出手段56とを、機能的に備えている。 The arithmetic processing unit 24 sets which information to be searched as search information from the identification information represented by the identification pattern included in the reflected laser light Lr from the retroreflective tag 40 according to an external input operation, for example, a key input operation. Search condition setting means 52, identification pattern detection means 54 for detecting whether or not the search information set by search condition setting means 52 is included in reflected laser light Lr, and identification pattern detection means 54 , The position of the retroreflective tag 40, that is, the position of the person (human) 32, is calculated based on the position of the drone 12, the altitude of the drone 12, and the output direction of the laser light Lo. A tag position calculating means 56 for displaying the position of 40 is functionally provided.
 図4は、再帰性光反射タグ40の要部を拡大して説明する模式的な断面図である。再帰性光反射タグ40は、合成樹脂繊維或いは合成樹脂フィルムなどから構成された可撓性の樹脂基材60と、樹脂基材60の裏面に設けられた接着層62と、樹脂基材60の表面に反射膜64を介して一面に接着されたガラス製或いはアクリル樹脂等の合成樹脂製の小球状の複数のビーズ66とを備え、入射したレーザ光Loの入射角と同じ角度で反射レーザ光Lrを射出する光タグである。複数のビーズ66は再帰性反射層を構成し、反射面として機能している。 FIG. 4 is a schematic cross-sectional view illustrating a main part of the retroreflective tag 40 in an enlarged manner. The retroreflective tag 40 includes a flexible resin base 60 made of a synthetic resin fiber or a synthetic resin film, an adhesive layer 62 provided on the back surface of the resin base 60, A plurality of small spherical beads 66 made of glass or synthetic resin such as acrylic resin adhered to one surface via a reflective film 64 on the surface, and the reflected laser light is incident at the same angle as the incident angle of the incident laser light Lo. This is an optical tag that emits Lr. The plurality of beads 66 constitute a retroreflective layer and function as a reflective surface.
 上記再帰性光反射タグ40の反射面のうちの一部68には、たとえば図5に示すマトリックス型二次元コードの識別パターンを表すように局所的に非反射となるように設けられている。再帰性光反射タグ40の反射面の一部68は、ビーズ66がたとえば熱変形させられることで、非反射とされている。このマトリックス型二次元コードは、たとえばQRコード(登録商標)と称されるものであって、数次、英字、漢字からなるデータが格納されている。 (5) The part 68 of the reflection surface of the retroreflective tag 40 is provided so as to be locally non-reflective so as to represent the identification pattern of the matrix type two-dimensional code shown in FIG. A part 68 of the reflection surface of the retroreflective tag 40 is made non-reflective by, for example, thermally deforming the beads 66. The matrix type two-dimensional code is called, for example, a QR code (registered trademark), and stores data composed of several orders, English characters, and Chinese characters.
 たとえば、ジャケット34或いは帽子36の商品名称、型式、サイズ、製造者、製造時期等の製造情報や、販売店名、販売時期などの販売情報、ジャケット34或いは帽子36の購入者である人(ヒト)の氏名、生年月日などの個人情報に関するデータが、識別情報として、マトリックス型二次元コードに格納される。なお、再帰性光反射タグ40の反射面の一部68には、図5に示すマトリックス型二次元コードに替えて、たとえば図6に示すバーコードが用いられてもよいし、文字を示すパターンが直接設けられてもよい。 For example, manufacturing information such as a product name, a model, a size, a manufacturer, and a manufacturing time of the jacket 34 or the hat 36, sales information such as a store name and a selling time, and a person (human) who is a purchaser of the jacket 34 or the hat 36 Is stored in the matrix type two-dimensional code as identification information. For the part 68 of the reflective surface of the retroreflective tag 40, for example, a bar code shown in FIG. 6 may be used instead of the matrix type two-dimensional code shown in FIG. May be provided directly.
 本実施例のレーザ光探索システム10によれば、地上或いは水面に向かって出力されたレーザ光Loを人(被探索体)32に装着された再帰性光反射タグ40に反射させ、再帰性光反射タグ40により反射された反射レーザ光Lrを受けて人(被探索体)32を探索するものであって、(a)再帰性光反射タグ40は、反射レーザ光Lrをレーザ光送受信装置14へ向かって反射する再帰性光反射タグであり、(b)その再帰性光反射タグは、反射レーザ光Lrに人(被探索体)32に関連する予め定められた識別情報を付与するものであり、(c)反射レーザ光Lrを受信し、受信した反射レーザ光Lrから識別情報を抽出する演算処理装置(識別情報抽出手段)24を、含む。 According to the laser light search system 10 of the present embodiment, the laser light Lo output toward the ground or the water surface is reflected by the retroreflective light reflection tag 40 attached to the person (search target) 32, and the retroreflective light is reflected. The person (search target) 32 is searched for by receiving the reflected laser light Lr reflected by the reflection tag 40. (A) The retroreflective light reflection tag 40 transmits the reflected laser light Lr to the laser light transmitting / receiving device 14. (B) The retroreflective tag applies predetermined identification information related to the person (search target) 32 to the reflected laser beam Lr. And (c) an arithmetic processing unit (identification information extracting means) 24 for receiving the reflected laser light Lr and extracting identification information from the received reflected laser light Lr.
 これにより、反射レーザ光Lrは、上記再帰性光反射タグから反射されたものであって受信ゲインが比較的高いため、地上、雪中或いは水中に存在する人(被探索体)32の探索を正確に行なうことができる。また、反射レーザ光Lrには、人(被探索体)32を識別する情報が含まれているため、多数の反射光中から目的とする人(被探索体)32であるか否かを識別することが可能となり、人(被探索体)32を個別に抽出することが可能となる。 As a result, the reflected laser light Lr is reflected from the retroreflective light reflection tag and has a relatively high reception gain, so that the search for the person (search target) 32 existing on the ground, in snow, or in water is performed. Can be done accurately. In addition, since the reflected laser light Lr includes information for identifying the person (the object to be searched) 32, it is determined whether or not the target person (the object to be searched) 32 is among a large number of reflected lights. It is possible to extract the person (search target) 32 individually.
 また、本実施例のレーザ光探索システム10によれば、再帰性光反射タグ40は、反射レーザ光Lrをレーザ光送受信装置14に向かって反射するビーズ(再帰性反射層)66と、ビーズ(再帰性反射層)66の一部68に局所的に設けられ、識別情報を示す識別パターンとを有するものであることから、再帰性光反射タグ40からの反射レーザ光Lrからそれに含まれる識別パターンを抽出することで、識別パターンが表す人(被探索体)32に関連する識別情報に基づいて、地上、雪中或いは水中に存在する人(被探索体)32の探索を正確に行なうことができ、人(被探索体)32を個別に抽出することが可能となる。 According to the laser light search system 10 of the present embodiment, the retroreflective tag 40 includes the beads (retroreflective layer) 66 that reflects the reflected laser light Lr toward the laser light transmitting / receiving device 14 and the beads (retroreflective layer). (Retroreflective layer) 66 is provided locally on a part 68 of the retroreflective layer 66 and has an identification pattern indicating identification information. , It is possible to accurately search for the person (search target) 32 existing on the ground, in snow, or in the water based on the identification information related to the person (search target) 32 represented by the identification pattern. It is possible to individually extract the person (search target) 32.
 また、本実施例のレーザ光探索システム10によれば、再帰性光反射タグ40に局所的に設けられた前記識別パターンは、マトリックス型二次元コードである。このマトリックス型二次元コードは、所謂QRコード(登録商標)であって、多くの情報が含まれるので、地上或いは水中に存在する人(被探索体)32の探索を正確に行なうことができ、人(被探索体)32を個別に抽出することが可能となる。 According to the laser light search system 10 of the present embodiment, the identification pattern locally provided on the retroreflective tag 40 is a matrix type two-dimensional code. This matrix type two-dimensional code is a so-called QR code (registered trademark) and includes a lot of information, so that a person (search target) 32 existing on the ground or in the water can be accurately searched. The person (search target) 32 can be individually extracted.
 また、本実施例のレーザ光探索システム10によれば、レーザ光送信装置26は、水中での吸収率がきわめて低い紫色から緑色までの波長帯から選択された波長を有するレーザ光Loを、水面または雪面に向かって出力するものである。これにより、人(被探索体)32に装着された再帰性光反射タグ40が水中或いは氷雪中にあっても、反射レーザ光Lrから識別情報を得ることができるので、その識別情報に基づいて地上或いは水中に存在する人(被探索体)32の探索を正確に行なうことができ、人(被探索体)32を個別に抽出することが可能となる。 Further, according to the laser light search system 10 of the present embodiment, the laser light transmitting device 26 transmits the laser light Lo having a wavelength selected from the violet to green wavelength band having extremely low absorptivity in water to the surface of the water. Or it is output to the snow surface. Thus, even if the retroreflective tag 40 attached to the person (search target) 32 is underwater or in ice or snow, identification information can be obtained from the reflected laser light Lr. The search for the person (search target) 32 existing on the ground or in the water can be performed accurately, and the person (search target) 32 can be individually extracted.
 また、本実施例のレーザ光探索システム10によれば、再帰性光反射タグ40から反射された反射レーザ光Lrを受信し、反射レーザ光Lrに含まれる、識別情報を示す識別パターンを撮像するCCDカメラ28bを有するレーザ光受信装置28を備え、演算処理装置(識別情報抽出手段)24は、識別パターンから識別パターンにより示された識別情報を抽出するものである。このように、CCDカメラ28bにより反射レーザ光Lrから識別パターンを容易に抽出することができるので、その識別パターンが表す人(被探索体)32に関連する識別情報に基づいて、地上、雪中或いは水中に存在する人(被探索体)32の探索を正確に行なうことができ、人(被探索体)32を個別に抽出することが可能となる。 In addition, according to the laser light search system 10 of the present embodiment, the reflected laser light Lr reflected from the retroreflective light reflection tag 40 is received, and the identification pattern included in the reflected laser light Lr and indicating the identification information is imaged. An arithmetic processing unit (identification information extracting means) 24 is provided with a laser light receiving device 28 having a CCD camera 28b, and extracts identification information indicated by the identification pattern from the identification pattern. As described above, since the identification pattern can be easily extracted from the reflected laser beam Lr by the CCD camera 28b, based on the identification information related to the person (search target) 32 represented by the identification pattern, the ground, in the snow, or the like. Alternatively, the search for the person (search target) 32 existing in the water can be accurately performed, and the person (search target) 32 can be individually extracted.
 また、本実施例のレーザ光探索システム10によれば、レーザ光受信装置28およびレーザ光送信装置26は、監視塔、飛翔体、または人工衛星に搭載されるものである。これにより、レーザ光受信装置28およびレーザ光送信装置26は、監視塔、飛翔体、または人工衛星のうちから、被探索体の種類や性質に応じて選択されたものに搭載されるので、効率的且つ経済的に被探索体の探索を正確に行なうことができる。 According to the laser light search system 10 of the present embodiment, the laser light receiving device 28 and the laser light transmitting device 26 are mounted on a monitoring tower, a flying object, or an artificial satellite. Accordingly, the laser light receiving device 28 and the laser light transmitting device 26 are mounted on a monitoring tower, an flying object, or an artificial satellite that is selected according to the type or property of the object to be searched. The object to be searched can be searched accurately and economically.
 また、本実施例のレーザ光探索システム10によれば、前記飛翔体は、ドローン、ヘリコプター、または飛行機である。これにより、レーザ光受信装置28およびレーザ光送信装置26は、ドローン、ヘリコプター、または飛行機のうちから、被探索体の種類や性質に応じて選択されたものに搭載されるので、効率的且つ経済的に被探索体の探索を正確に行なうことができる。 According to the laser light search system 10 of the present embodiment, the flying object is a drone, a helicopter, or an airplane. Accordingly, the laser light receiving device 28 and the laser light transmitting device 26 are mounted on a drone, a helicopter, or an airplane that is selected according to the type and properties of the object to be searched, so that the operation is efficient and economical. The search for the object to be searched can be accurately performed.
 また、本実施例のレーザ光探索システム10によれば、再帰性光反射タグ40は、人(ヒト)の被服、帽子、或いは靴、陸上生物、または水棲生物に装着されるものである。これにより、被探索体が人(ヒト)、陸上生物、または水棲生物であっても、その探索を正確に行なうことができ、被探索体を個別に抽出することが可能となる。 According to the laser beam search system 10 of the present embodiment, the retroreflective tag 40 is attached to a person's (human) clothing, hat, or shoes, a terrestrial organism, or an aquatic organism. Thus, even if the object to be searched is a person (human), a terrestrial organism, or an aquatic organism, the search can be accurately performed, and the object to be searched can be individually extracted.
 また、本実施例のレーザ光探索システム10によれば、レーザ光受信装置28およびレーザ光送信装置26は、ドローン(飛翔体)12に搭載され、レーザ光送信装置26は、レーザ光Loを走査する光偏向器26bを備え、レーザ光受信装置28は、再帰性光反射タグ40からの反射レーザ光Lrを受けて、反射レーザ光Lrに含まれる再帰性光反射タグ40に関連する識別パターンを撮像するCCDカメラ28bを備え、レーザ光受信装置28のCCDカメラ28bにより反射レーザ光Lrから人(被探索体)32に関連する識別パターンが撮像されて検知されたときの、レーザ光受信装置28およびレーザ光送信装置26の位置および地上高すなわちドローン12の位置および高度と、レーザ光送信装置26からのレーザ光Loの出力方向とから、人(被探索体)32に関連する識別パターンが設けられた再帰性光反射タグ40の地上位置を算出して出力する演算処理装置(タグ位置算出手段)24とが、備えられる。これにより、人(被探索体)32の地上位置が容易に決定されるので、人(被探索体)32の捜索が速やかに行なわれ得る。 Further, according to the laser light search system 10 of the present embodiment, the laser light receiving device 28 and the laser light transmitting device 26 are mounted on the drone (flying object) 12, and the laser light transmitting device 26 scans the laser light Lo. The laser light receiving device 28 receives the reflected laser light Lr from the retroreflective tag 40 and converts the identification pattern related to the retroreflective tag 40 included in the reflected laser light Lr. A laser light receiving device 28 is provided when the CCD camera 28b of the laser light receiving device 28 captures an image and detects an identification pattern related to the person (search target) 32 from the reflected laser light Lr by the CCD camera 28b of the laser light receiving device 28. And the position and altitude of the laser light transmitting device 26, that is, the position and altitude of the drone 12, and the output of the laser light Lo from the laser light transmitting device 26. An arithmetic processing unit (tag position calculating means) 24 for calculating and outputting the ground position of the retroreflective tag 40 provided with the identification pattern related to the person (search target) 32 from the direction. . As a result, the ground position of the person (search target) 32 can be easily determined, and the search for the person (search target) 32 can be performed quickly.
 なお、図4の再帰性光反射タグ40に替えて、図7に示す再帰性光反射タグ70を用いることができる。図4の再帰性光反射タグ40では、上記再帰性光反射タグ40の反射面のうちの一部68にマトリックス型二次元コードのパターンを表すように、反射面を構成する複数のビーズ66の一部がたとえば熱変形させられることで、非反射とされていた。しかし、本実施例の再帰性光反射タグ70では、再帰性光反射タグ70の反射面のうちの一部68にマトリックス型二次元コードのパターンを表すように、反射面を構成する複数のビーズ66のうちの一部68に対応する部分除去されることで、非反射とされている。 Note that the retroreflective tag 70 shown in FIG. 7 can be used in place of the retroreflective tag 40 of FIG. In the retroreflective tag 40 shown in FIG. 4, a plurality of beads 66 forming a reflective surface are formed on a part 68 of the reflective surface of the retroreflective tag 40 so as to represent a matrix type two-dimensional code pattern. For example, a part was made non-reflective by being thermally deformed. However, in the retroreflective tag 70 of the present embodiment, a plurality of beads constituting the reflective surface are formed so that a part 68 of the reflective surface of the retroreflective tag 70 represents the pattern of the matrix type two-dimensional code. The part corresponding to a part 68 of the part 66 is removed to be non-reflective.
 また、図4の再帰性光反射タグ40に替えて、図8に示す再帰性光反射タグ72を用いることができる。本実施例の再帰性光反射タグ72では、再帰性光反射タグ72の反射面のうちの一部68にマトリックス型二次元コードのパターンを表すように、反射面を構成する複数のビーズ66のうちの一部68に対応する部分のビーズ66に回帰光遮蔽層74で覆われることで、非反射とされている。この回帰光遮蔽層74は、たとえば黒色樹脂或いは透明樹脂等が一部68に対応する部分のビーズ66上に平坦に印刷されることで、構成される。 Further, a retroreflective tag 72 shown in FIG. 8 can be used in place of the retroreflective tag 40 of FIG. In the retroreflective tag 72 according to the present embodiment, a plurality of beads 66 forming a reflective surface are formed so that a part 68 of the reflective surface of the retroreflective tag 72 represents a pattern of a matrix type two-dimensional code. The part of the beads 66 corresponding to the part 68 is covered with the return light shielding layer 74 to be non-reflective. The return light shielding layer 74 is formed by, for example, printing a black resin or a transparent resin or the like on the beads 66 corresponding to the part 68 in a flat manner.
 図9は、本発明の他の実施例のレーザ光探索システム110の構成の要部を示す略図である。図9において、たとえば地球Eの上空300km程度の低軌道の人工衛星112には、後述のレーザ光送受信装置114が搭載されており、反射レーザ光Lrに関連する信号を表す電波が図示しない通信装置およびアンテナ116を介して地上へ送信されるようになっている。地上には、人工衛星112のアンテナ116から送信された電波を受ける地上アンテナ120を備える演算処理装置122が配置されている。 FIG. 9 is a schematic view showing a main part of a configuration of a laser beam search system 110 according to another embodiment of the present invention. In FIG. 9, for example, a low-orbit artificial satellite 112 about 300 km above the earth E is equipped with a laser light transmitting / receiving device 114 described later, and a communication device (not shown) for transmitting a radio wave representing a signal related to the reflected laser light Lr. And transmitted to the ground via the antenna 116. On the ground, an arithmetic processing unit 122 including a ground antenna 120 that receives a radio wave transmitted from the antenna 116 of the artificial satellite 112 is arranged.
 演算処理装置122は、人工衛星112から逐次送信される電波により表される反射レーザ光Lrに関連する信号に基づいて、被探索体であるマグロ、鯨、海亀などの海洋Wを回遊する海洋生物124に装着された再帰性光反射タグ130からの反射レーザ光Lrに基づいて追尾データを逐次算出して、その海洋生物の回遊軌跡データを生成する。 The arithmetic processing unit 122, based on a signal related to the reflected laser light Lr represented by a radio wave sequentially transmitted from the artificial satellite 112, travels in the ocean W such as a tuna, a whale, and a sea turtle, which are the objects to be searched. Tracking data is sequentially calculated based on the reflected laser light Lr from the retro-reflective tag 130 attached to the living thing 124, and migration data of the marine life is generated.
 図10は、人工衛星112に搭載されるレーザ光送受信装置114の一例であって、人工衛星112に共に固定されたレーザ光送信装置132およびレーザ光受信装置134を備えている。図11では、コヒーレント検波方式すなわち自己ホモダイン検波方式を採用した場合のレーザ光送信装置132およびレーザ光受信装置134の原理的な構成が示されている。 FIG. 10 is an example of a laser light transmitting / receiving device 114 mounted on the artificial satellite 112, which includes a laser light transmitting device 132 and a laser light receiving device 134 fixed to the artificial satellite 112 together. FIG. 11 shows a basic configuration of the laser light transmitting device 132 and the laser light receiving device 134 when the coherent detection method, that is, the self-homodyne detection method is adopted.
 レーザ光送信装置132は、水中での吸収率が小さい紫色、青色、緑色を含む波長帯、たとえば355~560nmの波長帯内から選択された波長のパルス状の照射レーザ光Loを出力するレーザ光源132aと、たとえばハーフミラーから構成され、レーザ光源132aから出力された照射レーザ光Loを出力側へ通過させるとともに残り一部の照射レーザ光Loを局部発信光としてレーザ光受信装置134側へ分割するビームスプリッタ132bと、光偏向器126bと同様に構成され、ビームスプリッタ132bから出力側へ通過した照射レーザ光Loを偏向して地表面でのスポット位置が格子状に走査されるようにする光偏向器132cと、光偏向器132cにより偏向された照射レーザ光Loを地表上で所定のスポット径となるように集光する集光レンズ装置132dとを、備えている。 The laser light transmitting device 132 outputs a pulsed irradiation laser light Lo having a wavelength selected from a wavelength band including violet, blue, and green having a low absorptivity in water, for example, a wavelength band of 355 to 560 nm. 132a, which is composed of, for example, a half mirror, passes the irradiation laser light Lo output from the laser light source 132a to the output side, and divides the remaining irradiation laser light Lo into the laser light receiving device 134 as local transmission light. Light deflection that is configured similarly to the beam splitter 132b and the optical deflector 126b, deflects the irradiation laser light Lo that has passed from the beam splitter 132b to the output side, and scans the spot position on the ground surface in a grid pattern. Device 132c and the irradiation laser light Lo deflected by the optical deflector 132c have a predetermined spot diameter on the ground surface. A condensing lens unit 132d for sea urchin condensing it includes.
 レーザ光受信装置134は、被探索体である回遊中のマグロなどの海洋生物124に装着された再帰性光反射タグ130からの反射レーザ光Lrを集光する望遠レンズ装置134aと、望遠レンズ装置134aを通過した反射レーザ光Lrを増幅する前置光増幅器134bと、前置光増幅器134bにより増幅された反射レーザ光Lrとビームスプリッタ32bにより分割された局部発信光ELOとを合波(混合)して一対の混合光EおよびEを生成する混合器134cと、それら一対の混合光EおよびEをそれぞれ自乗して一対の乗算光|Eおよび|Eをそれぞれ出力する一対の乗算器134d、134eと、一対の乗算器134d、134eから出力された一対の乗算光|Eおよび|Eの一方に図示しない遅延素子により位相差(たとえばπ/2)を与えた後でそれら一対の乗算光|Eおよび|Eの差分を算出することで、反射レーザ光Lrに含まれる再帰性光反射タグ130に関する情報すなわち反射レーザ光Lrに含まれる識別コード(パルス信号)iを電気信号Soutに変換して出力する自己ホモダイン検波素子34fとを、備えている。 The laser light receiving device 134 includes a telephoto lens device 134a that collects the reflected laser light Lr from the retroreflective tag 130 attached to the marine life 124 such as a migrating tuna that is the object to be searched, and a telephoto lens device. A pre-amplifier 134b that amplifies the reflected laser light Lr that has passed through 134a, and multiplexes (mixes) the reflected laser light Lr amplified by the pre-light amplifier 134b with the local transmission light E LO split by the beam splitter 32b. ) was a mixer 134c to generate a pair of mixed light E 1 and E 2, the pair of multipliers light squares thereof a pair of mixed light E 1 and E 2, respectively | E 1 | 2 and | E 2 | 2 a pair of multipliers 134d for outputting respectively, and 134e, a pair multiplier 134d, a pair of multipliers light output from 134e | of 2 | E 1 | 2 and | E 2 Write phase difference by the delay elements (not shown) (for example [pi / 2) thereof a pair of multipliers light after giving | E 1 | 2 and | E 2 | By calculating the difference between the 2, contained in the reflected laser beam Lr And a self-homodyne detection element 34f that converts an identification code (pulse signal) i included in the reflected laser light Lr into an electric signal Sout and outputs the electric signal Sout.
 図12は、海洋生物124に装着された再帰性光反射タグ130の構成を説明する斜視図である。本実施例の再帰性光反射タグ130は、再帰性光反射機能を備えている。再帰性光反射タグ130には、曲面に貼着可能となるように、全体として可撓性をもたせてある。再帰性光反射タグ130は、裏面に接着層40を有する可撓性のベースシート142と、ベースシート142の上面に順次積層された再帰性反射層144および液晶板146と、ベースシート142の上面に固着された液晶駆動装置148を、備えている。 FIG. 12 is a perspective view illustrating the configuration of the retroreflective tag 130 attached to the marine life 124. The retroreflective tag 130 of this embodiment has a retroreflective function. The retroreflective tag 130 has flexibility as a whole so that it can be attached to a curved surface. The retroreflective tag 130 includes a flexible base sheet 142 having an adhesive layer 40 on the back surface, a retroreflective layer 144 and a liquid crystal plate 146 sequentially laminated on the top surface of the base sheet 142, and an upper surface of the base sheet 142. And a liquid crystal driving device 148 fixed to the device.
 再帰性反射層144は、反射レーザ光Lrを照射レーザ光Loの光源へ向かって反射する性質を有するものであり、正四面体粒を利用したプリズム型、球形ガラスビースを透明カプセル内に封入したカプセルレンズ型、球形ガラスビースを透明樹脂内に封入した封入レンズ型、球形ガラスビースを露出面に固着した露出レンズ型などから構成される。液晶板146は、再帰性反射層144から反射されて液晶板146を通過する反射レーザ光Lrにたとえばオンオフ信号の変調を加えるものである。液晶板146は、光シャッタとして機能するものであり、たとえばネマチック型液晶から構成されている。 The retroreflective layer 144 has a property of reflecting the reflected laser light Lr toward the light source of the irradiation laser light Lo, and a prism-type or spherical glass bead using regular tetrahedral particles is encapsulated in a transparent capsule. It is composed of a capsule lens type, an encapsulated lens type in which a spherical glass bead is sealed in a transparent resin, an exposed lens type in which a spherical glass bead is fixed to an exposed surface, and the like. The liquid crystal plate 146 modulates, for example, an on / off signal to the reflected laser light Lr reflected from the retroreflective layer 144 and passing through the liquid crystal plate 146. The liquid crystal plate 146 functions as an optical shutter, and is made of, for example, a nematic liquid crystal.
 液晶駆動装置148は、たとえばROMから構成され、海洋生物124の予め設定された固有のコード信号が書き込まれたコードメモリ150と、そのコードメモリ150に記憶された海洋生物124の固有のコードが反射レーザ光Lrに含まれるように、照射レーザ光Loのパルス周波数よりも十分に低い周波数すなわち照射レーザ光Loのパルス周期よりも十分に永い周期を有するパルス状駆動信号を用いて液晶板146を全面的にオンオフ駆動液晶駆動回路152と、CPU、ROM、RAM、および入出力インターフェースを含み予め設定されたプログラムに従って液晶駆動回路152を制御する演算制御素子154と、好適にはソーラセルを含み、コードメモリ150、液晶駆動回路152、および演算制御素子154に電源を供給する電源装置156とを、備えている。上記の液晶板146は、反射レーザ光Lrを変調する変調層として機能している。 The liquid crystal driving device 148 includes, for example, a ROM, and stores a code memory 150 in which a preset unique code signal of the marine life 124 is written, and reflects a unique code of the marine life 124 stored in the code memory 150. The liquid crystal plate 146 is entirely covered with a pulse-like drive signal having a frequency sufficiently lower than the pulse frequency of the irradiation laser light Lo, that is, a period sufficiently longer than the pulse period of the irradiation laser light Lo, so as to be included in the laser light Lr. An on / off drive liquid crystal drive circuit 152, an arithmetic and control element 154 including a CPU, a ROM, a RAM, and an input / output interface and controlling the liquid crystal drive circuit 152 according to a preset program; 150, the liquid crystal drive circuit 152, and the arithmetic control element 154. And a power supply unit 156 for supplying includes. The liquid crystal plate 146 functions as a modulation layer that modulates the reflected laser light Lr.
 図9に戻って、人工衛星112に搭載された図示しない通信装置は、レーザ光送受信装置114から出力された、反射レーザ光Lrに含まれる海洋生物124の固有の識別コード(パルス信号)を表す電気信号Soutと、その電気信号Soutを受けたときの照射レーザ光Loの地上でのスポット位置を表す位置信号とを、電波により送信する。地上に設けられている演算処理装置122は、地上アンテナ120を介してその電波を受けるとともに、海洋生物124の固有の識別コードを表す信号と、再帰性反射層144からの反射レーザ光Lrを受けたときの照射レーザ光Loの地上でのスポット位置とに基づいて海洋生物124の位置を特定し、その海洋生物124を追尾する。たとえば、地球Eの海洋Wを示す地図上にその海洋生物124の移動軌跡をリアルタイムで表示する。演算処理装置122は、タグ位置算出手段および識別情報抽出手段として機能している。 Returning to FIG. 9, a communication device (not shown) mounted on the artificial satellite 112 represents a unique identification code (pulse signal) of the marine life 124 included in the reflected laser light Lr output from the laser light transmitting / receiving device 114. The electric signal Sout and a position signal indicating the spot position on the ground of the irradiation laser light Lo when receiving the electric signal Sout are transmitted by radio waves. The arithmetic processing unit 122 provided on the ground receives the radio wave via the ground antenna 120, and also receives the signal representing the unique identification code of the marine life 124 and the reflected laser light Lr from the retroreflective layer 144. The position of the marine life 124 is specified based on the spot position of the irradiation laser light Lo on the ground at the time of the irradiation, and the marine life 124 is tracked. For example, the trajectory of the marine life 124 is displayed in real time on a map showing the ocean W of the earth E. The arithmetic processing unit 122 functions as a tag position calculating unit and an identification information extracting unit.
 図13は、レーザ光探索システム110の動作の説明に用いる図であり、図14は伝送タイムチャートを示す図である。図13において、低軌道の人工衛星112の地表からの距離を300kmとすると、人工衛星112から照射された照射レーザ光Loが海洋W中の海洋生物124に貼着された再帰性光反射タグ130から反射して再び当該人工衛星112に到着するまでには、2msecの遅延時間が発生する。一方、人工衛星112の移動速度が10km/secであるとすると、2msecの間に20m移動する。 FIG. 13 is a diagram used to explain the operation of the laser light search system 110, and FIG. 14 is a diagram showing a transmission time chart. In FIG. 13, assuming that the distance of the low-orbit satellite 112 from the surface of the earth is 300 km, the irradiation laser light Lo emitted from the satellite 112 is applied to the retroreflective tag 130 attached to the marine life 124 in the ocean W. There is a delay of 2 msec before the light is reflected from the satellite and reaches the artificial satellite 112 again. On the other hand, if the moving speed of the artificial satellite 112 is 10 km / sec, the satellite 112 moves 20 m in 2 msec.
 仮に、海洋生物124に貼着された再帰性光反射タグ130から反射した反射レーザ光Lrの光のひろがり角を3.3mradとすると、低軌道の人工衛星112の軌道上では1000mの範囲で反射レーザ光Lrが広がる。この領域を人工衛星112が通過する時間は50msecであるので、反射レーザ光Laの検知には十分な時間を確保できる。この50msecの領域内に再帰性光反射タグ130に関する情報を人工衛星112が検出する必要がある。 Assuming that the spread angle of the reflected laser light Lr reflected from the retroreflective tag 130 attached to the marine life 124 is 3.3 mrad, the light is reflected within a range of 1000 m on the orbit of the low-orbit artificial satellite 112. The laser light Lr spreads. Since the time when the artificial satellite 112 passes through this area is 50 msec, a sufficient time can be secured for detecting the reflected laser light La. It is necessary for the artificial satellite 112 to detect information about the retroreflective tag 130 within this 50 msec area.
 図14は、これらの条件を勘案した再帰性光反射タグ130に関する情報の伝送タイムチャートの一例を示している。この図14では、人工衛星112から照射される照射レーザ光Loの照射開示時刻を0としている。反射レーザ光Lrのスポット内部に人工衛星112が存在する50msecを受信可能時間として、この受信可能時間内でたとえば10~100ビットの情報を1msecで受信する。つまり、10~100kbit/secの通信速度を実現している例である。 FIG. 14 shows an example of a transmission time chart of information regarding the retroreflective tag 130 in consideration of these conditions. In FIG. 14, the irradiation start time of the irradiation laser light Lo emitted from the artificial satellite 112 is set to 0. The reception time is set to 50 msec when the artificial satellite 112 exists inside the spot of the reflected laser light Lr, and for example, 10 to 100 bits of information are received within 1 msec within the reception time. That is, this is an example in which a communication speed of 10 to 100 kbit / sec is realized.
 上述のように、本実施例のレーザ光探索システム110によれば、照射レーザ光Loは、水中透過性を有する波長帯から選択された波長を有するものであり、再帰性光反射タグ130は、反射レーザ光Lrをレーザ光送信装置26、32に向かって反射する再帰性反射層144と、再帰性反射層144の上に積層され、再帰性反射層144により反射された反射レーザ光Lrを変調する液晶板146とを有する光タグである。 As described above, according to the laser light search system 110 of the present embodiment, the irradiation laser light Lo has a wavelength selected from a wavelength band having water permeability, and the retroreflective tag 130 includes: A retroreflective layer 144 that reflects the reflected laser light Lr toward the laser light transmitting devices 26 and 32, and a reflective laser light Lr that is stacked on the retroreflective layer 144 and that is reflected by the retroreflective layer 144. This is an optical tag having a liquid crystal plate 146.
 このため、水中に存在する海洋生物(被追尾体)124に装着された再帰性光反射タグ30に到達した水中透過性を有する照射レーザ光Loは再帰性反射層144によってその照射レーザ光Loの光源がある人工衛星112に向かって反射されることにより、海洋生物124からの反射レーザ光Lrは比較的高い受信ゲインにて人工衛星112により受信される。 For this reason, the irradiation laser light Lo having underwater transparency that has reached the retroreflective light reflection tag 30 attached to the marine life (tracked object) 124 existing in the water is reflected by the retroreflection layer 144 by the irradiation laser light Lo. The reflected laser light Lr from the marine life 124 is received by the artificial satellite 112 with a relatively high reception gain by being reflected toward the artificial satellite 112 with the light source.
 また、反射された反射レーザ光Lrは液晶板146を通過したことにより変調されることから、反射レーザ光Lrには海洋生物124を識別する情報を含ませることができるので、目的とする海洋生物124であるか否かの探索が容易となる。これにより、海洋生物124を個別に探索し追尾することが可能となって海洋生物24の新たな生態が明らかとなるので、漁業資源を持続可能とすることに寄与することができる。 Since the reflected laser light Lr is modulated by passing through the liquid crystal plate 146, the reflected laser light Lr can include information for identifying the marine life 124. It becomes easy to search for 124. As a result, the marine life 124 can be individually searched for and tracked, and the new ecology of the marine life 24 becomes clear, which can contribute to the sustainability of fishery resources.
 図15の実施例では、追尾システム110が、不時着した飛行機、ヘリコプター、飛行船などの飛翔体たとえば飛行機180の追尾や探索に適用された例を示している。人工衛星112には、レーザ光送受信装置114が搭載されており、飛行機180には、再帰性光反射タグ130が、飛行機180の表面の所定の1または複数位置に装着されている。 15 shows an example in which the tracking system 110 is applied to the tracking and search of a flying object such as an airplane, a helicopter, an airship, and the like, such as an airplane 180, which have been accidentally landed. The artificial satellite 112 has a laser light transmitting / receiving device 114 mounted thereon, and the airplane 180 has a retroreflective light reflection tag 130 mounted at one or more predetermined positions on the surface of the airplane 180.
 本実施例の追尾システム110によれば、たとえがハイジャックなどに起因して電波による通信不能な飛行機180が海洋Wに不時着した場合には、その飛行機180に装着した再帰性光反射タグ130からの反射レーザ光Lrを受けて反射レーザ光Lrに含まれる識別情報から飛行機180を追尾或いは探索することで、その不時着位置を特定できる。これにより、不時着した飛行機180についてその人命救助を速やかに開始することが可能となって、安全、安心な社会の構築に寄与することができる。不時着した飛行機180はしばらく浮くことができるし、乗客はライフクラフト或いはライフラフトを用いて漂流している可能性がある。 According to the tracking system 110 of the present embodiment, even if the airplane 180 that cannot communicate by radio waves due to a hijack or the like accidentally arrives at the ocean W, the retroreflective tag 130 attached to the airplane 180 By detecting or searching for the airplane 180 based on the identification information included in the reflected laser light Lr, the emergency landing position can be specified. As a result, it is possible to promptly start rescue of the life of the accidentally landed airplane 180, which can contribute to the construction of a safe and secure society. The crash landing airplane 180 can float for some time, and passengers may be drifting using lifecraft or liferafts.
 図16および図17は、レーザ光探索システム210が、人(ヒト)82の追尾或いは探索に適用された場合を示している。図16の実施例では、レーザ光送受信装置114が飛行機、ヘリコプター、飛行船などの飛翔体たとえば小型飛行機184に搭載され、再帰性光反射タグ130は、人(ヒト)82の帽子或いは手足に装着される。レーザ光送受信装置114および演算処理装置122が、小型飛行機184に搭載されている。これらレーザ光送受信装置114および演算処理装置122は、探索される人182が滞在する領域たとえば海水浴場を俯瞰可能な比較的高い地上構築物たとえば塔や建築物の頂部に設けられていてもよい。 FIGS. 16 and 17 show a case where the laser beam search system 210 is applied to tracking or searching for a person (human) 82. FIG. In the embodiment of FIG. 16, the laser light transmitting / receiving device 114 is mounted on a flying object such as an airplane, helicopter, airship, etc., for example, a small airplane 184, and the retroreflective tag 130 is mounted on a hat or limbs of a person (human) 82. You. The laser light transmitting / receiving device 114 and the arithmetic processing device 122 are mounted on a small aircraft 184. The laser beam transmitting / receiving device 114 and the arithmetic processing device 122 may be provided on a relatively high ground structure such as a tower or a building at which a person 182 to be searched stays, for example, a beach, can be overlooked.
 本実施例の追尾システム110によれば、たとえば海水浴場において人(ヒト)82が溺れて行方が不明となった場合において、その人(ヒト)182の帽子或いは手足に装着されている再帰性光反射タグ130からの反射レーザ光Lrを受けて反射レーザ光Lrに含まれる識別情報から人(ヒト)182を追尾或いは探索することで、その位置を特定できる。これにより、水浴中に行方不明となった人(ヒト)182についてその早期の救助開始を可能とするので、人命の救助が可能となって、安全、安心な社会の構築に寄与することができる。 According to the tracking system 110 of the present embodiment, for example, when a person (human) 82 drowns at a beach and goes missing, the retroreflective light attached to the hat or limbs of the person (human) 182. Receiving the reflected laser light Lr from the reflection tag 130 and tracking or searching for the person (human) 182 from the identification information included in the reflected laser light Lr, the position of the person 182 can be specified. As a result, the rescue of the person (human) 182 who has been lost during bathing can be started at an early stage, so that rescue of human life becomes possible, which can contribute to the construction of a safe and secure society. .
 以上、本発明の一実施例を図面に基づいて説明したが、本発明はその他の態様においても適用される。 Although one embodiment of the present invention has been described with reference to the drawings, the present invention is applicable to other embodiments.
 たとえば、前述の図9から図17の実施例において、再帰性光反射タグ130の液晶板146には、図5或いは図6に示す識別コードを表すパターンが表示され、人工衛星112には、図2に示すレーザ光送受信装置14が備えられてもよい。また、再帰性光反射タグ130の再帰性反射層144の反射面の一部68にたとえば図5または図6に例示する識別パターンが設けられていてもよい。この場合には、CCDカメラ28bを有する実施例1および実施例2に示された両方のシステム構成を備えることによって、再帰性反射層144から反射された反射レーザLrの変調により表された識別情報と、反射レーザLrに含まれる識別パターンにより表された識別情報との両方が得られる。 For example, in the embodiments of FIGS. 9 to 17 described above, the pattern representing the identification code shown in FIG. 5 or FIG. 6 is displayed on the liquid crystal plate 146 of the retroreflective tag 130, and the pattern shown in FIG. 2 may be provided. In addition, for example, an identification pattern illustrated in FIG. 5 or FIG. 6 may be provided on a part 68 of the reflective surface of the retroreflective layer 144 of the retroreflective tag 130. In this case, the identification information represented by the modulation of the reflected laser Lr reflected from the retroreflective layer 144 by providing both the system configuration shown in the first embodiment and the second embodiment having the CCD camera 28b. And the identification information represented by the identification pattern included in the reflected laser Lr.
 また、前述の実施例の再帰性光反射タグ40、70、72の再帰性反射層は、ビーズ66で構成されていたが、正四面体粒を多数配置したプリズム層から構成されていてもよい。 The retroreflective layers of the retroreflective tags 40, 70, and 72 of the above-described embodiments are composed of the beads 66, but may be composed of a prism layer in which a large number of tetrahedral grains are arranged. .
 また、前述の実施例では、レーザ光送受信装置14、114がドローン12、人工衛星112、飛行機180に搭載されていたが、たとえば監視塔などの比較的おおきな高さを有する地上構築物に設けられてもよい。 Further, in the above-described embodiment, the laser light transmitting / receiving devices 14 and 114 are mounted on the drone 12, the artificial satellite 112, and the airplane 180. However, the laser light transmitting and receiving devices 14 and 114 are provided on a ground structure having a relatively large height such as a monitoring tower. Is also good.
 また、被探索体は、人(ヒト)、海洋生物、陸上生物や、航空機、ヘリコプターなどの飛翔体に限らない。再帰性光反射タグ40、70、72、130を装着可能な物体であればよく、淡水中に棲む大型もしくは小型の水棲生物などであってもよい。 被 The objects to be searched are not limited to humans (humans), marine life, terrestrial life, and flying objects such as aircraft and helicopters. Any object to which the retroreflective light reflection tags 40, 70, 72, and 130 can be attached may be used, and a large or small aquatic creature that lives in freshwater may be used.
 また、図2および図3、図10および図11に示されているレーザ光送受信装置14、114は、基本構成が示されているだけであるので、性能を高めるための、光学系装置や電気的装置の追加や変更がされてもよい。たとえば、レーザ光受信装置128において、前置光増幅器128bに替えて或いは加えて、信号Soutを増幅する信号増幅器を包絡線検波素子128cの後段に設けてもよい。 Further, the laser light transmitting / receiving devices 14 and 114 shown in FIGS. 2 and 3 and FIGS. 10 and 11 only show the basic configuration. Additional or additional devices may be added. For example, in the laser light receiving device 128, a signal amplifier for amplifying the signal Sout may be provided after the envelope detecting element 128c instead of or in addition to the pre-optical amplifier 128b.
 また、前述の実施例の再帰性光反射タグ130において、たとえばベースシート142が用いられていなくてもよい。また、再帰性光反射タグ130は、全体として可撓性を持っていなくてもよい。 In addition, in the retroreflective tag 130 of the above-described embodiment, for example, the base sheet 142 may not be used. Further, the retroreflective tag 130 does not have to have flexibility as a whole.
 その他一々例示はしないが、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。 Although not specifically exemplified, the present invention can be implemented in various modified and improved aspects based on the knowledge of those skilled in the art.
10、110、210:レーザ光探索システム
12:ドローン(飛翔体)
24、122:演算処理装置(識別情報抽出手段)(タグ位置算出手段)
26、126、132:レーザ光送信装置
28、128、134:レーザ光受信装置
26b、126b、132c:光偏向器
28b:CCDカメラ
32:人(被探索体)
40、70、72、130:再帰性光反射タグ(光タグ)
56:タグ位置算出手段
66:ビーズ(再帰性反射層)
68:反射面の一部(識別パターン)
124:海洋生物(被探索体)
144:再帰性反射層
146:液晶板(変調層)
152:オンオフ駆動液晶駆動回路(液晶駆動回路)
180:飛行機(飛翔体、被追尾体)
182:人(被追尾体)
184:小型飛行機(飛翔体)
10, 110, 210: Laser beam search system 12: Drone (flying object)
24, 122: arithmetic processing unit (identification information extraction means) (tag position calculation means)
26, 126, 132: laser light transmitters 28, 128, 134: laser light receivers 26b, 126b, 132c: light deflector 28b: CCD camera 32: person (search target)
40, 70, 72, 130: Retroreflective light reflection tag (optical tag)
56: tag position calculating means 66: beads (retroreflective layer)
68: Part of reflection surface (identification pattern)
124: Marine life (subject)
144: retroreflective layer 146: liquid crystal plate (modulation layer)
152: ON / OFF drive liquid crystal drive circuit (liquid crystal drive circuit)
180: Airplane (flying object, tracked object)
182: person (tracked body)
184: Small airplane (flying object)

Claims (13)

  1.  レーザ光送信装置から地上または水面に向かって出力されたレーザ光を被探索体に装着された光タグに反射させ、前記光タグにより反射された反射レーザ光を前記レーザ光送信装置と共に設置されたレーザ光受信装置により受けて前記被探索体を探索するレーザ光探索システムであって、
     前記光タグは、前記反射レーザ光を前記レーザ光送信装置へ向かって反射する再帰性光反射タグであり、
     前記再帰性光反射タグは、前記反射レーザ光に前記被探索体に関連する予め定められた識別情報を付与するものであり、
     前記反射レーザ光を受信し、受信した前記反射レーザ光から前記識別情報を抽出する識別情報抽出手段を、含む
     ことを特徴とするレーザ光探索システム。
    The laser light output from the laser light transmitting device toward the ground or the water surface was reflected on an optical tag attached to the object to be searched, and the reflected laser light reflected by the optical tag was installed together with the laser light transmitting device. A laser light search system for searching for the object to be searched for, which is received by a laser light receiving device,
    The optical tag is a retroreflective tag reflecting the reflected laser light toward the laser light transmitting device,
    The retroreflective light reflection tag is to give predetermined identification information related to the object to be searched to the reflected laser light,
    A laser light search system, comprising: identification information extracting means for receiving the reflected laser light and extracting the identification information from the received reflected laser light.
  2.  前記再帰性光反射タグは、前記反射レーザ光を前記レーザ光送信装置に向かって反射する再帰性反射層と、前記再帰性反射層に設けられ、前記識別情報を示す識別パターンとを有するものである
     ことを特徴とする請求項1のレーザ光探索システム。
    The retroreflective tag has a retroreflective layer that reflects the reflected laser light toward the laser light transmitting device, and an identification pattern provided on the retroreflective layer and indicating the identification information. The laser beam search system according to claim 1, wherein:
  3.  前記再帰性光反射タグに設けられた前記識別パターンは、マトリックス型二次元コードである
     ことを特徴とする請求項2のレーザ光探索システム。
    The laser light search system according to claim 2, wherein the identification pattern provided on the retroreflective tag is a matrix type two-dimensional code.
  4.  前記再帰性光反射タグは、前記反射レーザ光を前記レーザ光送信装置に向かって反射する再帰性反射層と、前記再帰性反射層の上に積層され、前記識別情報を表すように前記再帰性反射層により反射された前記反射レーザ光を変調する変調層とを有するものである
     ことを特徴とする請求項1のレーザ光探索システム。
    The retroreflective tag is a retroreflective layer that reflects the reflected laser light toward the laser light transmitting device, and the retroreflective layer is stacked on the retroreflective layer, and the retroreflective layer represents the identification information. The laser light search system according to claim 1, further comprising: a modulation layer that modulates the reflected laser light reflected by the reflection layer.
  5.  前記変調層は、前記再帰性反射層の上に積層され、前記識別情報を表すように前記再帰性反射層により反射された前記反射レーザ光を変調する液晶板を有するものである
     ことを特徴とする請求項4のレーザ光探索システム。
    The modulation layer is laminated on the retroreflective layer, and has a liquid crystal plate that modulates the reflected laser light reflected by the retroreflective layer so as to represent the identification information. 5. The laser light search system according to claim 4, wherein:
  6.  前記識別情報を表すように強度変調或いは位相変調により変調されたパルス状駆動信号を用いて前記液晶板をオンオフ駆動する液晶駆動回路を有するものである
     ことを特徴とする請求項5のレーザ光探索システム。
    6. A laser beam search according to claim 5, further comprising a liquid crystal drive circuit for driving said liquid crystal plate on and off using a pulsed drive signal modulated by intensity modulation or phase modulation so as to represent said identification information. system.
  7.  前記レーザ光送信装置は、水中での吸収率がきわめて低い紫色から緑色までの波長帯から選択された波長を有する前記レーザ光を、水面または雪面に向かって出力するものである
     ことを特徴とする請求項1から請求項6のいずれか1のレーザ光探索システム。
    The laser light transmitting device outputs the laser light having a wavelength selected from a wavelength band from violet to green having an extremely low absorption rate in water, toward a water surface or a snow surface. The laser beam search system according to claim 1, wherein
  8.  前記レーザ光受信装置は、前記再帰性光反射タグから反射された前記反射レーザ光を受信し、前記反射レーザ光に含まれる、前記識別情報を示す識別パターンを撮像するCCDカメラを有し、
     前記識別情報抽出手段は、前記識別パターンから前記識別パターンにより示された識別情報を抽出するものである
     ことを特徴とする請求項2または請求項3のレーザ光探索システム。
    The laser light receiving device receives the reflected laser light reflected from the retroreflective tag, included in the reflected laser light, has a CCD camera for imaging an identification pattern indicating the identification information,
    The laser beam search system according to claim 2, wherein the identification information extracting unit is configured to extract identification information indicated by the identification pattern from the identification pattern.
  9.  前記レーザ光受信装置および前記レーザ光送信装置は、構築物、飛翔体、または人工衛星に搭載されるものである
     ことを特徴とする請求項1から請求項8のいずれか1のレーザ光探索システム。
    The laser light search system according to any one of claims 1 to 8, wherein the laser light receiving device and the laser light transmitting device are mounted on a building, a flying object, or an artificial satellite.
  10.  前記飛翔体は、ドローン、ヘリコプター、または飛行機である
     ことを特徴とする請求項9のレーザ光探索システム。
    The laser beam search system according to claim 9, wherein the flying object is a drone, a helicopter, or an airplane.
  11.  前記再帰性光反射タグは、人の被服、帽子、或いは靴、陸上生物、水棲生物、飛翔体、部品、製品、または、前記部品或いは前記製品の梱包に装着されるものである
     ことを特徴とする請求項1から請求項10のいずれか1のレーザ光探索システム。
    The retroreflective tag is attached to a person's clothing, a hat, or shoes, a terrestrial organism, an aquatic organism, a flying object, a part, a product, or a package of the part or the product. The laser beam search system according to any one of claims 1 to 10, wherein
  12.  前記レーザ光受信装置および前記レーザ光送信装置は、飛翔体に搭載され、
     前記レーザ光送信装置は、前記レーザ光を走査する光偏向器を備え、
    前記レーザ光受信装置は、前記再帰性光反射タグからの反射レーザ光を受けて、前記反射レーザ光に含まれる前記再帰性光反射タグに関連する識別パターンを撮像するCCDカメラを備え、
     前記CCDカメラにより前記反射レーザ光から前記識別パターンが撮像されたときの、前記レーザ光受信装置および前記レーザ光送信装置の位置および地上高と、前記レーザ光送信装置からのレーザ光の送信方向とから、前記識別パターンが設けられた前記再帰性光反射タグの地上位置を算出して出力するタグ位置算出手段を、備える
     ことを特徴とする請求項8のレーザ光探索システム。
    The laser light receiving device and the laser light transmitting device are mounted on a flying object,
    The laser light transmitting device includes an optical deflector that scans the laser light,
    The laser light receiving device includes a CCD camera that receives a reflected laser beam from the retroreflective tag, and captures an identification pattern associated with the retroreflective tag included in the reflected laser beam,
    When the identification pattern is imaged from the reflected laser light by the CCD camera, the position and ground height of the laser light receiving device and the laser light transmitting device, and the transmission direction of the laser light from the laser light transmitting device. 10. The laser beam search system according to claim 8, further comprising: a tag position calculating unit that calculates and outputs a ground position of the retroreflective tag provided with the identification pattern.
  13.  前記レーザ光送信装置は、前記レーザ光を走査する光偏向器を備え、
     前記再帰性光反射タグからの反射レーザ光を受けて、前記反射レーザ光に含まれる前記再帰性光反射タグに関連する識別情報を抽出する前記レーザ光受信装置と、
     前記再帰性光反射タグからの前記反射レーザ光から前記識別情報が抽出されたときの前記人工衛星の位置および地上高と、前記人工衛星の前記レーザ光送信装置からのレーザ光の送信方向とから、前記識別情報が抽出された前記再帰性光反射タグの地上位置を算出して出力するタグ位置算出手段とを、備え、
     前記レーザ光受信装置および前記レーザ光送信装置は、人工衛星に搭載される
     ことを特徴とする請求項6のレーザ光探索システム。
    The laser light transmitting device includes an optical deflector that scans the laser light,
    Receiving the reflected laser light from the retroreflective tag, the laser light receiving device to extract the identification information related to the retroreflective tag included in the reflected laser light,
    The position and height of the artificial satellite when the identification information is extracted from the reflected laser light from the retroreflective light reflection tag, and the transmission direction of the laser light from the laser light transmitting device of the artificial satellite A tag position calculating means for calculating and outputting a ground position of the retroreflective light reflection tag from which the identification information is extracted,
    The laser light search system according to claim 6, wherein the laser light receiving device and the laser light transmitting device are mounted on an artificial satellite.
PCT/JP2018/031620 2018-08-27 2018-08-27 Laser light search system WO2020044411A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/031620 WO2020044411A1 (en) 2018-08-27 2018-08-27 Laser light search system
JP2020539185A JPWO2020044411A1 (en) 2018-08-27 2018-08-27 Laser beam search system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/031620 WO2020044411A1 (en) 2018-08-27 2018-08-27 Laser light search system

Publications (1)

Publication Number Publication Date
WO2020044411A1 true WO2020044411A1 (en) 2020-03-05

Family

ID=69643629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031620 WO2020044411A1 (en) 2018-08-27 2018-08-27 Laser light search system

Country Status (2)

Country Link
JP (1) JPWO2020044411A1 (en)
WO (1) WO2020044411A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113992265A (en) * 2021-09-28 2022-01-28 北京极光星通科技有限公司 Air-sea integrated laser communication method and system based on aircraft
WO2024048129A1 (en) * 2022-08-31 2024-03-07 株式会社ブリヂストン Tire information display system and control method for tire information display system
US11981251B2 (en) 2021-05-25 2024-05-14 Goodrich Lighting Systems GmbH & Co. KG Autonomous search light system, winch system comprising an autonomous search light system, and aircraft comprising an autonomous search light system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05505682A (en) * 1988-08-10 1993-08-19 ファーガソン,ジェームズ エル. Modulated retroreflector system
JP2001188880A (en) * 1999-11-23 2001-07-10 Xerox Corp Identification tag and tag identification system
US20050225777A1 (en) * 2004-04-08 2005-10-13 Gerald Falbel Airborne search and rescue scanner
JP4458665B2 (en) * 1998-03-17 2010-04-28 リサーチ・トライアングル・インスティチュート Modulatable reflector and method for using the same
JP2018155663A (en) * 2017-03-17 2018-10-04 光トライオード株式会社 Laser beam tracking system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05505682A (en) * 1988-08-10 1993-08-19 ファーガソン,ジェームズ エル. Modulated retroreflector system
JP4458665B2 (en) * 1998-03-17 2010-04-28 リサーチ・トライアングル・インスティチュート Modulatable reflector and method for using the same
JP2001188880A (en) * 1999-11-23 2001-07-10 Xerox Corp Identification tag and tag identification system
US20050225777A1 (en) * 2004-04-08 2005-10-13 Gerald Falbel Airborne search and rescue scanner
JP2018155663A (en) * 2017-03-17 2018-10-04 光トライオード株式会社 Laser beam tracking system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11981251B2 (en) 2021-05-25 2024-05-14 Goodrich Lighting Systems GmbH & Co. KG Autonomous search light system, winch system comprising an autonomous search light system, and aircraft comprising an autonomous search light system
CN113992265A (en) * 2021-09-28 2022-01-28 北京极光星通科技有限公司 Air-sea integrated laser communication method and system based on aircraft
WO2024048129A1 (en) * 2022-08-31 2024-03-07 株式会社ブリヂストン Tire information display system and control method for tire information display system

Also Published As

Publication number Publication date
JPWO2020044411A1 (en) 2021-08-10

Similar Documents

Publication Publication Date Title
Rablau LIDAR–A new (self-driving) vehicle for introducing optics to broader engineering and non-engineering audiences
WO2020044411A1 (en) Laser light search system
CN1114182C (en) System for enhancing navigation and surveillance in low visibility conditions
US5793034A (en) Target detection system utilizing multiple optical criteria
Butler The application of remote sensing technology to marine fisheries: an introductory manual
CN110402399A (en) Laser radar system and method for the object that detects and classify
CN110286388A (en) Laser radar system and the method and medium for using its detection object
ITRM20100152A1 (en) MODULAR ADAPTIVE SURVEILLANCE SYSTEM FOR MEANS PERSONAL STRUCTURES
JP2017502258A (en) System for monitoring the marine environment
JP2007503004A (en) Laser perimeter recognition system
WO1994025877A1 (en) Obstacle avoidance system for helicopters and aircraft
US6157756A (en) Laser beam expander and beam profile converter
US4050819A (en) Undersea ranging-communications from altitude via laser
KR20130076047A (en) Ship approach warning system and warning method for bridge protect
US20170082593A1 (en) Detecting Oil Under Ice
EP2253935B1 (en) Method and system for assisting the landing or deck landing of an aircraft
JP2016161572A (en) System and methods of detecting intruding object
CN110462700A (en) Situation Awareness designation system
JP2018155663A (en) Laser beam tracking system
EP4056950A1 (en) Thermal imaging for navigation systems and methods
CN114144698A (en) Anti-reflection label for laser radar window
KR101387594B1 (en) Safety system using transparent display
JP6561425B1 (en) Optical search system
CN110827580B (en) System and method for identifying air traffic objects
NO169267B (en) PROCEDURE FOR THE DETECTION, LOCATION AND CLASSIFICATION OF TARGET OBJECTS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18931351

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020539185

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18931351

Country of ref document: EP

Kind code of ref document: A1