WO2020042715A1 - 电子设备供电方法及装置、电子设备及存储介质 - Google Patents

电子设备供电方法及装置、电子设备及存储介质 Download PDF

Info

Publication number
WO2020042715A1
WO2020042715A1 PCT/CN2019/090672 CN2019090672W WO2020042715A1 WO 2020042715 A1 WO2020042715 A1 WO 2020042715A1 CN 2019090672 W CN2019090672 W CN 2019090672W WO 2020042715 A1 WO2020042715 A1 WO 2020042715A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
life
power supply
power
electronic device
Prior art date
Application number
PCT/CN2019/090672
Other languages
English (en)
French (fr)
Inventor
王剑平
黄伟
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2020042715A1 publication Critical patent/WO2020042715A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/36Arrangements using end-cell switching

Definitions

  • the present disclosure relates to the field of electronic technology, but is not limited to the field of electronic technology, and in particular, to a method and device for powering an electronic device, an electronic device, and a storage medium.
  • the power consumption of electronic devices is provided by electrical energy.
  • batteries in mobile devices such as mobile phones, tablet computers, or smart bracelets generally provide power.
  • the battery capacity directly determines the maximum battery life of the electronic device.
  • two batteries are provided in some electronic devices. When using batteries to power the device, the power of the two batteries is compared. If the power difference is greater than a specific value , Priority is given to using a larger battery. In this way, the endurance of the electronic device is improved to a certain extent and the standby time of the electronic device is improved.
  • the aging of one of the two batteries is significantly faster than that of the other battery; thus causing the problem of uneven battery life.
  • Embodiments of the present disclosure are expected to provide a method and device for powering an electronic device, an electronic device, and a storage medium.
  • a method for powering electronic equipment includes:
  • the life difference value satisfies a preset condition, the first battery or the second battery is selected for power supply.
  • An electronic equipment power supply device includes:
  • a first acquisition module configured to acquire a first battery life of a first battery and a second battery life of a second battery
  • a first determining module configured to determine a life difference between the first battery and the second battery according to the first battery life and the second battery life;
  • the power supply module is configured to select the first battery or the second battery for power supply if the life difference value meets a preset condition. .
  • An electronic device includes:
  • a circuit board wherein a processor and a system power supply pin are arranged on the circuit board;
  • a first power supply circuit the input end is connected to the output end of the first battery, and the output end is connected to the system power supply pin;
  • a second power supply circuit the input end is connected to the output end of the second battery, and the output end is connected to the system power supply pin;
  • a first reverse cut-off device located on the first power supply circuit, configured to prevent the second battery from supplying power to the first battery
  • a second reverse cut-off device located on the second power supply circuit, configured to prevent the first battery from supplying power to the second battery
  • the processing module is connected to the first power supply circuit and the second power supply circuit, and is configured to select the first battery or the second battery if a difference in life between the first battery and the second battery meets a preset condition.
  • the second battery provides power.
  • An electronic device includes:
  • the processor is connected to the memory and is configured to implement the foregoing method for powering an electronic device by executing computer-executable instructions stored on the memory.
  • a computer storage medium stores computer-executable instructions. After the computer-executable instructions are executed, the foregoing power supply method for an electronic device can be implemented.
  • the battery life of two batteries is obtained, and according to the calculation of the difference in battery life, a battery with a high battery life is selected for priority power supply.
  • the related art simply selects a battery for power supply based on the amount of power, which leads to a certain battery being frequently selected, which causes the rate of decline in the battery life of the two batteries to not match, leading to the problem of uneven battery life.
  • selecting a battery that supplies power to an electronic device according to the battery life can well solve the problem of uneven battery life of multiple batteries that supply power to the electronic device, improving two or more batteries. The balance of battery life.
  • FIG. 1A is a schematic flowchart of a first power supply method for an electronic device according to an embodiment of the present disclosure
  • FIG. 1B is a schematic flowchart of a second power supply method for an electronic device according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic flowchart of a third electronic device power supply method according to an embodiment of the present disclosure
  • 3A is a schematic flowchart of a fourth power supply method for an electronic device according to an embodiment of the present disclosure
  • 3B is a schematic flowchart of a fifth power supply method for an electronic device according to an embodiment of the present disclosure
  • 3C is a schematic flowchart of a sixth power supply method for an electronic device according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of a power supply device for an electronic device according to an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of another power supply device for an electronic device according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of an electronic device according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of another electronic device according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic flowchart of a seventh power supply method for an electronic device according to an embodiment of the present disclosure
  • FIG. 9 is a schematic flowchart of an eighth power supply method for an electronic device according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of still another electronic device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of an electronic device according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a protection circuit according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic flowchart of a ninth electronic device power supply method according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic flowchart of a tenth electronic device power supply method according to an embodiment of the present disclosure
  • FIG. 15 is a charging schematic diagram of battery charging provided by an embodiment of the present disclosure.
  • this embodiment provides a method for powering an electronic device, including:
  • Step S110 Obtain the first battery life of the first battery and the second battery life of the second battery;
  • Step S120 Determine a life difference between the first battery and the second battery according to the first battery life and the second battery life;
  • Step S130 if the life difference value satisfies a preset condition, select the first battery or the second battery to supply power.
  • the power supply method of the electronic device in this embodiment can be applied to various electronic devices that are powered by a battery.
  • the electronic device may include: a mobile device.
  • the mobile device may include a vehicle-mounted mobile device and a person-mounted mobile device.
  • the vehicle-mounted mobile device may be an electronic device mounted on various vehicles, for example, a navigation device.
  • the human-mounted device may include: a mobile phone, a tablet computer, a wearable device, and the like; the wearable device may include: a smart bracelet or a smart watch.
  • the first battery and the second battery are two batteries that are independent of each other, and these two batteries can respectively supply power to the electronic device.
  • the first battery and the second battery are two batteries in the same electronic device, or the first battery and the second battery are two batteries connected to the same electronic device.
  • the first battery and the second battery may be batteries with the same battery parameters, or batteries with different battery parameters.
  • batteries with the same battery parameters may include batteries of the same model and the same nominal capacity from the same manufacturer.
  • Batteries with different battery parameters can include: different types of batteries from the same manufacturer, and batteries from different manufacturers.
  • the battery parameters of the first battery and the second battery may be different, but the power supply parameters may be the same. In this way, the first battery and the second battery can be mutually used as backup batteries.
  • the power supply parameters here may include: a power supply voltage and / or a power supply current, so that the same electronic device can be provided with the required voltage or current.
  • the power supply pins of the first battery and the second battery are both connected to the system power supply pin of the electronic device.
  • the first battery and the second battery can be connected to the system power supply pin through the power supply pin and the system power supply pin.
  • the device provides the power required to generate power.
  • the power supply pin of the system may be provided on a main board of an electronic device. After the main board of the electronic device receives power from the first battery or the second battery, the voltage or current required by each functional unit is provided through conversion of a power supply circuit or the like. .
  • the battery life of the first battery and the second battery are obtained separately.
  • the battery life of the first battery is collectively referred to as the first battery life.
  • the battery life is collectively referred to as the second battery life.
  • the calculation formulas of the first battery life and the second battery life may be as follows:
  • First battery life current capacity of the first battery / calibrated capacity of the first battery
  • Second battery life current capacity of the second battery / nominal capacity of the second battery.
  • the current capacity of the first battery is the maximum capacity that the first battery can currently charge; the nominal capacity of the first battery is the standard capacity set when the first battery is shipped from the factory.
  • the current capacity of the second battery is the maximum power that the battery can currently charge; the nominal capacity of the second battery is the standard capacity set when the second battery leaves the factory.
  • the more severe the aging or the shorter the endurance of a battery the shorter the battery life of the battery. The longer the battery is used or the more frequently it is used, the more severe the aging and the lower the battery life.
  • the first battery is a battery with a high battery life
  • the second battery is a battery with a low battery life. If the life of the first battery is lower than the life of the second battery, the second battery is a battery with a high battery life, and the first battery is a battery with a low battery life. In the embodiment of the present disclosure, the battery life is high and the battery life is low in terms of battery life comparison.
  • the step S130 may include a step S131; the step S131 may include:
  • the first battery and the second battery having a longer battery life are used to supply power; wherein the first battery is within a set discharge temperature working range.
  • the life difference threshold may include: a preset threshold, or a threshold received from another device; or determined dynamically by using a learning model built into the electronic device.
  • the value range of the life difference threshold may be 0 or a positive number; if the life difference threshold is 0, the battery life of the two batteries is inconsistent, and a battery with a high battery life is directly used for power supply. If the life difference threshold is a positive number, for example, the life difference threshold may be p * q; the q may be the current capacity of the first battery or the second battery, or the first battery and the second battery A weighted average of the current capacity of the battery, or a median value of the current capacity of the first battery and the battery; in short, the q may be determined according to the current capacity of the first battery and / or the second battery.
  • the p is a number between 0 and 1, and may be one or more of a range of values such as 2% -3% or 2% -5%.
  • the step S130 may include: if the life difference minus the second battery life minus the life of the first battery is greater than zero, selecting the first battery to supply power.
  • life difference threshold is set to a positive number, ping-pong switching between the first battery and the second battery can be avoided.
  • the main battery is preferred for power supply. In this way, the frequency of use of the main battery will be greatly increased; on the other hand, the user sees the power of one battery It ’s dropped a lot or the total power of the two batteries has dropped a lot, so power the battery again. In this way, the difference in power between the main battery and the backup battery will be reduced.
  • the main battery Due to the priority of the main battery, the main battery will again be selected for power supply In this way, the main battery will age quickly, and it will age faster than the auxiliary battery, and the aging speed will be faster, resulting in an imbalance in the battery life of the main battery and the auxiliary battery.
  • the battery life is considered. If the battery life difference between the two batteries is greater than the life difference threshold, the battery with high battery life is used for power supply. It can be known that when selecting a battery for powering an electronic device in this application, the battery life is used as a reference factor, and it is no longer simply based on the current power or the power difference. In this way, it can reduce the repeated selection of a battery with a low battery life. The unbalanced battery life improves the balance of battery life between the first battery and the second battery.
  • the reference priority of the battery life is higher than the reference priority of the power; in this way, the battery with low battery life caused by ignoring the battery life or prioritizing the power is repeatedly selected as the power supply battery to power the electronic device. For example, if the life difference between the life of the first battery minus the life of the second battery is greater than the life difference threshold, as long as the current capacity of the first battery is not too low (for example, below a preset power value), even if the current capacity of the second battery is higher than For the current power of the first battery, the first battery is also selected for the current power supply, so as to achieve the balance of the battery life of the first battery and the second battery.
  • the step S110 may include: each time the battery of the electronic device completes charging, the prime steps S110 and S120 are performed.
  • the main switch may be switched once according to the life difference calculated in step S120. Battery and auxiliary battery settings; then select the main battery for power. In this way, it is equivalent to maintaining one battery as the main battery for power supply by default, which can reduce the problem of imbalanced battery life caused by fixing a certain battery for power supply, thereby improving the first battery and the first battery and the electronic device connected or included Life span of the second battery.
  • the step S130 may include:
  • the step S130 may include: a processor or a power supply controller of the electronic device, which one of the two batteries controls power supply according to the battery life of the two batteries.
  • the power supply in the embodiment of the present disclosure is to provide electrical energy.
  • Powering the battery with a high battery life in step S130 may include:
  • the battery life of a battery with a long battery life can be gradually reduced by the power supply of a battery with a low battery life, and the battery life of the battery can be maintained or slowed down by the non-power supply of a battery with a low battery life. So as to gradually reach the balance of battery life.
  • the method further includes:
  • Step S140 if the life difference is less than or equal to the life difference threshold, use the second battery with a lower battery life among the first battery and the second battery to power the battery; Temperature working range.
  • the second battery with a low battery life can be used for power supply, and the second battery selected for power supply is operated within a set discharge temperature working range, thereby reducing the power supply battery.
  • the power supply is abnormal because the discharge temperature is too high or too low.
  • the method further includes:
  • the second battery is used to supply power.
  • the method further includes:
  • Step S142 The current battery ratio of the first battery with a long battery life is lower than a threshold value, and the current battery ratio of the second battery with a low battery life is higher than the ratio threshold, and the second battery is used for power supply.
  • the method further includes:
  • Step S143 The power supply voltage of the first battery with a long battery life is lower than a voltage threshold, and the power supply voltage of the second battery with a low battery life is not lower than the voltage threshold, and the second battery is used for power supply.
  • the method may include:
  • the power supply parameter value of the battery with a high battery life is lower than a preset parameter value, and the first power supply parameter value of the battery with a low battery life is not lower than the preset parameter value, a battery with a low battery life is used powered by.
  • the power supply parameter value may be various parameters that represent the current power of the corresponding battery or the current power supply status.
  • the power supply parameter value may be directly the current power of the first battery or the second battery, the current Power ratio, or supply voltage.
  • the current battery may cause power supply problems such as low supply voltage or small supply current. If the power supply voltage is low or the power supply battery is small, the operating frequency of the electronic device may be reduced, which may affect the response rate of the electronic device. In order to avoid the problem of poor user experience, in this embodiment, the current When the power drops below a preset power value, if the current power of a battery with a low battery life is higher than the preset power value, power is supplied by a battery with a low battery life to ensure the normal power supply of the electronic device.
  • Using a battery with low battery life includes:
  • the current power of the battery with high battery life is: the power stored by the battery at the current moment; if the power is lower than the preset power value, the preset power value may be when the predetermined battery is completely consumed
  • the preset power value may be: Q * (1%) or Q * (5%); and Q may be the current capacity of the corresponding battery.
  • a battery with low battery life may include:
  • the current power ratio of the battery with high battery life is lower than the first ratio threshold, and the current power ratio of the battery with low battery life is higher than the first ratio threshold, and power is supplied by the battery with low battery life.
  • the current power ratio is: current power / current capacity.
  • the first ratio threshold may be a preset power ratio, for example, 1%, 5%, or 6%.
  • using battery power with low battery life may include:
  • the power supply voltage of the battery with a high battery life is lower than a preset voltage, and the power supply voltage of the battery with a low battery life is not lower than the preset voltage, and power is supplied by the battery with a low battery life.
  • the power supply voltage from the battery to the electronic device is generally a predetermined value, for example, 3.3V, 5.5V, or other voltages. If the current battery level is insufficient, the output voltage may not reach the preset value.
  • the preset voltage may be a system voltage of the electronic device. To avoid affecting the normal operation of the electronic device, when the power supply voltage of a battery with a high battery life is lower than the preset voltage, and the battery When the power supply voltage of the battery with a low life is higher than a preset voltage, the battery with a low battery life is used for power supply.
  • the electronic device currently uses a battery with a high battery life for power supply, it is detected that the power supply parameter value of the battery with a high battery life is lower than a preset parameter value, and the battery with a low battery life If the value of the first power supply parameter is not lower than the preset parameter value, the processor or power supply circuit of the electronic device automatically switches the battery that is currently powered; thereby reducing the problem of lower working frequency of the electronic device caused by the current low battery power supply. , To improve the performance and stability of electronic equipment, while taking full advantage of the high battery life of dual batteries.
  • the method further includes:
  • Step S101 detecting a first state parameter of the first battery with a high battery life
  • Step S102 if the first state parameter indicates that the power supply of the first battery is abnormal, use the second battery with low battery life to supply power;
  • Step S103 re-detect the first state parameter of the first battery with a high battery life after a preset period of time;
  • Step S104 if the re-detected first state parameter indicates that the battery with high battery life is normally powered, switch to using the first battery to power.
  • the life difference is greater than the life difference threshold, and the first state parameter indicates that the battery with the long battery life is normally powered, the first battery with the long battery life is used for power supply; otherwise the second battery with the low battery life is used for power supply.
  • the first state parameter of the first battery is re-tested. If the first state parameter detected at this time indicates that the first battery is normally powered, then switch back to using the first battery to provide better balance between the batteries. Battery life.
  • the first state parameter indicates abnormal battery power supply with high battery life, for example, the battery temperature is too high, the battery temperature of the battery may return to normal temperature after a period of time; for example, the power supply voltage or power supply current fluctuates, but After a period of time, the battery's supply voltage or current will return to normal.
  • the first state parameter with high battery life is re-detected after a preset time interval. If the first state parameter of the recurrence detection indicates that the battery with a high battery life is normally powered, the power is switched back to the battery with a high battery life.
  • the method may further include:
  • Step S201 detecting a second state parameter of a battery with a low battery life
  • Step S202 If the first state parameter indicates a first battery power abnormality with a high battery life, and the second state parameter indicates a second battery power abnormality with a low battery life, the battery life is repeatedly detected. High first state parameter of the first battery;
  • Step S203 If the re-detected first state parameter indicates that the first battery with a longer battery life is normally powered, use the first battery with a longer battery life to power.
  • the first state parameter may be a parameter describing a power supply state of the first battery, or a parameter of an attribute state of the first battery.
  • the first state parameter may include a battery temperature when the first battery is powered, and in the embodiments of the present disclosure, the battery temperature of the first battery is referred to as the first battery temperature.
  • the first state parameter may further include: the output level of the battery identification pin; when the battery power is normal and the battery power is abnormal, the The output levels are different. Assume that the battery powered by the current electronic device is the first battery. According to parameters such as battery life and / or battery power, it is determined that it is necessary to switch to the second battery for subsequent power supply. The non-output of the pin indicates that the battery level is detected, that is, the second battery is not detected. If the second battery is not detected, the second battery may not be installed properly or a battery installation problem may occur. The power supply to the second battery will cause a phenomenon that the power cannot be normally supplied, which will cause the electronic device to shut down due to power failure.
  • the first state parameter may further include power supply parameters such as a power supply voltage and / or a power supply current when power is supplied; if a power supply connection of a certain battery is disconnected, or the electronic device is being repaired, During the process or because of a short circuit due to a collision, the supply voltage and / or the supply current may appear too large or too small. In this way, using a battery with abnormal power supply parameters may on the one hand damage the battery and shorten the battery life; on the other hand, there may be abnormal use of the electronic equipment such as system burnout or automatic shutdown of the electronic equipment. Therefore, in the embodiment of the present application, the state parameter is also detected before the first battery or the second battery is used for power supply.
  • power supply parameters such as a power supply voltage and / or a power supply current when power is supplied
  • At least a first state parameter of a battery with a high battery life is detected. If the first state parameter indicates that the power supply of the battery is normal, it is possible to directly use the battery with high battery life for power supply without detecting the state parameter of the battery with low battery life.
  • the state parameters of the battery include the battery temperature, but are not limited to the battery temperature.
  • the first state parameter includes: a first battery temperature when the first battery is powered; and the second state parameter of the second battery includes: a second battery temperature when the second battery is powered.
  • the battery temperature when the battery is powered may be between -20 and 60 degrees Celsius. If the battery temperature is higher than 60 degrees Celsius or lower than -20 degrees Celsius, it indicates that the battery power is different.
  • the normal temperature of battery power can be set between 10 and 45 degrees Celsius. If the battery temperature is higher than 45 degrees Celsius, the battery temperature can be considered too high, and continued power supply has many negative effects on battery life. If the battery temperature is lower than 10 degrees Celsius, it can be considered that the battery temperature is too low. Although it can continue to supply power, it also has a negative impact on battery life. Power supply below 10 degrees Celsius or above 45 degrees Celsius may cause problems such as instability in power supply, and also have an adverse effect on the operating system or overall operating performance of electronic equipment. In this way, in this embodiment, the battery temperature other than 10 to 45 degrees Celsius can be regarded as the temperature of abnormal power supply, and the battery temperature between 10 and 45 degrees Celsius can be regarded as the temperature of normal power supply. Of course, the above is just an example. The specific temperature range of normal power supply can be set according to different battery performance parameters and power supply requirements.
  • the first state parameter and the second state parameter have a certain detection order. For example, the first state parameter is detected first. If the first state parameter indicates that the battery with a long battery life is normal, the first state parameter is not detected. Two state parameters. If the first state parameter indicates an abnormal battery power supply with a high battery life, then the second state parameter is detected. In this way, if the abnormal battery power supply is a high probability event relative to the normal battery power supply, this can reduce the unnecessary detection of the second state parameter.
  • the first state parameter and the second state parameter may be detected separately, and they are independent of each other, and may not have a certain sequential relationship.
  • the processor of the electronic device controls the sensors to detect the state parameters of the two batteries at the same time.
  • the first state parameters and the second state parameters can be detected synchronously. For example, if the first state parameter and the second state parameter are detected synchronously, when the second state parameter is needed, no temporary detection is required, so that when the first state parameter indicates that the power supply is abnormal, the second state parameter can be quickly detected according to Determine whether the corresponding battery is supplying power normally.
  • a thermistor connected to the battery When detecting the temperature of the battery, a thermistor connected to the battery can be set near the battery; the resistance of the thermistor changes with the temperature change. Thus, by providing a certain voltage to the thermistor, The current flowing through the thermistor can calculate the battery temperature of the corresponding battery based on the first correspondence between the thermistor and temperature and the second correspondence between the resistance of the current and the thermistor.
  • a temperature sensor that is packaged and can directly output a temperature value may also be provided in or on the surface of the battery.
  • detecting the battery temperature While detecting other status parameters, for example, detecting a supply voltage or a supply current, it can be detected by a voltmeter or an ammeter.
  • the first state parameter of the first battery is detected again. If, at this time, the first state parameter indicates that the first battery is normally powered, then switch to the first battery to ensure that the power is normal on the one hand, and on the other hand, the battery life can be balanced as much as possible.
  • the method further includes:
  • the re-detected first state parameter indicates that the battery with a high battery life is powered normally, switching to using the battery with a high battery life is powered.
  • the method further includes:
  • the first state parameter indicates an abnormal battery power supply with a high battery life
  • the second state parameter indicates an abnormal battery power supply with a low battery life
  • the battery with a high battery life is used for power supply.
  • the first state parameter and the second state parameter currently detected respectively indicate corresponding abnormal power supply, it may be caused by abnormal state parameter detection or abnormal reading of state parameters. Judgment may at least re-detect the first state parameter. Of course, sometimes the abnormal power supply of the battery may be short-term. It may be caused by the back cover of the electronic device not being closed. If these reasons are eliminated, the power supply of the battery will automatically return to normal. In order to reduce the occurrence of the above phenomenon, by re-detecting or re-reading, if the re-detected first state parameter indicates that the battery with high battery life is normally powered, the battery with high battery life is used for power supply.
  • the method further includes:
  • detecting the first state parameter 3 or 4 times in succession indicates that the battery power is abnormal with low battery life, which may indicate that the battery itself has an abnormal state or attribute, or that the battery's power supply circuit is abnormal. Therefore, in this embodiment, a first exception handling operation is performed.
  • the first exception handling operation may include: outputting a first exception prompt for the battery abnormality; restarting the electronic device to resolve parameter configuration due to incorrect battery initialization parameter configuration and the like The power supply is abnormal due to other reasons.
  • the first abnormality processing operation may further include: starting abnormal battery detection, locating an abnormal point of abnormal power supply, and the like.
  • the first abnormality processing operation may further include: reporting predetermined parameters to the cloud server, for example, continuously detecting the first state parameter multiple times, etc., and determining whether the battery is abnormal by the cloud server.
  • the first abnormality processing operation may be various operations for excluding abnormal power supply.
  • a plurality of second state parameters that are also continuously detected indicate that a battery power abnormality with a low battery life will also perform an abnormality processing operation.
  • This abnormality processing operation is distinguished from a battery with a high battery life and is called The second exception handling operation.
  • the first exception processing operation and the second exception processing operation may be the same or different.
  • the abnormality bit can be used to indicate the abnormality of the battery in the power supply control logic of the electronic device. In this way, the electronic device will actively choose normal If the abnormality flag indicates that one of the batteries is abnormal, in order to extend the standby time, operations such as calculation of the battery life may no longer be performed, and the power consumption and acceleration of the battery aging caused by these operations may be reduced.
  • the step S110 may include:
  • the first battery life and the second battery life are obtained, respectively.
  • the current capacity of the first battery is: the amount of electricity when the first battery is currently fully charged; the current capacity of the second battery is: the amount of electricity when the second battery is currently fully charged.
  • the current capacity of the first battery and the current capacity of the second battery can be characterized. Therefore, in this embodiment, if both the first battery and the second battery are fully charged, To get the first battery life and the second battery life.
  • the first calibration capacity and the second calibration capacity can be obtained by means of the models of the first battery and the second battery, etc., so that it can be quickly and easily The first battery life and the second battery life are calculated.
  • the first battery life is equal to the first current capacity ratio over the first calibrated capacity; the second battery life is equal to the second current capacity ratio over the second calibrated capacity.
  • the first calibrated capacity is a standard amount of electricity that can be charged by the first battery; the second calibrated capacity is a standard amount of electricity that can be charged by the first battery.
  • the first calibration capacity and the second calibration capacity may be parameters written in a storage medium of the electronic device in advance. In this way, the first calibration capacity and the second calibration capacity may be determined through a query or the like. capacity.
  • the obtaining the life of the first battery and the life of the second battery according to a fully charged state of the first battery and the second battery includes:
  • the first calibrated capacity is the The standard amount of electricity that can be charged by the first battery
  • the second calibrated capacity is the standard amount of electricity that the first battery can charge.
  • the determination of the first power amount and the second power amount may be an estimated power amount.
  • the electronic device estimates the power of the first battery and the second battery at the charging start time according to the power supply status of the battery.
  • the amount of electricity at the first battery charging start time is the first amount of electricity; the amount of electricity at the second battery charging start time is the second amount of electricity.
  • the charging power of the first battery can be detected or calculated; the charging power of the second battery can also be detected or calculated; thus, the first battery power can be obtained separately.
  • the third amount of electricity charged and the fourth amount of electricity charged by the second battery can be obtained separately.
  • the calculated sum of the first power and the third power may be: the power after the first battery is fully charged is the first current power;
  • the sum of the obtained second power and the fourth power may be: the power after the second battery is fully charged is the second current power.
  • Q r is the current charge of the battery
  • T 1 is the battery temperature at the current time
  • K (T1) is the current coefficient at the current time
  • a (i) is the current coefficient at the current time
  • i (t) is the current at time t , T ⁇ (0, T 2 ]; the charging current is positive, and the discharging current is negative.
  • 0 represents the charging start time of the battery
  • T 2 is the time when the battery is fully charged
  • Q r is the first time when the battery is fully charged.
  • the above is only one way to calculate the third power amount or the fourth power amount.
  • the specific implementation process there are multiple calculation methods, and it is not limited to any of the above.
  • the influence of the battery temperature on the current coefficient may also be ignored, and the current coefficient may be set to a constant.
  • the method further includes:
  • the determining the first power amount at the first battery charging start time and the second power amount at the second battery charging start time includes:
  • the determination of the third power and the fourth power is started only when the first power and the second power respectively meet the corresponding preset conditions, which is equivalent to starting the determination of the first battery life and the second battery life.
  • the determining whether the first power amount satisfies a first preset condition and whether the second power amount satisfies a second preset condition includes:
  • the power ratio corresponding to the first power may be: a ratio of the first power at a charging start time of the first battery to a charging capacity after a previous charging is completed.
  • the ratio of the amount of electricity corresponding to the second amount of electricity may be: a ratio of the second amount of electricity at the first charging start time of the battery to the charging capacity after the previous charge is completed.
  • the second power ratio and the third power ratio may be the same power ratio. In this way, it is determined whether the first battery meets the first preset condition and whether the second battery meets the second preset The condition's charge ratio is the same. In this way, only one battery ratio field or byte can be configured in the electronic device to store the battery ratio. If the same power ratio is used, the corresponding power ratios for determining whether the first battery meets the first preset condition and determining whether the second battery meets the second preset condition are necessarily equal.
  • the second power ratio and the third power ratio may be stored in correspondence with two different bytes or fields. At this time, the second power ratio or the third power ratio may be preset. Certainly, the second power ratio and the third power ratio may be equal or unequal.
  • the value range of the second power ratio and the third power ratio may be: 0% to 20%, for example, 5% to 15%. Setting the second power ratio and the third power ratio between 5% and 15% can reduce the estimated impact of the first power and the second power on the accuracy of the current capacity as much as possible; on the other hand, relative to the set Too low (for example, set between 0% and 2%) can greatly improve the execution of the battery life determination step, thereby triggering the electronic device to automatically adjust the current main power supply battery based on the re-determined battery life to better Balance battery life between different batteries.
  • this embodiment provides an electronic device power supply device, including:
  • a first obtaining module 110 configured to obtain a first battery life of a first battery and a second battery life of a second battery
  • a first determining module 120 configured to determine a life difference between the first battery and the second battery according to the first battery life and the second battery life;
  • the power supply module 130 is configured to select the first battery or the second battery to supply power if the difference in life meets a preset condition.
  • the power supply module 130 may be configured to use a battery with a higher battery life in the first battery and the second battery to supply power if the life difference is greater than a life difference threshold.
  • the power supply device of the electronic device can be applied to the corresponding electronic device.
  • the electronic device For related descriptions of the electronic device, refer to the foregoing embodiments.
  • the first acquisition module 110, the first determination module 120, and the power supply module 130 may correspond to a program module and, after being executed by a processor, can perform acquisition of battery life, determination and control of a life difference
  • the first battery or the second battery supplies power to the electronic device.
  • the first acquisition module 110, the second determination module 105, and the power supply module 130 may each include specific hardware or a combination of hardware and software; for example, the first acquisition module 110 may correspond to Fuel gauge for calculating battery life, used to detect current capacity for calculating battery life, etc.
  • the second determination module 105 may include a calculator.
  • the power supply module 130 may include a power supply controller, or a complex programmable logic circuit or a field programmable logic circuit.
  • the power supply module 130 is further configured to use a first battery with a longer battery life in the first battery and the second battery to supply power if the life difference is greater than a life difference threshold; wherein the first battery is in Within the set discharge temperature working range.
  • the power supply module 130 is further configured to use a second battery with a lower battery life among the first battery and the second battery to supply power if the life difference is less than or equal to a life difference threshold;
  • the second battery selected for power supply is within the set discharge temperature working range.
  • the power supply module 130 is further configured if the current power of the first battery with a high battery life is lower than a power threshold, and the current power of the second battery with a low battery life is higher than the power A power threshold, which is powered by the second battery.
  • the power supply module 130 is further configured such that a current battery ratio of the first battery with a high battery life is lower than a threshold value, and a current battery ratio of the second battery with a low battery life is higher than Said ratio threshold, using said second battery to supply power;
  • the power supply module 130 is further configured such that the power supply voltage of the first battery with a high battery life is lower than a voltage threshold, and the power supply voltage of the second battery with a low battery life is not lower than the power supply voltage.
  • the voltage threshold is powered by the second battery.
  • the apparatus further includes:
  • a first detection module configured to detect a first state parameter of a first battery with a high battery life
  • the power supply module is further configured to use a second battery with low battery life if the first state parameter indicates that the first battery is abnormally powered;
  • the first detection module is configured to re-detect a first state parameter of the first battery with a high battery life after a preset period of time;
  • the power supply module is further configured to switch to using the first battery for power supply if the re-detected first state parameter indicates that the first battery with a long battery life is normally powered.
  • the device further includes:
  • a second detection module configured to detect a second state parameter of a second battery with a low battery life
  • the first detection module is configured to: if the first state parameter indicates a first battery power abnormality with high battery life, and the second state parameter indicates a second battery power abnormality with low battery life, Detecting a first state parameter of the first battery with a high battery life;
  • the power supply module 130 is further configured to use the first battery with high battery life to supply power if the first state parameter re-detected indicates that the first battery with high battery life is powered normally.
  • the apparatus further includes:
  • the power supply module 130 is further configured to: if the power supply parameter value of the battery with high battery life is lower than a preset parameter value, and the first power supply parameter value of the battery with low battery life is not lower than the preset parameter value Using a battery with low battery life for power supply.
  • the power supply module 130 is specifically configured to perform at least one of the following:
  • the current battery ratio of the battery with a high battery life is lower than the first ratio threshold, and the current battery ratio of the battery with a low battery life is higher than the first ratio threshold, and the battery is powered by the battery with a low battery life
  • the power supply voltage of the battery with a high battery life is lower than a preset voltage, and the power supply voltage of the battery with a low battery life is not lower than the preset voltage, and power is supplied by the battery with a low battery life.
  • the apparatus further includes:
  • a first detection module 101 configured to detect a first state parameter of the battery with a high battery life
  • the power supply module 130 is specifically configured to use a battery with a high battery life to supply power if the life difference is greater than a life difference threshold and the first state parameter indicates that the battery with a high battery life is normally powered.
  • the apparatus further includes:
  • a second detection module 102 configured to detect a second state parameter of a battery with a low battery life
  • the power supply module 130 is further configured to use the battery life if the first state parameter indicates that the battery power is abnormal and the battery life is high and the second state parameter indicates that the battery life is low. Low battery power.
  • the first state parameter includes: a first battery temperature when the first battery is powered; and the second state parameter includes: a second battery temperature when the second battery is powered.
  • the apparatus further includes:
  • the first detection module 101 is further configured to re-detect the first state parameter of the battery with a high battery life after a preset period of time;
  • the power supply module 130 is configured to switch to using a battery with a high battery life to supply power if the re-detected first state parameter indicates that the battery with a long battery life is normally powered.
  • the apparatus further includes:
  • the first detection module 101 is further configured to reproduce the detection if the first state parameter indicates a battery power abnormality with a high battery life, and the second state parameter indicates a battery power abnormality with a low battery life.
  • the power supply module 130 is further configured to: if the re-detected first state parameter indicates that the battery with a high battery life is powered normally, use the battery with a high battery life to power.
  • the apparatus further includes:
  • a first abnormality processing module 103 configured to execute a first abnormality processing operation if a predetermined number of first state parameters are continuously detected to indicate that the battery power supply abnormality with high battery life is abnormal;
  • the second abnormality processing module 104 is configured to execute a second abnormality processing operation if a predetermined number of the second state parameters indicate that the battery has a low battery life.
  • the first acquisition module 110 is configured to determine a first current capacity of the first battery and a second current capacity of the second battery; according to the first current capacity and the The second current capacity obtains the life of the first battery and the life of the second battery, respectively.
  • the first acquisition module 110 is configured to determine a first amount of power at the first battery charging start time and determine a second amount of power at the second battery charging start time; determine the A third amount of electricity charged by the first battery, and determining a fourth amount of electricity charged by the second battery; and calculating the first current capacity of the first battery based on the first amount of electricity and the third amount of electricity, And calculating the second current capacity of the second battery based on the second power and the fourth power.
  • the apparatus further includes:
  • the second determining module 105 is configured to determine whether the first power amount satisfies a first preset condition and whether the second power amount satisfies a second preset condition;
  • the first obtaining module 110 is configured to determine the third power amount if the first power amount satisfies the first preset condition, and determine the third power amount if the second power amount satisfies the second preset condition. Fourth power.
  • the first obtaining module 110 is configured to determine whether a power ratio corresponding to the first power is smaller than a second power ratio; determine whether a power ratio corresponding to the second power is less than a third power ratio.
  • this embodiment provides an electronic device, including:
  • the processor is connected to the memory and is configured to implement a method for powering an electronic device provided by the foregoing one or more technical solutions by executing computer-executable instructions stored on the memory.
  • the memory may include various storage media, and the storage medium stores the computer-executable instructions; the computer-executable instructions may include source code or object code, and the like.
  • the processor may include various types of integrated chips, controllers, or processing units.
  • the processing unit may include a central processing unit and a micro processing unit.
  • the controller may include a digital signal processor and the like.
  • the processor may be connected to the memory through a bus.
  • the bus may include an integrated circuit bus (I 2 C) or a serial peripheral interface bus (SPI).
  • the processor may be connected to the memory through a general input / output (GPIO).
  • GPIO general input / output
  • the processor implements a method for powering an electronic device applied in one or more of the foregoing technical solutions through execution of computer-executable instructions, thereby selecting a battery for power supply based on battery life.
  • the electronic device may include a communication interface and a human-machine interaction interface as shown in FIG. 6; the communication interface may be used for the electronic device to perform information interaction with other devices.
  • the communication interface may be: various types of antennas or network interfaces.
  • the human-computer interaction interface may include various information interaction interfaces such as a keyboard or a mouse for use between a human and an electronic device.
  • this embodiment further provides an electronic device, including:
  • a circuit board wherein a processor and a system power supply pin are arranged on the circuit board;
  • a first power supply circuit the input end is connected to the output end of the first battery, and the output end is connected to the system power supply pin;
  • a second power supply circuit the input end is connected to the output end of the second battery, and the output end is connected to the system power supply pin;
  • a first reverse cut-off device located on the first power supply circuit, configured to prevent the second battery from supplying power to the first battery
  • a second reverse cut-off device located on the second power supply circuit, configured to prevent the first battery from supplying power to the second battery;
  • the processing module is connected to the first power supply circuit and the second power supply circuit, and is configured to select the first battery or the second battery if a difference in life between the first battery and the second battery meets a preset condition.
  • the second battery provides power.
  • the circuit board may be any circuit board included in an electronic device, for example, a printed circuit board (PCB).
  • the circuit board may be a main board of a central processing unit provided with an electronic device.
  • the circuit board is provided with a system power supply pin for various energy-consuming components to receive power from the battery from the system power supply pin.
  • the processing module may be various electronic components or a combination of electronic components with information processing or signal control.
  • the processing module may include a microprocessor, a digital signal processor, a programmable device, or an application-specific integrated circuit, which may be a device with low power consumption, connected to the first battery and the second battery, and simultaneously The first power supply circuit or the second power supply circuit is connected, and the on or off of the first power supply circuit or the second power supply circuit can be controlled, so that the first battery or the second battery is selected for power supply.
  • both the first battery and the second battery are disposed in the same electronic device.
  • the output terminals of the first battery and the second battery are connected to the system power supply pins through corresponding power supply circuits, if the power of the second battery is lower than that of the first battery, there is a gap between the first battery and the second battery. Pressure difference. This pressure difference may cause a high-battery battery to supply power to a low-battery battery. Obviously, power supply between such batteries will also cause battery aging, which is not required by electronic equipment.
  • the first reverse cut-off device and the second direction cut-off device are used to prevent mutual power supply between the batteries.
  • the power supply circuit of the target powered battery is turned on, and the source powered battery is turned off after the power supply circuit of the target powered battery is turned on.
  • the power supply circuits of both batteries are conducting, because the first battery and the second battery are also grounded, so if there is a voltage difference, a high-voltage battery will go low. Battery powered.
  • the first power supply circuit and the second power supply circuit are used in the first power supply circuit and the second power supply circuit.
  • the power supply circuit of the corresponding battery is disconnected, it is achieved by an input turn-on voltage or a turn-on current, for example.
  • the drain and source of the transistor are only because there is not enough gate-to-source voltage to temporarily interrupt the current, but if the source voltage is higher than the drain, reverse conduction may occur, which will cause a reverse current sink phenomenon. Therefore, this embodiment also The arrangement of the first reverse cut-off device and the second reverse cut-off device prevents mutual charging between the batteries caused by the backward current of the voltage difference.
  • the first reverse cut-off device may include a unidirectional pass tube such as a diode.
  • the first reverse cut-off device may be a packaged chip with a reverse cut-off function.
  • the first reverse cut-off device may include: a controlled switch And a control circuit, the controlled switching transistor may include: a field effect transistor (MOS transistor).
  • the controlled switch may include: a control terminal, an input terminal, and an output terminal; the control terminal is connected to the control circuit, the input terminal is connected to the first battery, and the output terminal may be connected to the system Power pin connection.
  • the control circuit may be used to generate a control level, and the level of the control level directly determines that the input terminal and the output terminal of the controlled switch are in communication. If the first battery is not powered, the control level may be a low level that controls the input and output terminals to be non-conductive, otherwise it outputs a high level.
  • the same second reverse cut-off device may also include: a controlled switch tube and a control circuit. In some embodiments, the first reverse-cut device and the controlled switch of the first reverse-cut device are connected to the same control circuit.
  • the control circuit includes two output terminals, a first output terminal connected to the first reverse cut-off device and a second output terminal connected to the second reverse cut-off device. In some embodiments, the control circuit may generate a first control signal.
  • the first control signal is connected to the first output terminal, and the first output terminal may directly output the first control signal.
  • the control circuit is further provided with a second output terminal connected in parallel with the first output terminal. Assume that the circuit where the first output terminal is located is the first path; then the circuit where the second output terminal is located is the second path; the first path and the second path are connected in parallel, and the first path and the second path The connection is divided from the same level output point; the second path has one more inverter than the first path. In this way, it is ensured that the control signals of the controlled switches that respectively output different reverse cut-off devices are always reversed. That is, if the first control signal is high, the second control signal is low; if the first control signal is low, the second control signal is high.
  • the first reverse cut-off device allows the first battery to supply power under the action of the high level
  • the current that cuts off the second battery is also poured into the first battery
  • the second reverse cut-off device is prohibited under the action of the low
  • the second battery is powered, and the current that cuts off the first battery is poured into the second battery.
  • the electronic device further includes:
  • a first charging circuit an input end of which is connected to the charging interface, and an output end of which is connected to the first battery for charging the first battery;
  • a second charging circuit the input terminal is connected to the charging interface, and the output terminal is connected to the second battery for charging the second battery;
  • a first fuel gauge that is connected to the first charging circuit and is a first fuel gauge configured to detect a charged capacity of a first battery
  • a second fuel gauge is connected to the second charging circuit, and is a second fuel gauge configured to detect a charging capacity of the first battery.
  • the charging interface may be various types of wired charging interfaces, such as a mini universal serial bus (mini Universal Serial Bus, mini USB, etc.).
  • a mini universal serial bus mini Universal Serial Bus, mini USB, etc.
  • the charging interface may also be a wireless charging interface, for example, an electronic device that uses wireless charging technology for charging may include a charging interface capable of wireless charging.
  • the first battery and the second battery may share one of the charging interfaces. In this way, when the charging interface has a current input, it will be shunted to the first battery and the second battery. The battery is charged.
  • the charging interface can be connected to a power source for charging the first battery and the second battery, for example, a device that can provide current input, such as a power supply socket connected to a city power supply, an external charging power source (for example, a mobile power bank), or a personal computer.
  • a power source for charging the first battery and the second battery for example, a device that can provide current input, such as a power supply socket connected to a city power supply, an external charging power source (for example, a mobile power bank), or a personal computer.
  • the electronic device further includes a first fuel gauge and a second fuel gauge.
  • the first fuel gauge When the first battery is being charged, the first fuel gauge may be connected in parallel to the first battery on the first charging circuit. In this way, the current on the first charging circuit flows into the first battery and the first fuel gauge in two ways, respectively.
  • the calculation of the third electric quantity can be facilitated by performing an integral operation during the charging period or recording a change in the electric current according to the electric quantity divided by itself.
  • the second fuel gauge can be connected in parallel with the second battery on the second charging circuit. In this way, the current on the second charging circuit flows into the second battery and the second fuel gauge in two ways, respectively.
  • the second fuel gauge can perform the integral operation during the charging period or record the change of its own current according to the divided power, which can facilitate the calculation of the aforementioned fourth power.
  • the first enable pin enabling charging of the first battery may be the first enable pin of the first power supply circuit, enabling or disabling the first power supply circuit, The power supply of the first battery is enabled or disabled.
  • the first enable pin receives a first enable signal of a first level to enable the power supply of the first battery; the first enable pin receives a first enable signal of a second level to disable Can be powered by the first battery.
  • the first level is not equal to the second level.
  • the first enable pin that enables the charging of the second battery may be the second enable pin of the second power supply circuit, enabling or disabling the first power supply circuit to enable the second battery Power supply or disable the power supply of the second battery.
  • the second enable pin receives the second enable signal of the third level to enable the power supply of the second pool; the second enable pin receives the second enable signal of the fourth level and disables Can be powered by a second battery.
  • the third level is not equal to the fourth level.
  • the first enable signal and the second enable signal may be provided by a central processor or a power supply controller of the electronic device.
  • the first level is equal to the third level; the fourth level is equal to the third level.
  • the second enable signal may be a reverse signal of the first enable signal.
  • the central processing unit or the power supply controller may generate only the first enable signal; the first enable signal is input to the multiplexer, and the two first enable signals are output; and the two first enable signals are output. One of them is input to the inverter, and the inverter outputs a second enable signal opposite to the first enable signal.
  • the output pins of the first enable signal and the second enable signal are GPIO pins, setting the corresponding levels of the first enable signal and the second enable signal to be equal can reduce the CPU or power supply control. Use of a GPIO pin.
  • the first enable signal and the second enable signal may be selected as GPIO signals transmitted by GPIO pins.
  • the logic of generating the GPIO signals is relatively simple. And the transmission rate is higher.
  • An embodiment of the present disclosure also provides a computer storage medium storing computer-executable instructions. After the computer-executable instructions are executed, the method for supplying power to an electronic device provided by one or more of the foregoing technical solutions can be performed; for example, ,
  • This example provides a dual-battery power supply method, which can improve the utilization rate of the battery, ensure the normal operation of each power module in the terminal, and achieve a balanced battery life.
  • the method provided by this example can be as follows:
  • the life difference here is the battery life of the first battery minus the battery life of the second battery; In other cases, the life difference may also be the battery life of the second battery minus the life of the first battery;
  • the life difference preset threshold is set to 0 by default.
  • the first battery is preferably used to power the system.
  • the states of the first battery and the second battery are switched.
  • the states here may include: a powered state or a non-powered state.
  • FIG. 9 shows the specific process of the power supply method of the electronic device provided by this example, including:
  • the electronic device may include:
  • the battery life detection module corresponds to the aforementioned first obtaining module 110, and the battery life detection module may be configured to detect the battery life of the first battery and the second battery, respectively.
  • the life difference detection module may correspond to the aforementioned first determination module 120, and the life difference calculation module may be configured to calculate a life difference between the first battery and the second battery.
  • the power supply path control module may be a component of the foregoing power supply module 130, and the battery power supply control module may be used to control and switch the first battery or the second battery to power the system;
  • the battery temperature detection module is configured to detect a battery temperature.
  • An embodiment of this example also provides an electronic device, the electronic device includes: a charging module and a fuel gauge module.
  • the charging module may include: a first charging sub-module and a second charging sub-module; the fuel gauge module may include: a first fuel-gauge sub-module and a second fuel-gauge sub-module.
  • First battery First battery, first charging sub-module, first fuel gauge sub-module, first battery temperature detection module, second battery, second charging sub-module, second fuel gauge sub-module, second battery temperature detection module, switch switching Modules and processor modules.
  • the first charging sub-module is used to charge the first battery
  • the first fuel gauge sub-module is used to calculate the power of the first battery
  • the first battery temperature detection module is used to detect the first battery.
  • the life of the first battery is calculated through the first charging sub-module and the first fuel gauge sub-module.
  • the first battery temperature detection module detects the temperature of the first battery in real time.
  • the second charging sub-module is configured to charge the first battery
  • the second fuel gauge sub-module is used to calculate the power of the second battery
  • the second battery temperature detection module is used to detect the first battery. The temperature of the two batteries. Similarly, the life of the second battery is calculated through the second charging module and the second fuel gauge module. For example, the second battery temperature detection module detects the temperature of the second battery in real time.
  • the first battery temperature detection module may be a component of the foregoing first detection module; the second battery temperature detection module may be a component of the foregoing second detection module.
  • the method of calculating the true charging capacity of the battery by the ampere-hour integration method is:
  • Q r is the current charge of the battery
  • T 1 is the battery temperature at the current time
  • K (T1) is the current coefficient at the current time
  • a (i) is the current coefficient at the current time
  • i (t) is the current at time t , T ⁇ (0, T 2 ]; the charging current is positive, and the discharging current is negative.
  • 0 represents the charging start time of the battery
  • T 2 is the time when the battery is fully charged
  • Q r is the first time when the battery is fully charged.
  • the switch module is used to control the first battery or the second battery to supply power to the system; the processor module is used to calculate the battery life of the first battery and the second battery, and further calculate the first battery life. The difference in life between a battery and the second battery.
  • This example technology keeps the difference in life between two batteries after a long period of use, and the performance of the two batteries is kept close, thereby improving the performance of the entire battery system.
  • a charging module for charging the first battery and the second battery respectively
  • the fuel gauge module is configured to separately count the power of the first battery and the second battery
  • the battery life detection module is used to detect the battery life of the first battery and the second battery respectively.
  • the charging current and the charging time are detected by a fuel gauge, and the true current capacity of the battery is obtained by integrating the charging current in time.
  • the battery life when fully charged Power / calibrated battery power;
  • the battery temperature detection module is used to detect the battery temperature of the first battery and the second battery respectively, and the temperature of the battery is obtained by detecting the voltage at the NTC terminal of the battery thermistor;
  • the power supply path module is used to control the power supply path of the first battery or the second battery respectively, and the GPIO pin is used to control the battery output to supply power to the system.
  • USB_IN is the universal serial bus (Universal Serial Bus, USB) interface or the input of the charger;
  • VBAT_SYS can be used as the system power output connected to the system power pin.
  • the positive electrode of the battery is connected to the Vin pin of the power supply control chip (for example, LTC4412 chip), and Vout is output;
  • the Enable pin is used as the enable signal input pin that the power supply control chip is turned on.
  • the enable signal is low, indicating that the power supply control chip is enabled;
  • the status pin outputs the status signal for the battery to be powered on;
  • the status pin is high, which indicates that the LTC4412 chip is enabled, and the battery is input through the Vin pin.
  • the Vout pin outputs power to power the system.
  • the Enable pin is connected to the GPIO pin of the processor, and the enable of the LTC4412 chip is controlled by the high and low levels of the GPIO pin.
  • the LTC4412 chip has a reverse cut-off function, which places the problem of current backflow caused by the voltage difference between the first battery and the second battery.
  • the LTC4412 chip here is a component structure on the first power supply circuit and the second power supply circuit.
  • the power supply control chip is not limited to the LTC4412, but may also be other control chips; the choice of the LTC4412 chip has the characteristics of low power consumption, and the quiescent current of the LTC4412 chip is small, thereby having the characteristics of low power consumption.
  • the first charging module is configured to charge the first battery, and the second charging module is used to charge the second battery; the fuel gauge A is used to detect and calculate the power of the first battery, and the fuel gauge A is used to detect and calculate the second battery Battery level.
  • the fuel gauge A corresponds to the aforementioned first fuel gauge sub-module
  • the fuel gauge B corresponds to the aforementioned second fuel gauge sub-module.
  • the battery life difference between the first battery and the second battery is calculated by detecting the battery life of the first battery and the second battery respectively. If it is detected that the life difference between the first battery and the second battery is greater than a preset threshold, use The first battery can supply power to the system, the second battery can supply power to the system, and the first battery is used to supply power to the system. If it is detected that the life difference between the first battery and the second battery is less than a preset threshold, the second battery is enabled. The battery powers the system, closes the first battery to the system, and uses the second battery to power the system.
  • the preset threshold in this example is 0, which is used to determine the lifespan of the first battery and the second battery.
  • the batteries used in electronic equipment can be divided into lithium batteries and external protection circuits.
  • the protection circuits mainly include NTC (Negative Temperature Coefficient) thermistors and battery ID pins that detect battery temperature; BAT_OUT is the battery Positive output. BAT_ID is used to detect the battery ID.
  • THERM_BIAS is connected to the reference system voltage. The THERM pin is used to detect the voltage of the NTC thermistor terminal, and is connected to the ADC pin of the system. The system detects the battery NTC voltage through the THERM pin to monitor the battery temperature.
  • the working environment temperature range of the lithium battery used for electronic equipment discharge is generally -20 ° C to + 60 ° C.
  • the first battery and the second battery each have a battery temperature detection pin, and the battery temperatures of the first battery and the second battery are detected by the first charging module and the second charging module, respectively.
  • Set the battery discharge temperature working range to -20 ° C to + 60 ° C.
  • the battery discharge temperature working range can be set to -15 ° C to + 55 ° C.
  • the power supply method of the electronic device provided in this example may include:
  • the first battery when it is detected that the life difference between the first battery and the second battery is greater than a preset threshold, and at the same time it is detected that the temperature of the first battery is within a set discharge temperature working range, the first battery is enabled to
  • the system power supply path uses the first battery to power the system; if the first battery is in the system power supply and detects that the power of the first battery drops to 1% or the power supply voltage is less than 3.4V, the second battery is enabled to power the system. Close the first battery to power the system, and use the second battery to power the system.
  • the method further includes:
  • the second battery Before enabling the second battery to supply power to the system, detect whether the temperature of the second battery is within a preset discharge temperature working range, and if so, enable the second battery to supply power to the system, and turn off after enabling the second battery The power supply path of the first battery; if not, the system is shut down.
  • the battery life detection module is used to detect the battery life of the first battery and the second battery respectively.
  • the charging current and the charging time are detected by a fuel gauge.
  • the charging current is integrated over time to obtain the true capacity of the battery.
  • Power / calibrated battery power; in this example, the power at full charge is used to calculate the real-time real-time capacity of the battery after a period of use.
  • the initial battery capacity ( ⁇ 15%) learned during charging is calculated by the following methods to obtain the battery life of the first battery and the second battery.
  • the amount of electricity when the battery is fully charged the estimated initial charge Q 0 when the battery is being charged + the amount of charge Q r when the battery is fully charged from the initial charge;
  • the charge from the initial charge to the battery is as follows:
  • the current coefficient K (T) takes a value of 1 and the current coefficient a (i) takes a value of 1.
  • the charging current and charging time are calculated by the charging module or the fuel gauge module. In this example, the charging module is used for statistics.
  • the powers Q 1r and Q 2r when the battery is fully charged and the real powers Q 1r-1 and Q 2r-1 that were learned last time when the battery is fully charged are recorded in the memory ROM respectively. in.
  • the power supply path module is used to control the power supply path of the first battery or the second battery respectively, and uses GPIO pins to control the battery output to supply power to the system.
  • the control logic is shown in the following table:
  • the level status is “0” and “1” are different; the level status of “0” may correspond to the aforementioned low level; the level status of “1” may correspond to the aforementioned High.
  • the power supply controller of the first battery and the power supply controller of the second battery respectively include an enable pin and a status pin, and the input signals of the enable pins control the corresponding controllers. Whether the corresponding battery is enabled. The output of the status pin indicates whether the current corresponding battery is supplying power.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • there may be another division manner such as multiple units or components may be combined, or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed components are coupled, or directly coupled, or communicated with each other through some interfaces.
  • the indirect coupling or communication connection of the device or unit may be electrical, mechanical, or other forms. of.
  • the units described above as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, which may be located in one place or distributed to multiple network units; Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing module, or each unit may be separately used as a unit, or two or more units may be integrated into one unit; the above integration
  • the unit can be implemented in the form of hardware, or in the form of hardware plus software functional units.
  • the foregoing program may be stored in a computer-readable storage medium.
  • the program is executed, the program is executed.
  • the foregoing storage medium includes: a mobile storage device, a read-only memory (ROM, Read-Only Memory), a random access memory (RAM, Random Access Memory), a magnetic disk or an optical disk, etc.
  • ROM read-only memory
  • RAM random access memory
  • magnetic disk or an optical disk etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本公开实施例公开了一种电子设备供电方法及装置、电子设备及存储介质。所述方法包括:获取第一电池的第一电池寿命及获取第二电池的第二电池寿命;根据所述第一电池寿命及所述第二电池寿命,确定所述第一电池和所述第二电池的寿命差值;若所述寿命差值大于寿命差阈值,利用所述第一电池和所述第二电池中电池寿命高的电池供电。

Description

电子设备供电方法及装置、电子设备及存储介质
相关申请的交叉引用
本申请基于申请号为201811003335.3、申请日为2018年08月30日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及电子技术领域但不限于电子技术领域,尤其涉及一种电子设备供电方法及装置、电子设备及存储介质。
背景技术
电子设备的功耗都是由电能提供的,例如,手机、平板电脑或智能手环等移动设备中提供电能的一般是电池。但是电池容量直接决定了电子设备的最大可续航能力。为了提升电子设备的续航能力,尤其是移动设备的续航能力,相关技术中,在一些电子设备设置了两个电池,利用电池向设备供电时,比较两个电池的电量,若电量差大于特定值,则优先采用电量较大的电池供电。采用这种方式,一定程度上提升了电子设备的续航能力并提升了电子设备的待机时长。但是两个电池中有一个电池的老化明显比另一个电池的老化快;从而导致了电池寿命不均衡的问题。
发明内容
本公开实施例期望提供一种电子设备供电方法及装置、电子设备及存储介质。
本公开的技术方案是这样实现的:
一种电子设备供电方法,包括:
获取第一电池的第一电池寿命及获取第二电池的第二电池寿命;
根据所述第一电池寿命及所述第二电池寿命,确定所述第一电池和所述第二电池的寿命差值;
若所述寿命差值满足预设条件,选择所述第一电池或所述第二电池进行供电。
一种电子设备供电装置,包括:
第一获取模块,配置为获取第一电池的第一电池寿命及获取第二电池的第二电池寿命;
第一确定模块,配置为根据所述第一电池寿命及所述第二电池寿命,确定所述第一电池和所述第二电池的寿命差值;
供电模块,配置为若所述寿命差值满足预设条件,选择所述第一电池或所述第二电池进行供电。。
一种电子设备,包括:
电路板,其中,所述电路板上设置有处理器和***供电引脚;
第一电池,
第一供电电路,输入端与所述第一电池的输出端连接,输出端与所述***供电引脚连接;
第二电池,
第二供电电路,输入端与所述第二电池的输出端连接,输出端与所述***供电引脚连接;
第一反向截止器件,位于所述第一供电电路上,配置为防止所述第二电池向所述第一电池供电;
第二反向截止器件,位于所述第二供电电路上,配置为防止所述第一 电池向所述第二电池供电
处理模组,与所述第一供电电路和所述第二供电电路连接,配置为若所述第一电池和第二电池的寿命差值满足预设条件,选择所述第一电池或所述第二电池进行供电。
一种电子设备,包括:
存储器;
处理器,与所述存储器连接,配置为通过执行存储在所述存储器上的计算机可执行指令,实现前述的电子设备供电方法。
一种计算机存储介质,所述计算机存储介质存储有计算机可执行指令;所述计算机可执行指令被执行后,能够实现前述的电子设备供电方法。
本公开实施例提供的电子设备供电方法,利用双电池进行供电时,会获取两个电池的电池寿命,并根据电池寿命差的计算,选择出电池寿命高的电池进行优先供电,如此,可以减少相关技术中单纯根据电量来选择供电的电池,导致某一个电池被频繁选择,如此使得两个电池的电池寿命的下降速率不匹配,从而导致的电池寿命不均衡的问题。而在本公开实施例中根据电池寿命来选择向电子设备供电的电池,就可以很好的解决向电子设备供电的多个电池的电池寿命不均衡的问题,提升了2个或2个以上电池的电池寿命的均衡性。
附图说明
图1A为本公开实施例提供的第一种电子设备供电方法的流程示意图;
图1B为本公开实施例提供的第二种电子设备供电方法的流程示意图
图2为本公开实施例提供的第三种电子设备供电方法的流程示意图;
图3A为本公开实施例提供的第四种电子设备供电方法的流程示意图;
图3B为本公开实施例提供的第五种电子设备供电方法的流程示意图;
图3C为本公开实施例提供的第六种电子设备供电方法的流程示意图;
图4为本公开实施例提供的一种电子设备供电装置的结构示意图;
图5为本公开实施例提供的另一种电子设备供电装置的结构示意图;
图6为本公开实施例提供的一种电子设备的结构示意图;
图7为本公开实施例提供的另一种电子设备的结构示意图;
图8为本公开实施例提供的第七种电子设备供电方法的流程示意图;
图9为本公开实施例提供的第八种电子设备供电方法的流程示意图;
图10为本公开实施例提供的再一种电子设备的结构示意图;
图11为本公开实施例提供的一种电子设备的结构示意图;
图12为本公开实施例提供的一种保护电路的结构示意图;
图13为本公开实施例提供的第九种电子设备供电方法的流程示意图;
图14为本公开实施例提供的第十种电子设备供电方法的流程示意图;
图15为本公开实施例提供的一种电池充电的充电示意图。
具体实施方式
以下结合说明书附图及具体实施例对本公开的技术方案做进一步的详细阐述。
如图1A所示,本实施例提供一种电子设备供电方法,包括:
步骤S110:获取第一电池的第一电池寿命及获取第二电池的第二电池寿命;
步骤S120:根据所述第一电池寿命及所述第二电池寿命,确定所述第一电池和所述第二电池的寿命差值;
步骤S130:若所述寿命差值满足预设条件,选择所述第一电池或所述 第二电池进行供电。
本实施例电子设备的供电方法,可应用于各种利用蓄电池供电的电子设备中。该电子设备可包括:移动设备。所述移动设备可包括:车载移动设备、人载移动设备。所述车载移动设备可为各种交通工具搭载的电子设备,例如,导航设备。所述人载设备可包括:手机、平板电脑、可穿戴式设备等;所述可穿戴式设备可包括:智能手环或智能手表等。
所述第一电池和所述第二电池为相互独立的两个电池,这两个电池可以分别向电子设备供电。例如,所述第一电池和第二电池为同一个电子设备内的两个电池,或者,第一电池和第二电池为与同一个电子设备连接的两个电池。
所述第一电池和所述第二电池可为相同电池参数的电池,也可以是具备不同电池参数的电池。例如,相同电池参数的电池可包括:来自同一个生产厂家的同一个型号的等标定容量的电池。具备不同电池参数的电池可包括:来自同一个生产厂家的不同型号的电池,来自不同生产厂家的电池。
第一电池和第二电池的电池参数可不相同,但是供电参数可相同,如此,可以实现第一电池和第二电池互为备用电池。此处的供电参数可包括:供电电压和/或供电电流,以可以向同一个电子设备提供其所需的电压或电流。
例如,第一电池和第二电池的供电引脚,都连接到电子设备的***供电引脚上,如此,第一电池和第二电池可以通过供电引脚与***供电引脚的连接,向电子设备提供产生功耗所需的电量。该***供电引脚可设置在电子设备的主板上,所述电子设备的主板从第一电池或第二电池接收到供电之后,通过供电电路的转化等向提供各个功能单元所需的电压或电流。
在本实施例中,会分别获取第一电池和第二电池的电池寿命,在本实施例中为了区分和方便陈述,将第一电池的电池寿命统称为第一电池寿命, 将第二电池的电池寿命统称为第二电池寿命。
所述第一电池寿命和第二电池寿命的计算公式可如下:
第一电池寿命=第一电池的当前容量/第一电池的标定容量;
第二电池寿命=第二电池的当前容量/第二电池的标定容量。
第一电池的当前容量为第一电池当前可充入的最大电量;第一电池的标定容量为第一电池出厂时设置的标准容量。同理,第二电池的当前容量为第而电池当前可充入的最大电量;第二电池的标定容量为第二电池出厂时设置的标准容量。
若一个电池的老化越严重或续航能力越短,则该电池的电池寿命越短。电池使用的时间越长或使用的频次越高,则老化的越严重,电池寿命就越低。
若所述第一电池寿命大于所述第二电池寿命,则所述第一电池为所述电池寿命高的电池,所述第二电池为电池寿命低的电池。若所述第一电池寿命低于所述第二电池寿命,则所述第二电池为所述电池寿命高的电池,所述第一电池为电池寿命低的电池。在本公开实施例中,所述电池寿命高和电池寿命低是通过电池寿命比较而言的。
如图1B所示,所述步骤S130可包括步骤S131;所述步骤S131可包括:
若所述寿命差值大于寿命差阈值,利用所述第一电池和所述第二电池中电池寿命高的第一电池供电;其中,所述第一电池在设定的放电温度工作区间内。
所述寿命差阈值可包括:预先设定的阈值,也可以是从其他设备接收的阈值;或者,利用电子设备内置的学习模型动态学习确定的。
所述寿命差阈值的取值范围可为0或正数;若寿命差阈值为0,则两个电池的电池寿命不一致,则直接利用电池寿命高的电池进行供电。若所述 寿命差阈值为正数,例如,所述寿命差阈值可为p*q;所述q可为第一电池或第二电池的当前容量,或者,所述第一电池和第二电池的当前容量的加权平均,或者,所述第一电池和所述电池的当前容量的中位值;总之,所述q可为根据第一电池和/或第二电池的当前容量确定的。所述p为0到1之间的数,可为:2%-3%或2%-5%等取值范围中的一个或多个。
若所述寿命差阈值的取值为0,则所述步骤S130可包括:若所述第一电池寿命减去所述第二电池寿命的寿命差值大于零,则选择第一电池供电。
若将所述寿命差阈值设置为正数,可以避免第一电池和第二电池供电之间的乒乓切换。
若两个电池在供电时,一个默认为主电池,另一个默认为辅电池。若电子设备重启之后,或者,两个电池的电量差值不大时,都优先选择主电池供电,如此,主电池的使用频率就会大大提升;另一方面,用户看到某一个电池的电量下降了很多或者两个电池的总电量下降了很多,就重新对电池供电,如此,会使得主电池和备用电池的电量差减小,由于选用主电池的优先性,会再次优先选择主电池供电,如此,会使得主电池迅速老化,比辅电池老化的程度高且老化速度快,主电池和辅电池的电池寿命不均衡就产生了。而在本实施例中,在考虑利用哪个电池供电时,考虑的是电池寿命,若两个电池的电池寿命差大于寿命差阈值,利用电池寿命高的电池供电。由此可知,本申请选择对电子设备供电的电池时,会以电池寿命作为参考因素,不再是简单的基于当前电量或电量差来选择,如此,可以减少反复选择电池寿命低的电池供电导致的电池寿命不均衡的现象,提升了第一电池和第二电池之间的电池寿命的均衡性。
在一些实施例中,电池寿命的参考优先级高于电量的参考优先级;如此,减少不考虑电池寿命或优先考虑电量,导致的电池寿命低的电池被反复选择作为供电电池向电子设备供电。例如,若第一电池寿命减去第二电 池寿命的寿命差大于寿命差阈值,只要第一电池的当前电量不过低(例如,低于预设电量值),即便第二电池的当前电量高于第一电池的当前电量,也会选择第一电池进行当前供电;以实现第一电池和第二电池的电池寿命的均衡性。
在一些实施例中,所述步骤S110可包括:电子设备的电池每完成一次充电,就执行一次素数步骤S110及步骤S120,在步骤S130中可以根据步骤S120中计算的寿命差值,切换一次主电池和辅电池的设置;然后再选择的主电池进行供电。如此,相当于默认一直维持一个电池为主电池进行供电,可以减少固定某一个电池进行供电导致的电池寿命不均衡的问题,从而提升所述电子设备连接或包含的所述第一电池和所述第二电池的寿命均衡性。
例如,所述步骤S130可包括:
将所述电池寿命高的电池设置为主电池,将所述电池寿命低的电池设置为辅电池;在下一次基于电池寿命更换主电池或辅电池之前,若主电池的当前电量不过低或者没有供电异常,则优先以主电池进行供电,如此,一方面实现了以电池寿命高的电池供电,另一方面可以很好的实现电池寿命的均衡。
所述步骤S130可包括:由电子设备的处理器或者供电控制器,根据两个电池的电池寿命,控制哪一个电池进行供电。
本公开实施例中的所述供电为提供电能。
在步骤S130利用电池寿命高的电池供电可包括:
导通电池寿命高的电池的供电连接,断开电池寿命低的电池的供电连接;
使能电池寿命高的电池的供电,去使能电池寿命低的电池的供电。
如此,确保电池寿命高的电池被使能且供电连接是导通的,可以成功 向电子设备供电。与此同时,通过电池寿命低的电池的去使能并断开了电池寿命低的电池供电连接,如此,可以避免了电池寿命低的电池的供电。
如此,通过电池寿命高的电池的供电,可以逐步降低该电池的电池寿命;而通过电池寿命低的电池的不供电,可以维持该电池的电池寿命或放缓该电池的电池寿命的缩短速度,从而逐步达到电池寿命的均衡。
在一些实施例中,如图2所示,所述方法还包括:
步骤S140:若所述寿命差值小于或等于寿命差阈值,利用所述第一电池和第二电池中电池寿命低的第二电池供电;其中,所选择供电的第二电池在设定的放电温度工作区间内。
若寿命差值小于或等于寿命差阈值,则可以利用电池寿命低的第二电池供电,选择的用于供电的第二电池是工作在设定的放电温度工作区间内,从而减少了供电的电池因为放电温度过高或过低导致的供电异常。
在一些实施例中,如图3A所示,所述方法还包括:
步骤S141:
若所述电池寿命高的第一电池的当前电量低于电量阈值,且所述电池寿命低的第二电池的当前电量高于所述电量阈值,利用所述第二电池供电。
在另一些实施例中,所述方法还包括:
步骤S142:所述电池寿命高的第一电池的当前电量比值低于比值阈值,且所述电池寿命低的第二电池的当前电量比值高于所述比值阈值,利用所述第二电池供电。
在还有一些实施例中,所述方法还包括:
步骤S143:所述电池寿命高的第一电池的供电电压低于电压阈值,且所述电池寿命低的第二电池的供电电压不低于所述电压阈值,利用所述第二电池供电。
故在一些实施例中,所述方法可包括:
若所述电池寿命高的电池的供电参数值低于预设参数值,且所述电池寿命低的电池的第供电参数值不低于所述预设参数值,利用所述电池寿命低的电池供电。
在本实施例中所述供电参数值可为各种表征对应的电池的当前电量或者当前供电状况的参数,例如,所述供电参数值可直接为第一电池或第二电池的当前电量、当前电量比值、或者,供电电压等。
若利用当前电量较小的电池持续供电,可能会导致供电电压低或者供电电流小等供电问题。若供电电压低或者供电电池小,可能会导致电子设备的工作频率下降,从而会影响电子设备的响应速率,为了避免用户体验差的问题,在本实施例中,若电池寿命高的电池的当前电量下降到预设电量值以下时,若电池寿命低的电池的当前电量高于所述预设电量值,则利用电池寿命低的电池进行供电,以确保电子设备的正常供电。
在一些实施例中,所述若所述电池寿命高的电池的供电参数值低于预设参数值,且所述电池寿命低的电池的第供电参数值不低于所述预设参数值,利用所述电池寿命低的电池供电,包括:
若所述电池寿命高的电池的当前电量低于预设电量值,且所述电池寿命低的电池的当前电量高于所述预设电量值,利用所述电池寿命低的电池供电。
例如,所述电池寿命高的电池的当前电量为:当前时刻该电池所存储的电量;若该电量低于预设电量值,该预设电量值可为预先确定的电池被消耗的比较彻底时的电量值,例如,所述预设电量值可为:Q*(1%)或Q*(5%);所述Q可为对应电池的当前容量。
在另一些实施例中,所述若所述电池寿命高的电池的供电参数值低于预设参数值,且所述电池寿命低的电池的第供电参数值不低于所述预设参数值,利用所述电池寿命低的电池供电,可包括:
所述电池寿命高的电池的当前电量比值低于第一比值阈值,且所述电池寿命低的电池的当前电量比值高于所述第一比值阈值,利用所述电池寿命低的电池供电。
所述当前电量比值为:当前电量/当前容量。
所述第一比值阈值可为预先设定的电量比值,例如,1%、5%或者6%等。
在还有一些实施例中,所述若所述电池寿命高的电池的供电参数值低于预设参数值,且所述电池寿命低的电池的第供电参数值不低于所述预设参数值,利用所述电池寿命低的电池供电可包括:
所述电池寿命高的电池的供电电压低于预设电压,且所述电池寿命低的电池的供电电压不低于所述预设电压,利用所述电池寿命低的电池供电。
电池向电子设备的供电电压一般都是预先设定的值,例如,3.3V、5.5V或者其他电压。若电池的当前电量不足,可能会导致输出的电压不能达到预设设定的值。在本实施例中,所述预设电压可为所述电子设备的***电压,为了避免影响电子设备的正常工作,在电池寿命高的电池的供电电压低于所述预设电压时,且电池寿命低的电池的供电电压高于预设电压时,利用电池寿命低的电池进行供电。
总之,在本公开实施例中,若电子设备当前利用电池寿命高的电池进行供电,检测到所述电池寿命高的电池的供电参数值低于预设参数值,且所述电池寿命低的电池的第供电参数值不低于所述预设参数值,则电子设备的处理器或者供电电路,自动切换当前供电的电池;从而减少当前电量过低的电池供电导致的电子设备工作频率降低的问题,提升电子设备的性能稳定性,同时充分利用双电池的高续航能力。
在一些实施例中,如图3B所示,所述方法还包括:
步骤S101:检测所述电池寿命高的第一电池的第一状态参数;
步骤S102:若所述第一状态参数表明所述第一电池供电异常,则利用电池寿命低的第二电池供电;
步骤S103:间隔预设时长后重新检测所述电池寿命高的第一电池的第一状态参数;
步骤S104:若重新检测的所述第一状态参数表明所述电池寿命高的电池供电正常,切换到利用所述第一电池供电。
若所述寿命差值大于寿命差阈值,且第一状态参数表明所述电池寿命高的电池供电正常,利用所述电池寿命高的第一电池供电;否则利用电池寿命低的第二电池供电。在间隔一段时间后重新检测第一电池的第一状态参数,若此时检测的第一状态参数表明第一电池供电正常,则切回到利用第一电池供电,以更好的平衡电池之间的电池寿命。
若第一状态参数表明电池寿命高的电池供电异常,例如,电池温度过高,可能过一段时间后该电池的电池温度就会恢复到正常温度;再例如,供电电压或供电电流出现波动,但是过一段时间之后,该电池的供电电压或供电电流就会恢复到正常。此时,为了尽可能的实现两个电池之间的电池寿命的均衡性,在本公开实施例中会间隔预设时长后重新检测所述电池寿命高的第一状态参数。若重现检测的第一状态参数表明所述电池寿命高的电池供电正常,则切换回电池寿命高的电池的供电。
在一些实施例中,如图3C所示,所述方法还可包括:
步骤S201:检测电池寿命低的电池的第二状态参数;
步骤S202:若所述第一状态参数表明所述电池寿命高的第一电池供电异常,且所述第二状态参数表明所述电池寿命低的第二电池供电异常,重现检测所述电池寿命高的第一电池的第一状态参数;
步骤S203:若重新检测的所述第一状态参数表明所述电池寿命高的第一电池供电正常,利用所述电池寿命高的第一电池供电。
在本实施例中,所述第一状态参数可为:描述所述第一电池的供电状态的参数,或者,所述第一电池的属性状态的参数。
在一些实施例中,所述第一状态参数可包括:所述第一电池的供电时的电池温度,在本公开实施例中称第一电池的电池温度为第一电池温度。
在另一些实施例中,所述第一状态参数除了电池供电时的电池温度,还可包括:电池标识引脚的输出电平;电池供电正常、电池供电异常时,所述电池标识引脚的输出电平是不同的。假设当前电子设备的供电的电池为第一电池,根据电池寿命和/或电池电量等参数,确定需要切换到由第二电池进行后续供电,但检测到需要切换到的第二电池的电池标识引脚的未输出表征检测到该电池的电平,即该第二电池未检测到,若该第二电池未检查到,则可能第二电池未安装好或者出现了电池安装松动等问题,若切换到第二电池供电会产生无法正常供电的现象;从而导致电子设备因断电关机等现象。
在还有一些实施例中,所述第一状态参数还可包括:供电时的供电电压和/或供电电流等供电参数;若某一个电池的供电连接出现了断路,或者,电子设备在维修的过程中或者因为碰撞到导致供电连接出现短路等问题,则供电电压和/或供电电流可能会出现过大或过小的现象。如此,利用供电参数异常的电池供电,一方面可能会损坏电池缩短电池寿命;另一方面还可能会出现电子设备的***烧毁或者自动宕机等电子设备的使用异常。故在本申请实施例中,利用第一电池或第二电池供电之前,还会检测状态参数。例如,至少检测电池寿命高的电池的第一状态参数。若第一状态参数表明该电池的供电正常,则可以不用检测电池寿命低的电池的状态参数的情况下,就可以直接利用电池寿命高的电池进行供电。
总之,在本实施例中,电池的状态参数包括:电池温度,但是不限于电池温度。
例如,所述第一状态参数包括:所述第一电池供电时的第一电池温度;所述第二电池的第二状态参数包括:所述第二电池供电时的第二电池温度。
在一些实施例中,电池供电时的电池温度可在-20至60摄氏度之间,若电池温度高于60摄氏度或低于-20摄氏度,则表示电池供电异。
在另一些实施例中,电池供电的正常温度可设置在10至45摄氏度之间,若电池温度高于45摄氏度,可认为电池温度过高,继续供电对电池寿命有很多的负面影响。若电池温度低于10摄氏度,可认为电池温度过低,虽然可以继续供电,但是对电池寿命同样有着负面影响。在10摄氏度以下或者45摄氏度以上进行供电,可能会产生供电不稳定等问题,同样对于电子设备的操作***或整体运行性能也是有不利影响的。如此,在本实施例中也可以将10至45摄氏度以外的电池温度视为供电异常的温度,而将10至45摄氏度之间的电池温度视为供电正常的温度。当然以上仅是举例,具体的供电正常的温度区间,可以根据不同的电池的性能参数及供电需求进行设置。
在一些实施例中,第一状态参数和第二状态参数是有一定的检测顺序的,例如,先检测第一状态参数,若第一状态参数表明电池寿命高的电池供电正常,则不用检测第二状态参数。若第一状态参数表明电池寿命高的电池供电异常,则再检测第二状态参数。如此,若电池供电异常相对于电池供电正常是大概率事件,如此可以减少不必要的第二状态参数的检测。
在另一些实施例中,第一状态参数和第二状态参数可以分别检测,相互之间独立,可以没有一定的先后关系。例如,电子设备的处理器同时控制传感器检测两个电池的状态参数,如此,可以实现第一状态参数和第二状态参数的同步检测。如同步检测第一状态参数和第二状态参数,那么在需要使用第二状态参数时,不用临时检测,从而在第一状态参数表明供电异常时,可以迅速的根据已经检测得到的第二状态参数判断对应的电池是 否供电正常。
在检测所述电池温度时,可以在电池附近设置与电池连接的热敏电阻;热敏电阻的阻值是随着温度的变化而变化的,如此通过向热敏电阻提供一定的电压,通过检测该热敏电阻上流过的电流,就能够基于热敏电阻与温度之间的第一对应关系,电流与热敏电阻的阻值之间的第二对应关系,计算出对应电池的电池温度。
在另一些实施例中,也可以在电池内或表面设置一个已经封装好可以直接输出温度值的温度传感器。
总之,检测电池温度的方式有很多种。而检测其他的状态参数,例如,检测供电电压或者供电电流,可以通过电压计或电流计来检测。
如此,不用间隔预设时长才去检测电池寿命高的第一电池的第一状态参数,若第二电池的第二状态参数表明第二电池放电异常,则再次检测第一电池的第一状态参数,若此时第一状态参数表明第一电池供电正常,则切换到第一电池供电,一方面确保了供电正常,另一方面可以尽可能的实现电池寿命的均衡。
在一些实施例中,所述方法还包括:
间隔预设时长后重新检测所述电池寿命高的电池的第一状态参数;
若重新检测的所述第一状态参数表明所述电池寿命高的电池供电正常,切换到利用所述电池寿命高的电池供电。
在一些实施例中,所述方法还包括:
若所述第一状态参数表明所述电池寿命高的电池供电异常,且所述第二状态参数表明所述电池寿命低的电池供电异常,重现检测所述电池寿命高的电池的第一状态参数;
若重新检测的所述第一状态参数表明所述电池寿命高的电池供电正常,利用所述电池寿命高的电池供电。
若当前检测的第一状态参数和第二状态参数分别表明对应的供电异常,可能是因为状态参数检测异常导致的,或者是状态参数的读取异常导致的,为了排除这种异常对供电异常的判断,可能会至少重新检测第一状态参数。当然,有时候电池的供电异常可能是短时间的,可能因为电子设备的后盖没有合拢等原因导致的,若这些原因被排除后,电池的供电会自动恢复到正常。为了减少上述现象的发生,通过重新检测或重新读取的方式,若重新检测到的第一状态参数表明电池寿命高的电池供电正常,则利用该电池寿命高的电池供电。
在一些实施例中,所述方法还包括:
若连续检测到预定个数的第一状态参数表明所述电池寿命高的电池供电异常,执行第一异常处理操作;
和/或,
若连续检测预定个数的所述第二状态参数表明所述电池寿命低的电池,执行第二异常处理操作。
例如,连续3次或4次检测第一状态参数都表明了电池寿命低的电池供电异常,可能表示该电池自身的状态或属性出现了异常,或者,该电池的供电电路出现了异常等。故在本实施例中,会执行第一异常处理操作;该第一异常处理操作可包括:输出该电池异常的第一异常提示;重新启动电子设备,以解决因为电池初始化参数配置错误等参数配置等原因导致的供电异常。
所述第一异常处理操作还可包括:启动电池异常检测,定位供电异常的异常点等。
所述第一异常处理操作,还可包括:向云端服务器上报预定参数,例如,连续检测的多次所述第一状态参数等,由云端服务器进行电池是否异常的判断等。
总之,所述第一异常处理操作可为:各种排除供电异常的操作。
在本实施例中,同样地连续检测的多个第二状态参数表明电池寿命低的电池供电异常,同样会执行异常处理操作,该异常处理操作为了与电池寿命高的电池的区分,称之为第二异常处理操作。第一异常处理操作与第二异常处理操作可以相同也可以不同。
在一些实施例中,若判断某一个电池的供电异常是因为电池自身的故障,如此,在电子设备的供电控制逻辑中可以利用异常标识位指示该电池的异常,如此,电子设备会主动选择正常的电池进行供电,若该异常标识位指示其中一个电池异常,为了延长待机时长,可以不再执行电池寿命的计算等操作,减少因为这些操作产生的功耗及对电池的老化加速。
在一些实施例中,所述步骤S110可包括:
确定所述第一电池的第一当前容量和所述第二电池的第二当前容量;
根据所述第一当前容量和所述第二当前容量,分别获取所述第一电池寿命及所述第二电池寿命。
第一电池的当前容量为:第一电池当前充满时的电量;第二电池的当前容量为:第二电池当前充满时的电量。一个电池充满时表明即便继续对该电池进行充电,该电池也不能继续存储电量,其存储的电量也不会继续上升。
第一电池和第二电池的电量均充满时的电量,可以表征第一电池的当前容量和第二电池的当前容量;故在本实施例中,若第一电池和第二电池均充满时,来获取第一电池寿命和第二电池寿命。
获得了第一电池的第一当前容量和第二电池的第二当前容量,则可以通过第一电池和第二电池的型号等方式得到第一标定容量和第二标定容量,从而可以快速简便的计算出所述第一电池寿命和第二电池寿命。
在本实施例中,第一电池寿命等于第一当前容量比上第一标定容量; 第二电池寿命等于第二当前容量比上第二标定容量。
所述第一标定容量为所述第一电池可充入的标准电量;所述第二标定容量为所述第而电池可充入的标准电量。
所述第一标定容量和所述第二标定容量可为预先写入所述电子设备的存储介质中的参数,如此,可以通过查询等方式确定出所述第一标定容量和所述第二标定容量。
所述根据所述第一电池和所述第二电池的电量充满的状态,获取所述第一电池寿命及所述第二电池寿命,包括:
确定所述第一电池充电起始时刻的第一电量及第二电池充电起始时刻的第二电量;
确定所述第一电池充入的第三电量及所述第二电池充入的第四电量;
基于所述第一电量及所述第三电量计算所述第一电池的第一当前容量,并基于所述第二电量及所述第四电量计算所述第二电池的第二当前容量;
基于所述第一当前容量与第一标定容量确定所述第一电池寿命,基于所述第二当前容量与第二标定容量确定的第二电池寿命,其中,所述第一标定容量为所述第一电池可充入的标准电量;所述第二标定容量为所述第而电池可充入的标准电量。
所述确定第一电量和第二电量,可以估算的电量。例如,电子设备根据电池的供电状况估算出第一电池和第二电池的在充电起始时刻的电量。第一电池充电起始时刻的电量为第一电量;第二电池充电起始时刻的电量为第二电量。
确定出第一电量和第二电量之后,可以对第一电池的充电电量进行检测或计算得到;同样也可以对第二电池的充电电量进行检测或计算得到;如此,将分别获得第一电池充入的第三电量及第二电池充入的第四电量。
求得的第一电量及第三电量之和可为:第一电池充满后的电量,即为所述第一当前电量;
求得的第二电量及第四电量之和可为:第二电池充满后的电量,即为所述第二当前电量。
在计算所述第三电量或第四电量时,可以采用如下公式进行:
Figure PCTCN2019090672-appb-000001
Q r为当前时刻电池的充电电量,T 1为当前时刻的电池温度,K(T1)为当前时刻的电流系数,a(i)为当前时刻的电流系数,i(t)为t时刻的电流,t∈(0,T 2];规充电电流为正,放电电流为负。0表示电池的充电起始时刻,T 2为电池充满的时刻,则所述Q r为对应电池充满时的第三电量或第四电量。
当然以上仅是对第三电量或第四电量进行计算一种方式,具体实现过程中,计算方式有多种,不局限于上述任意一种。例如,在一些实施例中,还可以忽略电池温度对电流系数的影响,将所述电流系数设置为常量。
所述方法还包括:
确定所述第一电量是否满足第一预设条件及所述第二电量是否满足第二预设条件;
所述确定所述第一电池充电起始时刻的第一电量及第二电池充电起始时刻的第二电量,包括:
若所述第一电量满足所述第一预设条件,确定所述第三电量;
若所述第二电量满足所述第二预设条件,确定所述第四电量。
在一些实施例中,由于第一电量和第二电量时估算的,为了确保第一当前容量和第二当前容量的精确性,确保第一电池寿命和第二电池寿命的精确性,在本实施例中只有在第一电量和第二电量分别满足对应的预设条件时,才启动第三电量及第四电量的确定,相当于才出发第一电池寿命和第二电池寿命的确定。
可选地,所述确定所述第一电量是否满足第一预设条件及所述第二电量是否满足第二预设条件,包括:
确定所述第一电量对应的电量比值是否小于第二电量比值;
确定所述第二电量对应的电量比值是否小于第三电量比值。
所述第一电量对应的电量比值,可为:第一电池的充电起始时刻的第一电量与前一次充电结束后的充电容量的比值。
所述第二电量对应的电量比值,可为:第而电池的充电起始时刻的第二电量与前一次充电结束后的充电容量的比值。
在一些实施例中,所述第二电量比值和所述第三电量比值可为同一个电量比值,如此,判断第一电池是否满足第一预设条件和判断第二电池是否满足第二预设条件的电量比值为同一个。如此,电子设备内可以仅配置一个电量比值字段或字节来存储该电量比值。若采用同一个电量比值则对应的判断第一电池是否满足第一预设条件和判断第二电池是否满足第二预设条件的电量比值必然是相等的。
若在另一些实施例中,所述第二电量比值和第三电量比值可对应了两个不同字节或字段来存储,此时,所述第二电量比值或第三电量比值可为预先设定的,第二电量比值和第三比值可以相等,也可以不相等。
在一些实施例中,所述第二电量比值和第三电量比值的取值范围可为:0%至20%,例如,5%至15%等。将第二电量比值和第三电量比值设置在5%至15%,一方面可以尽可能的减少估算的第一电量及第二电量对当前容量精确度的影响;另一方面,相对于设置的过低(例如,设置在0%至2%之间)可以很好适当的提升电池寿命确定步骤的执行,从而触发电子设备根据重新确定的电池寿命自动调整当前主要供电的电池,以更好的均衡不同电池之间的电池寿命。
如图4所示,本实施例提供一种电子设备供电装置,包括:
第一获取模块110,配置为获取第一电池的第一电池寿命及获取第二电池的第二电池寿命;
第一确定模块120,配置为根据所述第一电池寿命及所述第二电池寿命,确定所述第一电池和所述第二电池的寿命差值;
供电模块130,配置为若所述寿命差值满足预设条件,选择所述第一电池或所述第二电池进行供电。
在一些实施例中,所述供电模块130,可配置为若所述寿命差值大于寿命差阈值,利用所述第一电池和所述第二电池中电池寿命高的电池供电。
该电子设备的供电装置可应用于对应的电子设备中,此处电子设备的相关描述可以参见前述实施例。
在一些实施例中,所述第一获取模块110、第一确定模块120及供电模块130,可对应于程序模块,被处理器执行后,能够执行电池寿命的获取、寿命差值的确定及控制第一电池或第二电池向电子设备的供电。
在另一些实施例中,所述第一获取模块110、第二确定模块105及供电模块130,均可包括具体的硬件或硬件与软件的组合;例如,所述第一获取模块110可对应于计算电池寿命的电量计,用于检测计算电池寿命的当前容量等。再例如,所述第二确定模块105可包括:计算器。该供电模块130可包括供电控制器,或者,复杂可编程逻辑电路或现场可编程逻辑电路等。
所述供电模块130,还配置为若所述寿命差值大于寿命差阈值,利用所述第一电池和所述第二电池中电池寿命高的第一电池供电;其中,所述第一电池在设定的放电温度工作区间内。
在一些实施例中,所述供电模块130,还配置为若所述寿命差值小于或等于寿命差阈值,利用所述第一电池和第二电池中电池寿命低的第二电池供电;其中所选择供电的第二电池在设定的放电温度工作区间内。
在一些实施例中,所述供电模块130,还配置为若所述电池寿命高的第 一电池的当前电量低于电量阈值,且所述电池寿命低的第二电池的当前电量高于所述电量阈值,利用所述第二电池供电。
在一些实施例中,所述供电模块130,还配置为所述电池寿命高的第一电池的当前电量比值低于比值阈值,且所述电池寿命低的第二电池的当前电量比值高于所述比值阈值,利用所述第二电池供电;
在一些实施例中,所述供电模块130,还配置为所述电池寿命高的第一电池的供电电压低于电压阈值,且所述电池寿命低的第二电池的供电电压不低于所述电压阈值,利用所述第二电池供电。
在一些实施例中,所述装置还包括:
第一检测模块,配置为检测电池寿命高的第一电池的第一状态参数;
所述供电模块,还配置为若所述第一状态参数表明所述第一电池供电异常,则利用电池寿命低的第二电池供电;
所述第一检测模块,配置为间隔预设时长后重新检测所述电池寿命高的第一电池的第一状态参数;
所述供电模块,还配置为若重新检测的所述第一状态参数表明所述电池寿命高的第一电池供电正常,切换到利用所述第一电池供电。
所述装置还包括:
第二检测模块,配置为检测电池寿命低的第二电池的第二状态参数;
所述第一检测模块,配置为若所述第一状态参数表明所述电池寿命高的第一电池供电异常,且所述第二状态参数表明所述电池寿命低的第二电池供电异常,重现检测所述电池寿命高的第一电池的第一状态参数;
所述供电模块130,还配置若重新检测的所述第一状态参数表明所述电池寿命高的第一电池供电正常,利用所述电池寿命高的第一电池供电。
在一些实施例中,所述装置还包括:
所述供电模块130,还用于若所述电池寿命高的电池的供电参数值低于 预设参数值,且所述电池寿命低的电池的第供电参数值不低于所述预设参数值,利用所述电池寿命低的电池供电。
在一些实施例中,所述供电模块130,具体用于执行以下至少之一:
若所述电池寿命高的电池的当前电量低于预设电量值,且所述电池寿命低的电池的当前电量高于所述预设电量值,利用所述电池寿命低的电池供电;
或者,
所述电池寿命高的电池的当前电量比值低于第一比值阈值,且所述电池寿命低的电池的当前电量比值高于所述第一比值阈值,利用所述电池寿命低的电池供电
或者,
所述电池寿命高的电池的供电电压低于预设电压,且所述电池寿命低的电池的供电电压不低于所述预设电压,利用所述电池寿命低的电池供电。
在另一些实施例中,如图5所示,所述装置还包括:
第一检测模块101,用于检测所述电池寿命高的电池的第一状态参数;
所述供电模块130,具体用于若所述寿命差值大于寿命差阈值,且第一状态参数表明所述电池寿命高的电池供电正常,利用所述电池寿命高的电池供电。
在还有一些实施例中,所述装置还包括:
第二检测模块102,用于检测电池寿命低的电池的第二状态参数;
所述供电模块130,还用于若所述第一状态参数表明所述电池寿命高的电池供电异常,且所述第二状态参数表明所述电池寿命低的电池供电正常,利用所述电池寿命低的电池供电。
在某些实施例中,所述第一状态参数包括:所述第一电池供电时的第一电池温度;所述第二状态参数包括:所述第二电池供电时的第二电池温 度。
在还有一些实施例中,所述装置还包括:
所述第一检测模块101,还配置为间隔预设时长后重新检测所述电池寿命高的电池的第一状态参数;
所述供电模块130,配置为若重新检测的所述第一状态参数表明所述电池寿命高的电池供电正常,切换到利用所述电池寿命高的电池供电。
在某些实施例中,所述装置还包括:
所述第一检测模块101,还配置为若所述第一状态参数表明所述电池寿命高的电池供电异常,且所述第二状态参数表明所述电池寿命低的电池供电异常,重现检测所述电池寿命高的电池的第一状态参数;
所述供电模块130,还用于若重新检测的所述第一状态参数表明所述电池寿命高的电池供电正常,利用所述电池寿命高的电池供电。
在还有一些实施例中,所述装置还包括:
第一异常处理模块103,配置为若连续检测到预定个数的第一状态参数表明所述电池寿命高的电池供电异常,执行第一异常处理操作;
和/或,
第二异常处理模块104,配置为若连续检测预定个数的所述第二状态参数表明所述电池寿命低的电池,执行第二异常处理操作。
在特定的实施例中,所述第一获取模块110,配置为确定所述第一电池的第一当前容量和所述第二电池的第二当前容量;根据所述第一当前容量及所述第二当前容量,分别获取所述第一电池寿命及所述第二电池寿命。
在还有一些实施例中,所述第一获取模块110,配置为确定所述第一电池充电起始时刻的第一电量,并确定第二电池充电起始时刻的第二电量;确定所述第一电池充入的第三电量,并确定所述第二电池充入的第四电量;基于所述第一电量及所述第三电量计算所述第一电池的所述第一当前容 量,并基于所述第二电量及所述第四电量计算所述第二电池的所述第二当前容量。
在某些实施例中,所述装置还包括:
第二确定模块105,配置为确定所述第一电量是否满足第一预设条件及所述第二电量是否满足第二预设条件;
所述第一获取模块110,配置为若所述第一电量满足所述第一预设条件,确定所述第三电量;若所述第二电量满足所述第二预设条件,确定所述第四电量。
在还有一些实施例中,所述第一获取模块110,配置为确定所述第一电量对应的电量比值是否小于第二电量比值;确定所述第二电量对应的电量比值是否小于第三电量比值。
如图6所示,本实施例提供一种电子设备,包括:
存储器;
处理器,与所述存储器连接,配置为通过执行存储在所述存储器上的计算机可执行指令,实现前述一个或多个技术方案提供的电子设备供电方法。
所述存储器可包括各种存储介质,所述存储介质存储有所述计算机可执行指令;所述计算机可执行指令可包括:源代码或目标代码等。
所述处理器,可包括各种类型的集成芯片、控制器或者处理单元等。所述处理单元可包括:中央处理单元、微处理单元。所述控制器可包括:数字信号处理器等。
在一些实施例中,所述处理器可以通过总线与所述存储器连接,例如,该总线可包括:集成电路总线(I 2C)或者,串行外设接口总线(SPI)。
在另一些实施例中,所述处理器可以通过通用输入输出(General Purpose Input Output,GPIO)与所述存储器连接。
所述处理器通过计算机可执行指令的执行,实现前述一个或多个技术方案中应用的电子设备供电方法,从而基于电池寿命选择电池进行供电。
在一些实施例中,所述电子设备可如图6所示,包括通信接口及人机交互接口;该通信接口可以用于电子设备与其他设备进行信息交互。该通信接口可为:各种类型的天线或网络接口。
所述人机交互接口可包括:键盘或鼠标等各种用于人和电子设备之间的信息交互接口。
如图7所示,本实施例还提供一种电子设备,包括:
电路板,其中,所述电路板上设置有处理器和***供电引脚;
第一电池,
第一供电电路,输入端与所述第一电池的输出端连接,输出端与所述***供电引脚连接;
第二电池,
第二供电电路,输入端与所述第二电池的输出端连接,输出端与所述***供电引脚连接;
第一反向截止器件,位于所述第一供电电路上,配置为防止所述第二电池向所述第一电池供电;
第二反向截止器件,位于所述第二供电电路上,配置为防止所述第一电池向所述第二电池供电;
处理模组,与所述第一供电电路和所述第二供电电路连接,配置为若所述第一电池和第二电池的寿命差值满足预设条件,选择所述第一电池或所述第二电池进行供电。
所述电路板可为包含在电子设备内任意电路板,例如,印刷电路板(PCB)。所述电路板可为设置有电子设备的中央处理器的主板。所述电路板上设置有***供电引脚,用于各种耗能部件从***供电引脚接受电池的 供电。
所述处理模组可为各种具有信息处理或信号控制的电子元件或电子元件的组合。例如,所述处理模组可包括:微处理器、数字信号处理器、可编程器件或专用集成电路,可为一种耗电量小的器件,与第一电池和第二电池连接,同时与第一供电电路或第二供电电路连接,可以用控制第一供电电路或第二供电电路的导通和断开,从而选择第一电池或第二电池进行供电。
在本实施例中,第一电池和第二电池均设置在同一个电子设备中。
由于第一电池和第二电池的输出端均通过对应的供电电路连接到***供电引脚,若第二电池的电量低于第一电池的电量,则第一电池和第二电池之间存在着压差,这种压差可能会使得电量高的电池向电量低的电池供电,显然这种电池之间相互供电,也会产生电池的老化,并不是电子设备所需要的。
在本实施例中,一方面利用第一反向截止器件和第二方向截止器件来防止电池之间的相互供电。例如,电子设备在切换供电的电池时,为了避免切换过程中导致电子设备的供电,会导通目标供电的电池的供电电路,在导通目标供电的电池的供电电路之后再切断源供电的电池的供电电路,如此,至少存在一个瞬间两个电池的供电电路都是导通的,由于第一电池和第二电池本身也接地,如此,若存在压差,则会产生高电压的电池向低电压的电池供电。
另一方面,在第一供电电路和第二供电电路中使用了很多晶体管或三极管等器件,在断开对应的电池的供电电路时,是通过输入的开启电压或开启电流来实现的,例如,晶体管的漏极和源极仅是因为没有足够的栅源电压暂时中断电流,但是若源极电压高于漏极,则可能会产生反向导通,从而产生电流倒灌现象,故本实施例中还通过第一反向截止器件和第二反 向截止器件的设置,防止因为压差的电流倒灌产生的电池之间相互充电现象。
在本实施例中,所述第一反向截止器件可包括:二极管等单向导通管。在另一些实施例中,所述第一反向截止器件可为打包好的具有反向截止功能的芯片,例如,在一些实施例中,所述第一反向截止器件可包括:受控开关管及控制电路,该受控开关管可包括:场效应晶体管(MOS管)。所述受控开关管可包括:控制端、输入端及输出端;所述控制端与所述控制电路连接,所述输入端与所述第一电池连接,所述输出端可与所述***电源引脚连接。所述控制电路可以用于产生控制电平,该控制电平的高低直接决定了所述受控开关管的输入端和所述输出端连通。若所述第一电池不供电,则所述控制电平可为控制所述输入端和输出端不导通的低电平,否则输出高电平。同样的第二反向截止器件也可以包括:受控开关管及控制电路。在一些实施例中,所述第一反向截止器件和第一反向截止器件的受控开关与同一个控制电路连接。所述控制电路包括两个输出端,分别为与所述第一反向截止器件连接的第一输出端和所述第二反向截止器件连接的第二输出端。在一些实施例中,所述控制电路可以产生出第一控制信号,所述第一控制信号上的连接有所述第一输出端,所述第一输出端可以直接输出所述第一控制信号,所述控制电路上还设置有与所述第一输出端并联的第二输出端。假设所述第一输出端所在的电路为第一路径;则所述第二输出端所在的电路为第二路径;所述第一路径和第二路径并联,所述第一路径和第二路径的连接从同一个电平输出点分出;所述第二路径比所述第一路径多一个反向器。如此,确保了分别输出不同反向截止器件的受控开关的控制信号总是反向的。即,若第一控制信号为高电平,则第二控制信号为低电平;若第一控制信号为低电平,则第二控制信号为高电平。如此,第一反向截止器件在高电平的作用下允许第一电池供电时,还将截止第二 电池的电流灌入第一电池;第二反向截止器件在低电平的作用下禁止第二电池供电,还将截止第一电池的电流灌入第二电池。
在一些实施例中,所述电子设备还包括:
充电接口;
第一充电电路,输入端与所述充电接口连接,输出端与所述第一电池连接,用于向所述第一电池充电;
第二充电电路,输入端与所述充电接口连接,输出端与所述第二电池连接,用于向所述第二电池充电;
第一电量计,与所述第一充电电路连接,配置为检测第一电池的充电电量的第一电量计;
第二电量计,与所述第二充电电路连接,配置为检测第一电池的充电电量的第二电量计。
在一些实施例中,所述充电接口可为各种类型的有线充电接口,例如,迷你通用串行总线(min Universal Serial Bus,mini USB)等。
在一些实施例中,所述充电接口还可为:无线充电接口,例如,利用无线充电技术进行充电的电子设备,可包括能够进行无线充电的充电接口。
在本实施例中第一电池和第二电池可以共用一个所述充电接口,如此,该充电接口在有电流输入时,会分流到第一电池和第二电池,分别对第一电池和第二电池进行充电。
该充电接口可以连接向第一电池和第二电池充电的电源,例如,连接到市电的供电插座、外部充电电源(例如,移动充电宝)或者个人电脑等可以提供电流输入的设备。
在本实施例中,所述电子设备还引入了第一电量计和第二电量计。在第一电池充电时,第一电量计可以与第一电池并联在第一充电电路上,如此,第一充电电路上的电流分两路分别流入第一电池和第一电量计,第一 电量计根据自身所分的电量做充电时段内的积分运算或者记录自身电流的变化,就可以方便前述第三电量的计算。同样地,在第二电池充电时,第二电量计可以与第二电池并联在第二充电电路上,如此,第二充电电路上的电流分两路分别流入第二电池和第二电量计,第二电量计根据自身所分的电量做充电时段内的积分运算或者记录自身电流的变化,就可以方便前述第四电量的计算。
在一些实施例中,使能所述第一电池充电的第一使能引脚可为所述第一供电电路的第一使能引脚,使能或去使能所述第一供电电路,达到使能第一电池的供电或去使能第一电池的供电。例如,第一使能引脚接收到第一电平的第一使能信号,使能第一电池的供电;第一使能引脚接收到第二电平的第一使能信号,去使能第一电池的供电。所述第一电平不等于所述第二电平。
使能所述第二电池充电的第一使能引脚可为所述第二供电电路的第二使能引脚,使能或去使能所述第一供电电路,达到使能第二电池的供电或去使能第二电池的供电。例如,第二使能引脚接收到第三电平的第二使能信号,使能第二池的供电;第二使能引脚接收到第四电平的第二使能信号,去使能第二电池的供电。所述第三电平不等于所述第四电平。
所述第一使能信号与所述第二使能信号可以由电子设备的中央处理器或者供电控制器提供。
在一些实施例中,所述第一电平与所述第三电平相等;所述第四电平等于所述第三电平。如此,第二使能信号可以为所述第一使能信号的反向信号。中央处理器或供电控制器可以仅产生第一使能信号;第一使能信号输入到多路复用器,输出两路所述第一使能信号;将输出的两路第一使能信号中的一路输入到反向器,反向器输出与所述第一使能信号相反的第二使能信号。
若第一使能信号和第二使能信号的输出引脚为GPIO引脚,则将第一使能信号和第二使能信号对应的电平设置相等,则可以减少中央处理器或者供电控制器一个GPIO引脚的使用。
在本实施例中,所述第一使能信号和第二使能信号可选为GPIO引脚传输的GPIO信号,GPIO信号传输相对于总线传输的总线信号而言,产生GPIO信号的逻辑相对简单且传输速率更高。
本公开实施例还提供一种计算机存储介质,所述计算机存储介质存储有计算机可执行指令;所述计算机可执行指令被执行后,能够前述一个或多个技术方案提供的电子设备供电方法;例如,
以下结合上述任意实施例提供几个具体示例:
示例1:
本示例提供一种双电池供电方法,可以提高电池的利用率,保证终端中各用电模块的正常运行,同时达到电池的使用寿命均衡。
如图8所示,本示例提供的方法可如下:
检测所述第一电池的电池寿命与所述第二电池的电池寿命,并计算得到寿命差值;此处的寿命差值为第一电池的电池寿命减去所述第二电池的电池寿命;在另一些情况下,所述寿命差值也可以是第二电池的电池寿命减去第一电池的寿命;
若检测到所述寿命差值大于预设阈值且当前第一电池处于供电状态第二电池处于非供电状态,则切换所述第一电池和所述第二电池的状态;在一些情况下,寿命差值预设阈值默认设置为0。
返回检测所述第一电池与所述第二电池的寿命差值的操作;也就是说,第一电池的电池寿命比第二电池的电池寿命高,优先采用第一电池给***供电。
总之,若检测到所述寿命差值大于寿命差阈值,且当第一电池处于 供电状态第二电池处于非供电状态,则切换所述第一电池和所述第二电池的状态。此处的状态可包括:供电状态或非供电状态。
图9所示为本示例提供的电子设备供电方法的具体流程,包括:
检测和记录第一电池的电池寿命和第二电池的电池寿命;
判断第一电池和第二电池的寿命差值是否大于预设阈值;
若是,使能第一电池作为***供电的供电电池;
若否,使能第二电池作为***供电的供电电池。
本示例提供一种电子设备,该电子设备可为各种类型的固定终端或移动终端。例如,如图10所示,所述电子设备可包括:
电池寿命检测模块,对应于前述的第一获取模块110,该电池寿命检测模块可用于分别检测所述第一电池和所述第二电池的电池寿命。
寿命差值检测模块,可以对应于前述的第一确定模块120,该寿命差值计算模块可配置为计算所述第一电池和所述第二电池的寿命差值。
供电通路控制模块,可为前述的供电模块130的组成部分,该电池供电控制模块可用于控制和切换所述第一电池或所述第二电池给***供电;
电池温度检测模块,配置为检测电池温度。
本示例的实施例还提供一种电子设备,所述电子设备包括:充电模块及电量计模块。
所述充电模块可包括:第一充电子模块及第二充电子模块;所述电量计模块可包括:第一电量计子模块及第二电量计子模块。
第一电池、第一充电子模块、第一电量计子模块、第一电池温度检测模块、第二电池、第二充电子模块、第二电量计子模块、第二电池温度检测模块、开关切换模块和处理器模块。
所述的第一充电子模块用于给第一所述电池进行充电,所述的第一 电量计子模块用于计算第一电池的电量;所述的第一电池温度检测模块用于检测第一电池的温度。通过第一充电子模块和第一电量计子模块计算得到第一电池的寿命。例如,第一电池温度检测模块实时检测所述第一电池的温度。
所述的第二充电子模块配置为给第一所述电池进行充电,所述的第二电量计子模块用于计算第二电池的电量;所述的第二电池温度检测模块用于检测第二电池的温度。同样通过第二充电模块和第二电量计模块计算得到第二电池的寿命。例如,所述第二电池温度检测模块实时检测所述第二电池的温度。
在本示例中所述第一电池温度检测模块可为前述第一检测模块的组成部分;所述第二电池温度检测模块可为前述第二检测模块的组成部分。
通过安时积分法计算得到电池的真实充电电量的方法为:
Figure PCTCN2019090672-appb-000002
Q r为当前时刻电池的充电电量,T 1为当前时刻的电池温度,K(T1)为当前时刻的电流系数,a(i)为当前时刻的电流系数,i(t)为t时刻的电流,t∈(0,T 2];规充电电流为正,放电电流为负。0表示电池的充电起始时刻,T 2为电池充满的时刻,则所述Q r为对应电池充满时的第三电量或第四电量。
电池寿命=当前容量/标定容量。
所述的开关切换模块用于控制第一电池或者第二电池给***进行供电;所述处理器模块用于计算得到所述第一电池与所述第二电池的电池寿命,并进一步计算得到第一电池与所述第二电池的寿命差值。
本示例技术使两个电池在长时间使用后寿命差值保持在一定范围内,是的两个电池的性能保持接近,从而提高整个电池***的性能。
充电模块用于分别给第一电池和第二电池进行充电;
电量计模块用于分别统计第一电池和第二电池的电量;
电池寿命检测模块用于分别检测第一电池和第二电池的电池寿命,通过电量计检测充电电流和充电时长,对充电电流在时间上进行积分得到电池的真实容量,电池寿命=满充时的电量/标定的电池电量;
电池温度检测模块用于分别检测第一电池和第二电池的电池温度,通过检测电池的热敏电阻NTC端的电压得到电池的温度;
供电通路模块用于分别控制第一电池或第二电池的供电通路,使用GPIO引脚控制电池输出给***供电。
示例2:
如图11所示,USB_IN为通用串行总线(Universal Serial Bus,USB)接口或者充电器的输入;VBAT_SYS可作为与***电源引脚连接的***供电输出。
电池的正极连接到供电控制芯片(例如,LTC4412芯片)Vin引脚,Vout输出;使能(Enable)引脚作为供电控制芯片导通的使能信号输入引脚。使能信号为低电平,表示供电控制芯片使能;Status引脚输出的为电池导通供电的状态信号;状态(Status)引脚为高表示LTC4412芯片使能,电池通过Vin引脚输入,Vout引脚输出电能以给***供电。
Enable引脚接到处理器的GPIO引脚,通过GPIO引脚的高低电平控制LTC4412芯片的使能。
LTC4412芯片具有反向截止功能,放置第一电池和第二电池之间由于电压的差引起的电流倒灌问题。此处的LTC4412芯片为第一供电电路和第二供电电路上的组成结构。
在一些情况下,所述供电控制芯片不局限于所述LTC4412,还可以是其他控制芯片;选择LTC4412芯片是具有功耗小的特点,LTC4412芯片的静态电流小,从而具有功耗小的特点。
第一充电模块配置为给第一电池进行充电,第二充电模块用于给第 二电池进行充电;电量计A用于检测和计算第一电池的电量,电量计A用于检测和计算第二电池的电量。
在图11中,电量计A对应于前述的第一电量计子模块,电量计B对应于前述的第二电量计子模块。
示例3:
通过分别检测第一电池和和第二电池的电池寿命,计算得到第一电池和第二电池的寿命差值,若检测到第一电池和第二电池的寿命差值大于预设阈值,则使能第一电池给***供电通路,关闭第二电池给***供电通路,采用第一电池给***供电;若检测到第一电池和第二电池的寿命差值小于预设阈值,则使能第二电池给***供电通路,关闭第一电池给***供电通路,采用第二电池给***供电。特别地,本示例中预设阈值为0,即用于判断第一电池和第二电池的寿命大小。
如图12所示,电子设备采用的电池可分为锂电芯和外部的保护电路,保护电路主要包括检测电池温度的NTC(Negative Temperature Coefficient)热敏电阻和电池ID引脚;其中BAT_OUT为电池的正极输出,BAT_ID用于检测电池的ID,THERM_BIAS接参考***电压。THERM引脚用于检测NTC热敏电阻端的电压,接***的ADC引脚,***通过THERM引脚检测电池NTC电阻的电压从而监控电池温度。
电子设备采用的锂电池放电的工作环境温度区间一般为-20℃至+60℃。特别地,双电池终端,第一电池和第二电池各有一个电池温度检测引脚,通过第一充电模块和第二充电模块分别检测第一电池和第二电池的电池温度。设定电池的放电温度工作区间为-20℃至+60℃,为了有效的保护电池,电池的放电温度工作区间可以设置为-15℃至+55℃。
如图13所示,本示例提供的电子设备的供电方法可包括:
分别检测并记录第一电池和和第二电池的电池寿命,计算得到第一 电池和第二电池的寿命差值,
检测第一电池和第二电池的寿命差值是否大于预设阈值;
若是,检测第一电池的温度是否是在设定的放电温度工作区间内;若检测到所述第一电池的温度在所述放电温度工作区间内时,则使能第一电池给***供电通路,关闭第二电池给***供电通路,采用第一电池给***供电;
若否,检测第二电池的温度是否在设定的放电温度工作区间内,若检测到所述第二电池的温度在所述放电温度工作区间内时,则使能第二电池给***供电通路,关闭第一电池给***供电通路,采用第二电池给***供电。
若再次检测第一电池的温度超出设定的放电温度工作区间内,且第二电池的温度超出设定的放电温度工作区间内,***关机。
如图14所示,在检测到第一电池和第二电池的寿命差值大于预设阈值,同时检测第一电池的温度在设定的放电温度工作区间内时,则使能第一电池给***供电通路,采用第一电池给***供电;若第一电池在***供电中,检测到第一电池的电量下降到1%或者供电电压小于3.4V,则使能第二电池给***供电通路,关闭第一电池给***供电通路,采用第二电池给***供电。
在一些情况下,如图14所示,所述方法还包括:
在使能所述第二电池给***供电之前,检测第二电池的温度是否在预设放电温度工作区间内,若是,则使能第二电给***供电,并在使能第二电池之后关闭第一电池的供电通路;若否,则***关机。
电池寿命检测模块用于分别检测第一电池和第二电池的电池寿命,通过电量计检测充电电流和充电时长,对充电电流在时间上进行积分得到电池的真实容量,电池寿命=满充时的电量/标定的电池电量;本示例 中采用满充时的电量来计算得到电池使用一段时间后的实时真实容量。充电时学习的初始电池容量(<15%),通过如下方法分别计算得到第一电池和第二电池的电池寿命。
电池满充时的电量=充电学习时起始充电预估容量Q 0+起始充电到电池充满时充入电量Q r
充电学习时起始充电预估容量Q 0=起始充电电量百分比*上一次学习到的真实电池满充时的电量Q r-1
起始充电到电池充满时的电量变化可如图15所示。
起始充电电量到电池充满时充入电量如下:
Figure PCTCN2019090672-appb-000003
特别地,在常温0℃至45℃的电池温度范围内充电,电流系数K(T)取值为1,电流系数a(i)取值为1。充电电流和充电时间通过充电模块或者电量计模块进行统计,本示例中采用充电模块进行统计。
另外,对于第一电池和第二电池学习电池满充时的电量Q 1r、Q 2r和上一次学习到的真实电池满充时的电量Q 1r-1、Q 2r-1会分别记录到存储器ROM中。
其中,供电通路模块,供电通路模块用于分别控制第一电池或第二电池的供电通路,使用GPIO引脚控制电池输出给***供电,其控制逻辑如下表所示:
Figure PCTCN2019090672-appb-000004
Figure PCTCN2019090672-appb-000005
在本示例中电平状态为“0”和“1”是不同的;所述电平状态为“0”可对应于前述的低电平;所述电平状态为“1”可对应于前述的高电平。
在本实施例中,所述第一电池的供电控制器和第二电池的供电控制器,分别包括使能引脚和状态引脚,使能引脚的使能信号的输入控制对应的控制器是否使能对应的电池,状态引脚的输出表明了当前对应的电池是否供电。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个***,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元,即可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本公开各实施例中的各功能单元可以全部集成在一个处理模块中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储设备、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (14)

  1. 一种电子设备供电方法,包括:
    获取第一电池的第一电池寿命及获取第二电池的第二电池寿命;
    根据所述第一电池寿命及所述第二电池寿命,确定所述第一电池和所述第二电池的寿命差值;
    若所述寿命差值满足预设条件,选择所述第一电池或所述第二电池进行供电。
  2. 根据权利要求1所述的方法,其中,
    所述若所述寿命差值满足预设条件,选择所述第一电池或所述第二电池进行供电,包括:
    若所述寿命差值大于寿命差阈值,利用所述第一电池和所述第二电池中电池寿命高的第一电池供电;其中,所述第一电池在设定的放电温度工作区间内。
  3. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述若所述寿命差值满足预设条件,选择所述第一电池或所述第二电池进行供电,包括:
    若所述寿命差值小于或等于寿命差阈值,利用所述第一电池和第二电池中电池寿命低的第二电池供电;其中,所选择供电的第二电池在设定的放电温度工作区间内。
  4. 根据权利要求2所述的方法,其中,
    所述方法还,包括:
    若所述电池寿命高的第一电池的当前电量低于电量阈值,且所述电池寿命低的第二电池的当前电量高于所述电量阈值,利用所述第二电池供电。
  5. 根据权利要求2所述的方法,其中,
    所述方法还包括:
    所述电池寿命高的第一电池的当前电量比值低于比值阈值,且所述电池寿命低的第二电池的当前电量比值高于所述比值阈值,利用所述第二电池供电;
  6. 根据权利要求2所述的方法,其中,所述方法还包括:
    所述电池寿命高的第一电池的供电电压低于电压阈值,且所述电池寿命低的第二电池的供电电压不低于所述电压阈值,利用所述第二电池供电。
  7. 根据权利要求2所述的方法,其中,所述方法还包括:
    检测电池寿命高的第一电池的第一状态参数;
    若所述第一状态参数表明所述第一电池供电异常,则利用电池寿命低的第二电池供电;
    间隔预设时长后重新检测所述电池寿命高的第一电池的第一状态参数;
    若重新检测的所述第一状态参数表明所述电池寿命高的第一电池供电正常,切换到利用所述第一电池供电。
  8. 根据权利要求7所述的方法,其中,所述方法还包括:
    检测电池寿命低的第二电池的第二状态参数;
    若所述第一状态参数表明所述电池寿命高的第一电池供电异常,且所述第二状态参数表明所述电池寿命低的第二电池供电异常,重现检测所述电池寿命高的第一电池的第一状态参数;
    若重新检测的所述第一状态参数表明所述电池寿命高的第一电池供电正常,利用所述电池寿命高的第一电池供电。
  9. 根据权利要求8所述的方法,其中,所述方法还包括:
    若连续检测到预定个数的第一状态参数表明所述电池寿命高的电池供电异常,执行第一异常处理操作;
    和/或,
    若连续检测预定个数的所述第二状态参数表明所述电池寿命低的电池,执行第二异常处理操作。
  10. 一种电子设备供电装置,其中,包括:
    第一获取模块,配置为获取第一电池的第一电池寿命及获取第二电池的第二电池寿命;
    第一确定模块,配置为根据所述第一电池寿命及所述第二电池寿命,确定所述第一电池和所述第二电池的寿命差值;
    供电模块,用于若所述寿命差值满足预设条件,选择所述第一电池或所述第二电池进行供电。
  11. 一种电子设备,其中,包括:
    存储器;
    处理器,与所述存储器连接,配置为通过执行存储在所述存储器上的计算机可执行指令,实现权利要求1至9任一项提供的方法。
  12. 一种电子设备,其中,包括:
    电路板,其中,所述电路板上设置有处理器和***供电引脚;
    第一电池,
    第一供电电路,输入端与所述第一电池的输出端连接,输出端与所述***供电引脚连接;
    第二电池,
    第二供电电路,输入端与所述第二电池的输出端连接,输出端与所述***供电引脚连接;
    第一反向截止器件,位于所述第一供电电路上,配置为防止所述第二电池向所述第一电池供电;
    第二反向截止器件,位于所述第二供电电路上,配置为防止所述第一 电池向所述第二电池供电
    处理模组,与所述第一供电电路和所述第二供电电路连接,配置为若所述第一电池和第二电池的寿命差值满足预设条件,选择所述第一电池或所述第二电池进行供电。
  13. 根据权利要求12所述的电子设备,其中,
    充电接口;
    第一充电电路,输入端与所述充电接口连接,输出端与所述第一电池连接,用于向所述第一电池充电;
    第二充电电路,输入端与所述充电接口连接,输出端与所述第二电池连接,用于向所述第二电池充电;
    第一电量计,与所述第一充电电路连接,配置为检测第一电池的充电电量的第一电量计;
    第二电量计,与所述第二充电电路连接,配置为检测第一电池的充电电量的第二电量计。
  14. 一种计算机存储介质,所述计算机存储介质存储有计算机可执行指令;所述计算机可执行指令被执行后,能够实现权利要求1至9任一项提供的方法。
PCT/CN2019/090672 2018-08-30 2019-06-11 电子设备供电方法及装置、电子设备及存储介质 WO2020042715A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811003335.3A CN110875610A (zh) 2018-08-30 2018-08-30 电子设备供电方法及装置、电子设备及存储介质
CN201811003335.3 2018-08-30

Publications (1)

Publication Number Publication Date
WO2020042715A1 true WO2020042715A1 (zh) 2020-03-05

Family

ID=69643377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090672 WO2020042715A1 (zh) 2018-08-30 2019-06-11 电子设备供电方法及装置、电子设备及存储介质

Country Status (2)

Country Link
CN (1) CN110875610A (zh)
WO (1) WO2020042715A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI771899B (zh) * 2021-02-05 2022-07-21 亞東學校財團法人亞東科技大學 自動量測和評估電池壽命的系統

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113311268A (zh) * 2021-05-27 2021-08-27 浙江华消科技有限公司 一种红外发射管寿命检测方法、装置、设备及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101471572A (zh) * 2007-12-28 2009-07-01 上海晨兴电子科技有限公司 手机不间断供电***及其供电方法
CN105141001A (zh) * 2015-09-23 2015-12-09 刘奇 一种电池单元充供电的控制方法及其***和电池单元的供电方法
CN105305514A (zh) * 2014-06-23 2016-02-03 中兴通讯股份有限公司 电池充电方法及装置
CN105429236A (zh) * 2015-12-25 2016-03-23 华南理工大学 一种基于电流预测的动力电池组均衡控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101471572A (zh) * 2007-12-28 2009-07-01 上海晨兴电子科技有限公司 手机不间断供电***及其供电方法
CN105305514A (zh) * 2014-06-23 2016-02-03 中兴通讯股份有限公司 电池充电方法及装置
CN105141001A (zh) * 2015-09-23 2015-12-09 刘奇 一种电池单元充供电的控制方法及其***和电池单元的供电方法
CN105429236A (zh) * 2015-12-25 2016-03-23 华南理工大学 一种基于电流预测的动力电池组均衡控制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI771899B (zh) * 2021-02-05 2022-07-21 亞東學校財團法人亞東科技大學 自動量測和評估電池壽命的系統

Also Published As

Publication number Publication date
CN110875610A (zh) 2020-03-10

Similar Documents

Publication Publication Date Title
US9846472B2 (en) Firmware update method and power system thereof
US6842708B2 (en) Method and apparatus for determining battery life
US10522882B2 (en) Semiconductor device, battery pack, and mobile terminal with multi-speed CPU
TWI427892B (zh) 具省電功能之供電系統及供電方法
US11188135B2 (en) Battery controller, electronic device, battery pack, and battery controlling method
US10211653B2 (en) Dynamic battery cell impedance monitoring
US10326287B2 (en) Multiple battery cell monitor having shared control lines and balance switch
TW201331744A (zh) Usb集線器和usb集線器的電力供應方法
US11909243B2 (en) Information handling systems and improved battery charge control methods
TW201315090A (zh) 控制器、電池管理系統及其控制方法
US11114876B2 (en) Battery safety mechanism for battery fault conditions
CN112236916A (zh) 包括控制连接到充电电路的开关的控制电路的电子装置
CN113453108B (zh) 无线耳机、无线耳机***和无线耳机的关机方法
EP2984699A1 (en) Dynamic charging of a rechargeable battery
TW201520570A (zh) 充電電池溫度偵測方法、電源管理裝置及電子系統
WO2020042715A1 (zh) 电子设备供电方法及装置、电子设备及存储介质
GB2563311A (en) Circuits, systems and methods for protecting batteries
JPWO2014133009A1 (ja) 蓄電池、蓄電池の制御方法、制御装置及び制御方法
US11054483B2 (en) Terminal device, method for leakage detection therefor
KR102500690B1 (ko) 배터리 상태를 기반으로 충전을 제어하는 방법 및 장치
CN112003346B (zh) 充电方法和电子设备
US9599519B2 (en) Charging a battery based on stored battery characteristics
TWI755343B (zh) 智慧電池裝置及其電子裝置
US9305452B2 (en) Battery over-charge and over-discharge protection system and battery protection method able to release a protection state
JP2021035286A (ja) 充電制御方法、充電制御装置、充電装置、および、充電システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19854326

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08/07/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19854326

Country of ref document: EP

Kind code of ref document: A1