WO2020042649A1 - 光转换基板及其制造方法和显示面板 - Google Patents

光转换基板及其制造方法和显示面板 Download PDF

Info

Publication number
WO2020042649A1
WO2020042649A1 PCT/CN2019/084867 CN2019084867W WO2020042649A1 WO 2020042649 A1 WO2020042649 A1 WO 2020042649A1 CN 2019084867 W CN2019084867 W CN 2019084867W WO 2020042649 A1 WO2020042649 A1 WO 2020042649A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
light conversion
substrate
light
pixel region
Prior art date
Application number
PCT/CN2019/084867
Other languages
English (en)
French (fr)
Inventor
韦冬
杨小龙
王建太
陈华山
邢汝博
Original Assignee
昆山工研院新型平板显示技术中心有限公司
昆山国显光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山工研院新型平板显示技术中心有限公司, 昆山国显光电有限公司 filed Critical 昆山工研院新型平板显示技术中心有限公司
Priority to US16/808,648 priority Critical patent/US11251345B2/en
Publication of WO2020042649A1 publication Critical patent/WO2020042649A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/302Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements characterised by the form or geometrical disposition of the individual elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body

Definitions

  • the present application relates to the field of display technology, and in particular, to a light conversion substrate, a manufacturing method thereof, and a display panel.
  • RGB three-color light is generally required.
  • three-color light sources can be used to directly emit three-color light, or a single-color light source can be used in combination with a light conversion substrate to emit three-color light.
  • the light conversion substrate can convert light of one color into light of other colors, and then This achieves the production of three-color light.
  • the existing light conversion substrate is not suitable for high pixel density display. panel.
  • the present application provides a method of manufacturing the substrate for light conversion and a display panel to solve the problems between different light converting optical converter substrates easily interfere with each other.
  • the present application proposes a light conversion substrate, which includes a substrate including a first surface and a second surface disposed opposite to each other, a first surface of the substrate is provided with a plurality of first grooves, and the first The two surfaces are provided with a plurality of second grooves, and the first groove and the second groove are staggered; the first light conversion body is disposed in the first groove; the second light conversion body is disposed in the second groove .
  • the light conversion substrate further includes: a first sealing layer disposed in or on the first groove to seal the first light conversion body in the first groove; and a second sealing layer disposed on the first groove. In the two grooves or on the second groove, the second light conversion body is sealed in the second groove.
  • the first sealing layer is disposed in the first groove, and the surface of the first sealing layer away from the first light conversion body is flush with the first surface of the substrate, and / or the second sealing layer is disposed in the second groove. And the surface of the second sealing layer away from the second light conversion body is flush with the second surface of the substrate.
  • the substrate defines a plurality of pixel regions arranged in an array, and each of the first grooves and each of the second grooves is respectively corresponding to a pixel region.
  • the plurality of pixel regions include a red pixel region, a green pixel region, and a blue pixel region that are periodically arranged in sequence.
  • the first groove is provided corresponding to the red pixel region, and the first light conversion body is a red light quantum dot.
  • the second groove Corresponding to the green pixel area, the second light conversion body is a green light quantum dot.
  • the portion of the substrate corresponding to the blue pixel region is a flat structure.
  • the plurality of pixel regions include a red pixel region, a green pixel region, a blue pixel region, and a green pixel region that are periodically arranged in sequence; the first groove is provided corresponding to the red pixel region, and the first light conversion body is a red light quantum dot; The second groove is provided corresponding to the green pixel area, and the second light conversion body is a green light quantum dot.
  • the portion of the substrate corresponding to the blue pixel region is a flat structure.
  • the first surface of the substrate is further provided with a plurality of third grooves, and each third groove is provided corresponding to a pixel area; the first groove and the third groove are spaced at least one pixel area; the light conversion substrate is further The third light conversion body is included in the third groove.
  • the multiple pixel regions include a red pixel region, a green pixel region, a blue pixel region, and a white pixel region that are periodically arranged in sequence.
  • the first groove corresponds to the red pixel region, and the first light conversion body is a red light quantum dot.
  • the two grooves correspond to the green pixel region, and the second light conversion body is a green light quantum dot;
  • the third groove corresponds to the blue pixel region, and the third light conversion body is a blue light quantum dot.
  • the portion of the substrate corresponding to the white pixel region is a flat structure.
  • the second surface of the substrate is further provided with a plurality of third grooves, and each third groove is provided corresponding to one pixel area; the second groove and the third groove are spaced apart by at least one pixel area; the light conversion substrate is further The third light conversion body is included in the third groove.
  • the multiple pixel regions include a red pixel region, a green pixel region, a blue pixel region, and a white pixel region that are periodically arranged in sequence.
  • the first groove corresponds to the red pixel region, and the first light conversion body is a red light quantum dot.
  • the two grooves correspond to a green pixel region, and the second light converter is a green light quantum dot;
  • the third groove corresponds to a white pixel region, and the third light converter is a mixture of red light quantum dots and green light quantum dots.
  • the portion of the substrate corresponding to the blue pixel region is a flat structure.
  • first groove and the second groove are both cubes, and the corresponding groove openings are quadrangular, and the sides of the quadrangles are 1 ⁇ m to 100 ⁇ m; or, the first groove and the second grooves are both cylindrical, corresponding to the groove opening It is circular, and the diameter of the circle is 1 ⁇ m to 100 ⁇ m.
  • the side length of the quadrangle is 50 ⁇ m, or the diameter of the circle is 50 ⁇ m.
  • a display panel including a light-emitting substrate and a light-converting substrate.
  • the light-emitting substrate is disposed on one side of the light-converting substrate.
  • the light-converting substrate includes a substrate including a first surface and a first surface disposed opposite to each other. There are two surfaces.
  • the first surface of the substrate is provided with a plurality of first grooves.
  • the second surface of the substrate is provided with a plurality of second grooves.
  • the first groove and the second groove are staggered. In the first groove; and the second light converter is disposed in the second groove.
  • the light emitting substrate is a blue light emitting substrate, an ultraviolet light emitting substrate, or a white light emitting substrate.
  • the present application proposes a method for manufacturing a light conversion substrate.
  • the manufacturing method includes: providing a substrate, the substrate including a first surface and a second surface disposed opposite to each other; and processing the first surface of the substrate to form a first A groove; the second surface of the substrate is processed to form a second groove, and the first groove and the second groove are staggered; a first light conversion body is filled in the first groove; A surface is coated with a first sealing layer to seal the first light converting body in the first groove; a second groove is filled in the second groove; a second sealing layer is sealed on the second surface of the substrate, The second light conversion body is sealed in the second groove.
  • the manufacturing method further includes: performing a thinning process on the first sealing layer; and performing a thinning process on the second sealing layer.
  • the substrate in the light conversion substrate of the present application includes a first surface and a second surface disposed opposite to each other.
  • the first surface of the substrate is provided with a plurality of first grooves, in which a first light conversion body is disposed; and the second surface of the substrate Then, a plurality of second grooves are provided, in which a second light conversion body is provided; the first groove and the second groove are staggered.
  • different first and second light conversion bodies are respectively disposed on the first and second surfaces, so the formation of the first and second light conversion bodies will not interfere with each other.
  • the first groove and the second The distance between the grooves can be minimized, so that it is suitable for high pixel density display panels.
  • FIG. 1 is a schematic structural diagram of a first embodiment of a light conversion substrate of the present application
  • FIG. 2 is a schematic diagram of a first arrangement manner of a sealing layer in the embodiment of the light conversion substrate shown in FIG. 1;
  • FIG. 3 is a schematic diagram of a second arrangement manner of the sealing layer in the embodiment of the light conversion substrate shown in FIG. 1;
  • FIG. 4 is a schematic diagram of a third setting manner of the sealing layer in the embodiment of the light conversion substrate shown in FIG. 1;
  • FIG. 5 is a schematic structural diagram of a second embodiment of a light conversion substrate of the present application.
  • FIG. 6 is a schematic structural diagram of a third embodiment of a light conversion substrate of the present application.
  • FIG. 7 is a schematic structural diagram of a fourth embodiment of a light conversion substrate of the present application.
  • FIG. 8 is a schematic structural diagram of a fifth embodiment of a light conversion substrate of the present application.
  • FIG. 9 is a schematic diagram of a manufacturing process of a light conversion substrate of the present application.
  • FIG. 10 is a schematic structural diagram of an embodiment of a display panel of the present application.
  • FIG. 1 is a schematic structural diagram of a first embodiment of a light conversion substrate according to the present application.
  • the light conversion substrate 100 in this embodiment includes a first light conversion body 11, a second light conversion body 12, and a substrate 13.
  • the first light conversion body 11 and the second light conversion body 12 are both disposed on the substrate 13, and light is incident on the light conversion body through the substrate 13, or light emitted by the light conversion body is emitted through the substrate 13. Therefore, the substrate 13 in this embodiment is a transparent substrate, and the material thereof may be inorganic glass, PMMA, polyethylene terephthalate PET, or polyimide PI.
  • the substrate 13 is a flat plate structure, which includes a first surface 131 and a second surface 132 disposed opposite to each other.
  • the first surface 131 is provided with a plurality of first grooves 133
  • the second surface 132 is provided with a plurality of second grooves 134.
  • the first light conversion body 11 is disposed in the first groove 133
  • the second light conversion body 12 is disposed in the second groove 134.
  • the first light conversion body 11 in the first groove 133 realizes the conversion of the first color light
  • the second light conversion body 12 in the second groove 134 realizes the conversion of the second color light.
  • the light-converting body may include one or more light-converting materials.
  • the light-converting material may be a fluorescent material or a quantum dot.
  • a fluorescent material it absorbs the energy of the excitation light source and causes an energy level transition to emit light.
  • Different fluorescence Materials that excite different colors of light.
  • quantum dots that is, particle sizes on the order of nanometers, based on their own quantum effects, they can emit light under the excitation of an excitation light source, and quantum dots of different sizes can be excited to produce different colors of light.
  • the first light conversion body 11 in the first groove 133 on the substrate serves as the light source of the first color light
  • the second light conversion body 12 in the second groove 134 serves as the light source of the second color light. Therefore, the first concave The grooves 133 and the second grooves 134 are staggered to prevent the two colors of light from interfering with each other.
  • the first groove 133 and the second groove 134 are respectively disposed on two surfaces of the substrate, so the light conversion materials in the two will not interfere with each other.
  • the first light conversion body 11 in the first groove 133 of this embodiment can be used as a light source of the first color light. When applied to a display panel, it can correspond to the light source of the first color pixel point, and self-emission corresponding to each pixel point. For a display panel, one groove can be set corresponding to one pixel. Since the first groove 133 and the second groove 134 are respectively provided on two surfaces of the substrate, the light conversion materials in the two will not interfere with each other, so The distance between the two can be as close as possible, which is suitable for high pixel density display panels.
  • the light conversion substrate 100 in this embodiment further includes a first sealing layer 14 and a second sealing layer 15 for sealing the light conversion body.
  • the first sealing layer 14 may be disposed in the first groove. 133 or on the first groove 133 to seal the first light conversion body 11 in the first groove 133;
  • the second sealing layer 15 may be provided in the second groove 134 or on the second groove 134 to The second light conversion body 12 is sealed in the second groove 134.
  • a resin material may be used as the sealing layer, and the same resin material may be used for the first sealing layer 14 and the second sealing layer 15 or different resin materials may be used. For example, one or more of epoxy resin, acrylic resin, silicone rubber, and shadowless rubber can be selected.
  • FIG. 2 is a schematic diagram of a first arrangement manner of the sealing layer in the embodiment of the light conversion substrate shown in FIG. 1
  • FIG. 3 is a seal in the embodiment of the light conversion substrate shown in FIG. 1.
  • FIG. 4 is a schematic diagram of a third setting method of the sealing layer in the embodiment of the light conversion substrate shown in FIG. 1.
  • the first light conversion body 11 fills the first groove 133, and the first sealing layer 14 is disposed on the first groove 133 and covers the first surface 131 of the substrate 13; the second light conversion The body 12 fills the second groove 134, and the second sealing layer 15 is disposed on the second groove 134 and covers the second surface 132 of the substrate 13.
  • the first sealing layer 14 is provided in the first groove 133, and the first light conversion body 11 is sealed in the first groove 133.
  • the second sealing layer 15 is provided in the second groove In 134, the second light conversion body 12 is sealed in the second groove 134.
  • the first sealing layer 14 is disposed in the first groove 133, and the first light conversion body 11 is sealed in the first groove 133, and the first sealing layer 14 is far from the first light conversion body.
  • the surface of 11 is flush with the first surface 131 of the substrate 13;
  • the second sealing layer 15 is disposed in the second groove 134, and the second light conversion body 12 is sealed in the second groove 134, and the second sealing layer 15 A surface remote from the second light conversion body 12 is flush with the second surface 132 of the substrate 13.
  • the setting of the sealing layer is not limited to the above three cases, and may also be a combination of the above three cases.
  • the first light conversion body 11 fills the first groove 133
  • the first sealing layer 14 covers the first surface 131 of the substrate.
  • the second sealing layer 15 is disposed in the second groove 134 to seal the second light conversion body 12 in the second groove 134, and the second sealing layer 15 is far from the surface of the second light conversion body 12 and the substrate 13.
  • the second surface 132 is flush. No other details will be repeated here.
  • FIG. 2 For the three cases shown in FIG. 2 to FIG. 4, in which FIG. 2 is compared with the other two cases, more light conversion materials are used by the light conversion body in the light conversion substrate, and the luminous efficiency will be higher.
  • the manufacturing process of the light conversion substrate in FIG. 3 is simpler.
  • the process of filling the grooves in FIG. 2 is more complicated than the process of filling only a part of the grooves. Cut thin so that it is flush with the surface of the substrate.
  • the structure of the light conversion substrate in FIG. 4 is lighter and thinner.
  • the light conversion substrate of the above embodiment can be applied to a display panel as a color light source for implementing color display.
  • a plurality of pixel regions arranged in an array are defined on the substrate, that is, a plurality of pixel points corresponding to a display panel.
  • Each first groove and each second groove are respectively corresponding to a pixel area setting, that is, each groove corresponds to a pixel point, and a light conversion body in the groove emits light to realize self-emission of each pixel point in the display panel.
  • FIGS. 5 to 8 there are various embodiments of light conversion substrates as shown in FIGS. 5 to 8.
  • the structure of the embodiment of the light conversion substrate shown in FIGS. 5 to 8 below is similar to the structure of the light conversion substrate 100 of the above embodiment, and the same parts are not described again.
  • FIG. 5 is a schematic structural diagram of a second embodiment of a light conversion substrate of the present application.
  • a plurality of pixel regions defined on the substrate 23 of the light conversion substrate 200 in this embodiment includes red pixel regions R arranged periodically in sequence.
  • the green pixel area G and the blue pixel area B, the corresponding display panels adopt the traditional RGB arrangement.
  • the first groove 233 is provided corresponding to the red pixel area
  • the first light conversion body 21 is provided as a red light quantum dot
  • the second groove 234 is provided corresponding to the green pixel area
  • the second light conversion body 22 is a green light quantum dot.
  • a top view of the first surface 231 is shown in FIG. 5, and the second groove 234 of the second surface 232 is indicated by a dotted line.
  • a blue light source is used to excite red light quantum dots to generate red light, and green light quantum dots to generate green light.
  • red light quantum dots to generate red light
  • green light quantum dots to generate green light.
  • a part of the substrate is a flat structure, and the light emitted by the blue light source is directly emitted through the transparent substrate.
  • FIG. 6 is a schematic structural diagram of a third embodiment of a light conversion substrate of the present application.
  • the plurality of pixel regions defined on the substrate 33 of the light conversion substrate 300 in this embodiment include a red pixel region R, a green pixel region G, a blue pixel region B, and a green pixel region G that are periodically arranged in sequence.
  • the red pixels and blue pixels in the display panel are shared pixels, that is, the PenTiel arrangement is adopted.
  • the widths of the corresponding red pixel region R and blue pixel region B are larger than the width of the green pixel region G, and the relationship is generally doubled.
  • the first groove 333 is provided corresponding to the red pixel area, the first light conversion body 31 is a red light quantum dot; the second groove 334 is provided corresponding to the green pixel area, and the second light conversion body 32 is a green light quantum dot.
  • FIG. 6 a top view of the first surface 331 is shown in FIG. 6, and the second groove 334 of the second surface 332 is indicated by a dotted line.
  • a blue light source is used.
  • the blue pixel region B a portion of the substrate is a flat structure.
  • FIG. 7 is a schematic structural diagram of a fourth embodiment of a light conversion substrate of the present application.
  • the light conversion substrate 400 in this embodiment includes a first light conversion body 41, a second light conversion body 42, a third light conversion body 43, and a substrate 44.
  • the substrate 44 includes a first surface 441 and a second surface 442.
  • the first surface 441 is provided with a plurality of first grooves 443 and a plurality of third grooves 445
  • the second surface 442 is provided with a plurality of second grooves 444.
  • the first light conversion body 41 is disposed in the first groove 443
  • the second light conversion body 42 is disposed in the second groove 444
  • the third light conversion body 43 is disposed in the third groove 445.
  • a plurality of pixel regions are defined on the substrate 44.
  • Each first groove 443, each second groove 444, and each third groove 445 are disposed corresponding to one pixel region, and are collectively disposed on the first surface of the first surface 441.
  • the groove 443 and the third groove 445 are separated by at least one pixel area.
  • the light conversion substrate 400 of this embodiment can be applied to a display panel in an RGBW arrangement.
  • the plurality of pixel regions include a red pixel region R, a green pixel region G, a blue pixel region B, and a white pixel region W.
  • the first groove 443 is provided corresponding to the red pixel area R, the first light conversion body 41 is a red light quantum dot; the second groove 444 is provided corresponding to the green pixel area G, and the second light conversion body 42 is a green light quantum dot; the third groove 445 is provided corresponding to the blue pixel area B, and the third light conversion body 43 is a blue light quantum dot; the light conversion substrate 400 uses a white light source, and a portion of the substrate 44 corresponding to the white pixel area W has a flat structure.
  • FIG. 8 is a schematic structural diagram of a fifth embodiment of a light conversion substrate of the present application.
  • the light conversion substrate 500 of the embodiment shown in FIG. 8 is similar to the light conversion substrate 400 of the embodiment shown in FIG. 7, and also includes a first light conversion body 51, a second light conversion body 52, a third light conversion body 53, and a substrate 54.
  • the substrate 54 includes a first surface 541 and a second surface 542.
  • the first surface 541 is provided with a plurality of first grooves 543
  • the second surface 542 is provided with a plurality of second grooves 544 and third grooves 545.
  • the first light conversion body 51 is disposed in the first groove 543
  • the second light conversion body 52 is disposed in the second groove 544
  • the third light conversion body 53 is disposed in the third groove 545.
  • Each first groove 543, each second groove 544, and each third groove 545 are disposed corresponding to one pixel region, and are collectively disposed on the second surface of the second surface 542.
  • the groove 544 and the third groove 545 are spaced apart by at least one pixel region.
  • the light conversion substrate 500 in this embodiment can also be applied to a display panel in an RGBW arrangement.
  • the plurality of pixel regions include a red pixel region R, a green pixel region G, a blue pixel region B, and a white pixel region W.
  • the first groove 543 is provided corresponding to the red pixel area R, the first light conversion body 51 is a red light quantum dot; the second groove 544 is provided corresponding to the green pixel area G, and the second light conversion body 52 is a green light quantum dot; the third groove 545 is provided corresponding to the white pixel area W, and the third light conversion body 53 is a mixture of red light quantum dots and green light quantum dots; the light conversion substrate 500 uses a blue light source, and a portion of the substrate 54 corresponding to the blue pixel area B has a flat structure.
  • the light conversion materials used by the light conversion body are all quantum dots. In other embodiments, other light conversion materials such as fluorescent materials may also be used, and the corresponding light source may also use ultraviolet light. Light source.
  • FIG. 9 is a schematic flow chart of the method for manufacturing the light conversion substrate of the present application.
  • the manufacturing method includes the following steps.
  • S101 Process a first surface of a substrate to form a first groove.
  • S102 Process the second surface of the substrate to form a second groove.
  • the above steps S101 and S102 are performed in sequence, that is, the first surface is processed to obtain a first groove, and then the second surface is processed to obtain a second groove.
  • the first surface and the second surface are disposed opposite to each other, and the first groove and the second groove are staggered.
  • each groove corresponds to a pixel area
  • an accurate alignment operation needs to be performed to ensure that the groove can accurately correspond to the pixel point when the display panel is assembled and formed.
  • a set of matching photomasks can be used to achieve accurate alignment, and a first photomask suitable for the first surface and a second photomask suitable for the second surface can be made according to the pixel size of the display panel
  • the second photomask on the surface is then processed to form a groove.
  • the two photomasks are made based on the same pixel size and have the same standard, so that accurate alignment of the first groove and the second groove can be achieved.
  • S104 Seal the first surface of the substrate with a first sealing layer.
  • S106 Seal and coat a second sealing layer on the second surface of the substrate.
  • the above steps S103 to S106 are performed sequentially, that is, after the first light conversion body is filled in the first groove, it is sealed; then, the second light conversion body is filled in the second groove, and Sealed.
  • the filling process of the light conversion body may adopt printing, scraping coating, or photolithography.
  • the thinning process is performed on the first sealing layer and the second sealing layer so that the first sealing layer is flush with the plane of the first groove opening, and the second sealing layer is flush with the plane of the second groove opening.
  • the obtained light conversion substrate is generally thin, so before step S108, it can be bound to a supporting substrate to facilitate the cutting in step S108. Thin processing.
  • the thin-cut surface in step S107 is the binding surface.
  • the thinning treatment can be performed by a chemical mechanical polishing CMP process, a reactive ion etching RIE process, and a plasma etching ICP process.
  • the formation of the first light conversion body and the second light conversion body will not interfere with each other, so the first groove and the second groove can be processed as close as possible, and the obtained light conversion substrate can be applied to high Pixel density display panel.
  • the light conversion substrate can be applied to Micro-LED, OLED, quantum dot display panel, and the like.
  • the grooves correspond to pixels, so the grooves can be set as cubes, the corresponding groove mouths are quadrangular, and the side length can be 1 ⁇ m ⁇ 100 ⁇ m, specifically 50 ⁇ m can be selected; the groove can also be a cylinder
  • the corresponding groove opening is circular, and its diameter can be 1 ⁇ m ⁇ 100 ⁇ m, and the specific optional 50 ⁇ m.
  • FIG. 10 is a schematic structural diagram of an embodiment of a display panel of the present application.
  • the display panel 600 in this embodiment includes a light emitting substrate 61 and a light conversion substrate 62, and the light emitting substrate 61 is disposed on one side of the light conversion substrate 62. In order to ensure the light utilization ratio, the light-emitting substrate 61 may be attached to the light conversion substrate 62.
  • the light emitting substrate 61 may be an ultraviolet light emitting substrate, a white light emitting substrate, or a blue light emitting substrate.
  • the light emitting substrate 61 may include an array of blue LEDs, and the light emitted by the blue LEDs directly enters the light conversion substrate 62; it may also include The light guide plate and the blue LED disposed on the side of the light guide plate. Light emitted by the blue LED enters the light conversion substrate 62 through the light guide plate.
  • the display panel 600 of this embodiment can achieve high pixel density, and then achieve high-quality color expression.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Theoretical Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Led Device Packages (AREA)
  • Liquid Crystal (AREA)

Abstract

一种光转换基板(100)及其制造方法和显示面板(600),其中,光转换基板(100)包括:基板(13),基板(13)包括相背设置的第一表面(131)和第二表面(132),基板(13)的第一表面(131)设置有多个第一凹槽(133),基板(13)的第二表面(132)设置有多个第二凹槽(134),第一凹槽(133)与第二凹槽(134)错开设置;第一光转换体(11),设置于第一凹槽(133)中;第二光转换体(12),设置于第二凹槽(134)中。光转换基板(100)的制造过程中光转换材料的形成不会相互干扰,可应用于高像素密度的显示面板(600)。

Description

光转换基板及其制造方法和显示面板
【技术领域】
本申请涉及显示技术领域,特别是涉及光转换基板及其制造方法和显示面板。
【背景技术】
随着显示技术的发展,彩色显示为当前显示面板的基本特征,为了实现彩色显示,一般需要RGB三色光。在显示技术领域,可利用三色光源直接发出三色光,也可采用单色光源结合光转换基板,来发出三色光,光转换基板可以将某一颜色的光转换为其他颜色的光,继而依此实现三色光的产生。
然而现有光转换基板的制造过程中,基板上不同光转换体的形成容易相互影响,因而不同光转换体之间的间隔不能过小,现有的光转换基板不适用于高像素密度的显示面板。
【发明内容】
本申请提供一种光转换基板及其制造方法 显示面板,以解决光转换基板中不同光转换体之间容易相互干扰的问题。
为解决上述技术问题,本申请提出一种光转换基板,其包括:基板,包括相背设置的第一表面和第二表面,基板的第一表面设置有多个第一凹槽,基板的第二表面设置有多个第二凹槽,第一凹槽与第二凹槽错开设置;第一光转换体,设置于第一凹槽中;第二光转换体,设置于第二凹槽中。
其中,光转换基板进一步包括:第一密封层,设置于第一凹槽中或第一凹槽上,以将第一光转换体密封于第一凹槽中;第二密封层,设置于第二凹槽中或第二凹槽上,以将第二光转换体密封于第二凹槽中。
其中,第一密封层设置于第一凹槽中,且第一密封层远离第一光转换体的表面与基板的第一表面平齐,和/或第二密封层设置于第二凹槽中,且第二密封层远离第二光转换体的表面与基板的第二表面平齐。
其中,基板定义有阵列排布的多个像素区,每一第一凹槽和每一第二凹槽分别对应一像素区设置。
其中,多个像素区包括周期性依次排布的红色像素区、绿色像素区和蓝色像素区;第一凹槽对应红色像素区设置,第一光转换体为红光量子点;第二凹槽对应绿色像素区设置,第二光转换体为绿光量子点。
其中,基板对应蓝色像素区的部分为平坦结构。
其中,多个像素区包括周期性依次排布的红色像素区、绿色像素区、蓝色像素区和绿色像素区;第一凹槽对应红色像素区设置,第一光转换体为红光量子点;第二凹槽对应绿色像素区设置,第二光转换体为绿光量子点。其中,基板对应蓝色像素区的部分为平坦结构。
其中,基板的第一表面进一步设置有多个第三凹槽,每一第三凹槽对应一像素区设置;第一凹槽和第三凹槽之间间隔至少一像素区;光转换基板进一步包括第三光转换体,第三光转换体设置于第三凹槽中。
其中,多个像素区包括周期性依次排布的红色像素区、绿色像素区、蓝色像素区和白色像素区;第一凹槽对应红色像素区,第一光转换体为红光量子点;第二凹槽对应绿色像素区,第二光转换体为绿光量子点;第三凹槽对应蓝色像素区,第三光转换体为蓝光量子点。
其中,基板对应白色像素区的部分为平坦结构。
其中,基板的第二表面进一步设置有多个第三凹槽,每一第三凹槽对应一像素区设置;第二凹槽和第三凹槽之间间隔至少一像素区;光转换基板进一步包括第三光转换体,第三光转换体设置于第三凹槽中。
其中,多个像素区包括周期性依次排布的红色像素区、绿色像素区、蓝色像素区和白色像素区;第一凹槽对应红色像素区,第一光转换体为红光量子点;第二凹槽对应绿色像素区,第二光转换体为绿光量子点;第三凹槽对应白色像素区,第三光转换体为红光量子点和绿光量子点的混合。
其中,基板对应蓝色像素区的部分为平坦结构。
其中,第一凹槽和第二凹槽均为立方体,对应凹槽口为四边形,四边形边长为1μm~100μm;或者,第一凹槽和第二凹槽均为圆柱体,对应凹槽口为圆形,圆形的直径为1μm~100μm。
其中,四边形边长为50μm,或者圆形的直径为50μm。
为解决上述技术问题,本申请提出一种显示面板,其包括发光基板和光转换基板,发光基板设置在光转换基板的一侧;光转换基板包括:基板,包括相背设置的第一表面和第二表面,基板的第一表面设置有多个第一凹槽,基板的第二表面设置有多个第二凹槽,第一凹槽与第二凹槽错开设置;第一光转换体,设置于第一凹槽中;第二光转换体,设置于第二凹槽中。
其中,发光基板为蓝光发光基板或紫外光发光基板或白光发光基板。
为解决上述技术问题,本申请提出一种光转换基板的制造方法,制造方法包括:提供基板,基板包括相背设置的第一表面和第二表面;对基板的第一表面加工以形成第一凹槽;对基板的第二表面加工以形成第二凹槽,所述第一凹槽和所述第二凹槽错开设置;在第一凹槽中填充第一光转换体;在基板的第一表面封涂第一密封层,以将第一光转换体密封于第一凹槽中;在第二凹槽中填充第二光转换体;在基板的第二表面封涂第二密封层,以将第二光转换体密封于第二凹槽中。
其中,制造方法还包括:对第一密封层进行剪薄处理;对第二密封层进行剪薄处理。
本申请光转换基板中的基板包括相背设置的第一表面和第二表面,基板的第一表面设置有多个第一凹槽,其中设置有第一光转换体;而基板的第二表面则设置有多个第二凹槽,其中设置有第二光转换体;第一凹槽和第二凹槽错开设置。在本申请光转换基板中不同的第一、第二光转换体分别设置在第一、第二表面,因而第一、第二光转换体的形成不会相互干扰,第一凹槽和第二凹槽之间距离可尽量缩小,从而适用于高像素密度的显示面板。
【附图说明】
图1是本申请光转换基板第一实施例的结构示意图;
图2是图1所示光转换基板实施例中密封层第一种设置方式的示意图;
图3是图1所示光转换基板实施例中密封层第二种设置方式的示意图;
图4是图1所示光转换基板实施例中密封层第三种设置方式的示意图;
图5是本申请光转换基板第二实施例的结构示意图;
图6是本申请光转换基板第三实施例的结构示意图;
图7是本申请光转换基板第四实施例的结构示意图;
图8是本申请光转换基板第五实施例的结构示意图;
图9是本申请光转换基板的制造流程示意图;
图10是本申请显示面板一实施例的结构示意图。
【具体实施方式】
为使本领域的技术人员更好地理解本申请的技术方案,下面结合附图和具体实施方式对本申请所提供的一种光转换基板及其制造方法和显示面板做进一步详细描述。
请参阅图1,图1是本申请光转换基板第一实施例的结构示意图,本实施例光转换基板100包括第一光转换体11、第二光转换体12和基板13。
其中,第一光转换体11和第二光转换体12均设置在基板13上,光线经由基板13射入至光转换体,或光转换体发出光线经由基板13射出。因而本实施例中基板13为透明基板,其材料可以是无机玻璃、有机玻璃PMMA、聚对苯二甲酸乙二醇酯PET或聚酰亚胺PI。
本实施例中,基板13为平板结构,其包括相背设置的第一表面131和第二表面132。第一表面131设置有多个第一凹槽133,第二表面132设置有多个第二凹槽134。第一光转换体11设置在第一凹槽133中,第二光转换体12设置在第二凹槽134中。
第一凹槽133内的第一光转换体11实现第一颜色光的转换,第二凹槽134内的第二光转换体12则实现第二颜色光的转换。光转换体可以包括一种或多种光转换材料,光转换材料可以是荧光材料也可以是量子点,对于荧光材料,其吸收激发光源的能量,引起能级跃迁,从而发射光线,不同的荧光材料,会激发产生不同颜色的光。对于量子点,即纳米量级的颗粒尺寸,基于其自身的量子效应,可实现在激发光源的激发下发射光线,而不同尺寸的量子点可激发产生不同颜色的光。
基板上的第一凹槽133中的第一光转换体11作为第一颜色光的光源,第二凹槽134中的第二光转换体12作为第二颜色光的光源,因而,第一凹槽133和第二凹槽134错开设置,避免两种颜色光相互干扰。且第一凹槽133和第二凹槽134分别设置在基板的两表面,因而二者中的光转换材料不会相互干扰。
本实施例第一凹槽133中的第一光转换体11可作为第一颜色光的光源,应用到显示面板时,其可对应作为第一颜色像素点的光源,对应每个像素点自发光的显示面板来说,一个凹槽则可对应一个像素点设置,由于第一凹槽133和第二凹槽134分别设置在基板的两表面,二者中的光转换材料不会相互干扰,因而二者的距离可尽量靠近,即适用于高像素密度的显示面板。
进一步的,本实施例光转换基板100中还包括第一密封层14和第二密封层15,用于对光转换体进行密封;具体来说,第一密封层14可设置在第一凹槽133中或第一凹槽133上,以将第一光转换体11密封在第一凹槽133中;第二密封层15可设置在第二凹槽134中或第二凹槽134上,以将第二光转换体12密封在第二凹槽134中。密封层可选用树脂材料,第一密封层14和第二密封层15可选用相同的树脂材料,也可选用不同的树脂材料。例如可以选用环氧树脂、丙烯酸树脂、硅橡胶、无影胶等中的一种或多种。
密封层的结构具体请参阅图2-图4,图2是图1所示光转换基板实施例中密封层第一种设置方式的示意图,图3是图1所示光转换基板实施例中密封层第二种设置方式的示意图,图4是图1所示光转换基板实施例中密封层第三种设置方式的示意图。
对于图2所示的情况,第一光转换体11填满第一凹槽133,第一密封层14设置在第一凹槽133上,覆盖于基板13的第一表面131;第二光转换体12填满第二凹槽134,第二密封层15设置在第二凹槽134上,覆盖于基板13的第二表面132。
对于图3所示的情况,第一密封层14设置在第一凹槽133中,将第一光转换体11密封于第一凹槽133中;第二密封层15则设置在第二凹槽134中,将第二光转换体12密封于第二凹槽134中。
对于图4所示的情况,第一密封层14设置在第一凹槽133中,将第一光转换体11密封于第一凹槽133中,且第一密封层14远离第一光转换体11的表面与基板13的第一表面131平齐;第二密封层15设置在第二凹槽134中,将第二光转换体12密封于第二凹槽134中,且第二密封层15远离第二光转换体12的表面与基板13的第二表面132平齐。
密封层的设置不仅限于以上三种情况,还可以是以上三种情况的结合,例如:第一光转换体11填满第一凹槽133,第一密封层14覆盖在基板的第一表面131;第二密封层15设置在第二凹槽134中,将第二光转换体12密封于第二凹槽134中,且第二密封层15远离第二光转换体12的表面与基板13的第二表面132平齐。其他情况不再赘述。
对于图2-图4所示的三种情况,其中图2相较于其他两种,光转换基板中的光转换体所采用的光转换材料更多,发光效率会更高。图3相较于其他两种,光转换基板的制造工艺更简单,图2中填满凹槽相较于仅填充凹槽一部分的工艺更复杂,而图4中在形成密封层后还需进行剪薄处理,使其与基板的表面平齐。图4相较于其他两种,光转换基板的结构更为轻薄化。
上述实施例光转换基板可应用于显示面板,作为实现彩色显示的彩色光源。基于上述实施例,进一步的,本申请所提出的光转换基板中,在基板上定义阵列排布的多个像素区,即对应显示面板的多个像素点。每一第一凹槽和每一第二凹槽分别对应一像素区设置,即每一凹槽对应一个像素点,凹槽中的光转换体发光,实现显示面板中每个像素点的自发光。显示面板中彩色像素的排列方式有多种,均可使用本申请的光转换基板。例如,如图5-图8所示的多种光转换基板实施例。以下图5-图8所示的光转换基板实施例的结构与上述实施例光转换基板100的结构类似,相同部分不再赘述。
请参阅图5,图5是本申请光转换基板第二实施例的结构示意图,本实施例光转换基板200的基板23上所定义的多个像素区包括周期性依次排布的红色像素区R、绿色像素区G和蓝色像素区B,其对应的显示面板采用传统RGB排列方式。
第一凹槽233对应红色像素区设置,第一光转换体21为红光量子点,第二凹槽234对应绿色像素区设置,第二光转换体22为绿光量子点。图5中示出第一表面231的俯视图,第二表面232的第二凹槽234用虚线表示。
本实施例中,采用蓝光光源,分别激发红光量子点产生红光,绿光量子点产生绿光。而对于蓝色像素区B,基板的部分为平坦结构,蓝光光源所发出的光直接经过透明基板发出。
请参阅图6,图6是本申请光转换基板第三实施例的结构示意图。本实施例中光转换基板300的基板33上所定义的多个像素区包括周期性依次排布的红色像素区R、绿色像素区G、蓝色像素区B和绿色像素区G,其对应的显示面板中红色像素点和蓝色像素点均为共用像素点,即采用PenTiel排列方式。对应的红色像素区R和蓝色像素区B的宽度较绿色像素区G的宽度大,一般采用大一倍的关系。
第一凹槽333对应红色像素区设置,第一光转换体31为红光量子点;第二凹槽334对应绿色像素区设置,第二光转换体32为绿光量子点。
同样,图6中示出第一表面331的俯视图,第二表面332的第二凹槽334用虚线表示。采用蓝光光源,对于蓝色像素区B,基板的部分为平坦结构。
请参阅图7,图7是本申请光转换基板第四实施例的结构示意图。本实施例中光转换基板400包括第一光转换体41、第二光转换体42、第三光转换体43和基板44。
基板44包括第一表面441和第二表面442,第一表面441设置多个第一凹槽443和多个第三凹槽445,第二表面442设置多个第二凹槽444。
第一光转换体41设置于第一凹槽443中,第二光转换体42设置于第二凹槽444中,第三光转换体43设置于第三凹槽445中。
基板44上定义有多个像素区,每一第一凹槽443、每一第二凹槽444、每一第三凹槽445均对应一像素区设置,共同设置于第一表面441的第一凹槽443和第三凹槽445之间间隔至少一个像素区。
本实施例光转换基板400可应用于RGBW排列方式的显示面板。具体来说,多个像素区包括红色像素区R、绿色像素区G、蓝色像素区B和白色像素区W。
第一凹槽443对应红色像素区R设置,第一光转换体41为红光量子点;第二凹槽444对应绿色像素区G设置,第二光转换体42为绿光量子点;第三凹槽445对应蓝色像素区B设置,第三光转换体43为蓝光量子点;该光转换基板400采用白光光源,基板44对应白色像素区W的部分为平坦结构。
请参阅图8,图8是本申请光转换基板第五实施例的结构示意图。图8所示实施例光转换基板500与图7所示实施例光转换基板400类似,也包括第一光转换体51、第二光转换体52、第三光转换体53和基板54。
基板54包括第一表面541和第二表面542,第一表面541设置多个第一凹槽543,第二表面542设置多个第二凹槽544和第三凹槽545。
第一光转换体51设置于第一凹槽543中,第二光转换体52设置于第二凹槽544中,第三光转换体53设置于第三凹槽545中。
基板54上定义有多个像素区,每一第一凹槽543、每一第二凹槽544、每一第三凹槽545均对应一像素区设置,共同设置于第二表面542的第二凹槽544和第三凹槽545之间间隔至少一个像素区。
本实施例光转换基板500同样可应用于RGBW排列方式的显示面板。具体来说,多个像素区包括红色像素区R、绿色像素区G、蓝色像素区B和白色像素区W。
第一凹槽543对应红色像素区R设置,第一光转换体51为红光量子点;第二凹槽544对应绿色像素区G设置,第二光转换体52为绿光量子点;第三凹槽545对应白色像素区W设置,第三光转换体53为红光量子点和绿光量子点的混合;该光转换基板500采用蓝光光源,基板54对应蓝色像素区B的部分为平坦结构。
上述图5-图8的实施例中,光转换体所采用的光转换材料均为量子点,在其他实施例中,也可采用其他光转换材料,如荧光材料等,对应光源也可采用紫外光光源。
本申请所提供的光转换基板的制造过程可参阅图9,图9是本申请光转换基板的制造方法的流程示意图,本制造方法包括以下步骤。
S101:对基板的第一表面加工以形成第一凹槽。
S102:对基板的第二表面加工以形成第二凹槽。
本制造过程中,上述步骤S101和S102分别依次执行,即先对第一表面加工得到第一凹槽,然后对第二表面加工得到第二凹槽。第一表面和第二表面相背设置,第一凹槽和第二凹槽错开设置。
并且,对于每一凹槽对应一像素区的实施例,在加工形成凹槽时,需要进行精确对位操作,从而保证在组装构成显示面板时凹槽能够准确的对应像素点。
上述过程若采用光刻工艺来加工形成凹槽,则可利用一组配套光罩来实现精确对位,根据显示面板的像素尺寸来制作适用于第一表面的第一光罩和适用于第二表面的第二光罩,然后利用光罩加工形成凹槽。两光罩基于同一像素尺寸制得,具有同一标准,因而可实现第一凹槽和第二凹槽加工时的准确对位。
S103:在第一凹槽中填充第一光转换体。
S104:在基板的第一表面封涂第一密封层。
S105:在第二凹槽中填充第二光转换体。
S106:在基板的第二表面封涂第二密封层。
本实施例中上述步骤S103-S106依序进行,即在第一凹槽中填充第一光转换体后,对其进行密封;然后再在第二凹槽中填充第二光转换体,对其进行密封。其中,光转换体的填充过程可以采用打印、刮涂或光刻等方式。
对于图4所示的情况,在步骤S103-S106完成后,还需进一步进行步骤S107-S108。
S107:对第一密封层进行剪薄处理。
S108:对第二密封层进行剪薄处理。
分别对第一密封层和第二密封层进行剪薄处理,使得第一密封层与第一凹槽口的平面平齐,第二密封层与第二凹槽口的平面平齐。在步骤S107中对第一密封层进行剪薄处理后,所得到的光转换基板一般较薄,因而在步骤S108之前,可先将其绑定在一支撑基板上,以便于步骤S108中的剪薄处理,绑定时步骤S107中剪薄处理的表面为绑定面。
剪薄处理可采用化学机械抛光CMP工艺、反应离子刻蚀RIE工艺、等离子体刻蚀ICP工艺。
上述制造过程中第一光转换体和第二光转换体的形成不会相互干扰,因而可加工出尽量靠近的第一凹槽和第二凹槽,继而所得到的光转换基板可适用于高像素密度的显示面板。
上述光转换基板可应用于Micro-LED、OLED、量子点显示面板等。以Micro-LED为例,凹槽均对应像素点,因而凹槽可设置为立方体,对应凹槽口为四边形,其边长可以为1μm~100μm,具体可选50μm;凹槽也可以为圆柱体,对应凹槽口为圆形,其直径可以为1μm~100μm,具体可选50μm。
本申请提出一种应用上述光转换基板的显示面板,具体请参阅图10,图10是本申请显示面板一实施例的结构示意图。
本实施例显示面板600包括发光基板61和光转换基板62,发光基板61设置在光转换基板62的一侧。为了保证光利用率,可将发光基板61贴合光转换基板62设置。
发光基板61可以为紫外光发光基板、白光发光基板或蓝光发光基板,以蓝光发光基板为例,其可包括阵列排布的蓝光LED,蓝光LED发射的光线直接进入光转换基板62;也可包括导光板,以及设置于导光板侧面的蓝光LED,蓝光LED发射的光线通过导光板进入光转换基板62。
本实施例显示面板600可以实现高像素密度,继而实现优质的色彩表现度。
以上所述仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (20)

  1. 一种光转换基板,包括:
    基板,所述基板包括相背设置的第一表面和第二表面,所述基板的所述第一表面设置有多个第一凹槽,所述基板的所述第二表面设置有多个第二凹槽,所述第一凹槽与所述第二凹槽错开设置;
    第一光转换体,设置于所述第一凹槽中;
    第二光转换体,设置于所述第二凹槽中。
  2. 根据权利要求1所述的光转换基板,其中,所述光转换基板进一步包括:
    第一密封层,设置于所述第一凹槽中或所述第一凹槽上,以将所述第一光转换体密封于所述第一凹槽中;
    第二密封层,设置于所述第二凹槽中或所述第二凹槽上,以将所述第二光转换体密封于所述第二凹槽中。
  3. 根据权利要求2所述的光转换基板,其中,所述第一密封层设置于所述第一凹槽中,且所述第一密封层远离所述第一光转换体的表面与所述基板的所述第一表面平齐,和/或所述第二密封层设置于所述第二凹槽中,且所述第二密封层远离所述第二光转换体的表面与所述基板的所述第二表面平齐。
  4. 根据权利要求1所述的光转换基板,其中,所述基板定义有阵列排布的多个像素区,每一所述第一凹槽和每一所述第二凹槽分别对应一像素区设置。
  5. 根据权利要求4所述的光转换基板,其中,所述多个像素区包括周期性依次排布的红色像素区、绿色像素区和蓝色像素区;
    所述第一凹槽对应所述红色像素区设置,所述第一光转换体为红光量子点;所述第二凹槽对应所述绿色像素区设置,所述第二光转换体为绿光量子点。
  6. 根据权利要求5所述的光转换基板,其中,所述基板对应所述蓝色像素区的部分为平坦结构。
  7. 根据权利要求4所述的光转换基板,其中,所述多个像素区包括周期性依次排布的红色像素区、绿色像素区、蓝色像素区和绿色像素区;
    所述第一凹槽对应所述红色像素区设置,所述第一光转换体为红光量子点;所述第二凹槽对应所述绿色像素区设置,所述第二光转换体为绿光量子点。
  8. 根据权利要求7所述的光转换基板,其中,所述基板对应所述蓝色像素区的部分为平坦结构。
  9. 根据权利要求4所述的光转换基板,其中,所述基板的所述第一表面进一步设置有多个第三凹槽,每一所述第三凹槽对应一像素区设置;所述第一凹槽和所述第三凹槽之间间隔至少一像素区;
    所述光转换基板进一步包括第三光转换体,所述第三光转换体设置于所述第三凹槽中。
  10. 根据权利要求9所述的光转换基板,其中,所述多个像素区包括周期性依次排布的红色像素区、绿色像素区、蓝色像素区和白色像素区;
    所述第一凹槽对应所述红色像素区,所述第一光转换体为红光量子点;所述第二凹槽对应绿色像素区,所述第二光转换体为绿光量子点;所述第三凹槽对应蓝色像素区,所述第三光转换体为蓝光量子点。
  11. 根据权利要求10所述的光转换基板,其中,所述基板对应所述白色像素区的部分为平坦结构。
  12. 根据权利要求4所述的光转换基板,其中,所述基板的所述第二表面进一步设置有多个第三凹槽,每一所述第三凹槽对应一像素区设置;所述第二凹槽和所述第三凹槽之间间隔至少一像素区;
    所述光转换基板进一步包括第三光转换体,所述第三光转换体设置于所述第三凹槽中。
  13. 根据权利要求12所述的光转换基板,其中,所述多个像素区包括周期性依次排布的红色像素区、绿色像素区、蓝色像素区和白色像素区;
    所述第一凹槽对应所述红色像素区,所述第一光转换体为红光量子点;所述第二凹槽对应绿色像素区,所述第二光转换体为绿光量子点;所述第三凹槽对应白色像素区,所述第三光转换体为红光量子点和绿光量子点的混合。
  14. 根据权利要求13所述的光转换基板,其中,所述基板对应所述蓝色像素区的部分为平坦结构。
  15. 根据权利要求1所述的光转换基板,其中,所述第一凹槽和所述第二凹槽均为立方体,对应凹槽口为四边形,所述四边形边长为1μm~100μm;或者,所述第一凹槽和所述第二凹槽均为圆柱体,对应凹槽口为圆形,所述圆形的直径为1μm~100μm。
  16. 根据权利要求15所述的光转换基板,其中,所述四边形边长为50μm,或者所述圆形的直径为50μm。
  17. 一种显示面板,其中,所述显示面板包括发光基板和光转换基板,所述发光基板设置在所述光转换基板一侧;所述光转换基板包括:
    基板,所述基板包括相背设置的第一表面和第二表面,所述基板的所述第一表面设置有多个第一凹槽,所述基板的所述第二表面设置有多个第二凹槽,所述第一凹槽与所述第二凹槽错开设置;
    第一光转换体,设置于所述第一凹槽中;
    第二光转换体,设置于所述第二凹槽中。
  18. 根据权利要求17所述的显示面板,其中,所述发光基板为蓝光发光基板或紫外光发光基板或白光发光基板。
  19. 一种光转换基板的制造方法,其中,所述制造方法包括:
    提供基板,所述基板包括相背设置的第一表面和第二表面;
    对所述基板的所述第一表面加工以形成第一凹槽;
    对所述基板的所述第二表面加工以形成第二凹槽,所述第一凹槽和所述第二凹槽错开设置;
    在所述第一凹槽中填充第一光转换体;
    在所述基板的所述第一表面封涂第一密封层,以将所述第一光转换体密封于所述第一凹槽中;
    在所述第二凹槽中填充第二光转换体;
    在所述基板的所述第二表面封涂第二密封层,以将所述第二光转换体密封于所述第二凹槽中。
  20. 根据权利要求19所述的制造方法,其中,所述制造方法还包括:
    对所述第一密封层进行剪薄处理;
    对所述第二密封层进行剪薄处理。
PCT/CN2019/084867 2018-08-31 2019-04-28 光转换基板及其制造方法和显示面板 WO2020042649A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/808,648 US11251345B2 (en) 2018-08-31 2020-03-04 Light conversion substrate and manufacturing method thereof, and display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811012029.6 2018-08-31
CN201811012029.6A CN110874978B (zh) 2018-08-31 2018-08-31 光转换基板及显示面板

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/808,648 Continuation US11251345B2 (en) 2018-08-31 2020-03-04 Light conversion substrate and manufacturing method thereof, and display panel

Publications (1)

Publication Number Publication Date
WO2020042649A1 true WO2020042649A1 (zh) 2020-03-05

Family

ID=69643355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/084867 WO2020042649A1 (zh) 2018-08-31 2019-04-28 光转换基板及其制造方法和显示面板

Country Status (3)

Country Link
US (1) US11251345B2 (zh)
CN (1) CN110874978B (zh)
WO (1) WO2020042649A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109239967B (zh) * 2018-10-29 2020-08-25 京东方科技集团股份有限公司 量子点彩膜的制备方法、彩膜基板、显示面板和显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103471011A (zh) * 2013-09-17 2013-12-25 京东方科技集团股份有限公司 背光源及显示装置
CN104377226A (zh) * 2013-08-14 2015-02-25 业鑫科技顾问股份有限公司 显示面板
CN105526558A (zh) * 2014-09-30 2016-04-27 业鑫科技顾问股份有限公司 颜色转换膜、使用颜色转换膜的显示装置及制造该颜色转换膜的方法
US20180005998A1 (en) * 2016-06-29 2018-01-04 Sharp Kabushiki Kaisha Laminated printed color conversion phosphor sheets
US20180003870A1 (en) * 2014-09-30 2018-01-04 Hon Hai Precision Industry Co., Ltd. Color conversion film, display panel using color conversion film and method for manufacturing color conversion film
CN107634082A (zh) * 2017-07-13 2018-01-26 深圳市华星光电半导体显示技术有限公司 主动发光显示面板及其制造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104813223B (zh) * 2012-11-29 2017-07-28 Lg化学株式会社 具有循环微图案的fpr
CN103337496B (zh) 2013-07-10 2016-06-01 广东洲明节能科技有限公司 基于双面硅基板的led集成封装结构及制作方法
JP2016024381A (ja) * 2014-07-22 2016-02-08 株式会社ジャパンディスプレイ 画像表示装置及び画像表示方法
CN105529346A (zh) * 2014-09-30 2016-04-27 业鑫科技顾问股份有限公司 显示面板及制造该显示面板的方法
CN105565264A (zh) * 2015-12-01 2016-05-11 苏州星烁纳米科技有限公司 量子点封装体及其应用
CN106054449A (zh) * 2016-06-23 2016-10-26 深圳市华星光电技术有限公司 Lcd显示装置、基于量子点的背光模组及其制作方法
CN106611826B (zh) * 2016-12-27 2018-11-09 深圳市华星光电技术有限公司 量子点彩膜显示面板及其制作方法
CN206684429U (zh) 2017-05-12 2017-11-28 信利半导体有限公司 一种彩膜基板、液晶面板及液晶模组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104377226A (zh) * 2013-08-14 2015-02-25 业鑫科技顾问股份有限公司 显示面板
CN103471011A (zh) * 2013-09-17 2013-12-25 京东方科技集团股份有限公司 背光源及显示装置
CN105526558A (zh) * 2014-09-30 2016-04-27 业鑫科技顾问股份有限公司 颜色转换膜、使用颜色转换膜的显示装置及制造该颜色转换膜的方法
US20180003870A1 (en) * 2014-09-30 2018-01-04 Hon Hai Precision Industry Co., Ltd. Color conversion film, display panel using color conversion film and method for manufacturing color conversion film
US20180005998A1 (en) * 2016-06-29 2018-01-04 Sharp Kabushiki Kaisha Laminated printed color conversion phosphor sheets
CN107634082A (zh) * 2017-07-13 2018-01-26 深圳市华星光电半导体显示技术有限公司 主动发光显示面板及其制造方法

Also Published As

Publication number Publication date
US20200203584A1 (en) 2020-06-25
CN110874978A (zh) 2020-03-10
US11251345B2 (en) 2022-02-15
CN110874978B (zh) 2021-12-10

Similar Documents

Publication Publication Date Title
WO2019100435A1 (zh) 微型发光二极管显示装置及其制作方法
CN105096749B (zh) 一种显示装置及其制备方法
CN105304684B (zh) 彩色显示装置及其制作方法
CN110928021B (zh) 量子点显示面板增亮膜及透镜阵列
US9735386B2 (en) Quantum-dot based hybrid LED lighting devices
WO2021184914A1 (zh) 阵列基板、其制作方法、显示面板及显示装置
CN112582441B (zh) 一种显示面板、显示装置及显示面板的制备方法
US20100171134A1 (en) Optical converter and manufacturing method thereof and light emitting diode
WO2018120602A1 (zh) 背光模块及其应用的显示设备与导光板的制造方法
CN104155803A (zh) 背光模块及液晶显示装置
KR20210153134A (ko) 표시 패널, 표시 장치 및 표시 패널의 제조 방법
WO2019037388A1 (zh) 彩膜基板及其制作方法、显示面板
CN112164323B (zh) 一种利用双凹扩散单元结构混光的μLED背光源及其制造方法
JP2016042449A (ja) 表示装置
WO2021073285A1 (zh) 一种无电学接触无巨量转移的全彩化μ LED 显示器件
CN113990998A (zh) 波长转换矩阵及其制作方法
CN113990999A (zh) 微显示器及其制作方法
WO2020042649A1 (zh) 光转换基板及其制造方法和显示面板
US20200203563A1 (en) Led display device, method for manufacturing the same, and led display panel
WO2021128463A1 (zh) 显示面板及其制备方法
TW201624775A (zh) 用於發光二極體之顏色轉換基板及其製造方法
CN112817213B (zh) 一种基于RGBW的Micro-LED制备***
WO2020133816A1 (zh) 显示面板及其制备方法
TWI740379B (zh) 發光模組
JP2023072871A (ja) ディスプレイ装置、およびディスプレイ装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19853559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19853559

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19853559

Country of ref document: EP

Kind code of ref document: A1