WO2020042051A1 - 一种永磁调速电机及其控制方法 - Google Patents

一种永磁调速电机及其控制方法 Download PDF

Info

Publication number
WO2020042051A1
WO2020042051A1 PCT/CN2018/103112 CN2018103112W WO2020042051A1 WO 2020042051 A1 WO2020042051 A1 WO 2020042051A1 CN 2018103112 W CN2018103112 W CN 2018103112W WO 2020042051 A1 WO2020042051 A1 WO 2020042051A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
rotating shaft
speed
selection switch
induction coil
Prior art date
Application number
PCT/CN2018/103112
Other languages
English (en)
French (fr)
Inventor
黄忠念
田德建
吴勇
韩立彪
Original Assignee
南京玛格耐特智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京玛格耐特智能科技有限公司 filed Critical 南京玛格耐特智能科技有限公司
Priority to PCT/CN2018/103112 priority Critical patent/WO2020042051A1/zh
Publication of WO2020042051A1 publication Critical patent/WO2020042051A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/10Dynamo-electric clutches; Dynamo-electric brakes of the permanent-magnet type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P15/00Arrangements for controlling dynamo-electric brakes or clutches

Definitions

  • the invention relates to a permanent magnet speed regulating motor, in particular to a permanent magnet speed regulating motor and a control method thereof.
  • the speed-regulating permanent magnet coupler is more and more recognized by the industry, but in actual use, the speed-regulating permanent magnet coupler also exposes some problems, mainly including:
  • the speed-regulating permanent magnet coupler is essentially slip speed regulation, and its efficiency has a positive correlation with the output speed.
  • the efficiency is very low.
  • the output speed of the speed-regulating permanent magnet coupler is 50% of the rated speed. At speed, its working efficiency is only 48%.
  • the working temperature of the speed-regulating permanent magnet coupler is high. As the slip power loss of the speed-regulating permanent-magnet coupler is completely converted into heat, the device operates at a high temperature at low speeds.
  • the reliability of the speed regulation mechanism is not high.
  • the main structure of the speed-regulating permanent magnet coupler has high reliability, but its speed-adjusting mechanism uses mechanical position adjustment to achieve the purpose of speed-adjusting, and the speed-adjusting mechanism has low reliability in achieving position adjustment under high-speed conditions.
  • control response speed and corresponding accuracy are poor. Because the speed-regulating permanent magnet coupler adjusts the mechanical structure through the action of the electric actuator to achieve speed regulation, its corresponding speed is slow and the response accuracy is low.
  • the technical problem to be solved by the present invention is that, in view of the shortcomings of the prior art, a permanent magnet speed-regulating motor and a control method thereof are proposed, which can not only adjust the speed of the load and achieve the effect of energy saving, but also further reduce the excess
  • the electrical energy is converted into electrical energy that matches the motor and supplies power to the motor, which further saves energy and greatly improves work efficiency.
  • a permanent magnet speed-adjusting motor which includes a motor base, and an outer rotor assembly and an inner rotor assembly are respectively provided on the motor base and both ends along its length direction through bearings.
  • the outer rotor assembly includes a first rotating shaft.
  • a collector ring is provided on the first rotating shaft, a cylindrical iron core holder is provided at one end of the first rotating shaft located inside the motor base, and a plurality of outer rings are provided in the middle of the iron core holder.
  • the number of the collection rings is equal to the number of the induction coils, and each three groups of induction coils form a three-phase potential, and there are N three-phase potentials with exactly the same phase;
  • the inner rotor assembly includes a second rotating shaft, and a permanent magnet rotor assembly is provided at an end of the second rotating shaft located inside the motor base.
  • the permanent magnet rotor assembly includes a centrifugal bracket keyed to the second rotating shaft.
  • An inner rotor core is provided on a circumferential surface of the bracket, and a permanent magnet is provided on an outer surface of the inner rotor core.
  • a radial unilateral gap between the permanent magnet and the outer rotor core is 3-5 mm.
  • An end of the second rotating shaft close to the first rotating shaft is connected to the first rotating shaft through a transition bearing;
  • the control system includes a main circuit and a main control circuit.
  • the main circuit includes a circuit selection switch in communication with an induction coil.
  • the output of the circuit selection switch is connected in series with a motor-side filter, a motor-side power switching device, and a grid-side power.
  • a switching device, a grid-side filter, and a disconnector, the disconnector is in communication with the external power grid, and a low-voltage ride-through circuit device is also connected between the motor-side filter and the motor-side power switch device.
  • N three-phase potentials are connected in parallel with the motor-side filter.
  • N three-phase potentials are connected in series with the motor-side filter;
  • the main control circuit includes a main controller, a coil voltage sensor connected to an induction coil, and a grid phase detector connected to an external power grid.
  • the coil voltage sensor and a feedback terminal of the grid phase detector are connected to the main controller.
  • the control ends of the main controller are respectively connected to a circuit selection switch, a motor-side power switching device, and an isolation switch.
  • the control system further includes an auxiliary control circuit.
  • the auxiliary control circuit is composed of a resistance speed controller, and the input terminal of the resistance speed controller is respectively connected with the circuit selection switch output terminal and the main control. The control end of the device is connected. When a stall occurs or the components are damaged, the auxiliary control circuit can be quickly connected to avoid greater harm to the device, minimize losses, and improve the safety and reliability of the device.
  • 3N (N is a positive integer greater than or equal to 2) induction coils are evenly arranged on the iron core holder along its circumferential direction, and each three sets of induction coils are spaced by N-1 coils.
  • One three-phase potential forms a total of N three-phase potentials with the same phase, and the slip ring is provided with 3N and one-to-one correspondence with 3N sets of induction coils.
  • an end of the iron core holder away from the first rotating shaft is connected to the second rotating shaft through a bearing, so that the iron core holder has two supporting points, which increases the stability and reliability of the device.
  • the centrifugal support is provided with a plurality of through-air inlet channels along its length direction, and the outer rotor core and the inner rotor core are each formed by stacking a plurality of silicon steel sheets in sequence, and the outer A plurality of heat dissipation channels are provided in the radial direction of the rotor core and the inner rotor core, and a plurality of air outlet holes and air inlet holes are provided in the radial direction and the axial direction of the core holder, respectively, so that the cooling air can be driven from
  • the centrifugal bracket enters on both sides and diffuses radially from the inside, with good heat dissipation effect.
  • a shaft current insulation pad is provided in the axial direction of the first and second shafts, and the shaft current insulation pad can prevent the current from affecting the parts and reduce the service life of the parts. To improve the stability of the equipment.
  • the centrifugal support includes a sleeve sleeved on the second rotating shaft, and a plurality of ribs are evenly arranged in the circumferential direction of the sleeve, and the angle between the ribs and the sleeve in the radial direction Is ⁇ , the ⁇ is 5 ° to 30 °, and the rotation of the second rotating shaft is clockwise, which can generate a large amount of wind, meanwhile the wind pressure is small, and the wind pressure can reduce the impact on the equipment.
  • a cooling device is provided at the upper end of the motor base, and the cooling device includes a cooling shell provided at the upper end of the motor base, and the inside of the cooling shell is in communication with the inside of the motor base.
  • a plurality of cooling pipes are provided along its length direction, and an axial flow fan is provided at one end of the cooling shell along its length direction. The axial flow fan blows external low-temperature gas into the cooling pipe, so as to communicate with the high temperature inside the motor base. The gas exchanges heat, thereby reducing the temperature inside the motor base, which can quickly reduce the temperature inside the equipment and provide guarantee for the stable operation of the equipment.
  • the efficiency of the permanent magnet speed control motor is high. Because the permanent magnet speed control motor is provided with an induction coil on the outer rotor component, the slip between the outer rotor component and the inner rotor component can be induced into electrical energy and converted into a power supply grid through the control system. AC power supply machines with the same voltage, phase and frequency are reused, and the slip energy of this part of the speed-regulating permanent magnet coupler is completely transformed into thermal energy dissipation, so the efficiency of the permanent-magnet speed-regulating motor is higher than that of the speed-regulating type The permanent magnet coupler is high.
  • the permanent magnet speed control motor has less heat and low working temperature.
  • the permanent magnet speed control motor has high working efficiency. Its rated operating efficiency can reach 98.5%, and its maximum heat output is only the maximum heat output of the speed control type permanent magnet coupler. 10.0%, so using the same cooling method, its operating temperature is much lower.
  • the control response speed is fast and the precision is high. Since the permanent magnet speed control motor adopts power switch device for switch control, its response speed is similar to the response speed of power switch components.
  • FIG. 1 is a front view of the present invention
  • FIG. 2 is a schematic structural diagram of an outer rotor assembly in the present invention
  • FIG. 3 is a schematic structural diagram of an inner rotor assembly in the present invention.
  • FIG. 4 is a schematic structural diagram of a permanent magnet rotor assembly in the present invention.
  • FIG. 5 is a schematic structural diagram of a control system in the present invention.
  • 1-motor base 2-first rotating shaft, 3-iron core holder, 4-outer rotor core, 5-induction coil, 6-second rotating shaft, 7-centrifugal bracket, 8-inner rotor core, 9-permanent magnet, 10-collector ring, 11-circuit selector switch, 12-motor-side filter, 13-motor-side power switch device, 14-grid-side power switch device, 15-grid-side filter, 16-isolation Switch, 17-main controller, 18-coil voltage sensor, 19-grid phase detector, 20-resistance speed controller, 21-air inlet channel, 22-radiation channel, 23-air outlet, 24-in Air hole, 25-axis current insulation pad, 26-cooling shell, 27-cooling tube, 28-low voltage through circuit device, 29-transition bearing, 30-drain plate, 31-first selection switch, 32-second selection Switch, 33-axial fan, 7-sleeve, 7-2-rib plate.
  • the present invention is described in further detail below.
  • the manufacturing process of the induction coil 5, outer rotor core 4, and inner rotor core 8 is the prior art, which is the same as the production method of the existing motor.
  • the winding method of the iron core is the existing technology, but the connection method between the induction coils is different from the existing technology, which is one of the contents to be protected by this technical solution.
  • the low-voltage ride-through circuit device also belongs to the existing technology. This technical solution Not described in detail.
  • a permanent magnet speed regulating motor and a control method thereof provided in this embodiment include a motor base 1, and an outer rotor component and an inner rotor component are respectively provided on the motor base 1 and both ends along the length direction through bearings.
  • the outer rotor assembly includes a first rotating shaft 2, a slip ring 10 is provided on the first rotating shaft 2, and a cylindrical iron core holder 3 is provided at one end of the first rotating shaft 2 located inside the motor base 1.
  • An outer rotor core 4 and a plurality of sets of induction coils 5 matched with the outer rotor core 4 are provided in the middle of the core holder 3, and the output end of the induction coil 5 is connected to the slip ring 10, and
  • the number of groups of the induction coils 5 is six, and the number of the slip rings 10 is six.
  • the three groups of non-adjacent induction coils 5 form a three-phase potential, which has a total of two three-phase potentials.
  • the inner rotor assembly includes a second rotating shaft 6, and a permanent magnet rotor assembly is provided at an end of the second rotating shaft 6 located inside the motor base 1.
  • the permanent magnet rotor assembly includes a centrifugal bracket 7 which is key-connected to the second rotating shaft 6.
  • An inner rotor core 8 is provided on a circumferential surface of the centrifugal support 7, and a permanent magnet 9 is provided on an outer surface of the inner rotor core 8, and the diameter of the permanent magnet 9 and the outer rotor core 4 is The gap to the single side is 3 mm, and one end of the second rotating shaft 6 near the first rotating shaft 2 is connected to the first rotating shaft 2 through a transition bearing 29;
  • the control system includes a main circuit and a main control circuit.
  • the main circuit includes a circuit selection switch 11 in communication with the induction coil 5.
  • the output of the circuit selection switch 11 is connected in series with a motor-side filter 12 and a motor-side power switching device. 13.
  • Grid-side power switching device 14, grid-side filter 15, isolation switch 16, the isolation switch 16 communicates with the external power grid, and a connection is also provided between the motor-side filter 12 and the motor-side power switching device 13.
  • Low voltage passes through the circuit device 28.
  • the circuit selection switch 11 is composed of a first selection switch 31 and a second selection switch 32.
  • the first selection switch 31 has two working positions.
  • the second selection switch 32 only has an on-off function.
  • Coil 5 is X1, X2, X3, X4, X5, X6.
  • One end of X1, X2, X3 is all grounded, and the other end is connected with the second selection switch 32 in series and connected to the external power grid.
  • One end of X4, X5, and X6 is respectively.
  • a first selection switch 31 is connected in series, and the other end is directly connected to the external power grid.
  • the X1, X2, X3 correspond to X4, X5, and X6 one by one.
  • One station of the first selection switch 31 on X4 is connected to the ground.
  • the other station is connected to the non-ground terminal of X1
  • one station of the first selection switch 31 on X5 is connected to the ground terminal, and the other station is connected to the non-ground terminal of X2, the X6
  • One station of the first selection switch 31 is connected to the ground terminal, and the other station is connected to the non-ground terminal of X3;
  • the first selection switches 31 on the X4, X5, and X6 are respectively connected in parallel with X1, X2, and X3.
  • the first selection switch 31 and the second selection switch 32 Connected to the output of the main controller 17;
  • the first selection switches 31 on X4, X5, and X6 are all at the ground station, and the second selection switches 32 on X1, X2, and X3 are closed;
  • the circuit selection switch 11 When the circuit selection switch 11 is located at the second station, the first selection switch 31 on X4, X5, and X6 are all in the non-grounded station, and the second selection switch 32 on X1, X2, and X3 is turned off;
  • the main control circuit includes a main controller 17, a coil voltage sensor 18 connected to the induction coil 5, and a grid phase detector 19 connected to an external power grid.
  • the coil voltage sensor 18 and a feedback terminal of the grid phase detector 19 It is connected to the main controller 17, and the control ends of the main controller 17 are respectively connected to the circuit selection switch 11, the motor-side power switching device 13, and the isolation switch 16;
  • the control system further includes an auxiliary control circuit.
  • the auxiliary control circuit is composed of a resistance speed controller 20, and an input terminal of the resistance speed controller 20 is respectively an output terminal of the circuit selection switch 11 and a control terminal of the main controller 17. connection;
  • the centrifugal support 7 is provided with a through-air inlet passage 21 along its length.
  • the cores 8 are formed by stacking silicon steel sheets in sequence, and the outer rotor core 4 and the inner rotor core 8 are provided with heat dissipation channels 22 in the radial direction, and the core holder 3 is opened in the radial direction and the axial direction.
  • the centrifugal support 7 includes a sleeve 7-1 sleeved on the second rotating shaft 6, and a plurality of rib plates 7-2 are evenly arranged in a circumferential direction of the sleeve 7-1.
  • the rib plates 7-2 and The included angle in the radial direction of the sleeve 7-1 is ⁇ , and the ⁇ is 5 °;
  • a cooling device is provided at the upper end of the motor base 1.
  • the cooling device includes a cooling shell 26 provided at the upper end of the motor base 1.
  • the interior of the cooling shell 26 is in communication with the interior of the motor base 1.
  • a cooling pipe 27 is provided in the length direction, and an axial flow fan 33 is provided at one end of the cooling shell 26 along the length direction.
  • the axial flow fan 33 blows the external low-temperature gas into the cooling pipe 27 so as to communicate with the inside of the motor base 1.
  • the high-temperature gas exchanges heat, thereby reducing the temperature inside the motor base 1, and a cooling plate 26 is also provided inside the cooling shell 26 to guide the gas to flow in an "S" shape.
  • the control method of the permanent magnet speed control motor is performed according to the following steps:
  • Step 1 Control the circuit selection switch 11 through the main controller 17, first connect two three-phase potentials in parallel with the motor-side filter 12 in series, then turn on the isolation switch 16 and connect it to the second rotating shaft 6 through an external motor, thereby The inner rotor assembly is driven to rotate synchronously with the external motor, and then the current in the induction coil 5 is increased by controlling the motor-side power switching device 13 so that the torque between the outer rotor assembly and the inner rotation assembly is continuously increased, and finally the The speed is continuously increased until the required speed is reached;
  • Step 2 When the induced voltage of the induction coil 5 keeps falling, when the no-load voltage is U0 and the induced voltage of the induction coil 5 drops to U0 / N, if the speed of the first rotating shaft 2 needs to continue to increase, the circuit selection switch 11 will The two three-phase potentials are connected in series with the motor-side filter 12, and then the main controller 17 controls the motor-side power switching device 13 to continuously increase the current in the induction coil 5, so that the torque of the outer rotor assembly and the inner rotor assembly continues to increase. Until the rotation speed of the second rotating shaft 6 reaches the required rotation speed;
  • the induced voltage of the induction coil 5 continues to increase, and when the induced voltage of the induction coil 5 rises to U0 / 2, when the rotating speed of the first rotating shaft 2 has not been reduced to the required rotating speed,
  • the circuit selection switch 11 connects two three-phase potentials in parallel and then connects them in series with the motor-side filter 12, and then the main controller 17 controls the motor-side power switching device 13 to continuously reduce the current in the induction coil 5, and finally makes the outer rotor assembly and the inner rotor
  • the torque of the component continues to decrease until the speed of the first rotating shaft 6 reaches the required speed;
  • Step 3 When the main control circuit fails, the main controller 17 is switched to the on-resistance speed controller 20 through the circuit selection switch 11, and the isolation switch 16 is turned off.
  • This embodiment discloses a permanent magnet speed regulating motor.
  • This technical solution is the same as the technical solution of the embodiment, in which the number of the induction coils 5 is twelve, and the number of the slip rings 10 is twelve.
  • the coil 5 forms a three-phase potential with a total of four three-phase potentials, and the radial single-side gap between the permanent magnet 9 and the outer rotor core 4 is 4 mm, and the ⁇ is 20 °, where the circuit selection switch 11 and the implementation
  • the technical solution in Example 1 is similar and can be obtained directly by analogy;
  • the control method of the permanent magnet speed control motor is performed according to the following steps:
  • Step 1 Control the circuit selection switch 11 through the main controller 17, first connect the four three-phase potentials in parallel with the motor-side filter 12 in series, then turn on the isolation switch 16, and connect it to the second rotating shaft 6 through an external motor, thereby The inner rotor assembly is driven to rotate synchronously with the external motor, and then the current in the induction coil 5 is increased by controlling the motor-side power switching device 13 so that the torque between the outer rotor assembly and the inner rotation assembly is continuously increased, and finally the The speed is continuously increased until the required speed is reached;
  • Step 2 When the induced voltage of the induction coil 5 keeps falling, when the no-load voltage is U0 and the induced voltage of the induction coil 5 drops to U0 / N, if the speed of the first rotating shaft 2 needs to continue to increase, the circuit selection switch 11 will After the N three-phase potentials are connected in series with the motor-side filter 12, the main controller 17 controls the motor-side power switching device 13 to continuously increase the current in the induction coil 5, so that the torque of the outer rotor assembly and the inner rotor assembly continues to increase. Until the rotation speed of the second rotating shaft 6 reaches the required rotation speed;
  • the induced voltage of the induction coil 5 is continuously increased, and when the induced voltage of the induction coil 5 is increased to U0 / N, when the rotating speed of the first rotating shaft 2 has not been reduced to the required rotating speed,
  • the circuit selection switch 11 connects N three-phase potentials in parallel and connects them in series with the motor-side filter 12, and then the main controller 17 controls the motor-side power switching device 13 to continuously reduce the current in the induction coil 5, and finally makes the outer rotor assembly and the inner rotor
  • the torque of the component continues to decrease until the speed of the first rotating shaft 6 reaches the required speed;
  • Step 3 When the main control circuit fails, the main controller 17 is switched to the on-resistance speed controller 20 through the circuit selection switch 11, and the isolation switch 16 is turned off.
  • This embodiment discloses a permanent magnet speed-regulating motor.
  • the technical solution is the same as the technical solution of the embodiment.
  • the number of the induction coils 5 is 18, and the number of the slip rings 10 is 18.
  • the coil 5 forms a three-phase potential. There are a total of six three-phase potentials.
  • the radial unilateral gap between the permanent magnet 9 and the outer rotor core 4 is 5 mm, and the ⁇ is 30 °.
  • the circuit selection switch 11 and the implementation The technical solution in Example 1 is similar and can be obtained directly by analogy;
  • the control method of the permanent magnet speed control motor is performed according to the following steps:
  • Step 1 Control the circuit selection switch 11 through the main controller 17, first connect 6 three-phase potentials in parallel with the motor-side filter 12 in series, then turn on the isolation switch 16, and connect it to the second rotating shaft 6 through an external motor, thereby The inner rotor assembly is driven to rotate synchronously with the external motor, and then the current in the induction coil 5 is increased by controlling the motor-side power switching device 13 so that the torque between the outer rotor assembly and the inner rotation assembly is continuously increased, and finally the The speed is continuously increased until the required speed is reached;
  • Step 2 When the induced voltage of the induction coil 5 keeps falling, when the no-load voltage is U0 and the induced voltage of the induction coil 5 drops to U0 / N, if the speed of the first rotating shaft 2 needs to continue to increase, the circuit selection switch 11 will After the N three-phase potentials are connected in series with the motor-side filter 12, the main controller 17 controls the motor-side power switching device 13 to continuously increase the current in the induction coil 5, so that the torque of the outer rotor assembly and the inner rotor assembly continues to increase. Until the rotation speed of the second rotating shaft 6 reaches the required rotation speed;
  • the induced voltage of the induction coil 5 is continuously increased, and when the induced voltage of the induction coil 5 is increased to U0 / N, when the rotating speed of the first rotating shaft 2 has not been reduced to the required rotating speed,
  • the circuit selection switch 11 connects N three-phase potentials in parallel and connects them in series with the motor-side filter 12, and then the main controller 17 controls the motor-side power switching device 13 to continuously reduce the current in the induction coil 5, and finally makes the outer rotor assembly and the inner rotor
  • the torque of the component continues to decrease until the speed of the first rotating shaft 6 reaches the required speed;
  • Step 3 When the main control circuit fails, the main controller 17 is switched to the on-resistance speed controller 20 through the circuit selection switch 11, and the isolation switch 16 is turned off.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Multiple Motors (AREA)

Abstract

本发明公开了一种永磁调速电机,包括电机底座,在所述电机底座上且沿其长度方向的两端分别通过轴承设有外转子组件、内转子组件,外转子组件包括第一转轴,在所述第一转轴上设有集电环,在所述第一转轴位于电机底座内部的一端设有筒状的铁芯保持架,在所述铁芯保持架的内部设有外转子铁芯以及与外转子铁芯相配合的多组感应线圈,所述感应线圈的输出端与集电环连接,且所述感应线圈的组数为3N(N为整数),且感应线圈的组数大于或者等于6组,所述集电环的数量为3N,每三组感应线圈形成一个三相电位,共有N个相位完全相同的三相电位。

Description

一种永磁调速电机及其控制方法 技术领域
本发明涉及永磁调速电机,具体的说是一种永磁调速电机及其控制方法。
背景技术
调速型永磁耦合器越来越得到行业的认可,但在实际使用中,调速型永磁耦合器也暴露出一些问题,主要有:
一、调速型永磁耦合器的效率偏低。调速型永磁耦合器本质上属于转差调速,其效率与输出转速成正相关关系,当输出转速较低时效率很低,比如调速型永磁耦合器的输出转速为50%的额定转速时,其工作效率仅48%。
二、调速型永磁耦合器的工作温度高。由于调速型永磁耦合器的转差功率损失全部转变成热量,造成设备在低速工作时其工作温度高。
三、调速机构的可靠性不高。调速型永磁耦合器的主体结构的可靠性高,但其调速机构由于采用机械位置的调整达到调速的目的,调速机构在高速条件下实现位置调节可靠性较低。
四、控制响应速度和相应精度较差。由于调速型永磁耦合器通过电动执行机构的动作带动机械结构的调整来实现调速,其相应的速度较慢,响应精度较低。
发明内容
本发明所要解决的技术问题是,针对以上现有技术的缺点,提出一种永磁调速电机及其控制方法,不仅能够对负载进行调速,实现节能的作用,而且还能够进一步将多余的电能转化成与电机相匹配的电能并向电机供电,进一步节约电能,工作效率大大提高。
本技术方案具体公开了永磁调速电机,包括电机底座,在所述电机底座上且沿其长度方向的两端分别通过轴承设有外转子组件、内转子组件,外转子组件包括第一转轴,在所述第一转轴上设有集电环,在所述第一转轴位于电机底座内部的一端设有筒状的铁芯保持架,在所述铁芯保持架的中部设有多个外转子铁芯以及与外转子铁芯相配合的多组感应线圈,所述感应线圈的输出端与集电环连接,且所述感应线圈的组数为3N(N为≥2的正整数),所述集电环的数量感应线圈的组数相等,每三组感应线圈形成一个三相电位,共有N个相位完全相同的三相电位;
所述内转子组件包括第二转轴,在所述第二转轴位于电机底座内部的一端设有永磁转子 组件,所述永磁转子组件包括与第二转轴键连接的离心支架,在所述离心支架的圆周面上设有内转子铁芯,在所述内转子铁芯的外表面设有永磁体,且所述永磁体与外转子铁芯的径向单边间隙为3-5mm,所述第二转轴靠近第一转轴的一端通过过渡轴承与第一转轴连接;
当内转子组件与外转子组件产生转速差时,感应线圈中产生感应电压,并通过集电环将所感应产生的电能输送到控制***中并通过其转换成与电机供电线路相同电压、同频率和同相位的电能,然后供电机使用;
所述控制***包括主电路和主控制电路,所述主电路包括与感应线圈连通的电路选择开关,所述电路选择开关输出端依次串联有电机侧滤波器、电机侧功率开关器件、电网侧功率开关器件、电网侧滤波器、隔离开关,所述隔离开关与外部电网连通,在所述电机侧滤波器与电机侧功率开关器件之间还接入有低电压穿越电路器件,当电路选择开关位于第一工位时,N个三相电位并联后与电机侧滤波器连接,当电路选择开关位于第二工位时,N个三相电位串联后与电机侧滤波器连接;
所述主控制电路包括主控制器、与感应线圈连接的线圈电压感应器、与外部电网连接的电网相位检测器,所述线圈电压感应器、电网相位检测器的反馈端与主控制器连接,所述主控制器的控制端分别与电路选择开关、电机侧功率开关器件、隔离开关连接。
进一步限定的技术方案
前述的永磁调速电机,所述控制***还包括辅助控制电路,所述辅助控制电路由电阻调速控制器组成,所述电阻调速控制器输入端分别与电路选择开关输出端、主控制器的控制端连接,当出现堵转或者元器件损坏时,辅助控制电路能迅速接入,避免对设备造成更大的伤害,把损失降到最低,提高设备的安全性和可靠性。
前述的永磁调速电机,在所述铁芯保持架上沿其圆周方向均匀设有3N(N为≥2的正整数)感应线圈,每3组间隔为N-1个线圈的感应线圈形成一个三相电位,共形成N个相位相同的三相电位,且所述集电环设有3N个且分别与3N组感应线圈一一对应。
前述的永磁调速电机,铁芯保持架远离第一转轴的一端通过轴承与第二转轴连接,这样能够使铁芯保持架具有两个支撑点,增加设备的稳定性和可靠性。
前述的永磁调速电机,离心支架沿其长度方向开设有多个贯穿的进风通道,所述外转子铁芯与内转子铁芯均由多个硅钢片依次叠加而成,且所述外转子铁芯与内转子铁芯径向方向 开设有多个散热通道,且所述铁芯保持架的径向和轴向分别开设有多个出风孔和进风孔,这样能够使冷却风从离心支架两侧进入,由内部向径向扩散,散热效果好。
前述的永磁调速电机,在所述第一转轴与第二转轴的轴向均设有轴电流绝缘垫,设置轴电流绝缘垫能够避免电流对零部件造成影响,避免零部件的使用寿命降低,提高设备的稳定性。
前述的永磁调速电机,离心支架包括套设在第二转轴上的套筒,在所述套筒圆周方向均匀设有多个筋板,所述筋板与套筒径向方向的夹角为θ,所述θ为5°~30°,同时第二转轴的转向为顺时针旋转,这样能够产生较大的风量,同时风压较小,风压较小能够降低对设备的影响。
前述的永磁调速电机,在所述电机底座的上端设有冷却装置,所述冷却装置包括设置在电机底座上端的冷却壳,所述冷却壳内部与电机底座内部连通,在所述冷却壳沿其长度方向设有多个冷却管,在所述冷却壳沿其长度方向一端设有轴流风机,所述轴流风机将外部的低温气体打入冷却管中,从而与电机底座内部的高温气体进行热交换,从而降低电机底座内部的温度,这样能够快速降低设备内部的温度,为设备稳定运行提供保障。
本发明的有益效果:
1、永磁调速电机的效率高,由于永磁调速电机在外转子组件上设置有感应线圈,可以将外转子组件和内转子组件的转差感应成电能并通过控制***转换成与供电电网电压、相位和频率都相同的交流电供电机再使用,而调速型永磁耦合器这部分的转差能量则完全转变成了热能耗散了,因此永磁调速电机的效率比调速型永磁耦合器高。
2、永磁调速电机的发热少、工作温度低,永磁调速电机的工作效率高,其额定工作效率能达到98.5%,其最大发热量仅为调速型永磁耦合器最大发热量的10.0%,因此采用同样的冷却方式其工作温度低很多。
3、可靠性高,永磁调速电机不存在高速旋转的机械结构的调节,同时其主电路和主控制电路、电阻调速控制器可以选择使用的冗余设计,其可靠性大大提高,并且外转子组件中的感应线圈能够通过控制***选择串联或并联的形式对外输出电能,使得控制电路承受的最大电压或者电流下降50%,控制元器件的可靠性和安全性得到提高。
4、控制响应速度快、精度高,由于永磁调速电机采用功率开关器件进行开关控制,其响 应速度与功率开关元器件的响应速度相近。
附图说明
图1为本发明的主视图;
图2为本发明中外转子组件的结构示意图;
图3为本发明中内转子组件的结构示意图;
图4为本发明中永磁转子组件的结构示意图;
图5为本发明中控制***的结构示意图;
图6为实施例1中电路选择开关位于第一工位的结构示意图(N=2);
图7为实施例1中电路选择开关位于第二工位的结构示意图(N=2);
其中:1-电机底座,2-第一转轴,3-铁芯保持架,4-外转子铁芯,5-感应线圈,6-第二转轴,7-离心支架,8-内转子铁芯,9-永磁体,10-集电环,11-电路选择开关,12-电机侧滤波器,13-电机侧功率开关器件,14-电网侧功率开关器件,15-电网侧滤波器,16-隔离开关,17-主控制器,18-线圈电压感应器,19-电网相位检测器,20-电阻调速控制器,21-进风通道,22-散热通道,23-出风孔,24-进风孔,25-轴电流绝缘垫,26-冷却壳,27-冷却管,28-低电压穿越电路器件,29-过渡轴承,30-引流板,31-第一选择开关,32-第二选择开关,33-轴流风机,7-1-套筒,7-2-筋板。
具体实施方式
下面对本发明做进一步的详细说明,其中所涉及感应线圈5、外转子铁芯4、内转子铁芯8的制作工艺为现有技术,与现有电机的生产方式相同,其中感应线圈5的与铁芯的绕法为现有技术,但是感应线圈之间的连接方式与现有技术不同,是本技术方案所要保护的内容之一,同时低电压穿越电路器件也属于现有技术,本技术方案不在做详细描述。
实施例1
本实施例提供的一种永磁调速电机及其控制方法,包括电机底座1,在所述电机底座1上且沿其长度方向的两端分别通过轴承设有外转子组件、内转子组件,所述外转子组件包括第一转轴2,在所述第一转轴2上设有集电环10,在所述第一转轴2位于电机底座1内部的 一端设有筒状的铁芯保持架3,在所述铁芯保持架3的中部设有外转子铁芯4以及与外转子铁芯4相配合的多组感应线圈5,所述感应线圈5的输出端与集电环10连接,且所述感应线圈5的组数为6组,所述集电环10的数量为6,3组不相邻的感应线圈5形成一个三相电位,共有2个三相电位;
所述内转子组件包括第二转轴6,在所述第二转轴6位于电机底座1内部的一端设有永磁转子组件,所述永磁转子组件包括与第二转轴6键连接的离心支架7,在所述离心支架7的圆周面上设有内转子铁芯8,在所述内转子铁芯8的外表面设有永磁体9,且所述永磁体9与外转子铁芯4的径向单边间隙为3mm,所述第二转轴6靠近第一转轴2的一端通过过渡轴承29与第一转轴2连接;
当内转子组件与外转子组件产生转速差时,感应线圈5中产生感应电压,并通过集电环10将所感应产生的电能输送到控制***中并通过其转换成与电机供电线路相同电压、同频率和同相位的电能,然后供电机使用,且集电环中的碳刷采用快换式碳刷,方便更换和维护;
所述控制***包括主电路和主控制电路,所述主电路包括与感应线圈5连通的电路选择开关11,所述电路选择开关11输出端依次串联有电机侧滤波器12、电机侧功率开关器件13、电网侧功率开关器件14、电网侧滤波器15、隔离开关16,所述隔离开关16与外部电网连通,在所述电机侧滤波器12与电机侧功率开关器件13之间还接入有低电压穿越电路器件28,当电路选择开关11位于第一工位时,2个三相电位并联后与电机侧滤波器12连接,如图6所示,当电路选择开关11位于第二工位时,2个三相电位串联后与电机侧滤波器12连接,图图7所示;
所述电路选择开关11由第一选择开关31和第二选择开关32组成,所述第一选择开关31具有两个工位,所述第二选择开关32仅具有通断的功能,六组感应线圈5分别为X1、X2、X3、X4、X5、X6,其中X1、X2、X3的一端全部接地,另一端分别与第二选择开关32串联后与外部电网连接,X4、X5、X6一端分别串联有第一选择开关31,另一端直接与外部电网连接,所述X1、X2、X3与X4、X5、X6一一对应,所述X4上的第一选择开关31的一个工位与接地端连接,另一个工位与X1的非接地端连接,所述X5上的第一选择开关31的一个工位与接地端连接,另一个工位与X2的非接地端连接,所述X6上的第一选择开关31的一个工位与接地端连接,另一个工位与X3的非接地端连接;所述X4、X5、X6上的第一选择开关31分别先与X1、X2、X3并联后再与第二选择开关32串联,所述第一选择开关31和第二选择开关32均与主控制器17的输出端连接;
当电路选择开关11位于第一工位时,X4、X5、X6上的第一选择开关31均处于接地工位,X1、X2、X3上的第二选择开关32闭合;
当电路选择开关11位于第二工位时,X4、X5、X6上的第一选择开关31均处于非接地工位,X1、X2、X3上的第二选择开关32断开;
所述主控制电路包括主控制器17、与感应线圈5连接的线圈电压感应器18、与外部电网连接的电网相位检测器19,所述线圈电压感应器18、电网相位检测器19的反馈端与主控制器17连接,所述主控制器17的控制端分别与电路选择开关11、电机侧功率开关器件13、隔离开关16连接;
所述控制***还包括辅助控制电路,所述辅助控制电路由电阻调速控制器20组成,所述电阻调速控制器20输入端分别与电路选择开关11输出端、主控制器17的控制端连接;
铁芯保持架3远离第一转轴2的一端通过轴承与第二转轴6连接,所述离心支架7沿其长度方向开设有贯穿的进风通道21,所述外转子铁芯4与内转子铁芯8均由硅钢片依次叠加而成,且所述外转子铁芯4与内转子铁芯8径向方向开设有散热通道22,且所述铁芯保持架3的径向和轴向分别开设有出风孔23和进风孔24,在所述第一转轴2与第二转轴6的轴向均设有轴电流绝缘垫25;
所述离心支架7包括套设在第二转轴6上的套筒7-1,在所述套筒7-1圆周方向均匀设有多个筋板7-2,所述筋板7-2与套筒7-1径向方向的夹角为θ,所述θ为5°;
在所述电机底座1的上端设有冷却装置,所述冷却装置包括设置在电机底座1上端的冷却壳26,所述冷却壳26内部与电机底座1内部连通,在所述冷却壳26沿其长度方向设有冷却管27,在所述冷却壳26沿其长度方向一端设有轴流风机33,所述轴流风机33将外部的低温气体打入冷却管27中,从而与电机底座1内部的高温气体进行热交换,从而降低电机底座1内部的温度,且所述冷却壳26内部还设有引导气体按“S”形流动的引流板30。
所述永磁调速电机的控制方法按以下步骤进行:
步骤1:通过主控制器17控制电路选择开关11,先将2个三相电位并联后与电机侧滤波器12串联,然后将隔离开关16接通,通过外部电机与第二转轴6连接,从而驱动内转子组件与外部电机同步转动,然后通过控制电机侧功率开关器件13提高感应线圈5中的电流,从而使外转子组件与内转自组件之间的扭矩不断增加,最终使第一转轴2的转速不断提高,达到所需的转 速为止;
步骤2:当感应线圈5的感应电压不断下降,当空载电压为U0,感应线圈5的感应电压下降到U0/N时,若第一转轴2的转速需要继续提速时,电路选择开关11将2个三相电位串联后再与电机侧滤波器12串联,然后主控制器17控制电机侧功率开关器件13不断提高感应线圈5中的电流,最终使外转子组件与内转子组件的扭矩继续增加直至第二转轴6的转速达到所需的转速;
若第一转轴2的转速需要降速时,感应线圈5的感应电压不断上升,感应线圈5的感应电压上升到U0/2时,第一转轴2的转速还未降低到所需的转速时,电路选择开关11将2个三相电位并联后再与电机侧滤波器12串联,然后主控制器17控制电机侧功率开关器件13不断降低感应线圈5中的电流,最终使外转子组件与内转子组件的扭矩继续减小直至第一转轴6的转速达到所需的转速;
步骤3:当主控制电路出现故障时,主控制器17通过电路选择开关11切换至接通电阻调速控制器20,并断开隔离开关16。
实施例2
本实施例公开一种永磁调速电机,本技术方案与实施例的技术方案相同,其中述感应线圈5的组数为12组,所述集电环10的数量为12,每三组感应线圈5形成一个三相电位,共有4个三相电位,且所述永磁体9与外转子铁芯4的径向单边间隙为4mm,所述θ为20°,其中电路选择开关11与实施例1中的技术方案相似,可以通过类比的方式直接获得;
所述永磁调速电机的控制方法按以下步骤进行:
步骤1:通过主控制器17控制电路选择开关11,先将4个三相电位并联后与电机侧滤波器12串联,然后将隔离开关16接通,通过外部电机与第二转轴6连接,从而驱动内转子组件与外部电机同步转动,然后通过控制电机侧功率开关器件13提高感应线圈5中的电流,从而使外转子组件与内转自组件之间的扭矩不断增加,最终使第一转轴2的转速不断提高,达到所需的转速为止;
步骤2:当感应线圈5的感应电压不断下降,当空载电压为U0,感应线圈5的感应电压下降到U0/N时,若第一转轴2的转速需要继续提速时,电路选择开关11将N个三相电位串联后再与电机侧滤波器12串联,然后主控制器17控制电机侧功率开关器件13不断提高感应线圈5中的电流,最终使外转子组件与内转子组件的扭矩继续增加直至第二转轴6的转速达到所需的转速;
若第一转轴2的转速需要降速时,感应线圈5的感应电压不断上升,感应线圈5的感应电压上升到U0/N时,第一转轴2的转速还未降低到所需的转速时,电路选择开关11将N个三相电位并联后再与电机侧滤波器12串联,然后主控制器17控制电机侧功率开关器件13不断降低感应线圈5中的电流,最终使外转子组件与内转子组件的扭矩继续减小直至第一转轴6的转速达到所需的转速;
步骤3:当主控制电路出现故障时,主控制器17通过电路选择开关11切换至接通电阻调速控制器20,并断开隔离开关16。
实施例3
本实施例公开一种永磁调速电机,本技术方案与实施例的技术方案相同,其中述感应线圈5的组数为18组,所述集电环10的数量为18,每三组感应线圈5形成一个三相电位,共有6个三相电位,且所述永磁体9与外转子铁芯4的径向单边间隙为5mm,所述θ为30°,其中电路选择开关11与实施例1中的技术方案相似,可以通过类比的方式直接获得;
所述永磁调速电机的控制方法按以下步骤进行:
步骤1:通过主控制器17控制电路选择开关11,先将6个三相电位并联后与电机侧滤波器12串联,然后将隔离开关16接通,通过外部电机与第二转轴6连接,从而驱动内转子组件与外部电机同步转动,然后通过控制电机侧功率开关器件13提高感应线圈5中的电流,从而使外转子组件与内转自组件之间的扭矩不断增加,最终使第一转轴2的转速不断提高,达到所需的转速为止;
步骤2:当感应线圈5的感应电压不断下降,当空载电压为U0,感应线圈5的感应电压下降到U0/N时,若第一转轴2的转速需要继续提速时,电路选择开关11将N个三相电位串联后再与电机侧滤波器12串联,然后主控制器17控制电机侧功率开关器件13不断提高感应线圈5中的电流,最终使外转子组件与内转子组件的扭矩继续增加直至第二转轴6的转速达到所需的转速;
若第一转轴2的转速需要降速时,感应线圈5的感应电压不断上升,感应线圈5的感应电压上升到U0/N时,第一转轴2的转速还未降低到所需的转速时,电路选择开关11将N个三相电位并联后再与电机侧滤波器12串联,然后主控制器17控制电机侧功率开关器件13不断降低感应线圈5中的电流,最终使外转子组件与内转子组件的扭矩继续减小直至第一转轴6的转速达到所需的转速;
步骤3:当主控制电路出现故障时,主控制器17通过电路选择开关11切换至接通电阻调速控制器20,并断开隔离开关16。
以上实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明保护范围之内。

Claims (9)

  1. 一种永磁调速电机,包括电机底座(1),在所述电机底座(1)上且沿其长度方向的两端分别通过轴承设有外转子组件、内转子组件,其特征在于:所述外转子组件包括第一转轴(2),在所述第一转轴(2)上设有集电环(10),在所述第一转轴(2)位于电机底座(1)内部的一端设有筒状的铁芯保持架(3),在所述铁芯保持架(3)的内部设有外转子铁芯(4)以及与外转子铁芯(4)相配合的多组感应线圈(5),所述感应线圈(5)的输出端与集电环(10)连接,且所述感应线圈(5)的组数为3N(N为≥2的正整数),所述集电环(10)的数量为3N,每三组感应线圈(5)形成一个三相电位,各组感应线圈的相位完全相同,共有N个相位完全相同的三相电位;
    所述内转子组件包括第二转轴(6),在所述第二转轴(6)位于电机底座(1)内部的一端设有永磁转子组件,所述永磁转子组件包括与第二转轴(6)键连接的离心支架(7),在所述离心支架(7)的圆周面上设有第二铁芯(8),在所述第二铁芯(8)的外表面设有永磁体(9),且所述永磁体(9)与第一铁芯(4)的径向单边间隙为3-5mm,所述第二转轴(6)靠近第一转轴(2)的一端通过过渡轴承(29)与第一转轴(2)连接;
    当内转子组件与外转子组件产生转速差时,感应线圈(5)中产生感应电压,并通过集电环(10)将所感应产生的电能输送到控制***中并通过其转换成与电机供电线路相同电压、同频率和同相位的电能,然后供电机使用;
    所述控制***包括主电路和主控制电路,所述主电路包括与感应线圈(5)连通的电路选择开关(11),所述电路选择开关(11)输出端依次串联有电机侧滤波器(12)、电机侧功率开关器件(13)、电网侧功率开关器件(14)、电网侧滤波器(15)、隔离开关(16),所述隔离开关(16)与外部电网连通,在所述电机侧滤波器(12)与电机侧功率开关器件(13)之间还接入有低电压穿越电路器件(28),当电路选择开关11位于第一工位时,N个三相电位并联后与电机侧滤波器(12)连接,当电路选择开关(11)位于第二工位时,N个三相电位串联后与电机侧滤波器(12)连接;
    所述主控制电路包括主控制器(17)、与感应线圈(5)连接的线圈电压感应器(18)、与外部电网连接的电网相位检测器(19),所述线圈电压感应器(18)、电网相位检测器(19)的反馈端与主控制器(17)连接,所述主控制器(17)的控制端分别与电路选择开关(11)、电机侧功率开关器件(13)、隔离开关(16)连接。
  2. 根据权利要求1所述的永磁调速电机,其特征在于:所述控制***还包括辅助控制电 路,所述辅助控制电路由电阻调速控制器(20)组成,所述电阻调速控制器(20)输入端分别与电路选择开关(11)输出端、主控制器(17)的控制端连接。
  3. 根据权利要求1所述的永磁调速电机,其特征在于:在所述铁芯保持架(3)上沿其圆周方向均匀设有3N(N为≥2的正整数)组感应线圈(5),3组不相邻且间隔N-1个线圈的感应线圈(5)形成一个三相电位,共形成N(N为≥2的正整数)个相位相同的三相电位,且所述集电环(10)设有3N(N为≥2的正整数)个且分别与3N(N为≥2的正整数)组感应线圈(5)一一对应。
  4. 根据权利要求1所述的永磁调速电机,其特征在于:所述铁芯保持架(3)远离第一转轴(2)的一端通过轴承与第二转轴(6)连接。
  5. 根据权利要求1所述的永磁调速电机,其特征在于:所述离心支架(7)沿其长度方向开设有多个贯穿的进风通道(21),所述外转子铁芯(4)与内转子铁芯(8)均由多个硅钢片依次叠加而成,且所述外转子铁芯(4)与内转子铁芯(8)径向方向开设有多个散热通道(22),且所述铁芯保持架(3)的径向和轴向分别开设有多个出风孔(23)和进风孔(24)。
  6. 根据权利要求1所述的永磁调速电机,其特征在于:在所述第一转轴(2)与第二转轴(6)的轴向均设有轴电流绝缘垫(25)。
  7. 根据权利要求1所述的永磁调速电机,其特征在于:所述离心支架(7)包括套设在第二转轴(6)上的套筒(7-1),在所述套筒(7-1)圆周方向均匀设有多个筋板(7-2),所述筋板(7-2)与套筒(7-1)径向方向的夹角为θ,所述θ为5°~30°。
  8. 根据权利要求1所述的永磁调速电机,其特征在于:在所述电机底座(1)的上端设有冷却装置,所述冷却装置包括设置在电机底座(1)上端的冷却壳(26),所述冷却壳(26)内部与电机底座(1)内部连通,在所述冷却壳(26)沿其长度方向设有多个冷却管(27),在所述冷却壳(26)沿其长度方向一端设有轴流风机(33),所述轴流风机(33)将外部的低温气体打入冷却管(27)中,从而与电机底座(1)内部的高温气体进行热交换,从而降低电机底座(1)内部的温度,且所述冷却壳(26)内部还设有引导气体按“S”形流动的引流板(30)。
  9. 根据权利要求1-8任意一项所述的永磁调速电机,其特征在于:所述永磁调速电机的控制方法按以下步骤进行:
    所述感应线圈(5)的组数为3N(N为≥2的正整数),所述集电环(10)的数量为3N;
    步骤1:通过主控制器(17)控制电路选择开关(11),先将N个三相电位并联后与电机侧滤波器(12)串联,然后将隔离开关(16)接通,通过外部电机与第二转轴(6)连接,从而驱动内转子组件与外部电机同步转动,然后通过控制电机侧功率开关器件(13)提高感应线圈(5)中的电流,从而使外转子组件与内转自组件之间的扭矩不断增加,最终使第一转轴(2)的转速不断提高;
    步骤2:当感应线圈(5)的感应电压不断下降,当空载电压为U 0,感应线圈(5)的感应电压下降到U 0/N时,若第一转轴(2)的转速需要继续提速时,电路选择开关(11)将N个三相电位串联后再与电机侧滤波器(12)串联,然后主控制器(17)控制电机侧功率开关器件(13)不断提高感应线圈(5)中的电流,最终使外转子组件与内转子组件的扭矩继续增加直至第二转轴(6)的转速达到所需的转速;
    若第一转轴(2)的转速需要降速时,感应线圈(5)的感应电压不断上升,感应线圈(5)的感应电压上升到U 0/N时,第一转轴(2)的转速还未降低到所需的转速时,电路选择开关(11)将N个三相电位并联后再与电机侧滤波器(12)串联,然后主控制器(17)控制电机侧功率开关器件(13)不断降低感应线圈(5)中的电流,最终使外转子组件与内转子组件的扭矩继续减小直至第一转轴(6)的转速达到所需的转速;
    步骤3:当主控制电路出现故障时,主控制器(17)通过电路选择开关(11)切换至接通电阻调速控制器(20),并断开隔离开关(16)。
PCT/CN2018/103112 2018-08-30 2018-08-30 一种永磁调速电机及其控制方法 WO2020042051A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/103112 WO2020042051A1 (zh) 2018-08-30 2018-08-30 一种永磁调速电机及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/103112 WO2020042051A1 (zh) 2018-08-30 2018-08-30 一种永磁调速电机及其控制方法

Publications (1)

Publication Number Publication Date
WO2020042051A1 true WO2020042051A1 (zh) 2020-03-05

Family

ID=69643121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/103112 WO2020042051A1 (zh) 2018-08-30 2018-08-30 一种永磁调速电机及其控制方法

Country Status (1)

Country Link
WO (1) WO2020042051A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105429405A (zh) * 2014-09-16 2016-03-23 铃木株式会社 旋转电机
CN107863866A (zh) * 2017-12-26 2018-03-30 南京玛格耐特智能科技有限公司 一种大功率电磁调速电机

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105429405A (zh) * 2014-09-16 2016-03-23 铃木株式会社 旋转电机
CN107863866A (zh) * 2017-12-26 2018-03-30 南京玛格耐特智能科技有限公司 一种大功率电磁调速电机

Similar Documents

Publication Publication Date Title
WO2017177612A1 (zh) 一种用于汽轮发电机组的广义变频***
CN107248804B (zh) 一种盘式永磁耦合机构及应用其的装置
CN201466945U (zh) 径向磁场无铁芯永磁风力发电机
WO2015124122A1 (zh) 一种用于火力发电厂的新型变频***
CN107863866B (zh) 一种大功率电磁调速电机
CN108900068B (zh) 一种永磁调速电机及其控制方法
CN205141935U (zh) 一种电机用集电装置
CN103701238A (zh) 5mw双馈空-水冷风力发电机的自循环散热装置
CN206874493U (zh) 一种用于双机回热的辅机动力***
WO2010060235A1 (zh) 提高电站直接空冷***的冷却能力的方法及冷却***
WO2020042051A1 (zh) 一种永磁调速电机及其控制方法
CN208623526U (zh) 一种永磁调速电机
CN207010592U (zh) 一种单相电机及空调变频改造节能运行电路
CN108233626B (zh) 一种大型同步调相机内部冷却通风***
CN207117459U (zh) 半侧自励式永磁调速器
CN110380575A (zh) 一种带有径流式散热风轮的自励同步发电机
CN209860678U (zh) 用于带式输送机的定子分段错位式外转子直驱永磁电机
CN207583644U (zh) 一种空冷风机
CN209402385U (zh) 一种跑步机直流无刷滚筒电机
CN207677603U (zh) 一种大功率电磁调速电机
CN100495899C (zh) 双转子变速变频发电机
CN209709791U (zh) 一种微型燃气轮机使用的启发一体的双绕组永磁电机
CN103855886B (zh) 一种电磁调速机
CN105162290A (zh) 一种电机用集电装置
CN100535434C (zh) 变速变频风电机励磁控制***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18932221

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18932221

Country of ref document: EP

Kind code of ref document: A1