WO2020040131A1 - Pump device - Google Patents

Pump device Download PDF

Info

Publication number
WO2020040131A1
WO2020040131A1 PCT/JP2019/032422 JP2019032422W WO2020040131A1 WO 2020040131 A1 WO2020040131 A1 WO 2020040131A1 JP 2019032422 W JP2019032422 W JP 2019032422W WO 2020040131 A1 WO2020040131 A1 WO 2020040131A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric pump
pump
voltage
piezoelectric
frequency
Prior art date
Application number
PCT/JP2019/032422
Other languages
French (fr)
Japanese (ja)
Inventor
健二朗 岡口
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2020040131A1 publication Critical patent/WO2020040131A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/04Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/04Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms
    • F04B45/047Pumps having electric drive
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details

Definitions

  • the present invention relates to a pump device, and more particularly to a pump device including a piezoelectric pump.
  • a pump device equipped with a piezoelectric pump has been used as a gas suction device or a pressure device.
  • the piezoelectric pump is driven by the vibration of the piezoelectric element.
  • the size of the pump device can be reduced.
  • the piezoelectric element vibrates periodically by applying an AC voltage to the piezoelectric element. Thereby, the pressure in the container can be changed.
  • the frequency of the applied AC voltage is called a driving frequency of the piezoelectric pump.
  • the driving frequency of the piezoelectric pump is predetermined at room temperature.
  • the piezoelectric pump when the temperature of the piezoelectric pump is lower than the normal temperature, the output decreases, and when the temperature of the piezoelectric pump becomes higher than the normal temperature, the electric efficiency decreases.
  • the piezoelectric pump has a temperature characteristic. Therefore, as a technique for correcting the temperature characteristics of the piezoelectric pump, use of a temperature compensation technique used in a crystal oscillator can be considered.
  • a thermistor is provided outside the crystal oscillator to detect an environmental temperature, and compensate for the oscillation frequency of the crystal according to the detected temperature.
  • a pump device including a piezoelectric pump, which can drive the piezoelectric pump in accordance with the temperature of the piezoelectric pump.
  • a piezoelectric pump A voltage detection unit that detects an applied voltage applied to the piezoelectric pump, A control unit that drives the piezoelectric pump based on the applied voltage at a first frequency outside a driving frequency band capable of driving the piezoelectric pump, and determines a second frequency within the driving frequency band, It is a pump apparatus provided with.
  • the pump device of the present invention in a pump device including a piezoelectric pump, it is possible to provide a pump device that can be driven according to the temperature of the piezoelectric pump.
  • FIG. 6 is a graph showing the relationship between output voltage Vo and temperature at different frequencies.
  • Flow chart showing the flow of drive control of the piezoelectric pump according to the first embodiment.
  • FIG. 4 is a graph showing an example of a relationship between time and temperature of a piezoelectric pump in drive control.
  • FIG. 4 is a graph showing an example of a relationship between time and frequency in drive control.
  • Graph showing the electrical efficiency of the pump device 5 is a circuit diagram showing a modification of the drive circuit and the voltage detection circuit according to the first embodiment. Explanatory diagram showing the direction in which a fluid flows in Embodiment 2.
  • FIG. 6 is a graph showing a relationship between time and pressure of the pump device according to the second embodiment.
  • Block diagram of a pump device according to Embodiment 3. Flow chart showing the flow of drive control of the piezoelectric pump according to the third embodiment.
  • Circuit diagram of drive circuit and voltage detection circuit in Embodiment 3 Circuit diagram of an amplifier circuit according to Embodiment 3. Explanatory drawing showing the direction in which a fluid flows in Embodiment 4.
  • Circuit diagram of drive circuit and voltage detection circuit in Embodiment 4
  • a pump device includes a piezoelectric pump, a voltage detection unit that detects an applied voltage applied to the piezoelectric pump, and a first frequency outside a driving frequency band capable of driving the piezoelectric pump.
  • a control unit that drives the piezoelectric pump based on the applied voltage and determines a second frequency in the drive frequency band.
  • the voltage applied to the piezoelectric pump at the first frequency outside the driving frequency band of the piezoelectric pump is detected. Since the value of the applied voltage corresponds to the temperature of the piezoelectric pump, the second frequency for driving the piezoelectric pump is determined based on the detected applied voltage, so that an appropriate value corresponding to the temperature change of the piezoelectric pump can be obtained.
  • the piezoelectric pump can be driven at an appropriate frequency. Thus, the output of the piezoelectric pump at low temperatures and the electrical efficiency at high temperatures can be improved.
  • an impedance element electrically connected to the piezoelectric pump may be provided, and the voltage detection unit may measure the applied voltage from a voltage divided by the piezoelectric pump and the impedance element. According to such a configuration, the applied voltage of the piezoelectric pump can be easily detected.
  • a power supply unit that supplies power to the piezoelectric pump may be provided, and the control unit may be connected to the power supply unit and adjust power supplied to the piezoelectric pump according to an output voltage of the piezoelectric pump. . According to such a configuration, since the power supplied from the power supply unit can be adjusted according to the output voltage of the piezoelectric pump, overheating of the piezoelectric pump can be prevented.
  • control unit may be configured to perform the second step based on a modeled relationship between the capacity of the piezoelectric pump and the temperature of the piezoelectric pump, or a relationship between the output voltage of the piezoelectric pump and the temperature of the piezoelectric pump. May be determined.
  • the impedance element may be a resistor.
  • the impedance element may be an inductor.
  • the input voltage when detecting the divided output voltage may be lower than when the piezoelectric pump is driven in a driving frequency band. According to such a configuration, power consumption can be reduced.
  • FIG. 1 is a schematic sectional view of a piezoelectric pump.
  • FIG. 2 is an explanatory diagram showing the operation of the piezoelectric pump.
  • the piezoelectric pump 21 includes a cover plate 22, a channel plate 23, an opposing plate 24, an adhesive layer 25, a vibration plate 26, a piezoelectric element 27, an insulating plate 28, a power supply plate 29, a spacer plate 30, and a cover plate 31 in this order. Laminated.
  • the piezoelectric pump 21 is thin in the stacking direction and has a rectangular shape in a plan view (as viewed from the stacking direction).
  • a suction port 33 is formed on the cover plate 22 side of the piezoelectric pump 21.
  • a discharge port 34 is formed on the lid plate 31 side of the piezoelectric pump 21.
  • a circular channel hole 37 is formed in the cover plate 22.
  • the channel plate 23 has a circular opening 38 formed therein.
  • the opening 38 communicates with the channel hole 37.
  • the diameter of the opening 38 is larger than the diameter of the flow path hole 37.
  • the opposing plate 24 is made of metal.
  • An external connection terminal 35 protruding outward and a circular suction port 33 are formed in the facing plate 24.
  • the suction port 33 communicates with the opening 38.
  • the diameter of the suction port 33 is smaller than the diameter of the opening 38.
  • a bendable movable portion 39 is formed around the suction port 33 of the opposing plate 24.
  • the adhesive layer 25 is formed in a frame shape so as to overlap the frame portion 44 of the diaphragm 26.
  • the adhesive layer 25 is composed of a thermosetting resin such as an epoxy resin and contains a plurality of conductive particles having a substantially uniform particle size. Thereby, the opposing plate 24 and the vibration plate 26 can be electrically conducted through the conductive particles of the adhesive layer 25.
  • the diaphragm 26 is made of metal such as SUS301, for example.
  • the vibration plate 26 faces the opposing plate 24 at a predetermined interval.
  • the gap between the opposing plate 24 and the diaphragm 26 constitutes a pump chamber 40.
  • the diaphragm 26 has a central portion 41, a hitting portion 42, a connecting portion 43, and a frame portion 44.
  • the central portion 41 has a circular shape in plan view, and is disposed at the center of the diaphragm 26.
  • the frame portion 44 has a frame shape in a plan view, and is arranged around the diaphragm 26.
  • the connecting portion 43 has a beam shape and connects the central portion 41 and the frame portion 44.
  • the hitting portion 42 has a circular shape in plan view, and is disposed near a boundary between the central portion 41 and the connecting portion 43.
  • the striking section 42 is arranged such that the center thereof faces the suction port 33.
  • the diameter of the hitting portion 42 is larger than the diameter of the suction port 33.
  • the hitting portion 42 and the frame portion 44 are thicker than the central portion 41 and the connecting portion 43.
  • the diaphragm 26 has an opening (not shown) surrounded by the components of the diaphragm 26 described above.
  • the pump chamber 40 communicates with the pump chamber 46 through the opening.
  • the piezoelectric element 27 is configured by providing electrodes on both main surfaces of a thin plate made of a piezoelectric material.
  • the piezoelectric element 27 has such a piezoelectric property that its area increases or decreases in the in-plane direction when an electric field is applied in the thickness direction.
  • the piezoelectric element 27 has a disk shape and is attached to the upper surface of the central portion 41 of the diaphragm 26.
  • the electrode on the lower surface of the piezoelectric element 27 is electrically connected to the external connection terminal 35 via the vibration plate 26, the adhesive layer 25, and the opposing plate 24.
  • the insulating plate 28 is made of an insulating resin.
  • the insulating plate 28 has a rectangular opening in a plan view.
  • the power supply plate 29 is made of metal.
  • the power supply plate 29 is formed with a rectangular opening in plan view, an internal connection terminal 45 protruding from the opening of the power supply plate 29, and an external connection terminal 36 protruding outward.
  • the tip of the internal connection terminal 45 is soldered to an electrode on the upper surface of the piezoelectric element 27.
  • the spacer plate 30 is made of resin.
  • the spacer plate 30 is formed with a rectangular opening in plan view.
  • the openings of the insulating plate 28, the power supply plate 29, and the spacer plate 30 communicate with each other to form a pump chamber 46.
  • the cover plate 31 is formed with a circular discharge port 34 in plan view.
  • the discharge port 34 communicates with the pump chamber 46 and the outside.
  • FIG. 2 is a schematic diagram showing the operation of the piezoelectric pump 21.
  • the piezoelectric pump 21 when an AC drive voltage is applied to the external connection terminals 35 and 36, the piezoelectric element 27 tries to expand and contract isotropically in the in-plane direction, and the piezoelectric element 27 and the vibration plate 26 are stacked. Flexural vibration in the thickness direction occurs concentrically. This bending vibration is a higher-order resonance mode, in which the frame portion 44 becomes a fixed portion, the center of the central portion 41 becomes an antinode of the first vibration, and the center of the hitting portion 42 becomes an antinode of the second vibration.
  • the vibration of the striking section 42 is transmitted to the movable section 39 via the fluid facing the striking section 42.
  • Fluid flows from the vicinity of the suction port 33 in the pump chamber 40 to the outer peripheral side of the movable portion 39 by coupling the vibration of the impact portion 42 and the vibration of the movable portion 39.
  • a negative pressure is generated around the suction port 33 in the pump chamber 40, and the fluid is sucked from the suction port 33 into the pump chamber 46.
  • a positive pressure is generated inside the pump chamber 46, and the positive pressure is released at the discharge port 34 of the cover plate 31. Therefore, the fluid sucked into the pump chambers 40 and 46 via the suction port 33 flows out of the pump chambers 40 and 46 via the discharge port 34.
  • the piezoelectric element 27, the diaphragm 26, and the opposing plate 24 of the piezoelectric pump 21 are called an engine.
  • the state in which the piezoelectric pump 21 is driven is a state in which the engine of the piezoelectric pump 21 bends and vibrates.
  • the state in which the piezoelectric pump 21 is driven refers to a state in which a fluid is sucked into the piezoelectric pump 21 or a fluid is discharged from the piezoelectric pump 21.
  • the non-driven state in which the piezoelectric pump 21 is not driven is a state in which fluid is not sucked into the piezoelectric pump 21 or a state in which fluid is not discharged from the piezoelectric pump 21.
  • FIG. 3 is a graph showing the relationship between pressure and electrical efficiency at different temperatures.
  • FIG. 3 shows the driving when the piezoelectric pump 21 is at 40 ° C.
  • the graph Gb is at 23 ° C.
  • the graph Gc is at 10 ° C. when the back pressure of the piezoelectric pump 21 is 380 mmHg.
  • the relationship between frequency and air flow is shown.
  • the optimum driving frequency Fga of the graph Ga, the optimum driving frequency Fgb of the graph Gb, and the optimum driving frequency Fgc of the graph Gc are different from each other. Therefore, when the drive frequency is set to Fgb so as to drive optimally when the drive frequency is 23 ° C., at an environment temperature of 10 ° C., the flow rate of the piezoelectric pump 21 becomes zero at a back pressure of 380 mmHg. Do not work. As described above, the pump output decreases when the temperature decreases from room temperature.
  • FIG. 4 is a graph showing the relationship between pressure and electrical efficiency at different temperatures.
  • FIG. 4 shows the electrical efficiency at each temperature when driven at the frequency Fgb of FIG.
  • the graph Gd shows the relationship between the respective pressures and the electrical efficiency when the piezoelectric pump 21 is at 50 ° C., the graph Gh at 25 ° C., and the graph Ge at 0 ° C.
  • the peak value of the electric efficiency varies depending on the temperature, and the electric efficiency decreases particularly at a high temperature. If the electric efficiency is poor, for example, when a battery is used as a power supply, the life of the battery is shortened, and the frequency of battery replacement and charging is increased, thereby reducing usability.
  • FIG. 5 is a graph showing the relationship between the driving frequency and the impedance at normal temperature, for example, 20 ° C.
  • the frequency characteristic of the piezoelectric pump 21 has a resonance frequency fr and an anti-resonance frequency fa.
  • the resonance frequency fr is about 23.4 kHz
  • the anti-resonance frequency fa is about 24.5 kHz.
  • a driving frequency band Fw in which the piezoelectric pump can be driven is between the resonance frequency fr and the anti-resonance frequency fa.
  • the frequency band lower than the resonance frequency fr and the frequency band higher than the anti-resonance frequency fa are non-drive frequency bands Fz.
  • FIG. 6 is an equivalent circuit diagram modeling the piezoelectric pump 21.
  • the non-drive frequency band Fz has a frequency characteristic of the capacitor Ca.
  • the resonance frequency fr has a frequency characteristic of a series circuit Da including the inductor L, the capacitor Cb, and the resistor R.
  • the anti-resonance frequency fa has a frequency characteristic of a parallel circuit Db including the LCR series circuit Da and the capacitor C.
  • the impedance is determined only by the capacitance Ca of the piezoelectric pump 21, so that the impedance is relatively stable with respect to an input voltage or a back pressure and is sensitive to temperature.
  • the non-drive frequency band including the non-drive frequency is, for example, a frequency region excluding a region between a resonance frequency at which the impedance is minimum and an anti-resonance frequency at which the impedance is maximum (in other words, the impedance is C-characteristic).
  • FIG. 7 is a graph showing the relationship between the temperature of the piezoelectric pump and the rate of change of the capacity.
  • FIG. 7 shows the relationship between the capacitance and the temperature at the non-drive frequency.
  • the capacity Ca at normal temperature is determined by the dielectric constant, thickness, and area of the piezoelectric pump 21, but the error is small. Therefore, if the capacitance Ca at the non-drive frequency of the piezoelectric pump 21 is known, the temperature can be accurately detected.
  • the capacity C and the impedance Z of the piezoelectric pump 21 have a reciprocal relationship.
  • the relationship between the impedance Z, the frequency f, and the capacitance C is represented by the following equation.
  • the optimum drive frequency at each temperature is determined by the design of the piezoelectric pump 21, and if the current value is determined, the optimum frequency is determined from the relationship between the current value and the optimum drive frequency as shown in FIG.
  • the drive frequency is determined according to the temperature change of the piezoelectric pump 21. This corresponds to determining the drive frequency of the piezoelectric pump 21 according to the impedance change of the piezoelectric pump 21 at the non-drive frequency.
  • FIG. 9 is a graph showing the relationship between the output voltage of the piezoelectric pump and the drive frequency correction amount.
  • the output voltage is a parameter that changes according to the temperature of the piezoelectric pump. Therefore, by correcting the drive frequency according to the output voltage, it is possible to appropriately drive the piezoelectric pump 21 in response to a temperature change. Since the temperature of the piezoelectric pump 21 is higher as the output voltage is higher, the drive frequency is corrected to be lower.
  • FIG. 10 is a block diagram showing a pump device according to the first embodiment.
  • the pump device 11 includes a piezoelectric pump 21, a drive circuit 12 for driving the piezoelectric pump 21, a voltage detection circuit 13 for detecting an output voltage of the piezoelectric pump 21, a power supply circuit 14 for supplying power to the drive circuit 12, A control unit for determining a drive frequency of the pump;
  • the control unit 15 includes a processing unit 16 and a storage unit 17.
  • the control unit 15 may be, for example, an MCU (Micro Control Unit) in which the processing unit 16 and the storage unit 17 are integrated, or may be provided separately.
  • the processing unit 16 may be a CPU, a microchip, or an FPGA.
  • the storage unit 17 may be a memory, a hard disk, or an SSD. In the first embodiment, a case where an MCU is employed as the control unit 15 will be described as an example.
  • the relationship between the output voltage Vo and the drive frequency fo is stored in the storage unit 17 as a relational expression or a table.
  • the relationship between the output voltage Vo and the driving frequency fo is calculated in advance from the modeled relationship between the capacity C of the piezoelectric pump 21 and the temperature of the piezoelectric pump 21 or the relationship between the output voltage Vo and the temperature of the piezoelectric pump 21. By doing so, the processing time is shortened.
  • the pump device 11 according to the first embodiment is used, for example, in a suction device 51 as shown in FIG.
  • FIG. 11 is an explanatory diagram illustrating the flow of the fluid in the suction device according to the first embodiment.
  • the suction device 51 includes a container 53 in which a fluid is stored, a piezoelectric pump 21 that sucks the fluid from the container 53, a valve 55, and a tube 57 that connects the container 53, the valve 55, and the piezoelectric pump 21.
  • the fluid may be a liquid or a gas.
  • suction device examples include a milking machine, NPWT (Negative Pressure Wound Therapy), drainage, and a runny suction device.
  • NPWT Negative Pressure Wound Therapy
  • FIG. 11 one piezoelectric pump 21 is connected to the container 53, but two or more piezoelectric pumps 21 may be connected to the container 53 in series.
  • FIG. 12 is a circuit diagram of the drive circuit 12 and the voltage detection circuit 13.
  • the drive circuit 12 is, for example, an H-bridge circuit.
  • the drive circuit 12 has four FETs, a first FET 61, a second FET 62, a third FET 63, and a fourth FET 64. Each of the FETs is switched by a drive signal from the control unit 15 to the first to fourth FETs 61 to 64, and an AC voltage having a predetermined frequency is applied to the piezoelectric pump 21.
  • the input voltage Vc is applied from the power supply circuit 14 to the drains of the first FET 61 and the third FET 63.
  • the source of the first FET 61 is connected to the drain of the second FET 62 and the external connection terminal 35 of the piezoelectric pump 21.
  • the source of the third FET 63 is connected to the drain of the fourth FET 64 and the external connection terminal 36 of the piezoelectric pump 21.
  • the source of the second FET 62 and the source of the fourth FET 64 are connected to the voltage detection circuit 13.
  • the voltage detection circuit 13 includes an impedance element that is electrically connected to the piezoelectric pump 21. As the impedance element, for example, a resistor Rs is used.
  • the DC input voltage Vc supplied from the power supply circuit 14 as a power supply unit is divided by the first FET 61, the piezoelectric pump 21, the fourth FET 64, and the resistor Rs, or divided by the third FET 63, the piezoelectric pump 21, and the second FET 62. Pressed.
  • the voltage drop in the first to fourth FETs 61 to 64 is negligibly small. Therefore, the output voltage Vo is determined by the partial pressure between the piezoelectric pump 21 and the resistor Rs.
  • FIG. 13 shows the relationship between the output voltage Vo and the temperature at different frequencies.
  • the graph Gs shows the case where the non-driving frequency f1 in the non-driving frequency band Fz which is the first frequency is 15 kHz
  • the graph Gt shows the case where the non-driving frequency f1 is 32 kHz
  • the graph Gv shows the case where the non-driving frequency f1 is 45 kHz
  • the graph Gw shows the relationship between the output voltage Vo and the temperature when the non-drive frequency f1 is 60 kHz.
  • the temperature of the piezoelectric pump 21 can be measured by reading the output voltage Vo by the control unit 15.
  • the voltage detection circuit 13 is, for example, a resistor Rs.
  • the output voltage Vo of the drive circuit 12 can be detected by detecting the voltage between the resistors Rs.
  • the difference between the input voltage Vc and the output voltage Vo is the applied voltage (drive voltage) of the piezoelectric pump 21.
  • the applied voltage in this specification is a voltage that is a difference between the input voltage input to the drive circuit 12 and the output voltage output from the drive circuit 12. Since the input voltage Vc is supplied from the power supply circuit 14 at a voltage value according to an instruction from the control unit 15, the fluctuation of the output voltage Vo corresponds to the applied voltage of the piezoelectric pump 21. Therefore, detecting the applied voltage of the piezoelectric pump 21 can be substituted by detecting the output voltage Vo.
  • the voltage detection unit of the present invention includes a voltage detection circuit 13 and a control unit 15.
  • the control unit 15 also corresponds to the control unit of the present invention.
  • the non-drive frequency f1 for determining the drive frequency fo is preferably higher because the impedance Z of the piezoelectric pump 21 is lower. For example, it is better to satisfy the following relational expression. f1> 1.2 ⁇ fo Expression (2)
  • FIG. 14 is a flowchart showing the flow of drive control of the pump device 11.
  • FIG. 15 is a graph showing an example of the relationship between time and the temperature of the piezoelectric pump in drive control.
  • FIG. 16 is a graph showing an example of the relationship between time and frequency in drive control.
  • the temperature of the piezoelectric pump increases with time by driving the piezoelectric pump 21.
  • the frequency of the voltage applied to the piezoelectric pump is changed as shown in FIG.
  • step S1 the drive circuit 12 applies a voltage to the piezoelectric pump 21 at the non-drive frequency fz1 in the non-drive frequency band Fz between the time t1 and the time t2 according to an instruction from the processing unit 16 of the control unit 15. .
  • the period from time t1 to t2 is, for example, 30 msec.
  • the piezoelectric pump 21 does not perform the pump operation because the voltage of the non-drive frequency fz1 is applied.
  • current flows through the piezoelectric pump 21 and the voltage detection circuit 13.
  • the control unit 15 detects the voltage Vo divided by the voltage detection circuit 13. In this case, the voltage Vo is an applied voltage applied to the piezoelectric pump 21.
  • step S3 the processing unit 16 checks the detected voltage Vo against a table stored in the storage unit 17, and determines the driving frequency fw1 in the driving frequency band Fw corresponding to the voltage Vo.
  • step S4 the processing unit 16 sends a drive signal to the gate of each FET to the drive circuit 12 at the determined drive frequency fw1.
  • the drive circuit 12 drives the piezoelectric pump 21 at the drive frequency fw1 between time t2 and time t3 according to the transmitted drive signal.
  • the period between the time t2 and the time t3 is, for example, 2.5 seconds. That is, the time during which the voltage is applied to the piezoelectric pump 21 at the non-driving frequency fz1 is much smaller than the driving time of the pump.
  • the piezoelectric pump 21 can be driven at a drive frequency fw2 lower than the drive frequency fw1 with respect to the temperature rise of the piezoelectric pump 21.
  • the piezoelectric pump 21 increases, the voltage applied to the piezoelectric pump 21 increases, so that the control unit 15 controls the driving frequency to decrease.
  • steps S1 to S4 are repeated. Since the temperature rise of the piezoelectric pump 21 is saturated after time t5, the driving frequency fw3 for driving the piezoelectric pump 21 is the same.
  • FIG. 17 is a graph showing the life of the battery that drives the pump device.
  • FIG. 18 is a graph showing the electrical efficiency of the pump device.
  • the graph Gk in the case where the driving frequency is controlled according to the temperature has a longer life of the driving battery for driving the piezoelectric pump 21 than the graph Gm in which the driving frequency is not controlled. I have.
  • the control of the driving frequency was not performed, the battery voltage dropped to 3 V or less around the time when the driving time exceeded 450 hours.
  • the drive frequency is controlled in accordance with the temperature, the battery voltage has 3.2 V or more even when the drive time exceeds 600 minutes.
  • the graph Gn in the case where the driving frequency is controlled according to the temperature shows that the electric efficiency is improved over the entire temperature range as compared with the graph Gp in which the driving frequency is not controlled. I have.
  • the electric efficiency increases in a lower temperature region and a higher temperature region than normal temperature.
  • the power consumption of the piezoelectric pump 21 can be reduced by changing the driving frequency according to the temperature.
  • the pump device 11 includes the piezoelectric pump 21, a voltage detecting unit configured to detect the applied voltage applied to the piezoelectric pump 21, the voltage detecting circuit 13 and the control unit 15, and the piezoelectric pump 21.
  • a control unit 15 that determines a drive frequency fo which is a second frequency among the above.
  • the piezoelectric pump 21 can be driven at an appropriate frequency corresponding to the temperature change of the piezoelectric pump 21. Thereby, the electric efficiency of the piezoelectric pump 21 can be improved. Further, since the second frequency may be a constant frequency, the driving frequency fo can be determined faster than scanning the frequency to detect the driving frequency fo. Therefore, it is particularly suitable for a pump device used in a milking machine that repeats pump driving and stopping operations.
  • the voltage detection circuit 13 is not limited to a resistor and may be an inductor as long as the voltage detection circuit 13 is configured by an impedance element.
  • FIG. 19 is a circuit diagram showing a modification of the drive circuit and the voltage detection circuit according to the first embodiment.
  • the voltage detection circuit 13a has an inductor L1.
  • the input voltage Vc from the power supply circuit 14 is applied to one end of the inductor L1.
  • the other end of the inductor L1 is connected to respective drains of the first FET 61 and the third FET 63.
  • the voltage detection circuit 13 a replaces the connection destination of the voltage detection circuit 13 from GND to the power supply circuit 14.
  • the voltage detection circuit 13a can obtain the input voltage Vo to the drive circuit 12 by dividing the voltage of the inductor L1 and the piezoelectric pump 21. Since the other end of the drive circuit 12 is connected to the ground, the input voltage Vo is the voltage applied to the piezoelectric pump 21.
  • the impedance element when the impedance element is connected to the power supply side of the drive circuit 12, if the voltage division ratio of the impedance element is too small, the impedance may exceed the input range of the output voltage detection circuit. In such a case, the voltage may be divided.
  • FIG. 20 is an explanatory diagram illustrating a flowing direction of a fluid according to the second embodiment.
  • FIG. 21 is a graph showing a relationship between time and pressure of the pump device according to the second embodiment.
  • the pump device 11 according to the first embodiment has been used as a suction device for the suction device 51.
  • the pump device 11 of the second embodiment is used as a pressurizing device of the pressurizer 52.
  • a fluid such as air flows from the piezoelectric pump 21 toward the cuff 53a for storing the fluid.
  • the valve 55 When the valve 55 is in the closed state, the fluid flows from the piezoelectric pump 21 toward the cuff 53a, so that the pressure in the cuff 53a gradually increases.
  • the valve 55 is opened, the fluid in the cuff 53a is released, and the pressure in the cuff 53a decreases.
  • Specific examples of the pressurizer 52 include a sphygmomanometer, a massager, a pMDI (pressurized @ Metered-Dose @ Inhaler), and a nebulizer.
  • the pump device 11 according to the second embodiment includes the same components as the pump device 11 according to the first embodiment. Therefore, the configuration of the pump device 11 according to the second embodiment other than the matters described below is common to the pump device 11 of the first embodiment.
  • the output of the piezoelectric pump 21 can be improved by changing the drive frequency in accordance with the temperature change.
  • the driving frequency is not changed in accordance with the temperature change, if the driving time of the piezoelectric pump 21 becomes longer, the temperature of the piezoelectric pump 21 increases due to self-heating. As a result, the pressure of the fluid discharged from the piezoelectric pump 21 cannot be increased.
  • the drive frequency is changed according to the temperature change, the pressure of the fluid discharged from the piezoelectric pump 21 can be increased even when the temperature of the piezoelectric pump 21 increases. As a result, uniform pressurization of the fluid can be realized.
  • the driving frequency is changed in accordance with the temperature of the piezoelectric pump, thereby making it possible to start the piezoelectric pump 21 at a low temperature. Also, the pressurizing capacity can be maintained during continuous operation.
  • FIG. 22 is a block diagram of a pump device according to the third embodiment.
  • the pump device 11a according to the third embodiment has a function of preventing the piezoelectric pump 21 from being damaged by self-heating.
  • an upper limit value of the output voltage Vo is stored in addition to the relationship between the output voltage Vo and the driving frequency fo.
  • the pump device 11 according to the first embodiment is different from the pump device 11a according to the third embodiment.
  • the configuration other than this point and the matters described below is common to the pump device 11 of the first embodiment and the pump device 11a of the third embodiment.
  • FIG. 23 is a flowchart showing the flow of drive control of the pump device 11a.
  • the drive control of the pump device 11a according to the third embodiment is performed after the drive control of the pump device 11 according to the first embodiment. Therefore, the drive frequency fo for driving the piezoelectric pump 21 is determined by the processing of steps S1 to S4 of the first embodiment. Therefore, in step S11, the drive circuit 12 drives the piezoelectric pump 21 at the determined drive frequency fo according to the drive signal sent from the processing unit 16.
  • step S12 the drive circuit 12 applies a voltage to the piezoelectric pump 21 at the non-drive frequency f1 in the non-drive frequency band Fz according to the instruction from the processing unit 16.
  • the piezoelectric pump 21 does not perform the pump operation because the voltage of the non-drive frequency f1 is applied. However, current flows through the piezoelectric pump 21 and the voltage detection circuit 13.
  • the control unit 15 detects the voltage Vo divided by the voltage detection circuit 13. In this case, the voltage Vo is an applied voltage applied to the piezoelectric pump 21.
  • the processing unit 16 compares the detected voltage Vo with the upper limit value stored in the storage unit 17. If the voltage Vo is lower than the upper limit value, as in Yes in step S13, the process returns to step S11. When the voltage Vo is not less than the upper limit value like No in Step S13, the control unit 15a lowers the driving of the piezoelectric pump 21 in Step S14.
  • step S11 the drive of the piezoelectric pump 21 can be reduced until the output voltage Vo of the drive circuit 12 becomes lower than the upper limit value.
  • the method of reducing the driving of the piezoelectric pump 21 is, for example, to reduce the input voltage Vc from the power supply circuit 14 to the drive circuit 12 according to an instruction from the control unit 15a. Further, the drive duty ratio of the drive signal from the processing unit 16 to each FET may be changed. Further, the drive frequency of the drive circuit 12 may be changed.
  • the piezoelectric pump 21 can be driven with an output voltage lower than the upper limit value corresponding to the temperature upper limit. Even in this case, the piezoelectric pump 21 can be prevented from being broken.
  • the voltage detection circuit 13 may be replaced with a voltage detection circuit 13b shown in FIG.
  • the voltage detection circuit 13b includes, in addition to the resistor Rs, a capacitor Cs having one end connected to each source of the second FET 62 and the fourth FET 64 and the other end connected to ground.
  • the capacitor Cs functions as a smoothing capacitor.
  • the frequency component of the output signal from the control unit 15 may be detected as noise at both ends of the resistor Rs.
  • the detection accuracy of the output voltage Vo can be improved.
  • an amplifier circuit 67 as shown in FIG. 25 may be connected between the I / O port 66 of the control unit 15 and one end of the resistor Rs (opposite the ground side).
  • the amplifier circuit 67 includes an amplifier Q, a resistor R1, a resistor R2, and a capacitor Csa.
  • the output voltage Vo is input to the non-inverting input terminal (+) of the amplifier Q, and one end of each of the resistors R1 and R2 is connected to the inverting input terminal (-).
  • the other end of the resistor R1 is connected to the ground.
  • the other end of the resistor R2 is connected to the output terminal of the amplifier Q.
  • the output terminal of the amplifier Q is connected to the I / O port 66 of the control unit 15.
  • a capacitor Csa is connected between the inverting input terminal ( ⁇ ) of the amplifier Q and the output terminal.
  • the voltage between the resistors Rs can be amplified and rectified by the amplifier circuit 67. Thereby, the S / N ratio of the output voltage can be improved, and the detection accuracy can be improved.
  • the control unit 15 may be connected to the A / D port instead of the I / O port 66.
  • FIG. 26 is an explanatory diagram illustrating a flow of a fluid in a pressurizer using the pump device according to the fourth embodiment.
  • FIG. 27 is a circuit diagram of a drive circuit and a voltage detection circuit according to the fourth embodiment.
  • two piezoelectric pumps 21 are arranged in parallel in the pressurizer 52 of the second embodiment.
  • the nozzle 71 and the piezoelectric pump 21 are connected instead of the container 53.
  • the discharge device 52a of the fourth embodiment does not include the valve 55 unlike the second embodiment because the nozzle 71 is open to the atmosphere.
  • the pump device 11 of the fourth embodiment is common to the pump device 11 of the second embodiment.
  • the drive control of the pump device 11 of the fourth embodiment is the same as that of the third embodiment.
  • Discharger 52a using the pump device according to the fourth embodiment is used for, for example, a nebulizer.
  • the piezoelectric pump 21 By connecting the piezoelectric pump 21 in parallel with the nozzle 71, the flow rate discharged from the nozzle 71 can be increased. Furthermore, since the piezoelectric pumps 21 are electrically connected in parallel, the output voltage Vo becomes relatively large due to the voltage division ratio with the voltage detection circuit. As a result, the measurement range is expanded, so that the detection accuracy of the output voltage Vo can be improved. Note that three or more piezoelectric pumps 21 may be connected in parallel.
  • the piezoelectric pump 21 is driven at less than the upper limit, so that the piezoelectric pump 21 can be prevented from being broken even when driven at full power.
  • it is suitable for use in places with low atmospheric pressure, such as high altitudes. In the case of high altitude, a failure due to excessive amplitude of the engine is likely to occur, but this can be prevented.
  • the drive circuit 12 in FIG. 27 further includes a fifth FET 65 for preventing a voltage from being applied to the voltage detection circuit during the pump operation.
  • the gate of the fifth FET 65 is connected to the control unit 15, the drain is connected to one end of the resistor Rs, and the source is connected to ground.
  • the fifth FET 65 functions as a switching element according to the drive signal from the control unit 15.
  • the voltage detection circuit is short-circuited because the fifth FET 65 is turned on.
  • the output voltage Vo becomes 0 [V], so that the electric efficiency can be further improved.
  • the non-drive frequency band Fz is a band lower than the resonance frequency fr and higher than or equal to the anti-resonance frequency fa, but is not limited thereto.
  • the non-drive frequency band Fz may be a band below a predetermined range from the resonance frequency fr and a band above a predetermined range from the anti-resonance frequency fa.
  • the non-drive frequency band Fz may be a band having a value lower than the resonance frequency fr by 20% or less than the resonance frequency fr and a band having a value higher than the anti-resonance frequency fa by 20% or higher than the anti-resonance frequency fa.
  • the shifted non-driving frequency band Fz is included in the non-driving frequency band Fz before the shift. Characteristics can be monitored accurately.
  • the temperature in a normal use state is, for example, in a range of ⁇ 10 ° C. to + 70 ° C.
  • the input voltage input from the power supply circuit 14 when detecting the divided output voltage Vo is a lower voltage than when the piezoelectric pump 21 is driven in the drive frequency band Fw. There may be. With this configuration, power consumption when detecting the output voltage Vo of the piezoelectric pump 21 can be reduced.
  • the present invention provides a piezoelectric pump, a voltage detection unit that detects an applied voltage applied to the piezoelectric pump, and the applied voltage at a first frequency outside a driving frequency band capable of driving the piezoelectric pump. And a control unit that drives the piezoelectric pump based on the control frequency and determines a second frequency in the drive frequency band.
  • a temperature-sensitive element such as a thermistor or a thermocouple around the piezoelectric pump, or to measure the temperature inside the pump. That is, if no temperature sensing element is provided, there is no other way but to measure the temperature inside the pump. Therefore, if the temperature characteristics of the piezoelectric pump are corrected without using a temperature-sensitive element such as a thermistor, it is considered that the possibility of using the present invention is high.
  • the present invention is applicable to a pump device including a piezoelectric pump.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Abstract

Provided is a pump device comprising a piezoelectric pump, a voltage detection unit that detects applied voltage applied to the piezoelectric pump, and a control unit that determines a second frequency within a driving frequency band that drives the piezoelectric pump on the basis of the applied voltage in a first frequency outside the driving frequency band that can drive the piezoelectric pump.

Description

ポンプ装置Pump device
 本発明は、ポンプ装置に関し、特に圧電ポンプを備えるポンプ装置に関する。 The present invention relates to a pump device, and more particularly to a pump device including a piezoelectric pump.
 従来、圧電ポンプを備えるポンプ装置が気体の吸引装置または加圧装置として用いられている。圧電ポンプは圧電素子の振動によりポンプ駆動される。 Conventionally, a pump device equipped with a piezoelectric pump has been used as a gas suction device or a pressure device. The piezoelectric pump is driven by the vibration of the piezoelectric element.
 例えば、特許文献1に記載されている圧電ポンプを用いることでポンプ装置の小型化を図ることができる。 For example, by using the piezoelectric pump described in Patent Document 1, the size of the pump device can be reduced.
 圧電素子に交流電圧を印加することで圧電素子が周期的に振動する。これにより、容器内の圧力を変化させることが出来る。この印加される交流電圧の周波数は、圧電ポンプの駆動周波数と呼ばれている。圧電ポンプの駆動周波数は、常温で予め定められている。 (4) The piezoelectric element vibrates periodically by applying an AC voltage to the piezoelectric element. Thereby, the pressure in the container can be changed. The frequency of the applied AC voltage is called a driving frequency of the piezoelectric pump. The driving frequency of the piezoelectric pump is predetermined at room temperature.
特開2016-53371号公報JP 2016-53371 A
 しかしながら、従来のポンプ装置において、圧電ポンプの温度が常温よりも低温の状態では出力が低下し、圧電ポンプの温度が常温よりも高温になると電気効率が低下する現象が発生した。この原因として、圧電ポンプは温度特性を有することが見いだされた。そこで、圧電ポンプの温度特性を補正する手法として、水晶発振器で用いられている温度補償技術の利用が考えられる。例えば、水晶発振器では、水晶発振器の外部にサーミスタを設けて環境温度を検出し、検出温度に応じて水晶の発振周波数を補償している。 However, in the conventional pump device, when the temperature of the piezoelectric pump is lower than the normal temperature, the output decreases, and when the temperature of the piezoelectric pump becomes higher than the normal temperature, the electric efficiency decreases. As a cause, it has been found that the piezoelectric pump has a temperature characteristic. Therefore, as a technique for correcting the temperature characteristics of the piezoelectric pump, use of a temperature compensation technique used in a crystal oscillator can be considered. For example, in a crystal oscillator, a thermistor is provided outside the crystal oscillator to detect an environmental temperature, and compensate for the oscillation frequency of the crystal according to the detected temperature.
 しかしながら、圧電ポンプの場合、振動による自己発熱を原因とする温度上昇もあるので、回路基板上にサーミスタを実装して環境温度を検出するだけでは圧電ポンプの正確な温度を検出することができない。また、圧電ポンプは振動するので圧電ポンプ自身にサーミスタを取り付けることも困難である。 However, in the case of a piezoelectric pump, there is also a rise in temperature due to self-heating due to vibration. Therefore, the accurate temperature of the piezoelectric pump cannot be detected only by mounting a thermistor on a circuit board and detecting the environmental temperature. Further, since the piezoelectric pump vibrates, it is difficult to attach a thermistor to the piezoelectric pump itself.
 したがって、本発明の目的は、圧電ポンプを備えるポンプ装置において、圧電ポンプの温度に対応して圧電ポンプを駆動することができるポンプ装置を提供することにある。 Accordingly, it is an object of the present invention to provide a pump device including a piezoelectric pump, which can drive the piezoelectric pump in accordance with the temperature of the piezoelectric pump.
 上記目的を達成するために、本発明の一態様によれば、
 圧電ポンプと、
 前記圧電ポンプに印加される印加電圧を検出する電圧検出部と、
 前記圧電ポンプを駆動可能な駆動周波数帯域の帯域外の第1の周波数における前記印加電圧を基に、前記圧電ポンプを駆動する、前記駆動周波数帯域内の第2の周波数を決定する制御部と、
 を備える、ポンプ装置である。
To achieve the above object, according to one embodiment of the present invention,
A piezoelectric pump,
A voltage detection unit that detects an applied voltage applied to the piezoelectric pump,
A control unit that drives the piezoelectric pump based on the applied voltage at a first frequency outside a driving frequency band capable of driving the piezoelectric pump, and determines a second frequency within the driving frequency band,
It is a pump apparatus provided with.
 本発明に係るポンプ装置によれば、圧電ポンプを備えるポンプ装置において、圧電ポンプの温度に対応して駆動することができるポンプ装置を提供することができる。 According to the pump device of the present invention, in a pump device including a piezoelectric pump, it is possible to provide a pump device that can be driven according to the temperature of the piezoelectric pump.
圧電ポンプの模式的断面図Schematic sectional view of a piezoelectric pump 圧電ポンプの動作を示す説明図Explanatory drawing showing the operation of the piezoelectric pump 異なる温度における周波数と流量との関係を示すグラフ図Graph showing the relationship between frequency and flow rate at different temperatures 異なる温度における圧力と電気効率との関係を示すグラフ図Graph showing the relationship between pressure and electrical efficiency at different temperatures 周波数とインピーダンスとの関係を示すグラフ図Graph showing the relationship between frequency and impedance 圧電ポンプをモデル化した回路図Circuit diagram modeling a piezoelectric pump 圧電ポンプの温度と容量の変化率との関係を示すグラフ図Graph showing the relationship between the temperature of the piezoelectric pump and the rate of change of capacity 圧電ポンプの電流変化率と駆動周波数変化量との関係を示すグラフ図Graph showing the relationship between the current change rate and the drive frequency change amount of the piezoelectric pump 圧電ポンプの出力電圧と周波数補正量との関係を示すグラフ図Graph showing the relationship between the output voltage of the piezoelectric pump and the frequency correction amount 実施の形態1におけるポンプ装置のブロック図Block diagram of pump device according to Embodiment 1. 実施の形態1における吸引器の流体の流れる方向を示す説明図Explanatory drawing which shows the flow direction of the fluid of the suction device in Embodiment 1. 実施の形態1における駆動回路及び電圧検出回路の回路図Circuit diagram of drive circuit and voltage detection circuit in Embodiment 1 異なる周波数における出力電圧Voと温度との関係を示すグラフ図FIG. 6 is a graph showing the relationship between output voltage Vo and temperature at different frequencies. 実施の形態1における圧電ポンプの駆動制御の流れを示すフローチャートFlow chart showing the flow of drive control of the piezoelectric pump according to the first embodiment. 駆動制御における、時間と圧電ポンプの温度との関係の一例を示すグラフ図FIG. 4 is a graph showing an example of a relationship between time and temperature of a piezoelectric pump in drive control. 駆動制御における、時間と周波数の関係の一例を示すグラフ図FIG. 4 is a graph showing an example of a relationship between time and frequency in drive control. ポンプ装置を駆動する電池の寿命を示すグラフ図Graph showing the life of the battery driving the pump device ポンプ装置の電気効率を示すグラフ図Graph showing the electrical efficiency of the pump device 実施の形態1における駆動回路及び電圧検出回路の変形例を示す回路図5 is a circuit diagram showing a modification of the drive circuit and the voltage detection circuit according to the first embodiment. 実施の形態2における流体の流れる方向を示す説明図Explanatory diagram showing the direction in which a fluid flows in Embodiment 2. 実施の形態2におけるポンプ装置の時間と圧力との関係を示すグラフ図FIG. 6 is a graph showing a relationship between time and pressure of the pump device according to the second embodiment. 実施の形態3におけるポンプ装置のブロック図Block diagram of a pump device according to Embodiment 3. 実施の形態3における圧電ポンプの駆動制御の流れを示すフローチャートFlow chart showing the flow of drive control of the piezoelectric pump according to the third embodiment. 実施の形態3における駆動回路及び電圧検出回路の回路図Circuit diagram of drive circuit and voltage detection circuit in Embodiment 3 実施の形態3における増幅回路の回路図Circuit diagram of an amplifier circuit according to Embodiment 3. 実施の形態4における流体の流れる方向を示す説明図Explanatory drawing showing the direction in which a fluid flows in Embodiment 4. 実施の形態4における駆動回路及び電圧検出回路の回路図Circuit diagram of drive circuit and voltage detection circuit in Embodiment 4
 本発明の一態様のポンプ装置は、圧電ポンプと、前記圧電ポンプに印加される印加電圧を検出する電圧検出部と、前記圧電ポンプを駆動可能な駆動周波数帯域の帯域外の第1の周波数における前記印加電圧を基に、前記圧電ポンプを駆動する、前記駆動周波数帯域内の第2の周波数を決定する制御部と、を備える。 A pump device according to one embodiment of the present invention includes a piezoelectric pump, a voltage detection unit that detects an applied voltage applied to the piezoelectric pump, and a first frequency outside a driving frequency band capable of driving the piezoelectric pump. A control unit that drives the piezoelectric pump based on the applied voltage and determines a second frequency in the drive frequency band.
 このような構成によれば、圧電ポンプの駆動周波数帯域の帯域外の第1の周波数における圧電ポンプへの印加電圧が検出される。印加電圧の値は圧電ポンプの温度と対応しているので、この検出された印加電圧を基に、圧電ポンプを駆動する第2の周波数を決定することで、圧電ポンプの温度変化に対応した適切な周波数で圧電ポンプを駆動することができる。これにより、圧電ポンプの低温時の出力、及び高温時の電気効率を向上させることができる。 According to such a configuration, the voltage applied to the piezoelectric pump at the first frequency outside the driving frequency band of the piezoelectric pump is detected. Since the value of the applied voltage corresponds to the temperature of the piezoelectric pump, the second frequency for driving the piezoelectric pump is determined based on the detected applied voltage, so that an appropriate value corresponding to the temperature change of the piezoelectric pump can be obtained. The piezoelectric pump can be driven at an appropriate frequency. Thus, the output of the piezoelectric pump at low temperatures and the electrical efficiency at high temperatures can be improved.
 また、前記圧電ポンプと電気的に接続されるインピーダンス素子を備え、前記電圧検出部は、前記圧電ポンプと前記インピーダンス素子とにより分圧された電圧から前記印加電圧を測定してもよい。このような構成によれば、圧電ポンプの印加電圧を容易に検出することができる。 In addition, an impedance element electrically connected to the piezoelectric pump may be provided, and the voltage detection unit may measure the applied voltage from a voltage divided by the piezoelectric pump and the impedance element. According to such a configuration, the applied voltage of the piezoelectric pump can be easily detected.
 また、前記圧電ポンプに電力を供給する電力供給部を備え、前記制御部は前記電力供給部と接続され、前記圧電ポンプの出力電圧に応じて前記圧電ポンプに供給する電力を調整してもよい。このような構成によれば、圧電ポンプの出力電圧に応じて電力供給部から供給される電力を調整することができるので、圧電ポンプの過熱を防止することができる。 In addition, a power supply unit that supplies power to the piezoelectric pump may be provided, and the control unit may be connected to the power supply unit and adjust power supplied to the piezoelectric pump according to an output voltage of the piezoelectric pump. . According to such a configuration, since the power supplied from the power supply unit can be adjusted according to the output voltage of the piezoelectric pump, overheating of the piezoelectric pump can be prevented.
 また、前記制御部は、モデル化された前記圧電ポンプの容量と前記圧電ポンプの温度との関係、または、前記圧電ポンプの出力電圧と前記圧電ポンプの温度との関係を基に、前記第2の周波数を決定してもよい。 Further, the control unit may be configured to perform the second step based on a modeled relationship between the capacity of the piezoelectric pump and the temperature of the piezoelectric pump, or a relationship between the output voltage of the piezoelectric pump and the temperature of the piezoelectric pump. May be determined.
 また、前記インピーダンス素子は抵抗でもよい。 (4) The impedance element may be a resistor.
 また、前記インピーダンス素子はインダクタでもよい。 The impedance element may be an inductor.
 また、分圧された出力電圧を検出するときの入力電圧は、前記圧電ポンプを駆動周波数帯域で駆動するときよりも低い電圧であってもよい。このような構成によれば、電力の消費を低減することができる。 The input voltage when detecting the divided output voltage may be lower than when the piezoelectric pump is driven in a driving frequency band. According to such a configuration, power consumption can be reduced.
 以下、本発明に係るポンプ装置について、図面を参照しながら説明する。なお、図面において、実質的に同じ機能、構成を有する部材については同一の符号を付して、明細書においてはその説明を省略する場合がある。また、図面は理解しやすくするために、それぞれの構成要素を主体に模式的に示している。 Hereinafter, the pump device according to the present invention will be described with reference to the drawings. In the drawings, members having substantially the same function and configuration are denoted by the same reference numerals, and description thereof may be omitted in the specification. In addition, in order to facilitate understanding, the drawings schematically show each constituent element.
 なお、以下で説明する実施の形態は、いずれも本発明の一具体例を示すものであり、本発明がこの構成に限定されるものではない。また、以下の実施の形態において具体的に示される数値、形状、構成、ステップ、ステップの順序などは、一例を示すものであり、本発明を限定するものではない。以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、全ての実施の形態において、各変形例における構成も同様であり、各変形例に記載した構成をそれぞれ組み合わせてもよい。 Note that each of the embodiments described below shows a specific example of the present invention, and the present invention is not limited to this configuration. Further, numerical values, shapes, configurations, steps, order of steps, and the like specifically shown in the following embodiments are merely examples, and do not limit the present invention. Among the components in the following embodiments, components not described in the independent claims indicating the highest concept are described as arbitrary components. In all the embodiments, the configuration in each modification is the same, and the configuration described in each modification may be combined.
(圧電ポンプの温度特性)
 最初に、圧電ポンプの温度特性について図1から図9を参照して説明する。まず、図1及び図2を参照して圧電ポンプの構造について説明する。図1は、圧電ポンプの模式的断面図である。図2は、圧電ポンプの動作を示す説明図である。
(Temperature characteristics of piezoelectric pump)
First, the temperature characteristics of the piezoelectric pump will be described with reference to FIGS. First, the structure of the piezoelectric pump will be described with reference to FIGS. FIG. 1 is a schematic sectional view of a piezoelectric pump. FIG. 2 is an explanatory diagram showing the operation of the piezoelectric pump.
 1.圧電ポンプ
 圧電ポンプ21は、カバー板22、流路板23、対向板24、接着層25、振動板26、圧電素子27、絶縁板28、給電板29、スペーサ板30及び蓋板31をこの順に積層してなる。圧電ポンプ21は、積層方向に薄く、平面視で(積層方向から見て)矩形状になっている。圧電ポンプ21のカバー板22側には、吸引口33が形成されている。圧電ポンプ21の蓋板31側には、吐出口34が形成されている。
1. Piezoelectric Pump The piezoelectric pump 21 includes a cover plate 22, a channel plate 23, an opposing plate 24, an adhesive layer 25, a vibration plate 26, a piezoelectric element 27, an insulating plate 28, a power supply plate 29, a spacer plate 30, and a cover plate 31 in this order. Laminated. The piezoelectric pump 21 is thin in the stacking direction and has a rectangular shape in a plan view (as viewed from the stacking direction). A suction port 33 is formed on the cover plate 22 side of the piezoelectric pump 21. A discharge port 34 is formed on the lid plate 31 side of the piezoelectric pump 21.
 カバー板22には、円形状の流路孔37が形成されている。流路板23には、円形状の開口部38が形成されている。開口部38は流路孔37に連通している。開口部38の径は流路孔37の径より大きくなっている。対向板24は金属製である。対向板24には、外側に突出する外部接続端子35、及び、円形状の吸引口33が形成されている。吸引口33は開口部38に連通している。吸引口33の径は開口部38の径より小さくなっている。これにより、対向板24の吸引口33の周囲には、屈曲可能な可動部39が形成される。 円 A circular channel hole 37 is formed in the cover plate 22. The channel plate 23 has a circular opening 38 formed therein. The opening 38 communicates with the channel hole 37. The diameter of the opening 38 is larger than the diameter of the flow path hole 37. The opposing plate 24 is made of metal. An external connection terminal 35 protruding outward and a circular suction port 33 are formed in the facing plate 24. The suction port 33 communicates with the opening 38. The diameter of the suction port 33 is smaller than the diameter of the opening 38. Thereby, a bendable movable portion 39 is formed around the suction port 33 of the opposing plate 24.
 接着層25は、振動板26の枠部44と重なるように枠状に形成されている。接着層25は、エポキシ樹脂などの熱硬化性樹脂に、粒径が略均一な複数の導電性粒子を含有してなる。これにより、対向板24と振動板26とを接着層25の導電性粒子を介して電気的に導通させることができる。 The adhesive layer 25 is formed in a frame shape so as to overlap the frame portion 44 of the diaphragm 26. The adhesive layer 25 is composed of a thermosetting resin such as an epoxy resin and contains a plurality of conductive particles having a substantially uniform particle size. Thereby, the opposing plate 24 and the vibration plate 26 can be electrically conducted through the conductive particles of the adhesive layer 25.
 振動板26は、例えば、SUS301のような金属製である。振動板26は、一定の間隔だけ離れて対向板24と対向している。対向板24と振動板26との隙間はポンプ室40を構成している。振動板26は、中央部41、打撃部42、連結部43及び枠部44を有する。中央部41は、平面視で円形状であり、振動板26の中央に配置されている。枠部44は、平面視で枠状であり、振動板26の周囲に配置されている。連結部43は、梁状であり、中央部41と枠部44とを連結する。打撃部42は、平面視で円形状であり、中央部41と連結部43との境界付近に配置されている。打撃部42は、その中心が吸引口33と対向するように配置されている。打撃部42の径は吸引口33の径より大きくなっている。打撃部42及び枠部44は中央部41及び連結部43より厚くなっている。振動板26には、上述の振動板26の構成部分で囲まれる開口部(図示せず)が形成されている。ポンプ室40はこの開口部を介してポンプ室46に連通している。 The diaphragm 26 is made of metal such as SUS301, for example. The vibration plate 26 faces the opposing plate 24 at a predetermined interval. The gap between the opposing plate 24 and the diaphragm 26 constitutes a pump chamber 40. The diaphragm 26 has a central portion 41, a hitting portion 42, a connecting portion 43, and a frame portion 44. The central portion 41 has a circular shape in plan view, and is disposed at the center of the diaphragm 26. The frame portion 44 has a frame shape in a plan view, and is arranged around the diaphragm 26. The connecting portion 43 has a beam shape and connects the central portion 41 and the frame portion 44. The hitting portion 42 has a circular shape in plan view, and is disposed near a boundary between the central portion 41 and the connecting portion 43. The striking section 42 is arranged such that the center thereof faces the suction port 33. The diameter of the hitting portion 42 is larger than the diameter of the suction port 33. The hitting portion 42 and the frame portion 44 are thicker than the central portion 41 and the connecting portion 43. The diaphragm 26 has an opening (not shown) surrounded by the components of the diaphragm 26 described above. The pump chamber 40 communicates with the pump chamber 46 through the opening.
 圧電素子27は、圧電材料からなる薄板の両主面に電極を設けて構成されている。圧電素子27は、厚み方向に電界が印加されることにより、面内方向に面積が拡大または縮小するような圧電性を有している。圧電素子27は、円板状であり、振動板26の中央部41の上面に貼り付けられている。圧電素子27の下面の電極は、振動板26、接着層25及び対向板24を介して、外部接続端子35に電気的に接続されている。 The piezoelectric element 27 is configured by providing electrodes on both main surfaces of a thin plate made of a piezoelectric material. The piezoelectric element 27 has such a piezoelectric property that its area increases or decreases in the in-plane direction when an electric field is applied in the thickness direction. The piezoelectric element 27 has a disk shape and is attached to the upper surface of the central portion 41 of the diaphragm 26. The electrode on the lower surface of the piezoelectric element 27 is electrically connected to the external connection terminal 35 via the vibration plate 26, the adhesive layer 25, and the opposing plate 24.
 絶縁板28は絶縁性樹脂からなる。絶縁板28には、平面視で矩形状の開口部が形成されている。給電板29は金属製である。給電板29には、平面視で矩形状の開口部、給電板29の開口部に突出する内部接続端子45、及び、外側に突出する外部接続端子36が形成されている。内部接続端子45の先端は圧電素子27の上面の電極にはんだ付けされている。スペーサ板30は樹脂製である。スペーサ板30には、平面視で矩形状の開口部が形成されている。絶縁板28、給電板29及びスペーサ板30の開口部は、互いに連通することでポンプ室46を構成している。蓋板31には、平面視で円形状の吐出口34が形成されている。吐出口34はポンプ室46及び外部に連通している。 The insulating plate 28 is made of an insulating resin. The insulating plate 28 has a rectangular opening in a plan view. The power supply plate 29 is made of metal. The power supply plate 29 is formed with a rectangular opening in plan view, an internal connection terminal 45 protruding from the opening of the power supply plate 29, and an external connection terminal 36 protruding outward. The tip of the internal connection terminal 45 is soldered to an electrode on the upper surface of the piezoelectric element 27. The spacer plate 30 is made of resin. The spacer plate 30 is formed with a rectangular opening in plan view. The openings of the insulating plate 28, the power supply plate 29, and the spacer plate 30 communicate with each other to form a pump chamber 46. The cover plate 31 is formed with a circular discharge port 34 in plan view. The discharge port 34 communicates with the pump chamber 46 and the outside.
 図2は、圧電ポンプ21の動作を示す模式図である。圧電ポンプ21では、外部接続端子35、36に交流の駆動電圧が印加されると、圧電素子27が面内方向に等方的に伸縮しようとして、圧電素子27と振動板26との積層体に厚み方向の屈曲振動が同心円状に生じる。この屈曲振動は、高次の共振モードであり、枠部44が固定部となり、中央部41の中心が第1の振動の腹となり、打撃部42の中心が第2の振動の腹となる。 FIG. 2 is a schematic diagram showing the operation of the piezoelectric pump 21. In the piezoelectric pump 21, when an AC drive voltage is applied to the external connection terminals 35 and 36, the piezoelectric element 27 tries to expand and contract isotropically in the in-plane direction, and the piezoelectric element 27 and the vibration plate 26 are stacked. Flexural vibration in the thickness direction occurs concentrically. This bending vibration is a higher-order resonance mode, in which the frame portion 44 becomes a fixed portion, the center of the central portion 41 becomes an antinode of the first vibration, and the center of the hitting portion 42 becomes an antinode of the second vibration.
 打撃部42の振動は、打撃部42に対向する流体を介して可動部39に伝達される。打撃部42の振動と可動部39の振動とが連成されることにより、ポンプ室40において吸引口33の近傍から可動部39の外周側に流体が流れるようになる。これにより、ポンプ室40において吸引口33の周辺に負圧が生じて、吸引口33からポンプ室46に流体が吸引される。また、ポンプ室46の内部に正圧が生じ、この正圧が蓋板31の吐出口34で開放される。したがって、吸引口33を介してポンプ室40、46に吸引された流体は、吐出口34を介してポンプ室40、46から流出する。 振動 The vibration of the striking section 42 is transmitted to the movable section 39 via the fluid facing the striking section 42. Fluid flows from the vicinity of the suction port 33 in the pump chamber 40 to the outer peripheral side of the movable portion 39 by coupling the vibration of the impact portion 42 and the vibration of the movable portion 39. As a result, a negative pressure is generated around the suction port 33 in the pump chamber 40, and the fluid is sucked from the suction port 33 into the pump chamber 46. Further, a positive pressure is generated inside the pump chamber 46, and the positive pressure is released at the discharge port 34 of the cover plate 31. Therefore, the fluid sucked into the pump chambers 40 and 46 via the suction port 33 flows out of the pump chambers 40 and 46 via the discharge port 34.
 なお、圧電ポンプ21の圧電素子27、振動板26、及び対向板24はエンジンと呼ばれる。圧電ポンプ21が駆動する状態とは、圧電ポンプ21のエンジンが屈曲振動する状態である。言い換えると、圧電ポンプ21が駆動している状態とは、圧電ポンプ21へ流体が吸引または圧電ポンプ21から流体が吐出されている状態をいう。また、この反対に、圧電ポンプ21が駆動していない非駆動の状態とは、圧電ポンプ21へ流体が吸引されていない状態、または、圧電ポンプ21から流体が吐出されていない状態である。 The piezoelectric element 27, the diaphragm 26, and the opposing plate 24 of the piezoelectric pump 21 are called an engine. The state in which the piezoelectric pump 21 is driven is a state in which the engine of the piezoelectric pump 21 bends and vibrates. In other words, the state in which the piezoelectric pump 21 is driven refers to a state in which a fluid is sucked into the piezoelectric pump 21 or a fluid is discharged from the piezoelectric pump 21. On the other hand, the non-driven state in which the piezoelectric pump 21 is not driven is a state in which fluid is not sucked into the piezoelectric pump 21 or a state in which fluid is not discharged from the piezoelectric pump 21.
 2.圧電ポンプの温度特性
 上述した圧電ポンプ21は、温度に応じて最適な駆動周波数が変化することが新たに見いだされた。図3は、異なる温度における圧力と電気効率との関係を示すグラフ図である。図3は、圧電ポンプ21の背圧が380mmHgの状況において、グラフGaは圧電ポンプ21が40℃のときの、グラフGbは23℃のときの、グラフGcは10℃のときの、それぞれの駆動周波数と空気の流量との関係を示している。
2. Temperature Characteristics of Piezoelectric Pump It has been newly found that the above-described piezoelectric pump 21 changes the optimum driving frequency in accordance with the temperature. FIG. 3 is a graph showing the relationship between pressure and electrical efficiency at different temperatures. FIG. 3 shows the driving when the piezoelectric pump 21 is at 40 ° C., the graph Gb is at 23 ° C., and the graph Gc is at 10 ° C. when the back pressure of the piezoelectric pump 21 is 380 mmHg. The relationship between frequency and air flow is shown.
 グラフGaの最適駆動周波数Fgaと、グラフGbの最適駆動周波数Fgbと、グラフGcの最適駆動周波数Fgcはそれぞれ異なる。したがって、駆動周波数が23℃のときに最適に駆動するようにFgbで設定されている場合、10℃の環境温度下では、圧電ポンプ21は、背圧380mmHgにおいて流量がゼロになるので、ポンプとして動作しない。このように、常温から低温になるとポンプ出力が低下する。 最適 The optimum driving frequency Fga of the graph Ga, the optimum driving frequency Fgb of the graph Gb, and the optimum driving frequency Fgc of the graph Gc are different from each other. Therefore, when the drive frequency is set to Fgb so as to drive optimally when the drive frequency is 23 ° C., at an environment temperature of 10 ° C., the flow rate of the piezoelectric pump 21 becomes zero at a back pressure of 380 mmHg. Do not work. As described above, the pump output decreases when the temperature decreases from room temperature.
 図4は、異なる温度における圧力と電気効率との関係を示すグラフ図である。図4は、図3の周波数Fgbで駆動した時の各温度での電気効率を示す。グラフGdは圧電ポンプ21が50℃のときの、グラフGhは25℃のときの、グラフGeは0℃のときの、それぞれの圧力と電気効率との関係を示している。 FIG. 4 is a graph showing the relationship between pressure and electrical efficiency at different temperatures. FIG. 4 shows the electrical efficiency at each temperature when driven at the frequency Fgb of FIG. The graph Gd shows the relationship between the respective pressures and the electrical efficiency when the piezoelectric pump 21 is at 50 ° C., the graph Gh at 25 ° C., and the graph Ge at 0 ° C.
 図4に示すように、温度によって電気効率のピーク値が異なり、特に高温で電気効率が低下している。電気効率が悪いと、例えば電源に電池を使用した場合、電池の寿命が短くなり、電池交換や充電頻度が増えるのでユーザビリティ-が低下する。 (4) As shown in FIG. 4, the peak value of the electric efficiency varies depending on the temperature, and the electric efficiency decreases particularly at a high temperature. If the electric efficiency is poor, for example, when a battery is used as a power supply, the life of the battery is shortened, and the frequency of battery replacement and charging is increased, thereby reducing usability.
 圧電ポンプ21の周波数特性について図5を参照してさらに説明する。図5は、常温、例えば、20℃における駆動周波数とインピーダンスとの関係を示すグラフ図である。圧電ポンプ21の周波数特性は、共振周波数frと***振周波数faを有する。共振周波数frは約23.4kHzであり、***振周波数faは約24.5kHzである。この共振周波数frと***振周波数faとの間が圧電ポンプを駆動することができる駆動周波数帯域Fwである。また、共振周波数fr未満の周波数帯域と***振周波数fa以上の周波数帯域は非駆動周波数帯域Fzである。 (5) The frequency characteristic of the piezoelectric pump 21 will be further described with reference to FIG. FIG. 5 is a graph showing the relationship between the driving frequency and the impedance at normal temperature, for example, 20 ° C. The frequency characteristic of the piezoelectric pump 21 has a resonance frequency fr and an anti-resonance frequency fa. The resonance frequency fr is about 23.4 kHz, and the anti-resonance frequency fa is about 24.5 kHz. A driving frequency band Fw in which the piezoelectric pump can be driven is between the resonance frequency fr and the anti-resonance frequency fa. The frequency band lower than the resonance frequency fr and the frequency band higher than the anti-resonance frequency fa are non-drive frequency bands Fz.
 この周波数特性の関係は温度に応じてシフトする。温度が低下すれば駆動周波数帯域は周波数の高い方へシフトし、温度が上昇すれば駆動周波数帯域は周波数の低い方へシフトする。 関係 The relationship of this frequency characteristic shifts according to the temperature. When the temperature decreases, the driving frequency band shifts to a higher frequency, and when the temperature increases, the driving frequency band shifts to a lower frequency.
 このような周波数特性を有する圧電ポンプ21は、LCRの電気回路にモデル化することができる。図6は、圧電ポンプ21をモデル化した等価回路図である。非駆動周波数帯域Fzは容量Caの周波数特性を有する。共振周波数frは、インダクタL、容量Cb及び抵抗Rの直列回路Daの周波数特性を有する。***振周波数faは、LCR直列回路Daと容量Cとの並列回路Dbの周波数特性を有する。 圧 電 The piezoelectric pump 21 having such frequency characteristics can be modeled as an LCR electric circuit. FIG. 6 is an equivalent circuit diagram modeling the piezoelectric pump 21. The non-drive frequency band Fz has a frequency characteristic of the capacitor Ca. The resonance frequency fr has a frequency characteristic of a series circuit Da including the inductor L, the capacitor Cb, and the resistor R. The anti-resonance frequency fa has a frequency characteristic of a parallel circuit Db including the LCR series circuit Da and the capacitor C.
 図5を再び参照する。例えば、60kHzのような非駆動周波数において、インピーダンスは、圧電ポンプ21の容量Caのみによって決まるので、入力電圧や背圧に対して比較的に安定で、温度に敏感に反応する。非駆動周波数が含まれる非駆動周波数帯域とは、例えばインピーダンスが極小となる共振周波数と極大となる***振周波数との間を除く(言い換えるとインピーダンスがC性である)周波数領域である。 再 び Refer again to FIG. For example, at a non-driving frequency such as 60 kHz, the impedance is determined only by the capacitance Ca of the piezoelectric pump 21, so that the impedance is relatively stable with respect to an input voltage or a back pressure and is sensitive to temperature. The non-drive frequency band including the non-drive frequency is, for example, a frequency region excluding a region between a resonance frequency at which the impedance is minimum and an anti-resonance frequency at which the impedance is maximum (in other words, the impedance is C-characteristic).
 図7を参照する。図7は、圧電ポンプの温度と容量の変化率との関係を示すグラフ図である。図7は、非駆動周波数における容量と温度との関係を示している。図7に示すように、温度変化に対応して圧電ポンプ21の容量が変化していることが理解できる。常温での容量Caは圧電ポンプ21の誘電率や厚み、面積により決定されるが、その誤差は小さい。したがって、圧電ポンプ21の非駆動周波数における容量Caがわかれば温度を精度よく検出することができる。容量Cと圧電ポンプ21のインピーダンスZとは逆数の関係にある。インピーダンスZと周波数f及び容量Cとの関係は以下の式で表される。 参照 Refer to FIG. FIG. 7 is a graph showing the relationship between the temperature of the piezoelectric pump and the rate of change of the capacity. FIG. 7 shows the relationship between the capacitance and the temperature at the non-drive frequency. As shown in FIG. 7, it can be understood that the capacity of the piezoelectric pump 21 changes according to the temperature change. The capacity Ca at normal temperature is determined by the dielectric constant, thickness, and area of the piezoelectric pump 21, but the error is small. Therefore, if the capacitance Ca at the non-drive frequency of the piezoelectric pump 21 is known, the temperature can be accurately detected. The capacity C and the impedance Z of the piezoelectric pump 21 have a reciprocal relationship. The relationship between the impedance Z, the frequency f, and the capacitance C is represented by the following equation.
 Z=1/2(2×π×f×C) ・・・(1)式 {Z = 1/2 (2 × π × f × C)} (1)
 入力電圧Vcが一定のときに、インピーダンスZが決まると、オームの法則V=ZIにより、圧電ポンプ21に流れる電流値が決定される。一方、各温度での最適な駆動周波数は、圧電ポンプ21の設計により定まるので、電流値が決まれば、図8のような電流値と最適駆動周波数との関係から最適周波数が決定される。このような圧電ポンプ21に流れる電流値と最適駆動周波数との関係をテーブルまたは数式として記憶しておくことで、検出された電流ごとに最適な駆動周波数を決定することが可能である。すなわち、圧電ポンプ21の温度変化に応じて駆動周波数を決定している。このことは、非駆動周波数における圧電ポンプ21のインピーダンス変化に応じて圧電ポンプ21の駆動周波数を決定することに対応している。 When the impedance Z is determined when the input voltage Vc is constant, the value of the current flowing through the piezoelectric pump 21 is determined according to Ohm's law V = ZI. On the other hand, the optimum drive frequency at each temperature is determined by the design of the piezoelectric pump 21, and if the current value is determined, the optimum frequency is determined from the relationship between the current value and the optimum drive frequency as shown in FIG. By storing the relationship between the current value flowing through the piezoelectric pump 21 and the optimal driving frequency as a table or a mathematical expression, it is possible to determine the optimal driving frequency for each detected current. That is, the drive frequency is determined according to the temperature change of the piezoelectric pump 21. This corresponds to determining the drive frequency of the piezoelectric pump 21 according to the impedance change of the piezoelectric pump 21 at the non-drive frequency.
 また、圧電ポンプ21に流れる電流値を検出するよりも、圧電ポンプ21の出力電圧を検出する方が容易である。そこで、電流値の代わりに出力電圧に応じて駆動周波数を変化させてもよい。図9は、圧電ポンプの出力電圧と駆動周波数補正量との関係を示すグラフ図である。出力電圧は圧電ポンプの温度に対応して変化するパラメータである。したがって、出力電圧に応じて駆動周波数を補正することで、温度変化に対応して圧電ポンプ21を適切に駆動することができる。出力電圧が高いほど圧電ポンプ21の温度は高いので、駆動周波数を低く補正する。 (4) It is easier to detect the output voltage of the piezoelectric pump 21 than to detect the value of the current flowing through the piezoelectric pump 21. Therefore, the driving frequency may be changed according to the output voltage instead of the current value. FIG. 9 is a graph showing the relationship between the output voltage of the piezoelectric pump and the drive frequency correction amount. The output voltage is a parameter that changes according to the temperature of the piezoelectric pump. Therefore, by correcting the drive frequency according to the output voltage, it is possible to appropriately drive the piezoelectric pump 21 in response to a temperature change. Since the temperature of the piezoelectric pump 21 is higher as the output voltage is higher, the drive frequency is corrected to be lower.
(実施の形態1)
 以下に、本発明の実施の形態1にかかるポンプ装置について説明する。図10は、実施の形態1におけるポンプ装置を示すブロック図である。
(Embodiment 1)
Hereinafter, the pump device according to the first embodiment of the present invention will be described. FIG. 10 is a block diagram showing a pump device according to the first embodiment.
 ポンプ装置11は、圧電ポンプ21と、圧電ポンプ21を駆動する駆動回路12と、圧電ポンプ21の出力電圧を検出する電圧検出回路13と、駆動回路12に電力を供給する電源回路14と、圧電ポンプ21の駆動周波数を決定する制御部15とを備える。 The pump device 11 includes a piezoelectric pump 21, a drive circuit 12 for driving the piezoelectric pump 21, a voltage detection circuit 13 for detecting an output voltage of the piezoelectric pump 21, a power supply circuit 14 for supplying power to the drive circuit 12, A control unit for determining a drive frequency of the pump;
 制御部15は、処理部16と、記憶部17とを有する。制御部15は、例えば、処理部16と記憶部17が一体化されたMCU(Micro Control Unit)でもよいし、それぞれ個別に備える形態でもよい。個別の場合、処理部16は、CPU、マイクロチップまたはFPGAでもよい。記憶部17は、メモリ、ハードディスク、またはSSDでもよい。なお、実施の形態1では、制御部15としてMCUを採用した場合を一例として説明する。記憶部17には、出力電圧Voと駆動周波数foとの関係が、関係式またはテーブルとして記憶されている。この出力電圧Voと駆動周波数foとの関係は、モデル化された圧電ポンプ21の容量Cと圧電ポンプ21の温度との関係、または、出力電圧Voと圧電ポンプ21の温度との関係から予め算出しておくことで、処理時間の短縮化をしている。 The control unit 15 includes a processing unit 16 and a storage unit 17. The control unit 15 may be, for example, an MCU (Micro Control Unit) in which the processing unit 16 and the storage unit 17 are integrated, or may be provided separately. In the individual case, the processing unit 16 may be a CPU, a microchip, or an FPGA. The storage unit 17 may be a memory, a hard disk, or an SSD. In the first embodiment, a case where an MCU is employed as the control unit 15 will be described as an example. The relationship between the output voltage Vo and the drive frequency fo is stored in the storage unit 17 as a relational expression or a table. The relationship between the output voltage Vo and the driving frequency fo is calculated in advance from the modeled relationship between the capacity C of the piezoelectric pump 21 and the temperature of the piezoelectric pump 21 or the relationship between the output voltage Vo and the temperature of the piezoelectric pump 21. By doing so, the processing time is shortened.
 実施の形態1のポンプ装置11は、例えば、図11に示されるような吸引器51に用いられる。図11は、実施の形態1における吸引器の流体の流れを説明する説明図である。実施の形態1では、吸引器51の中でも、例えば、搾乳機を例として説明する。吸引器51は、流体が貯め込まれた容器53と、容器53から流体を吸引する圧電ポンプ21と、バルブ55と、容器53、バルブ55、及び、圧電ポンプ21とを接続するチューブ57とを備える。流体は、液体又は気体のどちらでもよい。吸引器の具体例として、搾乳機、NPWT(Negative pressure wound therapy)、ドレナージ、鼻水吸引器が挙げられる。図11には、1つの圧電ポンプ21が容器53に接続されているが、2つ以上の圧電ポンプ21が容器53に直列に接続されていてもよい。 The pump device 11 according to the first embodiment is used, for example, in a suction device 51 as shown in FIG. FIG. 11 is an explanatory diagram illustrating the flow of the fluid in the suction device according to the first embodiment. In the first embodiment, among the suction devices 51, for example, a milking machine will be described as an example. The suction device 51 includes a container 53 in which a fluid is stored, a piezoelectric pump 21 that sucks the fluid from the container 53, a valve 55, and a tube 57 that connects the container 53, the valve 55, and the piezoelectric pump 21. Prepare. The fluid may be a liquid or a gas. Specific examples of the suction device include a milking machine, NPWT (Negative Pressure Wound Therapy), drainage, and a runny suction device. In FIG. 11, one piezoelectric pump 21 is connected to the container 53, but two or more piezoelectric pumps 21 may be connected to the container 53 in series.
 図12を参照して、駆動回路12を説明する。図12は、駆動回路12及び電圧検出回路13の回路図である。駆動回路12は、例えば、Hブリッジ回路である。駆動回路12は第1FET61、第2FET62、第3FET63、及び第4FET64の4つのFETを有する。制御部15から第1FET61~第4FET64への駆動信号により、各FETがスイッチング駆動され、圧電ポンプ21へ予め定められた周波数の交流電圧が印加される。 駆 動 The drive circuit 12 will be described with reference to FIG. FIG. 12 is a circuit diagram of the drive circuit 12 and the voltage detection circuit 13. The drive circuit 12 is, for example, an H-bridge circuit. The drive circuit 12 has four FETs, a first FET 61, a second FET 62, a third FET 63, and a fourth FET 64. Each of the FETs is switched by a drive signal from the control unit 15 to the first to fourth FETs 61 to 64, and an AC voltage having a predetermined frequency is applied to the piezoelectric pump 21.
 第1FET61及び第3FET63のドレインに電源回路14から入力電圧Vcが印加される。第1FET61のソースは、第2FET62のドレイン及び圧電ポンプ21の外部接続端子35と接続される。第3FET63のソースは、第4FET64のドレイン及び圧電ポンプ21の外部接続端子36と接続される。第2FET62のソース及び第4FET64のソースとは、電圧検出回路13に接続される。電圧検出回路13は、圧電ポンプ21と電気的に接続されるインピーダンス素子を備える。インピーダンス素子として、例えば、抵抗器Rsを用いる。 (4) The input voltage Vc is applied from the power supply circuit 14 to the drains of the first FET 61 and the third FET 63. The source of the first FET 61 is connected to the drain of the second FET 62 and the external connection terminal 35 of the piezoelectric pump 21. The source of the third FET 63 is connected to the drain of the fourth FET 64 and the external connection terminal 36 of the piezoelectric pump 21. The source of the second FET 62 and the source of the fourth FET 64 are connected to the voltage detection circuit 13. The voltage detection circuit 13 includes an impedance element that is electrically connected to the piezoelectric pump 21. As the impedance element, for example, a resistor Rs is used.
 電力供給部としての電源回路14から供給される直流の入力電圧Vcは、第1FET61、圧電ポンプ21、第4FET64及び抵抗器Rsにより分圧されるか、第3FET63、圧電ポンプ21、第2FET62により分圧される。ここで、第1FET61~第4FET64での電圧降下は無視できるほど小さい。したがって、圧電ポンプ21と抵抗器Rsとの分圧により出力電圧Voが決まる。図13は、異なる周波数における出力電圧Voと温度との関係を示している。グラフGsは第1の周波数である非駆動周波数帯域Fz内の非駆動周波数f1が15kHzの場合であり、グラフGtは非駆動周波数f1が32kHzの場合であり、グラフGvは非駆動周波数f1が45kHzの場合であり、グラフGwは非駆動周波数f1が60kHzの場合の出力電圧Voと温度との関係を示す。出力電圧Voを制御部15で読み取ることで圧電ポンプ21の温度を測定することができる。 The DC input voltage Vc supplied from the power supply circuit 14 as a power supply unit is divided by the first FET 61, the piezoelectric pump 21, the fourth FET 64, and the resistor Rs, or divided by the third FET 63, the piezoelectric pump 21, and the second FET 62. Pressed. Here, the voltage drop in the first to fourth FETs 61 to 64 is negligibly small. Therefore, the output voltage Vo is determined by the partial pressure between the piezoelectric pump 21 and the resistor Rs. FIG. 13 shows the relationship between the output voltage Vo and the temperature at different frequencies. The graph Gs shows the case where the non-driving frequency f1 in the non-driving frequency band Fz which is the first frequency is 15 kHz, the graph Gt shows the case where the non-driving frequency f1 is 32 kHz, and the graph Gv shows the case where the non-driving frequency f1 is 45 kHz. And the graph Gw shows the relationship between the output voltage Vo and the temperature when the non-drive frequency f1 is 60 kHz. The temperature of the piezoelectric pump 21 can be measured by reading the output voltage Vo by the control unit 15.
 電圧検出回路13は、例えば、抵抗器Rsである。抵抗器Rs間の電圧を検出することで、駆動回路12の出力電圧Voを検出することができる。入力電圧Vcと出力電圧Voとの差が圧電ポンプ21の印加電圧(駆動電圧)となる。このように、本明細書における印加電圧とは、駆動回路12へ入力される入力電圧と駆動回路12から出力される出力電圧との差の電圧のことである。入力電圧Vcは制御部15からの指示にしたがった電圧値で電源回路14から供給されるので、出力電圧Voの変動は圧電ポンプ21の印加電圧と対応している。したがって、圧電ポンプ21の印加電圧を検出することは、出力電圧Voを検出することで代用できる。抵抗器Rsの一端側は、制御部15のI/Oポート66に接続されているので、出力電圧Voが制御部15によって読み取られる。本願発明の電圧検出部は、電圧検出回路13と制御部15とで構成される。また、制御部15は本願発明の制御部にも相当する。 The voltage detection circuit 13 is, for example, a resistor Rs. The output voltage Vo of the drive circuit 12 can be detected by detecting the voltage between the resistors Rs. The difference between the input voltage Vc and the output voltage Vo is the applied voltage (drive voltage) of the piezoelectric pump 21. As described above, the applied voltage in this specification is a voltage that is a difference between the input voltage input to the drive circuit 12 and the output voltage output from the drive circuit 12. Since the input voltage Vc is supplied from the power supply circuit 14 at a voltage value according to an instruction from the control unit 15, the fluctuation of the output voltage Vo corresponds to the applied voltage of the piezoelectric pump 21. Therefore, detecting the applied voltage of the piezoelectric pump 21 can be substituted by detecting the output voltage Vo. Since one end of the resistor Rs is connected to the I / O port 66 of the control unit 15, the output voltage Vo is read by the control unit 15. The voltage detection unit of the present invention includes a voltage detection circuit 13 and a control unit 15. The control unit 15 also corresponds to the control unit of the present invention.
 また、駆動周波数foを決定するための非駆動周波数f1は、圧電ポンプ21のインピーダンスZが低いので、周波数が高い方がよい。例えば、以下の関係式を満たす方がよい。
 f1>1.2×fo ・・・(2)式
Further, the non-drive frequency f1 for determining the drive frequency fo is preferably higher because the impedance Z of the piezoelectric pump 21 is lower. For example, it is better to satisfy the following relational expression.
f1> 1.2 × fo Expression (2)
 次に、ポンプ装置11の駆動制御について、図14~図18を参照して説明する。図14はポンプ装置11の駆動制御の流れを示すフローチャートである。図15は、駆動制御における、時間と圧電ポンプの温度との関係の一例を示すグラフ図である。図16は、駆動制御における、時間と周波数の関係の一例を示すグラフ図である。図15に示すように、圧電ポンプ21の駆動により時間と共に、圧電ポンプの温度は上昇する。この圧電ポンプ21の上昇に対して、図16に示すように、圧電ポンプに印加する電圧の周波数を変化させる。 Next, the drive control of the pump device 11 will be described with reference to FIGS. FIG. 14 is a flowchart showing the flow of drive control of the pump device 11. FIG. 15 is a graph showing an example of the relationship between time and the temperature of the piezoelectric pump in drive control. FIG. 16 is a graph showing an example of the relationship between time and frequency in drive control. As shown in FIG. 15, the temperature of the piezoelectric pump increases with time by driving the piezoelectric pump 21. In response to the rise of the piezoelectric pump 21, the frequency of the voltage applied to the piezoelectric pump is changed as shown in FIG.
 ステップS1において、駆動回路12は、制御部15の処理部16からの指示にしたがって、時間t1から時間t2の間に非駆動周波数帯域Fz内の非駆動周波数fz1で圧電ポンプ21に電圧を印加する。時間t1-t2間は、例えば、30msecである。時間t1-t2間において、圧電ポンプ21は、非駆動周波数fz1の電圧が印加されているので、ポンプ動作をしない。しかしながら、圧電ポンプ21及び電圧検出回路13に電流が流れる。ステップS2において、制御部15は、電圧検出回路13に分圧された電圧Voを検出する。この場合、電圧Voは圧電ポンプ21に印加される印加電圧である。ステップS3において、処理部16は、検出された電圧Voを記憶部17に記憶されているテーブルに照合し、電圧Voに対応する駆動周波数帯域Fw内の駆動周波数fw1を決定する。ステップS4において、処理部16は、決定された駆動周波数fw1で駆動回路12に各FETのゲートに駆動信号を送る。駆動回路12は、送られた駆動信号に従い、時間t2から時間t3の間に駆動周波数fw1で圧電ポンプ21を駆動する。時間t2-t3間は、例えば、2.5secである。すなわち、非駆動周波数fz1で圧電ポンプ21に電圧を印加する時間は、ポンプの駆動時間に比べて非常に小さい。そこで、再び、時間t3から、ステップS1からステップS4を繰り返すことで、圧電ポンプ21の温度上昇に対して駆動周波数fw1よりも低い駆動周波数fw2で圧電ポンプ21を駆動することができる。図9に示すように、圧電ポンプ21の温度が上昇すると、圧電ポンプ21への印加電圧が増加するので、駆動周波数が低くなるように制御部15が制御する。これ以後も、ステップS1~S4を繰り返す。なお、時間t5以降は、圧電ポンプ21の温度上昇が飽和しているので、圧電ポンプ21を駆動する駆動周波数fw3が同じになっている。 In step S1, the drive circuit 12 applies a voltage to the piezoelectric pump 21 at the non-drive frequency fz1 in the non-drive frequency band Fz between the time t1 and the time t2 according to an instruction from the processing unit 16 of the control unit 15. . The period from time t1 to t2 is, for example, 30 msec. Between time t1 and t2, the piezoelectric pump 21 does not perform the pump operation because the voltage of the non-drive frequency fz1 is applied. However, current flows through the piezoelectric pump 21 and the voltage detection circuit 13. In step S2, the control unit 15 detects the voltage Vo divided by the voltage detection circuit 13. In this case, the voltage Vo is an applied voltage applied to the piezoelectric pump 21. In step S3, the processing unit 16 checks the detected voltage Vo against a table stored in the storage unit 17, and determines the driving frequency fw1 in the driving frequency band Fw corresponding to the voltage Vo. In step S4, the processing unit 16 sends a drive signal to the gate of each FET to the drive circuit 12 at the determined drive frequency fw1. The drive circuit 12 drives the piezoelectric pump 21 at the drive frequency fw1 between time t2 and time t3 according to the transmitted drive signal. The period between the time t2 and the time t3 is, for example, 2.5 seconds. That is, the time during which the voltage is applied to the piezoelectric pump 21 at the non-driving frequency fz1 is much smaller than the driving time of the pump. Therefore, by repeating steps S1 to S4 again from time t3, the piezoelectric pump 21 can be driven at a drive frequency fw2 lower than the drive frequency fw1 with respect to the temperature rise of the piezoelectric pump 21. As shown in FIG. 9, when the temperature of the piezoelectric pump 21 increases, the voltage applied to the piezoelectric pump 21 increases, so that the control unit 15 controls the driving frequency to decrease. Thereafter, steps S1 to S4 are repeated. Since the temperature rise of the piezoelectric pump 21 is saturated after time t5, the driving frequency fw3 for driving the piezoelectric pump 21 is the same.
 実施の形態1のポンプ装置11による効果を図17及び図18を参照して説明する。図17は、ポンプ装置を駆動する電池の寿命を示すグラフ図である。図18は、ポンプ装置の電気効率を示すグラフ図である。図17に示すように、温度に応じて駆動周波数の制御を実施した場合のグラフGkは、駆動周波数の制御を実施しなかったグラフGmよりも圧電ポンプ21を駆動する駆動電池の寿命が延びている。駆動周波数の制御を実施しなかった場合、駆動時間が450時間を超えたあたりで電池電圧が3V以下に落ちている。これに対して、温度に対応して駆動周波数の制御を実施した場合、駆動時間が600分を超えても電池電圧は3.2V以上有している。 The effect of the pump device 11 according to the first embodiment will be described with reference to FIGS. FIG. 17 is a graph showing the life of the battery that drives the pump device. FIG. 18 is a graph showing the electrical efficiency of the pump device. As shown in FIG. 17, the graph Gk in the case where the driving frequency is controlled according to the temperature has a longer life of the driving battery for driving the piezoelectric pump 21 than the graph Gm in which the driving frequency is not controlled. I have. When the control of the driving frequency was not performed, the battery voltage dropped to 3 V or less around the time when the driving time exceeded 450 hours. On the other hand, when the drive frequency is controlled in accordance with the temperature, the battery voltage has 3.2 V or more even when the drive time exceeds 600 minutes.
 また、図18に示すように、温度に応じて駆動周波数の制御を実施した場合のグラフGnは、駆動周波数の制御を実施しなかったグラフGpよりも全ての温度範囲にわたって電気効率が向上している。特に、常温よりも低温領域及び高温領域において、電気効率が上昇している。このように、温度に応じて駆動周波数を変化させることで、圧電ポンプ21の消費電力を低減することができる。 Further, as shown in FIG. 18, the graph Gn in the case where the driving frequency is controlled according to the temperature shows that the electric efficiency is improved over the entire temperature range as compared with the graph Gp in which the driving frequency is not controlled. I have. In particular, the electric efficiency increases in a lower temperature region and a higher temperature region than normal temperature. As described above, the power consumption of the piezoelectric pump 21 can be reduced by changing the driving frequency according to the temperature.
 以上のように、ポンプ装置11は、圧電ポンプ21と、圧電ポンプ21に印加される印加電圧を検出する、電圧検出回路13と制御部15とで構成される電圧検出部と、圧電ポンプ21を駆動可能な駆動周波数帯域Fwの帯域外の第1の周波数である非駆動周波数f1における入力電圧Vcにより得られる圧電ポンプ21の出力電圧Voを基に、圧電ポンプ21を駆動する、駆動周波数帯域Fw内の第2の周波数である駆動周波数foを決定する制御部15と、を備える。これだけの構成により、圧電ポンプ21の温度変化に対応して変化する駆動周波数帯域Fwの帯域外の第1の周波数における出力電圧Voを検出する。この測定された出力電圧Voを基に、圧電ポンプ21を駆動する第2の周波数を決定するので、圧電ポンプ21の温度変化に対応した適切な周波数で圧電ポンプ21を駆動することができる。これにより、圧電ポンプ21の電気効率を向上させることができる。また、第2の周波数は一定の周波数でよいので、周波数をスキャンして駆動周波数foを検出するよりも、駆動周波数foを高速に決定することができる。したがって、ポンプ駆動と停止動作を繰り返す搾乳機に用いられるポンプ装置に特に適している。 As described above, the pump device 11 includes the piezoelectric pump 21, a voltage detecting unit configured to detect the applied voltage applied to the piezoelectric pump 21, the voltage detecting circuit 13 and the control unit 15, and the piezoelectric pump 21. A driving frequency band Fw for driving the piezoelectric pump 21 based on the output voltage Vo of the piezoelectric pump 21 obtained by the input voltage Vc at the non-driving frequency f1 which is the first frequency outside the drivable driving frequency band Fw. And a control unit 15 that determines a drive frequency fo which is a second frequency among the above. With this configuration, the output voltage Vo at the first frequency outside the driving frequency band Fw that changes in response to the temperature change of the piezoelectric pump 21 is detected. Since the second frequency for driving the piezoelectric pump 21 is determined based on the measured output voltage Vo, the piezoelectric pump 21 can be driven at an appropriate frequency corresponding to the temperature change of the piezoelectric pump 21. Thereby, the electric efficiency of the piezoelectric pump 21 can be improved. Further, since the second frequency may be a constant frequency, the driving frequency fo can be determined faster than scanning the frequency to detect the driving frequency fo. Therefore, it is particularly suitable for a pump device used in a milking machine that repeats pump driving and stopping operations.
 なお、電圧検出回路13は、インピーダンス素子で構成されていれば、抵抗に限られずインダクタを用いてもよい。図19は、実施の形態1における駆動回路及び電圧検出回路の変形例を示す回路図である。電圧検出回路13aはインダクタL1を有する。インダクタL1の一端に電源回路14からの入力電圧Vcが印加される。インダクタL1の他端は、第1FET61及び第3FET63のそれぞれのドレインと接続される。このように、電圧検出回路13aは電圧検出回路13の接続先をGNDから電源回路14に置き換えている。電圧検出回路13aは、電圧検出回路13と同様に、インダクタL1と圧電ポンプ21の分圧により駆動回路12への入力電圧Voを得ることが可能である。駆動回路12の他端はグランドに接続されているので、入力電圧Voが圧電ポンプ21への印加電圧となる。 The voltage detection circuit 13 is not limited to a resistor and may be an inductor as long as the voltage detection circuit 13 is configured by an impedance element. FIG. 19 is a circuit diagram showing a modification of the drive circuit and the voltage detection circuit according to the first embodiment. The voltage detection circuit 13a has an inductor L1. The input voltage Vc from the power supply circuit 14 is applied to one end of the inductor L1. The other end of the inductor L1 is connected to respective drains of the first FET 61 and the third FET 63. As described above, the voltage detection circuit 13 a replaces the connection destination of the voltage detection circuit 13 from GND to the power supply circuit 14. Similarly to the voltage detection circuit 13, the voltage detection circuit 13a can obtain the input voltage Vo to the drive circuit 12 by dividing the voltage of the inductor L1 and the piezoelectric pump 21. Since the other end of the drive circuit 12 is connected to the ground, the input voltage Vo is the voltage applied to the piezoelectric pump 21.
 また、インピーダンス素子を駆動回路12の電源側に接続する場合インピーダンス素子の分圧比が小さすぎる場合には出力電圧検出回路の入力範囲を超える場合があるので、その場合は分圧するなどすればよい。 In addition, when the impedance element is connected to the power supply side of the drive circuit 12, if the voltage division ratio of the impedance element is too small, the impedance may exceed the input range of the output voltage detection circuit. In such a case, the voltage may be divided.
(実施の形態2)
 次に、本発明の実施の形態2のポンプ装置について図20、図21を参照して説明する。図20は、実施の形態2における流体の流れる方向を示す説明図である。図21は、実施の形態2におけるポンプ装置の時間と圧力との関係を示すグラフ図である。
(Embodiment 2)
Next, a pump device according to a second embodiment of the present invention will be described with reference to FIGS. FIG. 20 is an explanatory diagram illustrating a flowing direction of a fluid according to the second embodiment. FIG. 21 is a graph showing a relationship between time and pressure of the pump device according to the second embodiment.
 実施の形態1のポンプ装置11は、吸引器51の吸引装置として用いられていた。これに対して、実施の形態2のポンプ装置11は、加圧器52の加圧装置として用いられる。したがって、図20に示すように、空気などの流体は、圧電ポンプ21から流体を溜めるカフ53aに向けて流れる。バルブ55が閉状態のときに、圧電ポンプ21からカフ53aに向けて流体が流れるので、カフ53a内の圧力が徐々に上昇する。また、バルブ55が開状態になると、カフ53a内の流体が開放されてカフ53a内の圧力が下がる。加圧器52の具体例として、血圧計、マッサージャー、pMDI(pressurized Metered-Dose Inhaler)、ネブライザが挙げられる。 The pump device 11 according to the first embodiment has been used as a suction device for the suction device 51. On the other hand, the pump device 11 of the second embodiment is used as a pressurizing device of the pressurizer 52. Accordingly, as shown in FIG. 20, a fluid such as air flows from the piezoelectric pump 21 toward the cuff 53a for storing the fluid. When the valve 55 is in the closed state, the fluid flows from the piezoelectric pump 21 toward the cuff 53a, so that the pressure in the cuff 53a gradually increases. When the valve 55 is opened, the fluid in the cuff 53a is released, and the pressure in the cuff 53a decreases. Specific examples of the pressurizer 52 include a sphygmomanometer, a massager, a pMDI (pressurized @ Metered-Dose @ Inhaler), and a nebulizer.
 実施の形態2のポンプ装置11は、実施の形態1のポンプ装置11と同じ構成要素を備える。したがって、実施の形態2におけるポンプ装置11は、以下に記載した事項以外の構成は、実施の形態1のポンプ装置11と共通である。 The pump device 11 according to the second embodiment includes the same components as the pump device 11 according to the first embodiment. Therefore, the configuration of the pump device 11 according to the second embodiment other than the matters described below is common to the pump device 11 of the first embodiment.
 ポンプ装置11を加圧装置として用いた場合であっても、温度変化に対応して駆動周波数を変化させることで、圧電ポンプ21の出力を向上させることができる。図21に示すように、温度変化に対応して駆動周波数を変化させない場合、圧電ポンプ21の駆動時間が長くなると、自己発熱により圧電ポンプ21の温度が上昇する。これにより、圧電ポンプ21から排出する流体の圧力を上げることができなくなる。これに対して、温度変化に対応して駆動周波数を変化させる場合、圧電ポンプ21の温度が上昇しても、圧電ポンプ21から排出する流体の圧力を上げることができる。この結果、流体の等速加圧を実現することができる。 っ て も Even when the pump device 11 is used as a pressurizing device, the output of the piezoelectric pump 21 can be improved by changing the drive frequency in accordance with the temperature change. As shown in FIG. 21, when the driving frequency is not changed in accordance with the temperature change, if the driving time of the piezoelectric pump 21 becomes longer, the temperature of the piezoelectric pump 21 increases due to self-heating. As a result, the pressure of the fluid discharged from the piezoelectric pump 21 cannot be increased. On the other hand, when the drive frequency is changed according to the temperature change, the pressure of the fluid discharged from the piezoelectric pump 21 can be increased even when the temperature of the piezoelectric pump 21 increases. As a result, uniform pressurization of the fluid can be realized.
 以上のように、実施の形態2によれば、ポンプ装置11を加圧装置として用いる場合でも、圧電ポンプの温度に応じて、駆動周波数を変化させることで、低温時の圧電ポンプ21の起動時や、連続運転時にも加圧能力を維持することができる。 As described above, according to the second embodiment, even when the pump device 11 is used as a pressurizing device, the driving frequency is changed in accordance with the temperature of the piezoelectric pump, thereby making it possible to start the piezoelectric pump 21 at a low temperature. Also, the pressurizing capacity can be maintained during continuous operation.
(実施の形態3)
 次に、本発明の実施の形態3のポンプ装置について図22を参照して説明する。図22は、実施の形態3におけるポンプ装置のブロック図である。
(Embodiment 3)
Next, a pump device according to a third embodiment of the present invention will be described with reference to FIG. FIG. 22 is a block diagram of a pump device according to the third embodiment.
 実施の形態3のポンプ装置11aは、圧電ポンプ21が自己発熱により損傷を受けるのを防止する機能を有する。実施の形態3における制御部15aの記憶部17aには、出力電圧Voと駆動周波数foとの関係に加えて出力電圧Voの上限値が記憶されている。この点において、実施の形態1におけるポンプ装置11と実施の形態3のポンプ装置11aとが異なる。この点及び以下に記載した事項以外の構成は、実施の形態1のポンプ装置11と実施の形態3のポンプ装置11aと共通である。 The pump device 11a according to the third embodiment has a function of preventing the piezoelectric pump 21 from being damaged by self-heating. In the storage unit 17a of the control unit 15a according to the third embodiment, an upper limit value of the output voltage Vo is stored in addition to the relationship between the output voltage Vo and the driving frequency fo. In this respect, the pump device 11 according to the first embodiment is different from the pump device 11a according to the third embodiment. The configuration other than this point and the matters described below is common to the pump device 11 of the first embodiment and the pump device 11a of the third embodiment.
 ポンプ装置11aの駆動制御について、図23を参照して説明する。図23はポンプ装置11aの駆動制御の流れを示すフローチャートである。実施の形態3におけるポンプ装置11aの駆動制御は、実施の形態1のポンプ装置11の駆動制御の後に実施される。したがって、実施の形態1のステップS1~ステップS4の処理により、圧電ポンプ21を駆動する駆動周波数foが決定されている。したがって、ステップS11において、駆動回路12は、処理部16より送られた駆動信号に従い、決定された駆動周波数foで圧電ポンプ21を駆動する。次に、ステップS12において、駆動回路12は、処理部16からの指示にしたがって、非駆動周波数帯域Fz内の非駆動周波数f1で圧電ポンプ21に電圧を印加する。圧電ポンプ21は、非駆動周波数f1の電圧が印加されているので、ポンプ動作をしない。しかしながら、圧電ポンプ21及び電圧検出回路13に電流が流れる。制御部15は、電圧検出回路13に分圧された電圧Voを検出する。この場合、電圧Voは圧電ポンプ21に印加される印加電圧である。ステップS13において、処理部16は、検出された電圧Voが記憶部17に記憶されている上限値と比較する。ステップS13のYesのように、電圧Voが上限値未満である場合、ステップS11に戻る。ステップS13のNoのように、電圧Voが上限値未満でない場合、ステップS14において、制御部15aは、圧電ポンプ21の駆動を低下させる。これにより、圧電ポンプ21の温度が低下するので、駆動回路12の出力電圧Voを低下させることができる。この後、再びステップS11からの処理を繰り返すことで、駆動回路12の出力電圧Voが上限値未満になるまで圧電ポンプ21の駆動を低下させることができる。 駆 動 Drive control of the pump device 11a will be described with reference to FIG. FIG. 23 is a flowchart showing the flow of drive control of the pump device 11a. The drive control of the pump device 11a according to the third embodiment is performed after the drive control of the pump device 11 according to the first embodiment. Therefore, the drive frequency fo for driving the piezoelectric pump 21 is determined by the processing of steps S1 to S4 of the first embodiment. Therefore, in step S11, the drive circuit 12 drives the piezoelectric pump 21 at the determined drive frequency fo according to the drive signal sent from the processing unit 16. Next, in step S12, the drive circuit 12 applies a voltage to the piezoelectric pump 21 at the non-drive frequency f1 in the non-drive frequency band Fz according to the instruction from the processing unit 16. The piezoelectric pump 21 does not perform the pump operation because the voltage of the non-drive frequency f1 is applied. However, current flows through the piezoelectric pump 21 and the voltage detection circuit 13. The control unit 15 detects the voltage Vo divided by the voltage detection circuit 13. In this case, the voltage Vo is an applied voltage applied to the piezoelectric pump 21. In step S13, the processing unit 16 compares the detected voltage Vo with the upper limit value stored in the storage unit 17. If the voltage Vo is lower than the upper limit value, as in Yes in step S13, the process returns to step S11. When the voltage Vo is not less than the upper limit value like No in Step S13, the control unit 15a lowers the driving of the piezoelectric pump 21 in Step S14. Thereby, the temperature of the piezoelectric pump 21 decreases, so that the output voltage Vo of the drive circuit 12 can be reduced. Thereafter, by repeating the processing from step S11 again, the drive of the piezoelectric pump 21 can be reduced until the output voltage Vo of the drive circuit 12 becomes lower than the upper limit value.
 圧電ポンプ21の駆動を低下させる方法は、例えば、制御部15aからの指示により電源回路14から駆動回路12への入力電圧Vcを低下させる。また、処理部16から各FETへの駆動信号の駆動デューティ比を変化させてもよい。また、駆動回路12の駆動周波数を変化させてもよい。 The method of reducing the driving of the piezoelectric pump 21 is, for example, to reduce the input voltage Vc from the power supply circuit 14 to the drive circuit 12 according to an instruction from the control unit 15a. Further, the drive duty ratio of the drive signal from the processing unit 16 to each FET may be changed. Further, the drive frequency of the drive circuit 12 may be changed.
 このように、実施の形態3における圧電ポンプ21の駆動制御によれば、温度上限に対応する出力電圧の上限値未満で圧電ポンプ21を駆動することができるので、最大電力で圧電ポンプ21を使用しても圧電ポンプ21が破壊されるのを防止することができる。 As described above, according to the drive control of the piezoelectric pump 21 in the third embodiment, the piezoelectric pump 21 can be driven with an output voltage lower than the upper limit value corresponding to the temperature upper limit. Even in this case, the piezoelectric pump 21 can be prevented from being broken.
 また、実施の形態3において、電圧検出回路13を図24に示す電圧検出回路13bに替えてもよい。電圧検出回路13bは、抵抗器Rsに加えて、一端が第2FET62及び第4FET64のそれぞれのソースと接続され、他端がグランドに接続されるコンデンサCsを備える。コンデンサCsは平滑コンデンサとして機能する。電圧検出回路13の場合、抵抗器Rsの両端に制御部15からの出力信号の周波数成分がノイズとして検出される場合がある。電圧検出回路13bであれば、コンデンサCsにより整流されるので、出力電圧Voの検出精度を向上することができる。 In the third embodiment, the voltage detection circuit 13 may be replaced with a voltage detection circuit 13b shown in FIG. The voltage detection circuit 13b includes, in addition to the resistor Rs, a capacitor Cs having one end connected to each source of the second FET 62 and the fourth FET 64 and the other end connected to ground. The capacitor Cs functions as a smoothing capacitor. In the case of the voltage detection circuit 13, the frequency component of the output signal from the control unit 15 may be detected as noise at both ends of the resistor Rs. In the case of the voltage detection circuit 13b, since the voltage is rectified by the capacitor Cs, the detection accuracy of the output voltage Vo can be improved.
 また、図25に示すような増幅回路67を制御部15のI/Oポート66と、抵抗器Rsの一端側(グランド側の反対側)との間に接続してもよい。増幅回路67は、増幅器Qと、抵抗器R1と、抵抗器R2と、コンデンサCsaとを備える。増幅器Qの非反転入力端子(+)に出力電圧Voが入力され、反転入力端子(-)に抵抗器R1、R2のそれぞれの一端が接続される。抵抗器R1の他端は、グランドと接続される。抵抗器R2の他端は、増幅器Qの出力端子に接続される。増幅器Qの出力端子は、制御部15のI/Oポート66と接続される。また、増幅器Qの反転入力端子(-)と出力端子との間にコンデンサCsaが接続される。コンデンサCsaを有する増幅回路67を挿入する場合は、電圧検出回路13bのコンデンサCsを省略してもよい。 Also, an amplifier circuit 67 as shown in FIG. 25 may be connected between the I / O port 66 of the control unit 15 and one end of the resistor Rs (opposite the ground side). The amplifier circuit 67 includes an amplifier Q, a resistor R1, a resistor R2, and a capacitor Csa. The output voltage Vo is input to the non-inverting input terminal (+) of the amplifier Q, and one end of each of the resistors R1 and R2 is connected to the inverting input terminal (-). The other end of the resistor R1 is connected to the ground. The other end of the resistor R2 is connected to the output terminal of the amplifier Q. The output terminal of the amplifier Q is connected to the I / O port 66 of the control unit 15. Further, a capacitor Csa is connected between the inverting input terminal (−) of the amplifier Q and the output terminal. When the amplifier circuit 67 having the capacitor Csa is inserted, the capacitor Cs of the voltage detection circuit 13b may be omitted.
 増幅回路67により、抵抗器Rs間の電圧を増幅し、かつ、整流することができる。これにより、出力電圧のS/N比を向上させ、検出精度を向上することができる。なお、制御部15がA/Dポートを有する場合、I/Oポート66の代わりにA/Dポートに接続してもよい。 (4) The voltage between the resistors Rs can be amplified and rectified by the amplifier circuit 67. Thereby, the S / N ratio of the output voltage can be improved, and the detection accuracy can be improved. When the control unit 15 has an A / D port, it may be connected to the A / D port instead of the I / O port 66.
(実施の形態4)
 次に、本発明の実施の形態4のポンプ装置について図26及び図27を参照して説明する。図26は、実施の形態4におけるポンプ装置を用いた加圧器の流体の流れを示す説明図である。図27は、実施の形態4における駆動回路及び電圧検出回路の回路図である。
(Embodiment 4)
Next, a pump device according to a fourth embodiment of the present invention will be described with reference to FIGS. FIG. 26 is an explanatory diagram illustrating a flow of a fluid in a pressurizer using the pump device according to the fourth embodiment. FIG. 27 is a circuit diagram of a drive circuit and a voltage detection circuit according to the fourth embodiment.
 実施の形態4では、実施の形態2の加圧器52において、圧電ポンプ21を並列に2個配置している。また、容器53の替わりにノズル71と圧電ポンプ21とが接続されている。また、実施の形態4の吐出器52aは、ノズル71が大気開放されているので、実施の形態2のようにバルブ55を備えていない。この点及び以下に記載した事項以外の構成は、実施の形態4のポンプ装置11は、実施の形態2のポンプ装置11と共通である。なお、実施の形態4のポンプ装置11の駆動制御は実施の形態3と同様である。実施の形態4におけるポンプ装置を用いた吐出器52aは、例えば、ネブライザに採用される。 In the fourth embodiment, two piezoelectric pumps 21 are arranged in parallel in the pressurizer 52 of the second embodiment. The nozzle 71 and the piezoelectric pump 21 are connected instead of the container 53. Further, the discharge device 52a of the fourth embodiment does not include the valve 55 unlike the second embodiment because the nozzle 71 is open to the atmosphere. Except for this point and the configuration described below, the pump device 11 of the fourth embodiment is common to the pump device 11 of the second embodiment. The drive control of the pump device 11 of the fourth embodiment is the same as that of the third embodiment. Discharger 52a using the pump device according to the fourth embodiment is used for, for example, a nebulizer.
 圧電ポンプ21を並列にノズル71に対して並列に接続することで、ノズル71から排出する流量を増やすことができる。さらには、圧電ポンプ21が電気的に並列に接続されるので、電圧検出回路との分圧比により出力電圧Voが相対的に大きくなる。これにより、測定レンジが拡がるので、出力電圧Voの検出精度を向上させることができる。なお、圧電ポンプ21は3つ以上並列に接続してもよい。 流量 By connecting the piezoelectric pump 21 in parallel with the nozzle 71, the flow rate discharged from the nozzle 71 can be increased. Furthermore, since the piezoelectric pumps 21 are electrically connected in parallel, the output voltage Vo becomes relatively large due to the voltage division ratio with the voltage detection circuit. As a result, the measurement range is expanded, so that the detection accuracy of the output voltage Vo can be improved. Note that three or more piezoelectric pumps 21 may be connected in parallel.
 また、実施の形態3と同様に、上限値未満で駆動するので、フルパワーで駆動しても圧電ポンプ21が壊れるのを防止することができる。特に、高地のような気圧の低い場所での使用に適している。高地の場合、エンジンの過剰振幅による故障が生じやすいが、これを防止することができる。 Also, as in the third embodiment, the piezoelectric pump 21 is driven at less than the upper limit, so that the piezoelectric pump 21 can be prevented from being broken even when driven at full power. In particular, it is suitable for use in places with low atmospheric pressure, such as high altitudes. In the case of high altitude, a failure due to excessive amplitude of the engine is likely to occur, but this can be prevented.
 また、さらに、図27の駆動回路12は、ポンプ動作時には電圧検出回路に電圧が印加しないようにする第5FET65を備える。第5FET65のゲートは制御部15に接続され、ドレインは抵抗器Rsの一端と接続され、ソースはグランドに接続されている。制御部15からの駆動信号により、第5FET65はスイッチング素子として機能する。ポンプ動作時に、第5FET65が導通状態になることで、電圧検出回路が短絡する。これにより、出力電圧Vo=0[V]となるので、電気効率をさらに向上することができる。 Further, the drive circuit 12 in FIG. 27 further includes a fifth FET 65 for preventing a voltage from being applied to the voltage detection circuit during the pump operation. The gate of the fifth FET 65 is connected to the control unit 15, the drain is connected to one end of the resistor Rs, and the source is connected to ground. The fifth FET 65 functions as a switching element according to the drive signal from the control unit 15. During the pump operation, the voltage detection circuit is short-circuited because the fifth FET 65 is turned on. As a result, the output voltage Vo becomes 0 [V], so that the electric efficiency can be further improved.
 本発明は、上記実施の形態のものに限らず、次のように変形実施することができる。 The present invention is not limited to the above-described embodiment, but can be modified as follows.
 (1)上記各実施の形態において、非駆動周波数帯域Fzは、共振周波数fr未満及び***振周波数fa以上の帯域であったが、これに限られない。非駆動周波数帯域Fzは、共振周波数frから予め定められた範囲以下の帯域及び***振周波数faから予め定められた範囲以上の帯域であってもよい。例えば、非駆動周波数帯域Fzは共振周波数frから共振周波数frの20%低い値以下の帯域及び***振周波数faから***振周波数faの20%高い値以上の帯域であってもよい。この構成であれば、駆動周波数帯域Fwが通常の使用状態の温度によってシフトしても、シフト後の非駆動周波数帯域Fzはシフト前の非駆動周波数帯域Fzに含まれるので、圧電ポンプ21の温度特性を精度よく監視することができる。通常の使用状態の温度として、例えば、-10℃~+70℃の範囲である。 (1) In each of the above embodiments, the non-drive frequency band Fz is a band lower than the resonance frequency fr and higher than or equal to the anti-resonance frequency fa, but is not limited thereto. The non-drive frequency band Fz may be a band below a predetermined range from the resonance frequency fr and a band above a predetermined range from the anti-resonance frequency fa. For example, the non-drive frequency band Fz may be a band having a value lower than the resonance frequency fr by 20% or less than the resonance frequency fr and a band having a value higher than the anti-resonance frequency fa by 20% or higher than the anti-resonance frequency fa. With this configuration, even if the driving frequency band Fw shifts due to the temperature in a normal use state, the shifted non-driving frequency band Fz is included in the non-driving frequency band Fz before the shift. Characteristics can be monitored accurately. The temperature in a normal use state is, for example, in a range of −10 ° C. to + 70 ° C.
 (2)上記各実施の形態において、分圧された出力電圧Voを検出するときの電源回路14から入力される入力電圧は、圧電ポンプ21を駆動周波数帯域Fwで駆動するときよりも低い電圧であってもよい。この構成により、圧電ポンプ21の出力電圧Voの検出時の消費電力を低減することができる。 (2) In each of the above embodiments, the input voltage input from the power supply circuit 14 when detecting the divided output voltage Vo is a lower voltage than when the piezoelectric pump 21 is driven in the drive frequency band Fw. There may be. With this configuration, power consumption when detecting the output voltage Vo of the piezoelectric pump 21 can be reduced.
 なお、本発明は、「圧電ポンプと、前記圧電ポンプに印加される印加電圧を検出する電圧検出部と、前記圧電ポンプを駆動可能な駆動周波数帯域の帯域外の第1の周波数における前記印加電圧を基に、前記圧電ポンプを駆動する、前記駆動周波数帯域内の第2の周波数を決定する制御部と、を備える、ポンプ装置」としている。ところで、圧電ポンプの温度を検出するには圧電ポンプ周辺にサーミスタ、熱電対などの感温素子を配置するか、もしくはポンプ内部の温度を測定するかしか選択肢がない。つまり、感温素子が配置されてなければ、ポンプ内部の温度を測定するしか方法がない。したがって、サーミスタ等の感温素子を用いることなく圧電ポンプの温度特性を補正していれば、本発明を利用している蓋然性が高いと考える。 In addition, the present invention provides a piezoelectric pump, a voltage detection unit that detects an applied voltage applied to the piezoelectric pump, and the applied voltage at a first frequency outside a driving frequency band capable of driving the piezoelectric pump. And a control unit that drives the piezoelectric pump based on the control frequency and determines a second frequency in the drive frequency band. By the way, in order to detect the temperature of the piezoelectric pump, there is no choice but to arrange a temperature-sensitive element such as a thermistor or a thermocouple around the piezoelectric pump, or to measure the temperature inside the pump. That is, if no temperature sensing element is provided, there is no other way but to measure the temperature inside the pump. Therefore, if the temperature characteristics of the piezoelectric pump are corrected without using a temperature-sensitive element such as a thermistor, it is considered that the possibility of using the present invention is high.
 本発明は、圧電ポンプを備えるポンプ装置に適用可能である。 The present invention is applicable to a pump device including a piezoelectric pump.
  11   ポンプ装置
  12、12a 駆動回路
  13、13a、13b 電圧検出回路
  14   電源回路
  15   制御部
  16   処理部
  17   記憶部
  21   圧電ポンプ
  22   カバー板
  23   流路板
  24   対向板
  25   接着層
  26   振動板
  27   圧電素子
  28   絶縁板
  29   給電板
  30   スペーサ板
  31   蓋板
  33   吸引口
  34   吐出口
  35   外部接続端子
  36   外部接続端子
  38   開口部
  39   可動部
  40   ポンプ室
  41   中央部
  42   打撃部
  43   連結部
  44   枠部
  45   内部接続端子
  46   ポンプ室
  51   吸引器
  52   加圧器
  53   容器
  53a  カフ
  55   バルブ
  61   第1FET
  62   第2FET
  63   第3FET
  64   第4FET
  65   第5FET
  66   I/Oポート
  67   増幅回路
  71   ノズル
  Cs、Csa コンデンサ
  Fz   非駆動周波数帯域
  Fw   駆動周波数帯域
  Rs   抵抗器
Reference Signs List 11 pump device 12, 12a drive circuit 13, 13a, 13b voltage detection circuit 14 power supply circuit 15 control unit 16 processing unit 17 storage unit 21 piezoelectric pump 22 cover plate 23 flow path plate 24 facing plate 25 adhesive layer 26 vibration plate 27 piezoelectric element Reference Signs List 28 Insulation plate 29 Power supply plate 30 Spacer plate 31 Cover plate 33 Suction port 34 Discharge port 35 External connection terminal 36 External connection terminal 38 Opening 39 Movable part 40 Pump chamber 41 Central part 42 Hitting part 43 Connecting part 44 Frame part 45 Internal connection Terminal 46 Pump chamber 51 Suction unit 52 Pressurizer 53 Container 53a Cuff 55 Valve 61 First FET
62 2nd FET
63 3rd FET
64 4th FET
65 Fifth FET
66 I / O port 67 Amplifying circuit 71 Nozzle Cs, Csa Capacitor Fz Non-drive frequency band Fw Drive frequency band Rs Resistor

Claims (7)

  1.  圧電ポンプと、
     前記圧電ポンプに印加される印加電圧を検出する電圧検出部と、
     前記圧電ポンプを駆動可能な駆動周波数帯域の帯域外の第1の周波数における前記印加電圧を基に、前記圧電ポンプを駆動する、前記駆動周波数帯域内の第2の周波数を決定する制御部と、
     を備える、ポンプ装置。
    A piezoelectric pump,
    A voltage detection unit that detects an applied voltage applied to the piezoelectric pump,
    A control unit that drives the piezoelectric pump based on the applied voltage at a first frequency outside a driving frequency band capable of driving the piezoelectric pump, and determines a second frequency within the driving frequency band,
    A pump device comprising:
  2.  前記圧電ポンプと電気的に接続されるインピーダンス素子を備え、
     前記電圧検出部は、前記圧電ポンプと前記インピーダンス素子とにより分圧された電圧から前記印加電圧を検出する、
     請求項1に記載のポンプ装置。
    Comprising an impedance element electrically connected to the piezoelectric pump,
    The voltage detector detects the applied voltage from a voltage divided by the piezoelectric pump and the impedance element,
    The pump device according to claim 1.
  3.  前記圧電ポンプに電力を供給する電力供給部を備え、
     前記制御部は前記電力供給部と接続され、前記圧電ポンプの出力電圧に応じて前記圧電ポンプに供給する前記電力を調整する、
     請求項1または2に記載のポンプ装置。
    A power supply unit that supplies power to the piezoelectric pump,
    The control unit is connected to the power supply unit, and adjusts the power supplied to the piezoelectric pump according to an output voltage of the piezoelectric pump,
    The pump device according to claim 1.
  4.  前記制御部は、モデル化された前記圧電ポンプの容量と前記圧電ポンプの温度との関係、または、前記圧電ポンプの出力電圧と前記圧電ポンプの温度との関係を基に、前記第2の周波数を決定する、
     請求項1から3のいずれか1つに記載のポンプ装置。
    The controller controls the second frequency based on a relationship between a modeled capacity of the piezoelectric pump and a temperature of the piezoelectric pump, or a relationship between an output voltage of the piezoelectric pump and a temperature of the piezoelectric pump. Determine the
    The pump device according to claim 1.
  5.  前記インピーダンス素子は抵抗である、
     請求項2に記載のポンプ装置。
    The impedance element is a resistor;
    The pump device according to claim 2.
  6.  前記インピーダンス素子はインダクタである、
     請求項2に記載のポンプ装置。
    The impedance element is an inductor;
    The pump device according to claim 2.
  7.  分圧された出力電圧を検出するときの入力電圧は、前記圧電ポンプを駆動周波数帯域で駆動するときよりも低い電圧である、
     請求項2から4のいずれか1つに記載のポンプ装置。
    The input voltage when detecting the divided output voltage is a lower voltage than when the piezoelectric pump is driven in a drive frequency band.
    The pump device according to any one of claims 2 to 4.
PCT/JP2019/032422 2018-08-23 2019-08-20 Pump device WO2020040131A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-156012 2018-08-23
JP2018156012 2018-08-23

Publications (1)

Publication Number Publication Date
WO2020040131A1 true WO2020040131A1 (en) 2020-02-27

Family

ID=69592013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032422 WO2020040131A1 (en) 2018-08-23 2019-08-20 Pump device

Country Status (1)

Country Link
WO (1) WO2020040131A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158757A (en) * 2007-12-27 2009-07-16 Sony Corp Transformer, cooling device, and electronic appliance
JP2009233515A (en) * 2008-03-26 2009-10-15 Sony Corp Driving gear of piezoelectric element and electrical equipment as well as method of controlling piezoelectric element driving frequency
WO2013084709A1 (en) * 2011-12-09 2013-06-13 株式会社村田製作所 Drive circuit for piezoelectric element
WO2017037117A1 (en) * 2015-08-31 2017-03-09 Koninklijke Philips N.V. Electroactive polymer sensors and sensing methods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158757A (en) * 2007-12-27 2009-07-16 Sony Corp Transformer, cooling device, and electronic appliance
JP2009233515A (en) * 2008-03-26 2009-10-15 Sony Corp Driving gear of piezoelectric element and electrical equipment as well as method of controlling piezoelectric element driving frequency
WO2013084709A1 (en) * 2011-12-09 2013-06-13 株式会社村田製作所 Drive circuit for piezoelectric element
WO2017037117A1 (en) * 2015-08-31 2017-03-09 Koninklijke Philips N.V. Electroactive polymer sensors and sensing methods

Similar Documents

Publication Publication Date Title
JP5920515B2 (en) Piezoelectric actuator drive circuit
GB2621480A (en) Circuitry for estimating displacement of a piezoelectric transducer
WO2013125364A1 (en) Fluid control device
US11052006B2 (en) Aspirator or pressurizer
EP0584798B1 (en) Driving circuit for gyroscope
JP2007535883A (en) FBAR device with frequency stability against temperature drift
US7343802B2 (en) Dynamic-quantity sensor
KR101884739B1 (en) Pressure transducer with capacitively coupled source electrode
WO2020040131A1 (en) Pump device
WO2018142975A1 (en) Fluid control device and blood pressure meter
US7081745B2 (en) Paramagnetic oxygen sensing apparatus and method
US11959472B2 (en) Piezoelectric pump device
US20200000346A1 (en) Fluid control device and sphygmomanometer
US20040232806A1 (en) Piezoelectric transformer, power supply circuit and lighting unit using the same
JPS6158482A (en) Displacement amount controlling method of piezoelectric vibrator
JP2000352536A (en) Load-measuring apparatus
KR102630328B1 (en) Humidity sensor module, humidity measuring device having the same and method of detecting humidity using the same
JP5500310B2 (en) Active valve, fluid control device
JP4805787B2 (en) Piezoelectric / electrostrictive membrane sensor
US20220260474A1 (en) Mass-Sensing Instrument
JPH0373201A (en) Vibrational working device
WO2021117626A1 (en) Piezoelectric actuator
RU2295709C1 (en) Device for measuring pressure
JPH04208871A (en) Device for measuring oscillating connection of piezoelectric vibrator
Dabrowski et al. LTCC/PZT differential pressure sensor utilizing ultrasonic wave resonator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19851350

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19851350

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP