WO2020039508A1 - Transport system and transport method - Google Patents

Transport system and transport method Download PDF

Info

Publication number
WO2020039508A1
WO2020039508A1 PCT/JP2018/030867 JP2018030867W WO2020039508A1 WO 2020039508 A1 WO2020039508 A1 WO 2020039508A1 JP 2018030867 W JP2018030867 W JP 2018030867W WO 2020039508 A1 WO2020039508 A1 WO 2020039508A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
unit
traveling vehicle
unmanned
controller
Prior art date
Application number
PCT/JP2018/030867
Other languages
French (fr)
Japanese (ja)
Inventor
健一 元永
加寿弘 工藤
Original Assignee
株式会社安川電機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社安川電機 filed Critical 株式会社安川電機
Priority to PCT/JP2018/030867 priority Critical patent/WO2020039508A1/en
Publication of WO2020039508A1 publication Critical patent/WO2020039508A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0008Balancing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • B25J5/007Manipulators mounted on wheels or on carriages mounted on wheels

Definitions

  • the disclosed embodiments relate to a transport system and a transport method.
  • a robot system has also been proposed in which a robot and a self-weight compensating device are mounted on a mobile trolley that is manually pushed by a person, thereby enabling the robot to move (for example, see Patent Document 1).
  • the above-mentioned conventional robot system has room for improvement in making unmanned production equipment such as an assembly factory.
  • One object of one embodiment of the present invention is to provide a transport system and a transport method that can achieve unmanned production facilities.
  • the transport system includes an unmanned traveling vehicle, a robot, a crane unit, and a controller.
  • An unmanned traveling vehicle travels unmanned.
  • the robot is mounted on an unmanned traveling vehicle and moves a hand capable of holding a transferred object.
  • the crane unit is mounted on an unmanned traveling vehicle, and supports a conveyed object or a hand in a vertically movable manner.
  • the controller causes the robot and the crane unit to cooperate.
  • the transfer method uses an unmanned traveling vehicle, a robot, a crane unit, and a controller.
  • An unmanned traveling vehicle travels unmanned.
  • the robot is mounted on an unmanned traveling vehicle and moves a hand capable of holding a transferred object.
  • the crane unit is mounted on an unmanned traveling vehicle, and supports a conveyed object or a hand in a vertically movable manner.
  • the controller causes the robot and the crane unit to cooperate.
  • the controller causes the robot to convey a conveyed object exceeding the load capacity of the robot by causing the robot and the crane unit to cooperate.
  • FIG. 1 is an explanatory diagram illustrating an outline of the transport system according to the embodiment.
  • FIG. 2 is a perspective view showing the configuration of the robot.
  • FIG. 3 is a perspective view showing the configuration of the crane unit.
  • FIG. 4 is a block diagram illustrating a configuration of the transport system.
  • FIG. 5 is an explanatory diagram illustrating an example of a traveling route.
  • FIG. 6 is an explanatory diagram illustrating an example of installation of an obstacle sensor.
  • FIG. 7 is an explanatory diagram illustrating an example of installation of the measurement sensors.
  • FIG. 8 is a flowchart illustrating a processing procedure of the transport system.
  • FIG. 1 is an explanatory diagram illustrating an outline of a transport system 1 according to the embodiment.
  • FIG. 1 also shows a Z-axis in which a vertically upward direction is a positive direction.
  • Such Z axis may be shown in other drawings. Note that a plane orthogonal to the Z axis corresponds to a horizontal plane.
  • the transport system 1 includes an unmanned traveling vehicle 10, a robot 20, a crane unit 30, a hand 40, and a controller 50.
  • the unmanned traveling vehicle 10 is, for example, an AGV (Automatic Guided Vehicle), and is a carrier vehicle that can travel automatically without a driving operation by a person.
  • AGV Automatic Guided Vehicle
  • the unmanned traveling vehicle 10 travels autonomously or travels on a predetermined route by using an optical sensor, a magnetic sensor, an autonomous guidance sensor, or the like without driving or pushing by hand.
  • a transporting vehicle Refers to a transporting vehicle.
  • an optically guided transport vehicle travels on a predetermined route by irradiating a laser beam or the like and detecting reflected light reflected by a reflector installed on a wall or a pillar by an optical sensor.
  • the electromagnetic induction type transport vehicle travels on a predetermined route by passing a current through a metal wire installed on a floor or the like and detecting a generated magnetic field with a magnetic sensor.
  • the guide system of the transport vehicle is not limited to the illustrated system, and various known systems can be adopted.
  • the robot 20 is mounted on the unmanned traveling vehicle 10 and moves the hand 40 capable of holding the transported object 500.
  • the hand 40 that can be attached to and detached from the robot 20 will be described.
  • a hand fixed to the tip of the robot 20 or the like may be used.
  • the transferred object 500 may be a tool or a part, a semi-finished product, or a finished product exceeding the payload of the robot 20.
  • the transported object 500 may be transported while being held by the hand 40, or may be transported while being mounted on the unmanned traveling vehicle 10 (the transported object 500 indicated by a broken line in FIG. 1). reference).
  • the configuration of the robot 20 will be described later in detail with reference to FIG.
  • the crane unit 30 is mounted on the unmanned traveling vehicle 10 and supports the transported object 500 or the hand 40 by suspending it vertically.
  • the hand 40 is lifted up by the winding operation of the crane unit 30 while holding the transported object 500. Thereby, the robot 20 can transport the transported object 500 exceeding the payload.
  • the larger the payload the larger the size and weight of the robot 20.
  • the crane unit 30 By using the crane unit 30 together, it is possible to use a smaller (small payload) robot 20. Therefore, the size of the unmanned traveling vehicle 10 can be reduced, and the vehicle can travel on a narrower route.
  • the configuration of the crane unit 30 will be described later in detail with reference to FIG.
  • the crane unit 30 may suspend the transferred object 500 directly, or may directly suspend the arm of the robot 20. You may do it.
  • the hand 40 suspended by the crane unit 30 may be referred to as a “suspended hand”.
  • a hook or the like which is moved up and down by the crane unit 30 is hooked on the object 500 or a rope attached to the object 500 by the operation of the robot 20. Then, the robot 20 may guide the transferred object 500 to a predetermined position while lifting the transferred object 500 by the winding operation of the crane unit 30.
  • the controller 50 controls the operation of the robot 20 and the operation of lifting and lowering the crane unit 30, and causes the robot 20 and the crane unit 30 to cooperate. That is, the controller 50 controls the operation of lifting and lowering the crane unit 30 and the operation of the robot 20 so as to compensate for the gravity of the transferred object 500. Thereby, the robot 20 can carry the transported object 500 exceeding the payload.
  • the controller 50 is mounted on the unmanned traveling vehicle 10, but the controller 50 does not have to be mounted on the unmanned traveling vehicle 10.
  • the controller 50 can be mounted at any location other than the unmanned traveling vehicle 10 (the environment in which the unmanned traveling vehicle 10 travels, the Internet, etc.). Network environment).
  • the transported object 500 having various weights and shapes such as the transported object 500 exceeding the payload of the robot 20, can be unmannedly transported from an arbitrary place to a target place. Can be. Therefore, unmanned production equipment such as an assembly factory can be achieved.
  • FIG. 2 is a perspective view showing the configuration of the robot 20.
  • FIG. 2 shows the robot 20 mounted on the upper surface of the unmanned traveling vehicle 10.
  • the robot 20 is a so-called “human cooperative robot”.
  • the human collaborative robot is a robot that does not require a safety fence to separate the robot and the human, and automatically stops when the motor of each joint detects, for example, a robot having an output of 80 W (watt) or less or a constant external force.
  • a robot having an output of 80 W (watt) or less or a constant external force Refers to robots that have safety functions such as In other words, the human collaborative robot is a robot that complies with international standards, and is a robot that can share a work area between a human and a robot.
  • the robot 20 has an internal space communicating from the base end side to the distal end side, and accommodates a cable such as a cable for a tool connected to the tool changer 100 shown in FIG. 2 in the internal space. Is possible. That is, when performing direct teaching to the robot 20 or when the robot 20 performs an operation, the above-mentioned cable does not interfere.
  • the robot 20 is a so-called vertical articulated robot having six axes from a vertical axis A0 to a fifth axis A5.
  • the robot 20 includes a base portion 20B, a turning portion 20S, a first arm 21, a second arm 22, a third arm 23, and a wrist portion 24 from the base end side to the tip end side.
  • a tool changer 100 is provided on the tip side of the wrist 24.
  • the base portion 20B can be fixed to an installation surface such as the upper surface of the unmanned traveling vehicle 10.
  • the turning portion 20S is supported by the base portion 20B, and turns around a vertical axis A0 perpendicular to the installation surface described above.
  • the base end of the first arm 21 is supported by the turning portion 20S, and turns around the first axis A1 perpendicular to the vertical axis A0.
  • the second arm 22 has a base end supported by the distal end of the first arm 21 and pivots around a second axis A2 parallel to the first axis A1.
  • the third arm 23 has its base end supported by the distal end of the second arm 22 and rotates around a third axis A3 perpendicular to the second axis A2.
  • the wrist 24 includes a proximal end 24a and a distal end 24b.
  • the proximal end portion 24a is supported on the distal end side of the third arm 23 on the proximal end side, and pivots around a fourth axis A4 perpendicular to the third axis A3.
  • the distal end portion 24b is supported at the proximal end side on the distal end side of the proximal end portion 24a, and rotates around a fifth axis A5 orthogonal to the fourth axis A4.
  • a tool changer 100 is attached to the distal end side of the distal end portion 24b.
  • a hand 40 for holding a transferred object 500 (see FIG. 1) or the like can be detachably attached. That is, tools such as the hand 40 can be changed according to the weight, shape, and the like of the transferred object 500.
  • FIG. 3 is a perspective view showing the configuration of the crane unit 30.
  • FIG. 3 shows the crane unit 30 mounted on the upper surface of the unmanned traveling vehicle 10, the description of the robot 20 shown in FIG. 2 is omitted.
  • the crane unit 30 includes a servomotor 31, a lifting unit 32, a moving mechanism 33, and a support column.
  • the elevating unit 32 is connected to a hand 40 via a take-up belt 32a. Note that a wire, a rope, or the like may be used instead of the belt 32a.
  • the hand 40 is provided with, for example, a pair of gripping claws 41 whose intervals can be changed. By opening and closing the gripping claws 41, the transported object 500 can be held or released.
  • the hand 40 is provided with a detachable mechanism 110.
  • the attachment / detachment mechanism 110 is an attachment / detachment mechanism corresponding to the tool changer 100 shown in FIG.
  • FIG. 3 illustrates the hand 40 including the gripping claws 41 as the holding mechanism
  • a hand 40 including a suction mechanism or a multi-fingered grip mechanism may be used.
  • the hand 40 having only a non-deformed protrusion for hooking the transferred object 500 may be used.
  • a hand that is not suspended from the crane unit 30 in addition to a hand suspended from the crane unit 30 in advance as shown in FIG. 3 can be used. That is, if the hand has the attachment / detachment mechanism 110 corresponding to the tool changer 100, attachment / detachment to / from the robot 20 (see FIG. 2) is possible. Note that a hand that is not suspended by the crane unit 30 may be mounted on the unmanned traveling vehicle 10.
  • a hand for the transferred object 500 having a weight less than the payload of the robot 20 can be mounted on the unmanned traveling vehicle 10.
  • the hand may be replaced with a hand suspended by the crane unit 30.
  • the servo motor 31 is provided in the elevating unit 32 and drives the elevating unit 32.
  • the operation of the servo motor 31 is controlled by the controller 50 shown in FIG.
  • the servo motor 31 rotates the forward / backward rotation of the belt 32a by performing forward / reverse rotation.
  • the elevating unit 32 is driven by the servo motor 31 to elevate and lower the hand 40 via the belt 32a.
  • the elevating unit 32 is attached to the moving mechanism 33.
  • the moving mechanism 33 includes a turning arm 33a that can freely turn around a turning axis A30 parallel to the vertical direction, and a guide portion 33b that extends along the extension direction D30 of the turning arm 33a.
  • the support column 34 is fixed to the upper surface of the unmanned traveling vehicle 10 and supports the base end side of the turning arm 33a so as to be rotatable around the turning axis A30.
  • the moving mechanism 33 has no driving source, and restricts the movement of the elevating unit 32 that has received an external force in the horizontal direction.
  • the elevating unit 32 can freely move about the turning range of the turning arm 33a and the extending range of the guide unit 33b.
  • the moving mechanism 33 can move the elevating unit 32 freely in the horizontal direction following the operation of the robot 20.
  • the moving mechanism 33 is configured as shown in FIG. 3, the crane unit 30 can be formed in a simple shape, and interference with the robot 20 can be suppressed. Thereby, a sufficient movable range can be given to the robot 20.
  • the crane unit 30 can be simplified in structure by being driven by the servomotor 31 in the vertical direction and driven by the robot 20 in the horizontal direction. This makes it possible to reduce the manufacturing cost.
  • FIG. 3 illustrates the moving mechanism 33 including one swivel arm 33a
  • other mechanisms may be used as long as the mechanism restricts the movement of the elevating unit 32 in the horizontal direction.
  • the moving mechanism 33 may be a horizontal link-type arm that freely expands and contracts by an external force, or a top plate in which two horizontal guide portions 33b are combined in an orthogonal direction may be used.
  • FIG. 4 is a block diagram illustrating a configuration of the transport system 1.
  • the transport system 1 includes an unmanned traveling vehicle 10, a robot 20 mounted on the unmanned traveling vehicle 10, a crane unit 30, an obstacle sensor S1, a measurement sensor S2, and a controller 50.
  • the controller 50 may be mounted on the unmanned traveling vehicle 10 or may be provided separately from the unmanned traveling vehicle 10. 1 has been described for the unmanned traveling vehicle 10, FIG. 2 has been described for the robot 20, and FIG. 3 has been already described for the crane unit 30, so that the configuration of the controller 50 will be mainly described below. And
  • the controller 50 is a device that controls the operation of the robot 20 and the operation of the lifting / lowering operation of the crane unit 30 and causes the robot 20 and the crane unit 30 to cooperate. As shown in FIG. 4, the controller 50 is connected to the robot 20, the crane unit 30, the obstacle sensor S1, and the measurement sensor S2 so as to be able to communicate by wire or wirelessly.
  • the obstacle sensor S1 is a sensor such as an image sensor, an optical sensor, and a sound wave sensor that is mounted on the unmanned traveling vehicle 10 and detects an obstacle.
  • the controller 50 performs a process of restricting the operation of the robot 20 based on the detection result of the obstacle sensor S1. That is, the controller 50 performs a process of restricting the operation of the robot 20 to a range where the robot 20 and the crane unit 30 do not interfere with the obstacle.
  • the transport system 1 can prevent the robot 20 and the crane unit 30 following the robot 20 from interfering with obstacles such as walls and pillars as the robot 20 operates.
  • An example of the installation of the obstacle sensor S1 will be described later with reference to FIG.
  • the measurement sensor S2 is a sensor such as a 3D (Three-D) vision for three-dimensionally measuring the object 500 (see FIG. 1).
  • the controller 50 causes the robot 20 to perform the picking operation of the transferred object 500 based on the detection result of the measurement sensor S2.
  • the transport system 1 can unmanned loading and unloading of the transported object 500 with respect to the unmanned traveling vehicle 10. That is, the picking operation by the robot 20 can be used for both unloading and unloading.
  • An example of installation of the measurement sensor S2 will be described later with reference to FIG.
  • the controller 50 includes a control unit 51 and a storage unit 52.
  • the control unit 51 includes an operation control unit 51a, a gravity compensation unit 51b, a restriction unit 51c, and a transfer unit 51d.
  • the storage unit 52 stores teaching information 52a, compensation information 52b, restriction information 52c, and transported article information 52d.
  • the controller 50 includes, for example, a computer having a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a HDD (Hard Disk Drive), an input / output port, and various circuits and the like. .
  • a computer having a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a HDD (Hard Disk Drive), an input / output port, and various circuits and the like.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • HDD Hard Disk Drive
  • the CPU of the computer functions as an operation control unit 51a, a gravity compensation unit 51b, a limiting unit 51c, and a transfer unit 51d of the control unit 51 by reading and executing a program stored in the ROM, for example.
  • At least one or all of the operation control unit 51a, the gravity compensation unit 51b, the restriction unit 51c, and the transfer unit 51d are configured by hardware such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array). You can also.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the storage unit 52 corresponds to, for example, a RAM or an HDD.
  • the RAM and the HDD can store the teaching information 52a, the compensation information 52b, the restriction information 52c, and the transported article information 52d.
  • the controller 50 may acquire the above-described programs and various information via another computer or a portable recording medium connected via a wired or wireless network.
  • the control unit 51 controls the operation of the robot 20 and the crane unit 30.
  • the operation control unit 51a operates the robot 20 based on the teaching information 52a.
  • the teaching information 52a is created at the teaching stage for the robot 20, and is information including a "job" which is a program that defines an operation path of the robot 20.
  • the operation control unit 51a improves the operation accuracy of the robot 20 by performing feedback control using an encoder value of an actuator such as a motor which is a drive source of the robot 20.
  • the operation control unit 51a notifies the gravity compensation unit 51b of the load state of the actuator at each joint, and restricts the operation of the robot 20 based on the notification from the restriction unit 51c.
  • the operation control unit 51a causes the robot 20 to perform a transfer operation of the transferred object 500 based on the notification from the transfer unit 51d.
  • the gravity compensation unit 51b operates the crane unit 30 based on the compensation information 52b.
  • the compensation information 52b is information including the upper limit load of each actuator corresponding to the payload of the robot 20, and the operation pattern of the servomotor 31 (see FIG. 3) in the crane unit 30.
  • the gravity compensation unit 51b compares the upper limit load of the compensation information 52b with the load state notified from the operation control unit 51a, and operates the servo motor 31 of the crane unit 30 so as not to exceed the upper limit load. Thereby, the transported object 500 having a weight exceeding the payload of the robot 20 can be transported or transferred to the robot 20.
  • the restriction unit 51c operates the robot 20 to avoid an obstacle based on the restriction information 52c.
  • the restriction information 52c is information including the length and height of the turning arm 33a (see FIG. 3) in the crane unit 30.
  • the restricting unit 51c may adjust the posture of the turning arm 33a that can avoid the obstacle based on the direction, height, size, distance to the obstacle, and the like of the obstacle included in the detection result of the obstacle sensor S1. (Horizontal direction) is calculated.
  • the restriction unit 51c notifies the operation control unit 51a of the avoidance operation of the robot 20 so that the turning arm 33a follows the calculated posture. Accordingly, since the turning arm 33a turns following the avoiding operation of the robot 20, it is possible to prevent the turning arm 33a from interfering with an obstacle.
  • the transfer unit 51d operates the robot 20 to transfer the transferred object 500 based on the transferred object information 52d.
  • the transported object information 52d is information including the three-dimensional shape of one or more types of transported objects 5000. Further, the weight of the transported object 50 for each type may be included in the transported object information 52d.
  • the transfer unit 51d compares the orientation and size of the transferred object 500, the distance to the transferred object 500, and the like, which are included in the detection result of the measurement sensor S2, with the transferred object information 52d. The type of the object 500 is determined. Then, the transfer unit 51d operates the robot 20 via the operation control unit 51a so as to transfer the transported object 500 of the determined type. Thereby, the robot 20 can pick the transported objects 500 that have been piled up in bulk and place the picked transported objects 500 in an aligned state.
  • the controller 50 causes the robot 20 and the crane unit 30 to perform a cooperative operation.
  • the controller 50 may further control the traveling state of the unmanned traveling vehicle 10. For example, when the obstacle sensor S1 detects an obstacle, the traveling direction of the unmanned traveling vehicle 10 may be changed so as to avoid the obstacle, or the unmanned traveling vehicle 10 may be stopped.
  • the robot 20 stops the unmanned traveling vehicle 10 at a position where the transferred object 500 is easily picked, or moves the unmanned vehicle 10 at a position where the transferred object 500 is easily aligned.
  • the vehicle 10 may be stopped.
  • FIG. 5 is an explanatory diagram illustrating an example of a traveling route.
  • FIG. 5 is equivalent to the figure which looked at the layout of the production equipment in an assembly factory etc. from the upper direction.
  • booth B1 and booth B2 shown in FIG. 5 are unmanned work booths, and booth B3 and booth B4 are manned work booths where people may work. That is, the passage between the booth B1 or the booth B2 and the booth B3 is an unmanned passage, and the passage between the booth B3 and the booth B4 is a manned passage through which a person may pass.
  • FIG. 5 shows a case where the unmanned traveling vehicle 10 travels in the passage between the work booths, the unmanned traveling vehicle 10 may be made to enter a work booth such as the booth B3 or the booth B4.
  • the unmanned traveling vehicle 10 passes through the passage between the booth B1 and the booth B3, passes through the passage between the booth B2 and the booth B3, and changes the running direction of the booth B3 in a counterclockwise direction. It is assumed that the vehicle passes through a passage between B4 (see a broken arrow in FIG. 5). Here, it is assumed that the traveling route of the unmanned traveling vehicle 10 is predetermined including the stop position. It should be noted that the unmanned traveling vehicle 10 may travel on the traveling route while autonomously determining whether or not the vehicle is stopped and the stop time.
  • the unmanned traveling vehicle 10 turns the crane unit 30 to unload the tray T1 arranged in the booth B1.
  • the transported objects 500 stacked in bulk are included in the tray T1.
  • the unmanned traveling vehicle 10 repeats the operation of turning the crane unit 30, thereby picking the conveyed objects 500 piled up in the tray T1 one by one and aligning them at predetermined positions in the booth B2.
  • the unmanned traveling vehicle 10 rotates the crane unit 30 to place the transported object 500 in the booth B3 and also places the transported object 500 in the booth B4.
  • FIG. 5 illustrates a case where the transported objects 500 piled up on the tray T1 are unloaded to the unmanned traveling vehicle 10 and the transported objects 500 are unloaded to the respective work booths, a plurality of transported objects 500 are illustrated.
  • the objects 500 may be unloaded onto the unmanned traveling vehicle 10, respectively. Further, the unmanned traveling vehicle 10 may be run while appropriately repeating unloading and unloading. Further, the robot 20 may perform the assembling work of the transferred object 500 and the like inside and outside the work booth.
  • FIG. 6 is an explanatory diagram illustrating an example of installation of the obstacle sensor S1.
  • FIG. 6 corresponds to a side view of the unmanned traveling vehicle 10 on which the robot 20 and the crane unit 30 are mounted. It is assumed that the unmanned traveling vehicle 10 travels in the traveling direction D shown in FIG.
  • the obstacle sensor S1 is attached, for example, to the tip end of the swivel arm 33a of the crane unit 30, and sets a detection range SA1 at a position obliquely downward in the extension direction of the swivel arm 33a.
  • the detection range SA1 illustrated in FIG. 6 is an example, and the front or diagonally upper part may be included in the detection range SA1.
  • the obstacle sensor is provided at the tip end side of the turning arm 33a as described above.
  • FIG. 7 is an explanatory diagram illustrating an example of installation of the measurement sensor S2.
  • FIG. 7 corresponds to a side view of the unmanned traveling vehicle 10 on which the robot 20 and the crane unit 30 are mounted. It is assumed that the unmanned traveling vehicle 10 travels in the traveling direction D shown in FIG.
  • FIG. 7 illustrates a state in which the tray T1 in which the transported objects 500 are unloaded is unloaded onto the unmanned traveling vehicle 10.
  • the measurement sensor S2 is attached to the support column 34 of the crane unit 30, for example, so that the detection range SA2 is directed downward (Z-axis negative direction).
  • the measurement sensor S2 can measure the direction and the distance of the transported objects 500 piled up on the tray T1, and the robot 20 moves the hand 40 to an arbitrary position and direction to transfer the transported objects 500. Goods 500 can be picked well.
  • the tray T1 is illustrated in FIG. 7, the transported objects 500 may be stacked without using the tray T1, or the transported objects 500 may be aligned.
  • the measurement sensor S2 may be attached to the robot 20 instead of the support column 34 (see the measurement sensor S2 indicated by a broken line). In this case, it is preferable to attach the measurement sensor S2 so that the detection range SA2 of the measurement sensor S2 faces the front end side of the robot 20.
  • FIG. 7 illustrates a case where the measurement sensor S2 is attached to the wrist 24 of the robot 20.
  • the measurement sensor S2 is attached to the robot 20, it is possible to measure the direction and the like of the transferred object 500 unloaded on the unmanned traveling vehicle 10. Further, it is also possible to measure the direction of the transported object 500 to be unloaded to the unmanned traveling vehicle 10 (the transported object 500 placed outside the unmanned traveling vehicle 10). As described above, by using the measurement sensor S2, unloading and unloading of the transported object 500 with respect to the unmanned traveling vehicle 10 can be unmanned.
  • the picking operation by the robot 20 can be performed with high accuracy by using the measurement sensor S2, and therefore, the unloading and unloading of the transferred object 500 can be performed regardless of the mounting direction and the size of the transferred object 500. Becomes possible. Further, it is possible to change the position and the direction of the transferred object 500 placed outside the unmanned traveling vehicle 10.
  • FIG. 8 is a flowchart illustrating a processing procedure of the transport system 1.
  • FIG. 8 shows a processing procedure from a state where the hand 40 (see FIG. 3) suspended from the crane unit 30 is detached from the robot 20 (see FIG. 2).
  • FIG. 8 illustrates a case where one conveyed object 500 is unloaded to the unmanned traveling vehicle 10 and the conveyed object 500 is unloaded at the destination from the viewpoint of making the description easy to understand.
  • the operation control unit 51a of the controller 50 instructs the robot 20 to connect the hand 40 suspended by the crane unit 30 to the robot 20 (Step S101). Then, the robot 20 is instructed to grip the transported object 500 with the hand 40 (step S102).
  • the gravity compensating unit 51b of the controller 50 instructs the robot 20 and the crane unit 30 to perform a cooperative operation between the lifting operation of the lifting unit 32 in the crane unit 30 and the robot 20 (step S103).
  • the gravity compensating unit 51b may always cooperate the robot 20 and the crane unit 30 so that the crane unit 30 performs the gravity compensation of the robot 20.
  • the unmanned traveling vehicle 10 starts traveling to the destination according to a predetermined traveling route (step S104).
  • the restriction unit 51c of the controller 50 determines whether an obstacle is detected by the obstacle sensor S1 (Step S105).
  • Step S105 When an obstacle is detected (Step S105, Yes), the restriction unit 51c instructs the robot 20 to turn the turning arm 33a in a direction to avoid the obstacle via the operation control unit 51a (Step S105). Step S106). As described above, the turning arm 33a turns following the operation of the robot 20. If the determination condition of step S105 is not satisfied (step S105, No), the process of step S105 is repeated.
  • the unmanned traveling vehicle 10 stops traveling at a predetermined destination (step S107). Further, the gravity compensating unit 51b of the controller 50 instructs the robot 20 and the crane unit 30 to cooperate with the lowering operation of the elevating unit 32 in the crane unit 30 and the robot 20 (step S108). Then, the operation control unit 51a instructs the robot 20 to release the transferred object 500 (Step S109), and ends the processing.
  • the transport system 1 includes the unmanned traveling vehicle 10, the robot 20, the crane unit 30, and the controller 50.
  • the unmanned traveling vehicle 10 travels unmanned.
  • the robot 20 is mounted on the unmanned traveling vehicle 10 and moves the hand 40 capable of holding the transported object 500.
  • the crane unit 30 suspends and supports the transported object 500 or the hand 40 so as to be able to move up and down.
  • the controller 50 causes the robot 20 and the crane unit 30 to cooperate.
  • the transport system 1 is capable of unmannedly transporting the transported object 500 having various weights, such as the transported object 500 exceeding the payload of the robot 20, from an arbitrary location to a target location. Can be. Therefore, it is possible to achieve unmanned production equipment such as an assembly factory.
  • the number of axes of the human cooperative robot may be less than six or more than six.
  • a robot other than the human cooperative robot may be used as the robot 20.
  • the crane unit 30 includes the turning arm 33a that turns around the turning axis A30 in accordance with the operation of the robot 20, but the turning arm 33a turns around the turning axis A30. It may include a servomotor. In this case, the servo motor is controlled by the controller 50 so as to cooperate with the robot 20, similarly to the servo motor 31 shown in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manipulator (AREA)

Abstract

This transport system (1) comprises an unmanned travel vehicle (10), a robot (20), a crane unit (30), and a controller (50). The unmanned travel vehicle (10) travels in an unmanned state. The robot (20) is mounted on the unmanned travel vehicle (10), the robot (20) causing a hand (40) (40) that is capable of holding an object to be transported (500) to move. The crane unit (30) is mounted on the unmanned travel vehicle (10), the crane (30) supporting the object to be transported (500) or the hand (40) in a suspended manner so as to be capable of ascending and descending. The controller (50) causes the robot (20) and the crane unit (30) to operate in a coordinated manner. The crane unit (30) comprises a servo motor, an ascending/descending unit that is driven by the servo motor, and a movement mechanism that causes the ascending/descending unit to move horizontally in accordance with operation of the robot (20).

Description

搬送システムおよび搬送方法Transfer system and transfer method
 開示の実施形態は、搬送システムおよび搬送方法に関する。 The disclosed embodiments relate to a transport system and a transport method.
 従来、ワークの自重を支えるクレーンなどの自重補償装置を用いることで、被搬送物を搬送するロボットの負荷を軽減する技術が知られている。 技術 Conventionally, there has been known a technology for reducing the load on a robot that conveys an object to be conveyed by using a self-weight compensator such as a crane that supports the self-weight of the work.
 また、人によって手押しされる移動台車にロボットおよび自重補償装置を搭載することで、ロボットを移動可能とするロボットシステムも提案されている(たとえば、特許文献1参照)。 A robot system has also been proposed in which a robot and a self-weight compensating device are mounted on a mobile trolley that is manually pushed by a person, thereby enabling the robot to move (for example, see Patent Document 1).
特開2000-198091号公報JP 2000-198091 A
 しかしながら、上記した従来のロボットシステムには、組み立て工場などの生産設備の無人化を図るうえで、改善の余地がある。 However, the above-mentioned conventional robot system has room for improvement in making unmanned production equipment such as an assembly factory.
 実施形態の一態様は、生産設備の無人化を図ることができる搬送システムおよび搬送方法を提供することを目的とする。 One object of one embodiment of the present invention is to provide a transport system and a transport method that can achieve unmanned production facilities.
 実施形態の一態様に係る搬送システムは、無人走行車と、ロボットと、クレーンユニットと、コントローラとを備える。無人走行車は、無人で走行する。ロボットは、無人走行車に搭載され、被搬送物を保持可能なハンドを移動させる。クレーンユニットは、無人走行車に搭載され、被搬送物またはハンドを昇降可能に懸垂して支持する。コントローラは、ロボットおよびクレーンユニットを協調動作させる。 The transport system according to one aspect of the embodiment includes an unmanned traveling vehicle, a robot, a crane unit, and a controller. An unmanned traveling vehicle travels unmanned. The robot is mounted on an unmanned traveling vehicle and moves a hand capable of holding a transferred object. The crane unit is mounted on an unmanned traveling vehicle, and supports a conveyed object or a hand in a vertically movable manner. The controller causes the robot and the crane unit to cooperate.
 また、実施形態の一態様に係る搬送方法は、無人走行車と、ロボットと、クレーンユニットと、コントローラとを用いる。無人走行車は、無人で走行する。ロボットは、無人走行車に搭載され、被搬送物を保持可能なハンドを移動させる。クレーンユニットは、無人走行車に搭載され、被搬送物またはハンドを昇降可能に懸垂して支持する。コントローラは、ロボットおよびクレーンユニットを協調動作させる。コントローラは、ロボットおよびクレーンユニットを協調動作させることで、ロボットの可搬重量を超える被搬送物をロボットに搬送させる。 搬 送 Further, the transfer method according to one aspect of the embodiment uses an unmanned traveling vehicle, a robot, a crane unit, and a controller. An unmanned traveling vehicle travels unmanned. The robot is mounted on an unmanned traveling vehicle and moves a hand capable of holding a transferred object. The crane unit is mounted on an unmanned traveling vehicle, and supports a conveyed object or a hand in a vertically movable manner. The controller causes the robot and the crane unit to cooperate. The controller causes the robot to convey a conveyed object exceeding the load capacity of the robot by causing the robot and the crane unit to cooperate.
 実施形態の一態様によれば、生産設備の無人化を図ることが可能となる搬送システムおよび搬送方法を提供することができる。 According to one aspect of the embodiment, it is possible to provide a transport system and a transport method that enable unmanned production equipment.
図1は、実施形態に係る搬送システムの概要を示す説明図である。FIG. 1 is an explanatory diagram illustrating an outline of the transport system according to the embodiment. 図2は、ロボットの構成を示す斜視図である。FIG. 2 is a perspective view showing the configuration of the robot. 図3は、クレーンユニットの構成を示す斜視図である。FIG. 3 is a perspective view showing the configuration of the crane unit. 図4は、搬送システムの構成を示すブロック図である。FIG. 4 is a block diagram illustrating a configuration of the transport system. 図5は、走行経路の一例を示す説明図である。FIG. 5 is an explanatory diagram illustrating an example of a traveling route. 図6は、障害物センサの設置例を示す説明図である。FIG. 6 is an explanatory diagram illustrating an example of installation of an obstacle sensor. 図7は、計測センサの設置例を示す説明図である。FIG. 7 is an explanatory diagram illustrating an example of installation of the measurement sensors. 図8は、搬送システムの処理手順を示すフローチャートである。FIG. 8 is a flowchart illustrating a processing procedure of the transport system.
 以下、添付図面を参照して、本願の開示する搬送システムおよび搬送方法を詳細に説明する。なお、以下に示す実施形態によりこの発明が限定されるものではない。 Hereinafter, a transport system and a transport method disclosed in the present application will be described in detail with reference to the accompanying drawings. The present invention is not limited by the embodiments described below.
 また、以下に示す実施形態では、「直交」、「垂直」、「平行」、「水平」あるいは「鉛直」といった表現を用いるが、厳密にこれらの状態を満たすことを要しない。すなわち、上記した各表現は、製造精度、設置精度などのずれを許容するものとする。 In the embodiments described below, expressions such as “orthogonal”, “vertical”, “parallel”, “horizontal” or “vertical” are used, but it is not necessary to strictly satisfy these conditions. That is, each of the above expressions allows deviations in manufacturing accuracy, installation accuracy, and the like.
 まず、実施形態に係る搬送システムの概要について図1を用いて説明する。図1は、実施形態に係る搬送システム1の概要を示す説明図である。なお、図1には、鉛直上向きを正方向とするZ軸を併せて示している。かかるZ軸は、他の図面においても示す場合がある。なお、Z軸と直交する平面は、水平面に相当する。 First, an outline of the transport system according to the embodiment will be described with reference to FIG. FIG. 1 is an explanatory diagram illustrating an outline of a transport system 1 according to the embodiment. In addition, FIG. 1 also shows a Z-axis in which a vertically upward direction is a positive direction. Such Z axis may be shown in other drawings. Note that a plane orthogonal to the Z axis corresponds to a horizontal plane.
 図1に示すように、搬送システム1は、無人走行車10と、ロボット20と、クレーンユニット30と、ハンド40と、コントローラ50とを備える。ここで、無人走行車10は、たとえば、AGV(Automatic Guided Vehicle)であり、人が運転操作を行わなくとも自動で走行することができる搬送車である。 As shown in FIG. 1, the transport system 1 includes an unmanned traveling vehicle 10, a robot 20, a crane unit 30, a hand 40, and a controller 50. Here, the unmanned traveling vehicle 10 is, for example, an AGV (Automatic Guided Vehicle), and is a carrier vehicle that can travel automatically without a driving operation by a person.
 つまり、無人走行車10は、人が運転したり手押ししたりすることなく、光学センサや、磁気センサ、自律誘導センサ等を用いることによって、自律的に走行したり、予め定められた経路を走行したりする搬送車のことを指す。 That is, the unmanned traveling vehicle 10 travels autonomously or travels on a predetermined route by using an optical sensor, a magnetic sensor, an autonomous guidance sensor, or the like without driving or pushing by hand. Refers to a transporting vehicle.
 たとえば、光学誘導式の搬送車は、レーザ光等を照射するとともに、壁や柱等に設置された反射板で反射された反射光を光学センサによって検出することで予め定められた経路を走行する。また、電磁誘導式の搬送車は、床等に設置された金属線に電流を流し、生じた磁場を磁気センサで検出することで予め定められた経路を走行する。なお、搬送車の誘導方式については例示した方式に限らず、様々な公知の方式をとることができる。 For example, an optically guided transport vehicle travels on a predetermined route by irradiating a laser beam or the like and detecting reflected light reflected by a reflector installed on a wall or a pillar by an optical sensor. . In addition, the electromagnetic induction type transport vehicle travels on a predetermined route by passing a current through a metal wire installed on a floor or the like and detecting a generated magnetic field with a magnetic sensor. It should be noted that the guide system of the transport vehicle is not limited to the illustrated system, and various known systems can be adopted.
 ロボット20は、無人走行車10に搭載され、被搬送物500を保持可能なハンド40を移動させる。ここで、本実施形態では、ロボット20に対して着脱可能なハンド40について説明するが、ロボット20の先端等に固定されるハンドを用いることとしてもよい。なお、被搬送物500は、ロボット20の可搬重量を超えるツールや部品、半完成品や完成品であってもよい。 The robot 20 is mounted on the unmanned traveling vehicle 10 and moves the hand 40 capable of holding the transported object 500. Here, in the present embodiment, the hand 40 that can be attached to and detached from the robot 20 will be described. However, a hand fixed to the tip of the robot 20 or the like may be used. The transferred object 500 may be a tool or a part, a semi-finished product, or a finished product exceeding the payload of the robot 20.
 また、被搬送物500を、ハンド40で保持された状態で搬送することとしてもよいし、無人走行車10に載置した状態で搬送することとしてもよい(図1における破線の被搬送物500参照)。なお、ロボット20の構成の詳細については、図2を用いて後述することとする。 Further, the transported object 500 may be transported while being held by the hand 40, or may be transported while being mounted on the unmanned traveling vehicle 10 (the transported object 500 indicated by a broken line in FIG. 1). reference). The configuration of the robot 20 will be described later in detail with reference to FIG.
 クレーンユニット30は、無人走行車10に搭載され、被搬送物500またはハンド40を昇降可能に懸垂して支持する。ハンド40は、被搬送物500を保持した状態でクレーンユニット30の巻取り動作によって持ち上げられる。これにより、ロボット20は、可搬重量を超える被搬送物500を搬送することができる。 The crane unit 30 is mounted on the unmanned traveling vehicle 10 and supports the transported object 500 or the hand 40 by suspending it vertically. The hand 40 is lifted up by the winding operation of the crane unit 30 while holding the transported object 500. Thereby, the robot 20 can transport the transported object 500 exceeding the payload.
 一般的に、可搬重量が大きいほどロボット20のサイズや重量は大きくなるので、クレーンユニット30を併用することで、より小型の(可搬重量が小さい)ロボット20の使用が可能となる。このため、無人走行車10のサイズを小さくすることができ、より幅の狭い経路を走行することが可能となる。なお、クレーンユニット30の構成の詳細については、図3を用いて後述する。 (4) In general, the larger the payload, the larger the size and weight of the robot 20. By using the crane unit 30 together, it is possible to use a smaller (small payload) robot 20. Therefore, the size of the unmanned traveling vehicle 10 can be reduced, and the vehicle can travel on a narrower route. The configuration of the crane unit 30 will be described later in detail with reference to FIG.
 ここで、本実施形態では、クレーンユニット30がハンド40を懸垂する場合について主に説明するが、クレーンユニット30が、被搬送物500を直接懸垂することとしてもよく、ロボット20のアームを直接懸垂することとしてもよい。なお、クレーンユニット30によって懸垂されるハンド40を「懸垂ハンド」と呼ぶ場合がある。 Here, in the present embodiment, a case where the crane unit 30 suspends the hand 40 will be mainly described, but the crane unit 30 may suspend the transferred object 500 directly, or may directly suspend the arm of the robot 20. You may do it. Note that the hand 40 suspended by the crane unit 30 may be referred to as a “suspended hand”.
 たとえば、クレーンユニット30によって昇降するフック等をロボット20の動作によって被搬送物500あるいは被搬送物500に取り付けられたロープ等に引っ掛ける。そして、クレーンユニット30の巻取り動作によって被搬送物500を持ち上げながら、ロボット20が被搬送物500を所定の位置へ誘導することとしてもよい。 For example, a hook or the like which is moved up and down by the crane unit 30 is hooked on the object 500 or a rope attached to the object 500 by the operation of the robot 20. Then, the robot 20 may guide the transferred object 500 to a predetermined position while lifting the transferred object 500 by the winding operation of the crane unit 30.
 コントローラ50は、ロボット20の動作制御と、クレーンユニット30における昇降動作の動作制御とを行うとともに、ロボット20およびクレーンユニット30を協調動作させる。つまり、コントローラ50は、被搬送物500の重力補償を行うようにクレーンユニット30の昇降動作とロボット20の動作とを制御する。これにより、ロボット20は、可搬重量を超える被搬送物500の搬送が可能となる。 The controller 50 controls the operation of the robot 20 and the operation of lifting and lowering the crane unit 30, and causes the robot 20 and the crane unit 30 to cooperate. That is, the controller 50 controls the operation of lifting and lowering the crane unit 30 and the operation of the robot 20 so as to compensate for the gravity of the transferred object 500. Thereby, the robot 20 can carry the transported object 500 exceeding the payload.
 なお、本実施形態では、コントローラ50が、無人走行車10に搭載される場合について主に説明するが、コントローラ50を無人走行車10に搭載しなくてもよい。たとえば、ロボット20およびクレーンユニット30と、コントローラ50とに無線通信の機能を設けることとすれば、コントローラ50を無人走行車10以外の任意の場所(無人走行車10が走行する環境や、インターネットなどのネットワーク環境)に設置することができる。 In the present embodiment, a case will be mainly described in which the controller 50 is mounted on the unmanned traveling vehicle 10, but the controller 50 does not have to be mounted on the unmanned traveling vehicle 10. For example, if the robot 20 and the crane unit 30 and the controller 50 are provided with a wireless communication function, the controller 50 can be mounted at any location other than the unmanned traveling vehicle 10 (the environment in which the unmanned traveling vehicle 10 travels, the Internet, etc.). Network environment).
 このように、搬送システム1によれば、ロボット20の可搬重量を超える被搬送物500など、様々な重量や形状の被搬送物500を任意の場所から目的とする場所まで無人で搬送することができる。したがって、組み立て工場などの生産設備の無人化を図ることができる。 As described above, according to the transport system 1, the transported object 500 having various weights and shapes, such as the transported object 500 exceeding the payload of the robot 20, can be unmannedly transported from an arbitrary place to a target place. Can be. Therefore, unmanned production equipment such as an assembly factory can be achieved.
 次に、ロボット20の構成について図2を用いて説明する。図2は、ロボット20の構成を示す斜視図である。なお、図2には、無人走行車10の上面に搭載されたロボット20を示している。ここで、ロボット20は、いわゆる「人協働ロボット」である。 Next, the configuration of the robot 20 will be described with reference to FIG. FIG. 2 is a perspective view showing the configuration of the robot 20. FIG. 2 shows the robot 20 mounted on the upper surface of the unmanned traveling vehicle 10. Here, the robot 20 is a so-called “human cooperative robot”.
 人協働ロボットとは、ロボットと人とを隔てる安全柵が不要なロボットであり、各関節のモータが、たとえば、出力80W(ワット)以下であるロボットや、一定の外力を検知すると自動停止するなどの安全機能を有するロボットのことを指す。つまり、人協働ロボットとは、国際規格に準拠したロボットであり、人とロボットとで作業領域の共有が可能なロボットである。 The human collaborative robot is a robot that does not require a safety fence to separate the robot and the human, and automatically stops when the motor of each joint detects, for example, a robot having an output of 80 W (watt) or less or a constant external force. Refers to robots that have safety functions such as In other words, the human collaborative robot is a robot that complies with international standards, and is a robot that can share a work area between a human and a robot.
 また、ロボット20は、基端側から先端側にかけて連通した内部空間を有しており、図2に示したツールチェンジャ100に接続されるツール用のケーブルなどのケーブルをかかる内部空間に収容することが可能である。つまり、ロボット20にダイレクトティーチングを行う際や、ロボット20が作業を行う際に、上記したケーブルが邪魔にならない。 Further, the robot 20 has an internal space communicating from the base end side to the distal end side, and accommodates a cable such as a cable for a tool connected to the tool changer 100 shown in FIG. 2 in the internal space. Is possible. That is, when performing direct teaching to the robot 20 or when the robot 20 performs an operation, the above-mentioned cable does not interfere.
 図2に示したように、ロボット20は、鉛直軸A0~第5軸A5の6軸を有するいわゆる垂直多関節ロボットである。ロボット20は、基端側から先端側へ向けて、ベース部20Bと、旋回部20Sと、第1アーム21と、第2アーム22と、第3アーム23と、手首部24とを備える。また、手首部24の先端側にはツールチェンジャ100が設けられている。 ロ ボ ッ ト As shown in FIG. 2, the robot 20 is a so-called vertical articulated robot having six axes from a vertical axis A0 to a fifth axis A5. The robot 20 includes a base portion 20B, a turning portion 20S, a first arm 21, a second arm 22, a third arm 23, and a wrist portion 24 from the base end side to the tip end side. In addition, a tool changer 100 is provided on the tip side of the wrist 24.
 ベース部20Bは、無人走行車10の上面などの設置面に固定することができる。旋回部20Sは、ベース部20Bに支持され、上記した設置面と垂直な鉛直軸A0まわりに旋回する。第1アーム21は、基端側が旋回部20Sに支持され、鉛直軸A0と垂直な第1軸A1まわりに旋回する。第2アーム22は、基端側が第1アーム21の先端側に支持され、第1軸A1と平行な第2軸A2まわりに旋回する。 The base portion 20B can be fixed to an installation surface such as the upper surface of the unmanned traveling vehicle 10. The turning portion 20S is supported by the base portion 20B, and turns around a vertical axis A0 perpendicular to the installation surface described above. The base end of the first arm 21 is supported by the turning portion 20S, and turns around the first axis A1 perpendicular to the vertical axis A0. The second arm 22 has a base end supported by the distal end of the first arm 21 and pivots around a second axis A2 parallel to the first axis A1.
 第3アーム23は、基端側が第2アーム22の先端側に支持され、第2軸A2と垂直な第3軸A3まわりに回転する。手首部24は、基端部24aと、先端部24bとを含む。基端部24aは、基端側が第3アーム23の先端側に支持され、第3軸A3と垂直な第4軸A4まわりに旋回する。 The third arm 23 has its base end supported by the distal end of the second arm 22 and rotates around a third axis A3 perpendicular to the second axis A2. The wrist 24 includes a proximal end 24a and a distal end 24b. The proximal end portion 24a is supported on the distal end side of the third arm 23 on the proximal end side, and pivots around a fourth axis A4 perpendicular to the third axis A3.
 先端部24bは、基端側が基端部24aの先端側に支持され、第4軸A4と直交する第5軸A5まわりに回転する。また、先端部24bの先端側には、ツールチェンジャ100が取り付けられる。ツールチェンジャ100には、被搬送物500(図1参照)を保持するハンド40(図1参照)などを着脱可能に取り付けることができる。つまり、ハンド40等のツールを被搬送物500の重量や形状等に応じて付け替えることができる。 The distal end portion 24b is supported at the proximal end side on the distal end side of the proximal end portion 24a, and rotates around a fifth axis A5 orthogonal to the fourth axis A4. A tool changer 100 is attached to the distal end side of the distal end portion 24b. To the tool changer 100, a hand 40 (see FIG. 1) for holding a transferred object 500 (see FIG. 1) or the like can be detachably attached. That is, tools such as the hand 40 can be changed according to the weight, shape, and the like of the transferred object 500.
 次に、クレーンユニット30の構成について図3を用いて説明する。図3は、クレーンユニット30の構成を示す斜視図である。なお、図3には、無人走行車10の上面に搭載されたクレーンユニット30を示しているが、図2に示したロボット20については記載を省略している。 Next, the configuration of the crane unit 30 will be described with reference to FIG. FIG. 3 is a perspective view showing the configuration of the crane unit 30. Although FIG. 3 shows the crane unit 30 mounted on the upper surface of the unmanned traveling vehicle 10, the description of the robot 20 shown in FIG. 2 is omitted.
 図3に示すように、クレーンユニット30は、サーボモータ31と、昇降部32と、移動機構33と、支持柱34とを備える。なお、昇降部32には、巻取り式のベルト32aを介してハンド40が接続されている。なお、ベルト32aの代わりにワイヤーやロープ等を用いることとしてもよい。 ク レ ー ン As shown in FIG. 3, the crane unit 30 includes a servomotor 31, a lifting unit 32, a moving mechanism 33, and a support column. The elevating unit 32 is connected to a hand 40 via a take-up belt 32a. Note that a wire, a rope, or the like may be used instead of the belt 32a.
 ハンド40には、たとえば、間隔を変更可能な一対の把持爪41が設けられており、把持爪41を開閉することで、被搬送物500を保持したり、解放したりすることができる。また、ハンド40には、着脱機構110が設けられている。着脱機構110は、図2に示したツールチェンジャ100に対応する着脱機構である。 The hand 40 is provided with, for example, a pair of gripping claws 41 whose intervals can be changed. By opening and closing the gripping claws 41, the transported object 500 can be held or released. The hand 40 is provided with a detachable mechanism 110. The attachment / detachment mechanism 110 is an attachment / detachment mechanism corresponding to the tool changer 100 shown in FIG.
 なお、図3には、保持機構として把持爪41を含んだハンド40を例示したが、吸着機構や、多指形式のグリップ機構を含んだハンド40を用いることとしてもよい。また、被搬送物500を引っ掛けるための変形しない突起を単に有するハンド40を用いることとしてもよい。 Although FIG. 3 illustrates the hand 40 including the gripping claws 41 as the holding mechanism, a hand 40 including a suction mechanism or a multi-fingered grip mechanism may be used. Further, the hand 40 having only a non-deformed protrusion for hooking the transferred object 500 may be used.
 また、ハンド40としては、図3に示したように予めクレーンユニット30に懸垂されたハンドの他、クレーンユニット30に懸垂されていないハンドを用いることができる。つまり、ツールチェンジャ100に対応する着脱機構110を有したハンドであればロボット20(図2参照)に対する着脱が可能である。なお、クレーンユニット30に懸垂されていないハンドは、無人走行車10に搭載しておくこととすればよい。 As the hand 40, a hand that is not suspended from the crane unit 30 in addition to a hand suspended from the crane unit 30 in advance as shown in FIG. 3 can be used. That is, if the hand has the attachment / detachment mechanism 110 corresponding to the tool changer 100, attachment / detachment to / from the robot 20 (see FIG. 2) is possible. Note that a hand that is not suspended by the crane unit 30 may be mounted on the unmanned traveling vehicle 10.
 これにより、クレーンユニット30に懸垂されたハンドと、その他のハンドとを適宜付け替えることができるので、被搬送物500の大きさや形状、重量等に応じたハンドの使い分けが可能となる。たとえば、その他のハンドとして、ロボット20の可搬重量未満の被搬送物500用のハンドを無人走行車10に搭載しておくことができる。 This allows the hand suspended from the crane unit 30 to be appropriately replaced with another hand, so that the hand to be used can be properly used according to the size, shape, weight, and the like of the transferred object 500. For example, as another hand, a hand for the transferred object 500 having a weight less than the payload of the robot 20 can be mounted on the unmanned traveling vehicle 10.
 このように、搬送対象となる被搬送物500の大きさや形状、重量等に応じて適宜ハンドを付け替えることが可能である。なお、その他のハンドで被搬送物500の搬送を試みてロボット20の動作が困難であった場合に、クレーンユニット30に懸垂されたハンドへ付け替えることとしてもよい。 As described above, it is possible to appropriately change hands according to the size, shape, weight, and the like of the transferred object 500 to be transferred. In addition, when the operation of the robot 20 is difficult due to the transfer of the transferred object 500 by another hand, the hand may be replaced with a hand suspended by the crane unit 30.
 図3に示したように、サーボモータ31は、昇降部32に設けられ、昇降部32を駆動する。また、サーボモータ31は、図1に示したコントローラ50によって動作制御される。たとえば、サーボモータ31は、正逆回転することで、昇降部32にベルト32aの巻上げ動作、巻下げ動作を行わせる。 (3) As shown in FIG. 3, the servo motor 31 is provided in the elevating unit 32 and drives the elevating unit 32. The operation of the servo motor 31 is controlled by the controller 50 shown in FIG. For example, the servo motor 31 rotates the forward / backward rotation of the belt 32a by performing forward / reverse rotation.
 昇降部32は、サーボモータ31によって駆動され、ベルト32aを介してハンド40を昇降させる。また、昇降部32は、移動機構33に取り付けられる。移動機構33は、鉛直向きと平行な旋回軸A30まわりに自由に旋回可能な旋回アーム33aと、旋回アーム33aの延伸向きD30に沿うガイド部33bとを備える。 (4) The elevating unit 32 is driven by the servo motor 31 to elevate and lower the hand 40 via the belt 32a. The elevating unit 32 is attached to the moving mechanism 33. The moving mechanism 33 includes a turning arm 33a that can freely turn around a turning axis A30 parallel to the vertical direction, and a guide portion 33b that extends along the extension direction D30 of the turning arm 33a.
 支持柱34は、無人走行車10の上面に固定され旋回アーム33aの基端側を、旋回軸A30まわりに回転可能に支持する。このように、移動機構33は、駆動源を持たず、外力を受けた昇降部32の移動を水平方向に制限する。なお、昇降部32は、旋回アーム33aの旋回範囲およびガイド部33bの延伸範囲について自由に移動することができる。 The support column 34 is fixed to the upper surface of the unmanned traveling vehicle 10 and supports the base end side of the turning arm 33a so as to be rotatable around the turning axis A30. As described above, the moving mechanism 33 has no driving source, and restricts the movement of the elevating unit 32 that has received an external force in the horizontal direction. In addition, the elevating unit 32 can freely move about the turning range of the turning arm 33a and the extending range of the guide unit 33b.
 つまり、移動機構33は、ハンド40がロボット20に接続された状態では、ロボット20の動作に従動して昇降部32を水平方向に自由に移動させることができる。移動機構33を、図3に示した構成とすることで、クレーンユニット30を単純な形状とすることができ、ロボット20との干渉を生じにくくすることができる。これにより、ロボット20に十分な可動範囲を与えることができる。 That is, when the hand 40 is connected to the robot 20, the moving mechanism 33 can move the elevating unit 32 freely in the horizontal direction following the operation of the robot 20. When the moving mechanism 33 is configured as shown in FIG. 3, the crane unit 30 can be formed in a simple shape, and interference with the robot 20 can be suppressed. Thereby, a sufficient movable range can be given to the robot 20.
 このように、クレーンユニット30は、鉛直向きはサーボモータ31で駆動するとともに、水平向きはロボット20に従動させることで、構造を簡素化することができる。これにより、製造コストを低減することが可能となる。 As described above, the crane unit 30 can be simplified in structure by being driven by the servomotor 31 in the vertical direction and driven by the robot 20 in the horizontal direction. This makes it possible to reduce the manufacturing cost.
 なお、図3には、1つの旋回アーム33aを含む移動機構33を例示したが、昇降部32の移動を水平方向に制限する機構であれば他の機構であってもよい。たとえば、移動機構33を外力によって自由に伸縮する水平リンク式のアームとしたり、水平な2つのガイド部33bを、直交する向きに組み合わせた天板を用いたりすることとしてもよい。 Although FIG. 3 illustrates the moving mechanism 33 including one swivel arm 33a, other mechanisms may be used as long as the mechanism restricts the movement of the elevating unit 32 in the horizontal direction. For example, the moving mechanism 33 may be a horizontal link-type arm that freely expands and contracts by an external force, or a top plate in which two horizontal guide portions 33b are combined in an orthogonal direction may be used.
 次に、搬送システム1の構成について図4を用いて説明する。図4は、搬送システム1の構成を示すブロック図である。図4に示すように、搬送システム1は、無人走行車10と、無人走行車10に搭載されるロボット20、クレーンユニット30、障害物センサS1および計測センサS2と、コントローラ50とを備える。 Next, the configuration of the transport system 1 will be described with reference to FIG. FIG. 4 is a block diagram illustrating a configuration of the transport system 1. As illustrated in FIG. 4, the transport system 1 includes an unmanned traveling vehicle 10, a robot 20 mounted on the unmanned traveling vehicle 10, a crane unit 30, an obstacle sensor S1, a measurement sensor S2, and a controller 50.
 なお、上記したように、コントローラ50は、無人走行車10に搭載しても、無人走行車10とは別に設けることとしてもよい。また、無人走行車10については図1を、ロボット20については図2を、クレーンユニット30については図3を、それぞれ用いて既に説明したので、以下では、コントローラ50の構成について主に説明することとする。 As described above, the controller 50 may be mounted on the unmanned traveling vehicle 10 or may be provided separately from the unmanned traveling vehicle 10. 1 has been described for the unmanned traveling vehicle 10, FIG. 2 has been described for the robot 20, and FIG. 3 has been already described for the crane unit 30, so that the configuration of the controller 50 will be mainly described below. And
 コントローラ50は、ロボット20の動作制御と、クレーンユニット30における昇降動作の動作制御とを行うとともに、ロボット20およびクレーンユニット30を協調動作させる装置である。また、図4に示したように、コントローラ50には、ロボット20、クレーンユニット30、障害物センサS1および計測センサS2が有線または無線で通信可能に接続される。 The controller 50 is a device that controls the operation of the robot 20 and the operation of the lifting / lowering operation of the crane unit 30 and causes the robot 20 and the crane unit 30 to cooperate. As shown in FIG. 4, the controller 50 is connected to the robot 20, the crane unit 30, the obstacle sensor S1, and the measurement sensor S2 so as to be able to communicate by wire or wirelessly.
 ここで、障害物センサS1は、無人走行車10に搭載され、障害物を検知する画像センサ、光学センサ、音波センサ等のセンサである。コントローラ50は、障害物センサS1の検知結果に基づいてロボット20の動作を制限する処理を行う。つまり、コントローラ50は、ロボット20の動作を、ロボット20やクレーンユニット30が障害物と干渉しない範囲に制限する処理を行う。 Here, the obstacle sensor S1 is a sensor such as an image sensor, an optical sensor, and a sound wave sensor that is mounted on the unmanned traveling vehicle 10 and detects an obstacle. The controller 50 performs a process of restricting the operation of the robot 20 based on the detection result of the obstacle sensor S1. That is, the controller 50 performs a process of restricting the operation of the robot 20 to a range where the robot 20 and the crane unit 30 do not interfere with the obstacle.
 これにより、搬送システム1は、ロボット20の動作に伴ってロボット20や、ロボット20に従動するクレーンユニット30が、壁や柱などの障害物と干渉する事態を防止することができる。なお、障害物センサS1の設置例については、図6を用いて後述することとする。 Accordingly, the transport system 1 can prevent the robot 20 and the crane unit 30 following the robot 20 from interfering with obstacles such as walls and pillars as the robot 20 operates. An example of the installation of the obstacle sensor S1 will be described later with reference to FIG.
 また、計測センサS2は、被搬送物500(図1参照)を3次元計測する3D(スリーディー)ビジョン等のセンサである。コントローラ50は、計測センサS2の検知結果に基づいてロボット20に被搬送物500のピッキング動作を行わせる。 {Circle around (2)} The measurement sensor S2 is a sensor such as a 3D (Three-D) vision for three-dimensionally measuring the object 500 (see FIG. 1). The controller 50 causes the robot 20 to perform the picking operation of the transferred object 500 based on the detection result of the measurement sensor S2.
 これにより、搬送システム1は、無人走行車10に対する被搬送物500の積み込みや積み下しを無人化することができる。つまり、ロボット20によるピッキング動作を、荷揚げおよび荷降ろしの双方に用いることができる。なお、計測センサS2の設置例については、図7を用いて後述することとする。 Thereby, the transport system 1 can unmanned loading and unloading of the transported object 500 with respect to the unmanned traveling vehicle 10. That is, the picking operation by the robot 20 can be used for both unloading and unloading. An example of installation of the measurement sensor S2 will be described later with reference to FIG.
 図4に示したように、コントローラ50は、制御部51と、記憶部52とを備える。制御部51は、動作制御部51aと、重力補償部51bと、制限部51cと、移載部51dとを備える。記憶部52は、教示情報52aと、補償情報52bと、制限情報52cと、搬送物情報52dとを記憶する。 (4) As shown in FIG. 4, the controller 50 includes a control unit 51 and a storage unit 52. The control unit 51 includes an operation control unit 51a, a gravity compensation unit 51b, a restriction unit 51c, and a transfer unit 51d. The storage unit 52 stores teaching information 52a, compensation information 52b, restriction information 52c, and transported article information 52d.
 ここで、コントローラ50は、たとえば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、HDD(Hard Disk Drive)、入出力ポートなどを有するコンピュータや各種の回路を含む。 Here, the controller 50 includes, for example, a computer having a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a HDD (Hard Disk Drive), an input / output port, and various circuits and the like. .
 コンピュータのCPUは、たとえば、ROMに記憶されたプログラムを読み出して実行することによって、制御部51の動作制御部51a、重力補償部51b、制限部51cおよび移載部51dとして機能する。 The CPU of the computer functions as an operation control unit 51a, a gravity compensation unit 51b, a limiting unit 51c, and a transfer unit 51d of the control unit 51 by reading and executing a program stored in the ROM, for example.
 また、動作制御部51a、重力補償部51b、制限部51cおよび移載部51dの少なくともいずれか一つまたは全部をASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)等のハードウェアで構成することもできる。 At least one or all of the operation control unit 51a, the gravity compensation unit 51b, the restriction unit 51c, and the transfer unit 51d are configured by hardware such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array). You can also.
 また、記憶部52は、たとえば、RAMやHDDに対応する。RAMやHDDは、教示情報52a、補償情報52b、制限情報52cおよび搬送物情報52dを記憶することができる。なお、コントローラ50は、有線や無線のネットワークで接続された他のコンピュータや可搬型記録媒体を介して上記したプログラムや各種情報を取得することとしてもよい。 The storage unit 52 corresponds to, for example, a RAM or an HDD. The RAM and the HDD can store the teaching information 52a, the compensation information 52b, the restriction information 52c, and the transported article information 52d. Note that the controller 50 may acquire the above-described programs and various information via another computer or a portable recording medium connected via a wired or wireless network.
 制御部51は、ロボット20およびクレーンユニット30の動作制御を行う。動作制御部51aは、教示情報52aに基づいてロボット20を動作させる。ここで、教示情報52aは、ロボット20に対するティーチング段階で作成され、ロボット20の動作経路を規定するプログラムである「ジョブ」を含んだ情報である。 The control unit 51 controls the operation of the robot 20 and the crane unit 30. The operation control unit 51a operates the robot 20 based on the teaching information 52a. Here, the teaching information 52a is created at the teaching stage for the robot 20, and is information including a "job" which is a program that defines an operation path of the robot 20.
 また、動作制御部51aは、ロボット20の駆動源であるモータ等のアクチュエータにおけるエンコーダ値を用いつつフィードバック制御を行うなどしてロボット20の動作精度を向上させる。 {Circle around (4)} The operation control unit 51a improves the operation accuracy of the robot 20 by performing feedback control using an encoder value of an actuator such as a motor which is a drive source of the robot 20.
 さらに、動作制御部51aは、重力補償部51bに対して各関節におけるアクチュエータの負荷状態を通知するとともに、制限部51cからの通知に基づいてロボット20の動作を制限する。また、動作制御部51aは、移載部51dからの通知に基づいてロボット20に被搬送物500の移載動作を行わせる。 動作 Furthermore, the operation control unit 51a notifies the gravity compensation unit 51b of the load state of the actuator at each joint, and restricts the operation of the robot 20 based on the notification from the restriction unit 51c. In addition, the operation control unit 51a causes the robot 20 to perform a transfer operation of the transferred object 500 based on the notification from the transfer unit 51d.
 重力補償部51bは、補償情報52bに基づいてクレーンユニット30を動作させる。ここで、補償情報52bは、ロボット20の可搬重量に対応する各アクチュエータの上限負荷や、クレーンユニット30におけるサーボモータ31(図3参照)の動作パターンを含んだ情報である。 The gravity compensation unit 51b operates the crane unit 30 based on the compensation information 52b. Here, the compensation information 52b is information including the upper limit load of each actuator corresponding to the payload of the robot 20, and the operation pattern of the servomotor 31 (see FIG. 3) in the crane unit 30.
 たとえば、重力補償部51bは、補償情報52bの上限負荷と、動作制御部51aから通知された負荷状態を比較し、かかる上限負荷を超えないようにクレーンユニット30におけるサーボモータ31を動作させる。これにより、ロボット20の可搬重量を超える重量の被搬送物500を、ロボット20に搬送させたり、移載させたりすることができる。 {For example, the gravity compensation unit 51b compares the upper limit load of the compensation information 52b with the load state notified from the operation control unit 51a, and operates the servo motor 31 of the crane unit 30 so as not to exceed the upper limit load. Thereby, the transported object 500 having a weight exceeding the payload of the robot 20 can be transported or transferred to the robot 20.
 制限部51cは、制限情報52cに基づいて障害物を回避するようにロボット20を動作させる。ここで、制限情報52cは、クレーンユニット30における旋回アーム33a(図3参照)の長さや高さを含んだ情報である。 (4) The restriction unit 51c operates the robot 20 to avoid an obstacle based on the restriction information 52c. Here, the restriction information 52c is information including the length and height of the turning arm 33a (see FIG. 3) in the crane unit 30.
 たとえば、制限部51cは、障害物センサS1の検知結果に含まれる障害物の方向や高さ、大きさ、障害物との距離等に基づき、障害物を回避することができる旋回アーム33aの姿勢(水平向き)を算出する。 For example, the restricting unit 51c may adjust the posture of the turning arm 33a that can avoid the obstacle based on the direction, height, size, distance to the obstacle, and the like of the obstacle included in the detection result of the obstacle sensor S1. (Horizontal direction) is calculated.
 そして、制限部51cは、算出した姿勢に旋回アーム33aを従動させるべくロボット20の回避動作を動作制御部51aへ通知する。これにより、ロボット20の回避動作に従動して旋回アーム33aが旋回するので、旋回アーム33aが障害物に干渉する事態を防止することができる。 {Circle around (5)} The restriction unit 51c notifies the operation control unit 51a of the avoidance operation of the robot 20 so that the turning arm 33a follows the calculated posture. Accordingly, since the turning arm 33a turns following the avoiding operation of the robot 20, it is possible to prevent the turning arm 33a from interfering with an obstacle.
 移載部51dは、搬送物情報52dに基づいて被搬送物500を移載するようにロボット20を動作させる。ここで、搬送物情報52dは、1つまたは複数種類の被搬送物5000の3次元形状を含んだ情報である。また、搬送物情報52dに、種類ごとの被搬送物50の重量を含めることとしてもよい。 (5) The transfer unit 51d operates the robot 20 to transfer the transferred object 500 based on the transferred object information 52d. Here, the transported object information 52d is information including the three-dimensional shape of one or more types of transported objects 5000. Further, the weight of the transported object 50 for each type may be included in the transported object information 52d.
 たとえば、移載部51dは、計測センサS2の検知結果に含まれる被搬送物500の向きや大きさ、被搬送物500との距離等と、搬送物情報52dとを比較することにより、被搬送物500の種類を判定する。そして、移載部51dは、判定した種類の被搬送物500を移載するように、動作制御部51aを介してロボット20を動作させる。これにより、ロボット20は、バラ積みされた被搬送物500をピッキングしたり、ピッキングした被搬送物500を整列させた状態で載置したりすることができる。 For example, the transfer unit 51d compares the orientation and size of the transferred object 500, the distance to the transferred object 500, and the like, which are included in the detection result of the measurement sensor S2, with the transferred object information 52d. The type of the object 500 is determined. Then, the transfer unit 51d operates the robot 20 via the operation control unit 51a so as to transfer the transported object 500 of the determined type. Thereby, the robot 20 can pick the transported objects 500 that have been piled up in bulk and place the picked transported objects 500 in an aligned state.
 なお、本実施形態では、コントローラ50がロボット20およびクレーンユニット30を協調動作させる場合について説明するが、コントローラ50が、さらに、無人走行車10の走行状態を制御することとしてもよい。たとえば、障害物センサS1が障害物を検知した場合に、障害物を回避するように無人走行車10の走行向きを変更したり、無人走行車10を停車させたりすることとしてもよい。 In the present embodiment, a case will be described in which the controller 50 causes the robot 20 and the crane unit 30 to perform a cooperative operation. However, the controller 50 may further control the traveling state of the unmanned traveling vehicle 10. For example, when the obstacle sensor S1 detects an obstacle, the traveling direction of the unmanned traveling vehicle 10 may be changed so as to avoid the obstacle, or the unmanned traveling vehicle 10 may be stopped.
 また、計測センサS2が被搬送物500を検知した場合に、ロボット20が被搬送物500をピッキングしやすい位置に無人走行車10を停車させたり、被搬送物500を整列させやすい位置に無人走行車10を停車させたりすることとしてもよい。 When the measurement sensor S2 detects the transferred object 500, the robot 20 stops the unmanned traveling vehicle 10 at a position where the transferred object 500 is easily picked, or moves the unmanned vehicle 10 at a position where the transferred object 500 is easily aligned. The vehicle 10 may be stopped.
 次に、無人走行車10の走行経路の例について図5を用いて説明する。図5は、走行経路の一例を示す説明図である。なお、図5は、組み立て工場などにおける生産設備のレイアウトを上方からみた図に相当する。 Next, an example of a traveling route of the unmanned traveling vehicle 10 will be described with reference to FIG. FIG. 5 is an explanatory diagram illustrating an example of a traveling route. In addition, FIG. 5 is equivalent to the figure which looked at the layout of the production equipment in an assembly factory etc. from the upper direction.
 また、図5に示すブースB1およびブースB2は、無人の作業ブースであり、ブースB3およびブースB4は、人が作業する場合もある有人の作業ブースであるものとする。つまり、ブースB1あるいはブースB2とブースB3との間の通路は無人の通路であり、ブースB3とブースB4との間の通路は人が通ることもある有人の通路であるものとする。 5) It is assumed that booth B1 and booth B2 shown in FIG. 5 are unmanned work booths, and booth B3 and booth B4 are manned work booths where people may work. That is, the passage between the booth B1 or the booth B2 and the booth B3 is an unmanned passage, and the passage between the booth B3 and the booth B4 is a manned passage through which a person may pass.
 ここで、図5では、ロボット20(図2参照)の記載を省略しているが、ロボット20は上記したように人協働ロボットであるので、有人の通路を走行しても問題ない。つまり、人協働ロボットを用いることで、人が存在する可能性のある領域(エリア)にも無人走行車10を侵入させることができる。なお、図5では、無人走行車10が作業ブース間の通路を走行する場合を示しているが、ブースB3やブースB4等の作業ブース内に無人走行車10を侵入させることとしてもよい。 Here, in FIG. 5, the description of the robot 20 (see FIG. 2) is omitted, but since the robot 20 is a human cooperative robot as described above, there is no problem even if the robot 20 travels on a manned passage. That is, by using the human cooperative robot, the unmanned traveling vehicle 10 can enter the area (area) where a person may exist. Although FIG. 5 shows a case where the unmanned traveling vehicle 10 travels in the passage between the work booths, the unmanned traveling vehicle 10 may be made to enter a work booth such as the booth B3 or the booth B4.
 無人走行車10は、ブースB1とブースB3との間の通路を通り、ブースB2とブースB3との間の通路を通り、ブースB3を反時計周りに走行向きを変更しつつ、ブースB3とブースB4との間の通路を通るものとする(図5の破線矢印参照)。ここで、無人走行車10の走行経路は、停止位置も含めて予め定められているものとする。なお、無人走行車10が停止の有無や停止時間を自律的に判定しつつ走行経路を走行することとしてもよい。 The unmanned traveling vehicle 10 passes through the passage between the booth B1 and the booth B3, passes through the passage between the booth B2 and the booth B3, and changes the running direction of the booth B3 in a counterclockwise direction. It is assumed that the vehicle passes through a passage between B4 (see a broken arrow in FIG. 5). Here, it is assumed that the traveling route of the unmanned traveling vehicle 10 is predetermined including the stop position. It should be noted that the unmanned traveling vehicle 10 may travel on the traveling route while autonomously determining whether or not the vehicle is stopped and the stop time.
 たとえば、無人走行車10は、クレーンユニット30を旋回させてブースB1に配置されたトレイT1を荷揚げする。ここで、トレイT1にはバラ積みされた被搬送物500が含まれるものとする。 For example, the unmanned traveling vehicle 10 turns the crane unit 30 to unload the tray T1 arranged in the booth B1. Here, it is assumed that the transported objects 500 stacked in bulk are included in the tray T1.
 つづいて、無人走行車10は、クレーンユニット30を旋回させる動作を繰り返すことで、トレイT1にバラ積みされた被搬送物500を1つずつピッキングし、ブースB2の所定の位置に整列させる。また、無人走行車10は、クレーンユニット30を旋回させてブースB3に被搬送物500を載置するとともに、ブースB4にも被搬送物500を載置する。 Next, the unmanned traveling vehicle 10 repeats the operation of turning the crane unit 30, thereby picking the conveyed objects 500 piled up in the tray T1 one by one and aligning them at predetermined positions in the booth B2. In addition, the unmanned traveling vehicle 10 rotates the crane unit 30 to place the transported object 500 in the booth B3 and also places the transported object 500 in the booth B4.
 なお、図5では、トレイT1にバラ積みされた被搬送物500を無人走行車10に荷揚げし、被搬送物500を各作業ブースに荷降ろししていく場合を例示したが、複数の被搬送物500をそれぞれ無人走行車10に荷揚げすることとしてもよい。また、荷揚げと、荷降ろしとを適宜繰り返しつつ無人走行車10を走行させることとしてもよい。さらに、作業ブース内や作業ブース外でロボット20が被搬送物500などの組み立て作業を行うこととしてもよい。 Although FIG. 5 illustrates a case where the transported objects 500 piled up on the tray T1 are unloaded to the unmanned traveling vehicle 10 and the transported objects 500 are unloaded to the respective work booths, a plurality of transported objects 500 are illustrated. The objects 500 may be unloaded onto the unmanned traveling vehicle 10, respectively. Further, the unmanned traveling vehicle 10 may be run while appropriately repeating unloading and unloading. Further, the robot 20 may perform the assembling work of the transferred object 500 and the like inside and outside the work booth.
 次に、障害物センサS1の設置例について図6を用いて説明する。図6は、障害物センサS1の設置例を示す説明図である。なお、図6は、ロボット20およびクレーンユニット30を搭載した無人走行車10の側面図に相当する。また、無人走行車10は、同図に示した走行方向Dに走行するものとする。 Next, an example of installation of the obstacle sensor S1 will be described with reference to FIG. FIG. 6 is an explanatory diagram illustrating an example of installation of the obstacle sensor S1. FIG. 6 corresponds to a side view of the unmanned traveling vehicle 10 on which the robot 20 and the crane unit 30 are mounted. It is assumed that the unmanned traveling vehicle 10 travels in the traveling direction D shown in FIG.
 障害物センサS1は、たとえば、クレーンユニット30における旋回アーム33aの先端側に取り付けられ、旋回アーム33aの延伸向きにおける斜め下方を検出範囲SA1とする。なお、図6に示した検出範囲SA1は、一例であり、前方や、斜め上方を検出範囲SA1に含めることとしてもよい。 The obstacle sensor S1 is attached, for example, to the tip end of the swivel arm 33a of the crane unit 30, and sets a detection range SA1 at a position obliquely downward in the extension direction of the swivel arm 33a. Note that the detection range SA1 illustrated in FIG. 6 is an example, and the front or diagonally upper part may be included in the detection range SA1.
 上記したように、旋回アーム33aは、ロボット20の動作に従動してZ軸(鉛直方向)と平行な旋回軸A30まわりに旋回するので、上記したように旋回アーム33aの先端側に障害物センサS1を取り付けることで、ロボット20や旋回アーム33aが障害物に干渉する事態を効果的に防止することができる。 As described above, since the turning arm 33a turns around the turning axis A30 parallel to the Z axis (vertical direction) following the operation of the robot 20, the obstacle sensor is provided at the tip end side of the turning arm 33a as described above. By attaching S1, it is possible to effectively prevent the robot 20 and the turning arm 33a from interfering with an obstacle.
 次に、計測センサS2の設置例について図7を用いて説明する。図7は、計測センサS2の設置例を示す説明図である。なお、図7は、ロボット20およびクレーンユニット30を搭載した無人走行車10の側面図に相当する。また、無人走行車10は、同図に示した走行方向Dに走行するものとする。 Next, an example of installation of the measurement sensor S2 will be described with reference to FIG. FIG. 7 is an explanatory diagram illustrating an example of installation of the measurement sensor S2. FIG. 7 corresponds to a side view of the unmanned traveling vehicle 10 on which the robot 20 and the crane unit 30 are mounted. It is assumed that the unmanned traveling vehicle 10 travels in the traveling direction D shown in FIG.
 また、図7では、被搬送物500がバラ積みされたトレイT1を無人走行車10に荷揚げした状態を例示している。図7に示すように、計測センサS2は、たとえば、クレーンユニット30における支持柱34に、検出範囲SA2が下向き(Z軸負方向)となるように取り付けられる。 FIG. 7 illustrates a state in which the tray T1 in which the transported objects 500 are unloaded is unloaded onto the unmanned traveling vehicle 10. As shown in FIG. 7, the measurement sensor S2 is attached to the support column 34 of the crane unit 30, for example, so that the detection range SA2 is directed downward (Z-axis negative direction).
 これにより、計測センサS2は、トレイT1にバラ積みされた被搬送物500の向きや距離を計測することができるので、ロボット20は、ハンド40を任意の位置および向きに移動させることで被搬送物500を良好にピッキングすることが可能となる。なお、図7には、トレイT1を例示したが、トレイT1を用いずに被搬送物500がバラ積みされていてもよく、被搬送物500が整列されていてもよい。 Thereby, the measurement sensor S2 can measure the direction and the distance of the transported objects 500 piled up on the tray T1, and the robot 20 moves the hand 40 to an arbitrary position and direction to transfer the transported objects 500. Goods 500 can be picked well. Although the tray T1 is illustrated in FIG. 7, the transported objects 500 may be stacked without using the tray T1, or the transported objects 500 may be aligned.
 また、計測センサS2を、支持柱34ではなく、ロボット20に取り付けることとしてもよい(破線で示した計測センサS2参照)。この場合、計測センサS2の検出範囲SA2がロボット20における先端側を向くように、計測センサS2を取り付けることが好ましい。なお、図7には、ロボット20における手首部24に計測センサS2が取り付けられた場合を例示している。 (4) The measurement sensor S2 may be attached to the robot 20 instead of the support column 34 (see the measurement sensor S2 indicated by a broken line). In this case, it is preferable to attach the measurement sensor S2 so that the detection range SA2 of the measurement sensor S2 faces the front end side of the robot 20. FIG. 7 illustrates a case where the measurement sensor S2 is attached to the wrist 24 of the robot 20.
 このように、計測センサS2をロボット20に取り付けることとしても、無人走行車10に荷揚げされた被搬送物500の向き等を計測することができる。また、無人走行車10への荷揚げ対象となる被搬送物500(無人走行車10外に載置された被搬送物500)の向き等を計測することもできる。このように、計測センサS2を用いることで、無人走行車10に対する被搬送物500の荷揚げや荷降ろしを無人化することができる。 As described above, even if the measurement sensor S2 is attached to the robot 20, it is possible to measure the direction and the like of the transferred object 500 unloaded on the unmanned traveling vehicle 10. Further, it is also possible to measure the direction of the transported object 500 to be unloaded to the unmanned traveling vehicle 10 (the transported object 500 placed outside the unmanned traveling vehicle 10). As described above, by using the measurement sensor S2, unloading and unloading of the transported object 500 with respect to the unmanned traveling vehicle 10 can be unmanned.
 つまり、計測センサS2を用いることで、ロボット20によるピッキング動作を高精度に行わせることができるので、被搬送物500の載置向きや大きさに関わらず、被搬送物500の荷揚げや荷降ろしが可能となる。また、無人走行車10外に載置された被搬送物500の位置や向きを変えることも可能となる。 In other words, the picking operation by the robot 20 can be performed with high accuracy by using the measurement sensor S2, and therefore, the unloading and unloading of the transferred object 500 can be performed regardless of the mounting direction and the size of the transferred object 500. Becomes possible. Further, it is possible to change the position and the direction of the transferred object 500 placed outside the unmanned traveling vehicle 10.
 次に、搬送システム1(図4参照)が実行する処理手順について図8を用いて説明する。図8は、搬送システム1の処理手順を示すフローチャートである。なお、図8には、クレーンユニット30に懸垂されたハンド40(図3参照)がロボット20(図2参照)から取り外されている状態からの処理手順を示している。また、図8では、説明をわかりやすくする観点から、無人走行車10に1つの被搬送物500を荷揚げし、目的地で被搬送物500を荷降ろしする場合について説明することとする。 Next, a processing procedure executed by the transport system 1 (see FIG. 4) will be described with reference to FIG. FIG. 8 is a flowchart illustrating a processing procedure of the transport system 1. FIG. 8 shows a processing procedure from a state where the hand 40 (see FIG. 3) suspended from the crane unit 30 is detached from the robot 20 (see FIG. 2). FIG. 8 illustrates a case where one conveyed object 500 is unloaded to the unmanned traveling vehicle 10 and the conveyed object 500 is unloaded at the destination from the viewpoint of making the description easy to understand.
 図8に示すように、コントローラ50の動作制御部51aは、クレーンユニット30に懸垂されたハンド40をロボット20に接続するようにロボット20に指示する(ステップS101)。そして、ハンド40で被搬送物500を把持するようにロボット20に指示する(ステップS102)。 As shown in FIG. 8, the operation control unit 51a of the controller 50 instructs the robot 20 to connect the hand 40 suspended by the crane unit 30 to the robot 20 (Step S101). Then, the robot 20 is instructed to grip the transported object 500 with the hand 40 (step S102).
 また、コントローラ50の重力補償部51bは、クレーンユニット30における昇降部32の上昇動作とロボット20とを協調動作するようにロボット20およびクレーンユニット30に指示する(ステップS103)。なお、重力補償部51bは、常に、クレーンユニット30がロボット20の重力補償を行うようにロボット20およびクレーンユニット30を協調動作させることとしてもよい。 The gravity compensating unit 51b of the controller 50 instructs the robot 20 and the crane unit 30 to perform a cooperative operation between the lifting operation of the lifting unit 32 in the crane unit 30 and the robot 20 (step S103). The gravity compensating unit 51b may always cooperate the robot 20 and the crane unit 30 so that the crane unit 30 performs the gravity compensation of the robot 20.
 つづいて、無人走行車10は、予め定められた走行経路に従って目的地へ走行を開始する(ステップS104)。また、コントローラ50の制限部51cは、障害物センサS1によって障害物が検知されたか否かを判定する(ステップS105)。 Next, the unmanned traveling vehicle 10 starts traveling to the destination according to a predetermined traveling route (step S104). In addition, the restriction unit 51c of the controller 50 determines whether an obstacle is detected by the obstacle sensor S1 (Step S105).
 そして、障害物が検知された場合には(ステップS105,Yes)、制限部51cは動作制御部51aを介して障害物を回避する向きに旋回アーム33aを旋回するようにロボット20に指示する(ステップS106)。上記したように、旋回アーム33aはロボット20の動作に従動して旋回するからである。なお、ステップS105の判定条件を満たさなかった場合には(ステップS105,No)、ステップS105の処理を繰り返す。 When an obstacle is detected (Step S105, Yes), the restriction unit 51c instructs the robot 20 to turn the turning arm 33a in a direction to avoid the obstacle via the operation control unit 51a (Step S105). Step S106). As described above, the turning arm 33a turns following the operation of the robot 20. If the determination condition of step S105 is not satisfied (step S105, No), the process of step S105 is repeated.
 無人走行車10は、予め定められた目的地で走行を停止する(ステップS107)。また、コントローラ50の重力補償部51bは、クレーンユニット30における昇降部32の下降動作とロボット20とを協調動作するようにロボット20およびクレーンユニット30に指示する(ステップS108)。そして、動作制御部51aは、被搬送物500を解放するようにロボット20に指示し(ステップS109)、処理を終了する。 The unmanned traveling vehicle 10 stops traveling at a predetermined destination (step S107). Further, the gravity compensating unit 51b of the controller 50 instructs the robot 20 and the crane unit 30 to cooperate with the lowering operation of the elevating unit 32 in the crane unit 30 and the robot 20 (step S108). Then, the operation control unit 51a instructs the robot 20 to release the transferred object 500 (Step S109), and ends the processing.
 上述してきたように、実施形態に係る搬送システム1は、無人走行車10と、ロボット20と、クレーンユニット30と、コントローラ50とを備える。無人走行車10は、無人で走行する。ロボット20は、無人走行車10に搭載され、被搬送物500を保持可能なハンド40を移動させる。クレーンユニット30は、被搬送物500またはハンド40を昇降可能に懸垂して支持する。コントローラ50は、ロボット20およびクレーンユニット30を協調動作させる。 As described above, the transport system 1 according to the embodiment includes the unmanned traveling vehicle 10, the robot 20, the crane unit 30, and the controller 50. The unmanned traveling vehicle 10 travels unmanned. The robot 20 is mounted on the unmanned traveling vehicle 10 and moves the hand 40 capable of holding the transported object 500. The crane unit 30 suspends and supports the transported object 500 or the hand 40 so as to be able to move up and down. The controller 50 causes the robot 20 and the crane unit 30 to cooperate.
 このように、実施形態に係る搬送システム1は、ロボット20の可搬重量を超える被搬送物500など、様々な重量の被搬送物500を任意の場所から目的とする場所まで無人で搬送することができる。したがって、組立工場などの生産設備の無人化を図ることが可能となる。 As described above, the transport system 1 according to the embodiment is capable of unmannedly transporting the transported object 500 having various weights, such as the transported object 500 exceeding the payload of the robot 20, from an arbitrary location to a target location. Can be. Therefore, it is possible to achieve unmanned production equipment such as an assembly factory.
 なお、上述した実施形態では、ロボット20として6軸の人協働ロボットを用いる例を示したが、人協働ロボットの軸数は6軸より少なくても、6軸より多くても構わない。また、ロボット20として人協働ロボット以外のロボットを用いることとしてもよい。 In the above-described embodiment, an example in which a six-axis human cooperative robot is used as the robot 20 has been described. However, the number of axes of the human cooperative robot may be less than six or more than six. Further, a robot other than the human cooperative robot may be used as the robot 20.
 また、上述した実施形態では、クレーンユニット30が、ロボット20の動作に従動して旋回軸A30まわりに旋回する旋回アーム33aを含む例を示したが、旋回軸A30まわりに旋回アーム33aを旋回させるサーボモータを含むこととしてもよい。この場合、かかるサーボモータは、図3に示したサーボモータ31と同様に、コントローラ50によってロボット20と協調動作するように制御される。 In the above-described embodiment, the crane unit 30 includes the turning arm 33a that turns around the turning axis A30 in accordance with the operation of the robot 20, but the turning arm 33a turns around the turning axis A30. It may include a servomotor. In this case, the servo motor is controlled by the controller 50 so as to cooperate with the robot 20, similarly to the servo motor 31 shown in FIG.
 さらなる効果や変形例は、当業者によって容易に導き出すことができる。このため、本発明のより広範な態様は、以上のように表しかつ記述した特定の詳細および代表的な実施例に限定されるものではない。したがって、添付の請求の範囲およびその均等物によって定義される総括的な発明の概念の精神または範囲から逸脱することなく、様々な変更が可能である。 Further effects and modifications can be easily derived by those skilled in the art. Thus, the broader aspects of the present invention are not limited to the specific details and representative examples shown and described above. Accordingly, various modifications may be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and equivalents thereof.
   1  搬送システム
  10  無人走行車
  20  ロボット
  20B ベース部
  20S 旋回部
  21  第1アーム
  22  第2アーム
  23  第3アーム
  24  手首部
  24a 基端部
  24b 先端部
  30  クレーンユニット
  31  サーボモータ
  32  昇降部
  32a ベルト
  33  移動機構
  33a 旋回アーム
  33b ガイド部
  34  支持柱
  40  ハンド
  41  把持爪
  50  コントローラ
  51  制御部
  51a 動作制御部
  51b 重力補償部
  51c 制限部
  51d 移載部
  52  記憶部
  52a 教示情報
  52b 補償情報
  52c 制限情報
  52d 搬送物情報
 100  ツールチェンジャ
 110  着脱機構
 500  被搬送物
  A0  鉛直軸
  A1  第1軸
  A2  第2軸
  A3  第3軸
  A4  第4軸
  A5  第5軸
 A30  旋回軸
  S1  障害物センサ
  S2  計測センサ
DESCRIPTION OF SYMBOLS 1 Transport system 10 Unmanned traveling vehicle 20 Robot 20B Base part 20S Revolving part 21 First arm 22 Second arm 23 Third arm 24 Wrist part 24a Base end part 24b Tip part 30 Crane unit 31 Servo motor 32 Elevating part 32a Belt 33 Move Mechanism 33a Swivel arm 33b Guide part 34 Support post 40 Hand 41 Gripping claw 50 Controller 51 Control part 51a Operation control part 51b Gravity compensation part 51c Restriction part 51d Transfer part 52 Storage part 52a Teaching information 52b Compensation information 52c Restriction information 52d Transportation Information 100 Tool changer 110 Attaching / detaching mechanism 500 Conveyed object A0 Vertical axis A1 First axis A2 Second axis A3 Third axis A4 Fourth axis A5 Fifth axis A30 Rotating axis S1 Obstacle sensor S2 Measurement sensor

Claims (9)

  1.  無人で走行する無人走行車と、
     前記無人走行車に搭載され、被搬送物を保持可能なハンドを移動させるロボットと、
     前記無人走行車に搭載され、前記被搬送物または前記ハンドを昇降可能に懸垂して支持するクレーンユニットと、
     前記ロボットおよび前記クレーンユニットを協調動作させるコントローラと
     を備えることを特徴とする搬送システム。
    An unmanned vehicle that runs unmanned,
    A robot mounted on the unmanned traveling vehicle and moving a hand capable of holding a transferred object;
    A crane unit mounted on the unmanned traveling vehicle and suspending and supporting the transferred object or the hand in a vertically movable manner;
    And a controller for causing the robot and the crane unit to perform a cooperative operation.
  2.  前記クレーンユニットは
     サーボモータと、
     前記サーボモータによって駆動される昇降部と、
     前記ロボットの動作に従動して前記昇降部を水平方向に移動させる移動機構と
     を備えることを特徴とする請求項1に記載の搬送システム。
    The crane unit includes a servomotor,
    A lifting unit driven by the servomotor,
    The transfer system according to claim 1, further comprising: a moving mechanism that moves the elevating unit in a horizontal direction in accordance with an operation of the robot.
  3.  前記移動機構は、
     前記無人走行車に固定される支持柱に対して旋回する旋回アームと、
     前記旋回アームに設けられ、該旋回アームに沿って前記昇降部の移動をガイドするガイド部と
     を備えることを特徴とする請求項2に記載の搬送システム。
    The moving mechanism,
    A turning arm that turns with respect to a support column fixed to the unmanned traveling vehicle,
    3. The transport system according to claim 2, further comprising: a guide unit provided on the swing arm, for guiding movement of the elevating unit along the swing arm. 4.
  4.  前記コントローラは、
     前記ロボットが支える前記被搬送物による重力が小さくなるように、前記サーボモータの動作と前記ロボットの動作とを協調動作させる重力補償部
     を備えることを特徴とする請求項2または3に記載の搬送システム。
    The controller is
    4. The transport according to claim 2, further comprising: a gravity compensating unit that performs an operation of the servo motor and an operation of the robot in a coordinated manner so that gravity of the transported object supported by the robot is reduced. 5. system.
  5.  前記ロボットは、
     ツールチェンジャを備え、
     複数の前記ハンドは、
     前記クレーンユニットに懸垂される懸垂ハンドを含み、前記ツールチェンジャに対して着脱可能な着脱機構をそれぞれ備えること
     を特徴とする請求項1~4のいずれか一つに記載の搬送システム。
    The robot is
    Equipped with a tool changer,
    The plurality of hands are
    The transport system according to any one of claims 1 to 4, further comprising a detachable mechanism that includes a suspending hand suspended from the crane unit and that is detachable from the tool changer.
  6.  前記ロボットは、
     人と作業領域の共有が可能な人協働ロボットであること
     を特徴とする請求項1~5のいずれか一つに記載の搬送システム。
    The robot is
    The transport system according to any one of claims 1 to 5, wherein the transport system is a human collaboration robot capable of sharing a work area with a human.
  7.  障害物を検知する障害物センサ
     をさらに備え、
     前記コントローラは、
     前記障害物センサの検知結果に基づいて前記ロボットの動作を制限する制限部
     をさらに備えること
     を特徴とする請求項1~6のいずれか一つに記載の搬送システム。
    It further includes an obstacle sensor that detects obstacles,
    The controller is
    The transport system according to any one of claims 1 to 6, further comprising a restriction unit configured to restrict an operation of the robot based on a detection result of the obstacle sensor.
  8.  前記被搬送物を3次元計測する計測センサ
     をさらに備え、
     前記コントローラは、
     前記計測センサの検知結果に基づいて前記ロボットに前記被搬送物のピッキング動作を行わせる移載部をさらに備えること
     を特徴とする請求項1~7のいずれか一つに記載の搬送システム。
    A measurement sensor for three-dimensionally measuring the transported object;
    The controller is
    The transport system according to any one of claims 1 to 7, further comprising a transfer unit that causes the robot to perform a picking operation of the transported object based on a detection result of the measurement sensor.
  9.  無人で走行する無人走行車と、
     前記無人走行車に搭載され、被搬送物を保持可能なハンドを移動させるロボットと、
     前記無人走行車に搭載され、前記被搬送物または前記ハンドを昇降可能に懸垂して支持するクレーンユニットと
     前記ロボットおよび前記クレーンユニットを協調動作させるコントローラと
    を用い、
     前記コントローラは、
     前記ロボットおよび前記クレーンユニットを協調動作させることで、前記ロボットの可搬重量を超える前記被搬送物を前記ロボットに搬送させること
     を特徴とする搬送方法。
    An unmanned traveling vehicle that runs unmanned,
    A robot mounted on the unmanned traveling vehicle and moving a hand capable of holding a transferred object;
    A crane unit mounted on the unmanned traveling vehicle and suspending and supporting the transferred object or the hand so as to be able to move up and down, and a controller that cooperates the robot and the crane unit,
    The controller is
    The transfer method, wherein the robot and the crane unit cooperate with each other to cause the robot to transfer the object to be transferred that exceeds the load capacity of the robot.
PCT/JP2018/030867 2018-08-21 2018-08-21 Transport system and transport method WO2020039508A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/030867 WO2020039508A1 (en) 2018-08-21 2018-08-21 Transport system and transport method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/030867 WO2020039508A1 (en) 2018-08-21 2018-08-21 Transport system and transport method

Publications (1)

Publication Number Publication Date
WO2020039508A1 true WO2020039508A1 (en) 2020-02-27

Family

ID=69593186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030867 WO2020039508A1 (en) 2018-08-21 2018-08-21 Transport system and transport method

Country Status (1)

Country Link
WO (1) WO2020039508A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1028966B1 (en) * 2020-12-29 2022-08-01 Komotion B V Movement system for moving an object
WO2022189681A1 (en) * 2021-03-09 2022-09-15 Talleres J. Angel Bacaicoa, S.L. Load manipulation device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000198091A (en) * 1999-01-08 2000-07-18 Hitachi Zosen Corp Robot system for cooperating a plurality of arms
EP2407281A1 (en) * 2010-07-16 2012-01-18 KUKA Roboter GmbH Robot integrated workstation
JP2014050910A (en) * 2012-09-06 2014-03-20 Kawasaki Heavy Ind Ltd Transportation system and transportation method of the same
WO2017002266A1 (en) * 2015-07-02 2017-01-05 株式会社安川電機 Article supporting system
JP2018124910A (en) * 2017-02-03 2018-08-09 ファナック株式会社 Processing system in which mobile robot carries item into or out of processing machine, and machine controller

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000198091A (en) * 1999-01-08 2000-07-18 Hitachi Zosen Corp Robot system for cooperating a plurality of arms
EP2407281A1 (en) * 2010-07-16 2012-01-18 KUKA Roboter GmbH Robot integrated workstation
JP2014050910A (en) * 2012-09-06 2014-03-20 Kawasaki Heavy Ind Ltd Transportation system and transportation method of the same
WO2017002266A1 (en) * 2015-07-02 2017-01-05 株式会社安川電機 Article supporting system
JP2018124910A (en) * 2017-02-03 2018-08-09 ファナック株式会社 Processing system in which mobile robot carries item into or out of processing machine, and machine controller

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1028966B1 (en) * 2020-12-29 2022-08-01 Komotion B V Movement system for moving an object
WO2022189681A1 (en) * 2021-03-09 2022-09-15 Talleres J. Angel Bacaicoa, S.L. Load manipulation device

Similar Documents

Publication Publication Date Title
US11767168B2 (en) Automatic transportation of pallets of goods
TWI637455B (en) Manipulator for gripping cassettes and automatic cassette handling device
JP4574609B2 (en) Transport method by overhead crane using laser pointer and overhead crane system
KR20000005812A (en) Overhead hoist transfer
US9592609B2 (en) Autonomous mobile robot for handling job assignments in a physical environment inhabited by stationary and non-stationary obstacles
JP5532760B2 (en) Conveying system, robot apparatus, and workpiece manufacturing method
JP6314713B2 (en) Inter-floor transfer equipment
US20110245964A1 (en) Self Aligning Automated Material Handling System
KR20210149091A (en) Robot and method for palletizing boxes
US11203120B1 (en) Mobile robotics frame system
WO2020039508A1 (en) Transport system and transport method
TW201815656A (en) Stacker crane
IL271508A (en) Transport system and transport method
US20210170601A1 (en) Conveyance robot system, method for controlling conveyance robot and non-transitory computer readable storage medium storing a robot control program
EP2737980A1 (en) Robot disposed adjacent to a conveyance path and retractable in a parking position
JP5258013B2 (en) Transport method with overhead crane and overhead crane system using this transport method
KR20210141664A (en) Multi-body controllers and robots
Levratti et al. TIREBOT: A novel tire workshop assistant robot
JP2022075659A (en) Automatic traveling vehicle, conveying device, control method for automatic traveling vehicle, and control method for conveying device
EP3944930B1 (en) Unmanned ground-based hygiene maintenance vehicle and method for improving hygiene conditions
KR20080009632A (en) Moving body and controlling method thereof
TWI738911B (en) Overhead transport vehicle and control method of overhead transport vehicle
WO2021220582A1 (en) Overhead carrier and overhead carrying system
KR20230119196A (en) ceiling storage system
TW202214507A (en) Stocker

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18931179

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18931179

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP