WO2020038235A1 - 基于平面波导技术的高通量生物、化学、环境检测***和方法 - Google Patents

基于平面波导技术的高通量生物、化学、环境检测***和方法 Download PDF

Info

Publication number
WO2020038235A1
WO2020038235A1 PCT/CN2019/099718 CN2019099718W WO2020038235A1 WO 2020038235 A1 WO2020038235 A1 WO 2020038235A1 CN 2019099718 W CN2019099718 W CN 2019099718W WO 2020038235 A1 WO2020038235 A1 WO 2020038235A1
Authority
WO
WIPO (PCT)
Prior art keywords
chemical
planar
optical waveguide
planar optical
detection system
Prior art date
Application number
PCT/CN2019/099718
Other languages
English (en)
French (fr)
Inventor
潘涛
柴贇
Original Assignee
上海攀颂生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海攀颂生物科技有限公司 filed Critical 上海攀颂生物科技有限公司
Publication of WO2020038235A1 publication Critical patent/WO2020038235A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence

Definitions

  • the present application relates to a high-throughput biological, chemical, and environmental detection system and method based on planar waveguide technology, which can be used in the technical fields of biology, medicine, chemistry, and the environment to simultaneously detect multiple indicators to be measured in parallel in one detection.
  • the 21st century is an era of rapid development of science and technology, especially the integration of multiple disciplines such as chemistry, biology, environmental science, medicine and electronic information will get vigorous development.
  • Sensing technology is an important research area in the discipline of electronic information and an important means of information acquisition.
  • technical fields such as biology, medicine, chemistry, and environment cannot be separated from the improvement and improvement of corresponding detection technology. Therefore, linking the sensing technology with the actuality of these disciplines to develop new efficient, high-throughput detection systems is also an important work in these fields.
  • Waveguide technology is a new detection method developed based on optical technology. It uses light waves to transmit in the waveguide in a total reflection manner to generate an evanescent wave at the interface of the sensor. This evanescent wave can excite the probe connected to the sensor surface. The fluorophore on the target or the fluorophore of the target molecule captured by the probe is combined with the change in fluorescence to realize the quantitative detection of the target molecule.
  • the infiltration depth of the evanescent wave on the surface of the sensor is only tens to hundreds of nanometers, and the free fluorescent molecules in the solution body have little effect on the detection result, which can reduce the effect of impurities in the solution on the detection result. It has strong characteristics, high sensitivity, and fast detection speed. It has a strong application prospect in biomedicine, environmental detection, and chemical detection.
  • the waveguide technology platform has two directions in development.
  • the first is a fiber-optic waveguide detection platform, which is characterized by simple use and low price, but its detection flux is not high, and it can only detect one target at a time.
  • several planar waveguide detection platforms have been developed for synchronous high-throughput detection, that is, detecting multiple targets simultaneously.
  • these systems are developed based on point light sources or line light sources.
  • point light sources or line light sources In order to realize the imaging of flat areas during the specific use process, it is necessary to use moving parts to scan the excitation light of the light source inside the waveguide material, which increases the system's
  • the complexity, cost and difficulty of synchronous detection cannot meet the requirements of low cost and high speed detection.
  • the detection platforms of the platform waveguide are open systems, that is, the sample solution is directly added to the sensor, and then the evanescent wave is used for excitation detection.
  • the advantage of this is that the sensor is simple in design and low in cost, but because it is in contact with air during use, not only the accuracy of the experimental results is difficult to guarantee, but also the mutual interference of the test is very serious.
  • biological and chemical sample solutions require some pretreatment or reaction before fluorescent detection can be used, and waveguide detection after processing is not necessary.
  • the object of the present invention is to provide a high-throughput biological, chemical, and environmental detection system and method based on planar waveguide technology.
  • the technology that overcomes existing waveguide detection platforms is not satisfactory for biology and medicine.
  • the present invention provides the following technical solutions:
  • An embodiment of the present application discloses a high-throughput biological, chemical, and environmental detection system based on a planar waveguide technology, including:
  • a planar optical waveguide sensor includes a first side and a second side opposite to each other, and a probe molecule or a substrate molecule containing a fluorescent group is fixed on a surface of the first side;
  • the linear excitation light source can generate the excitation light that enters the planar optical waveguide sensor and generates an evanescent wave on the surface of the first side;
  • a chip container is enclosed with a surface of the first side surface to form a sealed test solution cavity
  • the imaging detection device is disposed on the second side of the planar optical waveguide sensor.
  • the imaging detection device and the chip container are respectively disposed on the upper and lower sides of the planar optical waveguide sensor.
  • the above-mentioned high-throughput biological, chemical, and environmental detection system based on the planar waveguide technology further includes an optical baffle disposed between the linear excitation light source and the planar optical waveguide sensor, and the optical baffle is provided with a slit. .
  • the size of the slit satisfies: the generation of an evanescent wave on the surface of the first side, which can cover the probe molecules or the fluorescent group-containing All regions of the substrate molecule.
  • the above-mentioned high-throughput biological, chemical, and environmental detection system based on the planar waveguide technology further includes a heating device for controlling the temperature of the chip container.
  • the probe molecule or the substrate molecule containing a fluorescent group is fixed to the substrate by a chemical bond, Van der Waals force, hydrogen bond, or hydrophobic interaction.
  • a first side surface of a planar optical waveguide sensor is fixed to the substrate by a chemical bond, Van der Waals force, hydrogen bond, or hydrophobic interaction.
  • a plurality of nucleic acid probes for different nucleic acid sequences to be tested are fixed on the surface of the planar optical waveguide sensor.
  • the target biological and chemical molecules (groups) to be measured are fixed on the surface of the planar optical waveguide sensor;
  • test molecules can be degraded or cleaved by the test molecules to lose fluorescently labeled substrate molecules.
  • the imaging detection device is a PMT, a CCD camera, or a CMOS camera.
  • this application also discloses a detection method, including:
  • a reaction solution containing a sample to be tested is contained in a chamber of the solution to be tested;
  • reaction solution The chemical or biological reaction between the reaction solution and the test sample produces a change in fluorescence in the interval of the evanescent wave
  • the excitation light source is a linear area light source, which can be scanned without using mechanical moving parts, which is more stable and reliable.
  • a variety of probes or substrate molecules can be fixed on the sensor surface.
  • the substances in the solution can interact with a variety of molecules on the surface and generate fluorescence changes in specific probe regions, respectively. Flux detection.
  • FIG. 1 is a schematic structural diagram of a detection system in a specific embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing a working principle of a planar optical waveguide sensor in a specific embodiment of the present invention
  • FIG. 3 is a schematic diagram showing the arrangement of probes in the application example 1 of the present invention.
  • an embodiment of the present application provides a high-throughput biological, chemical, and environmental detection system based on a planar waveguide technology, including a linear excitation light source 101, a chip container 107, a planar optical waveguide sensor 109, and an imaging detection device 111.
  • the planar optical waveguide sensor 109 uses a light-tight medium, including glass, quartz, and polymer materials.
  • the planar optical waveguide sensor 109 includes a first side 1091 and a second side 1092 opposite to each other. Probe molecules or substrate molecules 112 containing fluorescent groups are immobilized on the surface (see FIG. 3).
  • the linear excitation light source 101 is a laser or LED light source.
  • the linear excitation light source 101 can generate excitation light that enters the planar optical waveguide sensor 109 and generates an evanescent wave on the surface of the first side 1092.
  • a sealed test solution cavity 1071 is enclosed between the chip container 107 and the surface on the first side.
  • planar optical waveguide sensor is horizontally covered on the top of the chip container 107.
  • the imaging detection device 111 is a PMT, a CCD camera, or a CMOS camera, and is disposed on the second side of the planar optical waveguide sensor 109.
  • An image of the planar optical waveguide sensor can be obtained through the imaging detection device 111, and concentration information of a substance to be measured or a reaction caused by the substance to be measured can be obtained from a fluorescent signal in the image.
  • the front end of the imaging detection device 111 is further provided with a lens group 110.
  • the lens group 110 includes an optical filter, and the optical filter is used to filter the interference of the excitation light.
  • a lens or a lens group 102 disposed at the front end of the linear excitation light source 101 is further included.
  • an optical baffle 103 is further provided between the linear excitation light source 101 and the planar optical waveguide sensor 109.
  • the optical baffle 103 is provided with a slit 104.
  • a slit on the baffle is used to generate a linear transmission of a specific long width (such as a rectangle).
  • it further includes a base 106, and the chip container 107 and the optical baffle 103 are supported on the base 106.
  • the base 106 is supported on the sample platform 105, and the sample platform 105 may be provided with a heating device for controlling the temperature of the chip container.
  • the sample platform 105 can also realize one-axis or multi-axis movement.
  • a probe molecule or a substrate molecule 112 containing a fluorescent group is fixed on the first side surface (preferably the lower surface) of the planar optical waveguide sensor 109.
  • the fixing method may be chemical bonding, van der Waals force, hydrogen bonding, hydrophobic Role and many other ways.
  • planar optical waveguide sensor 109 and the chip container 107 constitute a closed detection chip, which is used to contain the reaction solution 108 containing the sample to be measured.
  • the chip container 107 carrying the reaction solution is placed on the sample platform 105, and a temperature control program is started, and a chemical or biological reaction occurs between the reaction solution and the test sample in the detection chip through time temperature control, including but not limited to:
  • nucleic acid DNA or RNA
  • the linear excitation light source 101 turn on the linear excitation light source 101 and let the excitation light pass through the slit to illuminate the side of the planar optical waveguide sensor 109 with a critical angle that produces an evanescent wave.
  • the size is designed so that after the incident light enters the waveguide material, a total reflection (evanescent wave) on the bottom surface can cover all areas where a probe is present on the lower surface of the waveguide material.
  • the linear excitation light source 101 When the linear excitation light source 101 is turned on, all regions where the probe is present on the lower surface of the planar optical waveguide sensor 109 will have an evanescent wave of excitation light, which will excite fluorescent molecules in this area, but the fluorescent molecules in the solution body will not emit light to cause interference. .
  • the imaging detection device 111 is turned on, and an image of the upper surface of the planar optical waveguide sensor 109 is collected from the top to the bottom.
  • the image includes the fluorescent signal of the probe or the fluorescent substrate region.
  • the detection system is low-cost and reliable, has convenient control, fast reading and high sensitivity, and can be used in a variety of detection scenarios.
  • the detection system also includes temperature control, sampling synchronization and data processing storage components.
  • Sexually Transmitted Diseases that are transmitted by sexually transmitted bacteria through sexual behavior, causing genitourinary tract, or even the entire system infection, are called sexually transmitted diseases, commonly known as sexually transmitted diseases in China.
  • sexually transmitted diseases commonly known as sexually transmitted diseases in China.
  • common sexually transmitted diseases the most important of which are gonorrhea, syphilis, mycoplasma urealyticum, chlamydia trachomatis, and capsular bacillus granulomatosis, etc.
  • common culture or PCR methods cannot meet the requirements of high-throughput detection.
  • PCR primers are DNA fragments, and primers for DNA replication in cells Is a piece of RNA strand
  • enzymes dNTPs and buffers into high-throughput biological, chemical, and environmental detection systems.
  • the linear excitation light source 101 is turned on, and the side of the planar optical waveguide sensor 109 is illuminated according to the critical angle of the evanescent wave.
  • An evanescent wave of excitation light is generated on the lower surface of the planar optical waveguide sensor 109.
  • the probe on the lower surface of the planar optical waveguide sensor 109 can capture (hybridize) the amplified nucleic acid copy of the sample containing the fluorescent group by PCR. These captured nucleic acid copies are induced to emit fluorescence by the evanescent wave under the planar optical waveguide sensor 109. And collected by the imaging detection device 111.
  • the high-throughput biological, chemical, and environmental detection system of the present invention can test the concentration of target nucleic acid molecules in a sample in parallel, and has a strong application prospect in biomedicine.
  • an indirect competitive immune model that is, using a fluorescently labeled aflatoxin antibody (or aptamer) as a detection reagent, and immobilize the molecule of the species under test (here, Aspergillus flavus) on the lower surface of the planar optical waveguide sensor 109.
  • the fluorescently labeled antibody (or aptamer) can compete with aflatoxin in the test sample and aflatoxin immobilized on the lower surface of the planar optical waveguide sensor 109, that is, aflatoxin in solution
  • the antibody bound to the aflatoxin molecule immobilized on the lower surface of the planar optical waveguide sensor 109 will be reduced, and the fluorescence intensity will decrease.
  • the sample to be tested is added to the chip container 107, and the temperature control program is started.
  • the excitation light source is turned on to a certain extent, and an evanescent wave is generated on the lower surface of the planar optical waveguide sensor 109.
  • the evanescent wave excites the aflatoxin captured in the area.
  • the antibody produces fluorescence.
  • the imaging detection device 111 is turned on to obtain a detection picture, and the fluorescence intensity of the probe region is analyzed in the picture, so that the concentration of the aflatoxin to be measured in the sample can be analyzed.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种基于平面波导技术的高通量生物、化学、环境检测***,该***包括平面光波导传感器(109),包括相对的第一侧(1091)和第二侧(1092),位于第一侧(1091)的表面固定有探针分子或含荧光基团的底物分子(112);线性激发光源(101),可产生进入到平面光波导传感器(109)的激发光,并在第一侧(1091)的表面产生消逝波;芯片容器(107),与所述第一侧(1091)的表面之间围成一密封的待测溶液腔体(1071);成像检测装置(111),设置于平面光波导传感器(109)的第二侧(1092)。一种利用上述***检测样品的方法,样品溶液采用密封检测,检测结果准确;平面波导传感器(109)表面可以固定多种探针或底物分子(112),溶液中的物质可以和表面的多种分子产生作用,并分别在特定探针区域产生荧光变化,这样就完成了多种指标的并行高通量检测。

Description

基于平面波导技术的高通量生物、化学、环境检测***和方法 技术领域
本申请涉及一种基于平面波导技术的高通量生物、化学、环境检测***和方法,可以用于生物,医学,化学,环境等技术领域在一次检测中同时并行检测多个待测指标。
背景技术
21世纪是科技快速发展的时代,尤其是化学,生物学,环境科学,医学和电子信息等多个学科的融合将得到蓬勃的发展。传感技术是电子信息学科的重要研究领域,是信息获取的重要手段。而生物,医学,化学,环境等技术领域发展离不开相应检测技术的改进和提高。因此,将传感技术和这些学科的实际联系起来开发新的高效,高通量的检测***也是目前这些领域的重要工作。
波导技术是基于光学技术上开发的一种新的检测方法,它利用光波在波导内以全反射方式传输时在传感器所处的界面产生消逝波,而这个消逝波可以激发传感器表面连接的探针上的荧光基团或探针捕获的目标分子荧光基团,同时结合产生荧光的变化,实现目标分子的定量检测。由于这个消逝波在传感器的表面的渗入深度只有几十到几百纳米,而溶液本体里面游离的荧光分子对检测结果几乎没有影响,可以减少溶液中杂质对检测结果的影响,因而该方法具有特异性强,灵敏度高,检测速度快等特点,在生物医学,环境检测,化学检测方面有着很强的使用前景。
波导技术平台在发展中有两个方向,第一种是光纤波导检测平台,其特征是使用简单,价格便宜,但其检测通量不高,一次只能检测一个靶标。为克服通量问题,目前已经有几种平面波导检测平台被开发出来用在同步高通量检测方面,即同时检测多个靶标。然而,但这些***都是基于点光源或线 光源开发的,在具体使用过程中为了实现平面区域的成像,必须使用移动部件来实现光源激发光在波导材料内部的扫描,这样就增加了***的复杂度,成本和同步检测的难度,无法实现低成本和高速检测的要求。同时,平台波导的绝大部分检测平台都是敞开体系,即样品溶液直接添加到传感器的上面,然后同时使用消逝波激发检测。这样做的好处是传感器设计简单,成本低,但使用过程中由于与空气接触,不仅实验结果的准确难以保证,而且检验的相互干扰也很严重。同时,在实际使用中,生物,化学样品溶液是需要做一些预处理或反应后才能使用荧光检测,而处理后再使用波导检测就没有太多必要了。
发明内容
本发明的目的在于提供一种基于平面波导技术的高通量生物、化学、环境检测***和方法,克服现有波导检测平台的技术(光纤和平面波导现有平台)并不能满足于生物,医学,化学,环境等技术领域的高通量,低成本,快速检测的要求。
为实现上述目的,本发明提供如下技术方案:
本申请实施例公开一种基于平面波导技术的高通量生物、化学、环境检测***,包括:
平面光波导传感器,包括相对的第一侧和第二侧,位于第一侧的表面固定有探针分子或含荧光基团的底物分子;
线性激发光源,可产生进入到平面光波导传感器的激发光,并在第一侧的表面产生消逝波;
芯片容器,与所述第一侧的表面之间围成一密封的待测溶液腔体;
成像检测装置,设置于平面光波导传感器的第二侧。
优选的,在上述的基于平面波导技术的高通量生物、化学、环境检测***中,所述成像检测装置和芯片容器分别设置于平面光波导传感器的上下两侧。
优选的,在上述的基于平面波导技术的高通量生物、化学、环境检测系 统中,还包括设置于线性激发光源和平面光波导传感器之间的光学挡板,光学挡板上开设有狭缝。
优选的,在上述的基于平面波导技术的高通量生物、化学、环境检测***中,所述狭缝尺寸满足:在第一侧的表面产生消逝波能够覆盖探针分子或含荧光基团的底物分子的所有区域。
优选的,在上述的基于平面波导技术的高通量生物、化学、环境检测***中,还包括控制芯片容器温度的加热装置。
优选的,在上述的基于平面波导技术的高通量生物、化学、环境检测***中,所述探针分子或含荧光基团的底物分子通过化学键、范德华力、氢键或疏水作用固定于平面光波导传感器的第一侧表面。
优选的,在上述的基于平面波导技术的高通量生物、化学、环境检测***中,平面光波导传感器的表面固定有针对不同待测核酸序列的多种核酸探针。
优选的,在上述的基于平面波导技术的高通量生物、化学、环境检测***中,平面光波导传感器的表面固定有待测目标生物、化学分子(组);
或能与待测分子(组)有效竞争结合溶液中抗体或核酸适体的分子(组);
或是直接和待测分子结合的抗体或核酸适体分子;
或是能够被待测分子降解或切割而失去荧光标记的底物分子。
优选的,在上述的基于平面波导技术的高通量生物、化学、环境检测***中,成像检测装置为PMT、CCD相机或CMOS相机。
相应的,本申请还公开了一种检测方法,包括:
待测溶液腔体内装有含有待测样品的反应溶液;
启动线性激发光源,在平面光波导传感器第一侧的表面产生消逝波;
反应溶液和待测样品发生的化学或生物反应在消逝波的区间内产生荧光的变化;
采集含荧光信号的图像,判断待测样品的浓度信息。
与现有技术相比,本发明的优点在于:
1、样品溶液内可以完成各种生物,化学反应,并产生荧光强度的变化供检测。
2、激发光源是线性区域光源,可以不用采用机械运动部件进行扫描,更加稳定可靠。
3、传感器表面可以固定多种探针或底物分子,溶液中的物质可以和表面的多种分子产生作用,并分别在特定探针区域产生荧光变化,这样就完成了多种指标的并行高通量检测。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1所示为本发明具体实施例中检测***的结构示意图。
图2所示为本发明具体实施例中平面光波导传感器的工作原理示意图;
图3所示为本发明应用实施例1中探针的排布示意图。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以 是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
结合图1所示,本申请实施例提供一种基于平面波导技术的高通量生物、化学、环境检测***,包括线性激发光源101、芯片容器107、平面光波导传感器109和成像检测装置111。
结合图2所示,平面光波导传感器109采用光密介质,包括玻璃、石英、高分子材料等,平面光波导传感器109包括相对的第一侧1091和第二侧1092,位于第一侧1091的表面固定有探针分子或含荧光基团的底物分子112(如图3)。
线性激发光源101采用激光或LED光源。线性激发光源101可产生进入到平面光波导传感器109的激发光,并在第一侧1092的表面产生消逝波。
芯片容器107与第一侧的表面之间围成一密封的待测溶液腔体1071。
在优选的实施例中,平面光波导传感器水平遮盖于芯片容器107的顶端。
成像检测装置111为PMT、CCD相机或CMOS相机,设置于平面光波导传感器109的第二侧。通过成像检测装置111可以获取平面光波导传感器的图像,通过图像中荧光信号可以得到待测物质或被扩增或待测物质导致的反应的浓度信息。
在一实施例中,成像检测装置111的前端还设置有透镜组110,该透镜组110包括光学滤光片,通过光学滤光片用来过滤到激发光的干扰
在一实施例中,还包括设置于线性激发光源101前端的透镜或透镜组102。
在一实施例中,还包括设置设置于线性激发光源101和平面光波导传感器109之间的光学挡板103,光学挡板103上开设有狭缝104。
挡板上的狭缝,用来产生特定长宽度(比如长方形)的线性透光。
在一实施例中,还包括底座106,芯片容器107和光学挡板103支撑于底座106上。
进一步地,底座106支撑于样品平台105上,样品平台105上可设置有控制芯片容器温度的加热装置。
在一实施例中,样品平台105还可以实现一轴或多轴移动。
操作时,首先在平面光波导传感器109的第一侧表面(优选为下表面)固定探针分子或是含荧光集团的底物分子112,其固定方法可以是化学键,范德华力,氢键,疏水作用等多种方式。
然后平面光波导传感器109和芯片容器107组成一个封闭的检测芯片,用来容纳含有待测样品的反应溶液108。
接着,将载有反应溶液的芯片容器107放入样品平台105上,启动温度控制程序,通过时间温度控制在检测芯片内反应溶液和待测样品发生化学或生物反应,包括但不限于:
(1)、核酸(DNA或RNA)的扩增,切割,修饰反应;
(2)、核酸和探针之间的杂交结合;
(3)、抗体抗原之间的免疫作用;
(4)、核酸适体和底物之间的相互作用;
(5)、芯片下表面固定的探针,待测物质,和同一个含荧光标记的抗体之间的间接竞争免疫反应;
(6)、待测物质直接或间接对固定在芯片下表面的含荧光底物的切割反应。
而这些反应会在平面光波导传感器109下表面消逝波的区间内产生荧光的变化。而不在消逝波区域内的目标分子没有被激发光激发则不产生荧光。
接下来,在反应的适当时机,或是反应结束后,打开线性激发光源101,让激发光通过狭缝从侧面以产生消逝波的临界角照射到平面光波导传感器109的测边,狭缝的大小设计以入射光进入波导材料后产生在底面全反射(消逝波)能够覆盖波导材料下表面存在探针的所有区域。
线性激发光源101打开的同时,在平面光波导传感器109下表面存在探针的所有区域会有激发光的消逝波,会激发该区域内荧光分子发光,而溶液本体内荧光分子不会发光产生干扰。这时,打开成像检测装置111,从上往下采集平面光波导传感器109上表面的图像,在图像中包含了探针或荧光底物区域的荧光信号。从该图像中结合原探针位置可以得到待测物质或被扩增或待测物质导致的反应的浓度信息。
最后按照时限设定的温度-时间-数据采集参数,我们可以获得若干张波导材料的荧光图片,对这些图片进行分析,我们就可以最终判断所测物质的浓度及其他信息(分析方法和判断方法现有技术已经成熟,本实施例不再赘述)。
综上所述,该检测***是低成本和可靠的,具有方便的控制,快速的读取和高的灵敏度,而且可以用于多种检测场景中。检测***还包括温度控制,采样同步及数据处理贮存部件。
应用实施例1-生物学检测(以核酸检测为例)
性传播疾病(STD)---由性传播细菌通过性行为传播,引起生殖泌尿道,甚至整个***感染的疾病称为性传播疾病,国内俗称性病。常见性传播疾病有好多种,其中最重要的是淋病,梅毒,解脲支原体,沙眼衣原体,肉芽肿荚膜杆菌等几种,在临床检验中需要分清病人所感染性病病原体的种类和严重程度,但常见培养或PCR方法无法满足高通量检测的要求。
结合图3所示,在本实施例中完成STD的多重检测可以概述为以下过程:
1、设计一对Cy5荧光标记的通用引物来同时扩增样品中的不同种类病原体的DNA,并针对不同不同病原体设计各自独特的探针做杂交。
Figure PCTCN2019099718-appb-000001
2、采集病患生殖器脓肿或渗出液,局部***抽出物,使用核酸提取设备提取样本中的核酸,并加入芯片容器107中,补充完引物(PCR引物为DNA 片段,细胞内DNA复制的引物为一段RNA链)、酶、dNTP和缓冲液,放入高通量生物、化学、环境检测***。
3、控制波导芯片的温度变化,完成经典聚合酶链式反应PCR循环温度变化,每一循环经过变性、退火和延伸。
并在PCR反应的循环的延伸步骤的最后打开线性激发光源101,按照消逝波的临界角照射平面光波导传感器109的侧面,在平面光波导传感器109下表面产生激发光的消逝波。此时平面光波导传感器109下表面的探针可以捕获(杂交反应)PCR扩增出的含荧光基团样品核酸拷贝,这些捕获的核酸拷贝被平面光波导传感器109下的消逝波诱导产生荧光,并被成像检测装置111收集。
4、分析收集到的荧光信号,判断探针对应的目标分子是否存在,强度多少。
5重复PCR和信号采集的循环35-40次,对单个探针对应的目标分子荧光强度和循环数作图,根据实时定量PCR的Ct判断方法确定对应的循环数,算出对应目标分子的起始浓度。
6、分析探针1-7对应的性传播疾病病原体在临床样本中的浓度,出检测报告。
由此可知,使用本发明的高通量生物、化学、环境检测***,可以并行测试样品中目标核酸分子的浓度,在生物医学方面有很强的应用前景。
应用实施例2-间接竞争免疫检测(以检测黄曲霉素为例)
我们需要选择一个间接竞争免疫模型,即使用荧光标记的黄曲霉素抗体(或核酸适体)作为检测试剂,在平面光波导传感器109的下表面固定被检测物种分子(在此为黄曲霉素分子),该荧光标记的抗体(或核酸适体)可与被检测样品中黄曲霉素以及固定在平面光波导传感器109下表面的黄曲霉素产生竞争性结合,即溶液中黄曲霉素多了,和平面光波导传感器109下表面固定化的黄曲霉素分子结合的抗体就会变少,表现出来就是荧光强度变小。
接下来,将待测样品加入芯片容器107,启动控温程序,反应到一定程度打开激发光源,在平面光波导传感器109下表面产生消逝波,消逝波激发该 区域内被捕获的黄曲霉素抗体产生荧光。这时,打开成像检测装置111,获得检测图片,在图片中分析探针区域的荧光强度,可以由此分析出样品中待测黄曲霉素的浓度。如果我们同时在平面光波导传感器109下表面固定其他霉素的分子,溶液中添加其他霉素的抗体(荧光标记),我们就可以同时检测待测样品中多种霉素的浓度,完成高通量检测。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种基于平面波导技术的高通量生物、化学、环境检测***,其特征在于,包括:
    平面光波导传感器,包括相对的第一侧和第二侧,位于第一侧的表面固定有探针分子或含荧光基团的底物分子;
    线性激发光源,可产生进入到平面光波导传感器的激发光,并在第一侧的表面产生消逝波;
    芯片容器,与所述第一侧的表面之间围成一密封的待测溶液腔体;
    成像检测装置,设置于平面光波导传感器的第二侧。
  2. 根据权利要求1所述的基于平面波导技术的高通量生物、化学、环境检测***,其特征在于,所述成像检测装置和芯片容器分别设置于平面光波导传感器的上下两侧。
  3. 根据权利要求1所述的基于平面波导技术的高通量生物、化学、环境检测***,其特征在于,还包括设置于线性激发光源和平面光波导传感器之间的光学挡板,光学挡板上开设有狭缝。
  4. 根据权利要求3所述的基于平面波导技术的高通量生物、化学、环境检测***,其特征在于,所述狭缝尺寸满足:在第一侧的表面产生消逝波能够覆盖探针分子或含荧光基团的底物分子的所有区域。
  5. 根据权利要求1所述的基于平面波导技术的高通量生物、化学、环境检测***,其特征在于,还包括控制芯片容器温度的加热装置。
  6. 根据权利要求1所述的基于平面波导技术的高通量生物、化学、环境检测***,其特征在于,所述探针分子或含荧光基团的底物分子通过化学键、范德华力、氢键或疏水作用固定于平面光波导传感器的第一侧表面。
  7. 根据权利要求1所述的基于平面波导技术的高通量生物、化学、环境检测***,其特征在于,平面光波导传感器的表面固定有针对不同待测核酸序列的多种核酸探针。
  8. 根据权利要求1所述的基于平面波导技术的高通量生物、化学、环境检测***,其特征在于,平面光波导传感器的表面固定有待测目标生物、化学分子(组);
    或能与待测分子(组)有效竞争结合溶液中抗体或核酸适体的分子(组);
    或是直接和待测分子结合的抗体或核酸适体分子;
    或是能够被待测分子降解或切割而失去荧光标记的底物分子。
  9. 根据权利要求1所述的基于平面波导技术的高通量生物、化学、环境检测***,其特征在于,成像检测装置为PMT、CCD相机或CMOS相机。
  10. 权利要求1至9任一所述***的检测方法,其特征在于,包括:
    待测溶液腔体内装有含有待测样品的反应溶液;
    启动线性激发光源,在平面光波导传感器第一侧的表面产生消逝波;
    反应溶液和待测样品发生的化学或生物反应在消逝波的区间内产生荧光的变化;
    采集含荧光信号的图像,判断待测样品的浓度信息。
PCT/CN2019/099718 2018-08-20 2019-08-08 基于平面波导技术的高通量生物、化学、环境检测***和方法 WO2020038235A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810947050.9A CN109085156A (zh) 2018-08-20 2018-08-20 基于平面波导技术的高通量生物、化学、环境检测***和方法
CN201810947050.9 2018-08-20

Publications (1)

Publication Number Publication Date
WO2020038235A1 true WO2020038235A1 (zh) 2020-02-27

Family

ID=64794019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099718 WO2020038235A1 (zh) 2018-08-20 2019-08-08 基于平面波导技术的高通量生物、化学、环境检测***和方法

Country Status (2)

Country Link
CN (1) CN109085156A (zh)
WO (1) WO2020038235A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109085156A (zh) * 2018-08-20 2018-12-25 苏州攀颂生物科技有限公司 基于平面波导技术的高通量生物、化学、环境检测***和方法
CN112964688B (zh) * 2021-05-18 2021-08-24 北京百奥纳芯生物科技有限公司 全内反射检测基因芯片杂交结果的方法
CN114034677B (zh) * 2021-11-09 2024-06-25 浙江摩达生物科技有限公司 一种变频生物传感器平台
CN117143716A (zh) * 2023-08-29 2023-12-01 杭州智灵龙生物科技有限公司 检测装置及其光导检测方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1424584A (zh) * 2002-12-30 2003-06-18 上海交通大学 磁分离型免疫反应光学检测装置及检测方法
CN101097204A (zh) * 2006-06-28 2008-01-02 张露 一种平行的多位点基因型实时定量检测技术
CN101688835A (zh) * 2007-06-28 2010-03-31 皇家飞利浦电子股份有限公司 用于光学检查湿润表面的微电子传感器件
CN101871881A (zh) * 2009-04-22 2010-10-27 中国科学院电子学研究所 一种检测溶液中蛋白质含量的方法
CN102165305A (zh) * 2008-09-25 2011-08-24 皇家飞利浦电子股份有限公司 检测***与方法
CN106568747A (zh) * 2017-01-20 2017-04-19 复拓科学仪器(苏州)有限公司 光波导荧光增强检测仪
CN109085156A (zh) * 2018-08-20 2018-12-25 苏州攀颂生物科技有限公司 基于平面波导技术的高通量生物、化学、环境检测***和方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5745231A (en) * 1995-06-12 1998-04-28 American Research Corporation Of Virginia Method of fluorescence analysis comprising evanescent wave excitation and out-of-plane photodetection
WO2001025759A1 (de) * 1999-10-01 2001-04-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und einrichtung zur bestimmung von substanzen, wie z.b. dna-sequenzen, in einer probe
CN101033485B (zh) * 2006-03-08 2012-01-04 裴道彩 对多种核酸分子进行平行实时定量检测的方法
CN100565190C (zh) * 2007-01-16 2009-12-02 李坚 生化物质传感方法和生物传感器光学传感结构
CN208705232U (zh) * 2018-08-20 2019-04-05 苏州攀颂生物科技有限公司 基于平面波导技术的高通量生物、化学、环境检测***

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1424584A (zh) * 2002-12-30 2003-06-18 上海交通大学 磁分离型免疫反应光学检测装置及检测方法
CN101097204A (zh) * 2006-06-28 2008-01-02 张露 一种平行的多位点基因型实时定量检测技术
CN101688835A (zh) * 2007-06-28 2010-03-31 皇家飞利浦电子股份有限公司 用于光学检查湿润表面的微电子传感器件
CN102165305A (zh) * 2008-09-25 2011-08-24 皇家飞利浦电子股份有限公司 检测***与方法
CN101871881A (zh) * 2009-04-22 2010-10-27 中国科学院电子学研究所 一种检测溶液中蛋白质含量的方法
CN106568747A (zh) * 2017-01-20 2017-04-19 复拓科学仪器(苏州)有限公司 光波导荧光增强检测仪
CN109085156A (zh) * 2018-08-20 2018-12-25 苏州攀颂生物科技有限公司 基于平面波导技术的高通量生物、化学、环境检测***和方法

Also Published As

Publication number Publication date
CN109085156A (zh) 2018-12-25

Similar Documents

Publication Publication Date Title
TWI772882B (zh) 自動化、基於雲端、定點照護(poc)的病原及抗體陣列檢測系統與方法
WO2020038235A1 (zh) 基于平面波导技术的高通量生物、化学、环境检测***和方法
Xu et al. Automatic smartphone-based microfluidic biosensor system at the point of care
Wang et al. The application of lateral flow immunoassay in point of care testing: a review
Contreras-Naranjo et al. Mobile phone-based microscopy, sensing, and diagnostics
Ong et al. Smartphones as mobile microbiological laboratories
Nath et al. Diagnosis of herpes simplex virus: laboratory and point-of-care techniques
KR101431843B1 (ko) 생체인식 분자에 접합된 마이크로비드를 사용하여 병원체를검출하는 방법
CN105051538A (zh) 用于检测生物状况的***和方法
JP2008514955A (ja) サンプル分析システムおよび方法
JP2008501124A (ja) マクロおよびミクロマトリックスの迅速な検出および定量方法および装置
US20170087551A1 (en) Method for amplification-free nucleic acid detection on optofluidic chips
Park Lateral flow immunoassay reader technologies for quantitative point-of-care testing
CN112074740A (zh) 成像测定法
Li et al. Achieving broad availability of SARS-CoV-2 detections via smartphone-based analysis
Sadique et al. Advanced high-throughput biosensor-based diagnostic approaches for detection of severe acute respiratory syndrome-coronavirus-2
CN201517993U (zh) 一种基于光声技术的微流控芯片检测装置
CN208705232U (zh) 基于平面波导技术的高通量生物、化学、环境检测***
Shan et al. Rapid on-site PEDV detection using homogeneous fluorescence resonance energy transfer-based ELISA
CN111537480B (zh) 基于单分子全内反射荧光成像技术的病毒快速检测方法
Pawar et al. Smartphone-based diagnostics for biosensing infectious human pathogens
Yin et al. Establishment of evanescent wave fiber-optic immunosensor method for detection bluetongue virus
Chauke et al. Advances in the detection and diagnosis of Tuberculosis using optical-based devices
Mohapatra et al. Development of optical biosensor for diagnosis of microbial pathogens
Zhang et al. Smartphone-based clinical diagnostics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19851364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19851364

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/09/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19851364

Country of ref document: EP

Kind code of ref document: A1