WO2020038156A1 - 驱动电路及扩香设备 - Google Patents

驱动电路及扩香设备 Download PDF

Info

Publication number
WO2020038156A1
WO2020038156A1 PCT/CN2019/095974 CN2019095974W WO2020038156A1 WO 2020038156 A1 WO2020038156 A1 WO 2020038156A1 CN 2019095974 W CN2019095974 W CN 2019095974W WO 2020038156 A1 WO2020038156 A1 WO 2020038156A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
energy storage
resistor
grounded
capacitor
Prior art date
Application number
PCT/CN2019/095974
Other languages
English (en)
French (fr)
Inventor
高晓扬
Original Assignee
广州驰扬电气机械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州驰扬电气机械有限公司 filed Critical 广州驰扬电气机械有限公司
Publication of WO2020038156A1 publication Critical patent/WO2020038156A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/14Disinfection, sterilisation or deodorisation of air using sprayed or atomised substances including air-liquid contact processes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter

Definitions

  • the invention relates to the technical field of circuits, and in particular to a driving circuit and a diffuser device having the driving circuit.
  • the essential oil atomizing and diffusing device supplies compressed gas to the atomizing head through an air pump (load) to atomize the essential oil.
  • the air pump generally works intermittently, and the air pump will start and stop tens of thousands of times during the service life of the diffuser. Because the working voltage of the air pump is relatively high (about 5V), if the battery is used for power supply, if it is directly boosted from 3 AA batteries to 5V, the working current of the battery will be relatively large and the heat will be high. Moreover, as the internal resistance of the dry battery becomes larger and larger, the discharge current becomes smaller and smaller, so the dry battery cannot provide a large current. After the battery is used for a period of time, it can no longer provide a stable working current for the air pump motor.
  • the battery utilization rate is about 50%, which means that the battery can not be used again after half of the use, resulting in low battery energy utilization and increased
  • the cost of using the battery can not provide a stable and stable working current for the air pump.
  • the boost chip is used to boost the dry battery.
  • the boost chip boosts the low voltage of the dry battery to 5V. It is difficult for the boost chip to cross such a large voltage and boost it, even if the boost chip boosts the voltage of the dry battery. Going up, it can't provide enough current. Therefore, it is necessary to design a driving circuit specifically for a diffuser device.
  • the present invention provides a driving circuit, which has the advantages of energy saving and stability, and solves the problems of low energy utilization rate and unstable working current of the battery of the diffuser device.
  • the present invention provides the following technical solution: a driving circuit for boosting a power source and supplying power to a load, the driving circuit including a first stage boosting the power source Voltage storage circuit, an energy storage circuit receiving the output of the first-stage booster circuit, and a second-stage booster circuit for boosting the energy-storage circuit; after the power source is boosted by the first-stage booster circuit Output to the energy storage circuit and charge the energy storage circuit; the second-stage booster circuit boosts the voltage of the energy storage circuit, so that the energy storage circuit supplies power to the load.
  • the first-stage booster circuit, the energy storage circuit, and the second-stage booster circuit are all unidirectional circuits.
  • the second-stage booster circuit is turned on after the power of the energy storage circuit reaches a preset power or the voltage reaches a preset voltage, otherwise it is turned off.
  • the driving circuit further includes a switching circuit that controls its on / off by a control signal CTRL; one end of the switching circuit is connected to the output terminal of the energy storage circuit, and the other end of the switching circuit is connected to an The input terminal of the second-stage booster circuit; the switch circuit controls the on-off of the second-stage booster circuit and the energy storage circuit.
  • the switch circuit controls the second-stage booster circuit to be turned on with the energy storage circuit, otherwise the second-stage booster circuit is disconnected from the energy storage circuit.
  • the energy storage circuit includes a super capacitor C1 or a rechargeable battery, and the power source is a dry battery.
  • the energy storage circuit further includes a diode D4 and a resistor R1; the anode of the diode D4 is connected to the output terminal of the first-stage booster circuit, and the anode is connected to one end of the resistor R1; One end is connected to the positive electrode of the super capacitor C1, and the connection point is also connected to the second-stage booster circuit; the negative electrode of the super capacitor C1 is grounded.
  • the first-stage boosting circuit includes:
  • Non-polar capacitor C5 one end of which is connected to the positive pole of capacitor C3, and the other end is grounded;
  • One end of the inductor L1 is connected to the positive electrode of the capacitor C3;
  • Boost chip one, whose input end is connected to the other end of the inductor L1, and its ground end is grounded;
  • Non-polar capacitor C4 one end of which is connected to the positive pole of capacitor C2, and the other end is grounded;
  • the output terminal of the first boost chip, the positive electrode of the capacitor C2, and one terminal of the capacitor C4 are all connected, and the connection point is connected to the energy storage circuit.
  • the driving circuit further includes a switching circuit that controls its on / off by a control signal CTRL; one end of the switching circuit is connected to the output terminal of the energy storage circuit, and the other end of the switching circuit is connected to an The input terminal of the second-stage booster circuit; the switch circuit is turned on after the power of the energy storage circuit reaches a preset power, otherwise it is turned off;
  • the switch circuit includes:
  • the source of the P-channel MOS transistor Q2 is connected to the positive electrode of the super capacitor C1, and the drain is connected to the input terminal of the second-stage booster;
  • resistor R3 One end of the resistor R3 is connected to the source of the MOS transistor Q2, and the other end is connected to the gate of the MOS transistor Q2;
  • One end of the resistor R5 is connected to the gate of the MOS transistor Q2, and the other end is connected to the control signal CTRL.
  • the second-stage boosting circuit includes:
  • Non-polar capacitor C6 one end of which is connected to the drain of MOS tube Q2, and the other end is grounded;
  • Non-polar capacitor C7 one end of which is connected to the drain of MOS transistor Q2, and the other end is grounded;
  • Inductor L2 one end of which is connected to the drain of MOS transistor Q2;
  • Boost chip two whose conversion pin SW is connected to the other end of the inductor L2, the ground pin GND is grounded, and the chip selection terminal CE is connected to the drain of the MOS transistor Q2;
  • the diode D1 has its anode connected to the other end of the inductor L2;
  • One end of the resistor R21 is connected to the negative electrode of the diode D1, and the other end is connected to the output pin OUT of the boost chip two;
  • Non-polar capacitor C19 one end of which is connected to the other end of resistor R21, and the other end is grounded;
  • Resistor R22 one end of which is connected to one end of resistor R21;
  • One end of the resistor R23 is connected to the other end of the resistor R22 and the connection point is also connected to the feedback pin FB of the boost chip two, and the other end is grounded;
  • Non-polar capacitor C8 one end of which is connected to the positive pole of capacitor C9, and the other end is grounded;
  • the anode of the diode D1, one end of the resistor R21, one end of the resistor R22, the anode of the capacitor C9, and one end of the capacitor C8 are connected and the connection point is connected to the anode of the load, and the anode of the load is grounded.
  • the driving circuit further includes a switching circuit that controls its on / off by a control signal CTRL; one end of the switching circuit is connected to the output terminal of the energy storage circuit, and the other end of the switching circuit is connected to an The input terminal of the second-stage booster circuit; the switch circuit controls the on-off of the second-stage booster circuit and the energy storage circuit;
  • the energy storage circuit includes a super capacitor C10, a diode D3, and a resistor R2.
  • the anode of the diode D3 is connected to the output terminal of the first-stage booster circuit, and the anode is connected to one end of the resistor R2.
  • the other end of the resistor R2 is connected to the super capacitor.
  • the positive electrode of C10 is connected, and the connection point is also connected to one end of the switching circuit; the negative electrode of the super capacitor C10 is grounded.
  • the switch circuit includes:
  • the source of the P-channel MOS transistor Q1 is connected to the positive electrode of the super capacitor C10, and the drain is connected to the input terminal of the second-stage booster;
  • resistor R4 One end of the resistor R4 is connected to the source of the MOS transistor Q1, and the other end is connected to the gate of the MOS transistor Q1;
  • One end of the resistor R7 is connected to the gate of the MOS transistor Q1, and the other end is connected to the control signal CTRL.
  • the first-stage boosting circuit includes:
  • Non-polar capacitor C14 one end of which is connected to the positive pole of the power supply and the other end is grounded;
  • the source of the MOS transistor Q3 is grounded, the drain is connected to the other end of the inductor L3, and the gate is connected to a signal S1;
  • the diode D2 has its anode connected to the source of the MOS transistor Q3;
  • Non-polar capacitor C15 one end of which is connected to the negative electrode of diode D2, and the other end is grounded;
  • the signal S1 is a PWM signal.
  • the second-stage boosting circuit includes:
  • Inductor L4 one end of which is connected to the drain of MOS transistor Q1;
  • the source of the MOS transistor Q4 is grounded, the drain is connected to the other end of the inductor L4, and the gate is connected to a signal S2;
  • the diode D5 has its anode connected to the drain of the MOS transistor Q4;
  • Non-polar capacitor C16 one end of which is connected to the negative electrode of diode D5, and the other end is grounded;
  • One end of the resistor R6 is connected to the negative electrode of the diode D5, and the other end outputs an output signal Detect;
  • Resistor R8 one end of which is connected to resistor R6, and the other end is grounded;
  • the signal S2 is also a PWM signal.
  • the driving circuit further includes a third-stage booster circuit and a secondary energy storage circuit
  • the secondary energy-storage circuit is connected to the second-stage booster circuit
  • the third-stage booster circuit A voltage circuit is connected to the secondary energy storage circuit, and after the electric energy of the energy storage circuit is boosted by the second-stage booster circuit, it is output to the secondary energy storage circuit and the secondary energy storage circuit
  • the third-stage booster circuit boosts the voltage of the secondary energy storage circuit, so that the secondary energy storage circuit supplies power to the load.
  • the voltage of the power supply is 1.4-1.8V
  • the first-stage booster circuit boosts the voltage of the power supply to 2.6-3.4V
  • the second-stage booster circuit The voltage is boosted to 4.8-6V.
  • the capacitance of the super capacitor C1 is 2F-50F
  • the polar capacitors C2, C3, and C9 use 47uF / 16V, 10uF / 16V, and 1000uF / 16V capacitors, and the non-polar capacitors C4, C5, and C7.
  • Both C8 and C8 use 100nF capacitors, and non-polar capacitors C6 and C19 use 10uF and 0.1uF capacitors respectively;
  • the resistance values of resistors R1, R21, R22, and R23 are 10 ⁇ , 39K ⁇ , 1K ⁇ , 100R, 733K ⁇ , and 100K ⁇ ;
  • diode D1 And D4 use Schottky diode 1N5819 and Schottky diode SL14, respectively;
  • the inductances of the inductors L1 and L2 are 100H and 470H, respectively;
  • the boost chip one uses a boost chip LY1035, and the boost chip two uses a boost Chip YB1421.
  • the capacitance of the super capacitor C10 is 2F-50F.
  • the polar capacitors C13, C11, and C12 use 47uF / 16V, 1400uF / 16V, and 1000uF / 16V capacitors, and the non-polar capacitors C14, C15, and C16.
  • resistors R2, R4, R7, R6, and R8 are 10 ⁇ , 39K ⁇ , 1K ⁇ , 2M ⁇ , and 500K ⁇ respectively;
  • diodes D2 and D5 use Schottky diodes 1N5819;
  • diode D3 uses Schottky diodes SL14;
  • the inductance of the inductors L3 and L4 are 1.5mH;
  • the MOS transistors Q3 and Q4 use the transistor AO3400.
  • a diffuser device which includes an air pump, an atomizing device, and a liquid suction tube.
  • the atomizing device is connected to a liquid storage bottle through the liquid suction tube.
  • the air pump is connected, and the air pump provides air flow to the atomizing device, and the atomizing device mixes and atomizes the air flow with the liquid sucked by the pipette, wherein the diffuser device further includes the foregoing
  • the driving circuit according to any one of the embodiments, the driving circuit is connected to the air pump, the power source is a dry battery, and the power source supplies power to the air pump through the driving circuit.
  • the power source charges the energy storage circuit through the first-stage booster circuit.
  • the energy circuit supplies power to the air pump after being boosted by the second-stage booster circuit.
  • a first-stage booster circuit and a second-stage booster circuit are provided to boost a power source, and an energy storage circuit is provided between the first-stage booster circuit and the second-stage booster circuit, so that The power source charges the energy storage circuit through a first-stage booster circuit, and because the step-up amplitude is small, the operating current of the power source is also small, which reduces the heating of the power source and improves the energy efficiency of the power source.
  • the second-stage booster circuit further boosts the energy storage circuit a second time, which can provide sufficient voltage to the load and ensure the stability of the current discharged by the energy storage circuit.
  • the second stage boost does not need to boost across a larger voltage, so it is easy to supply the load with a large transient current. Because of this, the driving circuit of the present invention is very suitable for products that work intermittently, such as diffuser equipment, and can also be used in other similar products to improve the energy efficiency of the product and improve the stability of the product work.
  • FIG. 1 is a schematic block diagram of a driving circuit according to Embodiment 1 of the present invention.
  • FIG. 2 is a circuit diagram of a driving circuit according to Embodiment 1 of the present invention.
  • FIG. 3 is a circuit diagram of the energy storage circuit in FIG. 2;
  • FIG. 4 is a circuit diagram of a first-stage booster circuit in FIG. 2;
  • FIG. 5 is a circuit diagram of the switch circuit in FIG. 2;
  • FIG. 6 is a circuit diagram of a second-stage booster circuit in FIG. 2;
  • FIG. 7 is a circuit diagram of a driving circuit according to Embodiment 2 of the present invention.
  • FIG. 8 is a circuit diagram of the energy storage circuit in FIG. 7;
  • FIG. 9 is a circuit diagram of a first-stage booster circuit in FIG. 7;
  • FIG. 10 is a circuit diagram of a switching circuit in FIG. 7;
  • FIG. 11 is a circuit diagram of a second-stage booster circuit in FIG. 7.
  • the driving circuit of this embodiment is used to stabilize the current boost power supply and supply power to the load.
  • the driving circuit includes a first-stage booster circuit, an energy storage circuit, a switch circuit, and a second-stage booster circuit.
  • the power source is a dry battery
  • the load is an air pump of the essential oil atomizing and diffusing device.
  • the power source may also be selected from other portable power sources such as batteries, and the load may be other intermittently operated equipment.
  • the input terminal of the first stage booster circuit is connected to a power source and amplifies the voltage of the power source, and the output terminal is connected to the input terminal of the energy storage circuit and charges the energy storage circuit.
  • the input end of the second-stage booster circuit is connected to the output end of the energy storage circuit through the switch circuit and amplifies the voltage of the output end of the energy-storage circuit.
  • the output end of the second-stage booster circuit is electrically connected to the load and supplies power to the load.
  • the first-stage booster circuit, the energy storage circuit, and the second-stage booster circuit are all unidirectional circuits. After the power is boosted by the first-stage booster circuit, it is output to the energy storage circuit and charges the energy storage circuit.
  • the second-stage booster circuit When the power of the energy storage circuit reaches the preset power, the second-stage booster circuit is turned on and boosts the voltage of the energy storage circuit, so that the energy storage circuit supplies power to the load.
  • the “energy storage circuit supplies power to the load” referred to here may be direct power supply or indirect power supply.
  • the driving circuit may further include a third-stage booster circuit (not shown) and a secondary energy storage circuit.
  • the secondary energy storage circuit is connected to the second-stage booster circuit, and the third-stage booster circuit
  • the voltage storage circuit is connected to the secondary storage circuit. After the energy of the storage circuit is boosted by the second-stage booster circuit, it is output to the secondary storage circuit and charges the secondary storage circuit.
  • the circuit boosts the voltage of the energy storage circuit, so that the secondary energy storage circuit supplies power to the load.
  • the energy storage circuit indirectly supplies power to the load, it is still covered by the aforementioned protection range of “enabling the energy storage circuit to supply power to the load”.
  • the energy storage circuit includes a super capacitor C1, a diode D4, and a resistor R1.
  • the anode of the diode D4 is connected to the output terminal of the first-stage booster circuit, and the anode is connected to one end of the resistor R1.
  • the other end of the resistor R1 is connected to the positive electrode of the super capacitor C1, and the connection point is also connected to the input end of the second-stage booster circuit, and the voltage of the connection point is VCC_CAP.
  • the negative terminal of the super capacitor C1 is grounded. Among them, the voltage VCC_CAP is 1.8V-5.5V.
  • the capacitance of the polar capacitor C1 is 2F-50F
  • the resistance of the resistor R1 is 10 ⁇
  • the diode D4 uses a Schottky diode SL14.
  • the function of the energy storage circuit is mainly energy storage, that is, the energy storage circuit is a circuit that can be charged and discharged.
  • the super capacitor is selected for charging and discharging, and since the super capacitor can be charged and discharged hundreds of thousands of times, the power source can be greatly protected.
  • the resistance in the energy storage circuit can be adjusted to limit the charging current.
  • the diode can prevent the current from flowing back, avoiding the current flowing back from the energy storage circuit due to a long time without power, and reducing the energy storage required when the drive circuit is first connected to the power time.
  • a rechargeable battery such as a lithium battery can be used to replace the super capacitor C1, that is, the first-stage booster circuit first boosts the power of the power source to charge the rechargeable battery, and the rechargeable battery passes the second The stage boost circuit supplies power to the load after boosting.
  • the first-stage booster circuit includes an inductor L1, a booster chip 1, polar capacitors C2 and C3, and non-polar capacitors C4 and C5.
  • the positive terminal of the capacitor C3 is connected to the positive terminal of the power supply, and the negative terminal is grounded.
  • One end of the capacitor C5 is connected to the positive electrode of the capacitor C3, and the other end is grounded.
  • One end of the inductor L1 is connected to the positive electrode of the capacitor C3, and the input end of the first boost chip is connected to the other end of the inductor L1.
  • the ground terminal of the first boost chip is grounded, and the output terminal is connected to the positive electrode of the capacitor C2.
  • the negative electrode of capacitor C2 is grounded, the positive electrode is also connected to one end of capacitor C4, and the other end of capacitor C4 is grounded.
  • the output terminal of the first boosting chip, the positive electrode of the capacitor C2, and the one end of the capacitor C4 are connected, and the connection point is the output terminal of the first-stage booster circuit, and is connected to the positive electrode of the diode D4.
  • the inductance of the inductor L1 is 100H.
  • the boost chip uses a boost chip LY1035, and the polar capacitors C2 and C3 use 47uF / 16V and 10uF / 16V capacitors, respectively.
  • the non-polar capacitors C4 and C5 are both Use a 100nF capacitor.
  • the first-stage boosting circuit boosts the voltage of the power supply, and the output end is connected to the energy storage circuit, so that the power supply charges the energy storage circuit through the first-stage boosting circuit.
  • the unidirectionality of the diode can be used to charge the super capacitor, which can stabilize the current and save energy, and improve the energy efficiency of the power supply.
  • the current of the first stage booster circuit is relatively small. Even when the dry battery is almost depleted (the current becomes smaller), the dry battery can still charge the super capacitor, which can greatly improve the utilization rate of the power of the power supply.
  • the energy utilization rate of the battery can be increased to more than 80%, which can greatly improve the energy utilization rate of the battery.
  • the switch circuit is controlled by a control signal CTRL, one end of the switch circuit is connected to the output end of the energy storage circuit, and the other end of the switch circuit is connected to the input end of the second-stage booster circuit.
  • the switch circuit controls the on and off of the second-stage booster circuit and the energy storage circuit. Specifically, the switch circuit is turned on after the power of the energy storage circuit reaches a preset amount, so that the second-stage booster circuit and the energy-storage circuit are turned on, otherwise the switch circuit is turned off, and the second-stage booster circuit and the energy-storage circuit are turned on. The circuit is open.
  • the switching circuit is turned on after the voltage of the energy storage circuit reaches a preset voltage, so that the second-stage booster circuit is turned on with the energy-storage circuit, otherwise the switch circuit is turned off and the second-stage booster circuit is turned on. Disconnect from the energy storage circuit.
  • the control signal CTRL controls the switch circuit to be turned on when the load is operating, thereby turning on the second-stage booster circuit and the energy storage circuit. When the load is stopped, the control signal CTRL controls the switch circuit to be off, thereby Disconnect the second-stage booster circuit from the energy storage circuit.
  • the switching circuit includes a P-channel MOS transistor Q2, a resistor R3, and a resistor R5.
  • the source of the MOS tube Q2 is connected to the positive electrode of the super capacitor C1, and the drain of the MOS tube Q2 is connected to the input terminal of the second step-up.
  • One end of the resistor R3 is connected to the source of the MOS tube Q2, the other end is connected to the gate of the MOS tube Q2, one end of the resistor R5 is connected to the gate of the MOS tube Q2, and the other end is connected to the control pin of the MCU MCU, that is, Access control signal CTRL.
  • the MCU MCU control pin outputs a high level to close the switching circuit, and outputs a low level to open the switching circuit, thereby controlling the connection between the energy storage circuit and the second-stage booster circuit.
  • the resistance value of the resistor R3 is 39K ⁇
  • the resistance value of the resistor R5 is 1K ⁇ .
  • the second stage boost circuit includes inductor L2, boost chip two, diode D1, non-polar capacitor C19, resistor R21, resistor R22, resistor R23, polar capacitor C9, non-polar capacitor C6, C7, C8.
  • One end of the capacitors C6 and C7 is connected to the drain of the MOS tube Q2, and the other ends are grounded.
  • One end of the inductor L2 is connected to the drain of the MOS tube Q2, and the conversion pin SW of the second boost chip is connected to the other end of the inductor L2.
  • the ground pin GND of the second boost chip is grounded, and the chip selection terminal CE is connected to the drain of the MOS tube Q2.
  • the anode of the diode D1 is connected to the other end of the inductor L2.
  • One end of the resistor R21 is connected to the negative electrode of the diode D1, and the other end is connected to the output pin OUT of the second boost chip.
  • One end of the non-polarity capacitor C19 is connected to the other end of the resistor R21, the other end is grounded, and one end of the resistor R22 is connected to one end of the resistor R21.
  • One end of the resistor R23 is connected to the other end of the resistor R22 and the connection point is also connected to the feedback pin FB of the second boost chip, and the other end is grounded.
  • the positive terminal of the capacitor C9 is connected to one end of the resistor R22, and the negative terminal is grounded.
  • One end of the capacitor C8 is connected to the positive electrode of the capacitor C9, and the other end is grounded.
  • the anode of the diode D1 one end of the resistor R21, one end of the resistor R22, the anode of the capacitor C9, and one end of the capacitor C8 are connected and the connection point is connected to the anode of the load, and the anode of the load is grounded.
  • the inductance of inductor L2 is 470H.
  • Booster chip two uses booster chip YB1421, diode D1 uses Schottky diode 1N5819, and the resistance values of resistors R21, R22, and R23 are 100R, 733K ⁇ , and 100K ⁇ , respectively.
  • the non-polar capacitors C19, C6, C7, and C8 have a capacitance of 0.1uF, 10uF, 100nF, and 100nF, respectively, and the polar capacitor C9 uses a 1000uF / 16V capacitor.
  • the super capacitor When the switching circuit is turned on, the super capacitor supplies power to the load through the second-stage booster circuit. Because of the characteristics of the super capacitor, the super capacitor can be used as a temporary current source for the second-stage booster circuit and power the load.
  • the second-stage booster circuit can provide sufficient voltage to the load when charging of the energy storage circuit is completed (when the energy storage amount reaches a preset amount), and ensure the stability of the current discharged by the energy storage circuit.
  • the second stage boost does not need to boost across a larger voltage, so it is easy to supply the load with a large transient current.
  • the voltage of the power supply is 1.4V-1.8V
  • the first stage booster circuit boosts the voltage of the power supply to about 2.6V-3.4V
  • the second stage booster circuit boosts the voltage of the energy storage circuit.
  • the selection of the capacitors, resistors, inductors, boost chips, diodes, and MOS transistors in this embodiment can be changed according to actual needs.
  • the driving circuit of this embodiment is similar to that of Embodiment 1, except that the components of the first stage booster circuit, the energy storage circuit, the switch circuit, and the second stage booster circuit in this embodiment are selected and The connection relationship is different. Both the first-stage booster circuit and the second-stage booster circuit use Boost circuits. The output of the second-stage booster circuit needs to use a single-chip MCU to detect the voltage to ensure a constant output voltage.
  • the energy storage circuit includes a super capacitor C10, a diode D3, and a resistor R2.
  • the anode of the diode D3 is connected to the output of the first stage booster circuit, and the anode is connected to the battery R2; the other end of the resistor R2 is connected to the anode of the super capacitor C10 and the connection point is also connected to one end of the switching circuit; The other end is grounded.
  • the capacitance of the super capacitor C10 is 2F-50F
  • the diode D3 is a Schottky diode SL14
  • the resistance value of the resistor R2 is 10 ⁇ .
  • the first-stage booster circuit includes an inductor L3, a MOS tube Q3, polar capacitors C13 and C11, non-polar capacitors C14 and C15, and a diode D2.
  • the positive pole of the polar capacitor C13 is connected to the positive pole of the power source BT2, and the negative pole is grounded.
  • One end of the non-polarity capacitor C14 is connected to the positive pole of the power source BT2, and the other end is grounded.
  • One end of the inductor L3 is connected to the positive pole of the power source BT2.
  • the source of the MOS tube Q3 is grounded, the drain is connected to the other end of the inductor L3, and the gate is connected to a signal S1.
  • the anode of the diode D2 is connected to the source of the MOS transistor Q3.
  • the positive electrode of the polar capacitor C11 is connected to the negative electrode of the diode D2, and the negative electrode of the capacitor C11 is grounded.
  • One end of the non-polarity capacitor C15 is connected to the negative electrode of the diode, and the other end is grounded.
  • the inductance of the inductor L3 is 1.5 mH, and the MOS transistor Q3 uses a transistor AO3400.
  • Capacitors C13 and C11 use 47uF / 16V and 1400uF / 16V capacitors, and capacitors C14 and C15 use 100nF capacitors.
  • the diode D2 is a Schottky diode 1N5819.
  • the MCU of the one-chip computer controls the switch of the MOS tube Q3 by outputting the signal S1 (PWM signal) to realize the boost of the boost circuit.
  • the switching circuit includes a P-channel MOS transistor Q1, a resistor R4, and a resistor R7.
  • the source of the MOS tube Q1 is connected to the positive electrode of the super capacitor C10, and the drain is connected to the input terminal of the second step-up.
  • One end of the resistor R4 is connected to the source of the MOS transistor Q1, and the other end is connected to the gate of the MOS transistor Q1.
  • One end of the resistor R7 is connected to the gate of the MOS tube Q1, and the other end is connected to the control pin of the MCU, that is, the control signal CTRL.
  • the control pin of the one-chip computer MCU outputs a high level to close the switching circuit, and a low level to open the switching circuit, thereby controlling the connection between the energy storage circuit and the second-stage booster circuit.
  • the resistance values of the resistors R4 and R7 are 39K ⁇ and 1K ⁇ , respectively.
  • the second-stage boosting circuit includes an inductor L4, a MOS tube Q4, a diode D5, a stepped capacitor C12, a non-polarized capacitor C16, a resistor R6, and a resistor R8.
  • One end of the inductor L4 is connected to the drain of the MOS transistor Q1.
  • the source of the MOS tube Q4 is grounded, the drain is connected to the other end of the inductor L4, and the gate is connected to a signal S2.
  • the anode of the diode D5 is connected to the drain of the MOS transistor Q4.
  • the positive pole of the polar capacitor C12 is connected to the negative pole of the diode D5, and its negative pole is grounded.
  • Non-polar capacitor C16 has one end connected to the negative electrode of diode D5 and the other end to ground.
  • One end of the resistor R6 is connected to the negative electrode of the diode D5, and the other end outputs an output signal Detect.
  • One end of the resistor R8 is connected to the resistor R6, and the other end is grounded.
  • the inductance of the inductor L4 is 1.5 mH
  • the MOS transistor Q4 uses a transistor AO3400.
  • the diode D5 uses a Schottky diode 1N5819
  • the capacitor C12 uses a 1000uF / 16V capacitor
  • the capacitor C16 uses a 100nF capacitor.
  • the resistance values of the resistors R6 and R8 are 2M ⁇ and 500K ⁇ , respectively.
  • the MCU of the one-chip computer controls the switch by outputting the signal S2 (PWM signal) to the MOS tube Q4 to realize the boost of the Boost circuit.
  • the resistors R8 and R6 divide the voltage to provide a voltage signal to the microcontroller MCU, so that the microcontroller MCU adjusts the frequency of the PWM signal according to the voltage signal to achieve a constant voltage output.
  • the MCU MCU outputs two PWM signals (signals S1 and S2) to achieve the boost of the two Boost circuits and controls the energy storage by the control signal CTRL
  • the circuit discharges the second step-up voltage and outputs a constant voltage by detecting the PWM frequency of the voltage debugging signal S2 of the detection signal Detect.
  • the signal S2 outputs a low voltage
  • the control signal CTRL outputs a high level to reduce losses. Because the step-up amplitude of each stage is small, the working current of the power supply is also small, which reduces the heating of the power supply and improves the energy efficiency of the power supply.
  • the supercapacitor supplies power to the load through a second-stage booster circuit.
  • the power supply current is unstable, it can stabilize the current and ensure the stability of the load current.
  • the supercapacitor can be charged and discharged hundreds of thousands of times. Conducive to protecting the power supply. After the power supply is used for a period of time, even if the working current of the power supply is reduced, the super capacitor can still be charged, and the power supply can be greatly used.
  • the utilization rate of the battery can be increased to more than 80%. The earth improves the energy efficiency of dry batteries.
  • This embodiment is different from Embodiment 1 in that this embodiment does not require a boost chip, which can simplify the circuit, improve the stability of the circuit, and increase the service life of the driving circuit.
  • An embodiment of the present invention further provides a diffuser device, which includes an air pump, an atomizing device, and a liquid suction tube.
  • the atomizing device is connected to the liquid storage bottle through the liquid suction tube, the atomizing device is also connected to the air pump, and the air pump is directed to the atomizing device.
  • the atomizing device mixes and atomizes the airflow with the liquid sucked by the pipette.
  • the diffuser device also includes the driving circuit described in any of the above embodiments.
  • the driving circuit is connected to the air pump.
  • the power source is a battery.
  • the power source passes the driving circuit. Power the air pump.
  • the driving circuit is electrically connected to the air pump motor and supplies power to the air pump motor.
  • the power source can be one No.
  • the reservoir can be used to hold essential oils.
  • the specific structure and working principle of the diffuser device can refer to the Chinese invention patent with the patent number 201620565323.X and the patent name of a diffuser device, or the Chinese invention patent with the patent number 201420440948.4 and the patent name of the diffuser device. I will not repeat them here.
  • the air pump works intermittently.
  • the atomization device stops atomizing.
  • the power supply charges the energy storage circuit through the first-stage booster circuit.
  • the atomizing device starts to atomize.
  • the energy storage circuit supplies power to the air pump after being boosted by the second-stage booster circuit.
  • the driving circuit of this embodiment has the following advantages:
  • the driving circuit of this embodiment boosts a power source by providing a first-stage booster circuit and a second-stage booster circuit, and a super-supervisor is provided between the first-stage booster circuit and the second-stage booster circuit.
  • the capacitor enables the power supply to charge the super capacitor through the first step-up circuit, and because the step-up amplitude is small, the working current of the power supply is also small, which reduces the heating of the power supply and improves the energy efficiency of the power supply.
  • a switching circuit is provided to disconnect the energy storage circuit from the second-stage booster circuit, so that the super capacitor can better store energy.
  • the resistance in the energy storage circuit can be adjusted to limit the charging current.
  • the diode can prevent the current from flowing back, avoiding the current flowing back from the energy storage circuit due to a long time without power, and reducing the energy storage required when the drive circuit is connected to the power for the first time. time.
  • the supercapacitor supplies power to the load through the second-stage booster circuit.
  • the power supply current is unstable, it can play a role in stabilizing the current to ensure the stability of the load current, and the supercapacitor can Charge and discharge hundreds of thousands of times, which is beneficial to protecting the power supply.
  • the current of the first stage booster circuit is relatively small. Even when the dry battery is almost depleted (the current becomes smaller), the dry battery can still charge the super capacitor, which can greatly improve the utilization rate of the power of the power supply. When the battery is used as the power source, the energy utilization rate of the battery can be increased to more than 80%, which can greatly improve the energy utilization rate of the battery.
  • the second-stage booster circuit can provide sufficient voltage to the load when charging of the energy storage circuit is completed (when the energy storage amount reaches a preset amount), and ensure the stability of the current discharged by the energy storage circuit.
  • the second stage boost does not need to boost across a larger voltage, so it is easy to supply the load with a large transient current.
  • the driving circuit of this embodiment is very suitable for products that work intermittently, such as diffuser equipment, and can also be used in other similar products to improve the energy efficiency of the product and improve the stability of the product work.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明公开了一种驱动电路及扩香设备,所述驱动电路用于对电源升压并向负载供电,其包括对所述电源进行升压的第一级升压电路、接收所述第一级升压电路输出的蓄能电路、对所述蓄能电路进行升压的第二级升压电路;所述电源经过所述第一级升压电路升压后,输出到所述蓄能电路并对所述蓄能电路进行充电;所述第二级升压电路对所述蓄能电路的电压进行升压,使所述蓄能电路给所述负载供电。本发明通过设置第一级升压电路和第二级升压电路对电源进行升压,并在第一级升压电路和第二级升压电路之间设置超级电容,使电源通过第一级升压电路对超级电容进行充电,且由于升压幅度较小,电源的工作电流也较小,减少电源发热,提高电源的能源利用率。

Description

驱动电路及扩香设备 技术领域
本发明涉及电路技术领域,具体为一种驱动电路及具有该驱动电路的扩香设备。
背景技术
精油雾化扩香设备通过气泵(负载)向雾化头供压缩气体,使精油雾化。气泵一般进行间歇工作,且气泵在扩香设备使用寿命范围内大约会启停数万次。由于气泵的工作电压相对较高(5V左右),因此在使用电池供电时,如果直接由3节5号干电池升压到5V,会使电池的工作电流比较大,发热高。而且,因干电池随着放电内阻越来越大,放电电流也越来越小,因而干电池无法提供大电流。当电池使用一段时间后,就无法再为气泵马达提供稳定的工作电流,电池的利用率约为50%,也即电池用到一半就不能再用了,造成电池的能源利用率低,并增加电池的使用成本,同时也无法为气泵提供持久稳定的工作电流。并且,使用升压芯片对干电池进行升压,升压芯片将干电池的低电压升压至5V,升压芯片很难跨越如此大的电压并升压上去,即使升压芯片将干电池的电压升压上去了,也无法提供足够大的电流。因此,需要设计一种专门针对扩香设备的驱动电路。
发明内容
针对现有技术的不足,本发明提供了一种驱动电路,具备节能、稳定等优点,解决了扩香设备的电池能源利用率低,工作电流不稳定的问题。
为实现上述节能、稳定的目的,本发明提供如下技术方案:一种驱动电路,其用于对电源升压并向负载供电,所述驱动电路包括对所述电源进行升压的第一级升压电路、接收所述第一级升压电路输出的蓄能电路、对所述蓄能电路进行升压的第二级升压电路;所述电源经过所述第一级升压电路升压后,输出到所述蓄能电路并对所述蓄能电路进行充电;所述第二级升压电路对所述蓄能电路的电压进行升压,使所述蓄能电路给所述负载供电。
作为上述方案的进一步改进,所述第一级升压电路、所述蓄能电路、所述第二级升压电路均为单向电路。
作为上述方案的进一步改进,所述第二级升压电路在所述蓄能电路的电量达到预设电量或者电压达到预设电压后导通,否则断开。
作为上述方案的进一步改进,所述驱动电路还包括通过控制信号CTRL控制其通断的开关电路;所述开关电路的一端连接所述蓄能电路的输出端,所述开关电路的另一端连接所述第二级升压电路的输入端;所述开关电路控制所述第二级升压电路与蓄能电路的导通与断开。
作为上述方案的进一步改进,所述负载工作时,所述开关电路控制所述第二级升压电路与蓄能电路导通,否则所述第二级升压电路与蓄能电路断开。
作为上述方案的进一步改进,所述蓄能电路包括超级电容C1或者可充电电池,所述电源为干电池。
作为上述方案的进一步改进,所述蓄能电路还包括二极管D4、电阻R1;二极管D4的正极连接所述第一级升压电路的输出端,负极与电阻R1的一端相接;电阻R1的另一端与超级电容C1的正极相接,且连接点还与所述第二级升压电路连接;超级电容C1的负极接地。
作为上述方案的进一步改进,所述第一级升压电路包括:
有极性电容C3,其正极接入所述电源的正极,负极接地;
无极性电容C5,其一端与电容C3的正极相接,另一端接地;
电感L1,其一端与电容C3的正极相接;
升压芯片一,其输入端与电感L1的另一端相接,其接地端接地;
有极性电容C2,其正极与所述升压芯片一的输出端相接,其负极接地;
无极性电容C4,其一端与电容C2的正极相接,另一端接地;
其中,所述升压芯片一的输出端、电容C2的正极、电容C4的一端均相接且连接点与所述蓄能电路相连。
作为上述方案的进一步改进,所述驱动电路还包括通过控制信号CTRL控制其通断的开关电路;所述开关电路的一端连接所述蓄能电路的输出端,所述开关电路的另一端连接所述第二级升压电路的输入端;所述开关电路在所述蓄能 电路的电量达到预设电量后导通,否则断开;
所述开关电路包括:
P沟道MOS管Q2,其源极与超级电容C1的正极相接,漏极与所述第二级升压的输入端相接;
电阻R3,其一端与MOS管Q2的源极相接,另一端与MOS管Q2的栅极相接;
电阻R5,其一端与MOS管Q2的栅极相接,另一端接入所述控制信号CTRL。
作为上述方案的进一步改进,所述第二级升压电路包括:
无极性电容C6,其一端与MOS管Q2的漏极相接,另一端接地;
无极性电容C7,其一端与MOS管Q2的漏极相接,另一端接地;
电感L2,其一端与MOS管Q2的漏极相接;
升压芯片二,其转换引脚SW与电感L2的另一端相接,接地引脚GND接地,片选端CE与MOS管Q2的漏极相接;
二极管D1,其正极与电感L2的另一端相接;
电阻R21,其一端与二极管D1的负极相接,另一端与所述升压芯片二的输出引脚OUT相接;
无极性电容C19,其一端与电阻R21的另一端相接,另一端接地;
电阻R22,其一端与电阻R21的一端相接;
电阻R23,其一端与电阻R22的另一端相接且连接点还与所述升压芯片二的反馈引脚FB相连,另一端接地;
有极性电容C9,其正极与电阻R22的一端相接,负极接地;
无极性电容C8,其一端与电容C9的正极相接,另一端接地;
其中,二极管D1的负极、电阻R21的一端、电阻R22的一端、电容C9的正极、电容C8的一端相接且连接点与所述负载的正极相接,所述负载的负极接地。
作为上述方案的进一步改进,所述驱动电路还包括通过控制信号CTRL控制其通断的开关电路;所述开关电路的一端连接所述蓄能电路的输出端,所述开关电路的另一端连接所述第二级升压电路的输入端;所述开关电路控制所述第二级升压电路与蓄能电路的导通与断开;
所述蓄能电路包括超级电容C10、二极管D3、电阻R2;二极管D3的正极连接所述第一级升压电路的输出端,负极与电阻R2的一端相接;电阻R2的另一端与超级电容C10的正极相接,且连接点还与所述开关电路的一端相连;超级电容C10的负极接地。
作为上述方案的进一步改进,所述开关电路包括:
P沟道MOS管Q1,其源极与超级电容C10的正极相接,漏极与所述第二级升压的输入端相接;
电阻R4,其一端与MOS管Q1的源极相接,另一端与MOS管Q1的栅极相接;
电阻R7,其一端与MOS管Q1的栅极相接,另一端接入所述控制信号CTRL。
作为上述方案的进一步改进,所述第一级升压电路包括:
有极性电容C13,其正极与所述电源的正极相接,负极接地;
无极性电容C14,其一端与所述电源的正极相接,另一端接地;
电感L3,其一端与所述电源的正极相接;
MOS管Q3,其源极接地,漏极与电感L3的另一端相接,栅极接入一信号S1;
二极管D2,其正极与MOS管Q3的源极相接;
有极性电容C11,其正极与二极管D2的负极相接,其负极接地;
无极性电容C15,其一端与二极管D2的负极相接,另一端接地;
其中,所述信号S1采用PWM信号。
作为上述方案的进一步改进,所述第二级升压电路包括:
电感L4,其一端与MOS管Q1的漏极相接;
MOS管Q4,其源极接地,漏极与电感L4的另一端相接,栅极接入一信号S2;
二极管D5,其正极与MOS管Q4的漏极相接;
有极性电容C12,其正极与二极管D5的负极相接,其负极接地;
无极性电容C16,其一端与二极管D5的负极相接,另一端接地;
电阻R6,其一端与二极管D5的负极相接,另一端输出一个输出信号Detect;
电阻R8,其一端与电阻R6相接,另一端接地;
其中,所述信号S2也采用PWM信号。
作为上述方案的进一步改进,所述驱动电路还包括第三级升压电路和次级 蓄能电路,所述次级蓄能电路与所述第二级升压电路连接,所述第三级升压电路与所述次级蓄能电路连接,所述蓄能电路的电能经过所述第二级升压电路升压后,输出到所述次级蓄能电路并对所述次级蓄能电路进行充电,所述第三级升压电路对所述次级蓄能电路的电压进行升压,使所述次级蓄能电路给所述负载供电。
作为上述方案的进一步改进,所述电源的电压为1.4-1.8V,所述第一级升压电路将电源的电压升压至2.6-3.4V,所述第二级升压电路将蓄能电路的电压升压至4.8-6V。
在上述实施例中,超级电容C1的电容量为2F-50F,有极性电容C2、C3、C9分别采用47uF/16V、10uF/16V、1000uF/16V的电容,无极性电容C4、C5、C7、C8均采用100nF的电容,无极性电容C6、C19分别采用10uF、0.1uF的电容;电阻R1、R21、R22、R23的电阻值分别为10Ω、39KΩ、1KΩ、100R、733KΩ、100KΩ;二极管D1、D4分别采用肖特基二极管1N5819和肖特基二极管SL14;电感L1、L2的电感量分别为100H和470H;所述升压芯片一采用升压芯片LY1035,所述升压芯片二采用升压芯片YB1421。
在上述实施例中,超级电容C10的电容量为2F-50F,有极性电容C13、C11、C12分别采用47uF/16V、1400uF/16V、1000uF/16V的电容,无极性电容C14、C15、C16均采用100nF的电容;电阻R2、R4、R7、R6、R8的电阻值分别为10Ω、39KΩ、1KΩ、2MΩ、500KΩ;二极管D2、D5均采用肖特基二极管1N5819;二极管D3采用肖特基二极管SL14;电感L3、L4的电感量均为1.5mH;MOS管Q3、Q4均采用晶体管AO3400。
本发明另一方面提供一种扩香设备,其包括气泵、雾化装置和吸液管,所述雾化装置通过所述吸液管与储液瓶连接,所述雾化装置还与所述气泵连接,所述气泵向所述雾化装置提供气流,所述雾化装置将所述气流与所述吸液管吸入的液体混合并雾化,其特征在于,所述扩香设备还包括上述任一实施例所述的驱动电路,所述驱动电路与所述气泵连接,所述电源为干电池,所述电源通过所述驱动电路为所述气泵供电。
作为上述方案的进一步改进,所述气泵间歇性工作,所述气泵停止工作时, 所述电源通过所述第一级升压电路为所述蓄能电路充电,所述气泵工作时,所述蓄能电路经所述第二级升压电路升压后给所述气泵供电。
本发明的驱动电路,通过设置第一级升压电路和第二级升压电路对电源进行升压,并在第一级升压电路和第二级升压电路之间设置蓄能电路,使电源通过第一级升压电路对蓄能电路进行充电,且由于升压幅度较小,电源的工作电流也较小,减少电源发热,提高电源的能源利用率。而第二级升压电路再对蓄能电路进行二次升压,可以提供足够的电压给负载,并且保证蓄能电路放电的电流的稳定性。第二级升压不需要跨越较大的电压而升压,从而很容易给负载提供短暂的大电流。因次,本发明的驱动电路非常适用于扩香设备这种间歇性工作的产品,同样也可以使用在其他类似的产品中,以提高产品对能源的利用率,提升产品工作的稳定性。
附图说明
通过附图中所示的本发明优选实施例更具体说明,本发明上述及其它目的、特征和优势将变得更加清晰。在全部附图中相同的附图标记指示相同的部分,且并未刻意按实际尺寸等比例缩放绘制附图,重点在于示出本的主旨。
图1为本发明实施例1的驱动电路的原理框图;
图2为本发明实施例1的驱动电路的电路图;
图3为图2中的蓄能电路的电路图;
图4为图2中的第一级升压电路的电路图;
图5为图2中的开关电路的电路图;
图6为图2中的第二级升压电路的电路图;
图7为本发明实施例2的驱动电路的电路图;
图8为图7中的蓄能电路的电路图;
图9为图7中的第一级升压电路的电路图;
图10为图7中的开关电路的电路图;
图11为图7中的第二级升压电路的电路图。
具体实施方式
下面结合附图和具体实施例对本发明技术方案作进一步的详细描述,以使本领域的技术人员可以更好的理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
实施例1
请参阅图1以及图2,本实施例的驱动电路用于稳流升压电源并向负载供电,驱动电路包括第一级升压电路、蓄能电路、开关电路、第二级升压电路。在本实施例中,电源为干电池,负载为精油雾化扩香设备的气泵。在其他实施例中,电源还可以选择蓄电池等其他便携式电源,负载可以是其他间歇性工作的设备。
第一级升压电路的输入端连接电源并放大电源的电压,输出端接入蓄能电路的输入端并对蓄能电路进行充电。第二级升压电路的输入端通过开关电路连接蓄能电路的输出端并放大蓄能电路输出端的电压,第二级升压电路的输出端电性连接至负载并对负载进行供电。其中,第一级升压电路、蓄能电路、第二级升压电路均为单向电路。电源经过第一级升压电路升压后,输出到蓄能电路并对蓄能电路进行充电。当蓄能电路的电量达到预设电量后,第二级升压电路导通并对蓄能电路的电压进行升压,使蓄能电路给负载供电。需要说明的是,此处所指“蓄能电路给负载供电”,可以是直接供电,也可以是间接供电。例如,在其他实施例中,该驱动电路还可以包括第三级升压电路(图未示)和次级蓄能电路,次级蓄能电路与第二级升压电路连接,第三级升压电路与次级蓄能电路连接,蓄能电路的电能经过所述第二级升压电路升压后,输出到次级蓄能电路并对次级蓄能电路进行充电,第三级升压电路对所述蓄能电路的电压进行升压,使次级蓄能电路给负载供电。在该实施例中,尽管蓄能电路是间接为负载供电,但仍涵盖在前述“使蓄能电路给负载供电”的保护范围内。
请参阅图3,蓄能电路包括超级电容C1、二极管D4、电阻R1。二极管D4的正极连接第一级升压电路的输出端,负极与电阻R1的一端相接。电阻R1的另一端与超级电容C1的正极相接,且连接点还与第二级升压电路的输入端相连且连接点的电压为VCC_CAP。超级电容C1的负极接地。其中,电压VCC_CAP为1.8V-5.5V。有极性电容C1的电容量为2F-50F,电阻R1的电阻值为10Ω,二 极管D4采用肖特基二极管SL14。
蓄能电路的作用主要为蓄能,即蓄能电路为可以进行充放电的电路。在本实施例中,选取超级电容进行充放电,并且由于超级电容可以充放电数十万次,可以极大地保护电源。蓄能电路中的电阻可调大小以限制充电电流,二极管可阻止电流回流,避免由于长时间不接电源而导致蓄能电路的电流回流,降低驱动电路第一次接电源时所需要的蓄能时间。
在其他实施例中,可以用锂电池等可充电电池来代替超级电容C1,也即第一级升压电路先将电源的电能升压后为该可充电电池充电,可充电电池再通过第二级升压电路升压后为负载供电。
请参阅图4,第一级升压电路包括电感L1、升压芯片一、有极性电容C2、C3以及无极性电容C4、C5。电容C3的正极接入电源的正极,负极接地。电容C5的一端与电容C3的正极相接,另一端接地。电感L1的一端与电容C3的正极相接,升压芯片一的输入端与电感L1的另一端相接。升压芯片一的接地端接地,输出端与电容C2的正极相接。电容C2的负极接地,正极还与电容C4的一端相接,电容C4的另一端接地。其中,升压芯片一的输出端、电容C2的正极、电容C4的一端相接且连接点为第一级升压电路的输出端,并与二极管D4的正极相连。在本实施例中,电感L1的电感量为100H,升压芯片一采用升压芯片LY1035,有极性电容C2、C3分别采用47uF/16V、10uF/16V的电容,无极性电容C4、C5均采用100nF的电容。
第一级升压电路对电源的电压进行升压,并且输出端连接至蓄能电路,使电源通过第一级升压电路对蓄能电路进行充电。同时,在电源电流不稳定或者电流较小时,且由于设置二极管,利用二极管的单向性,可以对超级电容进行充电,起到稳流和节能的作用,提高电源的能源利用率。第一级升压电路的电流较小,即使在干电池快没电了(电流变小了)时,干电池仍然可以给超级电容充电,可以极大地提高电源的电能的利用率。在电源采用电池时,可以使电池的电能利用率提升至80%以上,可以极大地提高电池的能源利用率。
开关电路通过一个控制信号CTRL控制其通断,开关电路的一端连接蓄能电路的输出端,开关电路的另一端连接第二级升压电路的输入端。开关电路控制 第二级升压电路与蓄能电路的导通与断开。具体来说,开关电路在蓄能电路的电量达到预设电量后导通,使第二级升压电路与蓄能电路导通,否则开关电路断开,使第二级升压电路与蓄能电路断开。在另一实施例中,开关电路在蓄能电路的电压达到预设电压后导通,使第二级升压电路与蓄能电路导通,否则开关电路断开,使第二级升压电路与蓄能电路断开。在又一实施例中,负载工作时,控制信号CTRL控制开关电路导通,从而使第二级升压电路与蓄能电路导通,负载停止工作时,控制信号CTRL控制开关电路断开,从而使第二级升压电路与蓄能电路断开。
请参阅图5,开关电路包括P沟道MOS管Q2、电阻R3、电阻R5。MOS管Q2的源极与超级电容C1的正极相接,MOS管Q2漏极与第二级升压的输入端相接。电阻R3的一端与MOS管Q2的源极相接,另一端与MOS管Q2的栅极相接,电阻R5的一端与MOS管Q2的栅极相接,另一端连接单片机MCU的控制脚,即接入控制信号CTRL。单片机MCU控制脚输出高电平以关闭开关电路,输出低电平以打开开关电路,从而控制蓄能电路和第二级升压电路的连接。在本实施例中,电阻R3的电阻值为39KΩ,电阻R5的电阻值为1KΩ。
请参阅图6,第二级升压电路包括电感L2、升压芯片二、二极管D1、无极性电容C19、电阻R21、电阻R22、电阻R23、有极性电容C9、无极性电容C6、C7、C8。电容C6、C7的一端均与MOS管Q2的漏极相接,另一端均接地。电感L2的一端与MOS管Q2的漏极相接,升压芯片二的转换引脚SW与电感L2的另一端相接。升压芯片二的接地引脚GND接地,片选端CE与MOS管Q2的漏极相接。二极管D1的正极与电感L2的另一端相接。电阻R21的一端与二极管D1的负极相接,另一端与升压芯片二的输出引脚OUT相接。无极性电容C19的一端与电阻R21的另一端相接,另一端接地,电阻R22的一端与电阻R21的一端相接。电阻R23的一端与电阻R22的另一端相接且连接点还与升压芯片二的反馈引脚FB相连,另一端接地。电容C9正极与电阻R22的一端相接,负极接地。电容C8的一端与电容C9的正极相接,另一端接地。
其中,二极管D1的负极、电阻R21的一端、电阻R22的一端、电容C9的正极、电容C8的一端相接且连接点与负载的正极相接,负载的负极接地。电感 L2的电感量为470H,升压芯片二采用升压芯片YB1421,二极管D1采用肖特基二极管1N5819,电阻R21、R22、R23的电阻值分别为100R、733KΩ、100KΩ。无极性电容C19、C6、C7、C8的电容分别为0.1uF、10uF、100nF、100nF,有极性电容C9采用1000uF/16V的电容。
超级电容在开关电路导通时,通过第二级升压电路对负载进行供电,并且由于超级电容的特性,超级电容可以作为第二级升压电路的临时电流源,并为负载供电。第二级升压电路在蓄能电路充电完成时(蓄能电量达到预设电量时),可以提供足够的电压给负载,并且保证蓄能电路放电的电流的稳定性。第二级升压不需要跨越较大的电压而升压,从而很容易给负载提供短暂的大电流。
在本实施例中,电源的电压为1.4V-1.8V,第一级升压电路将电源的电压升压至2.6V-3.4V左右,第二级升压电路将蓄能电路的电压升压至4.8V-6V左右。在其他实施例中,本实施例的电容、电阻、电感、升压芯片、二极管、MOS管的选型可以根据实际需要进行改变。
实施例2
请参阅图7,本实施例的驱动电路与实施例1的相似,区别在于本实施例中的第一级升压电路、蓄能电路、开关电路、第二级升压电路的器件选型和连接关系不同,第一级升压电路、第二级升压电路均使用Boost电路,第二级升压电路输出需要使用单片机MCU检测电压,从而保证输出电压恒定。
请参阅图8,蓄能电路包括超级电容C10、二极管D3、电阻R2。二极管D3的正极连接第一级升压电路的输出端,负极与电池R2相接;电阻R2的另一端与超级电容C10的正极相接且连接点还与开关电路的一端相连;超级电容C10的另一端接地。在本实施例中,超级电容C10的电容量为2F-50F,二极管D3采用肖特基二极管SL14,电阻R2的电阻值为10Ω。
请参阅图9,第一级升压电路包括电感L3、MOS管Q3、有极性电容C13、C11、无极性电容C14、C15、二极管D2。有极性电容C13的正极与电源BT2的正极相接,负极接地。无极性电容C14的一端与电源BT2的正极相接,另一端接地。电感L3的一端与电源BT2的正极相接。MOS管Q3的源极接地,漏极与电感L3的另一端相接,栅极接入一信号S1。二极管D2的正极与MOS管Q3的源极相接。 有极性电容C11的正极与二极管D2的负极相接,电容C11的负极接地。无极性电容C15的一端与二极管的负极相接,另一端接地。在本实施例中,电感L3的电感量为1.5mH,MOS管Q3采用晶体管AO3400。电容C13、C11分别采用47uF/16V、1400uF/16V的电容,电容C14、C15均采用100nF的电容。二极管D2采用肖特基二极管1N5819。
单片机MCU通过输出信号S1(PWM信号)以控制MOS管Q3的开关,实现boost电路的升压。
请参阅图10,开关电路包括P沟道MOS管Q1、电阻R4、电阻R7。MOS管Q1的源极与超级电容C10的正极相接,漏极与第二级升压的输入端相接。电阻R4的一端与MOS管Q1的源极相接,另一端与MOS管Q1的栅极相接。电阻R7的一端与MOS管Q1的栅极相接,另一端接入单片机MCU的控制脚,即接入控制信号CTRL。单片机MCU的控制脚输出高电平以关闭开关电路,输出低电平以打开开关电路,从而控制蓄能电路和第二级升压电路的连接。在本实施例中,电阻R4、电阻R7的电阻值分别为39KΩ、1KΩ。
请参阅图11,第二级升压电路包括电感L4、MOS管Q4、二极管D5、有级性电容C12、无极性电容C16、电阻R6、电阻R8。电感L4的一端与MOS管Q1的漏极相接。MOS管Q4的源极接地,漏极与电感L4的另一端相接,栅极接入一信号S2。二极管D5的正极与MOS管Q4的漏极相接。有极性电容C12的正极与二极管D5的负极相接,其负极接地。无极性电容C16,其一端与二极管D5的负极相接,另一端接地。电阻R6的一端与二极管D5的负极相接,另一端输出一个输出信号Detect。电阻R8的一端与电阻R6相接,另一端接地。在本实施例中,电感L4的电感量为1.5mH,MOS管Q4采用晶体管AO3400。二极管D5采用肖特基二极管1N5819,电容C12采用1000uF/16V的电容,电容C16采用100nF的电容。电阻R6、R8的电阻值分别为2MΩ、500KΩ。
单片机MCU通过输出信号S2(PWM信号)到MOS管Q4以控制其开关,实现Boost电路的升压。电阻R8、R6分压提供电压信号给单片机MCU,从而单片机MCU根据电压信号调整PWM信号的频率,实现输出恒定电压。
在上述电路中,通过设置多个二极管以防止MOS管被反向电压损坏,单片 机MCU通过输出两个PWM信号(信号S1、S2),实现两个Boost电路升压,通过控制信号CTRL控制蓄能电路对第二路升压的放电,并通过检测信号Detect的电压调试信号S2的PWM频率,实现输出恒定电压。在负载不需要工作时,信号S2输出低电压,控制信号CTRL输出高电平,减小损耗。由于每级升压幅度较小,电源的工作电流也较小,减少电源发热,提高电源的能源利用率。同时,超级电容通过第二级升压电路对负载进行供电,在电源电流不稳定时,可以起到稳流的作用,保证负载电流的稳定性,并且超级电容可以充放电数十万次,有利于保护电源。在电源使用是一段时间后,即使电源的工作电流变小了,仍然可以给超级电容充电,可以极大地利用电源,在电源采用干电池时,可以使电池的利用率提升至80%以上,可以极大地提高干电池的能源利用率。
本实施例与实施例1的不同在于本实施例无需采用升压芯片,可以简化电路,提高电路的稳定性,可以提高驱动电路的使用寿命。
本发明实施例还提供一种扩香设备,其包括气泵、雾化装置和吸液管,雾化装置通过吸液管与储液瓶连接,雾化装置还与气泵连接,气泵向雾化装置提供气流,雾化装置将气流与吸液管吸入的液体混合并雾化,扩香设备还包括上述任一实施例所述的驱动电路,驱动电路与气泵连接,电源为电池,电源通过驱动电路为气泵供电。具体来说,驱动电路与气泵电机电连接,为气泵电机供电。电源可以为一节一号干电池或者并联的三节五号干电池。储液瓶可用于盛装精油。扩香设备的具体结构及工作原理可以参考专利号为201620565323.X、专利名称为一种扩香设备的中国发明专利,或者参考专利号为201420440948.4、专利名称为扩香设备的中国发明专利,此处不再赘述。
在优选实施例中,气泵间歇性工作,气泵停止工作时,雾化装置停止雾化,此时电源通过第一级升压电路为蓄能电路充电,气泵工作时,雾化装置开始雾化,蓄能电路经第二级升压电路升压后给气泵供电。
综上所述,相较于现有技术,本实施例的驱动电路具备以下优点:
(1)本实施例的驱动电路,通过设置第一级升压电路和第二级升压电路对电源进行升压,并在第一级升压电路和第二级升压电路之间设置超级电容,使电源通过第一级升压电路对超级电容进行充电,且由于升压幅度较小,电源的 工作电流也较小,减少电源发热,提高电源的能源利用率。
(2)同时,本实施例通过设置开关电路,将蓄能电路和第二级升压电路断开,让超级电容更好的蓄能。蓄能电路中的电阻可调大小以限制充电电流,二极管可阻止电流回流,避免由于长时间不接电源而导致蓄能电路的电流回流,降低驱动电路第一次接电源时所需要的蓄能时间。当导通第二级升级电路后,超级电容通过第二级升压电路对负载进行供电,在电源电流不稳定时,可以起到稳流的作用,保证负载电流的稳定性,并且超级电容可以充放电数十万次,有利于保护电源。
第一级升压电路的电流较小,即使在干电池快没电了(电流变小了)时,干电池仍然可以给超级电容充电,可以极大地提高电源的电能的利用率。在电源采用电池时,可以使电池的电能利用率提升至80%以上,可以极大地提高电池的能源利用率。
第二级升压电路在蓄能电路充电完成时(蓄能电量达到预设电量时),可以提供足够的电压给负载,并且保证蓄能电路放电的电流的稳定性。第二级升压不需要跨越较大的电压而升压,从而很容易给负载提供短暂的大电流。
因次,本实施例的驱动电路非常适用于扩香设备这种间歇性工作的产品,同样也可以使用在其他类似的产品中,以提高产品对能源的利用率,提升产品工作的稳定性。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (18)

  1. 一种驱动电路,其用于对电源升压并向负载供电,其特征在于:包括对所述电源进行升压的第一级升压电路、接收所述第一级升压电路输出的蓄能电路、对所述蓄能电路进行升压的第二级升压电路;所述电源经过所述第一级升压电路升压后,输出到所述蓄能电路并对所述蓄能电路进行充电;所述第二级升压电路对所述蓄能电路的电压进行升压,使所述蓄能电路给所述负载供电。
  2. 根据权利要求1所述的驱动电路,其特征在于:所述第一级升压电路、所述蓄能电路、所述第二级升压电路均为单向电路。
  3. 根据权利要求1所述的驱动电路,其特征在于:所述第二级升压电路在所述蓄能电路的电量达到预设电量或者电压达到预设电压后导通,否则断开。
  4. 根据权利要求1所述的驱动电路,其特征在于:所述驱动电路还包括通过控制信号CTRL控制其通断的开关电路;所述开关电路的一端连接所述蓄能电路的输出端,所述开关电路的另一端连接所述第二级升压电路的输入端;所述开关电路控制所述第二级升压电路与蓄能电路的导通与断开。
  5. 根据权利要求4所述的驱动电路,其特征在于:所述负载工作时,所述开关电路控制所述第二级升压电路与蓄能电路导通,否则所述第二级升压电路与蓄能电路断开。
  6. 根据权利要求1至5任一项所述的驱动电路,其特征在于:所述蓄能电路包括超级电容C1或者可充电电池,所述电源为干电池。
  7. 根据权利要求6所述的驱动电路,其特征在于:所述蓄能电路还包括二极管D4、电阻R1;二极管D4的正极连接所述第一级升压电路的输出端,负极与电阻R1的一端相接;电阻R1的另一端与超级电容C1的正极相接,且连接点还与所述第二级升压电路连接;超级电容C1的负极接地。
  8. 根据权利要求1所述的驱动电路,其特征在于:所述第一级升压电路包括:
    有极性电容C3,其正极接入所述电源的正极,负极接地;
    无极性电容C5,其一端与电容C3的正极相接,另一端接地;
    电感L1,其一端与电容C3的正极相接;
    升压芯片一,其输入端与电感L1的另一端相接,其接地端接地;
    有极性电容C2,其正极与所述升压芯片一的输出端相接,其负极接地;
    无极性电容C4,其一端与电容C2的正极相接,另一端接地;
    其中,所述升压芯片一的输出端、电容C2的正极、电容C4的一端均相接且连接点与所述蓄能电路相连。
  9. 根据权利要求6所述的驱动电路,其特征在于:所述驱动电路还包括通过控制信号CTRL控制其通断的开关电路;所述开关电路的一端连接所述蓄能电路的输出端,所述开关电路的另一端连接所述第二级升压电路的输入端;所述开关电路在所述蓄能电路的电量达到预设电量后导通,否则断开;
    所述开关电路包括:
    P沟道MOS管Q2,其源极与超级电容C1的正极相接,漏极与所述第二级升压的输入端相接;
    电阻R3,其一端与MOS管Q2的源极相接,另一端与MOS管Q2的栅极相接;
    电阻R5,其一端与MOS管Q2的栅极相接,另一端接入所述控制信号CTRL。
  10. 根据权利要求9所述的驱动电路,其特征在于:所述第二级升压电路包括:
    无极性电容C6,其一端与MOS管Q2的漏极相接,另一端接地;
    无极性电容C7,其一端与MOS管Q2的漏极相接,另一端接地;
    电感L2,其一端与MOS管Q2的漏极相接;
    升压芯片二,其转换引脚SW与电感L2的另一端相接,接地引脚GND接 地,片选端CE与MOS管Q2的漏极相接;
    二极管D1,其正极与电感L2的另一端相接;
    电阻R21,其一端与二极管D1的负极相接,另一端与所述升压芯片二的输出引脚OUT相接;
    无极性电容C19,其一端与电阻R21的另一端相接,另一端接地;
    电阻R22,其一端与电阻R21的一端相接;
    电阻R23,其一端与电阻R22的另一端相接且连接点还与所述升压芯片二的反馈引脚FB相连,另一端接地;
    有极性电容C9,其正极与电阻R22的一端相接,负极接地;
    无极性电容C8,其一端与电容C9的正极相接,另一端接地;
    其中,二极管D1的负极、电阻R21的一端、电阻R22的一端、电容C9的正极、电容C8的一端相接且连接点与所述负载的正极相接,所述负载的负极接地。
  11. 根据权利要求1所述的驱动电路,其特征在于:所述驱动电路还包括通过控制信号CTRL控制其通断的开关电路;所述开关电路的一端连接所述蓄能电路的输出端,所述开关电路的另一端连接所述第二级升压电路的输入端;所述开关电路控制所述第二级升压电路与蓄能电路的导通与断开;
    所述蓄能电路包括超级电容C10、二极管D3、电阻R2;二极管D3的正极连接所述第一级升压电路的输出端,负极与电阻R2的一端相接;电阻R2的另一端与超级电容C10的正极相接,且连接点还与所述开关电路的一端相连;超级电容C10的负极接地。
  12. 根据权利要求11所述的驱动电路,其特征在于:所述开关电路包括:
    P沟道MOS管Q1,其源极与超级电容C10的正极相接,漏极与所述第二级升压的输入端相接;
    电阻R4,其一端与MOS管Q1的源极相接,另一端与MOS管Q1的栅极相接;
    电阻R7,其一端与MOS管Q1的栅极相接,另一端接入所述控制信号CTRL。
  13. 根据权利要求11所述的驱动电路,其特征在于:所述第一级升压电路包括:
    有极性电容C13,其正极与所述电源的正极相接,负极接地;
    无极性电容C14,其一端与所述电源的正极相接,另一端接地;
    电感L3,其一端与所述电源的正极相接;
    MOS管Q3,其源极接地,漏极与电感L3的另一端相接,栅极接入一信号S1;
    二极管D2,其正极与MOS管Q3的源极相接;
    有极性电容C11,其正极与二极管D2的负极相接,其负极接地;
    无极性电容C15,其一端与二极管D2的负极相接,另一端接地;
    其中,所述信号S1采用PWM信号。
  14. 根据权利要求12所述的驱动电路,其特征在于:所述第二级升压电路包括:
    电感L4,其一端与MOS管Q1的漏极相接;
    MOS管Q4,其源极接地,漏极与电感L4的另一端相接,栅极接入一信号S2;
    二极管D5,其正极与MOS管Q4的漏极相接;
    有极性电容C12,其正极与二极管D5的负极相接,其负极接地;
    无极性电容C16,其一端与二极管D5的负极相接,另一端接地;
    电阻R6,其一端与二极管D5的负极相接,另一端输出一个输出信号Detect;
    电阻R8,其一端与电阻R6相接,另一端接地;
    其中,所述信号S2也采用PWM信号。
  15. 根据权利要求1所述的驱动电路,其特征在于:还包括第三级升压电路和次级蓄能电路,所述次级蓄能电路与所述第二级升压电路连接,所述第三级升压电路与所述次级蓄能电路连接,所述蓄能电路的电能经过所述第二级升压电路升压后,输出到所述次级蓄能电路并对所述次级蓄能电路进行充电,所述第三级升压电路对所述次级蓄能电路的电压进行升压,使所述次级蓄能电路给所述负载供电。
  16. 根据权利要求1至15任一项所述的驱动电路,其特征在于:所述电源的电压为1.4-1.8V,所述第一级升压电路将电源的电压升压至2.6-3.4V,所述第二级升压电路将蓄能电路的电压升压至4.8-6V。
  17. 一种扩香设备,其包括气泵、雾化装置和吸液管,所述雾化装置通过所述吸液管与储液瓶连接,所述雾化装置还与所述气泵连接,所述气泵向所述雾化装置提供气流,所述雾化装置将所述气流与所述吸液管吸入的液体混合并雾化,其特征在于:所述扩香设备还包括如权利要求1至16任一项所述的驱动电路,所述驱动电路与所述气泵连接,所述电源为干电池,所述电源通过所述驱动电路为所述气泵供电。
  18. 根据权利要求17所述的扩香设备,其特征在于:所述气泵间歇性工作,所述气泵停止工作时,所述电源通过所述第一级升压电路为所述蓄能电路充电,所述气泵工作时,所述蓄能电路经所述第二级升压电路升压后给所述气泵供电。
PCT/CN2019/095974 2018-08-20 2019-07-15 驱动电路及扩香设备 WO2020038156A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810949483.8A CN108964205A (zh) 2018-08-20 2018-08-20 驱动电路及扩香设备
CN201810949483.8 2018-08-20

Publications (1)

Publication Number Publication Date
WO2020038156A1 true WO2020038156A1 (zh) 2020-02-27

Family

ID=64469774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/095974 WO2020038156A1 (zh) 2018-08-20 2019-07-15 驱动电路及扩香设备

Country Status (2)

Country Link
CN (1) CN108964205A (zh)
WO (1) WO2020038156A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108964205A (zh) * 2018-08-20 2018-12-07 广州驰扬电气机械有限公司 驱动电路及扩香设备
CN210158971U (zh) * 2018-12-12 2020-03-20 广州智化谷知识产权服务有限公司 一种扩香设备
CN114421286B (zh) * 2022-03-29 2022-06-24 北京福乐云数据科技有限公司 一种活性雾离子发生装置及其控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4533986A (en) * 1983-10-31 1985-08-06 General Electric Company Compact electrical power supply for signal processing applications
CN101051765A (zh) * 2006-04-04 2007-10-10 郝万福 双升压电容式光伏电源
CN203933394U (zh) * 2014-06-25 2014-11-05 浙江华晨铝业有限公司 供电电路用dc升压装置
CN205283895U (zh) * 2016-01-13 2016-06-01 浙江中温电子有限公司 灯电路
CN207098728U (zh) * 2017-06-28 2018-03-13 北京盈拓润达电气科技有限公司 电源取电装置
CN108964205A (zh) * 2018-08-20 2018-12-07 广州驰扬电气机械有限公司 驱动电路及扩香设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4713913B2 (ja) * 2005-03-31 2011-06-29 株式会社アドバンテスト 電源回路及び試験装置
CN102969783B (zh) * 2012-11-07 2013-08-28 北京交通大学 一种直流不间断电源
CN106451718A (zh) * 2016-09-14 2017-02-22 河北工业大学 用于车辆低温起动的复合应急电源装置
CN107359680B (zh) * 2017-09-13 2023-06-27 重庆大及电子科技有限公司 电源补偿器充电电容蓄电管理***
CN208835778U (zh) * 2018-08-20 2019-05-07 广州驰扬电气机械有限公司 驱动电路及扩香设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4533986A (en) * 1983-10-31 1985-08-06 General Electric Company Compact electrical power supply for signal processing applications
CN101051765A (zh) * 2006-04-04 2007-10-10 郝万福 双升压电容式光伏电源
CN203933394U (zh) * 2014-06-25 2014-11-05 浙江华晨铝业有限公司 供电电路用dc升压装置
CN205283895U (zh) * 2016-01-13 2016-06-01 浙江中温电子有限公司 灯电路
CN207098728U (zh) * 2017-06-28 2018-03-13 北京盈拓润达电气科技有限公司 电源取电装置
CN108964205A (zh) * 2018-08-20 2018-12-07 广州驰扬电气机械有限公司 驱动电路及扩香设备

Also Published As

Publication number Publication date
CN108964205A (zh) 2018-12-07

Similar Documents

Publication Publication Date Title
WO2020038156A1 (zh) 驱动电路及扩香设备
CN207304403U (zh) 一种开关电源
CN206922645U (zh) 一种电源开关的软启动电路
CN106572565A (zh) 二合一电源
CN102570798B (zh) 正激开关电源恒定伏秒积辅助电源电路
CN106170163B (zh) 一种led闪光灯电源
CN205160851U (zh) 二合一电源
WO2021120445A1 (zh) 一种驱动电路、相关电路和装置
CN103501114B (zh) 具有临界导通模式的反激变换器
CN208835778U (zh) 驱动电路及扩香设备
CN108390557B (zh) 提高轻载频率的开关电源
CN204031528U (zh) 一种节能大功率led灯驱动电路
CN201191807Y (zh) 无刷电机控制器专用电源电路
CN105915086B (zh) 高效率ac/dc电源电路及其控制方法与供电方法
CN202183732U (zh) 一种辐射仪器高压电源
CN205793543U (zh) 一种led闪光灯电源
CN107086772A (zh) 升压电路
CN108696267B (zh) 一种场效应管驱动装置、驱动方法以及供电装置
CN102891590A (zh) 电源控制装置及包含该电源控制装置的开关电源
CN209299141U (zh) 一种可调电压变换器
CN208849668U (zh) 升压降压电荷泵、电压管理芯片及装置
CN208939817U (zh) 一种高压启动电路及开关电源
CN102522892B (zh) 基于MOSFET的自激式Buck变换器
CN208062486U (zh) 一种半导体激光器电源电路
CN207505178U (zh) 一种led恒流源***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19851982

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19851982

Country of ref document: EP

Kind code of ref document: A1