WO2020037913A1 - 一种考虑岩屑床的水平井钻井润滑性实验装置及实验方法 - Google Patents

一种考虑岩屑床的水平井钻井润滑性实验装置及实验方法 Download PDF

Info

Publication number
WO2020037913A1
WO2020037913A1 PCT/CN2018/123185 CN2018123185W WO2020037913A1 WO 2020037913 A1 WO2020037913 A1 WO 2020037913A1 CN 2018123185 W CN2018123185 W CN 2018123185W WO 2020037913 A1 WO2020037913 A1 WO 2020037913A1
Authority
WO
WIPO (PCT)
Prior art keywords
cuttings
pressure
drilling
simulated wellbore
temperature
Prior art date
Application number
PCT/CN2018/123185
Other languages
English (en)
French (fr)
Inventor
苏俊霖
罗亚飞
罗平亚
Original Assignee
西南石油大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西南石油大学 filed Critical 西南石油大学
Publication of WO2020037913A1 publication Critical patent/WO2020037913A1/zh
Priority to US16/825,984 priority Critical patent/US10928300B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods
    • G01N19/02Measuring coefficient of friction between materials
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B21/00Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
    • E21B21/08Controlling or monitoring pressure or flow of drilling fluid, e.g. automatic filling of boreholes, automatic control of bottom pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2823Raw oil, drilling fluid or polyphasic mixtures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/30Oils, i.e. hydrocarbon liquids for lubricating properties

Definitions

  • the invention belongs to the field of petroleum drilling, and particularly relates to a lubricity experimental device and method for horizontal well drilling in consideration of cuttings beds.
  • the object of the present invention is to provide an experimental device and an experimental method for horizontal well drilling lubricity in consideration of cuttings beds.
  • this device When using this device to evaluate the lubricity of horizontal wells, both the drill string and drilling fluid, well wall rocks, mud cakes can be considered The friction between the two can also consider the friction between the drill string and the cuttings bed, and determine the drilling fluid lubrication coefficient between the drill pipe and the rock, mud cake, and cuttings bed.
  • a horizontal well drilling lubricity experimental device considering a rock chip bed includes a pulley track, and a transparent and visual simulated wellbore is provided on the pulley track.
  • a pulley is provided under one end of the simulated wellbore, and a hydraulic cylinder is fixedly connected below the other end.
  • a drill pipe is also installed at one end connected to the hydraulic cylinder. One end of the drill pipe extends into the simulated wellbore, and the other end is connected with a step drive mechanism and a rotary drive mechanism.
  • a thrust sensor and a torque sensor are also provided on the drill pipe;
  • a cuttings feeding port is provided above the simulated wellbore, and the cuttings feeding port is connected to the mud tank through a liquid inlet pipeline, and a high pressure pump, a flow meter B, and a pressure sensor are sequentially arranged on the liquid inlet pipeline;
  • a liquid return line to the mud tank is connected to the lower end of the simulated wellbore, and a temperature reducing and pressure reducing mechanism, a flow meter A, and a delivery pump are sequentially arranged on the liquid return line;
  • An ultrasonic probe for detecting the thickness and flatness of the cuttings bed is provided on the outer wall of the simulated wellbore.
  • a core holder is fixedly connected to the end of the simulated wellbore near the pulley.
  • a heating mechanism and a core holder are provided on the upper part of the core holder.
  • a core is set in the lower part, and a pressure mechanism is provided on the lower side of the core; a rock chip take-off and landing platform is provided inside the lower wall of the simulated wellbore, and the rock chip take-off and landing platform is connected to the rock chip bed control center.
  • the power of the hydraulic cylinder is derived from a hydraulic pump.
  • the hydraulic pump is composed of a pump body, a plunger, and an operating handle.
  • the fuel tank is connected to the hydraulic cylinder and the hydraulic pump through an oil pipe, between the fuel tank and the hydraulic pump, and between the hydraulic pump and the hydraulic pump.
  • a check valve is provided between the hydraulic cylinders, and a stop valve is provided between the oil tank and the hydraulic cylinder.
  • a rubber ring is provided at the joint between the simulated wellbore and the drill pipe for sealing treatment.
  • the temperature-reducing and pressure-reducing mechanism is arranged at the beginning of the liquid return pipeline, and includes an electric temperature reducing and reducing valve, a safety valve, a pressure gauge, a thermometer, a check valve, an electric regulating valve, a throttle valve, a stop valve, It consists of transition pipe, temperature reducing water pipe and flange fastener.
  • the heating mechanism includes an electric heating jacket and a temperature controller, and the temperature controller is connected to the electric heating jacket and the temperature sensor respectively, and the heating temperature of the electric heating jacket can be adjusted by the temperature controller, thereby controlling the visualized drilling into the experimental system. Temperature, to simulate the high temperature and high pressure environment in deep well drilling.
  • the simulated wellbore can steplessly adjust the well deflection angle, and the adjustment angle is from 0 ° to 90 °.
  • the pressure mechanism includes a piston cylinder and a mechanical booster pump that provides pressure to the piston cylinder, wherein the mechanical booster pump is connected to the rodless cavity end of the piston cylinder, and the piston rod of the piston cylinder passes through the core holder to abut the core. Provides pressure for frictional drilling between the drill pipe and the filter cake formed on the core surface.
  • a rock cutting recovery tank with a filter screen is provided above the mud tank, and a stirrer is provided in the mud tank.
  • a pressure difference transmitter for detecting a pressure difference between two ends of the simulated wellbore is provided on the simulated wellbore, wherein the two ends of the pressure difference transmitter are connected to the inner wall of the wellbore through the simulated wellbore, and the pressure difference between the two ends of the wellbore is measured.
  • the differential pressure transmitter and other detection components such as pressure sensor, ultrasonic probe, flow meter A, flow meter B, thrust sensor, torque sensor, temperature sensor, temperature controller, etc., are connected to the calculation through a data line.
  • the display unit is used for displaying various test data and calculating the sliding friction coefficient between the drill pipe and the filter cake.
  • the present invention has the following advantages when used to evaluate the lubrication performance of drilling fluids in horizontal wells:
  • the visualized drilling experiment system is adopted. During the combined drilling process of simulating the sliding drilling and rotary drilling of the drill pipe, the status of the cuttings bed and the drilling conditions of the drill pipe can be observed in real time. Deficiencies in the analysis to extrapolate downhole conditions;
  • the drilling fluid supply system can adjust the drilling fluid pressure and formula, and cooperate with the heating mechanism to simulate the drilling environment under different temperature and pressure, especially the high temperature and high pressure environment, and then through the circulation pipeline, the drilling fluid and cuttings can be recycled and reused;
  • a hydraulic lifting device is set at one end of the simulated wellbore, which can adjust the inclination of the well steplessly from 0 ° to 90 °.
  • the sliding friction coefficient of the drill pipe, mud cake, and cuttings bed can be comprehensively measured to overcome the existing problems.
  • the simulation results are more suitable for the real situation in the well, and the simulation results can be displayed in real time through the set calculation display unit.
  • the set flowmeters, thrust sensors, torque sensors, temperature sensors, pressure sensors, temperature controllers, differential pressure transmitters, ultrasonic probes and other detection components can more accurately and quantitatively analyze the simulation results.
  • experimental device can also be made into a full-size wellbore, and the drilling fluid formula and cuttings parameters can be adjusted to simulate full-scale and multiple working conditions;
  • This device establishes the evaluation method of torque, thrust-cutting bed-lubrication performance, and uses the most easily available torque parameters and thrust parameters in the field construction as the main indicators for evaluating the lubrication performance of drilling fluid.
  • the situation can reflect the sliding friction coefficient between the drill pipe and the cuttings bed and mud cake, which can greatly improve the evaluation efficiency.
  • FIG. 1 is a schematic structural connection diagram of the device of the present invention
  • Figure 2 is an enlarged view of a simulated wellbore and core holder
  • Stepping drive mechanism 2. Thrust sensor, 3. Torque sensor, 4. Rotary drive mechanism, 5. Drill pipe, 6. Ultrasonic probe, 7. Rock chip landing platform, 8. Simulated wellbore, 9. Rock cuttings feeding port, 10, electric heating jacket, 11, core, 12, piston cylinder, 13, core holder, 14, temperature sensor, 15, temperature controller, 16, pulley, 17, pulley track, 18, Liquid inlet line, 19, pressure sensor, 20, rock cutting bed control center, 21, mechanical booster pump, 22, flow meter B, 23, high pressure pump, 24, mud tank, 25, agitator, 26, liquid return line, 27, cuttings recovery tank, 28, conveying pump, 29, temperature and pressure reduction mechanism, 30, differential pressure transmitter, 31, calculation display unit, 32, globe valve, 33, fuel tank, 34, check valve, 35, Plunger, 36, pump body, 37, operating handle, 38, hydraulic cylinder.
  • a horizontal well drilling lubricity experiment device considering a cuttings bed includes a visual drilling experiment system, a hydraulic lifting device, a drilling fluid supply system, a pressure mechanism, and a calculation display unit.
  • the visual drilling experiment The system's withstand temperature is above 200 °C, its withstand pressure is above 30MPa, and the combined drilling method of rotary drilling and sliding drilling can well simulate the state of the cuttings bed under actual working conditions. Therefore, the compound drilling experimental system can simulate the lubricating performance of drilling fluid under certain temperature and pressure in deep well drilling closer to the actual working conditions on site.
  • a horizontal well drilling lubricity experimental device considering a cuttings bed includes a pulley track 17, and a transparent and visual simulated wellbore 8 is provided on the pulley track 17.
  • a pulley 16 is provided below one end of the simulated wellbore 8 and below the other end.
  • a hydraulic cylinder 38 is fixedly connected to change the inclination of the well.
  • a drill pipe 5 is also installed at one end of the connected hydraulic cylinder. One end of the drill pipe extends into the simulated wellbore 8 and the other end is connected with a step drive mechanism 1 and a rotary drive.
  • a mechanism 4 for simulating a rotary drilling process, and a thrust sensor 2 and a torque sensor 3 are also provided on the drill pipe 5;
  • a sealing rubber ring is provided at the joint between the drill pipe 5 and the simulated wellbore 8 to ensure that the drill pipe will not leak leakage of drilling fluid and wellbore pressure when drilling in the visualized drilling experiment system.
  • One end of the simulated wellbore is hinged with the hydraulic cylinder plunger, and the other end is hinged with the pulley support.
  • the pulley is fixed on the pulley track by the groove.
  • the power of the hydraulic cylinder 38 is derived from a hydraulic pump.
  • the hydraulic pump is composed of a pump body 36, a plunger 35, and an operating handle 37.
  • the oil tank 33 is connected to the hydraulic cylinder and the hydraulic pump through oil pipes, and between the oil tank 33 and the hydraulic pump, and A check valve 34 is provided between the hydraulic pump and the hydraulic cylinder, and a stop valve 32 is provided between the oil tank and the hydraulic cylinder.
  • the oil injected into the hydraulic cylinder from the hydraulic pump and the oil injected into the hydraulic pump from the oil tank cannot flow back. If the hydraulic cylinder is to be depressurized, the stop valve between the oil tank and the hydraulic cylinder is opened, and the returned oil is stored in the oil tank.
  • the plunger of the hydraulic cylinder is hinged to one end of the simulated wellbore, so the connection between the plunger and the simulated wellbore can be freely changed.
  • the hydraulic cylinder is in a fixed state, and the driving mechanism of the drill pipe is limited by the simulated wellbore, and will follow the simulated wellbore to move.
  • a cuttings feeding port 9 is provided above the simulated wellbore 8.
  • the cuttings feeding port 9 is connected to the mud tank 24 through a liquid inlet line 18.
  • a high pressure pump 23, a flow meter B 22, and a pressure sensor 19 are provided on the liquid inlet line. Provide high-pressure mud for the entire simulated drilling process, and change the pressure in the simulated wellbore by controlling the transmission power of the high-pressure pump;
  • a liquid return line 26 leading to the mud tank is connected to the lower end of the simulated wellbore.
  • the liquid return line is provided with a temperature and pressure reduction mechanism 29, a flow meter A, and a pump 28.
  • the drilling fluid enters the visualized drilling experiment from the liquid inlet line 18 In the simulated wellbore 8 of the system, it then flows into the mud tank 24 through the liquid return line 26.
  • the mud with rock cuttings is processed by the temperature reduction and pressure reduction mechanism 29, which more realistically simulates the mud in the actual drilling.
  • Temperature change because in actual drilling, the temperature of the mud returns to the mud pool, the temperature will be greatly reduced, and the return distance of the device is short, and the temperature cannot be cooled quickly and naturally. After the special cooling mechanism, the temperature is more in line with the actual situation; Keep the drilling fluid in dynamic circulation; use cuttings of different lithology, different sizes and different structures to join the simulated wellbore through the cuttings feeding port;
  • a cuttings recovery tank 27 with a screen is provided above the mud tank 24, and a mud tank
  • a stirrer 25 which stirs the drilling fluid in the mud tank in real time to ensure that the drilling fluid flowing out in different time periods is fully mixed, and The performance is relatively uniform;
  • the temperature-reducing and pressure-reducing mechanism 29 is set at the beginning of the liquid return pipeline, and includes an electric temperature reducing and reducing valve, a safety valve, a pressure gauge, a thermometer, a check valve, an electric regulating valve, a throttle valve, and a cutoff.
  • the valve, transition pipe, desuperheating water pipe, and flange fasteners are used. After changing the over-flow area through the throttle valve, the pressure difference between the front and back will change.
  • the main purpose of temperature reduction is to use cold water to reduce heat through the desuperheating water pipe.
  • An ultrasonic probe 6 for detecting the thickness and flatness of the cuttings bed is provided on the outer wall of the simulated wellbore.
  • a core holder 13 is fixedly connected to the end of the simulated wellbore near the pulley 16 and a heating mechanism is provided above the core holder.
  • the core 11 is set at the lower part of the holder, and a pressure mechanism is provided at the lower side of the core. During the simulation drilling process, the pressure mechanism is pressurized upward to increase the friction between the drill rod and the filter cake formed on the surface of the core, thereby simulating the filter.
  • a cuttings take-off and landing platform 7 is provided inside the lower wall of the simulated wellbore, and the cuttings take-off and landing platform is connected to the cuttings bed control center 20; It can accept the deposited cuttings and adjust the thickness of the cuttings bed to simulate the stuck phenomenon caused by the local cuttings accumulation during actual construction. It can also simulate the drilling friction caused by the cuttings beds with different accumulation and flatness. force;
  • the heating mechanism includes an electric heating jacket 10 and a temperature controller 15 for adjusting the heating temperature of the electric heating jacket.
  • the temperature control device can adjust the heating temperature of the electric heating jacket, thereby controlling the temperature in the visualization drilling experimental system and simulating a deep well.
  • High temperature and high pressure environment in drilling; the pressure mechanism includes a piston cylinder 12 and a mechanical booster pump 21 that provides pressure to the piston cylinder, wherein the mechanical booster pump 21 is connected to the rodless cavity end of the piston cylinder 12 and the piston rod of the piston cylinder passes through
  • the core holder 13 is in contact with the core 11 to provide pressure for frictional drilling between the drill pipe and the filter cake formed on the surface of the core.
  • the pressure of the piston cylinder on the core can be adjusted by adjusting the mechanical booster pump to adjust the drill pipe and The amount of abutment force and pressure between the filter cakes formed on the core surface.
  • a pressure difference transmitter 30 is also provided on the simulated wellbore for detecting the pressure difference between the two ends of the simulated wellbore, wherein the two ends of the pressure difference transmitter are connected to the inner wall of the wellbore through the simulated wellbore, and the pressure difference at both ends is measured;
  • the differential pressure transmitter 30 and other detection components such as pressure sensor 19, ultrasonic probe 6, flow meter A, flow meter B 22, thrust sensor 2, torque sensor 3, temperature sensor 14, temperature controller 15, all pass data.
  • the line is connected to the calculation display unit 31, and is used to display various detection data and calculate the sliding friction coefficient between the drill pipe and the filter cake.
  • the process and principle for evaluating the lubricity of the device of the present invention are as follows: After adding rock cuttings from the sealed cuttings feeding port, the lid with a sealing rubber ring on the feeding port is closed tightly, and the cuttings are carried to the high-pressure drilling fluid flowing below to In the simulated wellbore, and under the action of gravity, piled on the cuttings landing platform under the simulated wellbore to form a bed of cuttings. After the drilling fluid is pressurized by the high-pressure pump, it flows through the flowmeter and pressure sensor into the simulated wellbore.
  • the flow rate and pressure of the drilling fluid can be viewed through the flow meter and pressure sensor, and the drilling fluid in the visualized drilling experiment system can be appropriately adjusted by adjusting the parameters of the high-pressure pump and heating mechanism, so that the temperature and pressure reach a predetermined value;
  • the accumulated thickness and flatness reach a predetermined value, and the drilling fluid forms a mud cake of a certain thickness on the surface of the core (the formation process of mud cake is: the step drive mechanism and the rotation drive mechanism drive the drill rod to clamp the core holder
  • Rotary drilling and sliding drilling are carried out by the supported core. During this frictional drilling, there is a circular flow of drilling fluid between the core and the drill pipe.
  • the pressure mechanism can be used to provide pressure for frictional drilling between the drill rod and the filter cake formed on the surface of the core.
  • the piston cylinder can be adjusted by adjusting the mechanical booster pump The force acting on the core to adjust the abutment force or pressure between the drill rod and the filter cake formed on the surface of the core.
  • the filter cake formed on the surface is caused by the drill rod and the surface of the core.
  • the calculation and display unit mainly includes a detection unit and a calculation unit.
  • the detection unit includes a torque sensor, a thrust sensor, a pressure sensor, a temperature sensor, a flow meter, an ultrasonic probe, and a differential pressure transmitter. All detection units are connected to the display unit. After the torque and thrust are detected and obtained by the torque sensor and the thrust sensor, the signal is processed and amplified by the signal gain element in the device, and displayed by the data display in real time. At the same time, the calculation and display unit is also equipped with an alarm device. When the drill is raised or lowered due to drill cuttings that cause stuck or torque overload, the device will automatically issue an alarm.
  • the detected torque and thrust of the drill pipe Parameters such as the thickness and flatness of the cuttings bed, drilling fluid pressure and flow rate, and visualization of the drilling system temperature are automatically entered into the professional software to obtain the sliding friction coefficient of the drilling rod and drilling fluid, the cuttings bed, and the core.
  • the pressure sensor 19 shows 2.1 MPa.
  • the valve under the cuttings feed port 9 is opened, and the white quartz sand with a particle diameter of 3.4 to 5.1 mm has been placed in the cuttings feed port in advance as a simulated cuttings, which is sealed by a sealing rubber ring and opened.
  • the simulated cuttings enter the simulated wellbore with the drilling fluid, and deposits occur due to gravity, and a cuttings bed is formed on the cuttings landing platform 7.
  • the left end of the cuttings landing platform 7 is a simulated wellbore cover, and the right end is clamped.
  • the core 11 is formed into a groove together with the rock chip lifting platform 7; the thickness of the rock chip bed can be controlled by adjusting the height of the rock chip lifting platform 7. Specifically, when the rock chip lifting platform 7 rises, the rock The thickness of the debris bed becomes smaller, while the thickness of the debris bed becomes larger, and the thickness of the debris bed can be monitored in real time by the ultrasonic probe 6 to facilitate adjustment and correction.
  • the thickness of the cuttings bed was adjusted to about 5 cm, the temperature controller 15 was adjusted, the simulated wellbore 8 was heated by the electric heating jacket 10, and the temperature in the wellbore was measured by the temperature sensor 14 to be 60 ° C.
  • the stepping drive mechanism 1 and the rotary drive mechanism were started 4.
  • Rotary drive mechanism 4 The mechanical rotation speed is 50 r / min, and the holding torque of stepping drive mechanism 1 is 20 N ⁇ m.
  • the mechanical booster pump 21 is started to provide pressure to the piston cylinder 12 to enable the core holder 13 to clamp the core 11 for
  • the drill rod 5 and the core 11 provide abutment force and positive pressure, so that the drill rod 5 forms a mud cake on the surface of the core 11 and causes sliding friction.
  • the drill bit began to drill into the core. During this process, the drill rod 5 has been sliding and rubbing against the cuttings bed. Due to the resistance, the drilling speed of the rotary drive mechanism 4 is less than the initial 50r / min.
  • the friction resistance parameters are determined by the thrust sensor 2 and the torque sensor 3. It is detected and transmitted to the calculation display unit 31, and calculation output is performed by using professional software.
  • the circulating drilling fluid carries part of the simulated cuttings into the liquid return line 26, and the temperature and pressure of the circulating drilling fluid are reduced to room temperature and the pressure is reduced to near normal pressure to prevent splashing by reducing the temperature and pressure.
  • the flow meter in the return line is also 10L / min, indicating that the entire circulation system is not blocked.
  • the circulating drilling fluid is conveyed to the cuttings recovery tank 27 by a conveying pump 28. Below the cuttings recovery tank 27 is a mud tank 24 with a filter in the middle. The simulated cuttings carried in the drilling fluid are blocked by the filter in the cuttings recovery tank 27. The drilling fluid flows into the mud tank 24 below.
  • the thrust sensor 2 and torque sensor 3 are used to monitor the sliding friction force of the drill rod and cuttings bed, mud cake, drilling fluid, etc. in real time, and the lubricating coefficient can be calculated by a professional software program, as shown in Table 1 (the basic principle is: When an object slides on the surface of another object, the amount of friction generated is proportional to the vertical force acting on the friction surface.
  • the formula f ⁇ P, where f is the friction force and P is the vertical direction acting on the object surface. Force, ⁇ is the friction coefficient, which is called friction coefficient in drilling fluid).
  • Formula A is: 5% bentonite + 0.24% NaCO 3 + 0.2% FA367 + 0.3% JT888 + 0.1% XY-27.
  • RT443A is a lubricant. It can be seen from the data in Table 1 that after considering the cuttings bed, the calculated lubrication coefficient increases significantly, which is more in line with the actual downhole conditions, and provides a more reliable reference for the mud performance adjustment in actual drilling.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Automation & Control Theory (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics (AREA)
  • Mechanical Engineering (AREA)
  • Earth Drilling (AREA)

Abstract

考虑岩屑床的水平井钻井润滑性实验装置,包括模拟井筒(8),其一端设有滑轮(16),另一端固定有液压缸(38)、安装有钻杆(5),钻杆(5)连接有驱动机构(1)和旋转驱动机构(4),在钻杆(5)上设有推力传感器(2)和扭矩传感器(3);模拟井筒(8)上方设有岩屑送料口(9),其通过进液管线(18)连接至泥浆槽(24),进液管线(18)上设有高压泵(23)、流量计(22)、压力传感器(19);模拟井筒(8)下端连接回液管线(26),回液管线(26)上设有降温降压机构(29)、流量计、输送泵(28);模拟井筒(8)上设有超声波探头(6)并连接岩心夹持器(13),岩心夹持器(13)设有加热机构、岩心(11)、压力机构,下壁内侧设岩屑起降台(7)。该装置在实验时,加入岩屑和钻井液,调整压力温度和岩屑厚度,模拟复合钻,由于该装置既考虑了钻柱与钻井液、井壁、泥饼间的摩擦力,又考虑了钻柱与岩屑床的摩擦力,更符合实际工况。

Description

一种考虑岩屑床的水平井钻井润滑性实验装置及实验方法 技术领域
本发明属于石油钻井领域,具体涉及一种考虑岩屑床的水平井钻井润滑性实验装置及实验方法。
背景技术
近年来,随着石油勘探开发技术与钻井技术得到飞速发展,钻井深度越来越深,另一方面,为提高经济技术效益,所钻油气井越来越多为大斜度、大位移定向井和水平井,可覆盖多个油气藏,实现一井多采。而对于水平井,面临的重大技术难点之一就是岩屑携带困难,易堆积形成岩屑床,大幅降低钻井效率,另外,由于水平钻井过程中,钻柱几乎平躺在造斜段与水平段下井壁,因此形成的岩屑床还会严重影响钻井过程的润滑性。
然而,目前国内外关于钻井液润滑性的评价研究只考虑了钻柱与钻井液、井壁岩石、泥饼之间的摩擦,而没有考虑钻柱与岩屑床之间的摩擦阻力,而钻井过程中岩屑床会增加钻进和起下钻过程中的扭矩和摩阻,导致钻井液润滑性能降低,这会使得钻井液的润滑性能在室内与现场所表现出的效果差异巨大,室内设计的钻井液配方不能满足现场钻井的需要。
发明内容
本发明的目的是提供一种考虑岩屑床的水平井钻井润滑性实验装置及实验方法,利用该装置评价水平钻井的润滑性时,既可以考虑钻柱与钻井液、井壁岩石、泥饼之间的摩擦力,又能考虑钻柱与岩屑床之间的摩擦力,能够测定钻杆与岩石、泥饼以及岩屑床之间的钻井液润滑系数。
本发明采取的技术方案是:
一种考虑岩屑床的水平井钻井润滑性实验装置,包括滑轮轨道,在滑轮轨道上设置有透明可视化的模拟井筒,所述模拟井筒的一端下方设有滑轮,另一端下方固定连接有液压缸,在连接液压缸的一端还安装有钻杆,钻杆的一端伸入模拟井筒内,另一端连接有步进驱动机构和旋转驱动机构,在钻杆上还设有推力传感器和扭矩传感器;
在模拟井筒的上方设有岩屑送料口,该岩屑送料口通过进液管线连接至泥浆槽,在进液管线上顺序设有高压泵、流量计B、压力传感器;
在模拟井筒的下端连接有通向泥浆槽的回液管线,在回液管线上顺序设有降温降压机构、流量计A、输送泵;
在模拟井筒外壁上设置有用于检测岩屑床厚度和平整性的超声波探头,在模拟井筒上靠近滑轮的一端固定连接有岩心夹持器,在岩心夹持器上部设置加热机构,岩心夹持器下部设置岩心,岩心下侧设有压力机构;在模拟井筒下壁内侧设有岩屑起降台,岩屑起降台连接至岩屑床控制中心。
进一步的,所述液压缸的动力来源于液压泵,液压泵由泵体、柱塞、操作手柄构成,油箱分别与液压缸和液压泵通过油管相连,在油箱与液压泵之间以及液压泵与液压缸之间设置有单向阀,在油箱与液压缸之间设置有截止阀。
进一步的,在模拟井筒与钻杆连接处设有橡胶圈进行密封处理。
进一步的,所述降温降压机构设置在回液管线的起始段,由电动减温减压阀、安全阀、压力表、温度计、止回阀、电动调节阀、节流阀、截止阀、过渡管、减温水管、法兰紧固件组成。
进一步的,所述加热机构包括电加热套和控温仪,控温仪分别与电加热套和温度传感器相连,通过控温仪能够调节电加热套的加热温度,从而控制可视化钻进实验***内的温度,模拟深井钻井中的高温高压环境。
进一步的,模拟井筒可无级调节井斜角大小,调节角度为0°~90°。
进一步的,所述压力机构包括活塞缸和为活塞缸提供压力的机械助力泵,其中机械助力泵与活塞缸的无杆腔端连接,活塞缸的活塞杆穿过岩心夹持器与岩心抵接,为钻杆和形成在岩心表面的滤饼之间的摩擦钻进提供压力。
进一步的,泥浆槽上方设置带有滤网的岩屑回收槽,泥浆槽中设有搅拌器。
进一步的,在模拟井筒上还设有用于检测模拟井筒两端压差的压差变送器,其中,压差变送器两端接头穿过模拟井筒连接至井筒内壁,测定井筒两端压力差值;所述压差变送器与其他检测部件,如压力传感器、超声波探头、流量计A、流量计B、推力传感器、扭矩传感器、温度传感器、控温仪等,均通过数据线连接至计算显示单元,与用于显示各项检测数据和计算钻杆与滤饼之间的滑动摩擦系数。
本发明的有益效果:
与目前国内外的现有技术方法相比,本发明在用于评价水平井钻井液润滑性能的实验时,具有以下优点:
采用可视化钻进实验***,在模拟钻杆滑动钻进和旋转钻进的复合钻进过程中,可以实时观察岩屑床的状态,钻杆钻进情况,克服现有技术仅能通过理论计算和分析来推算井下情况的不足;
钻井液供给***通过调节钻井液压力、配方,配合加热机构,可模拟不同温度压力下的钻井环境,尤其是高温高压环境,再通过循环管线,能够对钻井液和岩屑进行回收再利用;
在模拟井筒一端设置液压升降装置,能够对井斜角进行0°~90°的无级调节;通过设置岩屑床,可以综合测定钻杆与泥饼、岩屑床的滑动摩擦系数,克服现有技术只能模拟钻杆与泥饼之间的摩擦力的不足,模拟结果更加适合井下真实情况,并能将模拟结果通过设置的计算显示单元实时进行显示。
设置的流量计、推力传感器、扭矩传感器、温度传感器、压力传感器、控温仪、压差变送器、超声波探头等检测部件,能够更加准确、量化分析模拟结果。
另外,本实验装置还能制成全尺寸井筒,以及调节钻井液配方和岩屑参数,进行全尺寸多工况的模拟;
该装置建立了扭矩、推力-岩屑床-润滑性能的评价方法,利用现场施工中最易获取的扭矩参数和推力参数作为评价钻井液润滑性能的主要指标,根据钻杆旋转扭矩和推力的变化情况可以反映钻杆与岩屑床、泥饼之间的滑动摩擦系数,可大幅度提高评价效率。
附图说明
图1是本发明装置结构连接示意图;
图2是模拟井筒及岩心夹持器放大图;
图中,1、步进驱动机构,2、推力传感器,3、扭矩传感器,4、旋转驱动机构,5、钻杆,6、超声波探头,7、岩屑起降台,8、模拟井筒,9、岩屑送料口,10、电加热套,11、岩心,12、活塞缸,13、岩心夹持器,14、温度传感器,15、控温仪,16、滑轮,17、滑轮轨道,18、进液管线,19、压力传感器,20、岩屑床控制中心,21、机械助力泵,22、流量计B,23、高压泵,24、泥浆槽,25、 搅拌器,26、回液管线,27、岩屑回收槽,28、输送泵,29、降温降压机构,30、压差变送器,31、计算显示单元,32、截止阀,33、油箱,34、单向阀,35、柱塞,36、泵体,37、操作手柄,38、液压缸。
具体实施方式
下面结合附图和具体实施例对本发明作进一步的说明。
如图1所示,一种考虑岩屑床的水平井钻井润滑性实验装置,包括可视化钻进实验***、液压升降装置、钻井液供给***、压力机构、计算显示单元,其中,可视化钻进实验***的耐受温度在200℃以上,耐受压力在30MPa以上,并且旋转钻进和滑动钻进的复合钻进方式能够很好地模拟实际工况下的岩屑床状态。因此,该复合钻进实验***能更加接近现场实际工况地模拟深井钻井中钻井液在一定温度压力下的润滑性能。
本实验装置的具体连接结构及各部件的功能描述如下:
一种考虑岩屑床的水平井钻井润滑性实验装置,包括滑轮轨道17,在滑轮轨道17上设置有透明可视化的模拟井筒8,所述模拟井筒8的一端下方设有滑轮16,另一端下方固定连接有液压缸38,用于改变井斜角,在连接液压缸的一端还安装有钻杆5,钻杆的一端伸入模拟井筒8内,另一端连接有步进驱动机构1和旋转驱动机构4,用于模拟旋转钻进过程,在钻杆5上还设有推力传感器2和扭矩传感器3;
在所述钻杆5与模拟井筒8连接处设置有密封橡胶圈,保证钻杆在可视化钻进实验***中钻进时不会造成钻井液外泄和井筒压力外泄。模拟井筒的一端与液压缸柱塞铰接,另一端与滑轮支座铰接,滑轮由凹槽固定于滑轮轨道上,当液压升降装置抬升模拟井筒一端时,会拉动模拟井筒另一端在滑轮轨道上滑动,从而无级调节井斜角大小,调节角度为0°~90°。
所述液压缸38的动力来源于液压泵,液压泵由泵体36、柱塞35、操作手柄37构成,油箱33分别与液压缸和液压泵通过油管相连,在油箱33与液压泵之间以及液压泵与液压缸之间设置有单向阀34,在油箱与液压缸之间设置有截止阀32。从液压泵注入液压缸的油以及从油箱注入液压泵的油均不能回流,如需对液压缸进行泄压,则打开油箱与液压缸之间的截止阀,回流的油保存在油箱中。液压缸的柱塞与模拟井筒的一端通过铰接连接,因此柱塞与模拟井筒的连接处可 以自由改变角度。液压缸处于固定状态,钻杆的驱动机构受到模拟井筒的限制,会跟随模拟井筒移动。
在模拟井筒8的上方设有岩屑送料口9,该岩屑送料口9通过进液管线18连接至泥浆槽24,在进液管线上设有高压泵23、流量计B 22、压力传感器19,为整个模拟钻井过程提供高压泥浆,通过控制高压泵的输送功率改变模拟井筒内的压力;
在模拟井筒的下端连接有通向泥浆槽的回液管线26,在回液管线上设有降温降压机构29、流量计A、输送泵28,钻井液从进液管线18进入可视化钻进实验***的模拟井筒8内,然后通过回液管线26流入泥浆槽24,从模拟井筒流出到泥浆槽的过程中,夹带岩屑的泥浆经降温降压机构29处理,更加真实的模拟实际钻井中泥浆的温度变化,因为实际钻井中,泥浆回流到泥浆池中,温度会大大降低,而本装置的回程距离短,无法自然快速降温,通过专门的降温机构后,温度更加符合实际;通过回流,可使钻井液保持动态循环;采用不同岩性、不同大小和不同结构的岩屑通过岩屑送料口加入模拟井筒内;另外,泥浆槽24上方设置带有滤网的岩屑回收槽27,泥浆槽中设有搅拌器25,搅拌器对泥浆槽中的钻井液进行实时搅拌,保证在不同时间段内流出的钻井液充分混合,且性能较为均匀;所述降温降压机构29设置在回液管线的起始段,由电动减温减压阀、安全阀、压力表、温度计、止回阀、电动调节阀、节流阀、截止阀、过渡管、减温水管、法兰紧固件组成,通过节流阀改变过流面积后,前后压差会发生改变,降温主要通过减温水管用冷水进行热量交换降温。
在模拟井筒外壁上设置有用于检测岩屑床厚度和平整性的超声波探头6,在模拟井筒上靠近滑轮16的一端固定连接有岩心夹持器13,在岩心夹持器上部设置加热机构,岩心夹持器下部设置岩心11,岩心下侧设有压力机构,在模拟钻进过程中,通过压力机构向上加压,增大钻杆与岩心表面形成的滤饼之间的摩擦力,进而模拟滤饼在钻进过程中的压耗贡献值;在模拟井筒下壁内侧设有岩屑起降台7,岩屑起降台连接至岩屑床控制中心20,设置的岩屑起降台,用于承接沉积的岩屑,并可调节岩屑床的厚度,进而模拟实际施工时局部岩屑堆积所引发的卡钻现象,也可以模拟不同堆积程度和不同平整度的岩屑床引起的钻井摩擦力;
所述加热机构包括电加热套10和用于调节电加热套加热温度的控温仪15, 通过控温仪能够调节电加热套的加热温度,从而控制可视化钻进实验***内的温度,模拟深井钻井中的高温高压环境;所述压力机构包括活塞缸12和为活塞缸提供压力的机械助力泵21,其中机械助力泵21与活塞缸12的无杆腔端连接,活塞缸的活塞杆穿过岩心夹持器13与岩心11抵接,为钻杆和形成在岩心表面的滤饼之间的摩擦钻进提供压力,通过调节机械助力泵能够调节活塞缸对岩心的压力,从而调节钻杆与形成在岩心表面的滤饼之间的贴靠力和压力的大小。
在模拟井筒上还设有用于检测模拟井筒两端压差的压差变送器30,其中,压差变送器两端接头穿过模拟井筒连接至井筒内壁,测定两端压力差值;所述压差变送器30与其他检测部件,如压力传感器19、超声波探头6、流量计A、流量计B 22、推力传感器2、扭矩传感器3、温度传感器14、控温仪15,均通过数据线连接至计算显示单元31,与用于显示各项检测数据和计算钻杆与滤饼之间的滑动摩擦系数。
本发明装置对润滑性进行评价的过程和原理为:从密封式岩屑送料口加入岩屑后,将送料口带有密封橡胶圈的盖子关紧,岩屑被下方流经的高压钻井液携带至模拟井筒内,并在重力作用下堆积在模拟井筒下方的岩屑起降台上形成岩屑床,钻井液通过高压泵加压后,流经流量计和压力传感器进入模拟井筒内,此过程中可通过流量计和压力传感器查看钻井液流量和压力,并通过调节高压泵和加热机构参数对可视化钻进实验***内的钻井液进行适当调节,使温度压力达到预定数值;待模拟井筒内岩屑堆积的厚度和平整度达到预定数值,且钻井液在岩心的表面上形成一定厚度的泥饼(泥饼的形成过程为:步进驱动机构和旋转驱动机构驱动钻杆对岩心夹持器所夹持的岩心进行旋转钻进和滑动钻进,在该摩擦钻进过程中,岩心和钻杆之间存在供给钻井液流动环形空间,钻井液进入该空间时会在岩心表面形成滤饼,并可通过压力机构为钻杆和形成在岩心表面的滤饼之间的摩擦钻进提供压力,通过调节机械助力泵能调节活塞缸对岩心的作用力,从而调整钻杆与形成在岩心表面的滤饼之间的贴靠力或压力大小,其中,具有渗透性的岩心,其表面所形成的滤饼是钻杆与岩心表面发生滑动摩擦的必要条件,形成滤饼也是必然结果。)之后,通过液压升降装置调节井斜角,再改变步进驱动机构和旋转驱动机构的功率改变钻进速度,可进行接近实际工况的复合钻进;之后打开模拟井筒下方回液管线阀门,钻井液携带岩屑流经降温降压机构和流量计,通过输送 泵输送至岩屑回收槽和泥浆回收槽,岩屑被过滤网阻隔在上方岩屑回收槽中,钻井液流入下方泥浆回收槽,岩屑和钻井液经处理后再次进入模拟井筒内,保证可视化钻进实验***内有动态循环的钻井液。
计算显示单元主要包括检测单元和计算单元,其中检测单元包括扭矩传感器、推力传感器、压力传感器、温度传感器、流量计、超声波探头、压差变送器,所有检测单元均连接至显示单元。扭矩大小和推力大小通过扭矩传感器和推力传感器检测获取后,经过装置内信号增益元件对信号进行处理和放大,由数据显示器实时进行显示。同时计算显示单元还设有警报装置,当钻具上提或下放时由于钻屑引起卡钻或扭矩过载时,装置会自动发出警报,除此而外,将检测到的钻杆的扭矩和推力、岩屑床厚度和平整度、钻井液压力和流速、可视化钻进***温度等参数,自动输入至专业软件,获得钻杆与钻井液、岩屑床以及岩心的滑动摩擦系数。
本实施例的具体实验方法为:
在泥浆槽24中加入配制的钻井液体系,然后打开高压泵23,将钻井液压入进液管线18,调节高压泵23的功率和排量,使流量计B 22的示数为10L/min,压力传感器19示数为2.1MPa。
钻井液进入模拟井筒8后,打开岩屑送料口9下方阀门,岩屑送料口中事先已放入粒径为3.4~5.1mm的白色石英砂作为模拟岩屑,并通过密封橡胶圈加以密封,打开阀门后模拟岩屑随钻井液进入模拟井筒,并由于重力作用发生沉积,并在岩屑起降台7上形成岩屑床,岩屑起降台7左端为模拟井筒盖,右端为夹持的岩心11,它们与岩屑起降台7共同行成一个凹槽;通过调节岩屑起降台7的高度可以控制岩屑床的厚度,具体的,当岩屑起降台7升高,岩屑床堆积厚度变小,反之岩屑床厚度变大,且岩屑床厚度可通过超声波探头6进行实时监测其厚度变化以便于调节修正。
将岩屑床厚度调节为约5cm,调节控温仪15,通过电加热套10对模拟井筒8进行加热,温度传感器14测得井筒内温度为60℃,启动步进驱动机构1和旋转驱动机构4,旋转驱动机构4机械转速为50r/min,步进驱动机构1的保持力矩为20N·m;启动机械助力泵21为活塞缸12提供压力,使岩心夹持器13夹紧岩心11,为钻杆5和岩心11提供贴靠力和正压力,以便钻杆5在岩心11表面 形成泥饼并发生滑动摩檫。
钻头开始钻入岩心,此过程中钻杆5一直与岩屑床发生滑动摩檫,由于阻力作用,旋转驱动机构4钻速小于初始的50r/min,摩擦阻力参数由推力传感器2和扭矩传感器3检测并传输至计算显示单元31,利用专业软件进行计算输出。
循环的钻井液携带部分模拟岩屑进入回液管线26,并通过降温降压机构29进行降温和降压,使循环的钻井液温度降至室温,压力降至常压附近以免发生喷溅。回液管线中的流量计示数同样为10L/min,表明整个循环***并未发生堵塞。循环钻井液通过输送泵28输送至岩屑回收槽27,岩屑回收槽27下方是泥浆槽24,中间设有过滤网,钻井液中携带的模拟岩屑被过滤网阻隔在岩屑回收槽27中,而钻井液则流入下方泥浆槽24中。
关闭截止阀32后,上拉和下压操作手柄37将油箱33中的液压油泵入液压缸38中,由于单向阀34不能回流,液压缸38中的液压油将柱塞向上举升,使模拟井筒左端向上升,模拟井筒井身开始呈倾斜状,井斜角变小。模拟井筒右端安装有滑轮16,由于模拟井筒左端水平固定,调节井斜角后模拟井筒右端在滑轮控制轨道17上向左滑动以保持结构稳定,将井斜角调至45°,持续测试15min。
为进行对比,另一个实验中,在岩屑送料口9中不加入模拟岩屑,模拟井筒未形成岩屑床,而钻井液配方、岩心性质、模拟井筒内温度和压力、井斜角、步进驱动机构和旋转驱动机构参数等保持不变,持续测试15min。
通过推力传感器2和扭矩传感器3实时监测钻杆与岩屑床、泥饼、钻井液等的滑动摩檫力变化,通过专业软件程序计算可得润滑系数,见表1所示(基本原理为:当一个物体在另一个物体表面滑动时,产生的摩擦力大小与作用在摩擦面上的垂向作用力成正比,公式f=μP,其中f为摩擦力,P为作用在物体表面的垂向作用力,μ为摩擦系数,钻井液中称为摩阻系数)。表1中,A配方为:5%膨润土+0.24%NaCO 3+0.2%FA367+0.3%JT888+0.1%XY-27。
表1实验数据及实验结果
Figure PCTCN2018123185-appb-000001
其中RT443A为润滑剂。从表1数据看出,考虑了岩屑床后,计算的润滑系数明显增加,更加符合实际井下工况,为实际钻井中泥浆性能调节提供了更加可靠的参考。

Claims (10)

  1. 一种考虑岩屑床的水平井钻井润滑性实验装置,其特征在于,包括滑轮轨道(17),在滑轮轨道(17)上设置有透明可视化的模拟井筒(8),所述模拟井筒(8)的一端下方设有滑轮(16),另一端下方固定连接有液压缸(38),在连接液压缸(38)的一端还安装有钻杆(5),钻杆(5)的一端伸入模拟井筒(8)内,另一端连接有步进驱动机构(1)和旋转驱动机构(4),在钻杆(5)上还设有推力传感器(2)和扭矩传感器(3);
    在模拟井筒(8)的上方设有岩屑送料口(9),该岩屑送料口(9)通过进液管线(18)连接至泥浆槽(24),在进液管线(18)上顺序设有高压泵(23)、流量计B(22)、压力传感器(19);
    在模拟井筒(8)的下端连接有通向泥浆槽(24)的回液管线(26),在回液管线(26)上顺序设有降温降压机构(29)、流量计A、输送泵(28);
    在模拟井筒(8)外壁上设置有用于检测岩屑床厚度和平整性的超声波探头(6),在模拟井筒(8)上靠近滑轮(16)的一端固定连接有岩心夹持器(13),在岩心夹持器(13)上部设置加热机构,岩心夹持器(13)下部设置岩心(11),岩心(11)下侧设有压力机构;在模拟井筒(8)下壁内侧还设有岩屑起降台(7),岩屑起降台(7)连接至岩屑床控制中心(20)。
  2. 如权利要求1所述的一种考虑岩屑床的水平井钻井润滑性实验装置,其特征在于,所述液压缸(38)的动力来源于液压泵,液压泵由泵体(36)、柱塞(35)、操作手柄(37)构成,油箱(33)分别与液压缸(38)和液压泵通过油管相连,在油箱(33)与液压泵之间以及液压泵与液压缸之间设置有单向阀(34),在油箱与液压缸之间设置有截止阀(32)。
  3. 如权利要求1所述的一种考虑岩屑床的水平井钻井润滑性实验装置,其特征在于,在模拟井筒(8)与钻杆(5)连接处设有橡胶圈进行密封处理。
  4. 如权利要求1所述的一种考虑岩屑床的水平井钻井润滑性实验装置,其特征在于,所述降温降压机构(29)设置在回液管线(26)的起始段,由电动减温减压阀、安全阀、压力表、温度计、止回阀、电动调节阀、节流阀、截止阀、过渡管、减温水管、法兰紧固件组成。
  5. 如权利要求1所述的一种考虑岩屑床的水平井钻井润滑性实验装置,其特征在于,所述加热机构包括电加热套(10)和控温仪(15),控温仪(15)分别与电加热套(10)和温度传感器(16)相连,通过控温仪能够调节电加热套的加热温度,从而控制可视化钻进实验***内的温度,模拟深井钻井中的高温环境。
  6. 如权利要求1所述的一种考虑岩屑床的水平井钻井润滑性实验装置,其特征在于,模拟井筒(8)能够无级调节井斜角大小,调节角度为0°~90°。
  7. 如权利要求1所述的一种考虑岩屑床的水平井钻井润滑性实验装置,其特征在于,所述压力机构包括活塞缸(12)和为活塞缸提供压力的机械助力泵(21),其中机械助力泵(21)与活塞缸(12)的无杆腔端连接,活塞缸的活塞杆穿过岩心夹持器(13)与岩心(11)抵接,为钻杆和形成在岩心表面的滤饼之间的摩擦钻进提供压力。
  8. 如权利要求1所述的一种考虑岩屑床的水平井钻井润滑性实验装置,其特征在于,泥浆槽(24)上方设置带有滤网的岩屑回收槽(27),泥浆槽中设有搅拌器(25)。
  9. 如权利要求1所述的一种考虑岩屑床的水平井钻井润滑性实验装置,其特征在于,在模拟井筒(8)上还设有用于检测模拟井筒两端压差的压差变送器(30),其中,压差变送器(30)两端接头穿过模拟井筒连接至井筒内壁,测定井筒两端压力差值;所述压差变送器(30)与压力传感器(19)、超声波探头(6)、流量计A、流量计B(22)、推力传感器(2)、扭矩传感器(3)、温度传感器(14)、控温仪(15),均通过数据线连接至计算显示单元(31),用于显示各项检测数据和计算钻杆与滤饼之间的滑动摩擦系数。
  10. 采用权利要求1~9所述的任一一种考虑岩屑床的水平井钻井润滑性实验装置进行实验的方法,包括以下步骤:
    (一)从岩屑送料口(9)加入岩屑,通入高压钻井液,岩屑被下方流经的高压钻井液携带至模拟井筒内,并在重力作用下堆积在模拟井筒下方的岩屑起降台(7)上形成岩屑床;
    (二)调节高压泵和加热机构参数,使温度压力达到预定数值;
    (三)待模拟井筒内岩屑堆积的厚度和平整度达到预定数值,且钻井液在岩心的表面上形成一定厚度的泥饼后,通过液压升降装置调节井斜角,再改变步进 驱动机构和旋转驱动机构的功率改变钻进速度,模拟复合钻进;在循环模拟钻进过程中,扭矩传感器、推力传感器、压力传感器、温度传感器、流量计、超声波探头、压差变送器将测量的信号传递至显示单元和计算单元,计算获得钻杆与钻井液、岩屑床以及岩心的滑动摩擦系数;
    (四)打开模拟井筒(8)下方回液管线(26)阀门,钻井液携带岩屑流经降温降压机构(29)和流量计,通过输送泵输送至岩屑回收槽和泥浆回收槽,岩屑被过滤网阻隔在上方岩屑回收槽中,钻井液流入下方泥浆回收槽,岩屑和钻井液经处理后再次进入模拟井筒内,保证可视化钻进实验***内有动态循环的钻井液。
PCT/CN2018/123185 2018-08-23 2018-12-24 一种考虑岩屑床的水平井钻井润滑性实验装置及实验方法 WO2020037913A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/825,984 US10928300B2 (en) 2018-08-23 2020-03-20 Experimental device and experimental method for testing the lubricity in horizontal well drilling with a cuttings bed taken into consideration

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810964421.4 2018-08-23
CN201810964421.4A CN109209337B (zh) 2018-08-23 2018-08-23 一种考虑岩屑床的水平井钻井润滑性实验装置及实验方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/825,984 Continuation US10928300B2 (en) 2018-08-23 2020-03-20 Experimental device and experimental method for testing the lubricity in horizontal well drilling with a cuttings bed taken into consideration

Publications (1)

Publication Number Publication Date
WO2020037913A1 true WO2020037913A1 (zh) 2020-02-27

Family

ID=64989004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/123185 WO2020037913A1 (zh) 2018-08-23 2018-12-24 一种考虑岩屑床的水平井钻井润滑性实验装置及实验方法

Country Status (3)

Country Link
US (1) US10928300B2 (zh)
CN (1) CN109209337B (zh)
WO (1) WO2020037913A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112903957A (zh) * 2021-01-18 2021-06-04 中国石油大学(华东) 泥页岩应力-损伤-钻井液相互作用实验装置及测试方法
CN113062733A (zh) * 2021-04-13 2021-07-02 西南石油大学 一种分段水平井控水三维模拟实验装置及其实验方法
CN114061717A (zh) * 2021-10-15 2022-02-18 中国石油天然气集团有限公司 一种岩屑的螺旋式连续称重方法
CN114279905A (zh) * 2021-12-30 2022-04-05 重庆大学 一种模拟钻孔钻屑产生的装置及方法
CN115749641A (zh) * 2022-11-03 2023-03-07 安徽省煤田地质局第一勘探队 定向井岩屑运移模拟装置以及实验方法
CN118167195A (zh) * 2024-05-08 2024-06-11 中石化西南石油工程有限公司 一种进入、穿越复杂气藏的钻井方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3499194A1 (en) * 2017-12-18 2019-06-19 Actega Artística, S.A.U. Flow measuring device and method description
CN112444462A (zh) * 2019-09-02 2021-03-05 中国石油化工股份有限公司 一种用于模拟测试井筒流体冲刷性能的方法
CN112483031B (zh) * 2019-09-11 2022-05-17 中国石油化工股份有限公司 井下辅助携岩工具和方法
CN114060020B (zh) * 2020-08-06 2023-07-11 中国石油大学(北京) 实验用模拟采油渗流及钻井堵漏防干烧装置
CN111827910B (zh) * 2020-08-11 2022-04-19 西南石油大学 一种探究水平井钻井中岩屑床形成的实验装置及实验方法
CN112229764B (zh) * 2020-09-25 2024-06-11 长江大学 一种流动式高温、高压自动钻井液参数测量***及方法
CN112213220B (zh) * 2020-09-27 2022-03-11 西南石油大学 含砂水合物浆体对管道冲蚀与摩阻系数测量装置及方法
CN112227988A (zh) * 2020-11-18 2021-01-15 中国石油天然气集团有限公司 一种可视化水平环空岩屑运移模拟设备
CN112227989A (zh) * 2020-11-18 2021-01-15 中国石油天然气集团有限公司 一种可视化水平环空岩屑运移模拟方法
CN112647848B (zh) * 2020-11-30 2023-04-14 中海石油(中国)有限公司天津分公司 深井钻井过程模拟实验装置以及实验方法
CN112684109B (zh) * 2020-12-11 2022-02-01 西南石油大学 一种高温高压钻井液抑制性评价装置及其使用方法
CN112761525B (zh) * 2021-02-05 2022-04-08 西南石油大学 水平环空自激振荡脉冲岩屑床清除装置结构及清除方法
CN112986309A (zh) * 2021-04-01 2021-06-18 中海石油(中国)有限公司 一种利用岩屑破碎煤样测量煤层孔隙度的方法
CN113188886A (zh) * 2021-04-28 2021-07-30 西南石油大学 一种下部钻具组合动力学特性模拟实验装置及方法
CN113218686B (zh) * 2021-04-29 2021-11-23 东北石油大学 一种深海水平气井钻柱动力学行为研究试验台
CN113624675B (zh) * 2021-08-17 2023-08-01 中海石油(中国)有限公司深圳分公司 一种油气井钻进高温高压动态摩阻模拟检测方法
CN114624175B (zh) * 2021-10-09 2024-04-30 中国石油天然气集团有限公司 水平井、大位移井钻井液润滑性能测试装置及实验方法
CN114624176B (zh) * 2021-10-09 2024-05-28 中国石油天然气集团有限公司 水平井、大位移井钻井液润滑性能测试***及实验方法
CN114034616B (zh) * 2021-10-19 2024-01-12 佛山科学技术学院 管涌试验装置、其试验方法及管涌通道摩擦系数测量方法
CN114112850A (zh) * 2021-11-30 2022-03-01 西南石油大学 一种厚泥饼的制备方法及其三维数字岩心的构建方法
CN114295492B (zh) * 2021-12-31 2023-12-05 中国矿业大学(北京) 岩体多场耦合旋切钻进测试装置与方法
KR20230106764A (ko) * 2022-01-06 2023-07-14 삼성디스플레이 주식회사 표시장치 및 이의 제조방법
CN116297162B (zh) * 2023-05-17 2023-08-01 成都理工大学 一种离散颗粒堵漏材料摩擦系数测试装置及方法
CN116856908B (zh) * 2023-09-01 2024-02-06 西南石油大学 一种页岩气井携砂临界流速的实验确定方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5969227A (en) * 1998-01-30 1999-10-19 Newpark Drilling Fluids, Inc. Apparatus and method for testing lubricity
CN204214761U (zh) * 2014-11-06 2015-03-18 中国石油化工股份有限公司 评价高温高压钻井液的润滑性能的实验装置
CN105572031A (zh) * 2014-11-06 2016-05-11 中国石油化工股份有限公司 评价水平井和大位移井的钻井液的润滑性能的装置
CN105628600A (zh) * 2014-11-06 2016-06-01 中国石油化工股份有限公司 用于评价深井钻井液的润滑性能的实验装置与实验方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5586027A (en) * 1989-06-12 1996-12-17 Western Atlas International, Inc. Method and apparatus for determining flow rates in multi-phase fluid flow mixtures
CN204373896U (zh) * 2014-12-24 2015-06-03 中国石油天然气股份有限公司 抽油泵试验用倾角模拟***
US20180356556A1 (en) * 2017-02-20 2018-12-13 Shell Oil Company Scintillating gamma ray spectrometer and its use in mud logging system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5969227A (en) * 1998-01-30 1999-10-19 Newpark Drilling Fluids, Inc. Apparatus and method for testing lubricity
CN204214761U (zh) * 2014-11-06 2015-03-18 中国石油化工股份有限公司 评价高温高压钻井液的润滑性能的实验装置
CN105572031A (zh) * 2014-11-06 2016-05-11 中国石油化工股份有限公司 评价水平井和大位移井的钻井液的润滑性能的装置
CN105628600A (zh) * 2014-11-06 2016-06-01 中国石油化工股份有限公司 用于评价深井钻井液的润滑性能的实验装置与实验方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112903957A (zh) * 2021-01-18 2021-06-04 中国石油大学(华东) 泥页岩应力-损伤-钻井液相互作用实验装置及测试方法
CN112903957B (zh) * 2021-01-18 2023-05-16 中国石油大学(华东) 泥页岩应力-损伤-钻井液相互作用实验装置及测试方法
CN113062733A (zh) * 2021-04-13 2021-07-02 西南石油大学 一种分段水平井控水三维模拟实验装置及其实验方法
CN113062733B (zh) * 2021-04-13 2022-04-12 西南石油大学 一种分段水平井控水三维模拟实验装置及其实验方法
CN114061717A (zh) * 2021-10-15 2022-02-18 中国石油天然气集团有限公司 一种岩屑的螺旋式连续称重方法
CN114061717B (zh) * 2021-10-15 2024-04-09 中国石油天然气集团有限公司 一种岩屑的螺旋式连续称重方法
CN114279905A (zh) * 2021-12-30 2022-04-05 重庆大学 一种模拟钻孔钻屑产生的装置及方法
CN114279905B (zh) * 2021-12-30 2024-03-26 重庆大学 一种模拟钻孔钻屑产生的装置及方法
CN115749641A (zh) * 2022-11-03 2023-03-07 安徽省煤田地质局第一勘探队 定向井岩屑运移模拟装置以及实验方法
CN118167195A (zh) * 2024-05-08 2024-06-11 中石化西南石油工程有限公司 一种进入、穿越复杂气藏的钻井方法

Also Published As

Publication number Publication date
CN109209337B (zh) 2020-09-04
US20200217780A1 (en) 2020-07-09
CN109209337A (zh) 2019-01-15
US10928300B2 (en) 2021-02-23

Similar Documents

Publication Publication Date Title
WO2020037913A1 (zh) 一种考虑岩屑床的水平井钻井润滑性实验装置及实验方法
CN110388189B (zh) 一种高温高压深井钻井溢流智能化节流压井方法及装置
RU2349751C2 (ru) Способ и устройство для контроля качества откачки флюида с помощью анализа скорости притока флюида из породы
CN102518432B (zh) 高温高压漏失地层模拟封堵测试装置
AU2008242750B2 (en) System and method for water breakthrough detection and intervention in a production well
CN103531076B (zh) 一套钻井工况模拟***及其工作流程
US20080257544A1 (en) System and Method for Crossflow Detection and Intervention in Production Wellbores
CN111827910B (zh) 一种探究水平井钻井中岩屑床形成的实验装置及实验方法
CN105443072B (zh) 一种水平井油层套管固井方法
CN1332195C (zh) 高温高压岩心动态损害评价试验仪
CN105888723B (zh) 一种下向穿层钻孔瓦斯测压时的排水装置及方法
CN109915128B (zh) 地层承压能力动态测试方法及固井方法
CN106437655A (zh) 一种稠油降粘剂效果评价装置及方法
CN104047590A (zh) 井控工程监测***
CN2682411Y (zh) 高温高压岩心动态损害评价试验仪
CN117803380A (zh) 一种井筒流体体积变化监测装置及方法
CN103894083B (zh) 一种哑铃形喷嘴钻井液混合调节装置
CN102767368B (zh) 基于聚氨酯加固井壁的模拟实验装置
CN113496643A (zh) 连续油管钻井动力钻头的控制模拟***及其使用方法
CN105223007A (zh) 油气井用破裂盘性能测试评价装置
CN216669634U (zh) 一种高温高压泥浆循环摩阻测试实验装置
CN217055137U (zh) 一种固结堵漏模拟评价装置
CN220490407U (zh) 一种地下水源热泵换热井密闭加压回灌试验***
CN203745336U (zh) 油气扩散系数测定试验装置
RU2781682C1 (ru) Стенд для испытания внутрискважинного оборудования с имитацией реальных условий

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18931071

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18931071

Country of ref document: EP

Kind code of ref document: A1