WO2020037848A1 - 空调器及用于空调器的控制方法 - Google Patents

空调器及用于空调器的控制方法 Download PDF

Info

Publication number
WO2020037848A1
WO2020037848A1 PCT/CN2018/115668 CN2018115668W WO2020037848A1 WO 2020037848 A1 WO2020037848 A1 WO 2020037848A1 CN 2018115668 W CN2018115668 W CN 2018115668W WO 2020037848 A1 WO2020037848 A1 WO 2020037848A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
throttling
throttling device
air conditioner
heat exchanger
Prior art date
Application number
PCT/CN2018/115668
Other languages
English (en)
French (fr)
Inventor
任善军
Original Assignee
青岛海尔空调电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司 filed Critical 青岛海尔空调电子有限公司
Publication of WO2020037848A1 publication Critical patent/WO2020037848A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/001Compression cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves

Definitions

  • the invention relates to the technical field of air conditioners, in particular to an air conditioner and a control method for the air conditioner.
  • Air conditioners as home appliances that regulate indoor temperature, have also gradually increased the demand for dehumidification.
  • dehumidification is achieved by reducing the temperature and condensing indoor water vapor into liquid water. This process is often accompanied by a decrease in the indoor temperature.
  • the weather is not high but the humidity is high, it will feel very hot.
  • it is often not necessary to reduce the temperature, and only the humidity needs to be reduced. If the ordinary air conditioner is turned on for cooling, the temperature will drop along with the dehumidification effect, and this way often fails to achieve the purpose of energy saving, and the cooling operation will reduce the user's comfort.
  • Embodiments of the present invention provide an air conditioner and a control method for the air conditioner.
  • the air conditioner is dehumidified by refrigeration, the temperature is compensated by heating, and dehumidification is performed without lowering the ambient temperature to achieve constant temperature dehumidification and improve User comfort.
  • This summary is not a general overview, nor is it intended to identify key / important constituent elements or to describe the scope of protection of these embodiments. Its sole purpose is to present some concepts in a simplified form as a prelude to the more detailed description that is presented later.
  • an air conditioner including: a compressor, an indoor heat exchanger, an outdoor heat exchanger, and a throttling component, the indoor heat exchanger includes two disconnected zones;
  • the throttling assembly includes a first throttling device and a second throttling device, and the refrigerant enters two zones of the indoor heat exchanger through the first throttling device and the second throttling device, respectively;
  • a control device connected to the first throttling device and the second throttling device, for controlling the first throttling device and the second throttling device when the air conditioner is in a constant temperature dehumidifying mode
  • the opening degree of the device is used to adjust the temperature of the two zones of the indoor heat exchanger respectively to be higher or lower than the ambient temperature at the same time.
  • the first throttling device and the second throttling device are an electronic expansion valve or a thermal expansion valve.
  • it further comprises: a first temperature detecting device for detecting a temperature adjusted by the first throttling device; a second temperature detecting device for detecting a temperature adjusted by the second throttling device An environmental temperature detection device for detecting the ambient temperature; the control device is further configured to determine an average temperature based on the temperature detected by the first temperature detection device and the temperature detected by the second temperature detection device, and according to the average The difference between the temperature and the ambient temperature adjusts the opening degrees of the first throttle device and the second throttle device.
  • control device is further configured to adjust the first throttling device or the second throttling device when a difference between the average temperature and the ambient temperature is greater than or equal to the temperature difference setting value.
  • the opening degree of the throttling device that is lower than the ambient temperature is increased, so that the temperature of the refrigerant adjusted by the throttling device is reduced.
  • the temperature difference setting value is 0 ° C.
  • a control method for an air conditioner includes a compressor, an indoor heat exchanger, an outdoor heat exchanger, and a throttling component.
  • the air conditioner includes two non-connected sections.
  • the throttling assembly includes a first throttling device and a second throttling device. The refrigerant enters the room through the first throttling device and the second throttling device, respectively.
  • the method includes: detecting refrigeration through the first throttling device The temperature of the refrigerant; detecting the temperature of the refrigerant passing through the second throttling device; detecting the ambient temperature; determining the temperature of the refrigerant of the first throttling device and the temperature of the refrigerant passing through the second throttling device A difference between the average temperature of the ambient temperature and the ambient temperature; and adjusting the openings of the first throttle device and the second throttle device according to the difference.
  • one of the temperatures of the refrigerant flowing through the two throttling devices is adjusted to be higher than the ambient temperature, and the other is lower than the ambient temperature.
  • an opening degree of a throttling device that adjusts a refrigerant temperature lower than the ambient temperature is increased, so that a temperature of the refrigerant flowing through the throttling device is increased. reduce.
  • the opening degree of the throttling device that adjusts the refrigerant temperature to be lower than the ambient temperature decreases, so that the temperature of the refrigerant flowing through the throttling device increases.
  • the temperature difference setting value is 0 ° C.
  • the air conditioner of the embodiment of the present invention uses refrigeration to dehumidify the environment, uses heating to compensate the temperature, performs dehumidification without reducing the ambient temperature, achieves constant temperature dehumidification, and improves user comfort.
  • Fig. 1 is a schematic structural diagram of an air conditioner according to an exemplary embodiment
  • Fig. 2 is a schematic structural diagram of an air conditioner according to another exemplary embodiment
  • Fig. 3 is a schematic flowchart of a control method for an air conditioner according to an exemplary embodiment
  • Fig. 4 is a schematic flowchart of a control method for an air conditioner according to another exemplary embodiment
  • Fig. 5 is a schematic flowchart of a method for controlling an air conditioner according to another exemplary embodiment.
  • FIG. 1 is a schematic structural diagram of an air conditioner according to an exemplary embodiment.
  • an air conditioner according to an embodiment of the present invention includes a compressor 1, an indoor heat exchanger 15, an outdoor heat exchanger 5, and a throttling component.
  • the indoor heat exchanger 15 includes two disconnected components.
  • the throttling assembly includes a first throttling device 9 and a second throttling device 10, and the refrigerant enters the indoor heat exchange through the first throttling device 9 and the second throttling device 10, respectively.
  • Two sections of the air conditioner 15 further comprising: a control device connected to the first throttling device and the second throttling device for controlling the first throttling when the air conditioner is in a constant temperature dehumidifying mode
  • the openings of the device 9 and the second throttling device 10 are used to adjust the temperatures of the two sections of the indoor heat exchanger 15 respectively, which are not higher than the ambient temperature or lower than the ambient temperature.
  • the high-temperature and high-pressure refrigerant is discharged from the compressor 1 and passes through the four-way valve 4, the outdoor heat exchanger 5, and the thermal expansion valve 6 or through the check valve 7 during heating, and then passes through two throttling devices.
  • 9 and 10 are transmitted to the two non-connected sections of the indoor heat exchanger 15, and the openings of the two throttling devices are adjusted so that one of the throttling devices adjusts the temperature of the refrigerant to be lower than the indoor ambient temperature, such as the first throttling
  • the device 9 is used for weak refrigeration to perform dehumidification.
  • the refrigerant when the valve opening degree is small, the refrigerant is changed from a gas-liquid mixed state to a liquid state through the first throttle device 9 and enters the indoor heat exchanger 15
  • One of the zones makes it in a weak cooling mode.
  • the moisture in the indoor environment condenses into liquid water at a low temperature to achieve the effect of dehumidification; and the other throttling device, the second throttling device 10, discharges the high temperature of the compressor 1
  • the high-pressure refrigerant is transmitted to the room, and the opening degree of the second throttling device 10 is adjusted so that the refrigerant enters another section of the indoor heat exchanger 15 without changing the phase state, and reaches the weak heating mode to perform the temperature.
  • the effect of the two zones is one weak refrigeration and dehumidification, and the other weak heating and temperature compensation.
  • the two zones work together to achieve the function of constant temperature dehumidification.
  • the air conditioner of the above solution performs dehumidification without adding an additional dehumidification device, simplifies the structure of the air conditioner, saves manufacturing and purchasing costs, and saves resources; and the dehumidification is performed under constant temperature conditions without changing the indoor temperature. Improve the comfort of users and increase the power of air conditioners.
  • the first throttle device 9 and the second throttle device 10 are electronic expansion valves or thermal expansion valves.
  • Fig. 2 is a schematic structural diagram of an air conditioner according to an exemplary embodiment.
  • the air conditioner according to an embodiment of the present invention further includes: a first temperature detecting device 13 for detecting a temperature adjusted by the first throttling device 9; a second temperature detecting device 14, It is used to detect the temperature adjusted by the second throttling device 10; the ambient temperature detection device 17 is used to detect the ambient temperature; the control device is further used to detect the temperature and temperature according to the temperature detected by the first temperature detection device 13.
  • the temperature detected by the second temperature detecting device 14 determines an average temperature, and adjusts the opening degrees of the first throttle device 9 and the second throttle device 10 according to a difference between the average temperature and the ambient temperature.
  • control device is further configured to: when the difference between the average temperature and the ambient temperature is greater than or equal to the temperature difference set value, adjust the first throttle device 9 or the second throttle The opening degree of the throttling device lower than the ambient temperature in the device 10 is increased.
  • the first throttling device 9 is a throttling device that is weakly cooled, and the opening degree of the first throttling device 9 is adjusted to increase so that the The temperature of the refrigerant adjusted by the throttling device decreases.
  • the first temperature detection device 13 and the second temperature detection device 14 are further provided to detect the refrigerant temperature adjusted by the two throttling devices, so as to achieve accurate temperature adjustment.
  • the temperature of the refrigerant adjusted by the first throttling device 9 is detected by the first temperature detection device 13, and the temperature of the refrigerant adjusted by the second throttling device 10 is detected by the second temperature detection device 14.
  • the opening degree of the throttling device that is adjusted in the weak cooling mode is increased, so that the passing refrigerant Increase to reduce the indoor ambient temperature; and when the average temperature is less than the temperature difference set value, it indicates that the temperature adjusted by the two throttling devices is lower than the indoor environment temperature, and the adjustment method at this time is the same as the above temperature difference set value
  • the opening degree of the throttling device of the weak refrigeration is reduced, and the throughput of the refrigerant is reduced; or, as another example, the weak heating condition is increased.
  • the method of the above solution detects the temperature of the refrigerant adjusted by the weak cooling and weak heating throttling device, compares it with the indoor ambient temperature, and determines the adjustment method to monitor and accurately adjust the indoor ambient temperature to ensure that The accuracy of the constant temperature dehumidification working mode improves the intelligence of the air conditioner and improves the user comfort.
  • the ambient temperature detection device 17 is a first ambient temperature detection device and is disposed on the return air side of the indoor heat exchanger 15. As another example, it further includes a second ambient temperature detection device 18 provided in the indoor heat exchanger. The air outlet side of 15. The ambient temperature detected by the first ambient temperature detection device 17 and the temperature detected by the second ambient temperature detection device 18 are weighted and averaged to determine the ambient temperature.
  • the set value of the temperature difference is 0 ° C.
  • the temperature difference setting value when the air conditioner works in the constant temperature dehumidification mode, the temperature difference setting value is 0 ° C; and when the air conditioner is in the weak cooling dehumidification mode, the temperature difference setting value can be set lower than 0 ° C, for example -2 °C; and when the air conditioner is in the weak heating and dehumidifying mode, the temperature difference setting value can be set higher than 0 ° C, such as 2 ° C; to achieve the constant temperature, weak cooling, and weak heating working modes during dehumidification.
  • the above solution further includes: a third temperature detection device 11 and a fourth temperature detection device 12, which are respectively disposed corresponding to the first temperature detection device 13 and the second temperature detection device 14, and are respectively disposed at the first throttling device 9 and the first
  • the front ends of the two throttle devices 10 detect the temperature of the refrigerant before the first throttle device 9 and the second throttle device 10 are adjusted.
  • the third temperature detection device 11 and the fourth temperature detection device 12 cooperate with the first temperature detection device 11 and the second temperature detection device 14, respectively, and are used for supercooling the first throttle device 9 and the second throttle device 10, respectively. Degree to adjust.
  • the first throttle device 9 and the second throttle device 10 are electronic expansion valves.
  • the third temperature detection device and the fourth temperature detection device are used to adjust the subcooling degree of the electronic expansion valves 9 and 10.
  • Fig. 3 is a schematic flowchart of a control method for an air conditioner according to an exemplary embodiment.
  • a control method for an air conditioner according to an embodiment of the present invention includes a compressor, an indoor heat exchanger, an outdoor heat exchanger, and a throttling component.
  • the indoor heat exchanger Including two non-connected sections, the throttling assembly includes a first throttling device and a second throttling device, and the refrigerant enters the indoor exchange through the first throttling device and the second throttling device, respectively.
  • the method includes: in step S110 To detect the temperature of the refrigerant passing through the first throttling device; in step S112, detecting the temperature of the refrigerant passing through the second throttling device; in step S114, detecting the ambient temperature; in step S120, Determining the difference between the average temperature of the refrigerant of the first throttling device and the temperature of the refrigerant passing through the second throttling device and the ambient temperature; in step S130, adjusting according to the difference Opening of the first throttling device and the second throttling device .
  • the high-temperature and high-pressure refrigerant is discharged from the compressor, and is transmitted to two non-connected zones of the indoor heat exchanger through two throttling devices, and the opening degrees of the two throttling devices are adjusted to make one of the throttling devices.
  • the temperature of the refrigerant is adjusted to be lower than the ambient temperature of the room to perform dehumidification.
  • the valve opening is small, the refrigerant is converted from a gas-liquid mixed state to a liquid state through a throttling device, and enters the indoor heat exchanger.
  • One of them is in a weak refrigeration mode.
  • the moisture in the indoor environment condenses into liquid water at a low temperature to achieve the effect of dehumidification.
  • the other throttling device transmits the high-temperature and high-pressure refrigerant discharged from the compressor to the room. Adjust the opening of the throttling device so that the refrigerant enters another section of the indoor heat exchanger without changing the phase state, and reaches the weak heating mode for temperature compensation; the two sections of the indoor heat exchanger appear The effect is one weak refrigeration dehumidification, the other weak heating for temperature compensation, and the two zones work together to achieve the function of constant temperature dehumidification.
  • the air conditioner of the above solution performs dehumidification without adding an additional dehumidification device, simplifies the structure of the air conditioner, saves manufacturing and purchasing costs, and saves resources; and the dehumidification is performed under constant temperature conditions without changing the indoor temperature. Improve the comfort of users and increase the power of air conditioners.
  • one of the temperatures of the refrigerant flowing through the two throttling devices is adjusted to be higher than the ambient temperature, and the other is lower than the ambient temperature.
  • Fig. 4 is a schematic flowchart of a control method for an air conditioner according to an exemplary embodiment. As shown in FIG. 4, in a method for controlling an air conditioner according to an embodiment of the present invention, in step S132, it is determined whether a difference between an average temperature and an ambient temperature is greater than or equal to a difference setting value.
  • step S134 When the difference is When it is greater than or equal to the temperature difference setting value, in step S134, the opening degree of the throttling device that adjusts the refrigerant temperature lower than the ambient temperature is increased, that is, the opening degree of the first throttling device is adjusted to increase, and / or The opening degree of the second throttling device is adjusted to be reduced, so that the temperature of the refrigerant flowing through the throttling device is reduced.
  • step S136 when the difference is smaller than the temperature difference set value, in step S136, the opening degree of the throttle device that adjusts the refrigerant temperature to be lower than the ambient temperature decreases, that is, the opening degree of the first throttle device.
  • the reduction causes the temperature of the refrigerant flowing through the throttling device to increase.
  • adjust the opening of the second throttling device to increase, and also achieve the effect of increasing the average temperature, and then increase the indoor ambient temperature.
  • the set value of the temperature difference is 0 ° C.
  • the temperature of the refrigerant adjusted by the two throttling devices is detected to achieve accurate temperature adjustment.
  • the temperature of the refrigerant adjusted by the first throttling device is detected
  • the temperature of the refrigerant adjusted by the second throttling device is detected
  • the average temperature of the two is determined to determine the temperature after the temperature compensation is performed.
  • the effect of constant temperature dehumidification on the indoor ambient temperature is determined based on the difference between the average temperature and the indoor ambient temperature.
  • the opening of the throttle device that is adjusted in the weak cooling mode is increased to increase the amount of refrigerant passing through to reduce the indoor ambient temperature; and when the average temperature is less than the set value of the temperature difference, it indicates two throttles
  • the adjusted temperature of the device is lower than the indoor ambient temperature, and the adjustment method at this time is the opposite to that when the temperature difference is higher than the set value, that is, to reduce the opening degree of the throttling device of weak refrigeration and reduce the throughput of the refrigerant; or, As another example, the opening degree of the throttle device in the weak heating state is increased to increase the indoor ambient temperature.
  • the method of the above solution detects the temperature of the refrigerant adjusted by the weak cooling and weak heating throttling device, compares it with the indoor ambient temperature, and determines the adjustment method to monitor and accurately adjust the indoor ambient temperature to ensure that The accuracy of the constant temperature dehumidification working mode improves the intelligence of the air conditioner and improves the user comfort.
  • Fig. 5 is a schematic flowchart of a control method for an air conditioner according to another exemplary embodiment.
  • the control method for an air conditioner according to another embodiment of the present invention further includes: after adjusting a valve opening degree of the first throttle device or the second throttle device, the cycle detection detects the first throttle The temperature of the refrigerant adjusted by the throttling device and the second throttling device, and the ambient temperature, and the opening degree of the valve of the first or second throttling device is adjusted according to the method shown in FIG. 3 or FIG. 4. .
  • the ambient temperature does not change or changes according to the set value, thereby achieving the purpose of constant temperature dehumidification.
  • the air conditioner When the air conditioner is in the constant temperature dehumidification mode, when the indoor unit fan is turned on for 20s (or expressed in a second), the detected first ambient temperature detection device / sensor 17 and the second ambient temperature detection device / sensor 18 pass To obtain the indoor ambient temperature of the current room;
  • the control unit / computer board of the indoor unit sends instructions to the outdoor unit heat exchanger, and the compressor starts to run.
  • the compressor is started, the first throttling device / electronic expansion valve and the second throttling device associated with the indoor heat exchanger.
  • the electronic expansion valves are opened based on 1/4 of the number of steps when the valve is fully open until the start-up process is completed, that is, when the outdoor heat exchanger is operating normally;
  • the external electronic expansion valve 6 is always fully opened, and is throttled by the first throttle device / electronic expansion valve 9 and the second throttle device / electronic expansion valve 10 of the indoor unit;
  • the first throttling device / electronic expansion valve 9 and the second throttling device / electronic expansion valve 10 of the indoor unit pass through the temperature sensors before and after the valves, that is, the third temperature detection device 11 and the first temperature detection device. 13, and the fourth temperature detection device 12 and the second temperature detection device 14 respectively perform the subcooling degree control, for example, the set value of the subcooling degree is 2 ° C, and the valve opening degree is adjusted according to this goal.
  • the subcooling degree is> 2 ° C (the temperature of the temperature sensor before the valve minus the temperature of the temperature sensor after the valve, for example, the difference between the fourth temperature detection device 12 and the second temperature detection device 14 is the second throttle device / electronic expansion Subcooling of valve 10).
  • the throttle / electronic expansion valve opens on the existing number of steps to reduce its subcooling.
  • the throttle device / electronic expansion valve closes the valve in the existing number of steps.
  • the throttle device / electronic expansion valve maintains the current number of steps.
  • the first throttling device / electronic expansion valve 9 and the second throttling device / electronic expansion valve 10 are not adjusted with the same subcooling set value as the target. If they are adjusted at the same time, one will be installed in the indoor unit of the ordinary air conditioner.
  • the operation process of the electronic expansion valve for adjusting is the same.
  • the air conditioner with constant temperature and dehumidification function and control method of the present invention consists in controlling two refrigerants of the first throttle device / electronic expansion valve 9 and the second throttle device / electronic expansion valve 10. Different temperatures can achieve the effect of constant temperature dehumidification.
  • the functions and functions of the first throttle device / electronic expansion valve 9 and the second throttle device / electronic expansion valve 10 are the same.
  • the first throttle device / electronic expansion valve 9 adjusts and controls the refrigerant entering the indoor heat exchanger is cold, that is, in a weak refrigeration state
  • the second throttle device / electronic expansion valve 10 adjusts and controls The refrigerant entering the indoor heat exchanger is hot, the indoor heat exchanger controlled by the two refrigerants will be divided into hot and cold, and the air flowing through the indoor heat exchanger will also be distinguished from hot and cold, thereby achieving low temperature dehumidification and high temperature compensation.
  • the working modes of the first throttle device / electronic expansion valve 9 and the second throttle device / electronic expansion valve 10 are interchanged;
  • the first throttling device / The electronic expansion valve 9 is opened (if the electronic expansion valve 9 controls the cold refrigerant, reduce the subcooling degree, for example, from 2 ° C to 1 ° C), and maintain the current status of the second throttle device / electronic expansion valve 10 , Continue to detect the above temperature difference and then decide whether to perform valve closing adjustment on the second throttle device / electronic expansion valve 10;
  • the control method is opposite to the above;
  • the temperature set by the user during the dehumidification process is not the current temperature when the machine is running, for example, the temperature is lower than the temperature when the machine is turned on, then the value calculated by the temperature detection device / temperature sensor 13/14 through the formula set and the ambient temperature For comparison, the opening degrees of the first throttle device / electronic expansion valve 9 and the second throttle device / electronic expansion valve 10 of the two indoor heat exchangers are gradually adjusted to achieve the purpose of setting the temperature.
  • the air conditioner and the control method for the air conditioner according to the embodiments of the present invention use refrigeration to dehumidify the environment, use heating to compensate the temperature, perform dehumidification without lowering the ambient temperature, achieve constant temperature dehumidification, and improve user use Comfort.
  • the disclosed methods and products may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed correspondence or direct correspondence or communication connection may be through some interfaces, the indirect correspondence or communication connection of the device or unit, and may be electrical, mechanical, or other forms.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist separately physically, or two or more units may be integrated into one unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调器及用于空调器的控制方法,属于家用电器技术领域。所述空调器包括:压缩机(1)、室内换热器(15)、室外换热器(5)和节流组件,所述室内换热器(15)包括两个不连通的分区;所述节流组件包括第一节流装置(9)和第二节流装置(10),制冷剂分别经所述第一节流装置(9)和第二节流装置(10)进入所述室内换热器(15)的两个分区;还包括:控制装置,连接所述第一节流装置(9)和所述第二节流装置(10),用于在所述空调器处于恒温除湿模式时,控制所述第一节流装置(9)和所述第二节流装置(10)的开度,以分别调节所述室内换热器(15)的两个分区的温度不同时高于或不同时低于环境温度。该空调器,制冷对环境进行除湿,制热对温度进行补偿,实现恒温除湿,提高用户的使用舒适度。

Description

空调器及用于空调器的控制方法
本申请基于申请号为201810958440.6、申请日为2018年08月22日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及空调器技术领域,特别涉及空调器及用于空调器的控制方法。
背景技术
随着智慧家居的广泛兴起,越来越多的家用电器具备除湿的功能。空调器作为调节室内温度的家用电器,也逐渐增加了除湿的需求。现有的空调器的除湿多通过降低温度,使室内水汽凝结为液态水的过程实现除湿。该过程往往伴随着室内温度的降低,而天气在温度不高但湿度较大时,会感觉到很闷热,如需消除闷热,往往不需要降低温度,只需要将湿度降低即可。如果普通空调开制冷的话,在达到除湿效果的同时,温度也会随之下降,而这样的方式往往达不到节能的目的,并且降温操作也会降低用户的使用舒适度。
发明内容
本发明实施例提供了一种空调器及用于空调器的控制方法,利用制冷对环境进行除湿,利用制热对温度进行补偿,在不降低环境温度的情况下进行除湿,实现恒温除湿,提高用户的使用舒适度。为了对披露的实施例的一些方面有一个基本的理解,下面给出了简单的概括。该概括部分不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围。其唯一目的是用简单的形式呈现一些概念,以此作为后面的详细说明的序言。
根据本发明实施例的第一方面,提供了一种空调器,包括:压缩机、室内换热器、室外换热器和节流组件,所述室内换热器包括两个不连通的分区;所述节流组件包括第一节流装置和第二节流装置,制冷剂分别经所述第一节流装置和所述第二节流装置进入所述室内换热器的两个分区;还包括:控制装置,连接所述第一节流装置和所述第二节流装置,用于在所述空调器处于恒温除湿模式时,控制所述第一节流装置和所述第二节流装置的开度,以分别调节所述室内换热器的两个分区的温度不同时高于或不同时低于环境温度。
可选地,所述第一节流装置和所述第二节流装置为电子膨胀阀或热力膨胀阀。
可选地,还包括:第一温度检测装置,用于检测经所述第一节流装置调节后的温度;第二温度检测装置,用于检测经所述第二节流装置调节后的温度;环境温度检测装置,用 于检测环境温度;所述控制装置还用于根据所述第一温度检测装置检测的温度和所述第二温度检测装置检测的温度确定平均温度,并根据所述平均温度与所述环境温度的差值调节所述第一节流装置和所述第二节流装置的开度。
可选地,所述控制装置还用于:当所述平均温度与所述环境温度的差值大于或等于所述温差设定值时,调节所述第一节流装置或第二节流装置中低于所述环境温度的节流装置的开度增加,以使得经该节流装置调节的制冷剂的温度降低。
可选地,所述温差设定值为0℃。
根据本发明实施例的第一方面,提供了一种用于空调器的控制方法,所述空调器包括:压缩机、室内换热器、室外换热器和节流组件,所述室内换热器包括两个不连通的分区,所述节流组件包括第一节流装置和第二节流装置,制冷剂分别经所述第一节流装置和所述第二节流装置进入所述室内换热器的两个分区;以及,控制装置,用于调节所述第一节流装置和所述第二节流装置的开度;该方法包括:检测经所述第一节流装置的制冷剂的温度;检测经所述第二节流装置的制冷剂的温度;检测环境温度;确定所述第一节流装置的制冷剂的温度和经所述第二节流装置的制冷剂的温度的平均温度与所述环境温度的差值;根据所述差值调节所述第一节流装置和所述第二节流装置的开度。
可选地,当所述空调器处于低温除湿模式时,调节流经两个节流装置的制冷剂温度中的一者高于所述环境温度,另一者低于所述环境温度。
可选地,当所述差值大于或等于温差设定值时,调节制冷剂温度低于所述环境温度的节流装置的开度增大,使得流经该节流装置的制冷剂的温度降低。
可选地,当所述差值小于温差设定值时,调节制冷剂温度低于所述环境温度的节流装置的开度减小,使得流经该节流装置的制冷剂的温度升高。
可选地,所述温差设定值为0℃。
本发明实施方式的空调器,利用制冷对环境进行除湿,利用制热对温度进行补偿,在不降低环境温度的情况下进行除湿,实现恒温除湿,提高用户的使用舒适度。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本发明。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是根据一示例性实施例示出的一种空调器的结构示意图;
图2是根据另一示例性实施例示出的一种用于空调器的结构示意图;
图3是根据一示例性实施例示出的一种用于空调器的控制方法的流程示意图;
图4是根据另一示例性实施例示出的一种用于空调器的控制方法的流程示意图;
图5是根据另一示例性实施例示出的一种用于空调器的控制方法的流程示意图。
具体实施方式
以下描述和附图充分地示出本发明的具体实施方案,以使本领域的技术人员能够实践它们。其他实施方案可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施方案的部分和特征可以被包括在或替换其他实施方案的部分和特征。本发明的实施方案的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。在本文中,各实施方案可以被单独地或总地用术语“发明”来表示,这仅仅是为了方便,并且如果事实上公开了超过一个的发明,不是要自动地限制该应用的范围为任何单个发明或发明构思。本文中,诸如第一和第二等之类的关系术语仅仅用于将一个实体或者操作与另一个实体或操作区分开来,而不要求或者暗示这些实体或操作之间存在任何实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法或者设备中还存在另外的相同要素。本文中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的方法、产品等而言,由于其与实施例公开的方法部分相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
图1是根据一示例性实施例示出的一种空调器的结构示意图。如图1所示,本发明一种实施方式的空调器,包括:压缩机1、室内换热器15、室外换热器5和节流组件,所述室内换热器15包括两个不连通的分区;所述节流组件包括第一节流装置9和第二节流装置10,制冷剂分别经所述第一节流装置9和所述第二节流装置10进入所述室内换热器15的两个分区;还包括:控制装置,连接所述第一节流装置和所述第二节流装置,用于在所述空调器处于恒温除湿模式时,控制所述第一节流装置9和所述第二节流装置10的开度,以分别调节所述室内换热器15的两个分区的温度不同时高于环境温度或不同时低于环境温度。
上述方案中,高温高压的制冷剂从压缩机1排出,经过四通阀4、室外换热器5、和热力膨胀阀6或在制热时经单向阀7后,经过两个节流装置9和10传输到室内换热器15 的两个不连通的分区,调节两个节流装置的开度,使其中一个节流装置调节制冷剂的温度低于室内环境温度,例如第一节流装置9作为弱制冷用,以进行除湿,例如在使其阀开度较小的情况下,制冷剂从气液混合的状态经第一节流装置9转换为液态,进入室内换热器15的其中一个分区,使其处于弱制冷模式,室内环境中的水分在低温状态下凝结成液态水,达到除湿的效果;而另一个节流装置,第二节流装置10将压缩机1排出的高温高压的制冷剂传输至室内,调节第二节流装置10的开度,使制冷剂在不改变相态的情况下进入室内换热器15的另一个分区,达到弱制热模式,以进行温度补偿;室内换热器的两个分区呈现的效果为一个弱制冷除湿,另一个弱制热进行温度补偿,两个分区共同作用实现恒温除湿的功能。上述方案的空调器,在不增加附加的除湿装置的情况下进行除湿,简化空调器的结构,节省制造和购买成本,节约资源;且除湿是在恒温的条件下进行,不对室内温度进行改变,提高用户使用的舒适度,提高空调器产品力。
上述方案中,所述第一节流装置9和所述第二节流装置10为电子膨胀阀或热力膨胀阀。
图2是根据一示例性实施例示出的一种空调器的结构示意图。如图2所示,本发明一种实施方式的空调器,还包括:第一温度检测装置13,用于检测经所述第一节流装置9调节后的温度;第二温度检测装置14,用于检测经所述第二节流装置10调节后的温度;环境温度检测装置17,用于检测环境温度;所述控制装置还用于根据所述第一温度检测装置13检测的温度和所述第二温度检测装置14检测的温度确定平均温度,并根据所述平均温度与所述环境温度的差值调节所述第一节流装置9和所述第二节流装置10的开度。
上述方案中,所述控制装置还用于:当所述平均温度与所述环境温度的差值大于或等于所述温差设定值时,调节所述第一节流装置9或第二节流装置10中低于所述环境温度的节流装置的开度增加,此处第一节流装置9为作为弱制冷的节流装置,调节第一节流装置9的开度增加,以使得经该节流装置调节的制冷剂的温度降低。
上述方案中,还设置第一温度检测装置13和第二温度检测装置14以对两个节流装置调节的制冷剂温度进行检测,以实现温度的精确调节。当需要进行恒温调节时,通过第一温度检测装置13检测第一节流装置9调节后的制冷剂的温度,使用第二温度检测装置14检测第二节流装置10调节后的制冷剂的温度,确定二者的平均温度,以确定进行温度补偿后的温度值,根据该平均温度与使用环境温度检测装置17检测的室内环境温度的差值确定恒温除湿对室内环境温度的影响,当平均温度与室内环境温度的差值大于或等于温差设定值时,表明室内环境温度高于预期/设定,此时,调节处于弱制冷模式的节流装置的 开度增大,使通过的制冷剂增多,以降低室内环境温度;而当平均温度小于温差设定值时,表明两个节流装置调节后的温度低于室内环境温度,此时的调节方式与上述的高于温差设定值时相反,即减小弱制冷的节流装置的开度,降低制冷剂的通过量;或者,作为另外一种示例,增大弱制热状态的节流装置的开度,以提高室内环境温度。上述方案的方法,对弱制冷和弱制热的节流装置调节后的制冷剂的温度进行检测,与室内环境温度进行对比,确定调节的方式,以对室内环境温度进行监控和精确调节,保证恒温除湿的工作模式的精确度,提高空调器的智能化,提高用户使用舒适度。
上述方案中,环境温度检测装置17为第一环境温度检测装置,设置在室内换热器15的回风侧,作为另一示例,还包括第二环境温度检测装置18,设置在室内换热器15的出风侧。将第一环境温度检测装置17检测的环境温度和第二环境温度检测装置18检测的温度加权求平均,确定环境温度。
上述方案中,所述温差设定值为0℃。上述方案中,当空调器工作在恒温除湿工作模式下,温差设定值为0℃;而当空调器处于弱制冷除湿模式下时,温差设定值可以设置为低于0℃,例如-2℃;而当空调器处于弱制热除湿模式下时,温差设定值可以设置为高于0℃,例如2℃;实现除湿时的恒温、弱制冷、弱制热工作模式。
上述方案中,还包括:第三温度检测装置11和第四温度检测装置12,分别与第一温度检测装置13和第二温度检测装置14对应设置,分别设置在第一节流装置9和第二节流装置10的前端,以对第一节流装置9和第二节流装置10调节前的制冷剂温度进行检测。第三温度检测装置11和第四温度检测装置12分别与第一温度检测装置11和第二温度检测装置14配合,分别用于对第一节流装置9和第二节流装置10的过冷度进行调节。
上述方案中,第一节流装置9和第二节流装置10为电子膨胀阀。第三温度检测装置和第四温度检测装置用于对电子膨胀阀9和10的过冷度进行调节。
图3是根据一示例性实施例示出的一种用于空调器的控制方法的流程示意图。如图3所示,本发明一种实施方式的用于空调器的控制方法,所述空调器包括:压缩机、室内换热器、室外换热器和节流组件,所述室内换热器包括两个不连通的分区,所述节流组件包括第一节流装置和第二节流装置,制冷剂分别经所述第一节流装置和所述第二节流装置进入所述室内换热器的两个分区;以及,控制装置,用于调节所述第一节流装置和所述第二节流装置的开度,如图1或2所示;该方法包括:在步骤S110中,检测经所述第一节流装置的制冷剂的温度;在步骤S112中,检测经所述第二节流装置的制冷剂的温度;在步骤S114中,检测环境温度;在步骤S120中,确定所述第一节流装置的制冷剂的温度和经 所述第二节流装置的制冷剂的温度的平均温度与所述环境温度的差值;在步骤S130中,根据所述差值调节所述第一节流装置和所述第二节流装置的开度。
上述方案中,高温高压的制冷剂从压缩机排出,经过两个节流装置传输到室内换热器的两个不连通的分区,调节两个节流装置的开度,使其中一个节流装置调节制冷剂的温度低于室内环境温度,以进行除湿,例如在使其阀开度较小的情况下,制冷剂从气液混合的状态经节流装置转换为液态,进入室内换热器的其中一个分区,使其处于弱制冷模式,室内环境中的水分在低温状态下凝结成液态水,达到除湿的效果;而另一个节流装置将压缩机排出的高温高压的制冷剂传输至室内,调节该节流装置的开度,使制冷剂在不改变相态的情况下进入室内换热器的另一个分区,达到弱制热模式,以进行温度补偿;室内换热器的两个分区呈现的效果为一个弱制冷除湿,另一个弱制热进行温度补偿,两个分区共同作用实现恒温除湿的功能。上述方案的空调器,在不增加附加的除湿装置的情况下进行除湿,简化空调器的结构,节省制造和购买成本,节约资源;且除湿是在恒温的条件下进行,不对室内温度进行改变,提高用户使用的舒适度,提高空调器产品力。
上述方案中,当所述空调器处于低温除湿模式时,调节流经两个节流装置的制冷剂温度中的一者高于所述环境温度,另一者低于所述环境温度。
图4是根据一示例性实施例示出的一种用于空调器的控制方法的流程示意图。如图4所示,本发明一种实施方式的用于空调器的控制方法,在步骤S132中,判断平均温度与环境温度的差值是否大于或等于差值设定值,当所述差值大于或等于温差设定值时,在步骤S134中,调节制冷剂温度低于所述环境温度的节流装置的开度增大,即调节第一节流装置的开度增大,和/或调节第二节流装置的开度减小,使得流经该节流装置的制冷剂的温度降低。
上述方案中,当所述差值小于温差设定值时,在步骤S136中,调节制冷剂温度低于所述环境温度的节流装置的开度减小,即第一节流装置的开度减小,使得流经该节流装置的制冷剂的温度升高。或调节第二节流装置的开度增大,同样达到使平均温度升高的效果,继而提高室内环境温度。
当所述差值等于温差设定值时,保持第一节流装置和第二节流装置的阀的开度不便,以维持现有环境温度。
上述方案中,所述温差设定值为0℃。
上述方案中,对两个节流装置调节的制冷剂温度进行检测,以实现温度的精确调节。当需要进行恒温调节时,检测第一节流装置调节后的制冷剂的温度,检测第二节流装置调 节后的制冷剂的温度,确定二者的平均温度,以确定进行温度补偿后的温度值,根据该平均温度与室内环境温度的差值确定恒温除湿对室内环境温度的影响,当平均温度与室内环境温度的差值大于或等于温差设定值时,表明室内环境温度高于预期/设定,此时,调节处于弱制冷模式的节流装置的开度增大,使通过的制冷剂增多,以降低室内环境温度;而当平均温度小于温差设定值时,表明两个节流装置调节后的温度低于室内环境温度,此时的调节方式与上述的高于温差设定值时相反,即减小弱制冷的节流装置的开度,降低制冷剂的通过量;或者,作为另外一种示例,增大弱制热状态的节流装置的开度,以提高室内环境温度。上述方案的方法,对弱制冷和弱制热的节流装置调节后的制冷剂的温度进行检测,与室内环境温度进行对比,确定调节的方式,以对室内环境温度进行监控和精确调节,保证恒温除湿的工作模式的精确度,提高空调器的智能化,提高用户使用舒适度。
图5是根据另一示例性实施例示出的用于空调器的控制方法的流程示意图。如图5所示,本发明另一种实施方式的用于空调器的控制方法,还包括:在调整第一节流装置或第二节流装置的阀开度后,循环检测将第一节流装置和第二节流装置调节后的制冷剂的温度,以及环境温度,并根据图3或图4所示的方法对第一节流装置或第二节流装置的阀的开度进行调节。使得通过第一节流装置与第二节流装置综合作用后,环境温度不改变或按照设定值变化,实现恒温除湿的目的。
如下为一示例性实施例的用于空调器的控制方法的控制逻辑:
1.空调器在开启恒温除湿模式时,室内机风扇先开启运转20s时(或用a秒表示),通过检测到的第一环境温度检测装置/传感器17和第二环境温度检测装置/传感器18的均值,来获取当前房间的室内环境温度;
2.室内机的控制装置/电脑板发出指令给室外机换热器,压缩机启动运转,启动运转时,室内换热器相关联的第一节流装置/电子膨胀阀和第二节流装置/电子膨胀阀均以阀门全开时的步数为基准的1/4开启直到启动过程结束,即室外换热器正常运转时;
此过程外机电子膨胀阀6始终保持全开状态,通过室内机的第一节流装置/电子膨胀阀9和第二节流装置/电子膨胀阀10节流;
3.室内机的第一节流装置/电子膨胀阀9和第二节流装置/电子膨胀阀10通过各自的阀前和阀后的温度传感器即第三温度检测装置11和第一温度检测装置13,以及第四温度检测装置12和第二温度检测装置14分别进行过冷度控制,例如过冷度设定值为2℃,依据这一目标进行阀的开度调节。
示例:
如果过冷度>2℃(阀前的温度传感器温度减去阀后温度传感器的温度,例如,第四温度检测装置12和第二温度检测装置14的差值是第二节流装置/电子膨胀阀10的过冷度)。节流装置/电子膨胀阀在现有步数上进行开阀,以降低其过冷度。
如果过冷度<2℃,节流装置/电子膨胀阀在现有的步数上关阀。
如果过冷度=2℃,节流装置/电子膨胀阀维持现有的步数。
第一节流装置/电子膨胀阀9和第二节流装置/电子膨胀阀10不以同一过冷度设定值作为目标进行调节,如果同时调节,将跟普通空调器的在室内机设置一个电子膨胀阀进行调节的运行过程相同,本发明的具有恒温除湿功能的空调器以及控制方法在于控制第一节流装置/电子膨胀阀9和第二节流装置/电子膨胀阀10的两路冷媒温度不同才能实现恒温除湿的效果。
第一节流装置/电子膨胀阀9和第二节流装置/电子膨胀阀10的作用和功能相同。例如,恒温除湿模式下开机后,第一节流装置/电子膨胀阀9调节控制进入室内换热器的冷媒是凉的,即在弱制冷状态;第二节流装置/电子膨胀阀10调节控制进入室内换热器的冷媒是热的,两路冷媒控制的室内换热器就会有冷热之分,流经室内换热器的空气也会有冷热区别,从而实现低温除湿和高温补偿。下次开机或累计此状态运行一定时间后,第一节流装置/电子膨胀阀9和第二节流装置/电子膨胀阀10的工作模式进行互换;
4.通过检测节流装置/电子膨胀阀后的温度检测装置/温度传感器13/14的温度,通过计算,例如通过相加后取平均值(或可以结合风扇转速,套用不同的公式进行计算预计的温度值),得出的数值与环境温度(温度传感器17/18检测得出,一般都是两者之和再除以2)进行比较,如果高于环境温度,那么对第一节流装置/电子膨胀阀9开大(如果电子膨胀阀9控制冷的冷媒,那么将其过冷度降低,例如从2℃变为1℃),同时对第二节流装置/电子膨胀阀10维持现状,持续检测以上温差再决定是否对第二节流装置/电子膨胀阀10进行关阀调整;
如果温度检测装置/温度传感器13/14的温度的平均值(或套用公式得出的数值),低于环境温度,那么控制方法相比以上是相反的;
5.闭环调节逐渐达到恒温除湿的目的;
6.如果用户设定除湿过程的温度并非当前机器运转时的温度,例如设定低于开机时的温度,那么,温度检测装置/温度传感器13/14通过公式套算出来的数值再与环境温度进行比较,逐渐调节两个室内换热器的第一节流装置/电子膨胀阀9和第二节流装置/电子膨胀阀10的开度以达到设定温度的目的。
本发明实施方式的空调器及用于空调器的控制方法,利用制冷对环境进行除湿,利用制热对温度进行补偿,在不降低环境温度的情况下进行除湿,实现恒温除湿,提高用户的使用舒适度。
本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。所属技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。本文所披露的实施例中,应该理解到,所揭露的方法、产品(包括但不限于装置、设备等),可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的对应或直接对应或通信连接可以是通过一些接口,装置或单元的间接对应或通信连接,可以是电性,机械或其它的形式。所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。

Claims (10)

  1. 一种空调器,包括:压缩机、室内换热器、室外换热器和节流组件,其特征在于,
    所述室内换热器包括两个不连通的分区;
    所述节流组件包括第一节流装置和第二节流装置,制冷剂分别经所述第一节流装置和所述第二节流装置进入所述室内换热器的两个分区;
    还包括:控制装置,连接所述第一节流装置和所述第二节流装置,用于在所述空调器处于恒温除湿模式时,控制所述第一节流装置和所述第二节流装置的开度,以分别调节所述室内换热器的两个分区的温度不同时高于或不同时低于环境温度。
  2. 根据权利要求1所述的空调器,其特征在于,
    所述第一节流装置和所述第二节流装置为电子膨胀阀或热力膨胀阀。
  3. 根据权利要求1所述的空调器,其特征在于,还包括:
    第一温度检测装置,用于检测经所述第一节流装置调节后的温度;
    第二温度检测装置,用于检测经所述第二节流装置调节后的温度;
    环境温度检测装置,用于检测环境温度;
    所述控制装置还用于根据所述第一温度检测装置检测的温度和所述第二温度检测装置检测的温度确定平均温度,并根据所述平均温度与所述环境温度的差值调节所述第一节流装置和所述第二节流装置的开度。
  4. 根据权利要求3所述的空调器,其特征在于,所述控制装置还用于:
    当所述平均温度与所述环境温度的差值大于或等于所述温差设定值时,调节所述第一节流装置或第二节流装置中低于所述环境温度的节流装置的开度增加,以使得经该节流装置调节的制冷剂的温度降低。
  5. 根据权利要求4所述的空调器,其特征在于,所述温差设定值为0℃。
  6. 一种用于空调器的控制方法,所述空调器包括:压缩机、室内换热器、室外换热器和节流组件,所述室内换热器包括两个不连通的分区,所述节流组件包括第一节流装置和第二节流装置,制冷剂分别经所述第一节流装置和所述第二节流装置 进入所述室内换热器的两个分区;以及,控制装置,用于调节所述第一节流装置和所述第二节流装置的开度;其特征在于,该方法包括:
    检测经所述第一节流装置的制冷剂的温度;
    检测经所述第二节流装置的制冷剂的温度;
    检测环境温度;
    确定所述第一节流装置的制冷剂的温度和经所述第二节流装置的制冷剂的温度的平均温度与所述环境温度的差值;
    根据所述差值调节所述第一节流装置和所述第二节流装置的开度。
  7. 根据权利要求6所述的方法,其特征在于,当所述空调器处于低温除湿模式时,调节流经两个节流装置的制冷剂温度中的一者高于所述环境温度,另一者低于所述环境温度。
  8. 根据权利要求7所述的方法,其特征在于,当所述差值大于或等于温差设定值时,调节制冷剂温度低于所述环境温度的节流装置的开度增大,使得流经该节流装置的制冷剂的温度降低。
  9. 根据权利要求7所述的方法,其特征在于,当所述差值小于温差设定值时,调节制冷剂温度低于所述环境温度的节流装置的开度减小,使得流经该节流装置的制冷剂的温度升高。
  10. 根据权利要求8或9所述的方法,其特征在于,所述温差设定值为0℃。
PCT/CN2018/115668 2018-08-22 2018-11-15 空调器及用于空调器的控制方法 WO2020037848A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810958440.6A CN109237672B (zh) 2018-08-22 2018-08-22 空调器及用于空调器的控制方法
CN201810958440.6 2018-08-22

Publications (1)

Publication Number Publication Date
WO2020037848A1 true WO2020037848A1 (zh) 2020-02-27

Family

ID=65068247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115668 WO2020037848A1 (zh) 2018-08-22 2018-11-15 空调器及用于空调器的控制方法

Country Status (2)

Country Link
CN (1) CN109237672B (zh)
WO (1) WO2020037848A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111442487B (zh) * 2020-03-19 2021-11-23 青岛海尔空调器有限总公司 一种空调控制方法及***
CN111473492A (zh) * 2020-04-07 2020-07-31 广东美的制冷设备有限公司 空调器的控制方法、空调器及计算机可读存储介质
CN114517969A (zh) * 2022-04-02 2022-05-20 珠海市金品创业共享平台科技有限公司 空调恒温的控制***、方法、相关设备及空调器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1932412A (zh) * 2005-09-16 2007-03-21 海尔集团公司 一种具有多种除湿模式的冷暖空调
CN105402819A (zh) * 2015-12-31 2016-03-16 海信(山东)空调有限公司 一种除湿空调器以及除湿方法
CN105972808A (zh) * 2016-05-18 2016-09-28 广东美的暖通设备有限公司 空调室内机、空调***及其运行模式的控制方法
CN207146966U (zh) * 2017-07-25 2018-03-27 胡少林 一种空调机除湿机联合装置
US20180105021A1 (en) * 2016-10-18 2018-04-19 Honda Motor Co., Ltd. Air conditioner for vehicle
CN207702677U (zh) * 2017-12-12 2018-08-07 广东唯金智能环境科技有限公司 一种空调器恒温除湿控制***

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2701612B2 (ja) * 1991-09-11 1998-01-21 ダイキン工業株式会社 空気調和装置の運転制御装置
JP5333365B2 (ja) * 2010-07-07 2013-11-06 ダイキン工業株式会社 空気調和機
CN105526672B (zh) * 2015-12-11 2018-12-18 珠海格力电器股份有限公司 一种再热除湿***温湿度控制方法
CN108375177B (zh) * 2016-11-02 2021-03-16 青岛海尔空调器有限总公司 空调器的恒温除湿方法
CN108019824A (zh) * 2016-11-02 2018-05-11 青岛海尔空调器有限总公司 空调器及其恒温除湿方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1932412A (zh) * 2005-09-16 2007-03-21 海尔集团公司 一种具有多种除湿模式的冷暖空调
CN105402819A (zh) * 2015-12-31 2016-03-16 海信(山东)空调有限公司 一种除湿空调器以及除湿方法
CN105972808A (zh) * 2016-05-18 2016-09-28 广东美的暖通设备有限公司 空调室内机、空调***及其运行模式的控制方法
US20180105021A1 (en) * 2016-10-18 2018-04-19 Honda Motor Co., Ltd. Air conditioner for vehicle
CN207146966U (zh) * 2017-07-25 2018-03-27 胡少林 一种空调机除湿机联合装置
CN207702677U (zh) * 2017-12-12 2018-08-07 广东唯金智能环境科技有限公司 一种空调器恒温除湿控制***

Also Published As

Publication number Publication date
CN109237672A (zh) 2019-01-18
CN109237672B (zh) 2021-06-22

Similar Documents

Publication Publication Date Title
CN106931587B (zh) 空调的控制方法及空调
WO2021082509A1 (zh) 空调***及空调结霜控制方法
CN105526672B (zh) 一种再热除湿***温湿度控制方法
WO2020037848A1 (zh) 空调器及用于空调器的控制方法
KR100933515B1 (ko) 쿨링 타워 냉각수를 이용한 에너지 절약형 항온항습기 및 그의 제어방법
JP6609417B2 (ja) 空気調和機
CN106016628A (zh) 空调器化霜控制的方法及装置
WO2021212966A1 (zh) 多联空调***及多联空调***的冷媒流量控制方法
US20200300523A1 (en) Liquid transfer pump cycle
KR20100073696A (ko) 공기조화기 및 그 제어방법
CN103574793A (zh) 调温型除湿机组及其控制方法
CN106440560A (zh) 冷凝面积可调的空调***及其控制方法
JP2006145204A (ja) 空気調和機
CN105180347A (zh) 空调器防热风控制方法及空调器
US20150159935A1 (en) Apparatus with dehumidification and defrosting abilities and controlling method thereof
JP2002054832A (ja) 空調装置
JP4187008B2 (ja) 空気調和装置
JP7374633B2 (ja) 空気調和機及び空気調和システム
CN110017562A (zh) 双冷源新风机组及其制冷控制方法
JP2002107001A (ja) 空気調和機
CN110736142B (zh) 一种空调器及其不降温快速除湿控制方法
JP2004132573A (ja) 空気調和機
JPH07151419A (ja) ヒートポンプ装置
JP2893844B2 (ja) 空気調和機
JPH1183125A (ja) 空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18930966

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18930966

Country of ref document: EP

Kind code of ref document: A1