WO2020034869A1 - 一种业务流的传输方法、通信方法及装置 - Google Patents

一种业务流的传输方法、通信方法及装置 Download PDF

Info

Publication number
WO2020034869A1
WO2020034869A1 PCT/CN2019/099353 CN2019099353W WO2020034869A1 WO 2020034869 A1 WO2020034869 A1 WO 2020034869A1 CN 2019099353 W CN2019099353 W CN 2019099353W WO 2020034869 A1 WO2020034869 A1 WO 2020034869A1
Authority
WO
WIPO (PCT)
Prior art keywords
address
service flow
access technology
terminal
network element
Prior art date
Application number
PCT/CN2019/099353
Other languages
English (en)
French (fr)
Inventor
于游洋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811163077.5A external-priority patent/CN110830429B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112021002578-2A priority Critical patent/BR112021002578A2/pt
Priority to JP2021507559A priority patent/JP7150140B2/ja
Priority to EP19849792.7A priority patent/EP3829130B1/en
Priority to KR1020217005623A priority patent/KR102513813B1/ko
Publication of WO2020034869A1 publication Critical patent/WO2020034869A1/zh
Priority to US17/166,709 priority patent/US11832352B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/086Load balancing or load distribution among access entities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/40Network security protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/50Service provisioning or reconfiguring

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a method, a communication method, and a device for transmitting a service flow.
  • next generation mobile communication network architecture Next Generation System
  • 5G next generation mobile communication network architecture
  • the 5G network architecture not only supports terminals accessing the 5G core network side (Core Network) through wireless technologies defined by the 3GPP standard group (such as Long Term Evolution (LTE), 5G Radio Access Network (RAN), etc.) , CN) and support non (non) -3GPP access technology to access the core network side through non-3GPP conversion function (Interworking Function (N3IWF) or next generation access gateway (next Generation Packet Data Gateway).
  • LTE Long Term Evolution
  • RAN Radio Access Network
  • CN non-3GPP conversion function
  • N3IWF Interworking Function
  • next generation access gateway next generation Packet Data Gateway
  • PDU Session there is a PDU session (Session) between a user equipment (User) and a data network (DN) to provide a packet data unit (PDU) data unit (PDU) connection service.
  • PDU Session A can access the core network side through the first access technology, or the core network side through the second access technology.
  • a PDU session that supports multiple access technologies can be referred to as a multiple Multi-access PDU Session (MA-PDU Session).
  • MA-PDU Session multiple Multi-access PDU Session
  • the user equipment divides the service flow based on the offload policy sent by the core network element, which will increase the complexity of the signaling interaction between the user equipment and the core network element.
  • the embodiments of the present application provide a service flow transmission method, a communication method, and a device, so as to reduce the complexity of signaling interaction between a terminal and a core network element when the service flow is offloaded.
  • an embodiment of the present application provides a service flow transmission method.
  • the method includes: a terminal receiving a service flow splitting mode and / or a service flow transmission method sent by a core network element, and a packet data unit in which the service flow is located.
  • (Packet Data Unit, PDU) sessions support multiple access technologies; the terminal uses at least one of the multiple access technologies to transmit service flows according to the offload mode and / or service flow transmission method.
  • PDU Packet Data Unit
  • the embodiment of the present application provides a method for transmitting a service flow, and obtains, through a terminal, a shunt mode and / or a service flow transmission method of a service flow sent by a core network element, and is determined according to the shunt mode and / or a service flow transmission method.
  • Access technology used by service flows using different transmission methods.
  • the service flow can not be shunted based on the shunt strategy, and the shunt mode and / or service flow transmission method of the service flow can be used, so that the service flow using different transmission methods can be connected according to the determined corresponding connection in a PDU session supporting multiple access technologies.
  • Incoming technology for offloading reduces the complexity of the signaling interaction between the core network element and the terminal.
  • the transmission method of the service flow includes one or more of the following: the multiplexing control protocol MPTCP method, the MPTCP proxy proxy method, the transmission control protocol TCP method, the TCP proxy method, and the user datagram protocol UDP method , UDP proxy method, Quick UDP Internet connection QUIC method, Quick UDP Internet connection QUIC proxy method, Multi-path UDP Internet connection MP-QUIC method, or MP-QUIC proxy method.
  • the multiplexing control protocol MPTCP method the MPTCP proxy proxy method
  • the transmission control protocol TCP method the TCP proxy method
  • the user datagram protocol UDP method UDP proxy method
  • Quick UDP Internet connection QUIC method Quick UDP Internet connection QUIC proxy method
  • Multi-path UDP Internet connection MP-QUIC method Multi-path UDP Internet connection MP-QUIC method
  • MP-QUIC proxy method MP-QUIC proxy method
  • the method provided in the embodiment of the present application further includes: obtaining, by the terminal, a multiplexing algorithm.
  • the terminal uses at least one of a plurality of access technologies to transmit the service flow according to the shunt mode and / or the service flow transmission method, including: the terminal uses a plurality of access technologies according to the shunt mode and / or the service flow transmission method and the multiplexing algorithm.
  • At least one of the input technologies transmits a service flow. In this way, the terminal can determine which access technology is used to transmit the service flow based on the multiplexing algorithm.
  • the terminal obtaining the multiplexing algorithm includes: the terminal receives the multiplexing algorithm corresponding to the offload mode sent by the core network element; or the terminal receives the service flow transmission method corresponding to the core network element Or the terminal determines the multiplexing algorithm configured by the terminal according to the shunt mode; or the terminal determines the multiplexing algorithm configured by the terminal according to the transmission method of the service flow. In this way, the terminal can obtain the multiplexing algorithm from multiple channels.
  • the multiplexing algorithm is an MPTCP algorithm or a QUIC algorithm or an MP-QUIC algorithm.
  • the MPTCP algorithm or the QUIC algorithm or the MP-QUIC algorithm includes one or more of the following: a switching algorithm, and a preferred minimum round-trip time RTT. Path algorithm, multiplexing algorithm, polling scheduling algorithm, default algorithm or redundant transmission algorithm.
  • the method provided in the embodiment of the present application further includes: the terminal receives instruction information sent by a core network element, and the instruction information is used to indicate an access technology used by the terminal to send a service flow and a terminal used to receive a service flow.
  • the access technology is the same; the terminal uses at least one of a plurality of access technologies to transmit the service flow according to the offload mode and / or the service flow transmission method, including: the terminal transmits the service flow according to the offload mode and / or the service flow and the indication information.
  • the user plane function network element and the terminal may use different access technologies to offload the same service flow. Therefore, by sending instruction information to the terminal, the terminal can use the same access technology as the network side when sending the service flow.
  • the offload mode includes one or more of the following: an access technology priority indication, which is used to indicate that a service flow is preferentially transmitted through the access technology priority indication associated access technology; an optimal link offload indication, It is used to indicate that the service flow is preferentially transmitted through the optimal link; the optimal link is a link whose link status is better than other links; and the link load balancing-based offloading instruction is used to indicate that the service is transmitted according to the link load balancing policy Flow; access technology and split ratio indication, used to indicate that the service flow is transmitted according to the split ratio corresponding to the access technology; redundant transmission indication, used to indicate that the same data packet in the service flow is transmitted through different access technologies at the same time.
  • an access technology priority indication which is used to indicate that a service flow is preferentially transmitted through the access technology priority indication associated access technology
  • an optimal link offload indication It is used to indicate that the service flow is preferentially transmitted through the optimal link
  • the optimal link is a link whose link status is better than other links
  • a terminal receiving a shunt mode and / or a service flow transmission method of a service flow sent by a core network element includes: the terminal obtains a policy from a non-access stratum NAS transmission message sent by the core network element Controls a shunt mode of a service flow and / or a transmission method of a service flow sent by a network element. Alternatively, the terminal obtains a service flow distribution mode and / or a service flow transmission method from a session management response message sent by a core network element.
  • the method provided in the embodiment of the present application further includes: obtaining, by the terminal, multiple addresses allocated by the core network element to the terminal's PDU session and an access technology type corresponding to each of the multiple addresses; the terminal Service traffic is transmitted based on policy information and multiple addresses.
  • the terminal obtains multiple addresses and the access technology type corresponding to each of the multiple addresses, so that the same PDU session can be used to offload service flows transmitted using different transmission methods.
  • the method provided in the embodiment of the present application further includes: obtaining, by the terminal, multiple addresses allocated by the core network element to the terminal's PDU session, and a service type corresponding to each of the multiple addresses; Multiple addresses and service types corresponding to each of the multiple addresses transmit service flows.
  • the terminal obtains multiple addresses and the service type corresponding to each of the multiple addresses, so that the service flow of multiple service types can be offloaded in the same PDU session.
  • the service flow includes a first service flow transmitted by using a first transmission method, and multiple addresses include a first address and a second address, the first address corresponds to a first access technology type, and the second address corresponds to The second access technology type; the terminal according to the policy information and the multiple addresses include: the terminal uses the first address and / or the second address to transmit the first service flow according to the policy information. It should be understood that if the terminal determines that the first service flow is transmitted using the first access technology corresponding to the first access technology type according to the policy information, the terminal uses the first address to transmit the first service flow.
  • the terminal determines that the first service flow is transmitted using the second access technology corresponding to the second access technology type according to the policy information, the terminal uses the second address to transmit the first service flow. If the terminal determines that the first service flow is transmitted using both the first access technology and the second access technology according to the policy information, the terminal uses the first address for the part of the first service flow transmitted using the first access technology. For transmission, the part of the first service flow that is transmitted using the second access technology is transmitted using the second address.
  • the first transmission method here includes: multiplex transmission control protocol MPTCP method, MPTCP proxy proxy method, transmission control protocol TCP method, TCP proxy method, user datagram protocol UDP method, UDP proxy method, fast UDP Internet connection One or more of the QUIC method, or the MP-QUIC proxy method of the multi-path UDP Internet connection.
  • the service flow includes a first service flow transmitted by using a first transmission method
  • multiple addresses include a first address, a second address, and a third address
  • the first address corresponds to a first access technology type.
  • the second address corresponds to the second access technology type
  • the third address corresponds to the first access technology type and the second access technology type;
  • the terminal uses the policy information and multiple addresses, including: the terminal uses the first address and / Or the second address transmits the first service flow.
  • the service flow further includes a second service flow transmitted by using the second transmission method
  • the terminal transmits the second service flow by using a third address.
  • the service flow includes a first service flow transmitted by using a first transmission method
  • the multiple addresses include a first address and a second address, where the first address corresponds to the first access technology type and the second address.
  • Access technology type the second address corresponds to the first access technology type or the second access technology type;
  • the terminal transmitting the service flow according to the policy information and multiple addresses includes: the terminal adopting the first address and / or the second address according to the policy information
  • the address transmits the first service flow. It should be understood that the terminal determines an access technology type for transmitting the first service flow according to the policy information, and then determines an address used by the first service flow according to the determined access technology type.
  • the service flow further includes a second service flow transmitted by using the second transmission method, and the terminal transmits the service flow according to the policy information and multiple addresses, and further includes: the terminal transmits the second service flow by using the first address according to the policy information.
  • each address may also correspond to a service type.
  • multiple addresses include a first address and a second address, where the first address corresponds to a general service flow and the second address corresponds to a first service flow.
  • the terminal transmitting the service flow according to multiple addresses and the service type corresponding to each of the multiple addresses can be specifically implemented in the following manner: the terminal uses the first An address and / or a second address transmits the first service flow.
  • the terminal transmits the service flow according to multiple addresses and a service type corresponding to each address in the multiple addresses, further including: the terminal The second service stream is transmitted using the first address.
  • the user plane function network element may execute the process performed by the terminal in the first aspect or any one of the possible implementation manners of the first aspect. That is, in the first aspect or any possible implementation manner of the first aspect, the terminal may be replaced with a user plane function network element.
  • an embodiment of the present application provides a communication method, including: obtaining, by a core network element, policy information of a service flow, where the policy information includes at least one of a shunt mode and a transmission method. Access technology.
  • the core network element sends the service flow policy information to the terminal / user plane function network element.
  • An embodiment of the present application provides a communication method for sending policy information of a service flow to a terminal or a user plane function network element through a core network element. This is convenient for the terminal / user plane function network element to use the access technology determined by the policy information for the service flow in the same PDU session according to the policy information.
  • the policy information further includes: a multiplexing algorithm.
  • the multiplexing algorithm is MPTCP algorithm or UDP QUIC algorithm or MP-QUIC algorithm.
  • MPTCP algorithm or QUIC algorithm or MP-QUIC algorithm includes one or more of the following: switching algorithm, RTT path algorithm, Multiplexing algorithm, polling scheduling algorithm, default algorithm, or redundant transmission algorithm.
  • the method provided in the embodiment of the present application further includes: the core network element sends instruction information to the terminal (or user plane function network element), and the instruction information is used to instruct the terminal (or user plane function network element)
  • the access technology used to send the service flow is the same as the access technology used by the terminal (or user plane function network element) to receive the service flow.
  • the core network element obtaining the policy information of the service flow includes: the core network element receives the policy information of the service flow sent by the policy control network element during the session management process. Alternatively, the core network element receives the policy information of the service flow sent by the policy control network element during the process of the terminal requesting registration to the network.
  • the method provided in this embodiment of the present application further includes: sending, by the core network element, multiple addresses to the terminal, and the access technology type or service type corresponding to each of the multiple addresses. .
  • the core network element sends multiple addresses allocated to the terminal to the terminal, and the access technology type corresponding to each of the multiple addresses includes: the core network element sends the terminal / user plane function The network element sends a first address and a second address, a first access technology type corresponding to the first address, and a second access technology type corresponding to the second address.
  • the core network element sends the first address and the second address to the terminal / user plane function network element.
  • the core network element sends the first address, the second address, and the type indication information to the terminal / user plane function network element, where the type indication information is used to indicate that selecting an address from the first address and the second address corresponds to the first address One access technology type, and the other address corresponds to the second access technology type.
  • the core network element sends multiple addresses allocated to the terminal to the terminal, and the access technology type corresponding to each of the multiple addresses includes: the core network element sends the terminal / user plane function The network element sends a first address, a second address, and a third address, where the first address corresponds to the first access technology type, the second address corresponds to the second access technology type, and the third address corresponds to the first access technology type and Second access technology type.
  • the core network element sends the first address, the second address, and the third address to the terminal / user plane function network element, where the first address corresponds to the first access technology type and the second address corresponds to the second access technology type .
  • the core network element sends the first address, the second address, and the third address to the terminal / user plane function network element, where the first address corresponds to the first access technology type and the second address corresponds to the second access technology type
  • the third address corresponds to the universal address indication.
  • the core network element sends multiple addresses allocated to the terminal to the terminal / user plane function network element, and the access technology type or service corresponding to each address in each of the multiple addresses.
  • the type includes: a core network element sending a first address, a second address, and first type indication information corresponding to the first address and second type indication information corresponding to the second address to the terminal / user plane function network element;
  • the first type of indication information is used to indicate that the first address corresponds to the first access technology type and the second access technology type
  • the second type of indication information is used to indicate that the second address corresponds to the first access technology type or the second access technology type.
  • the access technology type corresponds to a general service flow.
  • the second type of indication information is used to indicate that the second address corresponds to the first service flow.
  • the core network element sends multiple addresses allocated to the terminal to the terminal, and the access technology type or service type corresponding to each address in the multiple addresses includes: the core network element sends the terminal / The user plane function network element sends the first address and the second address, and the second type of indication information corresponding to the second address.
  • the second type of indication information is used to indicate that the second address corresponds to the first service flow, or the second type of indication information is used to indicate that the second address corresponds to the first access technology type or the second access technology type.
  • the first type indication information may be a first access technology type indication and a second access technology type indication.
  • the first type of indication information may also be a first indication field or fourth indication information, which is used to indicate that the first address corresponds to the first access technology type and the second access technology type.
  • the first type of indication information may also be a general address indication.
  • the second type of indication information may be a first access technology type indication or a second access technology type indication, or the second type indication information may also be a second indication field or fifth indication information.
  • the fourth instruction information is the first service flow instruction and / or the second service flow instruction
  • the fifth instruction information is the first service flow instruction
  • the fourth indication information is a general service flow indication
  • an embodiment of the present application provides a method for transmitting a service flow, including: obtaining, by a terminal, multiple addresses allocated by a core network element for a terminal's PDU session, and an access technology type or address corresponding to each of the multiple addresses.
  • the PDU session supports multiple access technologies.
  • the terminal transmits a service flow according to the policy information and multiple addresses.
  • a service type corresponds to each address
  • the terminal transmits a service flow according to multiple addresses and a service type corresponding to each address in the multiple addresses.
  • the service flow includes a first service flow transmitted by using a first transmission method, and multiple addresses include a first address and a second address, the first address corresponds to a first access technology type, and the second address corresponds to The second access technology type; the terminal transmitting the service flow according to the policy information and multiple addresses, including: the terminal transmitting the first service flow by using the first address and / or the second address according to the policy information.
  • the first transmission method includes one of an MPTCP method, an MPTCP proxy proxy method, a TCP method, a TCP proxy method, a UDP method, a UDP proxy method, a UDP QUIC method, or a UDP MP-QUIC proxy method. Item or items.
  • the terminal obtaining multiple addresses allocated by the core network element to the terminal's PDU session and the access technology type corresponding to each of the multiple addresses includes: the terminal obtaining the first address sent by the core network element An address, a first access technology type corresponding to the first address, a second address, and a second access technology type corresponding to the second address.
  • the terminal obtaining multiple addresses allocated by the core network element to the terminal's PDU session and the access technology type corresponding to each of the multiple addresses includes: the terminal obtaining the first address sent by the core network element First address and second address.
  • the terminal and the core network element negotiate in advance that any one of the first address and the second address corresponds to the first access technology type, and then the other address is related to the first address. Corresponds to the two access technology types.
  • the terminal obtaining multiple addresses allocated by the core network element to the terminal's PDU session and the access technology type corresponding to each of the multiple addresses includes: the terminal obtaining the first address sent by the core network element An address and a second address, and type indication information.
  • the type indication information is used to indicate that any one of the first address and the second address corresponds to the first access technology type, and then the other address corresponds to the second access technology type.
  • the service flow includes a first service flow transmitted by using a first transmission method and / or a second service flow transmitted by using a second transmission method
  • multiple addresses include a first address, a second address, and a first address.
  • the first address corresponds to the first access technology type
  • the second address corresponds to the second access technology type
  • the third address corresponds to the first access technology type and the second access technology type
  • the address transmission service flow includes: the terminal transmits the first service flow by using the first address and / or the second address according to the policy information, and / or transmits the second service flow by using the third address.
  • the terminal obtaining multiple addresses allocated by the core network element to the terminal's PDU session and the access technology type corresponding to each of the multiple addresses includes: the terminal receives the first address sent by the core network element. An address, a second address, and a third address.
  • the first address corresponds to the first access technology type
  • the second address corresponds to the second access technology type
  • the third address corresponds to the first access technology type and the second access technology type.
  • the terminal receives the first address, the second address, and the third address sent by the core network element, where the first address corresponds to the first access technology type and the second address corresponds to the second access technology type.
  • the terminal receives the first address, the second address, and the third address sent by the core network element, where the first address corresponds to the first access technology type, the second address corresponds to the second access technology type, and the third address corresponds to Universal address indication.
  • the service flow includes a first service flow transmitted by using a first transmission method
  • the multiple addresses include a first address and a second address.
  • the first address corresponds to the first access technology type and the second access technology type
  • the second address corresponds to the first access technology type or the second access technology type
  • the terminal transmits the service flow according to the policy information and multiple addresses:
  • the terminal transmits the first service flow by using the first address and / or the second address according to the policy information.
  • the service flow further includes a second service flow transmitted by using a second transmission method
  • the terminal transmits the service flow according to the policy information and multiple addresses, and further includes: the terminal transmits the second address by using the first address according to the policy information. business flow.
  • the terminal using the first address and / or the second address to transmit the first service flow according to the policy information includes: the terminal determining that the access technology for transmitting the first service flow is the access technology type corresponding to the second address When the terminal uses the second address to transmit the first service flow; when the terminal determines that the access technology for transmitting the first service flow is not the access technology type corresponding to the second address, the terminal uses the first address to transmit the first service flow.
  • the service flow includes a first service flow transmitted by using a first transmission method
  • the multiple addresses include: a first address and a second address, where the first address corresponds to a general service flow and the second address corresponds to First business flow.
  • the terminal transmitting a service flow according to multiple addresses and a service type corresponding to each of the multiple addresses includes: the terminal transmitting the first service flow by using the first address and / or the second address.
  • the method provided in the embodiment of the present application further includes: the terminal obtains a first message, where the first message is used to indicate that the first address corresponds to the first access technology type, and / or the second address corresponds to the first Two access technology types.
  • the terminal transmits a service flow according to multiple addresses and a service type corresponding to each address in the multiple addresses, including: the terminal determines an access technology for transmitting the first service flow according to the first message. This solution is applicable to the scenario where the terminal obtains the service type corresponding to each address.
  • the service flow further includes a second service flow transmitted by using the second transmission method; the terminal transmits the service flow according to multiple addresses and a service type corresponding to each address in the multiple addresses, and further includes: The first address transmits the second service flow.
  • the first transmission method includes one or more of an MPTCP method, an MPTCP proxy method, a UDPQUIC method, a UDPQUICproxy method, a UDPMP-QUIC method, or an MP-QUICproxy.
  • the second transmission method includes one or more of a TCP method, a TCP proxy method, a UDP method, and a UDP proxy method.
  • the terminal obtaining multiple addresses allocated by the core network element to the terminal's PDU session and the access technology type corresponding to each of the multiple addresses includes: the terminal obtaining the first address sent by the core network element First address and second address. The terminal determines that the first address corresponds to the first access type and the second access technology type, and the terminal determines that the second address corresponds to the first access technology type or the second access technology type.
  • the terminal obtains multiple addresses allocated by the core network element for the terminal's PDU session and the access technology type corresponding to each address in the multiple addresses or the service type corresponding to each address in the multiple addresses.
  • the method includes: the terminal receives the first address and the second address sent by the core network element, the first type of indication information corresponding to the first address, and the second type of indication information corresponding to the second address.
  • the first type indication information is used to indicate the first access technology type and the second access technology type
  • the second type indication information is used to indicate the first access technology type or the second access technology type; or
  • the type indication information is used to indicate a general service flow
  • the second type indication information is used to indicate a first service flow.
  • the terminal obtains multiple addresses allocated by the core network element for the terminal's PDU session and the access technology type corresponding to each address in the multiple addresses or the service type corresponding to each address in the multiple addresses. Including: receiving, by a terminal, a first address and a second address sent by a core network element, and second type indication information corresponding to the second address; the terminal determining that the first address corresponds to the first access technology type and the second access technology Type, and determining that the second address corresponds to the first access technology type or the second access technology type.
  • the method provided in the embodiment of the present application further includes: receiving, by the terminal, indication information used by the core network element to determine a transmission method for transmitting a service flow.
  • the terminal may also execute any possible method of the first aspect.
  • an embodiment of the present application provides a method for transmitting a service flow, including: a user plane function network element acquiring multiple addresses allocated for a PDU session of a terminal and an access technology type corresponding to each of the multiple addresses, PDU sessions support multiple access technologies; user plane function network elements transmit service flows based on policy information and multiple addresses.
  • the user plane function network element obtains multiple addresses allocated for the PDU session of the terminal and the service type corresponding to each address in the multiple addresses.
  • the user plane function network element corresponds to the multiple addresses and each address in the multiple addresses.
  • the service type transmits a service flow.
  • the policy information includes a shunt mode and / or a service flow transmission method.
  • the service flow includes a first service flow transmitted by using a first transmission method, and multiple addresses include a first address and a second address, the first address corresponds to a first access technology type, and the second address corresponds to The second access technology type;
  • the user plane function network element transmits the service flow according to the policy information and multiple addresses, including: the user plane function network element sends the first service flow to the terminal by using the first address and / or the second address according to the policy information.
  • the first transmission method includes: the MPTCP method, the MPTCP proxy method, the TCP method, the TCP proxy method, the UDP method, the UDP proxy method, the UDP QUIC method, the UDP QUIC proxy method, or the UDP MP-QUIC method, One or more of the MP-QUIC proxy methods.
  • the service flow includes a first service flow transmitted by using a first transmission method, and multiple addresses include a first address and a second address, and the first address corresponds to a first access technology type and a second access.
  • Technology type the second address corresponds to the first access technology type or the second access technology type
  • the user plane function network element transmits the service flow according to the policy information and multiple addresses, including: the user plane function network element adopts the first address according to the policy information
  • the address and / or the second address sends the first service flow to the terminal.
  • the service flow further includes a second service flow transmitted by using the second transmission method.
  • the user plane function network element transmits the service stream according to the policy information and multiple addresses, and further includes: the user plane function network element according to the policy.
  • the information uses the first address to transmit the second service flow.
  • the user plane function network element uses the first address and / or the second address to transmit the first service flow according to the policy information, including: the user plane function network element determines that an access technology for transmitting the first service flow is When the second address corresponds to the access technology type, the user plane function network element uses the second address to transmit the first service flow; when the user plane function network element determines that the access technology for transmitting the first service flow is not the access technology type corresponding to the second address , The user plane function network element uses the first address to transmit the first service flow.
  • the service flow includes a first service flow transmitted by using a first transmission method, and multiple addresses include a first address and a second address, the first address corresponds to a general service flow, and the second address corresponds to the first service.
  • the user plane function network element transmits a service stream according to multiple addresses and the service type corresponding to each of the multiple addresses, including: the user plane function network element sends the first service to the terminal by using the first address and / or the second address flow.
  • the service flow further includes a second service flow transmitted by using the second transmission method
  • the user plane function network element transmits the service flow according to multiple addresses and a service type corresponding to each of the multiple addresses, including :
  • the user plane function network element uses the first address to transmit the second service flow.
  • the user plane function network element obtains a first message, where the first message is used to indicate that the first address corresponds to the first access technology type, and / or the second address corresponds to the second access technology type
  • the method provided in the embodiment of the present application further includes: the user plane function network element determines an access technology for transmitting the first service flow according to the first message.
  • the user plane function network element can determine which address is used to transmit the first service flow according to the access technology for transmitting the first service flow. For example, if the first service flow is transmitted using the first access technology type and the first message indicates that the first address corresponds to the first access technology type, the user plane function network element transmits the first service flow using the first address. This case is applicable to a case where the user plane functional unit determines that the first address corresponds to a general service flow and the second address corresponds to a first service flow.
  • the service flow includes a first service flow transmitted by using a first transmission method and / or a second service flow transmitted by using a second transmission method
  • multiple addresses include a first address, a second address, and a first address.
  • the first address corresponds to the first access technology type
  • the second address corresponds to the second access technology type
  • the third address corresponds to the first access technology type and the second access technology type
  • the user plane function network element according to the policy Information and multiple address transmission service flows, including: the user plane function network element sends the first service flow to the terminal using the first address and / or the second address according to the policy information, and / or sends the second service to the terminal using the third address flow.
  • the method provided in the embodiment of the present application further includes: the user plane function network element receives the service flow sent to the terminal; the user plane function network element determines that the service flow sent to the terminal is transmitted using the first transmission method; The user plane function network element replaces the target address of the service flow sent to the terminal with the first address and / or the second address.
  • the multiple addresses include a first address and a second address, where the first address corresponds to a first access technology type and the second address corresponds to a second access technology type; the method provided in the embodiment of the present application further includes: Including: the user plane function network element receives the service flow sent by the terminal, and the source address of the service stream sent by the terminal is the first address and / or the second address; the user plane function network element transmits the service flow according to the policy information and multiple addresses, including : The user plane function network element replaces the source address of the service flow sent by the terminal with a fourth address according to the policy information.
  • the fourth address is an address of a user plane function network element or a third address allocated for a PDU session of the terminal.
  • the service flow includes a first service flow transmitted by using a first transmission method and a second service flow transmitted by using a second transmission method, and multiple addresses include a first address, a second address, and a third address.
  • the first address corresponds to the first access technology type
  • the second address corresponds to the second access technology type
  • the third address corresponds to the first access technology type and the second access technology type;
  • the method provided in the embodiment of the present application further includes :
  • the user plane function network element receives the service flow sent by the terminal, and the service flow sent by the terminal includes the first service flow transmitted by using the first transmission method, and the source address of the first service flow is the first address and / or the second address;
  • the user The plane function network element transmits the service flow according to the policy information and multiple addresses, including: the user plane function network element replaces the source address of the first service flow with the fourth address according to the policy information.
  • the fourth address is an address of a user plane function network element or a third address allocated for a PDU session of the terminal.
  • the multiple addresses include a first address and a second address.
  • the first address corresponds to the first access technology type and the second access technology type
  • the second address corresponds to the first access technology type or the first address.
  • Two access technology types; the method provided in the embodiment of the present application further includes: the user plane function network element receives the service flow sent by the terminal, and the source address of the service flow sent by the terminal is the first address and / or the second address; the user plane function The network element transmits the service flow according to the policy information and multiple addresses, including: the user plane function network element replaces the source address of the service flow sent by the terminal with the first address according to the policy information.
  • the first transmission method includes one or more of an MPTCP method, an MPTCP proxy method, a UDPQUIC method, a UDPQUICproxy method, a UDPMP-QUIC method, or an MP-QUICproxy.
  • the second transmission method includes one or more of a TCP method, a TCP proxy method, a UDP method, and a UDP proxy method.
  • the user plane function network element obtains multiple addresses allocated for the terminal's PDU session and the access technology type corresponding to each of the multiple addresses, or the service corresponding to each of the multiple addresses. Types of.
  • the method provided in the embodiment of the present application further includes: the user plane function network element receives the first address, the second address, and the third address sent by the session management network element.
  • the first address corresponds to the first access technology type
  • the second address corresponds to the second access technology type
  • the third address corresponds to the first access technology type and the second access technology type.
  • the user plane function network element receives the first address, the second address, and the third address sent by the session management network element, where the first address corresponds to the first access technology type and the second address corresponds to the second access technology type.
  • the user plane function network element receives the first address, the second address, and the third address sent by the session management network element, where the first address corresponds to the first access technology type and the second address corresponds to the second access technology type,
  • the third address corresponds to the universal address indication.
  • the service flow includes a first service flow transmitted by using a first transmission method, and multiple addresses include a first address and a second address, the first address corresponds to a general service flow, and the second address corresponds to the first service.
  • the user plane function network element transmits the service stream according to multiple addresses and the service type corresponding to each address, including: the user plane function network element transmits the first service stream by using the first address and / or the second address.
  • the service flow further includes a second service flow transmitted by using the second transmission method;
  • the user plane function network element transmits the service flow according to multiple addresses and a service type corresponding to each address, and further includes: a user plane The functional network element uses the first address to transmit the second service flow.
  • the service flow includes a first service flow transmitted by using a first transmission method, and multiple addresses include a first address and a second address, and the first address corresponds to a first access technology type and a second access.
  • Technology type the second address corresponds to the first access technology type or the second access technology type;
  • the user plane function network element transmits the service flow according to the policy information and multiple addresses, including: the user plane function network element uses the first address and / Or the second address transmits the first service flow.
  • the service flow further includes a second service flow transmitted by using the second transmission method;
  • the user plane function network element transmits the service flow according to the policy information and multiple addresses, and further includes: the user plane function network element adopts the first An address transmits the second service flow.
  • the user plane function network element obtains multiple addresses allocated by the core network element to the packet data unit PDU session of the terminal and an access technology type or multiple addresses corresponding to each of the multiple addresses.
  • the service type corresponding to each address includes: the user plane function network element receives the first address and the second address sent by the core network element, and the first type indication information corresponding to the first address, and the first address corresponding to the second address.
  • Two types of instructions The first type indication information is used to indicate the first access technology type and the second access technology type, and the second type indication information is used to indicate the first access technology type or the second access technology type; or
  • the type indication information is used to indicate a general service flow, and the second type indication information is used to indicate a first service flow.
  • the user plane function network element obtains multiple addresses allocated by the core network element to the packet data unit PDU session of the terminal and the access technology type corresponding to each of the multiple addresses, including: the user plane
  • the functional network element receives the first address and the second address, and the second type of indication information corresponding to the second address.
  • the user plane functional network element determines that the first address corresponds to the first access technology type and the second address.
  • the operation of the terminal in any of the implementation manners of the first aspect may also be performed.
  • an embodiment of the present application provides a communication method, including: a session management network element receives indication information, the indication information is used to indicate a method for transmitting a service flow, and a PDU session where the service flow is located supports multiple access technologies; The network element selects a user plane function network element having a transmission method function according to the instruction information.
  • the method provided in the embodiment of the present application further includes: obtaining, according to the indication information, the session management network element to allocate multiple addresses to the terminal's PDU session, and each of the multiple addresses corresponds to multiple access technologies. At least one of the types.
  • the method provided in the embodiment of the present application further includes: the session management network element sends multiple addresses to the user plane function network element / terminal and the access technology type or service corresponding to each of the multiple addresses Types of.
  • the method provided in the embodiment of the present application further includes: the session management network element sends instruction information to the user plane function network element / terminal, and the instruction information is used to indicate a method for transmitting a service flow.
  • the method provided in the embodiment of the present application further includes: the session management network element sends a third address to the user plane function network element / terminal, and the first access technology type and the third address corresponding to the third address.
  • the second access technology type, or the session management network element sends a third address and a general address indication to the user plane function network element / terminal.
  • the session management network element sends a third address to the user plane function network element / terminal. It can be understood that, in this case, the first address and the second address need to be sent to the terminal.
  • the first address and the second address indicate the access technology type, refer to the description in the foregoing embodiment. Here No longer.
  • the manner in which the session management network element sends multiple addresses to the user plane function network element / terminal and the access technology type or service type corresponding to each of the multiple addresses can refer to the core in the second aspect.
  • the network element sends the multiple addresses allocated for the PDU session to the terminal, and the implementation method of the access technology type or service type corresponding to each address in the multiple addresses is not described herein again.
  • the core network element in the second aspect may be replaced with a session management network element.
  • the session management network element may also execute any one of the possible communication methods in the second aspect.
  • the present application provides a service flow transmission device.
  • the service flow transmission device can implement the first aspect or any one of the possible implementation methods of the first aspect, and therefore can also implement the first aspect. Aspects or any possible implementation of the first aspect.
  • the service flow transmission device may be a terminal or a device that can support the terminal to implement the first aspect or the method in any possible implementation manner of the first aspect, such as a chip applied to the terminal.
  • the service flow transmission device may implement the foregoing method by using software, hardware, or executing corresponding software by hardware.
  • An example is a device for transmitting a service flow, including: a receiving unit, configured to receive a shunt mode and / or a service flow transmission method of a service flow sent by a core network element, and a PDU session in which the service flow is located supports multiple Access technology; a transmission unit, configured to transmit a service flow by using at least one of a plurality of access technologies according to a shunt mode and / or a transmission method of a service flow.
  • the transmission method of the service flow includes one or more of the following: MPTCP method, MPTCP proxy method, TCP method, TCP proxy method, UDP method, UDP proxy method, UDP QUIC method, UDP QUIC proxy method Or UDP MP-QUIC method, MP-QUIC proxy method.
  • the service stream transmission device provided in the embodiment of the present application further includes: an obtaining unit, configured to obtain a multiplexing algorithm.
  • the transmission unit is specifically configured to transmit a service flow by using at least one of a plurality of access technologies according to a distribution mode and / or a transmission method of a service flow and a multiplexing algorithm.
  • the receiving unit is further configured to receive the multiplexing algorithm corresponding to the offload mode sent by the core network element, and the obtaining unit is specifically configured to obtain the offload mode corresponding to the offload mode sent by the core network element from the receiving unit.
  • Multiplexing algorithm or, the receiving unit is further configured to receive the multiplexing algorithm corresponding to the transmission method of the service flow sent by the core network element, and the obtaining unit is specifically used to obtain the core network element sent from the receiving unit.
  • a multiplexing algorithm corresponding to a service flow transmission method or, an obtaining unit, which is specifically used to determine the multiplexing algorithm configured by the terminal according to the offload mode; or an obtaining unit, which is specifically used to determine the terminal's configuration according to the service flow transmission method Multiplexing algorithm.
  • the specific content of the multiplexing algorithm may refer to the description in the first aspect, and details are not described herein again.
  • the receiving unit is further configured to receive instruction information sent by a core network element, and the instruction information is used to indicate that the access technology used by the terminal to send the service flow is the same as the access technology used by the terminal to receive the service flow.
  • the transmission unit is further configured to transmit the service flow by using at least one of a plurality of access technologies according to a distribution mode and / or a transmission method of the service flow and the instruction information.
  • the specific content of the shunt mode may refer to the description in the first aspect, and details are not described herein again.
  • the obtaining unit is specifically configured to obtain, from a NAS transmission message sent by a core network element, a service flow split mode and / or a service flow transmission method sent by a policy control network element.
  • the obtaining unit is specifically configured to obtain a service flow distribution mode and / or a service flow transmission method from a session management response message sent by a core network element.
  • the obtaining unit is further configured to obtain multiple addresses allocated by the core network element to the terminal's PDU session and an access technology type corresponding to each of the multiple addresses.
  • the transmission unit is further configured to transmit a service flow according to the policy information and multiple addresses.
  • the obtaining unit is further configured to obtain multiple addresses allocated by the core network element to the terminal PDU session and the service type corresponding to each of the multiple addresses.
  • the transmission unit is further configured to The address and the service type corresponding to each of the multiple addresses transmit a service flow.
  • the service flow includes a first service flow transmitted by using a first transmission method, and multiple addresses include a first address and a second address, the first address corresponds to a first access technology type, and the second address corresponds to The second access technology type; the transmission unit is further specifically configured to transmit the first service flow by using the first address and / or the second address according to the policy information.
  • the first transmission method includes MPTCP method, MPTCP proxy method, TCP method, TCP proxy method, UDP method, UDP proxy method, QUIC method, QUIC proxy method, or MP-QUIC method, MP-QUIC proxy One or more of the methods.
  • the service flow includes a first service flow transmitted by using a first transmission method and / or a second service flow transmitted by using a second transmission method
  • multiple addresses include a first address, a second address, and a first address.
  • the first address corresponds to the first access technology type
  • the second address corresponds to the second access technology type
  • the third address corresponds to the first access technology type and the second access technology type
  • the transmission unit is also specifically used for According to the policy information, the first service flow is transmitted using the first address and / or the second address, and / or the second service flow is transmitted using the third address.
  • the service flow includes a first service flow transmitted using a first transmission method and / or a second service flow transmitted using a second transmission method
  • the multiple addresses include a first address and a second address, where The first address corresponds to the first access technology type and the second access technology type, and the second address corresponds to the first access technology type or the second access technology type
  • the transmission unit is further specifically configured to adopt the first access technology according to the policy information.
  • the address and / or the second address transmit the first service flow.
  • the transmission unit is further specifically configured to transmit the second service flow by using the first address according to the policy information.
  • the service flow further includes a second service flow transmitted by using the second transmission method
  • the transmission unit is further specifically configured to transmit the second service flow by using the first address according to the policy information.
  • the service flow includes a first service flow transmitted by using a first transmission method, and multiple addresses include a first address and a second address, where the first address corresponds to a general service flow and the second address corresponds to the first A service flow; a transmission unit, specifically configured to transmit the first service flow by using the first address and / or the second address.
  • the service flow further includes a second service flow transmitted by using the second transmission method
  • the transmission unit is further specifically configured to transmit the second service flow by using the first address.
  • an embodiment of the present application further provides a service flow transmission device.
  • the service flow transmission device may be a terminal or a chip applied to the terminal.
  • the service flow transmission device includes a processor: And communication interface.
  • the communication interface is configured to support the transmission device of the one service flow to perform message / data reception on the transmission device side of the one service flow as described in any one of the first aspect to the first possible implementation manner of the first aspect.
  • the processor is configured to support the transmission device of the one service flow to perform the steps of performing message / data processing on the transmission device side of the one service flow described in any one of the possible implementation manners of the first aspect to the first aspect.
  • a communication interface and a processor of the service flow transmission device are coupled to each other.
  • the service stream transmission device may further include a memory, which is configured to store code and data, and the processor, the communication interface, and the memory are coupled to each other.
  • the present application provides a communication device, which can implement the second aspect or the method in any one of the possible implementation manners of the second aspect, and therefore can also implement the second aspect or any of the second aspect.
  • the communication device may be a core network element, and may also be a device that can support the core network element to implement the second aspect or the method in any possible implementation manner of the second aspect, for example, applied to a core network element. chip.
  • the communication device may implement the above method by software, hardware, or by executing corresponding software by hardware.
  • the communication device includes: an obtaining unit for obtaining policy information of a service flow, the policy information including at least one of a service flow distribution mode and a service flow transmission method, and a PDU session in which the service flow is located supports multiple types of Access technology; a sending unit, configured to send policy information to a terminal / user plane function network element.
  • the policy information further includes: a multiplexing algorithm.
  • the specific content of the multiplexing algorithm may refer to the description in the second aspect, and details are not described herein again.
  • the sending unit is further configured to send instruction information to the terminal (or a user plane function network element), where the instruction information is used to instruct the terminal (or the user plane function network element) to use a service interface for sending a service flow.
  • the access technology is the same as the access technology used by the terminal (or user plane function network element) to receive service flows.
  • the obtaining unit is specifically configured to receive policy information of a service flow sent by a policy control network element during a session management process.
  • the obtaining unit is specifically configured to receive policy information of the service flow sent by the policy control network element during the process of the terminal / user plane function network element requesting registration to the network.
  • the sending unit is further configured to send multiple addresses allocated to the terminal to the terminal / user plane function network element, and an access technology type or service type corresponding to each of the multiple addresses.
  • the sending unit is specifically configured to send the first address and the second address to the terminal / user plane function network element, and the first access technology type corresponding to the first address corresponds to the second address.
  • Second access technology type Or the sending unit is specifically configured to send the first address and the second address to the terminal / user plane function network element.
  • the sending unit is specifically configured to send the first address, the second address, and the type indication information to the terminal / user plane function network element, where the type indication information is used to indicate that an address corresponding to the first address and the second address is selected.
  • the first access technology type, and another address corresponds to the second access technology type.
  • the sending unit is specifically configured to send the first address, the second address, and the third address to the terminal / user plane function network element, where the first address corresponds to the first access technology type and the second address Corresponds to the second access technology type, and the third address corresponds to the first access technology type and the second access technology type.
  • the sending unit is specifically configured to send the first address, the second address, and the third address to the terminal / user plane function network element, where the first address corresponds to the first access technology type and the second address corresponds to the second access technology type .
  • the sending unit is specifically configured to send the first address, the second address, and the third address to the terminal / user plane function network element, where the first address corresponds to the first access technology type and the second address corresponds to the second access technology Type, the third address corresponds to the general address indication.
  • the sending unit is specifically configured to send the first address, the second address, and the first type of indication information corresponding to the first address to the terminal / user plane function network element, and the second address corresponds to the second address.
  • the second type of indication information wherein the first type of indication information is used to indicate that the first address corresponds to the first access technology type and the second access technology type, and the second type of indication information is used to indicate that the second address corresponds to the first access technology type.
  • the first type of indication information is used to indicate that the first address corresponds to a general service flow.
  • the second type of indication information is used to indicate that the second address corresponds to the first service flow.
  • the sending unit is specifically configured to send the first address and the second address, and the second type of indication information corresponding to the second address to the terminal / user plane function network element; wherein the second type of indication The information is used to indicate that the second address corresponds to the first service flow, or the second type indication information is used to indicate that the second address corresponds to the first access technology type or the second access technology type.
  • an embodiment of the present application further provides a communication device.
  • the communication device may be a core network element or a chip applied to the core network element.
  • the communication device includes a processor and a communication interface.
  • the communication interface is used to support the communication device to perform the steps of receiving / sending data / data on the communication device side as described in any one of the possible implementation manners of the second aspect to the second aspect.
  • the processor is configured to support the communication device to perform the steps of performing message / data processing on the communication device side described in any one of the possible implementation manners of the second aspect to the second aspect.
  • the communication interface and the processor of the communication device are coupled to each other.
  • the communication device may further include a memory for storing code and data, and the processor, the communication interface, and the memory are coupled to each other.
  • the present application provides a service flow transmission device.
  • the service flow transmission device can implement the third aspect or any one of the possible implementation methods of the third aspect, and therefore can also implement the third aspect.
  • the service flow transmission device may be a terminal or a device that can support the terminal to implement the third aspect or the method in any possible implementation manner of the third aspect, such as a chip applied to the terminal.
  • the service flow transmission device may implement the foregoing method by using software, hardware, or executing corresponding software by hardware.
  • the service flow transmission device includes: an obtaining unit, configured to obtain multiple addresses allocated by a core network element to a terminal's PDU session, and an access technology type or multiple corresponding to each of the multiple addresses The service type corresponding to each address in the address.
  • the PDU session supports multiple access technologies.
  • the transmission unit is used to transmit service flows based on policy information and multiple addresses.
  • a transmission unit is configured to transmit a service flow according to multiple addresses and a service type corresponding to each of the multiple addresses.
  • the service flow includes a first service flow transmitted by using a first transmission method, and multiple addresses include a first address and a second address, the first address corresponds to a first access technology type, and the second address corresponds to The second access technology type; the transmission unit is specifically configured to transmit the first service flow by using the first address and / or the second address according to the policy information.
  • the first transmission method includes: MPTCP method, MPTCP proxy method, TCP method, TCP proxy method, UDP method, UDP proxy method, QUIC method, QUIC proxy method, or MP-QUIC method, MP-QUIC One or more of the proxy methods.
  • the obtaining unit is specifically configured to obtain a first address sent by a core network element, a first access technology type corresponding to the first address, and a second address and a second address corresponding to the second address. Second access technology type.
  • the obtaining unit is specifically configured to obtain a first address and a second address sent by a core network element.
  • the obtaining unit is specifically configured to obtain the first address and the second address sent by the core network element, and the type indication information.
  • the type indication information is used to indicate that any one of the first address and the second address corresponds to the first access technology type, and then the other address corresponds to the second access technology type.
  • the service flow includes a first service flow transmitted by using a first transmission method and / or a second service flow transmitted by using a second transmission method
  • multiple addresses include a first address, a second address, and a first address.
  • the first address corresponds to the first access technology type
  • the second address corresponds to the second access technology type
  • the third address corresponds to the first access technology type and the second access technology type
  • the transmission unit is specifically used according to
  • the policy information uses the first address and / or the second address to transmit the first service flow, and / or uses the third address to transmit the second service flow.
  • the obtaining unit is specifically configured to receive the first address, the second address, and the third address sent by the core network element, where the first address corresponds to the first access technology type and the second address corresponds to The second access technology type, and the third address corresponds to the first access technology type and the second access technology type.
  • the obtaining unit is specifically configured to receive the first address, the second address, and the third address sent by the core network element, where the first address corresponds to the first access technology type and the second address corresponds to Second access technology type.
  • the obtaining unit is specifically configured to receive the first address, the second address, and the third address sent by the core network element, where the first address corresponds to the first access technology type and the second address corresponds to For the second access technology type, the third address corresponds to the universal address indication.
  • the service flow includes a first service flow transmitted by using a first transmission method
  • the multiple addresses include a first address and a second address.
  • the first address corresponds to the first access technology type and the second access technology type
  • the second address corresponds to the first access technology type or the second access technology type.
  • the transmission unit is specifically configured to adopt the first address according to the policy information.
  • the address and / or the second address transmit the first service flow.
  • the service flow further includes a second service flow transmitted by using the second transmission method
  • the transmission unit is further specifically configured to transmit the second service flow by using the first address according to the policy information.
  • the transmission unit is specifically configured to determine that the access technology for transmitting the first service flow is the access technology indicated by the access technology type corresponding to the second address, and use the second address to transmit the first service flow;
  • a transmission unit specifically configured to determine that the access technology used to transmit the first service stream is the access technology indicated by the first access technology type or the second access technology type, and is not the access indicated by the second address corresponding to the access technology type In technology, the first address is used to transmit the first service flow.
  • the service flow includes a first service flow transmitted by using a first transmission method, and multiple addresses include a first address and a second address, the first address corresponds to a general service flow, and the second address corresponds to the first service.
  • the stream and transmission unit is specifically configured to transmit the first service stream by using the first address and / or the second address.
  • the obtaining unit is further configured to obtain a first message, where the first message is used to indicate that the first address corresponds to the first access technology type, and / or the second address corresponds to the second access technology type.
  • the transmission unit is further specifically configured to determine an access technology for transmitting the first service flow according to the first message.
  • the service flow further includes a second service flow transmitted by using the second transmission method; and the transmission unit is specifically configured to transmit the second service flow by using the first address.
  • the first transmission method includes one or more of an MPTCP method, an MPTCP proxy method, a UDPQUIC method, a UDPQUICproxy method, a UDPMP-QUIC method, or an MP-QUICproxy.
  • the second transmission method includes one or more of a TCP method, a TCP proxy method, a UDP method, and a UDP proxy method.
  • the obtaining unit is specifically configured to obtain, through the receiving unit, the first address and the second address sent by the core network element, and the first type of instruction information corresponding to the first address, and corresponding to the second address.
  • the second type of indication information where the first type of indication information is used to indicate the first access technology type and the second access technology type, and the second type of indication information is used to indicate the first access technology type or the second access Technology type.
  • the first type of indication information is used to indicate a general service flow.
  • the second type of indication information is used to indicate the first service flow.
  • the obtaining unit is specifically configured to obtain the first address and the second address sent by the core network element through the receiving unit, and the second type of indication information corresponding to the second address; the terminal determines the first address Corresponds to the first access technology type and the second access technology type, and determines that the second address corresponds to the first access technology type or the second access technology type.
  • the apparatus provided in the embodiment of the present application further includes: a receiving unit, configured to receive instruction information sent by a core network element to determine a transmission method for transmitting a service stream.
  • a sending network element for example, a user plane function network element / session management network element
  • a receiving network element for example, when a terminal or a user plane function network element sends multiple addresses, and the access technology type / service type corresponding to each address is not sent
  • the receiving network element may decide to select the corresponding access for each of the multiple addresses.
  • the apparatus for transmitting a service stream may further execute any one of the possible methods for transmitting a service stream.
  • an embodiment of the present application further provides a service stream transmission device.
  • the service stream transmission device may be a terminal or a chip applied to the terminal.
  • the service stream transmission device includes a processor: And a communication interface, where the communication interface is configured to support the transmission device of the one service flow to perform the description in any one of the possible implementation manners of the third aspect to the third aspect on the transmission device side of the one service flow Message / data receiving and sending steps.
  • the processor is configured to support the transmission device of the one service flow to perform the steps of performing message / data processing on the transmission device side of the one service flow described in any one of the possible implementation manners of the third aspect to the third aspect.
  • a communication interface and a processor of the service flow transmission device are coupled to each other.
  • the service stream transmission device may further include a memory, which is configured to store code and data, and the processor, the communication interface, and the memory are coupled to each other.
  • the present application provides a device for transmitting a service flow.
  • the device for transmitting a service flow can implement the fourth aspect or the method in any possible implementation manner of the fourth aspect, and therefore can also implement the fourth aspect.
  • the service flow transmission device may be a user plane function network element, or may be a device that can support the user plane function network element to implement the fourth aspect or the method in any possible implementation manner of the fourth aspect, for example, is applied to a user A chip in a surface function network element.
  • the service flow transmission device may implement the foregoing method by using software, hardware, or executing corresponding software by hardware.
  • An example is a device for transmitting a service flow, including: an obtaining unit, configured to obtain multiple addresses allocated to a terminal's PDU session and an access technology type corresponding to each of the multiple addresses, and the PDU session supports multiple access Transmission technology; a transmission unit, configured to transmit service flows according to policy information and an access technology type corresponding to each of multiple addresses.
  • the obtaining unit is configured to obtain multiple addresses allocated for the PDU session of the terminal and a service type corresponding to each of the multiple addresses.
  • the transmission unit is configured to transmit a service flow according to multiple addresses and a service type corresponding to each of the multiple addresses.
  • the policy information includes a shunt mode and / or a service flow transmission method.
  • the service flow includes a first service flow transmitted by using a first transmission method, and multiple addresses include a first address and a second address, the first address corresponds to a first access technology type, and the second address corresponds to The second access technology type; the transmission unit is specifically configured to send the first service flow to the terminal by using the first address and / or the second address according to the policy information.
  • the first transmission method includes: the MPTCP method, the MPTCP proxy method, the TCP method, the TCP proxy method, the UDP method, the UDP proxy method, the UDP QUIC method, the UDP QUIC proxy method, or the UDP MP-QUIC method, One or more of the MP-QUIC proxy methods.
  • the service flow includes a first service flow transmitted by using a first transmission method, and multiple addresses include a first address and a second address, and the first address corresponds to a first access technology type and a second access.
  • the technology type, the second address corresponds to the first access technology type or the second access technology type;
  • the transmission unit is specifically configured to send the first service flow to the terminal by using the first address and / or the second address according to the policy information.
  • the service flow further includes a second service flow transmitted by using the second transmission method, and the transmission unit is specifically configured to transmit the second service flow by using the first address according to the policy information.
  • the transmission unit is specifically configured to use the second address to transmit the first address when the processing unit determines that the access technology for transmitting the first service flow is the access technology indicated by the access address type corresponding to the second address. business flow.
  • the transmission unit is specifically configured to use the first address when the processing unit determines that the access technology for transmitting the first service flow is the first access technology type or the second access technology type, and is not the second address corresponding to the access technology type. Transmission of the first service flow.
  • the service flow includes a first service flow transmitted by using a first transmission method, and multiple addresses include a first address and a second address, the first address corresponds to a general service flow, and the second address corresponds to the first service.
  • Stream a transmission unit, specifically configured to send a first service stream to a terminal by using a first address and / or a second address.
  • the service flow further includes a second service flow transmitted by using the second transmission method
  • the transmission unit is further specifically configured to transmit the second service flow by using the first address.
  • the obtaining unit is further configured to obtain a first message, where the first message is used to indicate that the first address corresponds to the first access technology type, and / or the second address corresponds to the second access technology type.
  • the transmission unit is further specifically configured to determine an access technology for transmitting the first service flow according to the first message. This case is applicable to a case where the terminal determines that the first address corresponds to a general service flow, and the second address corresponds to the first service flow.
  • the service flow includes a first service flow transmitted by using a first transmission method and / or a second service flow transmitted by using a second transmission method
  • multiple addresses include a first address, a second address, and a first address.
  • the first address corresponds to the first access technology type
  • the second address corresponds to the second access technology type
  • the third address corresponds to the first access technology type and the second access technology type.
  • the transmission unit is specifically configured to send the first service flow to the terminal by using the first address and / or the second address according to the policy information, and / or send the second service flow to the terminal by using the third address.
  • the apparatus provided in the embodiment of the present application further includes: a receiving unit configured to receive a service flow sent to the terminal; and a determining unit configured to determine that the service flow sent to the terminal is transmitted using the first transmission method; A processing unit, configured to replace the target address of the service flow sent to the terminal with the first address and / or the second address.
  • the multiple addresses include a first address and a second address, where the first address corresponds to the first access technology type and the second address corresponds to the second access technology type; the receiving unit is further configured to receive the terminal The source address of the service flow sent by the terminal is the first address and / or the second address; the processing unit is further specifically configured to replace the source address of the service flow sent by the terminal by the fourth address according to the policy information.
  • the fourth address is an address of a user plane function network element or a third address allocated for a PDU session of the terminal.
  • the multiple addresses include a first address and a second address.
  • the first address corresponds to the first access technology type and the second access technology type
  • the second address corresponds to the first access technology type or the first address.
  • Two access technology types the receiving unit is also used to receive the service flow sent by the terminal, and the source address of the service flow sent by the terminal is the first address and / or the second address; the processing unit is also specifically used to transfer the terminal according to the policy information
  • the source address of the sent service flow is replaced with the first address.
  • the service flow includes a first service flow transmitted by using a first transmission method and a second service flow transmitted by using a second transmission method, and multiple addresses include a first address, a second address, and a third address.
  • the first address corresponds to the first access technology type
  • the second address corresponds to the second access technology type
  • the third address corresponds to the first access technology type and the second access technology type.
  • the receiving unit is further configured to receive a service flow sent by the terminal.
  • the service flow sent by the terminal includes a first service flow transmitted by using a first transmission method, and a source address of the first service flow is a first address and / or a second address.
  • the unit is further specifically configured to replace the source address of the first service flow with a fourth address according to the policy information.
  • the fourth address is an address of a user plane function network element or a third address allocated for a PDU session of the terminal.
  • the multiple addresses include a first address and a second address.
  • the first address corresponds to the first access technology type and the second access technology type
  • the second address corresponds to the first access technology type or the first address.
  • Two access technology types; the receiving unit is also used to receive the service flow sent by the terminal, and the source address of the service flow sent by the terminal is the first address and / or the second address; the processing unit is further used to send the terminal according to the policy information
  • the source address of the service flow is replaced with the first address.
  • the first transmission method includes one or more of an MPTCP method, an MPTCP proxy method, a UDPQUIC method, a UDPQUICproxy method, a UDPMP-QUIC method, or an MP-QUICproxy.
  • the second transmission method includes one or more of a TCP method, a TCP proxy method, a UDP method, and a UDP proxy method.
  • the obtaining unit is specifically configured to obtain, from the session management network element, multiple addresses allocated by the session management network element for the PDU session of the terminal and an access technology type corresponding to each of the multiple addresses;
  • the obtaining unit is specifically configured to allocate multiple addresses for the PDU session of the terminal and a service type corresponding to each of the multiple addresses.
  • a service flow transmission device and a receiving unit provided in the embodiments of the present application are further configured to receive a first address, a second address, and a third address sent by a session management network element.
  • One address corresponds to the first access technology type
  • the second address corresponds to the second access technology type
  • the third address corresponds to the first access technology type and the second access technology type.
  • the receiving unit is further configured to receive the first address, the second address, and the third address sent by the receiving session management network element, where the first address corresponds to the first access technology type and the second address corresponds to the second access technology Types of.
  • the receiving unit is further configured to receive the first address, the second address, and the third address sent by the receiving session management network element, where the first address corresponds to the first access technology type and the second address corresponds to the second access technology Type, the third address corresponds to the general address indication.
  • the service flow includes a first service flow transmitted by using a first transmission method, and multiple addresses include a first address and a second address, the first address corresponds to a general service flow, and the second address corresponds to the first service.
  • Stream a transmission unit, specifically configured to transmit the first service stream by using the first address and / or the second address.
  • the service flow further includes a second service flow transmitted by using the second transmission method; the transmission unit is specifically configured to transmit the second service flow by using the first address.
  • the service flow includes a first service flow transmitted by using a first transmission method
  • multiple addresses include a first address and a second address
  • the first address corresponds to a first access technology type and a second access.
  • Technology type corresponds to the first access technology type or the second access technology type.
  • the transmission unit is specifically configured to transmit the first service flow by using the first address and / or the second address.
  • the service flow further includes a second service flow transmitted by using the second transmission method; and the transmission unit is specifically configured to transmit the second service flow by using the first address.
  • the obtaining unit is specifically configured to receive the first address and the second address sent by the core network element, and the first type of indication information corresponding to the first address and the second address corresponding to the second address.
  • Type indication information where the first type indication information is used to indicate a first access technology type and a second access technology type.
  • the second type indication information is used to indicate the second address and the first access technology type or the second access technology type.
  • the obtaining unit is specifically configured to receive the first address and the second address sent by the core network element, and the second type of indication information corresponding to the second address; the user plane function network element determines the first The address corresponds to the first access technology type and the second access technology type, and it is determined that the second address corresponds to the first access technology type or the second access technology type.
  • an operation of a service flow transmission device in any implementation manner of the first aspect may also be performed.
  • the embodiment of the present application further provides a service flow transmission device.
  • the service flow transmission device may be a user plane function network element or a chip applied to the user plane function network element.
  • the service stream transmission device includes a processor and a communication interface.
  • the communication interface is used for a transmission device supporting the service flow to perform the steps of receiving / sending data / data on the transmission device side of the service flow as described in any one of the possible implementation manners of the fourth aspect to the fourth aspect.
  • the processor is configured to support the transmission device of the service flow to perform the steps of performing message / data processing on the transmission device side of the service flow as described in any one of the possible implementation manners of the fourth aspect to the fourth aspect.
  • the communication interface and the processor of the service stream transmission device are coupled to each other.
  • the service stream transmission device may further include a memory for storing codes and data, and the processor, the communication interface, and the memory are coupled to each other.
  • the present application provides a communication device that can implement the fifth aspect or the method in any one of the possible implementation manners of the fifth aspect, and therefore can also implement the fifth aspect or any possible implementation of the fifth aspect.
  • the communication device may be a session management network element, or may be a device that can support the session management network element to implement the fifth aspect or the method in any possible implementation manner of the fifth aspect, such as a chip applied to the session management network element.
  • the communication device may implement the above method by software, hardware, or by executing corresponding software by hardware.
  • An example is a receiving unit, configured to receive instruction information used to indicate a transmission method of a service flow, where a PDU session in which the service flow is located supports multiple access technologies.
  • a determining unit configured to select a user plane function network element having a transmission method function according to the instruction information.
  • the apparatus provided in the embodiment of the present application further includes: an obtaining unit, configured to obtain, according to the instruction information, allocate multiple addresses to a terminal's PDU session, and each of the multiple addresses corresponds to an access technology. Type or business type.
  • the apparatus provided in the embodiment of the present application further includes: a sending unit, configured to send a third address to the user plane function network element / terminal, and a first access technology type and The second access technology type, or the session management network element sends a third address and a general address indication to the user plane function network element / terminal. Or the session management network element sends a third address to the user plane function network element / terminal.
  • the sending unit sends multiple addresses and the access technology type or service type corresponding to each address in the multiple addresses.
  • the sending unit sends multiple addresses allocated to the terminal to the PDU session.
  • the implementation of the access technology type or service type corresponding to each of the addresses is not repeated here.
  • the apparatus provided in this embodiment of the present application further includes: a sending unit, configured to send indication information used to indicate a transmission method of a service flow to a user-face functional network element.
  • an embodiment of the present application further provides a communication device.
  • the communication device may be a session management network element or a chip applied to the session management network element.
  • the communication device includes a processor and a communication device.
  • An interface where the communication interface is used to support the communication device to perform the steps of receiving / sending data / data on the communication device side described in any one of the possible implementation manners of the fifth aspect to the fifth aspect .
  • the processor is configured to support the communication device to perform the steps of performing message / data processing on the communication device side described in any one of the possible implementation manners of the fifth aspect to the fifth aspect.
  • the communication interface of the communication device and the processor are coupled to each other.
  • the communication device may further include a memory for storing code and data, and the processor, the communication interface, and the memory are coupled to each other.
  • the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores instructions. When the instructions are run on a computer, the computer is caused to execute the first aspect or the various possible aspects of the first aspect.
  • the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores instructions.
  • the computer causes the computer to execute the second aspect or the various possible aspects of the second aspect.
  • the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores instructions.
  • the computer is caused to execute the third aspect or the various possible aspects of the third aspect.
  • the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores instructions.
  • the computer is caused to execute the fourth aspect or the various possible aspects of the fourth aspect.
  • the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores instructions.
  • the computer is caused to execute the fifth aspect or the various possible aspects of the fifth aspect.
  • the present application provides a computer program product including instructions.
  • the instructions When the instructions are run on a computer, the computer is caused to execute the service flow described in the first aspect or various possible implementation manners of the first aspect. Transmission method.
  • the present application provides a computer program product including instructions.
  • the instructions When the instructions are run on a computer, the computer is caused to execute the second aspect or a communication method described in various possible implementation manners of the second aspect. .
  • the present application provides a computer program product including instructions.
  • the instructions When the instructions are run on a computer, the computer is caused to execute the third aspect or a service flow described in various possible implementation manners of the third aspect. Transmission method.
  • the present application provides a computer program product including instructions.
  • the instructions When the instructions are run on a computer, the computer is caused to execute the fourth aspect or a service flow described in various possible implementation manners of the fourth aspect. Transmission method.
  • the present application provides a computer program product including instructions.
  • the instructions When the instructions are run on a computer, the computer is caused to execute the fifth aspect or a communication method described in various possible implementation manners of the fifth aspect. .
  • an embodiment of the present application provides a chip.
  • the chip includes a processor and an interface circuit.
  • the interface circuit is coupled to the processor, and the processor is configured to run a computer program or instruction to implement the first aspect or the first aspect.
  • the interface circuit is used to communicate with modules other than the chip.
  • an embodiment of the present application provides a chip.
  • the chip includes a processor and an interface circuit.
  • the interface circuit is coupled to the processor, and the processor is configured to run a computer program or instruction to implement the second aspect or the second aspect.
  • the interface circuit is used to communicate with modules other than the chip.
  • an embodiment of the present application provides a chip.
  • the chip includes a processor and an interface circuit.
  • the interface circuit is coupled to the processor, and the processor is configured to run a computer program or instruction to implement the third aspect or the third aspect.
  • the interface circuit is used to communicate with modules other than the chip.
  • an embodiment of the present application provides a chip.
  • the chip includes a processor and an interface circuit.
  • the interface circuit is coupled to the processor, and the processor is configured to run a computer program or instruction to implement the fourth aspect or the fourth aspect.
  • the interface circuit is used to communicate with modules other than the chip.
  • an embodiment of the present application provides a chip.
  • the chip includes a processor and an interface circuit.
  • the interface circuit is coupled to the processor, and the processor is configured to run a computer program or instruction to implement the fifth aspect or the fifth aspect.
  • the interface circuit is used to communicate with modules other than the chip.
  • a communication system in an embodiment of the present application includes the sixth aspect or a service flow transmission device provided by various possible implementation manners of the sixth aspect, and the seventh aspect or the seventh aspect
  • a communication device is provided by various possible implementations of aspects.
  • a communication system in an embodiment of the present application includes the eighth aspect or a service stream transmission device provided by various possible implementation manners of the eighth aspect, the ninth aspect or the ninth aspect A device for transmitting a service stream provided by various possible implementations of the method and a communication device provided by the tenth aspect or the various possible implementation methods of the tenth aspect.
  • FIG. 1 is a schematic diagram of a multi-access PDU session
  • FIG. 2 is a schematic diagram of a communication system according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a 5G network architecture according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a terminal accessing a network through multiple access technologies according to an embodiment of the present application
  • 5 to 14 are schematic flowcharts of a service flow transmission method according to an embodiment of the present application.
  • 15 to 17 are schematic structural diagrams of a service flow transmission device according to an embodiment of the present application.
  • 18-20 are schematic structural diagrams of a communication device according to an embodiment of the present application.
  • 21 to 23 are schematic structural diagrams of another communication device according to an embodiment of the present application.
  • 24 to 26 are schematic structural diagrams of another service stream transmission device according to an embodiment of the present application.
  • FIG. 27 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • At least one means one or more, and “multiple” means two or more.
  • “And / or” describes the association relationship of related objects, and indicates that there can be three kinds of relationships, for example, A and / or B can represent: the case where A exists alone, A and B exist simultaneously, and B alone exists, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects are an "or” relationship.
  • “At least one or more of the following” or similar expressions refers to any combination of these items, including any combination of single or plural items.
  • At least one (a), a, b, or c can be expressed as: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • words such as “first” and “second” are used to distinguish between the same or similar items having substantially the same functions and functions. Those skilled in the art can understand that the words “first”, “second” and the like do not limit the number and execution order, and the words “first” and “second” are not necessarily different.
  • FIG. 2 shows a schematic diagram of a communication system provided by an embodiment of the present application.
  • the communication system includes a core network, an access network, and one or more terminals 104.
  • One or more terminals 104 access the core network through the access network.
  • the core network includes the following network elements: a session management network element 101, one or more user plane function network elements 102 (only one user plane function network element is shown in FIG. 2) connected to the session management network element 101, and a session The policy control network element 103 to which the management network element 101 is connected.
  • the access network may be an access network device using multiple access technologies.
  • the terminal 104 When the terminal 104 accesses the wireless network through different access technologies, the terminal 104 can connect to the core network device through different access network devices.
  • At least one of the one or more terminals 104 has a session with the user plane function network element 102, and the session may support multiple access technologies.
  • multiple access technologies are used as the first access technology and the second access technology is taken as an example.
  • the session can be accessed through the first access technology, or can be accessed through the second access technology.
  • the first access technology in the embodiment of the present application may be an access technology conforming to the 3GPP standard specification.
  • the 3rd Generation Partnership Project (3rd Generation Partnership Project, 3GPP) access technology For example, long-term evolution (LTE), 2G, 3G, 4G, or 5G systems use access technologies.
  • An access network using 3GPP access technology is called a radio access network (Radio Access Network, RAN).
  • the terminal 104 may use a 3GPP access technology to access a wireless network through an access network device in a 2G, 3G, 4G, or 5G system.
  • the second access technology may be a wireless access technology that is not defined in the 3GPP standard specification. For example, it is called non-3rd Generation Partnership Project (non3GPP) access technology.
  • the non-3GPP access technology may be an untrusted non-3GPP access technology or a trusted non-3GPP access technology.
  • Non-3GPP access technologies may include: wireless fidelity (Wi-Fi), worldwide interoperability for microwave access (WiMAX), code division multiple access (CDMA), and wireless local area network (CDMA) Wireless Local Area Networks (WLAN), fixed network technology or wired technology.
  • the terminal 104 may access the network through an air interface technology represented by wireless fidelity (WIFI), where the access network device may be an access point (AP).
  • WIFI wireless fidelity
  • AP access point
  • the terminals may be distributed in a wireless network, and each terminal may be static or mobile.
  • the session management network element 101, the user plane function network element 102, and the policy control network element 103 are all network elements in the core network element, and may be collectively referred to as the core network element.
  • the core network element is mainly responsible for packet data packet forwarding, quality of service (QoS) control, and accounting statistics (for example, user plane function network elements). And it is mainly responsible for user registration and authentication, mobility management, and delivery of data packet forwarding policies, QoS control policies, etc. to the user plane function network element (for example, session management network element).
  • QoS quality of service
  • accounting statistics for example, user plane function network elements.
  • the session management network element is responsible for establishing a corresponding session connection (for example, a PDU session) on the network side when a user initiates a service, and provides specific services for the user, especially based on the session management network element and the user plane function network element.
  • the interface sends a packet forwarding policy, QoS policy, etc. to the user plane function network element.
  • the network element or entity corresponding to the session management network element 101 may be a session management function (SMF) network element or a user.
  • the plane function network element is a user plane function (UPF) network element in 5G.
  • the policy control network element may be a policy control function (policy control function (PCF) network element).
  • the 5G network may further include: Access and Mobility Management Function (AMF) network elements, Application Function (AF) network elements, and access network equipment (
  • Access Network can also be called Radio Access Network Device (RAN), Authentication Server Function (AUSF) network element, Unified Data Management (Unified Data) Management (UDM) network element, Network Slice Selection Function (NSSF) network element, Network Capacity Function (NEF) network element, Network Repository Function (NRF) network element, and Data network (DN) and the like are not specifically limited in this embodiment of the present application.
  • AMF Access and Mobility Management Function
  • AF Application Function
  • AN can also be called Radio Access Network Device (RAN), Authentication Server Function (AUSF) network element, Unified Data Management (Unified Data) Management (UDM) network element, Network Slice Selection Function (NSSF) network element, Network Capacity Function (NEF) network element, Network Repository Function (NRF) network element, and Data network (DN) and the like are not specifically limited in this embodiment of the present application.
  • the terminal communicates with the AMF network element through an N1 interface (referred to as N1).
  • the AMF network element communicates with the SMF network element through the N11 interface (referred to as N11).
  • the SMF network element communicates with one or more UPF network elements through an N4 interface (referred to as N4). Any two UPF network elements in one or more UPF network elements communicate through an N9 interface (referred to as N9 for short).
  • the UPF network element communicates with a data network (DN) through an N6 interface (referred to as N6).
  • the terminal accesses the network through an access network device (for example, a RAN device).
  • the access network device communicates with the AMF network element through an N2 interface (referred to as N2 for short).
  • the SMF network element communicates with the PCF network element through the N7 interface (referred to as N7), and the PCF network element communicates with the AF network element through the N5 interface.
  • the access network device communicates with the UPF network element through an N3 interface (referred to as N3). Any two or more AMF network elements communicate through an N14 interface (referred to as N14 for short).
  • the SMF network element communicates with the UDM network element through the N10 interface (referred to as N10).
  • the AMF network element communicates with the AUSF network element through the N12 interface (referred to as N12).
  • the AUSF network element communicates with the UDM network element through the N13 interface (referred to as N13).
  • the AMF network element communicates with the UDM network element through the N8 interface (referred to as N8).
  • interface names between the various network elements in FIG. 3 are only examples, and the interface names may be other names in specific implementations, which are not specifically limited in this embodiment of the present application.
  • the access network equipment, AF network element, AMF network element, SMF network element, AUSF network element, UDM network element, UPF network element, and PCF network element in FIG. 3 are only a name, and the name is for the device itself Does not constitute a limitation.
  • the network elements corresponding to the access network equipment, AF network element, AMF network element, SMF network element, AUSF network element, UDM network element, UPF network element, and PCF network element may also be Other names are not specifically limited in this embodiment of the present application.
  • the UDM network element may also be replaced with a user home server (Home Subscriber Server, HSS) or a user subscription database (User Subscription Database, USD) or a database entity, etc., which will be described collectively here, and will not be repeated hereafter. .
  • HSS Home Subscriber Server
  • USD User Subscription Database
  • the access network device referred to in the embodiments of the present application refers to a device that accesses a core network.
  • the access network device may be a base station, a Broadband Network Service Gateway (Broadband Network Gateway, BNG), an aggregation switch, or a third party. Generation Partnership Project (3rd Generation, Partnership Project, 3GPP) access network equipment, etc.
  • the base station may include various forms of base stations, such as: macro base stations, micro base stations (also called small stations), relay stations, access points, and the like.
  • the AMF network element involved in the embodiments of the present application may also be responsible for functions such as the registration process during terminal access, location management during terminal movement, and legal monitoring, which are not specifically limited in this embodiment of the present application.
  • the SMF network elements involved in the embodiments of the present application are used to perform session management, including: session establishment, session modification, session release, and Internet Protocol (IP) address allocation between terminals' networks. And management, UPF network element selection and control, legal monitoring, and other session-related control functions.
  • session management including: session establishment, session modification, session release, and Internet Protocol (IP) address allocation between terminals' networks.
  • IP Internet Protocol
  • UPF network element selection and control legal monitoring, and other session-related control functions.
  • the UPF network element involved in the embodiment of the present application may also implement a serving gateway (Serving Gateway, SGW) and a packet data network gateway (Packet Data). Network Gateway (PGW).
  • SGW Serving Gateway
  • PGW Packet Data gateway
  • PGW Packet Data gateway
  • PGW Packet Data Gateway
  • the UPF network element may also be a Software Defined Network (SDN) Switch, which is not specifically limited in this embodiment of the present application.
  • SDN Software Defined Network
  • the AUSF network element is an authentication server function and is mainly responsible for authenticating the terminal and determining the legitimacy of the terminal. For example, the terminal performs authentication and authentication based on the user subscription data of the terminal.
  • UDM network elements are unified user data management and are mainly used to store the contract data of the terminal.
  • the UDM network element also includes functions such as authentication and authentication, processing terminal identification information, and contract management, which are not specifically limited in this embodiment of the present application.
  • PCF network elements are mainly used to deliver service-related policies to AMF network elements or SMF network elements.
  • the AF network element sends application-related requirements to the PCF network element, so that the PCF network element generates a corresponding policy.
  • DN providing services for terminals, such as providing mobile operator services, Internet services, or third-party services.
  • the PDU session in the embodiment of the present application refers to a data transmission channel where the connected terminal 104 and the UPF network element established by the session management network element reach the DN.
  • the network elements involved in the data transmission channel include a terminal, an access network device, and a UPF network element selected by the SMF network element for the session.
  • the data transmission channel includes a plurality of links between two adjacent network elements. For example, the link between the terminal and the access network device, the link between the access network device and the UPF network element, and the link between the UPF network element and the UPF network element.
  • a terminal is a device that provides voice and / or data connectivity to a user, such as a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • the terminal can also be called user equipment (User Equipment), access terminal (Access terminal), user unit (User unit), user station (Mobile), mobile station (Mobile), mobile station (Mobile), remote Station (Remote Station), remote terminal (Remote Terminal), mobile device (Mobile Equipment), user terminal (User Terminal), wireless communication equipment (Wireless Telecom Equipment), user agent (User Agent), user equipment (User Equipment) or User device.
  • the terminal can be a station (Station) in a Wireless Local Area Networks (WLAN), a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop) , WLL) stations, Personal Digital Processing (PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, and next-generation communication systems (such as , A terminal in a fifth generation (Fifth-Generation (5G) communication network) or a terminal in a future evolved Public Land Mobile Network (PLMN) network.
  • 5G can also be called New Radio (NR).
  • NR New Radio
  • the terminal may also be a wearable device.
  • Wearable devices can also be referred to as wearable smart devices. They are the general name for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a device that is worn directly on the body or is integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also powerful functions through software support, data interaction, and cloud interaction.
  • Broad-spectrum wearable smart devices include full-featured, large-sized, full or partial functions that do not rely on smart phones, such as smart watches or smart glasses, and only focus on certain types of application functions, and need to cooperate with other devices such as smart phones Use, such as smart bracelets, smart jewelry, etc. for physical signs monitoring.
  • FIG. 4 shows an architecture diagram of a terminal accessing a network using multiple access technologies in an embodiment of the present application.
  • the architecture of the terminal using 3GPP access technology and non-3GPP access technology simultaneously.
  • the terminal can connect to the AMF network element through 3GPP access technology and non-3GPP access technology at the same time.
  • the terminal when a terminal accesses an AMF network element using a non-3GPP access technology, the terminal may access the AMF network element through a non-3GPP interworking function (N3IWF) entity.
  • N3IWF non-3GPP interworking function
  • the terminal selects the same AMF network element.
  • different AMF network elements can be selected.
  • the SMF network element is selected by the AMF network element. Different SMF network elements can be selected for different PDU sessions, but the same SMF network element must be selected for the same PDU session.
  • the SMF network element can select a UPF network element for a PDU session.
  • a PDU session can have multiple UPF network elements. Therefore, the SMF network element may select multiple UPF network elements to create a tunnel connection for a PDU session.
  • the AUSF network element and the Authentication Storage Function (ARPF) / UDM network element constitute the home public land mobile network (Home Public Land Mobile Network (HPLMN)).
  • Home Public Land Mobile Network HPLMN
  • the terminal accesses the network through different access technologies, it can Having a visited public land mobile network (Visited Public Land Mobile Network (VPLMN)) of different interviewed places may also have the same visited public land mobile network.
  • VPN Visited Public Land Mobile Network
  • the service flow transmitted using the UDP method may be referred to as: UDP service flow, and the service flow transmitted using the MPTCP method is referred to as MPTCP service flow.
  • UDP service flow the service flow transmitted using the MPTCP method
  • MPTCP service flow the service flow transmitted using the MPTCP method
  • a communication method / a service flow transmission method in the embodiments of the present application may be executed by a network element applied by a corresponding device, or may be implemented by a chip in a network element applied by a corresponding device. carried out.
  • a service stream transmission device may be executed by a terminal, or may be executed by a chip in the terminal.
  • the execution of a communication method / a service flow transmission method is performed by the corresponding network element as an example.
  • FIG. 5 shows a process for transmitting a service flow and a communication method according to an embodiment of the present application.
  • the method includes:
  • a core network element obtains policy information of a service flow, where the policy information includes at least one of a service flow distribution mode and a service flow transmission method.
  • a packet data unit PDU session in which the service flow is located supports multiple access technologies.
  • the policy information includes at least one of a service flow distribution mode and a service flow transmission method, which may be expressed as follows: the policy information includes a service flow distribution mode and a service flow transmission method. Or the policy information includes the offload mode of the service flow. Or the policy information includes the transmission method of the service flow.
  • the core network element may be a session management network element.
  • S101 may be implemented in the following manner: the core network element receives the policy information of the service flow sent by the policy control network element during the session management process.
  • the session management process may refer to a PDU session establishment process or a PDU session update (also referred to as a PDU session modification) process.
  • the core network element receives a session management request message (for example, a PDU session establishment request message or a PDU session update request message) sent by a terminal in a session management process.
  • the core network element sends a policy request message to the policy control network element according to at least one of the first indication information and the second indication information carried in the session management request message, and the policy request message includes a flow description parameter and third indication information.
  • the policy control network element may further send a distribution strategy to the core network element, where the distribution strategy includes at least one access technology indication.
  • the access technology indication is used to indicate an access technology for transmitting a service flow.
  • the first indication information is used to indicate that the terminal supports at least one of a first transmission method capability and a second transmission method capability.
  • the second indication information and the third indication information are used to request that a service flow be transmitted using at least one of the first transmission method and the second transmission method.
  • the terminal can use one transmission method to transmit a service flow, it means that the terminal has the ability to use the transmission method to transmit a service flow. For example, if a terminal can use a first transmission method to transmit a service stream, it indicates that the terminal has a first transmission capability, and if a terminal can use a second transmission method to transmit a service stream, it indicates that the terminal has a second transmission capability.
  • the first transmission capability is a Multipath Transmission Control Protocol (MPTCP) capability
  • the second transmission capability is a User Datagram Protocol (UDP) capability.
  • MPTCP Multipath Transmission Control Protocol
  • UDP User Datagram Protocol
  • the second instruction information and the third instruction information are used to request the use of a Multipath Transmission Control Protocol (MPTCP) method, an MPTCP proxy method, a TCP method, a TCP proxy method, a UDP method, and a UDP proxy.
  • MPTCP Multipath Transmission Control Protocol
  • At least one of the method, the QUIC method, the QUIC proxy method, the MP-QUIC method, or the MP-QUIC proxy method transmits a service flow.
  • the first indication information is used to indicate that the terminal supports the first transmission capability
  • the second indication information or the third indication information is used to instruct the service flow request to use the MPTCP method, the MPTCP proxy method, the QUIC method, and the fast UDP Internet connection QUIC At least one of the proxy method, MP-QUIC method, or MP-QUIC proxy.
  • the first indication information is used to indicate that the terminal supports the second transmission capability
  • the second indication information or the third indication information is used to request the use of at least one of the TCP method, the TCP proxy method, the UDP method, or the UDP proxy method.
  • Transport business flow is used to indicate that the terminal supports the second transmission capability
  • the method for transmitting the service flow includes one or more of the following: MPTCP method, MPTCP proxy method, TCP method, TCP proxy method, UDP method, UDP proxy method, QUIC method, QUIC proxy method, or MP-QUIC method, MP-QUIC proxy method.
  • S101 may be implemented in the following manner: In the process of a terminal requesting registration to a network, a core network element receives policy information of a service flow sent by a policy control network element.
  • the terminal requests to register to the network with at least one of a plurality of access technologies.
  • the policy control network element sends to the terminal through the core network network element a transmission method including a service flow and a shunt mode.
  • the core network element can obtain the policy information of the service flow.
  • the policy information of the service flow refers to the policy information corresponding to the flow description parameter and the flow description parameter. Specifically, it may refer to at least one of a flow description parameter and a distribution mode, a flow description parameter, and a transmission method of a service flow.
  • the flow description parameter is used to determine a service flow.
  • the flow description parameter may include one or more of the following: five-tuple information of the service flow (for example, at least one of a source IP address, a destination IP address, a source port number, a destination port number, and a protocol type) or an application identifier (Application ID).
  • the shunt mode includes one or more of the following:
  • the access technology priority indication is used to indicate that the access technology preferentially indicates that the service flow corresponding to the associated access technology is transmitted through the link.
  • the access technology priority indication is a 3GPP access technology or a non-3GPP access technology.
  • the service flow can be transmitted through the link corresponding to another access technology.
  • the priority transmission access technology is 3GPP access technology.
  • non-3GPP access technology can be used to transmit service flows.
  • An optimal link offloading instruction which is used to indicate that a service flow is preferentially transmitted through an optimal link, which is a link whose link status is better than other links.
  • the optimal link offloading indication may include: an optimal link indication, a link minimum delay indication, a minimum round-trip time (RTT) indication, a link minimum load indication, and a link maximum bandwidth indication. At least one parameter in the strongest access signal indication.
  • RTT round-trip time
  • the terminal can determine the optimal link through the above parameters.
  • the optimal link may be: the link with the lowest delay, the link with the lowest load, or the link with the strongest access signal strength.
  • An offload instruction based on link load balancing is used to indicate that a service flow is transmitted according to a link load balancing policy.
  • the shunting instructions based on link load balancing include: load balancing instructions.
  • the indication of the access technology and the offload ratio is used to indicate that the service flow is transmitted according to the offload ratio corresponding to the access technology.
  • the terminal transmits a service flow according to the offload ratio corresponding to the access technology.
  • the offload ratio indicates that the offload ratio of the 3GPP access technology is 20%, and the offload ratio of the non-3GPP access technology is 80%, then 20% of the data packets in the service flow are transmitted through the 3GPP access technology. 80% of the data packets in the service flow are transmitted through non-3GPP access technology.
  • the offload ratio is empty or does not include the offload ratio, it indicates that the service flow is offloaded based on link load balancing.
  • Redundant transmission indication used to indicate that the same data packet in the service flow is transmitted through different access technologies at the same time.
  • the core network element sends policy information to a terminal or a user plane function network element.
  • An example is that a core network element sends policy information to a terminal in a session management process.
  • the core network element sends a PDU session management response message carrying at least one of the transmission method and the offload strategy of the service flow to the terminal.
  • the PDU session management request message may be a PDU session establishment request message or a PDU session update request message.
  • the PDU session management response message may be: a PDU session new acceptance message or a PDU session update success message.
  • the access and mobility management network element may send a policy to the terminal through a non-access stratum (NAS) transmission message to control the transmission method sent by the network element. And shunt mode.
  • NAS non-access stratum
  • the terminal receives a shunt mode and / or a service flow transmission method of a service flow sent by a core network element, and a packet data unit PDU session in which the service flow is located supports multiple access technologies.
  • the PDU session where the service flow is located supports the first access technology and the second access technology.
  • the first access technology is a 3GPP access technology
  • the second access technology is a non-3GPP access technology.
  • the first access technology is a non-3GPP access technology.
  • the second access technology is a 3GPP access technology.
  • the terminal obtains a shunt mode and / or a service flow transmission method of a service flow sent by a policy control network element from a NAS transmission message sent by a core network element.
  • the terminal acquires a service flow distribution strategy and / or a service flow transmission method from a session management response message sent by a core network element.
  • the terminal transmits the service flow by using at least one of a plurality of access technologies according to a shunt mode and / or a service flow transmission method.
  • the terminal receives the service flow transmission method / offload mode in both the session management process and the registration process, the terminal corresponds to the offload strategy and / or service flow transmission method of the service flow obtained in the session management process. Access technology to transmit business flows.
  • the embodiment of the present application provides a method for transmitting a service flow, and obtains a shunt mode and / or a service flow transmission method of a service flow sent by a core network element through a terminal, and is determined according to the shunt mode and / or a service flow transmission method
  • the access technology adopted by the service flow using different transmission methods so that the service flow can not be shunted based on the shunt strategy, and the use of the shunt mode of the service flow and the service flow transmission method can be used in a PDU session that supports multiple access technologies
  • the service flows using different transmission methods are shunted according to the determined corresponding access technology, thereby reducing the complexity of the signaling interaction between the core network element and the terminal.
  • the terminal When the terminal transmits a service flow, it can also determine which access technology is used to transmit the service based on the multiplexing algorithm for transmitting the service flow. Therefore, as another embodiment of the present application, as shown in FIG. 6, the method further includes:
  • the terminal obtains a multiplexing algorithm.
  • the policy information sent by the core network element further includes a multiplexing algorithm corresponding to the offload mode, and the terminal obtains the multiplexing algorithm corresponding to the offload mode sent by the core network element from the policy information.
  • the policy information sent by the core network element further includes a multiplexing algorithm corresponding to the transmission method of the service flow, and the terminal obtains the multiplexing algorithm corresponding to the transmission method of the service flow sent by the core network element from the policy information.
  • the terminal determines the multiplexing algorithm configured by the terminal according to the offload mode. Or, the terminal determines the multiplexing algorithm configured by the terminal according to the transmission method of the service flow.
  • S104 may be specifically implemented in the following manner:
  • the terminal uses at least one of multiple access technologies to transmit the service flow according to the offload mode and / or the service flow transmission method and the multiplexing algorithm.
  • the terminal uses at least one of a plurality of access technologies to transmit a service flow according to a multiplexing algorithm corresponding to the offload mode.
  • the terminal determines a multiplexing algorithm corresponding to the detachment mode according to the detachment mode, and determines an access technology for transmitting a service flow from multiple access technologies according to the multiplexing algorithm, and then uses the determined access technology.
  • Transport business flow a multiplexing algorithm corresponding to the detachment mode according to the detachment mode, and determines an access technology for transmitting a service flow from multiple access technologies according to the multiplexing algorithm, and then uses the determined access technology.
  • Transport business flow a multiplexing algorithm corresponding to the detachment mode according to the detachment mode
  • the terminal uses at least one of a plurality of access technologies to transmit the service flow according to a multiplexing algorithm corresponding to the transmission method of the service flow.
  • the terminal determines a multiplexing algorithm corresponding to the service flow transmission method according to the service flow transmission method, and determines an access technology for transmitting the service flow from multiple access technologies according to the multiplexing algorithm, and then Traffic is transmitted using the determined access technology.
  • the terminal measures the respective links corresponding to the 3GPP access technology and the non-3GPP access technology according to the RTT path algorithm. Time delay, and then select the access technology with the smallest link delay to transmit the service flow from the link delays corresponding to the 3GPP access technology and the non-3GPP access technology respectively.
  • the multiplexing algorithm is the MPTCP algorithm.
  • the multiplexing algorithm is the QUIC algorithm or the MP-QUIC algorithm.
  • the MPTCP algorithm or the QUIC algorithm or the MP-QUIC algorithm in the embodiment of the present application is the MPTCP algorithm or the QUIC algorithm or the MP-QUIC algorithm of different operating systems.
  • the operating system may be at least one of an IOS operating system and a Linux operating system.
  • the MPTCP algorithm in the IOS operating system includes one or more of the following: a handover algorithm, a preferred minimum RTT path algorithm, and a multi-path aggregation algorithm.
  • the MPTCP algorithm in the Linux operating system includes one or more of the following: a polling scheduling algorithm, a default algorithm, or a redundant transmission algorithm.
  • the core network element may not send the offloading policy to the terminal, and the terminal may implement the service flow offloading based on the multiplexing algorithm already supported in the operating system , No offloading strategy can be used, thereby reducing the signaling interaction with the core network element.
  • the terminal and user plane function network elements can independently decide which access technology to use to transmit service flows according to the policy information. Therefore, for the same service flow, when the terminal transmits uplink, the access technology used to send the service flow may be different from the access technology used by the user plane function network element to send the service flow during downlink transmission.
  • the method provided in the embodiment of the present application further includes:
  • the core network element sends instruction information (for example, a reflective offloading instruction) to the terminal, where the instruction information is used to indicate that the access technology used by the terminal to send the service flow is the same as the access technology used by the terminal to receive the service flow.
  • instruction information for example, a reflective offloading instruction
  • the terminal receives instruction information sent by a core network element.
  • S104 in this application may be implemented in the following ways:
  • the terminal transmits the service flow by using at least one of multiple access technologies according to the offload mode and / or the transmission method of the service flow and the instruction information.
  • the terminal when the terminal receives the service flow sent by the user plane function network element on the 3GPP access technology, when the terminal sends the service flow to the user plane function network element, the terminal adopts the 3GPP access technology.
  • the terminal may transmit the service flow according to the access technology determined by at least one of the shunt mode and the service flow transmission method. After receiving the instruction information, the terminal uses the information determined by the instruction information. Access technology transmits service flows.
  • the access technology determined according to at least one of the shunt mode and the transmission method of the service flow is a 3GPP access technology, and then the terminal transmits the data packet in the service flow using the 3GPP access technology.
  • the access technology determined according to the instruction information is a non-3GPP access technology, and the remaining data packets in the service flow are migrated to the non-3GPP access technology side for transmission.
  • the terminal may also send an instruction to the user plane function network element to indicate that the service flow ends in the 3GPP access technology transmission.
  • the user plane function network element may sort the data packets on the 3GPP access technology and the non-3GPP access technology according to the indication of the end of the transmission of the service flow in the 3GPP access technology.
  • the solution provided in the first embodiment further includes: the core network element sends to the terminal to allocate multiple addresses to the terminal's PDU session, and the access technology type corresponding to each of the multiple addresses.
  • the terminal then transmits the service flow scheme according to the access technology type and policy information corresponding to each of the multiple addresses.
  • the terminal may refer to the description in the second embodiment based on the access technology type corresponding to each address in the multiple addresses and the manner in which the policy information is transmitted to the service flow, and details are not described herein again.
  • a multi-access PDU session can realize the movement of service flows between different access technologies based on MPTCP.
  • there may be other non-MPTCP service flows in the multi-access PDU session for example, using UDP service flows.
  • the current non-MPTCP service flow movement cannot be supported in a multi-access PDU session, so if a non-MPTCP service flow is moved in a multi-access PDU session, the transmission of the non-MPTCP service flow may be interrupted. Therefore, as shown in FIG. 8, an embodiment of the present application provides a schematic flowchart of a service flow transmission method and a communication method interaction. The method includes:
  • the core network element allocates multiple addresses to a terminal's PDU session, and an access technology type corresponding to each of the multiple addresses.
  • This PDU session supports multiple access technologies.
  • the S201 may also use the core network element to allocate multiple addresses to the terminal's PDU session, and each of the multiple addresses corresponds to a service type replacement.
  • This PDU session supports multiple access technologies.
  • the core network element receives the session management request message (for example, the session management request message may be sent by the terminal to the session management network element through the mobile management network element. At this time, the core network element should understand Network element for session management). The core network element then allocates multiple addresses for the PDU session. The core network element allocates multiple addresses to the PDU session based on the session management request message and determines the access technology type or service type corresponding to each of the multiple addresses. For example, the session management request message may carry first indication information.
  • the core network element for example, a session management network element
  • the core network element sends the N4 session message to the user plane function network element to indicate that the user plane function
  • the network element allocates multiple addresses to the terminal's PDU session and an indication of the access technology type or service type corresponding to each address.
  • the N4 session message may carry first indication information.
  • the core network element obtains multiple addresses from the user plane function network element and determines the access technology type or the service type corresponding to each address of the multiple addresses.
  • the user plane function network element can also assign multiple addresses to the PDU session, and then send the assigned multiple addresses to the core network element, and the core network element determines the access corresponding to each of the multiple addresses.
  • the access technology type includes at least one of a first access technology type and a second access technology type.
  • the service type is a general service flow or a first service flow.
  • the first access technology type is 3GPP access technology, or LTE access technology, or 5G access technology, or NG-RAN access technology
  • the second access technology type is non-3GPP access technology, or WLAN access technology.
  • Access technology, or fixed network access technology or the first access technology type is non-3GPP access technology, or WLAN access technology, or fixed network access technology, etc.
  • the second access technology type is 3GPP access technology, or LTE access technology, or 5G access.
  • Technology, or NG-RAN access technology is 3GPP access technology, or LTE access technology, or 5G access.
  • an address corresponding to a general service flow indicates that the address can correspond to multiple service flows (for example, a first service flow and a second service flow), that is, the address can be used to transmit one of the first service flow or the second service flow. Or more.
  • the address corresponding to the general service flow can also be called a general address.
  • IP1 corresponds to the first service flow and the second service flow, and IP1 may be called a general address.
  • an address corresponding to multiple access technology types may be referred to as a universal address, that is, a service flow transmitted by any access technology may be transmitted using the universal address.
  • the method provided in the embodiment of the present application further includes: after the core network element receives the information sent by the terminal for indicating a service flow transmission method, the core network element according to the method for indicating the service flow For information about the transmission method, select a user plane function network element that has the function of the transmission method.
  • the core network element selects a user plane function network element having MPTCP proxy capability, and
  • the multiple addresses assigned to the terminal include: a first address, a second address, and a third address.
  • the core network element selects a user plane function network element that supports MP-QUIC proxy capability or QUIC proxy capability for the PDU session of the terminal, and the multiple addresses assigned to the terminal include: Second address.
  • the address in the embodiment of the present application may be an IP address.
  • the core network element sends multiple addresses to the terminal and the access technology type or service type corresponding to each address in each of the multiple addresses.
  • the core network element sends multiple addresses to the terminal and information used to determine the access technology type corresponding to each of the multiple addresses, or the core network element sends multiple addresses to the terminal. Address and information used to determine the type of service corresponding to each of the multiple addresses.
  • the core network element may send multiple addresses to the terminal in the session management response message and the access technology type or service type corresponding to each address in each of the multiple addresses.
  • the SMF network element may also combine multiple addresses and the access technology corresponding to each address in the multiple addresses
  • the type or service type corresponding to each address is sent to the user plane function network element.
  • the user plane function network element may also (for example, through the user plane (Message) sends to the terminal an access technology type corresponding to each address or a service type corresponding to each address.
  • Example 1-1) Take multiple addresses including a first address, a second address, and a third address as an example.
  • a possible implementation manner 1-1, S202 may be implemented in the following manner: the core network element sends a first address, a second address, a third address, a first access technology type corresponding to the first address to the terminal, and The second address corresponds to the second access technology type, and the first access technology type and the second access technology type corresponding to the third address.
  • S202 can pass the following One possible way to achieve 1-2:
  • the core network element sends the first address, the second address, and the third address to the terminal.
  • the terminal and the core network element may be configured by default, and an access technology type or a corresponding service type corresponding to the first address, the second address, or the third address.
  • the core network element sends a first address, a second address, and a third address, and a universal address indication corresponding to the third address to the terminal.
  • the universal address indication is used to indicate that the third address is a universal address, that is, it indicates that the third address corresponds to multiple access technology types (for example, the first access technology type and the second access technology type).
  • Example 1-2 Take multiple addresses including a first address and a second address as an example.
  • a possible implementation manner 2-1, S202 may be implemented in the following manner: a core network element sends a first address, a second address, a first access technology type corresponding to the first address, and a second address to the terminal Second access technology type.
  • S202 can pass the following A possible implementation way 2-2:
  • a possible implementation manner 2-2 is that the core network element sends the first address and the second address to the terminal.
  • the core network element may send the third address to the user plane function network element.
  • the core network element may not send the third address to the user plane function network element.
  • the network element of the core network assigns the first address and the second address to the terminal.
  • S202 can be implemented by the following examples 1-3:
  • Example 1-3 Take multiple addresses including a first address and a second address as an example.
  • S202 may be implemented in the following manner: the core network element sends the first address, the second address, the first type of indication information corresponding to the first address to the terminal / user plane function network element, Corresponds to the second type of indication information with the second address.
  • a possible implementation manner 3-2, S202 can be implemented in the following ways: the core network element sends multiple addresses allocated for the PDU session to the terminal / user plane function network element, and each address corresponding to each of the multiple addresses is connected to
  • the incoming technology type or the service type corresponding to each address includes: the core network element sends the first address and the second address to the terminal / user plane function network element, and the second type indication information corresponding to the second address.
  • the first type indication information is used to indicate a first access technology type and a second access technology type.
  • the second type indication information is used to indicate the first access technology type or the second access technology type.
  • the first type of indication information is used to indicate that the first address corresponds to a general service flow.
  • the second type of indication information is used to indicate that the second address corresponds to the first service flow.
  • the first type indication information may be a first access technology type indication and a second access technology type indication.
  • the second type of indication information may be a first access technology type indication or a second access technology type indication, or the second type indication information may also be a second indication field or fifth indication information.
  • the second type of indication information may be a 3GPP access technology indication.
  • the second implementation the first type of indication information is a general address indication.
  • the first type of indication information may also be a first indication field or a fourth indication information, which is used to indicate that the first address corresponds to the first access technology type and the second access technology type.
  • the fourth instruction information is the first service flow instruction and / or the second service flow instruction
  • the fifth instruction information is the first service flow instruction
  • the fourth indication information is a general service flow indication
  • the first type of indication information is empty, that is, the first address does not correspond to any access technology type.
  • the manner of the second type of indication information refer to the manner described in the first implementation above, and will not be repeated here. .
  • the access technology type indication is used to indicate the access technology type.
  • the service flow indication is used to determine the service flow.
  • the first service flow indication is used to determine the first service flow.
  • the first type of indication information is also used to indicate that the first service stream and the second service stream may use An address is transmitted. Or the first type of indication information also indicates that the general service flow is transmitted using the first address.
  • the second type of indication information is used to indicate that the first service flow is transmitted using the second address.
  • the access technology transmitting the first service flow is an access technology type corresponding to the second address, the second address is used to transmit the first service flow.
  • the access technology for transmitting the first service flow is the first access technology type or the second access technology type, and is not the access technology type corresponding to the second address, the first service flow is transmitted using the first address.
  • the terminal and the core network element negotiate in advance that when the access technology transmitting the first service flow is the access technology type corresponding to the second address, the second address is used to transmit the first service flow.
  • the access technology for transmitting the first service flow is the first access technology type or the second access technology type, and is not the access technology type corresponding to the second address, the first service flow is transmitted using the first address.
  • scenario 1 since the first service flow can correspond to the first address or the second address, in order to enable the terminal to determine whether to use the first address or the second address to transmit the service flow, scenario 1, the core When the network element indicates to the terminal that the second address corresponds to the first service flow, it may also send a first message to the terminal, where the first message is used to indicate that the second address corresponds to the first access technology type or the second access technology type.
  • Scenario 2 The core network element may also send a first message to the terminal, where the first message includes a traffic distribution policy, and the traffic distribution policy includes: the first address and the first access technology type indication, and the second address and the second connection Into the technology type indication.
  • the first address and the first access technology type indication are used to indicate that the first address corresponds to the first access technology type
  • the second address and the second access technology type indication are used to indicate that the second address corresponds to the second access technology.
  • Types of In this way, after receiving the indication of the first address and the first access technology type and the indication of the second address and the second access technology type, the terminal can determine that for the first service flow, when the access technology determined according to the policy information is When the first access technology type is used, the first address is used to process the first service flow. When the access technology determined according to the policy information is the second access technology type, the second service is used to process the first service flow. When the access technology determined according to the policy information is the first access technology, the first address is used to process the first service flow. That is, the terminal is further instructed how to use the first address and the second address. Or the offloading strategy includes the first address and the second access technology type indication, and the second address and the first access technology type indication.
  • the core network element when the first transmission method is the MPTCP method or the MPTCP proxy method, the core network element sends an IP1 and 3GPP access technology instruction and an IP2 and non 3GPP access technology instruction to the terminal. In this way, if the terminal determines that the MPTCP service flow is transmitted using the 3GPP access technology, it uses IP1 to process the MPTCP service flow.
  • the terminal may determine the address used when transmitting the first service flow based on the first type of indication information and the second type of indication information and the access technology for transmitting the first service flow.
  • the terminal obtains multiple addresses. Each of the multiple addresses corresponds to a service type or each address corresponds to an access technology type.
  • the terminal may obtain multiple addresses in the session management response message, and a service type or an access technology type corresponding to each address in the multiple addresses.
  • S203 can be specifically implemented in the following ways:
  • the terminal may negotiate with the core network element for the access technology type or service type corresponding to each of the multiple addresses. In this way, when the core network element sends multiple addresses to the terminal in one of the foregoing possible implementation manners 1-2 or one possible implementation manner 2-2, the terminal can determine the received multiple addresses based on the negotiated content. The access technology type or service type corresponding to each address.
  • the terminal and the core network element negotiate in advance that the first address corresponds to the first access technology type and the second address corresponds to the second access technology type.
  • the first address corresponds to a general service flow
  • the second address corresponds to a first service flow.
  • the multiple addresses include a first address, a second address, and a third address, so that when the terminal receives the first address, the second address, and the third address, it can determine that the first address corresponds to the first address according to the content of the negotiation in advance.
  • the access technology type and the second address correspond to the second access technology type
  • the third address corresponds to the first access technology type and the second access technology type
  • the third address is a general address.
  • Example B When the core network element sends multiple addresses to the terminal in one possible implementation manner 1-1 or one possible implementation manner 2-1, the terminal may determine multiple addresses according to the instruction of the core network element. The access technology type corresponding to each address in the address.
  • the terminal may determine that the third address corresponds to the first access technology type and the second access technology type, the first address corresponds to the first access technology type, and the second address corresponds to Second access technology type.
  • the terminal may determine that the first address corresponds to the first access technology type and the second address corresponds to the second access technology type.
  • the terminal may determine that the first address corresponds to the first access technology type and the second access technology type according to the first type indication information. Or the first address corresponds to a general service flow. The terminal may determine that the second address corresponds to the first access technology type or the second access technology type according to the second type indication information. Or the second address corresponds to the first service flow.
  • the terminal determines that the first address corresponds to the first access technology type and the second access technology type.
  • the terminal determines that the first address corresponds to a general service flow.
  • the core network element can also indicate to the terminal the service type or access technology type corresponding to some addresses in multiple addresses, and then the terminal determines the service type or access technology corresponding to another address in multiple addresses. Types of. For example, the core network element sends the first address and the second address to the terminal, but the core network element only indicates that the first address corresponds to the second access technology type and the first access technology type, so that the terminal receives the first address And the second address, it can be determined that the second address corresponds to the second access technology type or the first access technology type.
  • the core network element when the core network element sends the first address to the terminal corresponding to the general service flow, and the second address corresponds to the first service flow, the first address may also be sent to the terminal as the general address, and the second address corresponds to the first connection. Enter the technology type or the second access type information.
  • the terminal transmits a service flow according to the policy information and multiple addresses.
  • the terminal obtains the access technology type corresponding to each address, the terminal transmits the service flow according to the policy information and multiple addresses.
  • S204 needs to be replaced in the following manner: The terminal transmits a service flow according to the service type corresponding to each address.
  • the method provided in the embodiment of the present application further includes: S205.
  • the user plane function network element receives a service flow sent by the terminal, and the service flow is transmitted using multiple addresses.
  • S206. The user plane function network element transmits the service flow according to the policy information (applicable to a case where each address corresponds to an access technology type). Alternatively, the user plane function network element transmits a service flow according to a service type corresponding to each address (applicable to a case where a service type corresponds to each address).
  • An embodiment of the present application provides a method for transmitting a service flow.
  • a terminal receives multiple addresses allocated by a core network element to a terminal's PDU session.
  • the terminal can use the policy information.
  • the service flows are transmitted according to the addresses corresponding to the service flows using different transmission methods and the access technology determined according to the policy information. Because the service flow is transmitted based on the address corresponding to the access technology determined according to the policy information, for the same service flow, the terminal can determine the address for transmitting the service flow regardless of how the access technology changes during the transmission . Thereby, service flows using different transmission methods can be transmitted in the same service flow based on addresses allocated by core network element.
  • the core network element may allocate three addresses to the terminal or two addresses.
  • the PDU session may include service flows transmitted using multiple transmission methods.
  • the service flow uses different transmission methods.
  • the terminal uses policy information and multiple addresses. There are also differences in the way in which service flows are transmitted, as described below:
  • the multiple addresses allocated by the core network element include a first address and a second address, where the first address corresponds to the first access technology type, the second address corresponds to the second access technology type, and the service
  • the flow includes a first service flow transmitted by using a first transmission method as an example.
  • the first transmission method includes one of the MPTCP method, the MPTCP proxy method, the TCP method, the TCP proxy method, the UDP method, the UDP proxy method, the QUIC method, the QUIC proxy method, the MP-QUIC method, or the MP-QUIC proxy method. Item or items.
  • S204 may be implemented in the following manner: The terminal transmits the first service flow by using the first address and / or the second address according to the policy information.
  • S206 can be specifically implemented in the following manner: the user plane function network element receives the service flow according to the policy information (for example, the service flow is sent by the terminal), the address of the service flow is the source address, and the user plane function network element performs service The source address of the flow is replaced from the first address / second address to the fourth address, and the user plane function network element sends a service flow of the fourth address.
  • the fourth address is a third address or an address of a user plane function network element.
  • the terminal transmitting the first service flow by using the first address and / or the second address according to the policy information means that the terminal uses the first address and / or the second address to process the first service flow, and then performs address processing.
  • the subsequent first service flow is transmitted on the access technology indicated by the policy information.
  • the address of the first service flow will also change. Therefore, after receiving the first service flow whose source address is the first address / second address, the user plane function network element changes the first service flow whose source address is the first address / second address to the fourth address. Because the first service flow usually carries information used to indicate the first service flow, the user plane function network element can convert the same service flow transmitted on different access technologies into the same address and send it out.
  • Using the first address and / or the second address for the service flow may refer to using the first address and / or the second address for the data packets in the service flow. Because different data packets in the same service flow may be transmitted on different access technologies, the specific use of the first address or the second address for a data packet depends on the transmission. The data packet access technology.
  • the terminal may determine the access technology adopted by the first service flow according to the policy information. Then, the first service flow is processed according to the address corresponding to the access technology adopted by the first service flow.
  • IP1 corresponds to the 3GPP access technology. If the terminal determines that the first service flow transmitted using the MPTCP method is transmitted using the 3GPP access technology, the terminal may use IP1 to process the first service flow and use the first service flow after address processing to use 3GPP. Access technology transmission.
  • the multiple addresses allocated by the core network element include a first address, a second address, and a third address.
  • the first address corresponds to the first access technology type
  • the second address corresponds to the second access technology type
  • the third address corresponds to the first access technology type and the second access technology type.
  • the service flow includes using the first transmission method. At least one of the transmitted first service flow and the second service flow transmitted by using the second transmission method is taken as an example.
  • the first transmission method includes one or more of the MPTCP method, the MPTCP proxy method, the UDPQUIC method, the UDPQUICproxy method, the UDPMP-QUIC method, or the MP-QUICproxy.
  • the second transmission method includes one or more of a TCP method, a TCP proxy method, a UDP method, and a UDP proxy method.
  • a second possible implementation manner, S204 may be specifically implemented in the following manner: According to the policy information, the terminal uses the first address and / or the second address to transmit the first service flow, and uses the third address to transmit the second service flow.
  • S206 may be specifically implemented in the following manner: After receiving the first service flow with the source address being the first address / second address and the second service flow with the source address being the third address, the user plane function network element The address of a service flow is changed to a fourth address. Because the service flow usually carries information for indicating the service flow, the user plane function network element can convert the same service flow transmitted on different access technologies into the same address and send it out.
  • the terminal determines that the first service flow is transmitted using the first access technology or the second access technology based on the policy information or the instruction information, the terminal uses the first address and / or the second address to process the first service flow.
  • the first service flow after address processing is transmitted using the first access technology or the second access technology.
  • the first address corresponds to the 3GPP access technology
  • the first service flow is an MPTCP service flow as an example.
  • the terminal determines that the MPTCP service flow adopts the 3GPP access technology according to the policy information, and the terminal uses the first address to process the MPTCP service flow.
  • 1P1 corresponds to 3GPP access technology
  • IP2 corresponds to non-3GPP access technology.
  • the terminal uses IP1 to process the MPTCP service flow.
  • the MPTCP service flow is subsequently migrated to a non-3GPP access technology for transmission, the terminal uses IP2 to process the MPTCP service flow.
  • the source address of the MPTCP service flow received by the user plane function network element may include IP1 and IP2, so the user plane function network element replaces the source address of the MPTCP service flow with IP3, and then sends the MPTCP service flow with the address IP3. Go out.
  • the terminal sends the first service flow processed using the first address to the access network device in the access technology type corresponding to the first address. If the first service flow is processed using the second address, the terminal sends the first service flow processed using the second address to the access network device in the access technology type corresponding to the second address. For example, if the first address corresponds to the 3GPP access technology, the terminal sends the first service flow processed by using the first address to the access network device in the 3GPP access technology.
  • the terminal uses the third address to process the second service flow, and determines that the second service flow uses at least one of the first access technology and the second access technology based on the offload policy and / or offload instruction.
  • the terminal uses at least one of the first access technology and the second access technology to transmit the second service flow processed by the third address.
  • the terminal determines that the UDP service flow is transmitted on the 3GPP access technology, it uses the third address to process the second service flow, and the UDP service flow processed by the third address is used in 3GPP access technology transmission. If the terminal determines that the UDP service flow is transmitted on the 3GPP access technology and the non-3GPP access technology, the terminal uses the third address to process the second service flow, and the UDP service flow processed using the third address will be used in the 3GPP access technology and the non-3GPP access technology. 3GPP access technology transmission.
  • the terminal can use the third address to transmit the second service flow. Regardless of which access technology the second service flow is transmitted on, the address of the second service flow is a third address, so that the second service flow transmitted using the second transmission method can be prevented from performing a service flow in the same PDU session. Address interruption during migration. After the user plane function network element receives the second service flow on multiple access technologies, it can send it directly without processing the address of the second service flow.
  • a service flow may include multiple data packets, and the multiple data packets may be transmitted using the same access technology, or may be transmitted using different access technologies.
  • transmitting the service flow according to the policy information includes: The access technology determined according to the policy information uses multiple addresses to transmit data packets in the service flow.
  • transmitting the service flow by using the first address according to the policy information may refer to: processing the data packet of the service flow by using the first address, and determining the data packet of the service flow after the address processing to transmit the data packet of the service flow according to the policy information The corresponding access technology is transmitted.
  • the network element of the core network allocates the first address and the second address to the terminal, where the first address corresponds to the first access technology type and The second access technology type, and the second address corresponds to the first access technology type or the second access technology type. Therefore, the terminal can also transmit service flows based on policy information and multiple addresses by using the following example 2-3:
  • the multiple addresses allocated by the core network element include a first address and a second address.
  • the first address corresponds to the first access technology type and the second access technology type
  • the second address corresponds to the first access technology type or the second address type.
  • the service flow includes, for example, a first service flow transmitted by using a first transmission method and / or a second service flow transmitted by using a second transmission method.
  • Example 2-3 For the content of the first transmission method and the second transmission method in Example 2-3, refer to the description in Example 2-2, and details are not described herein again.
  • S204 may be implemented in the following manner: the terminal transmits the first service flow by using the first address and / or the second address according to the policy information, and transmits the second service flow by using the first address according to the policy information.
  • the terminal uses the first address to transmit the second service flow according to the policy information, which may be specifically implemented in the following manner:
  • the terminal uses the first address to process the second service flow.
  • the second service flow after the address processing is transmitted using the access technology indicated by the policy information or the instruction information.
  • the terminal uses IP1 to process the UDP service flow, and determines that the UDP service flow is transmitted using 3GPP access technology according to policy information or instruction information.
  • the UDP service flow with the address IP1 is transmitted using the 3GPP access technology.
  • the terminal determines that the first address corresponds to the first access technology type and the second access technology type, and the second address corresponds to the first access technology type or the second address type, the terminal adopts according to the policy information.
  • the terminal may use the first address and / or the second address to transmit the first service flow according to the policy information, which may be specifically implemented in the following manner 1 or manner 2:
  • Manner 1 If the terminal determines that the access technology for transmitting the first service flow is an access technology type corresponding to the second address, the terminal uses the second address to transmit the first service flow according to the policy information.
  • Method 2 If the terminal determines that the access technology for transmitting the first service flow is the first access technology type or the second access technology type, and is not the access technology corresponding to the second address, the terminal uses the first address for transmission according to the policy information First business flow.
  • the terminal determines an access technology for transmitting the first service flow according to the policy information, and then selects an address for processing the first service flow according to the determined access technology. After processing the first service flow using the selected address, the processed first service flow is transmitted using the determined access technology.
  • the first service flow is an MPTCP service flow
  • IP1 corresponds to the 3GPP access technology and non-3GPP access technology
  • IP2 corresponds to the 3GPP access technology.
  • IP1 transmits the MPTCP service flow, and the processed MPTCP service flow is transmitted using a non-3GPP access technology.
  • the terminal determines that the MPTCP service flow uses the 3GPP access technology, the terminal uses IP2 to process the MPTCP service flow, and transmits the processed MPTCP service flow using the 3GPP access technology.
  • the multiple addresses allocated by the core network element include a first address and a second address.
  • the first address corresponds to a general service flow
  • the second address corresponds to a first service flow.
  • the service flow includes, for example, a first service flow transmitted by using a first transmission method and / or a second service flow transmitted by using a second transmission method.
  • Example 2-4 For the content of the first transmission method and the second transmission method in Example 2-4, refer to the description in Example 2-2, and details are not described herein again.
  • S204 may be implemented in the following manner: the terminal transmits the first service flow by using the first address and / or the second address, and transmits the second service flow by using the first address.
  • the terminal determines that the first address corresponds to the general service flow and the second address corresponds to the first service flow, the terminal using the first address and / or the second address to transmit the first service flow according to the policy information may be specifically implemented in the following manner 3 or manner 4 :
  • Method 3 The terminal determines that the first address corresponds to the first access technology type and / or the second address corresponds to the second access technology type according to the first message. If the terminal determines that the first service flow uses the first address according to the policy information or the instruction information For access technology type transmission, the terminal uses the first address to transmit the first service flow.
  • Manner 4 The terminal determines that the first service flow is transmitted using the second access technology type according to the policy information or the instruction information, and then the terminal uses the second address to transmit the first service flow.
  • the core network element sends an IP1 corresponding general service flow to the terminal, and sends an IP2 corresponding MPTCP service flow to the terminal.
  • the core network element sends a distribution strategy to the terminal.
  • the distribution strategy includes IP1 corresponding to the 3GPP access technology and IP2 corresponding to the non-3GPP access technology. If the terminal determines that the MPTCP service flow is transmitted using the 3GPP access technology according to the policy information, the terminal uses IP1 processing for the MPTCP service flow, and then transmits the MPTCP service flow with the address IP1 on the 3GPP access technology. If the terminal determines that the MPTCP service flow is transmitted using the non-3GPP access technology according to the policy information, the terminal uses IP2 to transmit the MPTCP service flow on the non-3GPP access technology.
  • S206 may be specifically implemented in the following manner: After receiving the first service flow whose source address is the first address, the user plane function network element replaces the first address of the first service flow with the second address. Alternatively, after receiving the first service flow whose source address is the second address, the user plane function network element replaces the second address of the first service flow with the first address.
  • the same first service flow may be transmitted using different access technologies, which will result in the same first service flow corresponding to different addresses, and the first service flow usually carries a message indicating the first service flow. Information, so the user plane function network element can convert the same first service flow transmitted on different access technologies into the same address and send it out.
  • IP1 corresponds to 3GPP access technology and non-3GPP access technology.
  • IP2 corresponds to 3GPP access technology
  • the terminal uses IP1 to process the MPTCP service flow.
  • the MPTCP service flow also uses For 3GPP access technology transmission, the terminal uses IP2 to process the MPTCP service flow.
  • the user plane function network element uniformizes the The address is IP1 or IP2.
  • the address corresponding to the second service flow is the first address. Therefore, the user plane function network element receives the second service. During the stream, address translation processing may not be performed on the second service stream.
  • the method provided in the embodiment of the present application further includes: the core network element sends information to the terminal to indicate the method of transmitting the service flow, and the terminal receives the information sent by the core network element to indicate the service flow.
  • Information on the transmission method This is convenient for the terminal to determine the access technology type used by the service flow according to the information indicating the transmission method of the service flow after receiving the information indicating the transmission method of the service flow, thereby determining the transmission service flow according to the access technology type Address.
  • the method provided in the embodiment of the present application further includes: the terminal sending the first indication information to the core network element.
  • the core network element allocates multiple addresses to the terminal's PDU session based on the first indication information.
  • the terminal in Embodiment 2 may also be used to execute the process performed by the terminal in Embodiment 1.
  • the terminal in Embodiment 2 may also be used to execute the process performed by the terminal in Embodiment 1.
  • an embodiment of the present application provides a method for transmitting a service stream, including:
  • the user plane function network element obtains multiple addresses allocated for a terminal's PDU session, and the PDU session supports multiple access technologies.
  • each of the plurality of addresses corresponds to an access technology type.
  • each of the plurality of addresses corresponds to a service type.
  • the PDU session may support a first access technology type and a second access technology type.
  • the PDU session can support 3GPP access technologies and non-3GPP access technologies.
  • 3GPP access technologies and non-3GPP access technologies.
  • S301 may be implemented in the following manner: the user plane function network element receives multiple addresses allocated by the session management network element for the PDU session, and the access technology type corresponding to each address in the multiple addresses or each The service type corresponding to each address.
  • the session management network element sends multiple addresses refer to the manner in which the core network element sends multiple addresses in Embodiment 2.
  • the first address corresponds to the first access technology type
  • the second address corresponds to the second access technology type
  • the third address corresponds to the first access technology type and the second access technology type.
  • IP1 corresponds to 3GPP access technology
  • IP2 corresponds to non-3GPP access technology
  • IP3 corresponds to non-3GPP access technology and 3GPP access technology.
  • the user plane function network element determines the access technology type or service type corresponding to each of the multiple addresses. That is, the terminal in the step of determining the access technology type or service type corresponding to each of the multiple addresses by the terminal may be replaced with a user plane function network element. I won't repeat them here.
  • S301 may be implemented in the following manner: a user plane function network element allocates multiple addresses for a terminal PDU session and determines an access technology type or a service type corresponding to each of the multiple addresses.
  • the user plane function network element when the user plane function network element receives the multi-address indication or the first indication information sent by the session management network element, it assigns multiple addresses to the terminal's PDU session.
  • the multi-address indication or the first indication information may be obtained from an N4 session message sent by the session management network element.
  • the user plane function network element may also receive a tunnel identifier corresponding to each address.
  • the user plane function network element determines that the tunnel is used to transmit the service flow based on the policy information, it can use the address corresponding to the tunnel to process the service flow.
  • the user plane function network element transmits a service flow according to policy information and multiple addresses, where the policy information includes a shunt mode and / or a service flow transmission method.
  • the user plane function network element uses multiple addresses to transmit service flows.
  • the policy information may further include a traffic distribution policy, and the traffic distribution policy includes at least one access technology indication.
  • the user plane function network element may obtain the policy information from the session management network element.
  • the session management network element obtains the policy information, refer to the description in the foregoing embodiment.
  • the session management network element sends multiple addresses to the user plane function network element or instructs the user plane function network element to allocate multiple addresses, it sends policy information to the user plane function network element.
  • the PDU session may include service flows transmitted using multiple transmission methods.
  • the transmission methods used by the service flows are different.
  • the service stream includes a first service stream transmitted by using a first transmission method.
  • the multiple addresses include a first address and a second address.
  • the first address corresponds to a first access technology type
  • the second address corresponds to a second access.
  • the technology type can be implemented in the following manner A:
  • Method A The user plane function network element sends the first service flow to the terminal by using the first address and / or the second address according to the policy information.
  • Example 2-1 For the content of the first transmission method in Case1, reference may be made to the description in Example 2-1, and details are not described herein again.
  • Example 2-1 For a specific implementation manner of the method A, refer to the description on the terminal side in Example 2-1 above, that is, replace the terminal in Example 2-1 with a user plane function network element. I won't repeat them here.
  • the user plane function network element obtains the third address sent by the session management network element and the second access technology type and the first access technology type corresponding to the third address, or the user plane function network The element obtains the third address and the general address indication sent by the session management network element. Or the user plane function network element obtains a third address sent by the session management network element. When the user plane function network element obtains only the third address and does not obtain any indication of the access technology type corresponding to the third address, the user plane function network element may determine that the third address is a general address.
  • the service flow includes a first service flow transmitted by using a first transmission method and / or a second service flow transmitted by using a second transmission method, and the multiple addresses include a first address, a second address, and a third address.
  • the first address corresponds to the first access technology type
  • the second address corresponds to the second access technology type
  • the third address corresponds to the first access technology type and the second access technology type.
  • S302 can be implemented in the following manner B :
  • Method B The user plane function network element sends the first service flow to the terminal by using the first address and / or the second address according to the policy information, and sends the second service flow to the terminal by using the third address.
  • Example 2-2 For a specific implementation manner of the method B, refer to the description on the terminal side in Example 2-2 above, that is, replace the terminal in the example 2-2 with a user plane function network element. I won't repeat them here.
  • the multiple addresses allocated by the core network element include a first address and a second address, where the first address corresponds to the first access technology type and the second access technology type, and the second address corresponds to the first access technology.
  • Technology type or secondary address type The service flow includes, for example, the first service flow transmitted by using the first transmission method and / or the second service flow transmitted by using the second transmission method, and then S302 may be implemented in the following manner 3:
  • Method C The user plane function network element uses the first address and / or the second address to transmit the first service flow according to the policy information, and uses the first address to transmit the second service flow according to the policy information.
  • Example 2-3 For a specific implementation manner of the method C, refer to the description on the terminal side in Example 2-3 above, that is, replace the terminal in Example 2-3 with a user plane function network element. I won't repeat them here.
  • the multiple addresses allocated by the core network element include a first address and a second address.
  • the first address corresponds to a general service flow
  • the second address corresponds to a first service flow.
  • the service flow includes, for example, a first service flow transmitted by using a first transmission method and / or a second service flow transmitted by using a second transmission method.
  • Example 2-2 For the content of the first transmission method and the second transmission method in Case 4, refer to the description in Example 2-2, which is not repeated here.
  • Method D The user plane function network element uses the first address and / or the second address to transmit the first service stream and the first address to transmit the second service stream according to the service type corresponding to each of the multiple addresses.
  • Example 2-4 For a specific implementation manner of the method D, refer to the description on the terminal side in Example 2-4 above, that is, replace the terminal in Example 2-4 with a user plane function network element. I won't repeat them here.
  • the method provided in the embodiment of the present application further includes:
  • the user plane function network element receives a service flow sent to the terminal.
  • the user plane function network element may receive a service flow sent to the terminal from a data network corresponding to the user plane function network element.
  • the user plane function network element determines that the service flow sent to the terminal is transmitted by using the first transmission method.
  • the user plane function network element may determine the service flow to be transmitted using the first transmission method based on the current transmission method of the service flow, and the server IP address.
  • the first transmission method includes: MPTCP method, MPTCP proxy method, TCP method, TCP proxy method, UDP method, UDP proxy method, UDP QUIC method, UDP QUIC proxy method, UDP MP-QUIC method, MP-QUIC proxy One or more of the methods.
  • the user plane function network element When it is determined that the service flow is transmitted using the first transmission method based on the transmission method, the user plane function network element transmits all the service flows transmitted using the transmission method to the terminal using the corresponding transmission method. When it is determined that the service flow is transmitted using the first transmission method based on the server IP address, the user plane function network element only transmits the service flow of some IP addresses to the terminal through the first transmission method.
  • the user plane function network element replaces the target address of the service flow sent to the terminal with the first address and / or the second address.
  • the terminal uses the first address to send a service flow to the user plane function network element during the uplink transmission process. If the user plane function network element does not perform address conversion, the address of the service flow received by the terminal during the downlink transmission process will not be the first address. Address, which may cause business interruption.
  • S302 can be specifically implemented in the following manner: The user plane function network element uses the first address and / or the second address to send the first service flow to the terminal according to the policy information.
  • the user plane function network element may determine an access technology used by the service flow according to the policy information. After determining the access technology used by the service flow, the target address of the service flow is processed using the address corresponding to the access technology used by the service flow.
  • the user plane function network element determines that the service flow is transmitted using 3GPP access technology
  • the user plane function network element replaces the target address of the first service flow with IP1 corresponding to the 3GPP access technology.
  • the terminal may use the method in Embodiment 2 to transmit the service flow.
  • the user plane function network element supports the second transmission capability, and the addresses used by the terminal to transmit the first service flow and the second service flow are different. The following will be introduced separately:
  • the method provided in this embodiment of the present application further includes:
  • the terminal sends a first service flow whose source address is the first address and / or the second address to the user plane function network element.
  • the user plane function network element receives the first service flow whose source address sent by the terminal is the first address and / or the second address.
  • S302 may be specifically implemented in the following manner:
  • the user plane function network element replaces the source address of the first service flow sent by the terminal with the fourth address according to the policy information and transmits the source address.
  • the fourth address is an address of a user plane function network element or a third address.
  • the user plane function network element When the user plane function network element receives the first service flow transmitted by the terminal on different access technologies through S306 and S307, the first service flow transmitted on the different access technology corresponds to the first address and / or the second address. If the address of the first service flow is not processed, the first service flows corresponding to different addresses will be considered by the data network to come from different terminals, thereby causing the first service flow to be interrupted. Therefore, in order to prevent the interruption of the first service flow, the user plane function network element may uniformly replace the first address and / or the second address corresponding to the first service flow with the fourth address. The first service flow corresponding to the fourth address is then sent to the DN.
  • the service flow includes the first service flow transmitted by using the first transmission method and / or the second service flow transmitted by using the second transmission method, and the multiple addresses include the first address, the second address, and the third address, where The first address corresponds to the first access technology type, the second address corresponds to the second access technology type, and the third address corresponds to the first access technology type and the second access technology type.
  • the method provided in this embodiment of the present application further includes:
  • the content of the first transmission method and the second transmission method may be described in the example 2-2, and details are not described herein again.
  • the terminal sends a service flow to the user plane function network element, where the service flow includes using a first service flow and / or a second service flow, wherein the source address of the first service flow is the first address and / or the second address, The source address of the second service flow is the third address.
  • the user plane function network element receives a service flow sent by the terminal.
  • S302 may be specifically implemented in the following manner:
  • the user plane function network element replaces the source address of the first service flow with the fourth address according to the policy information and transmits the source address. This is because when the second service flow is transmitted using at least one of the first access technology type and the second access technology type, the address of the second service flow is the third address. Therefore, when the user plane function network element receives the second service flow, it can directly send the second service flow out.
  • the fourth address is an address of a user plane function network element or a third address.
  • the plurality of addresses acquired by the user plane function network element include a first address and a second address.
  • the first address corresponds to the first access technology type and the second access technology type
  • the second address corresponds to the second access technology type
  • the first address corresponds to a general service flow and the second address corresponds to the first service flow S303, specifically, can also be implemented in the following ways:
  • the user plane function network element sends the received second service flow to the terminal.
  • the user plane function network element After receiving the UDP service flow, the user plane function network element does not perform address processing on the UDP service flow, and then transmits the UDP service flow according to the access technology determined to transmit the UDP service flow.
  • the user plane function network element determines that the first service flow is received, and the user plane function network element determines the access technology used by the first service flow. If the access technology used by the first service flow is corresponding to the second address, For the second access technology type, the user plane function network element replaces the first address of the first service flow with the second address and sends it to the terminal. If the access technology adopted by the first service flow is not the second access technology type corresponding to the second address, the user plane function network element sends the first service flow to the terminal using the first address on the determined access technology. .
  • the user plane function network element first determines the access technology for transmitting the MPTCP service flow. If IP2 corresponds to a non-3GPP access technology, and the access technology for transmitting the MPTCP service flow is a non-3GPP access technology, The user plane function network element replaces the address of the MPTCP service flow from IP1 to IP2. If the access technology of the MPTCP service flow is a 3GPP access technology, the user plane function network element transmits the MPTCP service flow using the IP1 on the 3GPP access technology.
  • the user plane function network element receives the second service flow sent by the terminal, the user plane function network element sends the second service flow. If the user plane function network element receives the first service flow sent by the terminal, the user plane function network element replaces the address of the first service flow from the second address with the first address. Or replace the first address with the second address, and then send it out.
  • the second address is IP2 corresponding to non-3GPP access technology
  • the first address is IP1 corresponding to 3GPP access technology and non-3GPP access technology. If the terminal uses IP1 to send MPTCP service flows on the 3GPP access technology, the user plane function After receiving the MPTCP service flow, the network element replaces the address of the MPTCP service flow with IP2.
  • the second address is IP2 corresponding to 3GPP access technology
  • the first address is IP1 corresponding to 3GPP access technology and non-3GPP access technology. If the terminal uses IP2 to send MPTCP service flows on the 3GPP access technology, the user plane functional network After receiving the MPTCP service flow, Yuan changes the address of the MPTCP service flow to IP1.
  • FIG. 13 shows that a service flow transmitted using a transmission method such as MPTCP and a service flow transmitted using a transmission method such as QUIC based on an MPTCP proxy is shunted on a 3GPP access technology and a non-3GPP access technology side.
  • the program includes:
  • S401 The terminal is registered with the network side.
  • the terminal can access the network side through the 3GPP access technology and complete the registration procedure. Or the terminal accesses the network side through a non-3GPP access technology and completes the registration process. Or, the terminal accesses the network side through a non-3GPP access technology and a 3GPP access technology and completes the registration process.
  • the terminal completes the registration in S401 through one of the non-3GPP access technology and the 3GPP access technology access, the terminal accesses through the other of the non-3GPP access technology and the 3GPP access technology access Technology completed registration. So that the terminal accesses the network side simultaneously through non-3GPP access technology and 3GPP access technology access.
  • the PCF network element For a terminal that is successfully registered, the PCF network element sends policy information to the AMF network element, where the policy information includes: a flow description parameter and a service flow transmission method, and a flow description parameter and a shunt mode.
  • the policy information further includes: an MPTCP algorithm corresponding to the offload mode.
  • the policy information further includes: an MPTCP algorithm corresponding to a transmission method of the service flow.
  • the AMF network element sends policy information to the terminal through a NAS transmission message.
  • the terminal sends a session management request message to the SMF network element, where the session management request message includes a PDU session identifier and a first indication.
  • the first indication is used to indicate that the terminal supports the MPTCP proxy capability, or is used to instruct the terminal to request selection of an MPTCP proxy for a PDU session associated with the PDU session identifier.
  • the terminal may decide whether to send the first instruction according to the policy information in S402. Specifically, when the terminal determines that the transmission method of the service flow is the MPTCP proxy method or the MPTCP transmission method or the TCP transmission method, the terminal decides to send the first instruction.
  • the first indication may be carried in the NAS transmission message and sent to the SMF network element.
  • the session management request message may also be carried in the NAS transmission message.
  • the AMF network element selects an SMF network element that supports the MPTCP proxy based on the first instruction.
  • the AMF network element sends a session management request message to the SMF network element supporting the MPTCP proxy.
  • the SMF network element sends a policy request message to the PCF network element based on the received session management request message.
  • the policy request message carries a flow description parameter and a second indication, and the second indication is used to indicate that the service flow request determined by the flow description parameter uses at least one of the MPTCP method and the MPTCP proxy method.
  • the PCF network element sends the offload policy to the SMF network element according to the second instruction, and authorizes the service flow to be transmitted using the transmission method requested by the second instruction.
  • the SMF network element allocates a first address, a second address, and a third address to the PDU session based on the first instruction.
  • the first address corresponds to the first access technology type
  • the second address corresponds to the second access technology type
  • the third address corresponds to the first access technology type and the second access technology type.
  • the SMF network element allocates three IP addresses, for example, IP1, IP2, and IP3.
  • IP1 is the address used when using 3GPP access technology to transmit service flows.
  • IP2 is the address used when using 3GPP access technology to transmit service flows.
  • IP3 is the address used when using 3GPP access technology and non-3GPP access technology to transmit service flows.
  • the SMF network element selects a UPF network element that supports MPTCP proxy based on the first instruction, and sends multiple addresses to the UPF network element.
  • the SMF network element sends an N4 session message to the UPF network element.
  • the N4 session message includes multiple addresses, and the access technology type or tunnel identifier corresponding to the multiple addresses.
  • the SMF network element further sends the third address and the 3GPP access and non3GPP access instructions to the UPF network element or the terminal. Or; the SMF network element also sends a third address and a universal address indication to the UPF network element or terminal. The SMF network element also sends a third address to the UPF network element or terminal, because the third address does not carry any access technology instruction, it means that the third address is applicable to any access technology.
  • S409 and S410 assign multiple addresses to the terminal's PDU session by the SMF network element.
  • a UPF network element can also allocate multiple addresses to a terminal's PDU session.
  • the SMF network element carries a third indication in the N4 session message, where the third indication is an MPTCP proxy indication or a multi-address indication.
  • the UPF network element allocates multiple addresses to the terminal's PDU session based on the third indication.
  • the access technology type or tunnel identifier corresponding to each of the multiple addresses is sent to the SMF network element.
  • the terminal is sent by the SMF network element.
  • the SMF network element sends an access technology for the service flow to the UPF network element.
  • the SMF network element also sends a distribution mode corresponding to the service flow to the UPF network element.
  • the SMF network element also sends an offload instruction to the UPF network element.
  • the SMF network element sends the first address, the first access technology type corresponding to the first address, the second address to the second access technology type corresponding to the second address, the third address, and the third address to the terminal. Corresponding first access technology type and second access technology type.
  • the SMF network element sends at least one access technology instruction or MPTCP instruction to the terminal.
  • the MPTCP indicator indicates that the service flow is transmitted using the MPTCP method.
  • At least one access technology indication is used to indicate the transmission technology used by the service flow.
  • the terminal may determine the multiplexing algorithm based on the MPTCP instruction, thereby determining the access technology of the service flow.
  • the terminal transmits the service flow using the MPTCP method using an address corresponding to the access technology according to the determined access technology.
  • the UPF network element determines that the received service flow is transmitted using the MPTCP method, and then replaces the address of the service flow with a third address or a fourth address.
  • the UPF network element receives a service flow sent to the terminal.
  • the UPF network element determines that the service flow sent to the terminal is transmitted using the MPTCP method, and the UPF network element replaces the address of the service flow transmitted using the MPTCP method with an address corresponding to the access technology determined according to the policy information, and sends the address to the terminal.
  • FIG. 14 shows a method for implementing the use of MPTCP service flow and non-MPTCP service flow to shunt in 3GPP access technology and non-3GPP access technology based on MPTCP proxy and MP-QUIC proxy.
  • the method includes:
  • S501-S504 may refer to the descriptions of S401-S404 in the foregoing embodiment, and details are not described herein again.
  • the difference is that the first indication in S504 is used to indicate that the terminal supports MP-QUIC proxy capability, or supports MP-QUIC proxy capability or MPTCP proxy capability.
  • the AMF network element selects an SMF network element supporting MP-QUIC proxy capability or MPTCP proxy capability or an SMF network element supporting MP-QUIC proxy capability based on the first instruction.
  • the AMF network element sends a session management request message to the selected SMF network element.
  • the SMF network element sends a policy request message to the PCF network element based on the received session management request message.
  • the policy request message carries a flow description parameter and a second indication, and the second indication is used to indicate that the service flow request determined by the flow description parameter is transmitted using one of the MPTCP proxy method or the MP-QUIC proxy method.
  • the PCF network element sends the offload policy to the SMF network element according to the second instruction, and authorizes the service flow to be transmitted using the transmission method requested by the second instruction.
  • the SMF network element allocates a first address and a second address to the terminal's PDU session based on the first instruction.
  • the first address corresponds to the first access technology type
  • the second address corresponds to the second access technology type.
  • the first address is IP1 and the second address is IP2.
  • IP1 is the address used when using 3GPP access technology to transmit service flows.
  • IP2 is the address used when using 3GPP access technology to transmit service flows.
  • the SMF network element selects an SMF network element that supports MP-QUIC proxy capability or MPTCP proxy capability or a UPF network element that supports MP-QUIC proxy capability based on the first instruction, and sets the first address and the second address, and each address.
  • the corresponding access technology type is sent to the UPF network element.
  • the SMF network element sends the service flow policy information to the UPF network element to the UPF network element.
  • policy information refer to the description in the first embodiment, which is not repeated here.
  • the SMF network element sends IP3 to the UPF network element. It should be noted that when the IP address is allocated by the UPF network element, the SMF network element may send a multi-address indication or an MP-QUIC proxy indication to the UPF network element.
  • the SMF network element sends the first address and the second address, and the access technology type corresponding to each address to the terminal.
  • each network element such as a service flow transmission device and a communication device, includes a hardware structure and / or a software module corresponding to each function.
  • this application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is performed by hardware or computer software-driven hardware depends on the specific application of the technical solution and design constraints. Professional technicians can use different methods to implement the described functions for each specific application, but such implementation should not be considered to be beyond the scope of this application.
  • each functional unit may be divided corresponding to each function, or two or more functions may be integrated into one processing unit.
  • the above integrated unit may be implemented in the form of hardware or in the form of software functional unit. It should be noted that the division of the units in the embodiments of the present application is schematic, and is only a logical function division. There may be another division manner in actual implementation.
  • FIG. 15 shows a possible structure diagram of a service flow transmission device involved in the foregoing embodiment.
  • the service flow transmission device may be a terminal or an application Chip in the terminal.
  • the service flow transmission device includes a receiving unit 201 and a transmission unit 202.
  • the receiving unit 201 is used for a transmission device that supports a service flow to perform S103 and S107 in the foregoing embodiment.
  • the transmission unit 202 is used for a transmission device supporting a service flow to execute S104 in the foregoing embodiment.
  • the service flow transmission device includes: an obtaining unit 203.
  • the obtaining unit 203 is configured to support a service stream transmission device to execute S105 in the foregoing embodiment.
  • the obtaining unit 203 can also be used to execute S203.
  • the transmission unit 202 may be further configured to support a service flow transmission device to execute S204 in the foregoing embodiment.
  • FIG. 16 shows a schematic diagram of a possible logical structure of a service flow transmission device involved in the foregoing embodiment.
  • the service flow transmission device may be the one in the foregoing embodiment.
  • the service stream transmission device includes a processing module 212 and a communication module 213.
  • the processing module 212 is configured to control and manage the action of a service flow transmission device.
  • the processing module 212 is configured to perform a message or data processing step on a transmission device side of a service flow
  • the communication module 213 is configured to A step of processing a message or data on a transmission device side of a service flow.
  • the processing module 212 is configured to support a service flow transmission device to execute S105 in the foregoing embodiment.
  • the communication module 213 is used for the transmission device supporting the service flow to execute S103, S104, S107, S203, and S204 in the above embodiments. And / or other processes performed by a transmission device for a service flow for the techniques described herein.
  • the service stream transmission device may further include a storage module 211 for storing program code and data of the service stream transmission device.
  • the processing module 212 may be a processor or a controller, for example, a central processing unit, a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array, or other programmable logic devices, transistor logic devices, Hardware components or any combination thereof. It may implement or execute various exemplary logical blocks, modules, and circuits described in connection with the present disclosure.
  • the processor may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a digital signal processor and a microprocessor, and so on.
  • the communication module 213 may be a communication interface, a transceiver, a transceiver circuit, or an interface circuit.
  • the storage module 211 may be a memory.
  • a service flow transmission device involved in this application may be the device shown in FIG.
  • the interface circuit 230, one or more (including two) processors 220, and the memory 240 are connected to each other through a bus 210.
  • the bus 210 may be a PCI bus, an EISA bus, or the like.
  • the bus 210 may be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is used in FIG. 17, but it does not mean that there is only one bus or one type of bus.
  • the memory 240 is configured to store a program code and data of a service flow transmission device.
  • the interface circuit 230 is used for a transmission device supporting a service flow to communicate with other equipment (for example, a communication device).
  • the processor is configured to support a service stream transmission device to execute the program code and data stored in the memory 240, so as to control and manage the action of a service stream transmission device.
  • the interface circuit 230 supports a service flow transmission device to execute S103, S104, S107, S203, and S204.
  • the processor 220 is configured to support a service flow transmission device to execute program code and data stored in the memory 240 to implement S105 provided in the embodiment of the present application.
  • FIG. 18 shows a possible structural diagram of a communication device involved in the foregoing embodiment.
  • the communication device may be a core network element, or may be applied to a core network element. Chip.
  • the communication device includes: an obtaining unit 301 and a sending unit 302.
  • the obtaining unit 301 is configured to support the communication device to execute S101 in the foregoing embodiment.
  • the sending unit 302 is configured to support the communication device to execute S102 and S106 in the foregoing embodiment.
  • FIG. 19 shows a schematic diagram of a possible logical structure of the communication device involved in the foregoing embodiment.
  • the communication device may be a core network element in the foregoing embodiment, or may be an application.
  • the communication device includes a processing module 312 and a communication module 313.
  • the processing module 312 is configured to control and manage the operation of the communication device, and the communication module 313 is configured to perform steps of performing message or data processing on the communication device side.
  • the communication module 313 is configured to support the communication device to execute S101, S102, and S106 in the foregoing embodiment. And / or other processes performed by a communication device for the techniques described herein.
  • the communication device may further include a storage module 311 for storing program code and data of the communication device.
  • the processing module 312 may be a processor or a controller, for example, it may be a central processing unit, a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array, or other programmable logic devices, transistor logic devices, Hardware components or any combination thereof. It may implement or execute various exemplary logical blocks, modules, and circuits described in connection with the present disclosure.
  • the processor may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a digital signal processor and a microprocessor, and so on.
  • the communication module 313 may be a communication interface, a transceiver, a transceiver circuit, or an interface circuit.
  • the storage module 311 may be a memory.
  • the processing module 312 is the processor 320
  • the communication module 313 is the interface circuit 330 or the transceiver
  • the storage module 311 is the memory 340
  • the communication device involved in this application may be the device shown in FIG. 20.
  • the interface circuit 330, one or more (including two) processors 320, and the memory 340 are connected to each other through a bus 310.
  • the bus 310 may be a PCI bus, an EISA bus, or the like.
  • the bus 310 may be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is used in FIG. 20, but it does not mean that there is only one bus or one type of bus.
  • the memory 340 is configured to store program code and data of the communication device.
  • the interface circuit 330 is used to support the communication device to communicate with other equipment (for example, a service flow transmission device), and the processor 320 is used to support the communication device to execute the program code and data stored in the memory 340 to implement the message on the communication device side. / Data controlled actions.
  • the interface circuit 330 is configured to support the communication device to execute S101, S102, and S106 in the foregoing embodiment. And / or other processes performed by a communication device for the techniques described herein.
  • FIG. 21 shows a possible structural diagram of a communication device involved in the foregoing embodiment.
  • the communication device may be a core network element, or may be applied to a core network network. Meta chip.
  • the communication device includes a distribution unit 401 and a sending unit 402.
  • the allocation unit 401 is configured to support the communication device to execute S201 in the foregoing embodiment.
  • the sending unit 402 is configured to support the communication device to execute S202 in the foregoing embodiment.
  • the allocation unit 401 is configured to support the communication device to execute S201 in the foregoing embodiment.
  • the sending unit 402 is configured to support the communication device to execute S202 in the foregoing embodiment.
  • the communication device when the core network element is a user plane function network element, the communication device further includes: a receiving unit 403, configured to support the communication device to execute S205 in the foregoing embodiment.
  • the sending unit 402 is further configured to support the communication device to execute S206 in the foregoing embodiment.
  • FIG. 22 shows a schematic diagram of a possible logical structure of the communication device involved in the foregoing embodiment, and the communication device may be a core network element in the foregoing embodiment, or an application A chip in a core network element.
  • the communication device includes a processing module 412 and a communication module 413.
  • the processing module 412 is configured to control and manage the actions of the communication device, and the communication module 413 is configured to perform steps of performing message or data processing on the communication device side.
  • the communication module 413 is configured to support the communication device to perform S202 and S205 in the foregoing embodiment.
  • the processing module 412 is configured to support the communication device to execute S201 in the foregoing embodiment. And / or other processes performed by a communication device for the techniques described herein.
  • the communication module 413 is configured to support the communication device to execute S202, S205, and S206 in the foregoing embodiment.
  • the processing module 412 is configured to support the communication device to execute S201 in the foregoing embodiment.
  • the communication device may further include a storage module 411 for storing program code and data of the communication device.
  • the processing module 412 may be a processor or a controller.
  • the processing module 412 may be a central processing unit, a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array, or other programmable logic devices, transistor logic devices, Hardware components or any combination thereof. It may implement or execute various exemplary logical blocks, modules, and circuits described in connection with the present disclosure.
  • the processor may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a digital signal processor and a microprocessor, and so on.
  • the communication module 413 may be a communication interface, a transceiver, a transceiver circuit, or an interface circuit.
  • the storage module 411 may be a memory.
  • the processing module 412 is a processor 420
  • the communication module 413 is an interface circuit 430 or a transceiver
  • the storage module 411 is a memory 440
  • the communication device involved in this application may be the device shown in FIG. 23.
  • the interface circuit 430, one or more (including two) processors 420, and the memory 440 are connected to each other through a bus 410.
  • the bus 410 may be a PCI bus, an EISA bus, or the like.
  • the bus 410 may be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is used in FIG. 23, but it does not mean that there is only one bus or one type of bus.
  • the memory 440 is configured to store program codes and data of the communication device.
  • the interface circuit 430 is used to support the communication device to communicate with other devices (for example, terminals), and the processor 420 is used to support the communication device to execute the program code and data stored in the memory 440 to implement message / data control on the communication device side. action.
  • the interface circuit 330 is configured to support the communication device to execute S202 and S205 in the foregoing embodiment. And / or other processes performed by a communication device for the techniques described herein.
  • the processor 420 is configured to support the communication device to execute S201 in the foregoing embodiment.
  • the interface circuit 330 is configured to support the communication device to execute S202, S205, and S206 in the foregoing embodiment. And / or other processes performed by a communication device for the techniques described herein.
  • the processor 420 is configured to support the communication device to execute S201 in the foregoing embodiment.
  • FIG. 24 shows a possible structural schematic diagram of a service flow transmission device involved in the foregoing embodiment.
  • the service flow transmission device may be a user plane function network element. Or it is a chip applied to a user plane functional network element.
  • the service flow transmission device includes: an obtaining unit 501 and a transmission unit 502.
  • the obtaining unit 501 is configured to support the data packet transmission device to execute S301 in the foregoing embodiment.
  • the transmission unit 502 is configured to transmit a service device that supports a service flow to perform S302 in the foregoing embodiment.
  • a device for transmitting a service stream provided in this embodiment of the present application further includes a receiving unit 503, a determining unit 504, and a processing unit 505.
  • the receiving unit 503 is configured to support the service stream transmission device to perform S303, S307, and S309 in the foregoing embodiment.
  • the determining unit 504 is configured to support the service flow transmission device to execute S304 in the above embodiment.
  • the processing unit 505 is configured to support the service flow transmission device to execute S305 in the foregoing embodiment.
  • FIG. 25 shows a schematic diagram of a possible logical structure of a service flow transmission device involved in the foregoing embodiment, and the service flow transmission device may be a user plane in the foregoing embodiment.
  • the service flow transmission device includes a processing module 512 and a communication module 513.
  • the processing module 512 is configured to control and manage the action of the transmission device of the service flow
  • the communication module 513 is configured to perform steps of performing message or data processing on the transmission device side of the service flow.
  • the communication module 513 is used for the transmission device supporting the service flow to execute S302, S307, and S309 in the foregoing embodiment.
  • the processing module 512 is configured to support the transmission device for the service flow to execute S301, S304, and S305 in the foregoing embodiment. And / or other processes performed by a transmission device for a service flow for the techniques described herein.
  • the transmission device of the service flow may further include a storage module 511 for storing program code and data of the transmission device of the service flow.
  • the processing module 512 may be a processor or a controller, for example, it may be a central processing unit, a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array, or other programmable logic devices, transistor logic devices, Hardware components or any combination thereof. It may implement or execute various exemplary logical blocks, modules, and circuits described in connection with the present disclosure.
  • the processor may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a digital signal processor and a microprocessor, and so on.
  • the communication module 513 may be a communication interface, a transceiver, a transceiver circuit, or an interface circuit.
  • the storage module 511 may be a memory.
  • the processing module 512 is a processor 520
  • the communication module 513 is an interface circuit 530 or a transceiver
  • the storage module 511 is a memory 540
  • the data packet transmission device involved in this application may be the device shown in FIG. 26.
  • the interface circuit 530, one or more (including two) processors 520, and the memory 540 are connected to each other through a bus 510.
  • the bus 510 may be a PCI bus, an EISA bus, or the like.
  • the bus 510 may be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only a thick line is used in FIG. 26, but it does not mean that there is only one bus or one type of bus.
  • the memory 540 is configured to store program code and data of a transmission device of the service flow.
  • the interface circuit 530 is used for the transmission device supporting the service flow to communicate with other equipment (for example, a terminal), and the processor 520 is used for the transmission device supporting the service flow to execute the program code and data stored in the memory 540 to implement The transmission device performs an operation of message / data control.
  • the interface circuit 530 is configured to support the service flow transmission device to execute S302, S307, and S309 in the foregoing embodiment.
  • the processor 520 is configured to support the transmission device for the service flow to execute S301, S304, and S305 in the foregoing embodiment. And / or other processes performed by the transmission means of the service flow for the techniques described herein.
  • the receiving unit and the acquiring unit (or the unit for receiving / acquiring) in the embodiments of the present application are an interface circuit of the device and are used to receive signals from other devices.
  • the receiving unit is an interface circuit that the chip uses to receive signals from other chips or devices.
  • the above sending unit, transmission unit (or unit for sending / transmitting) is an interface circuit of the device, and is used to send signals to other devices.
  • the sending unit is an interface circuit that the chip uses to send signals to other chips or devices.
  • the processing unit and the determining unit in the embodiment of the present application are a processor of the device, and are configured to process a received signal or process a signal of itself.
  • the processing unit, the determining unit is a processor that the chip uses to process signals received by other chips or devices.
  • FIG. 27 is a schematic structural diagram of a chip 150 according to an embodiment of the present invention.
  • the chip 150 includes one or more (including two) processors 1510 and an interface circuit 1530.
  • the chip 150 further includes a memory 1540.
  • the memory 1540 may include a read-only memory and a random access memory, and provide an operation instruction and data to the processor 1510.
  • a part of the memory 1540 may further include a non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • the memory 1540 stores the following elements, executable modules or data structures, or their subsets, or their extended sets:
  • a corresponding operation is performed by calling an operation instruction stored in the memory 1540 (the operation instruction may be stored in an operating system).
  • a communication device and a device for determining a communication capability have similar chip structures, and different devices may use different chips to implement their respective functions.
  • the processor 1510 controls operations of the communication device and the device that determines the communication capability.
  • the processor 1510 may also be referred to as a central processing unit (CPU).
  • the memory 1540 may include a read-only memory and a random access memory, and provide instructions and data to the processor 1510.
  • a part of the memory 1540 may further include a non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • the memory 1540, the interface circuit 1530, and the memory 1540 are coupled together through a bus system 1520.
  • the bus system 1520 may include a power bus, a control bus, and a status signal bus in addition to a data bus. However, for the sake of clarity, various buses are marked as the bus system 1520 in FIG. 27.
  • the method disclosed in the foregoing embodiment of the present invention may be applied to the processor 1510, or implemented by the processor 1510.
  • the processor 1510 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by using an integrated logic circuit of hardware in the processor 1510 or an instruction in the form of software.
  • the processor 1510 may be a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or an off-the-shelf programmable gate array (FPGA), or Other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • FPGA off-the-shelf programmable gate array
  • Other programmable logic devices discrete gate or transistor logic devices, discrete hardware components.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present invention may be directly implemented by a hardware decoding processor, or may be performed by using a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature storage medium such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in the memory 1540, and the processor 1510 reads the information in the memory 1540 and completes the steps of the foregoing method in combination with its hardware.
  • the interface circuit 1530 is configured to perform the steps of receiving and sending the terminal and the core network element in the embodiments shown in FIG. 5 to FIG. 6.
  • the processor 1510 is configured to execute steps of processing of a terminal and a core network element in the embodiments shown in FIG. 5 to FIG. 6.
  • the interface circuit 1530 is configured to perform the steps of receiving and sending the terminal and the core network element in the embodiments shown in FIG. 7 to FIG. 8.
  • the processor 1510 is configured to execute steps of processing of a terminal and a core network element in the embodiments shown in FIG. 7 to FIG. 8.
  • the interface circuit 1530 is configured to perform the steps of receiving and sending the terminal and the user plane function network element in the embodiments shown in FIG. 9 to FIG. 12.
  • the processor 1510 is configured to execute steps of processing of a terminal and a user plane function network element in the embodiments shown in FIG. 9 to FIG. 12.
  • the instructions stored in the memory for execution by the processor may be implemented in the form of a computer program product.
  • the computer program product may be written in the memory in advance, or may be downloaded and installed in the memory in the form of software.
  • a computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website site, computer, server, or data center via a wired (e.g., Coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) transmission to another website site, computer, server or data center.
  • a wired e.g., Coaxial cable, optical fiber, digital subscriber line (DSL)
  • wireless such as infrared, wireless, microwave, etc.
  • the computer-readable storage medium may be any available medium that can be stored by a computer or a data storage device such as a server, a data center, and the like including one or more available medium integration.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • a computer-readable storage medium stores instructions.
  • the terminal or a chip applied to the terminal executes S103, S104, S105, S107, S203 and S204. And / or other processes performed by a terminal or a chip applied in a terminal for the techniques described herein.
  • a computer-readable storage medium stores instructions.
  • the core network element or a chip applied to the core network element executes S101 in the embodiment. , S102, and S106. And / or other processes performed by the core network element or a chip applied in the core network element for the techniques described herein.
  • a computer-readable storage medium stores instructions.
  • the core network element or a chip applied to the core network element executes S201 in the embodiment. , S202, S205, and S206. And / or other processes performed by the core network element or a chip applied in the core network element for the techniques described herein.
  • a computer-readable storage medium stores instructions.
  • the terminal or a chip applied to the terminal executes S203 and S204 in the embodiment. And / or other processes performed by a terminal or a chip applied in a terminal for the techniques described herein.
  • a computer-readable storage medium stores instructions.
  • the user plane function network element or a chip applied to the user plane function network element executes the embodiments. S303, S304, S305, S307, and S309. And / or other processes performed by the user plane function network element or a chip applied in the user plane function network element for the techniques described herein.
  • the foregoing readable storage medium may include: various media that can store program codes, such as a U disk, a mobile hard disk, a read-only memory, a random access memory, a magnetic disk, or an optical disk.
  • a computer program product including instructions
  • the computer program product stores instructions.
  • the terminal or a chip applied to the terminal executes S103, S104, S105, S107, S203 in the embodiment And S204. And / or other processes performed by a terminal or a chip applied in a terminal for the techniques described herein.
  • a computer program product including instructions is provided, and the computer program product stores instructions.
  • the core network element or a chip applied to the core network element executes S101, S102 and S106. And / or other processes performed by the core network element or a chip applied in the core network element for the techniques described herein.
  • a computer program product including instructions.
  • the computer program product stores instructions.
  • the core network element or a chip applied to the core network element executes S201, S202, S205, and S206. And / or other processes performed by the core network element or a chip applied in the core network element for the techniques described herein.
  • a computer program product including instructions.
  • the computer program product stores instructions.
  • the terminal or a chip applied to the terminal executes S203 and S204 in the embodiment. And / or other processes performed by a terminal or a chip applied in a terminal for the techniques described herein.
  • a computer program product including instructions is provided.
  • the user plane function network element or a chip applied to the user plane function network element executes the S303, S304, S305, S307, and S309. And / or other processes performed by the user plane function network element or a chip applied in the user plane function network element for the techniques described herein.
  • a chip is provided.
  • the chip is used in a terminal.
  • the chip includes one or more (including two) processors and an interface circuit.
  • the interface circuit and the one or more (including two) processors pass The lines are interconnected, and the processor is used to execute instructions to execute S103, S104, S105, S107, S203, and S204 in the embodiment. And / or other terminal-performed processes for the techniques described herein.
  • a chip is provided.
  • the chip is used in a core network element.
  • the chip includes one or more processors (including two) and an interface circuit.
  • the interface circuit and the one or two processors (including two) The processors are interconnected through lines, and the processors are used to run instructions to execute S101, S102, and S106 in the embodiment. And / or other processes performed by the core network elements for the techniques described herein.
  • a chip is provided.
  • the chip is used in a core network element.
  • the chip includes one or more processors (including two) and an interface circuit.
  • the interface circuit and the one or two processors (including two) ) are interconnected through lines, and the processors are used to run instructions to execute S201, S202, S205, and S206 in the embodiment. And / or other processes performed by the core network elements for the techniques described herein.
  • a chip is provided.
  • the chip is used in a terminal.
  • the chip includes one or more processors (including two) and an interface circuit.
  • the interface circuit and the one or more processors (including two) are provided.
  • the processor is used to execute instructions to execute S203 and S204 in the embodiment. And / or other terminal-performed processes for the techniques described herein.
  • a chip is provided.
  • the chip is applied to a user-side functional network element.
  • the chip includes one or more (including two) processors and interface circuits, and the interface circuit and the one or two or more (including two) processors.
  • the processors are interconnected through lines, and the processors are used to run instructions to execute S303, S304, S305, S307, and S309 in the embodiment. And / or other processes performed by the user plane function network element for the techniques described herein.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • a software program it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions according to the embodiments of the present application are wholly or partially generated.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website site, computer, server, or data center via a wired (for example, Coaxial cable, optical fiber, digital subscriber line (DSL), or wireless (such as infrared, wireless, microwave, etc.) for transmission to another website site, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including one or more servers, data centers, and the like that can be integrated with the medium.
  • Usable media may be magnetic media (e.g., floppy disks, hard disks, magnetic tapes), optical media (e.g., DVDs), or semiconductor media (e.g., solid state disks (SSDs)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例涉及通信技术领域,尤其涉及一种业务流的传输方法、通信方法及装置,用以降低对业务流分流时,终端和核心网网元之间信令交互的复杂性,该方案包括:终端接收核心网网元发送的业务流的分流模式和/或业务流的传输方法,业务流所在的分组数据单元PDU会话支持多种接入技术;终端根据分流模式和/或业务流的传输方法采用多种接入技术中的至少一种传输业务流。

Description

一种业务流的传输方法、通信方法及装置
本申请要求了2018年8月14日提交的、申请号为201810925079.7、发明名称为“一种业务流的传输方法、通信方法及装置”的中国申请的优先权,以及2018年9月30日提交的、申请号为201811163077.5、发明名称为“一种业务流的传输方法、通信方法及装置”的中国申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种业务流的传输方法、通信方法及装置。
背景技术
为了应对无线宽带技术的挑战,保持第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)网络的领先优势,3GPP标准组制定了下一代移动通信网络架构(Next Generation System),称为第五代(5-Generation,5G)网络架构。该5G网络架构不但支持终端通过3GPP标准组定义的无线技术(如长期演进(Long Term Evolution,LTE),5G无线接入网(Radio Access Network,RAN)等)接入5G核心网络侧(Core Network,CN)而且支持非(non)-3GPP接入技术通过non-3GPP转换功能(Interworking Function,N3IWF)或下一代接入网关(next Generation Packet Data Gateway,ngPDG)接入核心网侧。
在5G中,用户设备(User Equipment,UE)和数据网络(Date Network,DN)之间存在一个用于提供分组数据单元(Packet Data Unit,PDU)连通服务的PDU会话(Session)。对于单个PDU会话可以支持多接入技术。如图1所示,PDU Session A可以通过第一接入技术接入核心网侧,也可以通过第二接入技术接入核心网侧,可以将支持多个接入技术的PDU会话称为多接入PDU会话(Multi-access PDU Session,MA-PDU Session)。
但是,目前多接入PDU会话中用户设备基于核心网网元发送的分流策略对业务流进行分流,这样会增加用户设备和核心网网元之间的信令交互的复杂性。
发明内容
本申请实施例提供一种业务流的传输方法、通信方法及装置,用以降低对业务流分流时,终端和核心网网元之间信令交互的复杂性。
第一方面,本申请实施例提供一种业务流的传输方法,该方法包括:终端接收核心网网元发送的业务流的分流模式和/或业务流的传输方法,业务流所在的分组数据单元(Packet Data Unit,PDU)会话支持多种接入技术;终端根据分流模式和/或业务流的传输方法采用多种接入技术中的至少一种传输业务流。
本申请实施例提供一种业务流的传输方法,通过终端获取核心网网元发送的业务流的分流模式和/业务流的传输方法,并根据业务流的分流模式和/业务流的传输方法确定使用不同传输方法的业务流采用的接入技术。这样可以不基于分流策略对业务流分流,利用业务流的分流模式和/业务流的传输方法从而可以在支持多种接入技术的PDU会话中对使用不同传输方法的业务流根据确定的相应接入技术进行分流,降低了核心网网元 和终端之间信令交互的复杂性。
一种可能的实现方式中,业务流的传输方法包括以下一项或者多项:多路传输控制协议MPTCP方法、MPTCP代理proxy方法、传输控制协议TCP方法、TCP proxy方法、用户数据报协议UDP方法、UDP proxy方法、快速UDP互联网连接QUIC方法、快速UDP互联网连接QUIC proxy方法、多路径UDP互联网连接MP-QUIC方法、或MP-QUIC proxy方法。这样使得同一个PDU会话中存在多种采用不同传输方法的业务流。
一种可能的实现方式中,本申请实施例提供的方法还包括:终端获取多路传输算法。终端根据分流模式和/或业务流的传输方法采用多种接入技术中的至少一种传输业务流,包括:终端根据分流模式和/或业务流的传输方法以及多路传输算法采用多种接入技术中的至少一种传输业务流。这样终端可以基于多路传输算法确定采用哪个接入技术传输业务流。
一种可能的实现方式中,终端获取多路传输算法,包括:终端接收核心网网元发送的分流模式对应的多路传输算法;或者,终端接收核心网网元发送的业务流的传输方法对应的多路传输算法;或者,终端根据分流模式确定终端配置的多路传输算法;或者,终端根据业务流的传输方法确定终端配置的多路传输算法。这样终端可以从多种途径获取多路传输算法。
一种可能的实现方式中,多路传输算法为MPTCP算法或者QUIC算法或者MP-QUIC算法,MPTCP算法或者QUIC算法或者MP-QUIC算法包括以下一项或者多项:切换算法、优选最小往返时间RTT路径算法、多路聚合算法、轮询调度算法、缺省算法或冗余传输算法。
一种可能的实现方式中,本申请实施例提供的方法还包括:终端接收核心网网元发送的指示信息,该指示信息用于指示终端发送业务流采用的接入技术与终端接收业务流采用的接入技术相同;终端根据分流模式和/或业务流的传输方法采用多种接入技术中的至少一种传输业务流,包括:终端根据分流模式和/或业务流的传输方法以及指示信息采用多种接入技术中的至少一种传输业务流。用户面功能网元和终端对同一个业务流可能采用不同的接入技术分流,因此通过向终端发送指示信息,可以使得终端在发送业务流时,采用和网络侧相同的接入技术。
一种可能的实现方式中,分流模式包括以下一项或者多项:接入技术优先指示,用于指示优先通过接入技术优先指示关联的接入技术传输业务流;最优链路分流指示,用于指示优先通过最优链路传输业务流;最优链路为链路状态优于其他链路的链路;基于链路负载均衡的分流指示,用于指示按照链路负载均衡策略传输业务流;接入技术与分流比例指示,用于指示按照接入技术对应的分流比例传输业务流;冗余传输指示,用于表示业务流中的相同数据包同时通过不同接入技术传输。
一种可能的实现方式中,终端接收核心网网元发送的业务流的分流模式和/或业务流的传输方法,包括:终端从核心网网元发送的非接入层NAS传输消息中获取策略控制网元发送的业务流的分流模式和/或业务流的传输方法。或者,终端从核心网网元发送的会话管理响应消息中获取业务流的分流模式和/或业务流的传输方法。
一种可能的实现方式中,本申请实施例提供的方法还包括:终端获取核心网网元为终端的PDU会话分配的多个地址以及多个地址中每个地址对应的接入技术类型;终端根据策略信息以及多个地址传输业务流。终端通过获取多个地址以及多个地址中每个地址对应的接入技术类型,这样可以使得同一个PDU会话中对采用不同传输方法传输的业务 流分流。
一种可能的实现方式中,本申请实施例提供的方法还包括:终端获取核心网网元为终端的PDU会话分配的多个地址,以及多个地址中每个地址对应的业务类型;终端根据多个地址以及多个地址中每个地址对应的业务类型传输业务流。终端通过获取多个地址以及多个地址中每个地址对应的业务类型,这样可以使得同一个PDU会话中可以对多个业务类型的业务流分流。
一种可能的实现方式中,业务流包括采用第一传输方法传输的第一业务流,多个地址包括第一地址和第二地址,第一地址对应第一接入技术类型,第二地址对应第二接入技术类型;终端根据策略信息以及多个地址,包括:终端根据策略信息采用第一地址和/或第二地址传输第一业务流。应理解,如果终端根据策略信息确定第一业务流使用第一接入技类型对应的第一接入技术传输,则终端采用第一地址传输第一业务流。如果终端根据策略信息确定第一业务流使用第二接入技类型对应的第二接入技术传输,则终端采用第二地址传输第一业务流。如果终端根据策略信息确定第一业务流中既使用第一接入技术传输,也使用第二接入技术传输,则终端将第一业务流中使用第一接入技术传输的部分采用第一地址传输,将第一业务流中使用第二接入技术传输的部分采用第二地址传输。应理解,此处的第一传输方法包括:多路传输控制协议MPTCP方法、MPTCP代理proxy方法、传输控制协议TCP方法、TCP proxy方法、用户数据报协议UDP方法、UDP proxy方法、快速UDP互联网连接QUIC方法、或多路径UDP互联网连接MP-QUIC proxy方法中的一项或者多项。
一种可能的实现方式中,业务流包括采用第一传输方法传输的第一业务流,多个地址包括第一地址、第二地址和第三地址,第一地址对应第一接入技术类型,第二地址对应第二接入技术类型,第三地址对应第一接入技术类型和第二接入技术类型;终端根据策略信息以及多个地址,包括:终端根据策略信息采用第一地址和/或第二地址传输第一业务流。此外,如果该业务流还包括采用第二传输方法传输的第二业务流,则终端采用第三地址传输第二业务流。
一种可能的实现方式中,业务流包括采用第一传输方法传输的第一业务流,多个地址包括第一地址和第二地址,其中,第一地址对应第一接入技术类型和第二接入技术类型,第二地址对应第一接入技术类型或第二接入技术类型;终端根据策略信息以及多个地址传输业务流,包括:终端根据策略信息采用第一地址和/或第二地址传输第一业务流。应理解,终端根据策略信息确定传输第一业务流的接入技术类型,然后根据所确定的接入技术类型确定第一业务流采用的地址。业务流还包括采用第二传输方法传输的第二业务流,终端根据策略信息以及多个地址传输业务流,还包括:终端根据策略信息采用第一地址传输第二业务流。
上述描述了接入技术类型和地址之间的关系,这样如果确定了业务流的接入技术,便可以根据接入技术类型和地址之间的关系,确定该业务流具体的地址。另一方面,每个地址还可以与业务类型对应,例如,多个地址包括第一地址和第二地址,其中,第一地址对应通用业务流,第二地址对应第一业务流,在这种情况下:当业务流包括采用第一传输方法传输的第一业务流,终端根据多个地址以及多个地址中每个地址对应的业务类型传输业务流可以通过下述方式具体实现:终端采用第一地址和/或第二地址传输第一业务流。
一种可能的实现方式中,当业务流还包括采用第二传输方法传输的第二业务流,终 端根据多个地址以及多个地址中每个地址对应的业务类型传输业务流,还包括:终端采用第一地址传输第二业务流。
一种可能的实现方式中,用户面功能网元可以执行第一方面或第一方面的任意一种可能的实现方式中由终端执行的过程。即在第一方面或第一方面的任意一种可能的实现方式中,可以将终端替换为用户面功能网元。
第二方面,本申请实施例提供一种通信方法,包括:核心网网元获取业务流的策略信息,该策略信息包括分流模式和传输方法中的至少一个,业务流所在的PDU会话支持多种接入技术。核心网网元向终端/用户面功能网元发送业务流的策略信息。
本申请实施例提供一种通信方法,通过核心网网元向终端或者用户面功能网元发送业务流的策略信息。这样便于终端/用户面功能网元根据策略信息对同一个PDU会话中的业务流采用策略信息确定的接入技术传输。
一种可能的实现方式中,策略信息还包括:多路传输算法。
一种可能的实现方式中,多路传输算法为MPTCP算法或者UDP QUIC算法或者MP-QUIC算法,MPTCP算法或者QUIC算法或者MP-QUIC算法包括以下一项或者多项:切换算法、RTT路径算法、多路聚合算法、轮询调度算法、缺省算法、或冗余传输算法。
一种可能的实现方式中,本申请实施例提供的方法还包括:核心网网元向终端(或者用户面功能网元)发送指示信息,该指示信息用于指示终端(或者用户面功能网元)发送业务流的采用的接入技术与终端(或者用户面功能网元)接收业务流采用的接入技术相同。
一种可能的实现方式中,核心网网元获取业务流的策略信息,包括:核心网网元在会话管理过程中接收策略控制网元发送的业务流的策略信息。或者,核心网网元在终端请求注册到网络的过程中,接收策略控制网元发送的业务流的策略信息。
一种可能的实现方式中,本申请实施例提供的方法还包括:核心网网元向终端发送为终端分配的多个地址,以及多个地址中每个地址对应的接入技术类型或者业务类型。
一种可能的实现方式中,核心网网元向终端发送为终端分配的多个地址,以及多个地址中每个地址对应的接入技术类型,包括:核心网网元向终端/用户面功能网元发送第一地址和第二地址,与第一地址对应的第一接入技术类型,以及与第二地址对应的第二接入技术类型。或者,核心网网元向终端/用户面功能网元发送第一地址和第二地址。或者,核心网网元向终端/用户面功能网元发送第一地址、第二地址,以及类型指示信息,其中,类型指示信息用于指示从第一地址和第二地址中选择一个地址对应第一接入技术类型,并将另一个地址对应第二接入技术类型。
一种可能的实现方式中,核心网网元向终端发送为终端分配的多个地址,以及多个地址中每个地址对应的接入技术类型,包括:核心网网元向终端/用户面功能网元发送第一地址、第二地址和第三地址,其中,第一地址对应第一接入技术类型,第二地址对应第二接入技术类型,第三地址对应第一接入技术类型和第二接入技术类型。或者,核心网网元向终端/用户面功能网元发送第一地址、第二地址和第三地址,其中,第一地址对应第一接入技术类型,第二地址对应第二接入技术类型。或者,核心网网元向终端/用户面功能网元发送第一地址、第二地址和第三地址,其中,第一地址对应第一接入技术类型,第二地址对应第二接入技术类型,第三地址对应通用地址指示。
一种可能的实现方式中,核心网网元向终端/用户面功能网元发送为终端分配的多个地址,以及多个地址中每个地址对应的接入技术类型或每个地址对应的业务类型,包括: 核心网网元向终端/用户面功能网元发送第一地址,第二地址,以及与第一地址对应的第一类型指示信息,与第二地址对应的第二类型指示信息,其中,第一类型指示信息用于表示第一地址与第一接入技术类型和第二接入技术类型对应,第二类型指示信息用于表示第二地址与第一接入技术类型或第二接入技术类型对应。或者第一类型指示信息用于表示第一地址与通用业务流对应。第二类型指示信息用于表示第二地址与第一业务流对应。
一种可能的实现方式中,核心网网元向终端发送为终端分配的多个地址,以及多个地址中每个地址对应的接入技术类型或业务类型,包括:核心网网元向终端/用户面功能网元发送第一地址和第二地址,以及与第二地址对应的第二类型指示信息。其中,第二类型指示信息用于表示第二地址与第一业务流对应,或者第二类型指示信息用于表示第二地址对应第一接入技术类型或第二接入技术类型。
一种可能的实现方式中,第一类型指示信息可以是第一接入技术类型指示和第二接入技术类型指示。第一类型指示信息也可以是第一指示字段或者第四指示信息,用于指示第一地址对应第一接入技术类型和第二接入技术类型。或者,第一类型指示信息也可以为通用地址指示。第二类型指示信息可以为第一接入技术类型指示或第二接入技术类型指示,或者第二类型指示信息也可以是第二指示字段或者第五指示信息。
例如,第四指示信息为以第一业务流指示和/或第二业务流指示,第五指示信息为第一业务流指示。或者第四指示信息为通用业务流指示。
第三方面,本申请实施例提供一种业务流的传输方法,包括:终端获取核心网网元为终端的PDU会话分配的多个地址以及多个地址中每个地址对应的接入技术类型或多个地址中每个地址对应的业务类型,PDU会话支持多个接入技术。当所述每个地址对应的接入技术类型时,所述终端根据策略信息以及多个地址传输业务流。当每个地址对应的业务类型时,终端根据多个地址以及多个地址中每个地址对应的业务类型传输业务流。
一种可能的实现方式中,业务流包括采用第一传输方法传输的第一业务流,多个地址包括第一地址和第二地址,第一地址对应第一接入技术类型,第二地址对应第二接入技术类型;终端根据策略信息以及多个地址传输业务流,包括:终端根据策略信息采用第一地址和/或第二地址传输第一业务流。
一种可能的实现方式中,第一传输方法包括:MPTCP方法、MPTCP代理proxy方法、TCP方法、TCP proxy方法、UDP方法、UDP proxy方法、UDP QUIC方法、或UDP MP-QUIC proxy方法中的一项或者多项。
一种可能的实现方式中,终端获取核心网网元为终端的PDU会话分配的多个地址以及多个地址中每个地址对应的接入技术类型,包括:终端获取核心网网元发送的第一地址,与第一地址对应的第一接入技术类型,第二地址以及与第二地址对应的第二接入技术类型。
一种可能的实现方式中,终端获取核心网网元为终端的PDU会话分配的多个地址以及多个地址中每个地址对应的接入技术类型,包括:终端获取核心网网元发送的第一地址和第二地址。当仅发送第一地址和第二地址时,终端和核心网网元提前协商好从第一地址和第二地址中任选一个地址与第一接入技术类型对应,然后将另一个地址与第二接入技术类型对应。
一种可能的实现方式中,终端获取核心网网元为终端的PDU会话分配的多个地址以及多个地址中每个地址对应的接入技术类型,包括:终端获取核心网网元发送的第一地 址和第二地址,以及类型指示信息。其中,类型指示信息用于指示从第一地址和第二地址中任选一个与第一接入技术类型对应,然后将另一个地址与第二接入技术类型对应。
一种可能的实现方式中,业务流包括采用第一传输方法传输的第一业务流和/或采用第二传输方法传输的第二业务流,多个地址包括第一地址、第二地址和第三地址,第一地址对应第一接入技术类型,第二地址对应第二接入技术类型,第三地址对应第一接入技术类型和第二接入技术类型;终端根据策略信息以及多个地址传输业务流,包括:终端根据策略信息采用第一地址和/或第二地址传输第一业务流,和/或采用第三地址传输第二业务流。
一种可能的实现方式中,终端获取核心网网元为终端的PDU会话分配的多个地址以及多个地址中每个地址对应的接入技术类型,包括:终端接收核心网网元发送的第一地址、第二地址和第三地址。其中,第一地址对应第一接入技术类型,第二地址对应第二接入技术类型,第三地址对应第一接入技术类型和第二接入技术类型。或者,终端接收核心网网元发送的第一地址、第二地址和第三地址,其中,第一地址对应第一接入技术类型,第二地址对应第二接入技术类型。或者,终端接收核心网网元发送的第一地址、第二地址和第三地址,其中,第一地址对应第一接入技术类型,第二地址对应第二接入技术类型,第三地址对应通用地址指示。
一种可能的实现方式中,业务流包括采用第一传输方法传输的第一业务流,多个地址包括第一地址和第二地址。其中,第一地址对应第一接入技术类型和第二接入技术类型,第二地址对应第一接入技术类型或第二接入技术类型;终端根据策略信息以及多个地址传输业务流:终端根据策略信息采用第一地址和/或第二地址传输第一业务流。
一种可能的实现方式中,业务流还包括采用第二传输方法传输的第二业务流,终端根据策略信息以及多个地址传输业务流,还包括:终端根据策略信息采用第一地址传输第二业务流。
一种可能的实现方式中,终端根据策略信息采用第一地址和/或第二地址传输第一业务流,包括:终端确定传输第一业务流的接入技术为第二地址对应接入技术类型时,终端采用第二地址传输第一业务流;终端确定传输第一业务流的接入技术不是第二地址对应接入技术类型时,终端采用第一地址传输第一业务流。
一种可能的实现方式中,业务流包括采用第一传输方法传输的第一业务流,多个地址包括:第一地址和第二地址,其中,第一地址对应通用业务流,第二地址对应第一业务流。终端根据多个地址以及多个地址中每个地址对应的业务类型传输业务流,包括:终端采用第一地址和/或第二地址传输第一业务流。
一种可能的实现方式中,本申请实施例提供的方法还包括:终端获取第一消息,该第一消息用于指示第一地址对应第一接入技术类型,和/或第二地址对应第二接入技术类型,终端根据多个地址以及多个地址中每个地址对应的业务类型传输业务流,包括:终端根据第一消息确定传输第一业务流的接入技术。该方案适用于终端获取到每个地址对应业务类型的场景。
一种可能的实现方式中,业务流还包括采用第二传输方法传输的第二业务流;终端根据多个地址以及多个地址中每个地址对应的业务类型传输业务流,还包括:终端采用第一地址传输第二业务流。
一种可能的实现方式中,第一传输方法包括:MPTCP方法、MPTCP proxy方法、UDP QUIC方法、UDP QUIC proxy方法、UDP MP-QUIC方法或MP-QUIC proxy中的一项或者多项。 第二传输方法包括:TCP方法、TCP proxy方法、UDP方法、UDP proxy方法中的一项或者多项。
一种可能的实现方式中,终端获取核心网网元为终端的PDU会话分配的多个地址以及多个地址中每个地址对应的接入技术类型,包括:终端获取核心网网元发送的第一地址和第二地址。终端确定第一地址对应第一接入类型和第二接入技术类型,终端确定第二地址对应第一接入技术类型或第二接入技术类型。
一种可能的实现方式中,终端获取核心网网元为终端的PDU会话分配的多个地址以及多个地址中每个地址对应的接入技术类型或多个地址中每个地址对应的业务类型,包括:终端接收核心网网元发送的第一地址和第二地址,与第一地址对应的第一类型指示信息,以及与第二地址对应的第二类型指示信息。其中,第一类型指示信息用于指示第一接入技术类型和第二接入技术类型,第二类型指示信息用于指示第一接入技术类型或第二接入技术类型;或者,第一类型指示信息用于指示通用业务流,第二类型指示信息用于指示第一业务流。
一种可能的实现方式中,终端获取核心网网元为终端的PDU会话分配的多个地址以及多个地址中每个地址对应的接入技术类型或多个地址中每个地址对应的业务类型,包括:终端接收核心网网元发送的第一地址和第二地址,以及与第二地址对应的第二类型指示信息;终端确定第一地址对应第一接入技术类型和第二接入技术类型,以及确定第二地址对应第一接入技术类型或第二接入技术类型。
具体的,第一类型指示信息和第二类型指示信息的具体内容可以参考第二方面中的描述,此处不再赘述。
一种可能的实现方式中,本申请实施例提供的方法还包括:终端接收核心网网元发送的用于确定传输业务流的传输方法的指示信息。
在第三方面任意一种可能的实现方式中,终端还可以执行第一方面中的任意一种可能的方法。
第四方面,本申请实施例提供一种业务流的传输方法,包括:用户面功能网元获取为终端的PDU会话分配的多个地址以及多个地址中每个地址对应的接入技术类型,PDU会话支持多个接入技术;用户面功能网元根据策略信息以及多个地址传输业务流。或者,用户面功能网元获取为终端的PDU会话分配的多个地址以及多个地址中每个地址对应的业务类型,用户面功能网元根据多个地址以及多个地址中每个地址对应的业务类型传输业务流。
一种可能的实现方式中,策略信息包括分流模式和/或业务流的传输方法。
一种可能的实现方式中,业务流包括采用第一传输方法传输的第一业务流,多个地址包括第一地址和第二地址,第一地址对应第一接入技术类型,第二地址对应第二接入技术类型;用户面功能网元根据策略信息以及多个地址传输业务流,包括:用户面功能网元根据策略信息采用第一地址和/或第二地址向终端发送第一业务流。
一种可能的实现方式中,第一传输方法包括:MPTCP方法、MPTCP proxy方法、TCP方法、TCP proxy方法、UDP方法、UDP proxy方法、UDP QUIC方法、UDP QUIC proxy方法或UDP MP-QUIC方法、MP-QUIC proxy方法中的一项或者多项。
一种可能的实现方式中,业务流包括采用第一传输方法传输的第一业务流,多个地址包括第一地址和第二地址,第一地址对应第一接入技术类型和第二接入技术类型,第二地址对应第一接入技术类型或第二接入技术类型;用户面功能网元根据策略信息以及 多个地址传输业务流,包括:用户面功能网元根据策略信息采用第一地址和/或第二地址向终端发送第一业务流。
一种可能的实现方式中,业务流还包括采用第二传输方法传输的第二业务流,用户面功能网元根据策略信息以及多个地址传输业务流,还包括:用户面功能网元根据策略信息采用第一地址传输第二业务流。
一种可能的实现方式中,用户面功能网元根据策略信息采用第一地址和/或第二地址传输第一业务流,包括:用户面功能网元确定传输第一业务流的接入技术为第二地址对应接入技术类型时,用户面功能网元采用第二地址传输第一业务流;用户面功能网元确定传输第一业务流的接入技术不是第二地址对应接入技术类型时,用户面功能网元采用第一地址传输第一业务流。
一种可能的实现方式中,业务流包括采用第一传输方法传输的第一业务流,多个地址包括第一地址和第二地址,第一地址对应通用业务流,第二地址对应第一业务流;用户面功能网元根据多个地址以及多个地址中每个地址对应的业务类型传输业务流,包括:用户面功能网元采用第一地址和/或第二地址向终端发送第一业务流。
一种可能的实现方式中,业务流还包括采用第二传输方法传输的第二业务流,用户面功能网元根据多个地址以及多个地址中每个地址对应的业务类型传输业务流,包括:用户面功能网元采用第一地址传输第二业务流。
一种可能的实现方式中,用户面功能网元获取第一消息,该第一消息用于指示第一地址对应第一接入技术类型,和/或第二地址对应第二接入技术类型,本申请实施例提供的方法还包括:用户面功能网元根据第一消息确定传输第一业务流的接入技术。这样对应第一业务流而言,用户面功能网元便可以根据传输第一业务流的接入技术确定具体使用哪个地址传输第一业务流。例如,如果第一业务流采用第一接入技术类型传输,第一消息指示第一地址对应第一接入技术类型,则用户面功能网元采用第一地址传输第一业务流。这种情况适用于用户面功能单元确定第一地址对应通用业务流,第二地址对应第一业务流的情况。
一种可能的实现方式中,业务流包括采用第一传输方法传输的第一业务流和/或采用第二传输方法传输的第二业务流,多个地址包括第一地址、第二地址和第三地址,第一地址对应第一接入技术类型,第二地址对应第二接入技术类型,第三地址对应第一接入技术类型和第二接入技术类型;用户面功能网元根据策略信息以及多个地址传输业务流,包括:用户面功能网元根据策略信息采用第一地址和/或第二地址向终端发送第一业务流,和/或采用第三地址向终端发送第二业务流。
一种可能的实现方式中,本申请实施例提供的方法还包括:用户面功能网元接收发送给终端的业务流;用户面功能网元确定发送给终端的业务流采用第一传输方法传输;用户面功能网元将发送给终端的业务流的目标地址替换为第一地址和/或第二地址。
一种可能的实现方式中,多个地址包括第一地址和第二地址,第一地址对应第一接入技术类型,第二地址对应第二接入技术类型;本申请实施例提供的方法还包括:用户面功能网元接收终端发送的业务流,终端发送的业务流的源地址为第一地址和/或第二地址;用户面功能网元根据策略信息以及多个地址传输业务流,包括:用户面功能网元根据策略信息将终端发送的业务流的源地址替换为第四地址。
一种可能的实现方式中,第四地址为用户面功能网元的地址或者为终端的PDU会话分配的第三地址。
一种可能的实现方式中,业务流包括采用第一传输方法传输的第一业务流以及采用第二传输方法传输的第二业务流,多个地址包括第一地址、第二地址和第三地址,第一地址对应第一接入技术类型,第二地址对应第二接入技术类型,第三地址对应第一接入技术类型和第二接入技术类型;本申请实施例提供的方法还包括:用户面功能网元接收终端发送的业务流,终端发送的业务流包括采用第一传输方法传输的第一业务流,第一业务流的源地址为第一地址和/或第二地址;用户面功能网元根据策略信息以及多个地址传输业务流,包括:用户面功能网元根据策略信息将第一业务流的源地址替换为第四地址。
一种可能的实现方式中,第四地址为用户面功能网元的地址或者为终端的PDU会话分配的第三地址。
一种可能的实现方式中,多个地址包括第一地址和第二地址,第一地址对应第一接入技术类型和第二接入技术类型,第二地址对应第一接入技术类型或第二接入技术类型;本申请实施例提供的方法还包括:用户面功能网元接收终端发送的业务流,终端发送的业务流的源地址为第一地址和/或第二地址;用户面功能网元根据策略信息以及多个地址传输业务流,包括:用户面功能网元根据策略信息将终端发送的业务流的源地址替换为第一地址。
一种可能的实现方式中,第一传输方法包括:MPTCP方法、MPTCP proxy方法、UDP QUIC方法、UDP QUIC proxy方法、UDP MP-QUIC方法或MP-QUIC proxy中的一项或者多项。第二传输方法包括:TCP方法、TCP proxy方法、UDP方法、UDP proxy方法中的一项或者多项。
一种可能的实现方式中,用户面功能网元获取为终端的PDU会话分配的多个地址以及多个地址中每个地址对应的接入技术类型,或者多个地址中每个地址对应的业务类型。
一种可能的实现方式中,本申请实施例提供的方法还包括:用户面功能网元接收会话管理网元发送的第一地址、第二地址和第三地址。其中,第一地址对应第一接入技术类型,第二地址对应第二接入技术类型,第三地址对应第一接入技术类型和第二接入技术类型。或者,用户面功能网元接收会话管理网元发送的第一地址、第二地址和第三地址,其中,第一地址对应第一接入技术类型,第二地址对应第二接入技术类型。或者,用户面功能网元接收会话管理网元发送的第一地址、第二地址和第三地址,其中,第一地址对应第一接入技术类型,第二地址对应第二接入技术类型,第三地址对应通用地址指示。
一种可能的实现方式中,业务流包括采用第一传输方法传输的第一业务流,多个地址包括第一地址和第二地址,第一地址对应通用业务流,第二地址对应第一业务流;用户面功能网元根据多个地址以及每个地址对应的业务类型传输业务流,包括:用户面功能网元采用第一地址和/或第二地址传输第一业务流。
一种可能的实现方式中,业务流还包括采用第二传输方法传输的第二业务流;用户面功能网元根据多个地址以及每个地址对应的业务类型传输业务流,还包括:用户面功能网元采用第一地址传输第二业务流。
一种可能的实现方式中,业务流包括采用第一传输方法传输的第一业务流,多个地址包括第一地址和第二地址,第一地址对应第一接入技术类型和第二接入技术类型,第二地址对应第一接入技术类型或第二接入技术类型;用户面功能网元根据策略信息以及多个地址传输业务流,包括:用户面功能网元采用第一地址和/或第二地址传输第一业务 流。
一种可能的实现方式中,业务流还包括采用第二传输方法传输的第二业务流;用户面功能网元根据策略信息以及多个地址传输业务流,还包括:用户面功能网元采用第一地址传输第二业务流。
一种可能的实现方式中,用户面功能网元获取核心网网元为终端的分组数据单元PDU会话分配的多个地址以及多个地址中每个地址对应的接入技术类型或多个地址中每个地址对应的业务类型,包括:用户面功能网元接收核心网网元发送的第一地址和第二地址,以及与第一地址对应的第一类型指示信息,与第二地址对应的第二类型指示信息。其中,第一类型指示信息用于指示第一接入技术类型和第二接入技术类型,第二类型指示信息用于指示第一接入技术类型或第二接入技术类型;或者,第一类型指示信息用于指示通用业务流,第二类型指示信息用于指示第一业务流。
一种可能的实现方式中,用户面功能网元获取核心网网元为终端的分组数据单元PDU会话分配的多个地址以及多个地址中每个地址对应的接入技术类型,包括:用户面功能网元接收核心网网元发送的第一地址和第二地址,以及与第二地址对应的第二类型指示信息;用户面功能网元确定第一地址对应第一接入技术类型和第二接入技术类型,以及确定第二地址对应第一接入技术类型或第二接入技术类型。
具体的,第一类型指示信息和第二类型指示信息的具体内容可以参考第二方面中的描述,此处不再赘述。
在第四方面任意一种可能的实现方式中,用户面功能网元时还可以执行第一方面中任意一种实现方式中终端的操作。
第五方面,本申请实施例提供一种通信方法,包括:会话管理网元接收指示信息,指示信息用于指示业务流的传输方法,业务流所在的PDU会话支持多个接入技术;会话管理网元根据指示信息选择具有传输方法功能的用户面功能网元。
一种可能的实现方式中,本申请实施例提供的方法还包括:会话管理网元根据指示信息,获取为终端的PDU会话分配多个地址,多个地址中每个地址对应多个接入技术类型中的至少一个。
一种可能的实现方式中,本申请实施例提供的方法还包括:会话管理网元向用户面功能网元/终端发送多个地址以及多个地址中每个地址对应的接入技术类型或业务类型。
一种可能的实现方式中,本申请实施例提供的方法还包括:会话管理网元向用户面功能网元/终端发送指示信息,指示信息用于指示业务流的传输方法。
一种可能的实现方式中,本申请实施例提供的方法还包括:会话管理网元向用户面功能网元/终端发送第三地址,以及与第三地址对应的第一接入技术类型和第二接入技术类型,或者,会话管理网元向用户面功能网元/终端发送第三地址以及通用地址指示。或者会话管理网元向用户面功能网元/终端发送第三地址。可以理解的是,在这种情况下,还需要向终端发送第一地址和第二地址,对第一地址和第二地址指示接入技术类型的方式可以参考上述实施例中的描述,此处不再赘述。
一种可能的实现方式中,会话管理网元向用户面功能网元/终端发送多个地址以及多个地址中每个地址对应的接入技术类型或业务类型的方式可以参考第二方面中核心网网元向终端发送为PDU会话分配的多个地址,以及多个地址中每个地址对应的接入技术类型或业务类型的实现方式,此处不再赘述。具体的将第二方面中的核心网网元替换为会话管理网元即可。
在第五方面任意一种可能的实现方式中,会话管理网元还可以执行第二方面中的任意一种可能的通信方法。
第六方面,本申请提供一种业务流的传输装置,该一种业务流的传输装置可以实现第一方面或第一方面的任意一种可能的实现方式中的方法,因此也能实现第一方面或第一方面任意可能的实现方式中的有益效果。该一种业务流的传输装置可以为终端,也可以为可以支持终端实现第一方面或第一方面的任意可能的实现方式中的方法的装置,例如应用于终端中的芯片。该一种业务流的传输装置可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
一种示例,该一种业务流的传输装置,包括:接收单元,用于接收核心网网元发送的业务流的分流模式和/或业务流的传输方法,业务流所在的PDU会话支持多种接入技术;传输单元,用于根据分流模式和/或业务流的传输方法采用多种接入技术中的至少一种传输业务流。
一种可能的实现方式中,业务流的传输方法包括以下一项或者多项:MPTCP方法、MPTCP proxy方法、TCP方法、TCP proxy方法、UDP方法、UDP proxy方法、UDP QUIC方法、UDP QUIC proxy方法或UDP MP-QUIC方法、MP-QUIC proxy方法。
一种可能的实现方式中,本申请实施例提供的一种业务流的传输装置,还包括:获取单元,用于获取多路传输算法。传输单元,具体用于根据分流模式和/或业务流的传输方法以及多路传输算法采用多种接入技术中的至少一种传输业务流。
一种可能的实现方式中,接收单元,还用于接收核心网网元发送的分流模式对应的多路传输算法,获取单元,具体用于从接收单元处获取核心网网元发送的分流模式对应的多路传输算法;或者,接收单元,还用于接收核心网网元发送的业务流的传输方法对应的多路传输算法,获取单元,具体用于从接收单元处获取核心网网元发送的业务流的传输方法对应的多路传输算法;或者,获取单元,具体用于根据分流模式确定终端配置的多路传输算法;或者,获取单元,具体用于根据业务流的传输方法确定终端配置的多路传输算法。
一种可能的实现方式中,多路传输算法的具体内容可以参考第一方面中的描述,此处不再赘述。
一种可能的实现方式中,接收单元,还用于接收核心网网元发送的指示信息,指示信息用于指示终端发送业务流采用的接入技术与终端接收业务流采用的接入技术相同。传输单元,还用于根据分流模式和/或业务流的传输方法以及指示信息采用多种接入技术中的至少一种传输业务流。
一种可能的实现方式中,分流模式的具体内容可以参考第一方面中的描述,此处不再赘述。
一种可能的实现方式中,获取单元,具体用于从核心网网元发送的NAS传输消息中获取策略控制网元发送的业务流的分流模式和/或业务流的传输方法。或者,获取单元,具体用于从核心网网元发送的会话管理响应消息中获取业务流的分流模式和/或业务流的传输方法。
一种可能的实现方式中,获取单元,还用于获取核心网网元为终端的PDU会话分配的多个地址以及多个地址中每个地址对应的接入技术类型。传输单元,还用于根据策略信息以及多个地址传输业务流。
一种可能的实现方式中,获取单元,还用于获取核心网网元为终端的PDU会话分配 的多个地址以及多个地址中每个地址对应的业务类型,传输单元,还用于根据多个地址以及多个地址中每个地址对应的业务类型传输业务流。
一种可能的实现方式中,业务流包括采用第一传输方法传输的第一业务流,多个地址包括第一地址和第二地址,第一地址对应第一接入技术类型,第二地址对应第二接入技术类型;传输单元,还具体用于根据策略信息采用第一地址和/或第二地址传输第一业务流。
一种可能的实现方式中,第一传输方法包括MPTCP方法、MPTCP proxy方法、TCP方法、TCP proxy方法、UDP方法、UDP proxy方法、QUIC方法、QUIC proxy方法或MP-QUIC方法、MP-QUIC proxy方法中的一项或者多项。
一种可能的实现方式中,业务流包括采用第一传输方法传输的第一业务流和/或采用第二传输方法传输的第二业务流,多个地址包括第一地址、第二地址和第三地址,第一地址对应第一接入技术类型,第二地址对应第二接入技术类型,第三地址对应第一接入技术类型和第二接入技术类型;传输单元,还具体用于根据策略信息采用第一地址和/或第二地址传输第一业务流,和/或,采用第三地址传输第二业务流。
一种可能的实现方式中,业务流包括采用第一传输方法传输的第一业务流和/或采用第二传输方法传输的第二业务流,多个地址包括第一地址和第二地址,其中,第一地址对应第一接入技术类型和第二接入技术类型,第二地址对应第一接入技术类型或第二接入技术类型;传输单元,还具体用于根据策略信息采用第一地址和/或第二地址传输第一业务流。和/或,传输单元,还具体用于根据策略信息采用第一地址传输第二业务流。
一种可能的实现方式中,业务流还包括采用第二传输方法传输的第二业务流,传输单元,还具体用于根据策略信息采用第一地址传输第二业务流。
一种可能的实现方式中,业务流包括采用第一传输方法传输的第一业务流,多个地址包括第一地址和第二地址,其中,第一地址对应通用业务流,第二地址对应第一业务流;传输单元,具体用于采用第一地址和/或第二地址传输第一业务流。
一种可能的实现方式中,业务流还包括采用第二传输方法传输的第二业务流,传输单元,还具体用于采用第一地址传输第二业务流。
另一个示例,本申请实施例还提供一种业务流的传输装置,该一种业务流的传输装置可以为终端或者为应用于终端中的芯片,该一种业务流的传输装置包括:处理器和通信接口。其中,通信接口用于支持该一种业务流的传输装置执行第一方面至第一方面的任意一种可能的实现方式中所描述的在该一种业务流的传输装置侧进行消息/数据接收和发送的步骤。处理器用于支持该一种业务流的传输装置执行第一方面至第一方面的任意一种可能的实现方式中所描述的在该一种业务流的传输装置侧进行消息/数据处理的步骤。具体相应的步骤可以参考第一方面至第一方面的任意一种可能的实现方式中的描述,在此不再赘述。
可选的,该一种业务流的传输装置的通信接口和处理器相互耦合。
可选的,该一种业务流的传输装置还可以包括存储器,用于存储代码和数据,处理器、通信接口和存储器相互耦合。
第七方面,本申请提供一种通信装置,该一种通信装置可以实现第二方面或第二方面的任意一种可能的实现方式中的方法,因此也能实现第二方面或第二方面任意可能的实现方式中的有益效果。该一种通信装置可以为核心网网元,也可以为可以支持核心网网元实现第二方面或第二方面的任意可能的实现方式中的方法的装置,例如应用于核心 网网元中的芯片。该一种通信装置可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
一种示例,该通信装置,包括:获取单元,用于获取业务流的策略信息,策略信息包括业务流的分流模式和业务流的传输方法中的至少一个,业务流所在的PDU会话支持多种接入技术;发送单元,用于向终端/用户面功能网元发送策略信息。
一种可能的实现方式中,策略信息还包括:多路传输算法。
一种可能的实现方式中,多路传输算法的具体内容可以参考第二方面中的描述,此处不再赘述。
一种可能的实现方式中,发送单元,还用于向终端(或者用户面功能网元)发送指示信息,该指示信息用于指示终端(或者用户面功能网元)发送业务流的采用的接入技术与终端(或者用户面功能网元)接收业务流采用的接入技术相同。
一种可能的实现方式中,获取单元,具体用于在会话管理过程中接收策略控制网元发送的业务流的策略信息。或者,获取单元,具体用于在终端/用户面功能网元请求注册到网络的过程中,接收策略控制网元发送的业务流的策略信息。
一种可能的实现方式中,发送单元,还用于向终端/用户面功能网元发送为终端分配的多个地址,以及多个地址中每个地址对应的接入技术类型或者业务类型。
一种可能的实现方式中,发送单元,具体用于向终端/用户面功能网元发送第一地址和第二地址,以及与第一地址对应的第一接入技术类型,与第二地址对应的第二接入技术类型。或者发送单元,具体用于向终端/用户面功能网元发送第一地址和第二地址。或者发送单元,具体用于向终端/用户面功能网元发送第一地址、第二地址,以及类型指示信息,其中,类型指示信息用于指示从第一地址和第二地址中选择一个地址对应第一接入技术类型,并将另一个地址对应第二接入技术类型。
一种可能的实现方式中,发送单元,具体用于向终端/用户面功能网元发送第一地址、第二地址和第三地址,其中第一地址对应第一接入技术类型,第二地址对应第二接入技术类型,第三地址对应第一接入技术类型和第二接入技术类型。或者发送单元,具体用于向终端/用户面功能网元发送第一地址、第二地址和第三地址,其中第一地址对应第一接入技术类型,第二地址对应第二接入技术类型。或者发送单元,具体用于向终端/用户面功能网元发送第一地址、第二地址和第三地址,其中,第一地址对应第一接入技术类型,第二地址对应第二接入技术类型,第三地址对应通用地址指示。
一种可能的实现方式中,发送单元,具体用于向终端/用户面功能网元发送第一地址,第二地址,以及与第一地址对应的第一类型指示信息,与第二地址对应的第二类型指示信息,其中,第一类型指示信息用于表示第一地址与第一接入技术类型和第二接入技术类型对应,第二类型指示信息用于表示第二地址与第一接入技术类型或第二接入技术类型对应。或者第一类型指示信息用于表示第一地址与通用业务流对应。第二类型指示信息用于表示第二地址与第一业务流对应。
一种可能的实现方式中,发送单元,具体用于向终端/用户面功能网元发送第一地址和第二地址,以及与第二地址对应的第二类型指示信息;其中,第二类型指示信息用于表示第二地址与第一业务流对应,或者第二类型指示信息用于表示第二地址对应第一接入技术类型或第二接入技术类型。
具体的,第一类型指示信息和第二类型指示信息的具体内容可以参考第二方面中的描述,此处不再赘述。
另一种示例,本申请实施例还提供一种通信装置,该通信装置可以为核心网网元或者为应用于核心网网元中的芯片,该通信装置包括:处理器和通信接口。其中,通信接口用于支持该通信装置执行第二方面至第二方面的任意一种可能的实现方式中所描述的在该通信装置侧进行消息/数据接收和发送的步骤。处理器用于支持该通信装置执行第二方面至第二方面的任意一种可能的实现方式中所描述的在该通信装置侧进行消息/数据处理的步骤。具体相应的步骤可以参考第二方面至第二方面的任意一种可能的实现方式中的描述,在此不再赘述。
可选的,该通信装置的通信接口和处理器相互耦合。
可选的,该通信装置还可以包括存储器,用于存储代码和数据,处理器、通信接口和存储器相互耦合。
第八方面,本申请提供一种业务流的传输装置,该一种业务流的传输装置可以实现第三方面或第三方面的任意一种可能的实现方式中的方法,因此也能实现第三方面或第三方面任意可能的实现方式中的有益效果。该业务流的传输装置可以为终端,也可以为可以支持终端实现第三方面或第三方面的任意可能的实现方式中的方法的装置,例如应用于终端中的芯片。该一种业务流的传输装置可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
一种示例,该业务流的传输装置,包括:获取单元,用于获取核心网网元为终端的PDU会话分配的多个地址以及多个地址中每个地址对应的接入技术类型或多个地址中每个地址对应的业务类型,PDU会话支持多个接入技术;当每个地址对应的接入技术类型时,传输单元,用于根据策略信息以及多个地址传输业务流;当每个地址业务类型时,传输单元,用于根据多个地址以及多个地址中每个地址对应的业务类型传输业务流。
一种可能的实现方式中,业务流包括采用第一传输方法传输的第一业务流,多个地址包括第一地址和第二地址,第一地址对应第一接入技术类型,第二地址对应第二接入技术类型;传输单元,具体用于根据策略信息采用第一地址和/或第二地址传输第一业务流。
一种可能的实现方式中,第一传输方法包括:MPTCP方法、MPTCP proxy方法、TCP方法、TCP proxy方法、UDP方法、UDP proxy方法、QUIC方法、QUIC proxy方法或MP-QUIC方法、MP-QUIC proxy方法中的一项或者多项。
一种可能的实现方式中,获取单元,具体用于获取核心网网元发送的第一地址,以及与第一地址对应的第一接入技术类型,和第二地址以及与第二地址对应的第二接入技术类型。
一种可能的实现方式中,获取单元,具体用于获取核心网网元发送的第一地址和第二地址。
一种可能的实现方式中,获取单元,具体用于获取核心网网元发送的第一地址和第二地址,以及类型指示信息。其中,类型指示信息用于指示从第一地址和第二地址中任选一个与第一接入技术类型对应,然后将另一个地址与第二接入技术类型对应。
一种可能的实现方式中,业务流包括采用第一传输方法传输的第一业务流和/或采用第二传输方法传输的第二业务流,多个地址包括第一地址、第二地址和第三地址,第一地址对应第一接入技术类型,第二地址对应第二接入技术类型,第三地址对应第一接入技术类型和第二接入技术类型;传输单元,具体用于根据策略信息采用第一地址和/或第二地址传输第一业务流,和/或,采用第三地址传输第二业务流。
一种可能的实现方式中,获取单元,具体用于接收核心网网元发送的第一地址、第二地址和第三地址,其中,第一地址对应第一接入技术类型,第二地址对应第二接入技术类型,第三地址对应第一接入技术类型和第二接入技术类型。
一种可能的实现方式中,获取单元,具体用于接收核心网网元发送的第一地址、第二地址和第三地址,其中,第一地址对应第一接入技术类型,第二地址对应第二接入技术类型。
一种可能的实现方式中,获取单元,具体用于接收核心网网元发送的第一地址、第二地址和第三地址,其中,第一地址对应第一接入技术类型,第二地址对应第二接入技术类型,第三地址对应通用地址指示。
一种可能的实现方式中,业务流包括采用第一传输方法传输的第一业务流,多个地址包括第一地址和第二地址。其中,第一地址对应第一接入技术类型和第二接入技术类型,第二地址对应第一接入技术类型或第二接入技术类型;传输单元,具体用于根据策略信息采用第一地址和/或第二地址传输第一业务流。
一种可能的实现方式中,业务流还包括采用第二传输方法传输的第二业务流,传输单元,还具体用于根据策略信息采用第一地址传输第二业务流。
一种可能的实现方式中,传输单元,具体用于确定传输第一业务流的接入技术为第二地址对应接入技术类型指示的接入技术时,采用第二地址传输第一业务流;传输单元,具体用于确定传输第一业务流的接入技术为第一接入技术类型或第二接入技术类型指示的接入技术,且不是第二地址对应接入技术类型指示的接入技术时,采用第一地址传输第一业务流。
一种可能的实现方式中,业务流包括采用第一传输方法传输的第一业务流,多个地址包括第一地址和第二地址,第一地址对应通用业务流,第二地址对应第一业务流,传输单元,具体用于采用第一地址和/或第二地址传输第一业务流。
一种可能的实现方式中,获取单元,还用于获取第一消息,该第一消息用于指示第一地址对应第一接入技术类型,和/或第二地址对应第二接入技术类型,传输单元还具体用于根据第一消息确定传输第一业务流的接入技术。
一种可能的实现方式中,业务流还包括采用第二传输方法传输的第二业务流;传输单元,具体用于采用第一地址传输第二业务流。
一种可能的实现方式中,第一传输方法包括:MPTCP方法、MPTCP proxy方法、UDP QUIC方法、UDP QUIC proxy方法、UDP MP-QUIC方法或MP-QUIC proxy中的一项或者多项。第二传输方法包括:TCP方法、TCP proxy方法、UDP方法、UDP proxy方法中的一项或者多项。
一种可能的实现方式中,获取单元,具体用于通过接收单元获取核心网网元发送的第一地址和第二地址,以及与第一地址对应的第一类型指示信息,与第二地址对应的第二类型指示信息,其中,第一类型指示信息用于指示第一接入技术类型和第二接入技术类型,第二类型指示信息用于指示第一接入技术类型或第二接入技术类型。或者第一类型指示信息用于指示通用业务流。第二类型指示信息用于指示第一业务流。
一种可能的实现方式中,获取单元,具体用于通过接收单元获取核心网网元发送的第一地址和第二地址,以及与第二地址对应的第二类型指示信息;终端确定第一地址对应第一接入技术类型和第二接入技术类型,以及确定第二地址对应第一接入技术类型或第二接入技术类型。
具体的,第一类型指示信息和第二类型指示信息的具体内容可以参考第二方面中的描述,此处不再赘述。
一种可能的实现方式中,本申请实施例提供的装置还包括:接收单元,用于接收核心网网元发送的用于确定传输业务流的传输方法的指示信息。
需要说明的是,本申请实施例中,当一个发送网元(例如,用户面功能网元/会话管理网元)为终端的PDU会话分配多个地址时,若发送网元向接收网元(例如,终端或者用户面功能网元)发送多个地址时,未发送每个地址对应的接入技术类型/业务类型时,接收网元可以决定为多个地址中每个地址选择对应的接入技术类型/业务类型。
在第八方面任意一种可能的实现方式中,该业务流的传输装置还可以执行第六方面中的任意一种可能的一种业务流的传输方法。
另一示例,本申请实施例还提供一种业务流的传输装置,该一种业务流的传输装置可以为终端或者为应用于终端中的芯片,该一种业务流的传输装置包括:处理器和通信接口,其中,通信接口用于支持该一种业务流的传输装置执行第三方面至第三方面的任意一种可能的实现方式中所描述的在该一种业务流的传输装置侧进行消息/数据接收和发送的步骤。处理器用于支持该一种业务流的传输装置执行第三方面至第三方面的任意一种可能的实现方式中所描述的在该一种业务流的传输装置侧进行消息/数据处理的步骤。具体相应的步骤可以参考第三方面至第三方面的任意一种可能的实现方式中的描述,在此不再赘述。
可选的,该一种业务流的传输装置的通信接口和处理器相互耦合。
可选的,该一种业务流的传输装置还可以包括存储器,用于存储代码和数据,处理器、通信接口和存储器相互耦合。
第九方面,本申请提供一种业务流的传输装置,该一种业务流的传输装置可以实现第四方面或第四方面的任意一种可能的实现方式中的方法,因此也能实现第四方面或第四方面任意可能的实现方式中的有益效果。该一种业务流的传输装置可以为用户面功能网元,也可以为可以支持用户面功能网元实现第四方面或第四方面的任意可能的实现方式中的方法的装置,例如应用于用户面功能网元中的芯片。该一种业务流的传输装置可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
一种示例,该业务流的传输装置,包括:获取单元,用于获取为终端的PDU会话分配的多个地址以及多个地址中每个地址对应的接入技术类型,PDU会话支持多个接入技术;传输单元,用于根据策略信息以及多个地址中每个地址对应的接入技术类型传输业务流。或者,获取单元,用于获取为终端的PDU会话分配的多个地址以及多个地址中每个地址对应的业务类型。传输单元,用于根据多个地址以及多个地址中每个地址对应的业务类型传输业务流。
一种可能的实现方式中,策略信息包括分流模式和/或业务流的传输方法。
一种可能的实现方式中,业务流包括采用第一传输方法传输的第一业务流,多个地址包括第一地址和第二地址,第一地址对应第一接入技术类型,第二地址对应第二接入技术类型;传输单元,具体用于根据策略信息采用第一地址和/或第二地址向终端发送第一业务流。
一种可能的实现方式中,第一传输方法包括:MPTCP方法、MPTCP proxy方法、TCP方法、TCP proxy方法、UDP方法、UDP proxy方法、UDP QUIC方法、UDP QUIC proxy方法或UDP MP-QUIC方法、MP-QUIC proxy方法中的一项或者多项。
一种可能的实现方式中,业务流包括采用第一传输方法传输的第一业务流,多个地址包括第一地址和第二地址,第一地址对应第一接入技术类型和第二接入技术类型,第二地址对应第一接入技术类型或第二接入技术类型;传输单元,具体用于根据策略信息采用第一地址和/或第二地址向终端发送第一业务流。
一种可能的实现方式中,业务流还包括采用第二传输方法传输的第二业务流,传输单元,具体用于根据策略信息采用第一地址传输第二业务流。
一种可能的实现方式中,传输单元,具体用于在处理单元确定传输第一业务流的接入技术为第二地址对应接入技术类型指示的接入技术时,采用第二地址传输第一业务流。传输单元,具体用于在处理单元确定传输第一业务流的接入技术为第一接入技术类型或第二接入技术类型,且不是第二地址对应接入技术类型时,采用第一地址传输第一业务流。
一种可能的实现方式中,业务流包括采用第一传输方法传输的第一业务流,多个地址包括第一地址和第二地址,第一地址对应通用业务流,第二地址对应第一业务流;传输单元,具体用于采用第一地址和/或第二地址向终端发送第一业务流。
一种可能的实现方式中,业务流还包括采用第二传输方法传输的第二业务流,传输单元,还具体用于采用第一地址传输第二业务流。
一种可能的实现方式中,获取单元,还用于获取第一消息,该第一消息用于指示第一地址对应第一接入技术类型,和/或第二地址对应第二接入技术类型,传输单元,还具体用于根据第一消息确定传输第一业务流的接入技术。这种情况适用于终端确定第一地址对应通用业务流,第二地址对应第一业务流的情况。
一种可能的实现方式中,业务流包括采用第一传输方法传输的第一业务流和/或采用第二传输方法传输的第二业务流,多个地址包括第一地址、第二地址和第三地址,第一地址对应第一接入技术类型,第二地址对应第二接入技术类型,第三地址对应第一接入技术类型和第二接入技术类型。传输单元,具体用于根据策略信息采用第一地址和/或第二地址向终端发送第一业务流,和/或,采用第三地址向终端发送第二业务流。
一种可能的实现方式中,本申请实施例提供的装置还包括:接收单元,用于接收发送给终端的业务流;确定单元,用于确定发送给终端的业务流采用第一传输方法传输;处理单元,用于将发送给终端的业务流的目标地址替换为第一地址和/或第二地址。
一种可能的实现方式中,多个地址包括第一地址和第二地址,第一地址对应第一接入技术类型,第二地址对应第二接入技术类型;接收单元,还用于接收终端发送的业务流,终端发送的业务流的源地址为第一地址和/或第二地址;处理单元,还具体用于根据策略信息将终端发送的业务流的源地址替换为第四地址。
一种可能的实现方式中,第四地址为用户面功能网元的地址或者为终端的PDU会话分配的第三地址。
一种可能的实现方式中,多个地址包括第一地址和第二地址,第一地址对应第一接入技术类型和第二接入技术类型,第二地址对应第一接入技术类型或第二接入技术类型;接收单元,还用于接收终端发送的业务流,终端发送的业务流的源地址为第一地址和/或第二地址;处理单元,还具体用于根据策略信息将终端发送的业务流的源地址替换为第一地址。
一种可能的实现方式中,业务流包括采用第一传输方法传输的第一业务流以及采用第二传输方法传输的第二业务流,多个地址包括第一地址、第二地址和第三地址,第一 地址对应第一接入技术类型,第二地址对应第二接入技术类型,第三地址对应第一接入技术类型和第二接入技术类型。接收单元,还用于接收终端发送的业务流,终端发送的业务流包括采用第一传输方法传输的第一业务流,第一业务流的源地址为第一地址和/或第二地址;处理单元,还具体用于根据策略信息将第一业务流的源地址替换为第四地址。
一种可能的实现方式中,第四地址为用户面功能网元的地址或者为终端的PDU会话分配的第三地址。
一种可能的实现方式中,多个地址包括第一地址和第二地址,第一地址对应第一接入技术类型和第二接入技术类型,第二地址对应第一接入技术类型或第二接入技术类型;接收单元,还用于接收终端发送的业务流,终端发送的业务流的源地址为第一地址和/或第二地址;处理单元,还用于根据策略信息将终端发送的业务流的源地址替换为第一地址。
一种可能的实现方式中,第一传输方法包括:MPTCP方法、MPTCP proxy方法、UDP QUIC方法、UDP QUIC proxy方法、UDP MP-QUIC方法或MP-QUIC proxy中的一项或者多项。第二传输方法包括:TCP方法、TCP proxy方法、UDP方法、UDP proxy方法中的一项或者多项。
一种可能的实现方式中,获取单元,具体用于从会话管理网元处获取会话管理网元为终端的PDU会话分配的多个地址以及多个地址中每个地址对应的接入技术类型;或者,获取单元,具体用于为终端的PDU会话分配的多个地址以及多个地址中每个地址对应的业务类型。
一种可能的实现方式中,本申请实施例提供的一种业务流的传输装置,接收单元,还用于接收会话管理网元发送的第一地址、第二地址和第三地址,其中,第一地址对应第一接入技术类型,第二地址对应第二接入技术类型,第三地址对应第一接入技术类型和第二接入技术类型。或者,接收单元,还用于接收接收会话管理网元发送的第一地址、第二地址和第三地址,其中,第一地址对应第一接入技术类型,第二地址对应第二接入技术类型。或者,接收单元,还用于接收接收会话管理网元发送的第一地址、第二地址和第三地址,其中,第一地址对应第一接入技术类型,第二地址对应第二接入技术类型,第三地址对应通用地址指示。
一种可能的实现方式中,业务流包括采用第一传输方法传输的第一业务流,多个地址包括第一地址和第二地址,第一地址对应通用业务流,第二地址对应第一业务流;传输单元,具体用于采用第一地址和/或第二地址传输第一业务流。
一种可能的实现方式中,业务流还包括采用第二传输方法传输的第二业务流;传输单元具体用于采用第一地址传输第二业务流。
一种可能的实现方式中,业务流包括采用第一传输方法传输的第一业务流,多个地址包括第一地址和第二地址,第一地址对应第一接入技术类型和第二接入技术类型,第二地址对应第一接入技术类型或第二接入技术类型。传输单元,具体用于采用第一地址和/或第二地址传输第一业务流。
一种可能的实现方式中,业务流还包括采用第二传输方法传输的第二业务流;传输单元,具体用于采用第一地址传输第二业务流。
一种可能的实现方式中,获取单元,具体用于接收核心网网元发送的第一地址和第二地址,以及与第一地址对应的第一类型指示信息,与第二地址对应的第二类型指示信 息,其中,第一类型指示信息用于指示第一接入技术类型和第二接入技术类型。第二类型指示信息用于指示第二地址与第一接入技术类型或第二接入技术类型。
一种可能的实现方式中,获取单元,具体用于接收核心网网元发送的第一地址和第二地址,以及与第二地址对应的第二类型指示信息;用户面功能网元确定第一地址对应第一接入技术类型和第二接入技术类型,以及确定第二地址对应第一接入技术类型或第二接入技术类型。
具体的,第一类型指示信息和第二类型指示信息的具体内容可以参考第二方面中的描述,此处不再赘述。
在第九方面任意一种可能的实现方式中,用户面功能网元时还可以执行第一方面中任意一种实现方式中一种业务流的传输装置的操作。
另一种示例,本申请实施例还提供一种业务流的传输装置,该一种业务流的传输装置可以为用户面功能网元或者为应用于用户面功能网元中的芯片,该一种业务流的传输装置包括:处理器和通信接口。其中,通信接口用于支持该业务流的传输装置执行第四方面至第四方面的任意一种可能的实现方式中所描述的在该业务流的传输装置侧进行消息/数据接收和发送的步骤。处理器用于支持该业务流的传输装置执行第四方面至第四方面的任意一种可能的实现方式中所描述的在该业务流的传输装置侧进行消息/数据处理的步骤。具体相应的步骤可以参考第四方面至第四方面的任意一种可能的实现方式中的描述,在此不再赘述。
可选的,该业务流的传输装置的通信接口和处理器相互耦合。
可选的,该业务流的传输装置还可以包括存储器,用于存储代码和数据,处理器、通信接口和存储器相互耦合。
第十方面,本申请提供一种通信装置,该通信装置可以实现第五方面或第五方面的任意一种可能的实现方式中的方法,因此也能实现第五方面或第五方面任意可能的实现方式中的有益效果。该通信装置可以为会话管理网元,也可以为可以支持会话管理网元实现第五方面或第五方面的任意可能的实现方式中的方法的装置,例如应用于会话管理网元中的芯片。该一种通信装置可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
一种示例,接收单元,用于接收用于指示业务流的传输方法的指示信息,该业务流所在的PDU会话支持多个接入技术。确定单元,用于根据指示信息选择具有传输方法功能的用户面功能网元。
一种可能的实现方式中,本申请实施例提供的装置还包括:获取单元,用于根据指示信息获取为终端的PDU会话分配多个地址,该多个地址中每个地址对应的接入技术类型或业务类型。
一种可能的实现方式中,本申请实施例提供的装置还包括:发送单元,用于向用户面功能网元/终端发送第三地址,以及与第三地址对应的第一接入技术类型和第二接入技术类型,或者,会话管理网元向用户面功能网元/终端发送第三地址以及通用地址指示。或者会话管理网元向用户面功能网元/终端发送第三地址。
具体的,发送单元发送多个地址以及多个地址中每个地址对应的接入技术类型或业务类型的实现方式可以参考第七方面发送单元向终端发送为PDU会话分配的多个地址,以及多个地址中每个地址对应的接入技术类型或业务类型的实现方式,此处不再赘述。
一种可能的实现方式中,本申请实施例提供的装置还包括:发送单元,用于向用户 面功能网元发送用于指示业务流的传输方法的指示信息。
另一种示例,本申请实施例还提供一种通信装置,该一种通信装置可以为会话管理网元或者为应用于会话管理网元中的芯片,该一种通信装置包括:处理器和通信接口,其中,通信接口用于支持该一种通信装置执行第五方面至第五方面的任意一种可能的实现方式中所描述的在该一种通信装置侧进行消息/数据接收和发送的步骤。处理器用于支持该一种通信装置执行第五方面至第五方面的任意一种可能的实现方式中所描述的在该一种通信装置侧进行消息/数据处理的步骤。具体相应的步骤可以参考第五方面至第五方面的任意一种可能的实现方式中的描述,在此不再赘述。
可选的,该一种通信装置的通信接口和处理器相互耦合。
可选的,该一种通信装置还可以包括存储器,用于存储代码和数据,处理器、通信接口和存储器相互耦合。
第十一方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当指令在计算机上运行时,使得计算机执行第一方面或第一方面的各种可能的实现方式中所描述的一种业务流的传输方法。
第十二方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当指令在计算机上运行时,使得计算机执行第二方面或第二方面的各种可能的实现方式中所描述的一种通信方法。
第十三方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当指令在计算机上运行时,使得计算机执行第三方面或第三方面的各种可能的实现方式中所描述的一种业务流的传输方法。
第十四方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当指令在计算机上运行时,使得计算机执行第四方面或第四方面的各种可能的实现方式中所描述的一种业务流的传输方法。
第十五方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当指令在计算机上运行时,使得计算机执行第五方面或第五方面的各种可能的实现方式中所描述的一种通信方法。
第十六方面,本申请提供一种包括指令的计算机程序产品,当指令在计算机上运行时,使得计算机执行第一方面或第一方面的各种可能的实现方式中所描述的一种业务流的传输方法。
第十七方面,本申请提供一种包括指令的计算机程序产品,当指令在计算机上运行时,使得计算机执行第二方面或第二方面的各种可能的实现方式中所描述的一种通信方法。
第十八方面,本申请提供一种包括指令的计算机程序产品,当指令在计算机上运行时,使得计算机执行第三方面或第三方面的各种可能的实现方式中所描述的一种业务流的传输方法。
第十九方面,本申请提供一种包括指令的计算机程序产品,当指令在计算机上运行时,使得计算机执行第四方面或第四方面的各种可能的实现方式中所描述的一种业务流的传输方法。
第二十方面,本申请提供一种包括指令的计算机程序产品,当指令在计算机上运行时,使得计算机执行第五方面或第五方面的各种可能的实现方式中所描述的一种通信方 法。
第二十一方面,本申请实施例提供一种芯片,该芯片包括处理器和接口电路,接口电路和处理器耦合,处理器用于运行计算机程序或指令,以实现第一方面或第一方面的各种可能的实现方式中所描述的一种业务流的传输方法。接口电路用于与芯片之外的其它模块进行通信。
第二十二方面,本申请实施例提供一种芯片,该芯片包括处理器和接口电路,接口电路和处理器耦合,处理器用于运行计算机程序或指令,以实现第二方面或第二方面的各种可能的实现方式中所描述的一种通信方法。接口电路用于与芯片之外的其它模块进行通信。
第二十三方面,本申请实施例提供一种芯片,该芯片包括处理器和接口电路,接口电路和处理器耦合,处理器用于运行计算机程序或指令,以实现第三方面或第三方面的各种可能的实现方式中所描述的一种业务流的传输方法。接口电路用于与芯片之外的其它模块进行通信。
第二十四方面,本申请实施例提供一种芯片,该芯片包括处理器和接口电路,接口电路和处理器耦合,处理器用于运行计算机程序或指令,以实现第四方面或第四方面的各种可能的实现方式中所描述的一种业务流的传输方法。接口电路用于与芯片之外的其它模块进行通信。
第二十五方面,本申请实施例提供一种芯片,该芯片包括处理器和接口电路,接口电路和处理器耦合,处理器用于运行计算机程序或指令,以实现第五方面或第五方面的各种可能的实现方式中所描述的一种通信方法。接口电路用于与芯片之外的其它模块进行通信。
第二十六方面,本申请实施例一种通信***,该通信***包括第六方面或第六方面的各种可能的实现方式提供的一种业务流的传输装置,以及第七方面或第七方面的各种可能的实现方式所提供的一种通信装置。
第二十七方面,本申请实施例一种通信***,该通信***包括第八方面或第八方面的各种可能的实现方式提供的一种业务流的传输装置,第九方面或第九方面的各种可能的实现方式提供的一种业务流的传输装置以及第十方面或第十方面的各种可能的实现方式所提供的一种通信装置。
上述提供的任一种装置或计算机存储介质或计算机程序产品或芯片或通信***均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文提供的对应的方法中对应方案的有益效果,此处不再赘述。
附图说明
图1为一种多接入PDU会话示意图;
图2为本申请实施例提供的一种通信***示意图;
图3为本申请实施例提供的一种5G网络架构示意图;
图4为本申请实施例提供的一种终端通过多个接入技术接入网络的示意图;
图5-图14为本申请实施例提供的一种业务流的传输方法流程示意图;
图15-图17为本申请实施例提供的一种业务流的传输装置的结构示意图;
图18-图20为本申请实施例提供的一种通信装置的结构示意图;
图21-图23为本申请实施例提供的另一种通信装置的结构示意图;
图24-图26为本申请实施例提供的另一种业务流的传输装置的结构示意图;
图27为本申请实施例提供的一种芯片的结构示意图。
具体实施方式
需要说明的是,本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
本申请实施例描述的***架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
如图2所示,图2示出了本申请实施例提供的一种通信***示意图,该通信***包括:核心网、接入网和一个或者多个终端104。一个或者多个终端104(图2中仅示出了一个终端)通过接入网接入核心网。其中核心网包括如下网元:会话管理网元101、与会话管理网元101连接的一个或者多个用户面功能网元102(图2中仅示出了一个用户面功能网元)、与会话管理网元101连接的策略控制网元103。
其中,接入网可以为采用多种接入技术的接入网设备。
当终端104通过不同的接入技术接入无线网络时,终端104可以通过不同的接入网设备连接核心网设备。
可选的,本申请实施例中一个或者多个终端104中存在至少一个终端与用户面功能网元102之间具有会话,且该会话可以支持多个接入技术。例如,以多个接入技术为第一接入技术和第二接入技术为例。该会话可以通过第一接入技术接入,也可以通过第二接入技术接入。
本申请实施例中的第一接入技术可以为符合3GPP标准规范的接入技术。例如,第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)接入技术。例如,长期演进(long term evolution,LTE),2G,3G,4G或5G***中采用的接入技术。采用3GPP接入技术的接入网络称为无线接入网络(Radio Access Network,RAN)。例如,终端104可以使用3GPP接入技术通过2G,3G,4G或5G***中的接入网设备接入无线网络中。
第二接入技术可以为不在3GPP标准规范中定义的无线接入技术。例如称为非第三代 合作伙伴计划(non 3rd Generation Partnership Project,non3GPP)接入技术。非3GPP接入技术可以是非可信non 3GPP接入技术,也可以是可信non 3GPP接入技术。非3GPP接入技术可以包括:无线保真(wirelessfidelity,Wi-Fi)、全球微波互联接入(worldwide interoperability for microwave access,WiMAX)、码分多址(code division multiple access,CDMA)、无线局域网(Wireless Local Area Networks,WLAN),固网技术或者有线技术等。终端104可以通过以无线保真(Wireless Fidelity,WIFI)为代表的空口技术接入网络,其中,接入网设备可以为接入点(access Point,AP)。
在本发明实施例中,终端可以分布于无线网络中,每个终端可以是静态的或移动的。
本申请实施例中会话管理网元101、用户面功能网元102以及策略控制网元103均属于核心网网元中的网元,可以统称为核心网网元。
核心网网元,主要负责分组数据包的转发、服务质量(Quality of Service,Qos)控制、计费统计信息等(例如,用户面功能网元)。以及主要负责用户注册认证、移动性管理及向用户面功能网元下发数据包转发策略、QoS控制策略等(例如,会话管理网元)。
其中,会话管理网元,用于负责用户发起业务时网络侧建立相应的会话连接(例如,PDU会话),为用户提供具体服务,尤其是基于会话管理网元与用户面功能网元之间的接口向用户面功能网元下发数据包转发策略、QoS策略等。
其中,若图2所示的通信***应用于5G网络,则如图3所示,会话管理网元101所对应的网元或者实体可以为会话管理功能(Session Management Function,SMF)网元、用户面功能网元即对于5G中的用户面功能(user plane function,UPF)网元。策略控制网元可以为策略控制功能(policy control function,PCF)网元。
此外,如图3所示,该5G网络还可以包括:接入和移动性管理功能(Access and Mobility Management Function,AMF)网元、应用功能(Application Function,AF)网元、接入网设备(例如,接入网络(Access Network,AN)),也可以称为无线接入网设备(Radio Access Network,RAN)、鉴权服务器功能(Authentication Server Function,AUSF)网元、统一数据管理(Unified Data Management,UDM)网元、网络切片选择功能(Network Slice Selection Function,NSSF)网元、网络能力开放功能(Network Eposure Function,NEF)网元、网络仓库贮存功能(Network Repository Function,NRF)网元以及数据网络(Data Network,DN)等,本申请实施例对此不作具体限定。
其中,终端通过N1接口(简称N1)与AMF网元通信。AMF网元通过N11接口(简称N11)与SMF网元通信。SMF网元通过N4接口(简称N4)与一个或者多个UPF网元通信。一个或多个UPF网元中任意两个UPF网元通过N9接口(简称N9)通信。UPF网元通过N6接口(简称N6)与数据网络(Data Network,DN)通信。终端通过接入网设备(例如,RAN设备)接入网络。接入网设备与AMF网元之间通过N2接口(简称N2)通信。SMF网元通过N7接口(简称N7)与PCF网元通信,PCF网元通过N5接口与AF网元通信。接入网设备通过N3接口(简称N3)与UPF网元通信。任意两个或两个以上的AMF网元之间通过N14接口(简称N14)通信。SMF网元通过N10接口(简称N10)与UDM网元通信。AMF网元通过N12接口(简称N12)与AUSF网元通信。AUSF网元通过N13接口(简称N13)与UDM网元通信。AMF网元通过N8接口(简称N8)与UDM网元通信。
需要说明的是,图3中的各个网元之间的接口名字只是一个示例,具体实现中接口名字可能为其他名字,本申请实施例对此不作具体限定。
需要说明的是,图3的接入网设备、AF网元、AMF网元、SMF网元、AUSF网元、UDM 网元、UPF网元和PCF网元等仅是一个名字,名字对设备本身不构成限定。在5G网络以及未来其它的网络中,接入网设备、AF网元、AMF网元、SMF网元、AUSF网元、UDM网元、UPF网元和PCF网元所对应的网元也可以是其他的名字,本申请实施例对此不作具体限定。例如,该UDM网元还有可能被替换为用户归属服务器(Home Subscriber Server,HSS)或者用户签约数据库(User Subscription Database,USD)或者数据库实体,等等,在此进行统一说明,后续不再赘述。
示例性的,本申请实施例中所涉及到的接入网设备指的是接入核心网的设备,例如可以是基站,宽带网络业务网关(Broadband Network Gateway,BNG),汇聚交换机,非第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)接入网设备等。基站可以包括各种形式的基站,例如:宏基站,微基站(也称为小站),中继站,接入点等。
示例性的,本申请实施例中所涉及到的AMF网元还可以负责终端接入时的注册流程及终端移动过程中的位置管理,合法监听等功能,本申请实施例对此不作具体限定。
示例性的,本申请实施例中所涉及到的SMF网元用于进行会话管理,包括:会话建立,会话修改,会话释放,终端的网络之间互连的协议(Internet Protocol,IP)地址分配和管理,UPF网元的选择和控制,合法监听等与会话相关的控制功能。
示例性的,本申请实施例中所涉及到的UPF网元除了具备图3所示的用户面功能网元的功能,还可实现服务网关(Serving Gateway,SGW)和分组数据网络网关(Packet Data Network Gateway,PGW)的用户面功能。此外,UPF网元还可以是软件定义网络(Software Defined Network,SDN)交换机(Switch),本申请实施例对此不作具体限定。
AUSF网元为鉴权服务器功能,主要负责对终端进行鉴权,确定终端合法性。例如,基于终端的用户签约数据对终端进行鉴权认证。
UDM网元为统一的用户数据管理,主要用来存储终端的签约数据。此外,UDM网元还包括鉴权认证,处理终端的标识信息,签约管理等功能,本申请实施例对此不作具体限定。
PCF网元,主要用来下发业务相关的策略给AMF网元或SMF网元。
AF网元,发送应用相关需求给PCF网元,使得PCF网元生成对应的策略。
DN,为终端提供服务,如提供移动运营商业务,Internet服务或第三方服务等。
本申请实施例中的PDU会话指:会话管理网元建立的连通终端104和UPF网元到达DN的数据传输通道。该数据传输通道中涉及到的网元包括:终端、接入网设备、以及由SMF网元为该会话选择的UPF网元。该数据传输通道中包括多个相邻两个网元之间的链路。例如,包括终端和接入网设备之间的链路、接入网设备和UPF网元之间的链路、以及UPF网元和UPF网元之间的链路。
终端(terminal)是一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。终端也可以称为用户设备(User Equipment,UE)、接入终端(Access Terminal)、用户单元(User Unit)、用户站(User Station)、移动站(Mobile Station)、移动台(Mobile)、远方站(Remote Station)、远程终端(Remote Terminal)、移动设备(Mobile Equipment)、用户终端(User Terminal)、无线通信设备(Wireless Telecom Equipment)、用户代理(User Agent)、用户装备(User Equipment)或用户装置。终端可以是无线局域网(Wireless Local Area Networks,WLAN)中的站点(Station,STA),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation  Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信***(例如,第五代(Fifth-Generation,5G)通信网络)中的终端或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端等。其中,5G还可以被称为新空口(New Radio,NR)。
作为示例,在本申请实施例中,该终端还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
图4示出了本申请一实施例中终端使用多个接入技术接入网络的架构示意图,例如,终端同时使用3GPP接入技术和non-3GPP接入技术的架构。如图4所示,终端可以同时通过3GPP接入技术和non-3GPP接入技术连接到AMF网元。
具体的,如图4所示,终端在使用non-3GPP接入技术接入AMF网元时,可以通过非3GPP互通功能(non-3GPP interworking function,N3IWF)实体接入AMF网元。当3GPP与non3GPP属于相同PLMN时,终端选择相同AMF网元。当3GPP与non3GPP属于不同PLMN时,可以选择不同的AMF网元。
SMF网元由AMF网元选择,不同的PDU会话可以选择不同的SMF网元,但相同的PDU会话要选择相同的SMF网元。
SMF网元可以为PDU会话选择UPF网元,一个PDU会话可以有多个UPF网元,所以SMF网元可能会选择多个UPF网元为某PDU会话创建隧道连接。
其中,AUSF网元和鉴权存储功能(Authetnication Repository Function,ARPF)/UDM网元构成归属公共陆地移动网(Home Public Land Mobile Network,HPLMN),终端通过不同的接入技术接入网络时,可以具有不同的受访地公用陆地移动网(Visited Public Land Mobile Network,VPLMN),也可以具有相同的受访地公用陆地移动网。具体的,图4中所示的各个网元的功能可以参见上述实施例,本申请在此不再赘述。
本申请实施例中,对于使用UDP方法传输的业务流可以简称为:UDP业务流,对于使用MPTCP方法传输的业务流简称为MPTCP业务流,类似的,对于使用其他方法传输的业务流采用相同的描述。
需要说明的是,本申请实施例中的一种通信方法/一种业务流的传输方法可以由各自对应的装置所应用的网元执行,也可以由各自对应的装置所应用网元中的芯片执行。例如,一种业务流的传输装置可以由终端执行,也可以由终端中的芯片执行。下述实施例中将以一种通信方法/一种业务流的传输方法的执行主体为各自对应的网元执行为例。
实施例一
图5示出了本申请实施例提供的一种业务流的传输方法及通信方法交互的流程,该方法包括:
S101、核心网网元获取业务流的策略信息,该策略信息包括业务流的分流模式和业 务流的传输方法中的至少一个,业务流所在的分组数据单元PDU会话支持多种接入技术。
例如,策略信息包括业务流的分流模式和业务流的传输方法中的至少一个可以表示为如下含义:策略信息包括业务流的分流模式和业务流的传输方法。或者策略信息包括业务流的分流模式。或者策略信息包括业务流的传输方法。
在一种可能的实现方式中,核心网网元可以为会话管理网元。
一种可能的实现方式中,S101可以通过以下方式实现:核心网网元在会话管理过程中接收策略控制网元发送的业务流的策略信息。
例如,会话管理流程可以指:PDU会话建立流程或者PDU会话更新(也可以称为PDU会话修改)流程。
例如,核心网网元接收终端在会话管理流程发送的会话管理请求消息(例如,PDU会话建立请求消息或者PDU会话更新请求消息)。核心网网元根据会话管理请求消息中携带的第一指示信息和第二指示信息中的至少一个,向策略控制网元发送策略请求消息,该策略请求消息包括流描述参数与第三指示信息。策略控制网元基于策略请求消息向核心网网元发送该业务流的传输方法。
可选的,该策略控制网元还可以向核心网网元发送分流策略,该分流策略包括至少一个接入技术指示。其中,接入技术指示用于指示传输业务流的接入技术。
其中,第一指示信息用于表示终端支持第一传输方法能力,和第二传输方法能力中的至少一个。该第二指示信息和第三指示信息用于请求使用第一传输方法和第二传输方法中的至少一个传输业务流。
本申请实施例中如果终端可以使用一个传输方法传输业务流,则表示终端具有使用该传输方法传输业务流的能力。例如,终端可以使用第一传输方法传输业务流,则表明终端具有第一传输能力,终端可以使用第二传输方法传输业务流,则表明终端具有第二传输能力。
示例性的,第一传输能力为多路传输控制协议(MultiPath Transmission Control Protocol,MPTCP)能力,第二传输能力为用户数据报协议(User Datagram Protocol,UDP)能力。
例如,该第二指示信息和第三指示信息用于请求使用多路传输控制协议(MultiPath Transmission Control Protocol,MPTCP)方法、MPTCP代理(proxy)方法、TCP方法、TCP proxy方法、UDP方法、UDP proxy方法、QUIC方法、QUIC proxy方法、MP-QUIC方法、或MP-QUIC proxy方法中的至少一个传输业务流。
示例性的,第一指示信息用于表示终端支持第一传输能力,则第二指示信息或第三指示信息用于指示业务流请求使用MPTCP方法、MPTCP proxy方法、QUIC方法、快速UDP互联网连接QUIC proxy方法、MP-QUIC方法或MP-QUIC proxy中的至少一个传输。
示例性的,第一指示信息用于表示终端支持第二传输能力,则第二指示信息或第三指示信息用于请求使用TCP方法、TCP proxy方法、UDP方法、或UDP proxy方法中的至少一个传输业务流。
示例性的,业务流的传输方法包括以下一项或者多项:MPTCP方法、MPTCP proxy方法、TCP方法、TCP proxy方法、UDP方法、UDP proxy方法、QUIC方法、QUIC proxy方法或MP-QUIC方法、MP-QUIC proxy方法。
另一种可能的实现方式中,S101可以通过以下方式实现:核心网网元在终端请求注册到网络的过程中,接收策略控制网元发送的业务流的策略信息。
具体的,终端请求以多个接入技术中的至少一个注册到网络,在终端成功注册到网络侧后,策略控制网元通过核心网网元向终端发送包括业务流的传输方法和分流模式中至少一个的策略信息时,核心网网元便可以获取到业务流的策略信息。
示例性的,业务流的策略信息指:流描述参数和流描述参数对应的策略信息。具体可以指:流描述参数和分流模式,流描述参数和业务流的传输方法中的至少一个。
其中,流描述参数用于确定业务流。例如,流描述参数可以包括以下一项或者多项:业务流的五元组信息(例如,源IP地址、目的IP地址,源端口号、目的端口号、协议类型中的至少一个)或应用标识(Application ID)中的至少一个。
示例性的,分流模式包括以下一项或者多项:
a)、接入技术优先指示,用于指示优先通过接入技术优先指示关联的接入技术对应的链路传输业务流。
例如,接入技术优先指示为3GPP接入技术或者non 3GPP接入技术。当优先传输的接入技术不可用时,业务流可以通过另一个接入技术对应的链路传输。例如,优先传输的接入技术为3GPP接入技术,当3GPP接入技术不可用时,可以使用non 3GPP接入技术传输业务流。
b)、最优链路分流指示,用于指示优先通过最优链路传输业务流,该最优链路为链路状态优于其他链路的链路。
示例性的,最优链路分流指示可以包括:最优链路指示、链路最小时延指示、最小往返时间(Round-Trip Time,RTT)指示、链路最低负载指示、链路最大带宽指示、接入信号最强指示中的至少一个参数。
终端可以通过上述参数确定最优链路。例如,最优链路可以为:时延最小的链路、负载最低的链路、或者接入信号强度最强的链路。
c)、基于链路负载均衡的分流指示,用于指示按照链路负载均衡策略传输业务流。
其中,基于链路负载均衡的分流指示包括:负载均衡指示。
d)、接入技术与分流比例指示,用于指示按照接入技术对应的分流比例传输业务流。
例如,当分流比例为具体数值时,终端按照接入技术对应的分流比例传输业务流。如,分流比例指示3GPP接入技术的分流比例为20%,non 3GPP接入技术的分流比例为80%,则该业务流中20%的数据包通过3GPP接入技术传输。业务流中80%的数据包通过non 3GPP接入技术传输。当分流比例为空或者不包括分流比例时,表示基于链路负载均衡对业务流进行分流。
e)、冗余传输指示,用于表示业务流中的相同数据包同时通过不同接入技术传输。
S102、核心网网元向终端或者用户面功能网元发送策略信息。
一种示例,核心网网元在会话管理流程中向终端发送策略信息。
具体的,核心网网元基于终端对PDU会话管理请求消息,向终端发送携带业务流的传输方法和分流策略中至少一个的PDU会话管理响应消息。例如,PDU会话管理请求消息可以为PDU会话建立请求消息或者PDU会话更新请求消息。
例如,PDU会话管理响应消息可以为:PDU会话新建接受消息或者PDU会话更新成功消息。
另一种示例,在终端成功注册到网络的过程中,接入与移动性管理网元可以通过非接入层(Non-access stratum,NAS)传输消息向终端发送策略控制网元发送的传输方法和分流模式中至少一个。
S103、终端接收核心网网元发送的业务流的分流模式和/或业务流的传输方法,该业务流所在的分组数据单元PDU会话支持多种接入技术。
例如,该业务流所在的PDU会话支持第一接入技术和第二接入技术。例如,第一接入技术为3GPP接入技术,第二接入技术为non 3GPP接入技术。又例如,第一接入技术为non 3GPP接入技术。第二接入技术为3GPP接入技术。
一种示例,终端从核心网网元发送的NAS传输消息中获取策略控制网元发送的业务流的分流模式和/或业务流的传输方法。
另一种示例,终端从核心网网元发送的会话管理响应消息中获取业务流的分流策略和/或业务流的传输方法。
S104、终端根据分流模式和/或业务流的传输方法采用多种接入技术中的至少一种传输业务流。
需要说明的是,如果终端在会话管理流程和注册流程中均接收到业务流的传输方法/分流模式,则终端基于会话管理流程中获取的业务流的分流策略和/或业务流的传输方法对应的接入技术传输业务流。
本申请实施例提供一种业务流的传输方法,通过终端获取核心网网元发送的业务流的分流模式和/业务流的传输方法,并根据业务流的分流模式和/业务流的传输方法确定使用不同传输方法的业务流采用的接入技术,这样可以不基于分流策略对业务流分流,利用业务流的分流模式和/业务流的传输方法从而可以在支持多种接入技术的PDU会话中对使用不同传输方法的业务流根据确定的相应接入技术进行分流,从而降低了核心网网元和终端之间信令交互的复杂性。
终端在传输业务流时,还可以基于传输该业务流的多路传输算法确定使用哪个接入技术传输业务。因此,作为本申请的另一个实施例,如图6所示,该方法还包括:
S105、终端获取多路传输算法。
一方面,核心网网元发送的策略信息还包括分流模式对应的多路传输算法,则终端从策略信息中获取核心网网元发送的分流模式对应的多路传输算法。或者,核心网网元发送的策略信息还包括业务流的传输方法对应的多路传输算法,则终端从策略信息中获取核心网网元发送的业务流的传输方法对应的多路传输算法。
另一方面,终端中配置有多路传输算法,则终端根据分流模式确定终端配置的多路传输算法。或者,终端根据业务流的传输方法确定终端配置的多路传输算法。
相应的,如图6所示,S104具体可以通过以下方式实现:终端根据分流模式和/或业务流的传输方法以及多路传输算法采用多种接入技术中的至少一种传输业务流。
一种示例,终端根据与分流模式对应的多路传输算法,采用多种接入技术中的至少一种传输业务流。
具体的,终端根据分流模式确定与分流模式对应的多路传输算法,并根据多路传输算法从多种接入技术中确定用于传输业务流的接入技术,然后使用所确定的接入技术传输业务流。
另一种示例,终端根据与业务流的传输方法对应的多路传输算法,采用多种接入技术中的至少一种传输业务流。
具体的,终端根据业务流的传输方法,确定与业务流的传输方法对应的多路传输算法,并根据多路传输算法从多种接入技术中确定用于传输业务流的接入技术,然后使用所确定的接入技术传输业务流。
以业务流的传输方法为MPTCP方法,该MPTCP方法对应的多路传输算法为优选最小RTT路径算法为例,则终端根据RTT路径算法测量3GPP接入技术和non 3GPP接入技术分别对应的链路时延,然后从3GPP接入技术和non 3GPP接入技术分别对应的链路时延中选择链路时延最小的接入技术传输业务流。
示例性的,对于使用MPTCP方法、MPTCP proxy方法、TCP方法、TCP proxy方法中任一个传输的业务流,多路传输算法为MPTCP算法。
示例性的,对于使用UDP方法、UDP proxy方法、QUIC方法、QUIC proxy方法、MP-QUIC方法、MP-QUIC proxy方法中任一个传输的业务流,多路传输算法为QUIC算法或MP-QUIC算法。
本申请实施例中的MPTCP算法或者QUIC算法或MP-QUIC算法为不同操作***的MPTCP算法或者QUIC算法或MP-QUIC算法。例如,操作***可以为IOS操作***、Linux操作***中的至少一个。
例如,IOS操作***中的MPTCP算法包括以下一项或者多项:切换算法、优选最小RTT路径算法、多路聚合算法。
例如,Linux操作***中的MPTCP算法包括以下一项或者多项:轮询调度算法、缺省算法或冗余传输算法。
在本申请的实施例中,采用多路传输算法进行业务流的分流时,核心网网元可以不向终端发送分流策略,终端可以基于操作***中已经支持的多路传输算法实现业务流的分流,可以不采用分流策略,从而减少了与核心网网元之间的信令交互。
终端和用户面功能网元可以分别根据策略信息自行决定使用哪个接入技术传输业务流。因此,对于同一个业务流,终端在上行传输时,发送该业务流使用的接入技术可能和用户面功能网元在下行传输时发送该业务流使用的接入技术不同。为了使得同一个业务流在上行传输过程中和下行传输过程中使用相同的接入技术,作为本申请的另一个实施例,如图7所示,本申请实施例提供的方法还包括:
S106、核心网网元向终端发送指示信息(例如,可以为reflective分流指示),该指示信息用于指示终端发送业务流采用的接入技术与终端接收业务流采用的接入技术相同。
S107、终端接收核心网网元发送的指示信息。
基于S106和S107,本申请中的S104可以通过以下方式实现:终端根据分流模式和/或业务流的传输方法以及指示信息采用多种接入技术中的至少一种传输业务流。
例如,当终端在3GPP接入技术上接收到用户面功能网元发送的业务流,则终端在向用户面功能网元发送业务流时,采用3GPP接入技术。
需要说明的是,终端获取指示信息之前,终端可以根据分流模式和业务流的传输方法中至少一个确定的接入技术传输业务流,在接收到指示信息之后,则终端使用根据指示信息所确定的接入技术传输业务流。
例如,终端获取指示信息之前,根据分流模式和业务流的传输方法中至少一个确定的接入技术为3GPP接入技术,则终端将该业务流中的数据包使用3GPP接入技术传输。终端接收到指示信息之后,根据指示信息确定的接入技术为non 3GPP接入技术,将该业务流中的其余数据包迁移至non 3GPP接入技术侧传输。
可选的,在进行接入技术迁移过程中,终端还可以向用户面功能网元发送用于指示业务流在3GPP接入技术传输结束的指示。这样便于用户面功能网元根据业务流在3GPP 接入技术传输结束的指示,对在3GPP接入技术和non 3GPP接入技术上的数据包排序。
需要说明的是,上述方法S101-S107中由终端执行的过程,均可以由用户面功能网元执行。当由用户面功能网元执行时,用户面功能网元与核心网网元之间交互的消息,则相应改变。
需要说明的是,在实施例一提供的方案中还包括:核心网网元向终端发送为终端的PDU会话分配多个地址,以及多个地址中每个地址对应的接入技术类型。然后终端根据多个地址中每个地址对应的接入技术类型以及策略信息传输业务流的方案。具体的,终端根据多个地址中每个地址对应的接入技术类型以及策略信息传输业务流的方式可以参考实施例二中的描述,此处不再赘述。
实施例二
在实际中,多接入PDU会话可以实现业务流基于MPTCP在不同接入技术之间的移动。但是该多接入PDU会话中还可能存在其他非MPTCP业务流(例如,使用UDP业务流)。而目前多接入PDU会话中无法支持非MPTCP业务流的移动,这样如果在多接入PDU会话中对非MPTCP业务流移动可能会导致非MPTCP业务流传输中断。因此,如图8所示,本申请实施例提供一种业务流的传输方法、通信方法交互的流程示意图,该方法包括:
S201、核心网网元为终端的PDU会话分配多个地址,以及多个地址中每个地址对应的接入技术类型。该PDU会话支持多个接入技术。
应理解,S201还可以通过:核心网网元为终端的PDU会话分配多个地址,该多个地址中每个地址对应一个业务类型替换。该PDU会话支持多个接入技术。
一种可能的实现方式中,核心网网元接收会话管理请求消息(例如,该会话管理请求消息可以是终端通过移动管理网元发送给会话管理网元的,此时,核心网网元应理解为会话管理网元)。然后核心网网元为PDU会话分配多个地址。核心网网元基于会话管理请求消息为该PDU会话分配多个地址以及确定多个地址中每个地址对应的接入技术类型或者业务类型。例如,该会话管理请求消息中可以携带第一指示信息。
另一种可能的实现方式中,核心网网元(例如,会话管理网元)接收到终端发送的会话管理请求消息之后,通过N4会话消息向用户面功能网元发送用于指示由用户面功能网元为终端的PDU会话分配多个地址以及每个地址对应的接入技术类型或者业务类型的指示。例如,该N4会话消息中可以携带第一指示信息。然后核心网网元从用户面功能网元处获取多个地址以及确定多个地址中每个地址对应的接入技术类型或者每个地址对应的业务类型。
当然,用户面功能网元也可以只为该PDU会话分配多个地址,然后将分配的多个地址发送给核心网网元,由核心网网元确定多个地址中每个地址对应的接入技术类型或者每个地址对应的业务类型。
示例性的,接入技术类型包括第一接入技术类型和第二接入技术类型中的至少一个。业务类型为通用业务流或第一业务流。
例如,第一接入技术类型为3GPP接入技术,或LTE接入技术,或5G接入技术,或NG-RAN接入技术,第二接入技术类型为non 3GPP接入技术,或WLAN接入技术,或固定网络接入技术等。或者第一接入技术类型为non 3GPP接入技术,或WLAN接入技术,或固定网络接入技术等,第二接入技术类型为3GPP接入技术,或LTE接入技术,或5G接入技术,或NG-RAN接入技术。
其中,一个地址对应通用业务流表示该地址可以对应多个业务流(例如,第一业务 流和第二业务流),即该地址可以用于传输第一业务流或第二业务流中的一个或者多个。同样可以将对应通用业务流的地址称为通用地址。例如,IP1对应第一业务流和第二业务流,IP1可以称为通用地址。
此外,本申请实施例还可以将对应多个接入技术类型的地址可以称为通用地址,即可以使用通用地址传输采用任何接入技术传输的业务流。
一种可能的实现方式中,本申请实施例提供的方法还包括:核心网网元在接收到终端发送的用于指示业务流的传输方法的信息后,核心网网元根据用于指示业务流的传输方法的信息,选择具有该传输方法功能的用户面功能网元。
示例性的,当第一指示信息表示终端支持MPTCP能力或使用第一传输方法(MPTCP方法或MPTCP proxy方法)传输业务流时,核心网网元选择具有MPTCP proxy能力的用户面功能网元,且为终端分配的多个地址包括:第一地址、第二地址和第三地址。
示例性的,当第一指示信息表示终端支持MP-QUIC能力和QUIC能力中至少一种能力或第二传输方法为UDP方法、UDP proxy方法、TCP方法、TCP proxy方法、UDP方法、UDP proxy方法中任一个传输业务流时,核心网网元为终端的PDU会话选择支持MP-QUIC proxy能力、或QUIC proxy能力的用户面功能网元,且为终端分配的多个地址包括:第一地址和第二地址。
本申请实施例中的地址可以为IP地址。
S202、核心网网元向终端发送多个地址以及多个地址中每个地址对应的接入技术类型或每个地址对应的业务类型。
对于S202一种可能的替换方式中,核心网网元向终端发送多个地址以及用于确定多个地址中每个地址对应的接入技术类型的信息,或者核心网网元向终端发送多个地址以及用于确定多个地址中每个地址对应的业务类型的信息。
示例性的,核心网网元可以在会话管理响应消息中向终端发送多个地址以及多个地址中每个地址对应的接入技术类型或每个地址对应的业务类型。
一种示例,当多个地址和每个地址对应的接入技术类型或业务类型由SMF网元确定时,SMF网元还可以将多个地址以及多个地址中每个地址对应的接入技术类型或每个地址对应的业务类型发送给用户面功能网元。
另一种示例,当该多个地址以及每个地址对应的接入技术类型或每个地址对应的业务类型为用户面功能网元确定时,用户面功能网元还可以(例如,通过用户面消息)向终端发送每个地址对应的接入技术类型或每个地址对应的业务类型。
示例1-1)、以多个地址包括第一地址、第二地址和第三地址为例。
一种可能的实现方式1-1,S202可以通过以下方式实现:核心网网元向终端发送第一地址、第二地址、第三地址、与第一地址对应的第一接入技术类型、与第二地址对应第二接入技术类型,以及与第三地址对应的第一接入技术类型和第二接入技术类型。
如果终端和核心网网元可以提前协商,由终端为每个地址选择对应的接入技术类型,或者终端和核心网网元已提前协商每个地址对应的接入技术类型,则S202可以通过以下一种可能的实现方式1-2实现:
一种可能的实现方式1-2,核心网网元向终端发送第一地址、第二地址和第三地址。
一种可能的实现方式,终端和核心网网元可以默认配置,第一地址、第二地址、或者第三地址对应的接入技术类型或者对应的业务类型。
一种可能的实现方式1-3,核心网网元向终端发送第一地址、第二地址和第三地址, 以及与第三地址对应的通用地址指示。通用地址指示用于指示第三地址为通用地址,也即指示第三地址对应多个接入技术类型(例如,第一接入技术类型和第二接入技术类型)。
示例1-2)、以多个地址包括第一地址和第二地址为例。
一种可能的实现方式2-1,S202可以通过以下方式实现:核心网网元向终端发送第一地址、第二地址、与第一地址对应的第一接入技术类型、与第二地址对应第二接入技术类型。
如果终端和核心网网元可以提前协商,由终端为每个地址选择对应的接入技术类型,或者终端和核心网网元已提前协商每个地址对应的接入技术类型,则S202可以通过以下一种可能的实现方式2-2实现:
一种可能的实现方式2-2,核心网网元向终端发送第一地址、第二地址。
需要说明的是,当核心网网元向终端不发送第三地址时,核心网网元可以向用户面功能网元发送第三地址。当然核心网网元也可以向用户面功能网元不发送第三地址。
由于上述实施例中第三地址可能与第一地址或第二地址相同,例如,核心网网元为终端分配了第一地址和第二地址,为了使得终端确定第一地址或第二地址对应的业务类型或者接入技术类型。因此,S202可以通过下述示例1-3实现:
示例1-3)、以多个地址包括第一地址和第二地址为例。
一种可能的实现方式3-1,S202可以通过以下方式实现:核心网网元向终端/用户面功能网元发送第一地址、第二地址、与第一地址对应的第一类型指示信息、与第二地址对应第二类型指示信息。
一种可能的实现方式3-2,S202可以通过以下方式实现:核心网网元向终端/用户面功能网元发送为PDU会话分配的多个地址,以及多个地址中每个地址对应的接入技术类型或每个地址对应的业务类型,包括:核心网网元向终端/用户面功能网元发送第一地址和第二地址,以及与第二地址对应的第二类型指示信息。
其中,一方面,第一类型指示信息用于指示第一接入技术类型和第二接入技术类型。第二类型指示信息用于指示第一接入技术类型或第二接入技术类型。或者,
另一方面,第一类型指示信息用于指示第一地址与通用业务流对应。第二类型指示信息用于指示第二地址与第一业务流对应。
示例性的,第一种实现:第一类型指示信息可以为第一接入技术类型指示和第二接入技术类型指示。第二类型指示信息可以为第一接入技术类型指示或第二接入技术类型指示,或者,第二类型指示信息也可以是第二指示字段或者第五指示信息。
例如,第二类型指示信息可以为3GPP接入技术指示。
示例性的,第二种实现:第一类型指示信息为通用地址指示。
示例性的,第三种实现:第一类型指示信息也可以是第一指示字段或者第四指示信息,用于指示第一地址对应第一接入技术类型和第二接入技术类型。
例如,第四指示信息为以第一业务流指示和/或第二业务流指示,第五指示信息为第一业务流指示。或者第四指示信息为通用业务流指示。
第四种实现:第一类型指示信息为空,即第一地址不与任何接入技术类型对应,第二类型指示信息的方式可以参考上述第一种实现中描述的方式,此处不再赘述。
其中,接入技术类型指示用于指示接入技术类型。业务流指示用于确定业务流。例如第一业务流指示用于确定第一业务流。
在第一种实现情况下,为了使得终端可以确定传输第一业务流和第二传输流的地址, 一方面,第一类型指示信息还用于指示第一业务流和第二业务流可以采用第一地址传输。或者第一类型指示信息还指示使用第一地址传输通用业务流。第二类型指示信息用于指示采用第二地址传输第一业务流。且当传输第一业务流的接入技术为第二地址对应的接入技术类型时,采用第二地址传输第一业务流。当传输第一业务流的接入技术为第一接入技术类型或第二接入技术类型,且不是第二地址对应接入技术类型时,采用第一地址传输第一业务流。
或者,终端和核心网网元提前协商当传输第一业务流的接入技术为第二地址对应接入技术类型时,采用第二地址传输第一业务流。当传输第一业务流的接入技术为第一接入技术类型或第二接入技术类型,且不是第二地址对应接入技术类型时,采用第一地址传输第一业务流。
另一方面,在第三种实现情况下,由于第一业务流可以对应第一地址也可以对应第二地址,为了使得终端可以确定使用第一地址还是第二地址传输业务流,场景1、核心网网元向终端指示第二地址对应第一业务流时,还可以向终端发送第一消息,该第一消息用于表示第二地址对应第一接入技术类型或第二接入技术类型。场景2、核心网网元还可以向终端发送第一消息,该第一消息包括:分流策略,该分流策略包括:第一地址与第一接入技术类型指示,以及第二地址与第二接入技术类型指示。其中,第一地址与第一接入技术类型指示用于指示第一地址对应第一接入技术类型,第二地址与第二接入技术类型指示用于指示第二地址对应第二接入技术类型。这样终端在接收到第一地址与第一接入技术类型指示,以及第二地址与第二接入技术类型指示之后,便可以确定对于第一业务流,当根据策略信息确定的接入技术为第一接入技术类型时,使用第一地址处理第一业务流。当根据策略信息确定的接入技术为第二接入技术类型时,使用第二地址处理第一业务流。当根据策略信息确定的接入技术为第一接入技术时,使用第一地址处理第一业务流。即进一步向终端指示第一地址和第二地址如何使用。或者分流策略包括第一地址与第二接入技术类型指示,以及第二地址与第一接入技术类型指示。
示例性的,当第一传输方法为MPTCP方法,或MPTCP proxy方法时,核心网网元向终端发送IP1与3GPP接入技术指示和IP2与non 3GPP接入技术指示。这样终端如果确定MPTCP业务流使用3GPP接入技术传输时,则使用IP1处理MPTCP业务流。
综上所述,终端可以基于第一类型指示信息和第二类型指示信息,以及传输第一业务流的接入技术,确定传输第一业务流时使用的地址。
S203、终端获取多个地址。该多个地址中每个地址对应业务类型或者每个地址对应接入技术类型。
示例性的,终端可以在会话管理响应消息中获取多个地址,以及多个地址中每个地址对应的业务类型或者接入技术类型。
示例性的,S203可以通过以下方式具体实现:
示例A,终端可以和核心网网元协商多个地址中每个地址对应的接入技术类型或者业务类型。这样当核心网网元以上述一种可能的实现方式1-2或者一种可能的实现方式2-2向终端发送多个地址时,终端便可以根据接收到多个地址,基于协商的内容确定每个地址对应的接入技术类型或者业务类型。
例如,终端和核心网网元提前协商第一地址对应第一接入技术类型,第二地址对应的第二接入技术类型。又例如,第一地址对应通用业务流,第二地址对应第一业务流。
又例如,多个地址包括第一地址、第二地址和第三地址,这样终端在接收到第一地 址、第二地址和第三地址时,可以根据提前协商的内容确定第一地址对应第一接入技术类型、第二地址对应第二接入技术类型,第三地址对应第一接入技术类型和第二接入技术类型,或者第三地址为通用地址。
示例B,当核心网网元以一种可能的实现方式1-1或者一种可能的实现方式2-1向终端发送多个地址时,则终端可以根据核心网网元的指示,确定多个地址中每个地址对应的接入技术类型。
例如,对于一种可能的实现方式1-1,终端可以确定第三地址对应第一接入技术类型和第二接入技术类型,第一地址对应第一接入技术类型,以及第二地址对应第二接入技术类型。
又例如,对于一种可能的实现方式2-1,终端可以确定第一地址对应第一接入技术类型以及第二地址对应第二接入技术类型。
又例如,对于一种可能的实现方式3-1,终端可以根据第一类型指示信息确定第一地址对应第一接入技术类型和第二接入技术类型。或者第一地址对应通用业务流。终端可以根据第二类型指示信息确定第二地址对应第一接入技术类型或第二接入技术类型。或者第二地址对应第一业务流。
具体的,第一类型指示信息为第一接入技术类型指示和第二接入技术类型指示时,终端确定第一地址对应第一接入技术类型和第二接入技术类型。第一类型指示信息为通信业务流指示时,终端确定第一地址对应通用业务流。
需要说明的是,核心网网元还可以向终端指示多个地址中部分地址对应的业务类型或者接入技术类型,然后由终端自行决定多个地址中另一部分地址对应的业务类型或者接入技术类型。例如,核心网网元向终端发送第一地址和第二地址,但是核心网网元仅指示第一地址对应第二接入技术类型和第一接入技术类型,这样终端在收到第一地址和第二地址时,便可以确定第二地址对应第二接入技术类型或第一接入技术类型。
需要说明的是,当核心网网元向终端发送第一地址对应通用业务流,第二地址对应第一业务流时,还可以向终端发送第一地址为通用地址,第二地址对应第一接入技术类型或第二接入类型的信息。
S204、终端根据策略信息以及多个地址传输业务流。
应理解,如果终端获取到的是每个地址对应的接入技术类型,则终端根据策略信息以及多个地址传输业务流。
如果终端获取到的是每个地址对应的业务类型,则S204需要通过以下方式替换:终端根据每个地址对应的业务类型,传输业务流。
作为一种可能的实现方式中,本申请实施例提供的方法还包括:S205、用户面功能网元接收终端发送的业务流,该业务流使用多个地址传输。S206、用户面功能网元根据策略信息,传输该业务流(适用于每个地址对应接入技术类型的情况)。或者,用户面功能网元根据每个地址对应的业务类型传输业务流(适用于每个地址对应业务类型的情况)。
具体的,S206的具体实现方式可以参考下述实施例中的描述,此处不再赘述。
本申请实施例提供一种业务流的传输方法,终端接收核心网网元为终端的PDU会话分配的多个地址,当该PDU会话中存在支持不同传输方法的业务流时,终端可以根据策略信息,确定使用不同传输方法的业务流对应的地址。并根据使用不同传输方法的业务流对应的地址以及根据策略信息确定的接入技术传输业务流。由于业务流是基于根据策略信息确定的接入技术对应的地址传输,因此,对于同一个业务流,无论该业务流在传 输过程中接入技术如何变更,终端都可以确定传输该业务流的地址。从而可以实现采用不同传输方法的业务流基于核心网网元分配的地址在同一个业务流中传输。
核心网网元可能为终端分配三个地址,也可能分配两个地址,PDU会话中可能包括使用多种传输方法传输的业务流,业务流使用的传输方法不同,终端根据策略信息以及多个地址传输业务流的方式也存在差异,下述将分别介绍:
示例2-1)、以核心网网元为分配的多个地址包括第一地址和第二地址,其中第一地址对应第一接入技术类型,第二地址对应第二接入技术类型,业务流包括采用第一传输方法传输的第一业务流为例。
示例性的,第一传输方法包括MPTCP方法、MPTCP proxy方法、TCP方法、TCP proxy方法、UDP方法、UDP proxy方法、QUIC方法、QUIC proxy方法或MP-QUIC方法、MP-QUIC proxy方法中的一项或者多项。
第一种可能的实现方式,S204可以通过以下方式实现:终端根据策略信息采用第一地址和/或第二地址传输第一业务流。
相应的,S206具体可以通过以下方式实现:用户面功能网元根据策略信息接收业务流(例如,该业务流为终端发送的),该业务流的地址为源地址,用户面功能网元将业务流的源地址从第一地址/第二地址替换为第四地址,用户面功能网元发送第四地址的业务流。其中,第四地址为第三地址或者用户面功能网元的地址。
本申请实施例中终端根据策略信息采用第一地址和/或第二地址传输第一业务流指:终端将该第一业务流采用第一地址和/或第二地址处理,然后将进行地址处理后的第一业务流在策略信息指示的接入技术上传输。由于第一业务流从一个接入技术迁移到另一个接入技术时,该第一业务流的地址也会变化。因此,用户面功能网元在接收到源地址为第一地址/第二地址的第一业务流后,将源地址为第一地址/第二地址的第一业务流变更为第四地址。由于第一业务流中通常携带用于指示第一业务流的信息,因此用户面功能网元便可以将在不同接入技术上传输的同一个业务流转化为同一个地址发送出去。
对业务流采用第一地址和/或第二地址处理可以指对该业务流中的数据包采用第一地址和/或第二地址处理。由于同一个业务流中的不同数据包可能在不同的接入技术上传输,因此,对于一个数据包具体使用第一地址还是第二地址处理,或者使用第一地址和第二地址处理取决于传输该数据包的接入技术。
具体的,在示例2-1中终端可以根据策略信息确定第一业务流采用的接入技术。然后根据第一业务流采用的接入技术对应的地址处理第一业务流。
具体的,终端如何根据策略信息确定业务流使用的接入技术可以参考实施例一中描述的方案,此处不再赘述。
例如,IP1对应3GPP接入技术,终端确定使用MPTCP方法传输的第一业务流采用3GPP接入技术传输,则终端可以使用IP1处理第一业务流,并将地址处理后的第一业务流采用3GPP接入技术传输。
示例2-2)、以核心网网元分配的多个地址包括第一地址、第二地址、第三地址。其中,第一地址对应第一接入技术类型,第二地址对应第二接入技术类型,第三地址对应第一接入技术类型和第二接入技术类型,业务流包括采用第一传输方法传输的第一业务流和采用第二传输方法传输的第二业务流中的至少一个为例。
一种示例,第一传输方法包括:MPTCP方法、MPTCP proxy方法、UDP QUIC方法、UDP QUIC proxy方法、UDP MP-QUIC方法或MP-QUIC proxy中的一项或者多项。第二传 输方法包括:TCP方法、TCP proxy方法、UDP方法、UDP proxy方法中的一项或者多项。
第二种可能的实现方式,S204具体可以通过以下方式实现:终端根据策略信息采用第一地址和/或第二地址传输第一业务流,采用第三地址传输第二业务流。
相应的,S206具体可以通过以下方式实现:用户面功能网元在接收到源地址为第一地址/第二地址的第一业务流和源地址为第三地址的第二业务流后,将第一业务流的地址变更为第四地址。由于业务流的中通常携带用于指示业务流的信息,因此用户面功能网元便可以将在不同接入技术上传输的同一个业务流转化为同一个地址发送出去。
具体的,终端基于策略信息或者指示信息确定第一业务流使用第一接入技术或第二接入技术传输,则终端采用第一地址和/或第二地址处理第一业务流。并将进行地址处理后的第一业务流使用第一接入技术或第二接入技术传输。
示例性的,以第一地址对应3GPP接入技术,第一业务流为MPTCP业务流为例,终端根据策略信息确定MPTCP业务流采用3GPP接入技术,则终端采用第一地址处理MPTCP业务流。
例如,1P1对应3GPP接入技术,IP2对应non 3GPP接入技术,如果MPTCP业务流开始采用3GPP接入技术传输,终端使用IP1处理该MPTCP业务流。如果后续该MPTCP业务流迁移至non 3GPP接入技术上传输,则终端使用IP2处理该MPTCP业务流。这样用户面功能网元接收到的MPTCP业务流的源地址可能包括IP1和IP2,因此,用户面功能网元将该MPTCP业务流的源地址替换为IP3,然后将地址为IP3的MPTCP业务流发送出去。
可以理解的是,如果采用第一地址处理第一业务流,则终端将采用第一地址处理后的第一业务流发送给第一地址对应的接入技术类型中的接入网设备。如果采用第二地址处理第一业务流,则终端将采用第二地址处理后的第一业务流发送给第二地址对应的接入技术类型中的接入网设备。例如,如果第一地址对应3GPP接入技术,在终端将采用第一地址处理后的第一业务流发送给3GPP接入技术中的接入网设备。
示例性的,对于第二业务流,则终端采用第三地址处理第二业务流,并基于分流策略/或者分流指示确定第二业务流使用第一接入技术和第二接入技术中的至少一个传输,则终端采用第一接入技术和第二接入技术中的至少一个传输采用第三地址处理后的第二业务流。
例如,以第二业务流为UDP业务流,如果终端确定UDP业务流在3GPP接入技术上传输,则使用第三地址处理第二业务流,并将采用第三地址处理后的UDP业务流在3GPP接入技术上传输。如果终端确定UDP业务流在3GPP接入技术和非3GPP接入技术上传输,则使用第三地址处理第二业务流,并将采用第三地址处理后的UDP业务流在3GPP接入技术和非3GPP接入技术上传输。
由于第三地址为通用地址,对于第二业务流而言,终端可以使用第三地址传输该第二业务流。无论该第二业务流在哪个接入技术上传输,该第二业务流的地址均为第三地址,从而可以避免使用第二传输方法传输的第二业务流在同一个PDU会话中进行业务流迁移时地址中断的问题。用户面功能网元在多个接入技术上接收到第二业务流后,便可以不对第二业务流的地址做处理直接发出去。
需要说明的是,一个业务流可能包括多个数据包,该多个数据包可能采用同一个接入技术传输,也可能采用不同的接入技术传输。本申请实施例中根据策略信息传输业务流包括:根据策略信息确定的接入技术使用多个地址传输业务流中的数据包。例如,根据策略信息采用第一地址传输业务流可以指:使用第一地址处理业务流的数据包,并将 进行地址处理后的业务流的数据包在根据策略信息确定传输该业务流的数据包对应的接入技术上传输。
由于上述实施例中第三地址可能与第一地址或第二地址相同,例如,核心网网元为终端分配了第一地址和第二地址,其中,第一地址对应第一接入技术类型和第二接入技术类型,第二地址对应第一接入技术类型或第二接入技术类型。因此,终端根据策略信息以及多个地址传输业务流还可以通过下述示例2-3实现:
示例2-3)、以核心网网元分配的多个地址包括第一地址和第二地址。其中,第一地址对应第一接入技术类型和第二接入技术类型,第二地址对应第一接入技术类型或第二地址类型。业务流包括采用第一传输方法传输的第一业务流和/或采用第二传输方法传输的第二业务流为例。
示例2-3中的第一传输方法和第二传输方法的内容可以参考示例2-2中的描述,此处不再赘述。
第三种可能的实现方式中,S204可以通过以下方式实现:终端根据策略信息采用第一地址和/或第二地址传输第一业务流,以及根据策略信息采用第一地址传输第二业务流。
一种可能的实现方式中,终端根据策略信息采用第一地址传输第二业务流,可以通过以下方式具体实现:终端使用第一地址处理第二业务流。并将进行地址处理后的第二业务流使用策略信息或者指示信息所指示的接入技术传输。
一种示例,以第一地址为IP1、第二业务流为UDP业务流为例,对于,终端使用IP1处理UDP业务流,并根据策略信息或者指示信息确定UDP业务流使用3GPP接入技术传输,则将地址为IP1的UDP业务流使用3GPP接入技术传输。
另一种可能的实现方式中,如果终端确定第一地址对应第一接入技术类型和第二接入技术类型,第二地址对应第一接入技术类型或第二地址类型终端根据策略信息采用第一地址或第二地址传输第一业务流的情况下,终端根据策略信息采用第一地址和/或第二地址传输第一业务流可以通过以下方式1或方式2具体实现:
方式1、如果终端确定传输第一业务流的接入技术为第二地址对应的接入技术类型时,终端根据策略信息采用第二地址传输第一业务流。
方式2、如果终端确定传输第一业务流的接入技术为第一接入技术类型或第二接入技术类型,且不是第二地址对应接入技术时,终端根据策略信息采用第一地址传输第一业务流。
例如,对于第一业务流而言,终端根据策略信息确定传输该第一业务流的接入技术,然后根据确定的接入技术选择处理该第一业务流的地址。在使用选择的地址处理第一业务流之后,将处理后的第一业务流使用确定的接入技术传输。
例如,以第一业务流为MPTCP业务流,IP1对应3GPP接入技术和非3GPP接入技术,IP2对应3GPP接入技术为例,如果终端确定MPTCP业务流采用非3GPP接入技术,则终端采用IP1传输MPTCP业务流,并将处理后的MPTCP业务流采用非3GPP接入技术传输。如果终端确定MPTCP业务流采用3GPP接入技术,则终端采用IP2处理MPTCP业务流,并将处理后的MPTCP业务流采用3GPP接入技术传输。
示例2-4)、以核心网网元分配的多个地址包括第一地址和第二地址。其中,第一地址对应通用业务流,第二地址对应第一业务流。业务流包括采用第一传输方法传输的第一业务流和/或采用第二传输方法传输的第二业务流为例。
示例2-4中的第一传输方法和第二传输方法的内容可以参考示例2-2中的描述,此 处不再赘述。
第四种可能的实现方式中,S204可以通过以下方式实现:终端采用第一地址和/或第二地址传输第一业务流,以及采用第一地址传输第二业务流。
如果终端确定第一地址对应通用业务流,第二地址对应第一业务流,则终端根据策略信息采用第一地址和/或第二地址传输第一业务流可以通过以下方式3或方式4具体实现:
方式3、终端根据第一消息确定第一地址对应第一接入技术类型,和/或第二地址对应第二接入技术类型,如果终端根据策略信息或者指示信息确定第一业务流使用第一接入技术类型传输,则终端采用第一地址传输第一业务流。
方式4、终端根据策略信息或者指示信息确定第一业务流使用第二接入技术类型传输,则终端采用第二地址传输第一业务流。
示例性的,核心网网元向终端发送IP1对应通用业务流,及发送IP2对应MPTCP业务流给终端。且核心网网元向终端发送分流策略,该分流策略中包括IP1对应3GPP接入技术,IP2对应non 3GPP接入技术。如果终端根据策略信息确定MPTCP业务流使用3GPP接入技术传输,则终端对MPTCP业务流采用IP1处理,然后在3GPP接入技术上传输地址为IP1的MPTCP业务流。如果终端根据策略信息确定MPTCP业务流使用non 3GPP接入技术传输,则终端使用IP2在non 3GPP接入技术上传输MPTCP业务流。
S206具体可以通过以下方式实现:用户面功能网元在接收到源地址为第一地址的第一业务流后,将第一业务流的第一地址替换为第二地址。或者,用户面功能网元在接收到源地址为第二地址的第一业务流后,将第一业务流的第二地址替换为第一地址。在传输过程中同一个第一业务流可能采用不同的接入技术传输,这样便会导致同一个第一业务流对应不同的地址,而第一业务流中通常携带用于指示第一业务流的信息,因此用户面功能网元便可以将在不同接入技术上传输的同一个第一业务流转化为同一个地址发送出去。
例如,IP1对应3GPP接入技术和非3GPP接入技术,IP2对应3GPP接入技术时,如果MPTCP业务流采用非3GPP接入技术传输,则终端使用IP1处理MPTCP业务流,如果MPTCP业务流还采用3GPP接入技术传输,则终端使用IP2处理MPTCP业务流,这样用户面功能网元接收到源地址为IP1和源地址为IP2的MPTCP业务流后,统一源地址为IP1和IP2的MPTCP业务流的地址为IP1或者IP2。
由于对于使用第二业务流而言,无论同一个第二业务流采用哪个接入技术传输,该第二业务流对应的地址均为第一地址,因此,用户面功能网元接收到第二业务流时,可以不对第二业务流做地址转换处理。
一种可能的实现方式中,本申请实施例提供的方法还包括:核心网网元向终端发送用于指示业务流的传输方法的信息,终端接收核心网网元发送的用于指示业务流的传输方法的信息。这样便于终端在接收到用于指示业务流的传输方法的信息后,根据用于指示业务流的传输方法的信息确定业务流使用的接入技术类型,从而根据该接入技术类型确定传输业务流时的地址。
一种可能的实现方式中,本申请实施例提供的方法还包括:终端向核心网网元发送第一指示信息。核心网网元基于第一指示信息为终端的PDU会话分配多个地址。
作为一种可能的实现方式中,实施例二中的终端还可以用于执行实施例一中由终端执行的过程。具体可以参考实施例一中的描述,此处不再赘述。
实施例三
如图9所示,本申请实施例提供一种业务流的传输方法,包括:
S301、用户面功能网元获取为终端的PDU会话分配的多个地址,该PDU会话支持多个接入技术。
一方面,该多个地址中每个地址对应接入技术类型。另一方面,该多个地址中每个地址对应业务类型。
示例性的,该PDU会话可以支持第一接入技术类型和第二接入技术类型。例如,该PDU会话可以支持3GPP接入技术和non 3GPP接入技术。第一接入技术类型和第二接入技术类型的描述可以参考上述实施例二中的描述,此处不再赘述。
一种可能的实现方式中,S301可以通过以下方式实现:用户面功能网元接收会话管理网元为PDU会话分配的多个地址,以及多个地址中每个地址对应的接入技术类型或者每个地址对应的业务类型。具体的,会话管理网元发送多个地址的方式可以参考实施例二中核心网网元发送多个地址的方式。
示例性的,第一地址对应第一接入技术类型、第二地址对应第二接入技术类型、第三地址对应第一接入技术类型和第二接入技术类型。
例如,IP1对应3GPP接入技术、IP2对应non 3GPP接入技术、IP3对应non 3GPP接入技术和3GPP接入技术。
具体的,用户面功能网元确定多个地址中每个地址对应的接入技术类型或者业务类型的方式可以参考上述实施例二中终端确定的过程。即将上述终端确定多个地址中每个地址对应的接入技术类型或者业务类型的步骤中的终端替换为用户面功能网元即可。此处不再赘述。
另一种可能的实现方式中,S301可以通过以下方式实现:用户面功能网元为终端的PDU会话分配多个地址以及确定多个地址中每个地址对应的接入技术类型或者业务类型。
具体的,用户面功能网元在接收到会话管理网元发送的多地址指示或者第一指示信息时,则为终端的PDU会话分配多个地址。例如,多地址指示或第一指示信息可以从会话管理网元发送的N4会话消息中获取。
可选的,用户面功能网元还可以接收与每个地址对应的隧道标识。用户面功能网元基于策略信息确定使用该隧道传输业务流时,便可以使用该隧道对应的地址处理业务流。
S302、当每个地址对应接入技术类型时,用户面功能网元根据策略信息以及多个地址传输业务流,该策略信息包括分流模式和/或业务流的传输方法。当每个地址对应业务类型时,用户面功能网元采用多个地址传输业务流。
可选的,该策略信息还可以包括分流策略,分流策略包括至少一个接入技术指示。
可选的,用户面功能网元可以从会话管理网元处获取策略信息。会话管理网元获取策略信息的方式可以参考上述实施例中的描述。具体的,会话管理网元向用户面功能网元发送多个地址时或者指示用户面功能网元分配多个地址时,向用户面功能网元发送策略信息。
PDU会话中可能包括使用多种传输方法传输的业务流,业务流使用的传输方法不同,用户面功能网元根据策略信息以及多个地址传输业务流的方式也存在差异,下述将分别介绍:
Case1、以业务流包括采用第一传输方法传输的第一业务流,该多个地址包括第一地址和第二地址,第一地址对应第一接入技术类型,第二地址对应第二接入技术类型为例, S302可以通过以下方式A实现:
方式A、用户面功能网元根据策略信息采用第一地址和/或第二地址向终端发送第一业务流。
具体的,Case1中第一传输方法的内容可以参考示例2-1处的描述,此处不再赘述。
方式A的具体实现方式可以参考上面示例2-1处终端侧的描述,即将示例2-1处的终端替换成用户面功能网元即可。此处不再赘述。
可选的,本申请实施例中用户面功能网元获取会话管理网元发送的第三地址以及与第三地址对应的第二接入技术类型和第一接入技术类型,或者用户面功能网元获取会话管理网元发送的第三地址和通用地址指示。或者用户面功能网元获取会话管理网元发送的第三地址。当用户面功能网元仅获取到第三地址时,并未获取到与该第三地址对应的任何接入技术类型指示时,用户面功能网元便可以确定该第三地址为通用地址。
Case2)、以业务流包括采用第一传输方法传输的第一业务流和/或采用第二传输方法传输的第二业务流,多个地址包括第一地址、第二地址和第三地址。第一地址对应第一接入技术类型,第二地址对应第二接入技术类型,第三地址对应第一接入技术类型和第二接入技术类型为例,则S302可以通过以下方式B实现:
需要说明的是,Case2中第一传输方法和第二传输方法的内容可以示例2-2处的描述,此处不再赘述。
方式B、用户面功能网元根据策略信息采用第一地址和/或第二地址向终端发送第一业务流,采用第三地址向终端发送第二业务流。
方式B的具体实现方式可以参考上面示例2-2处终端侧的描述,即将示例2-2处的终端替换成用户面功能网元即可。此处不再赘述。
Case3)、以核心网网元分配的多个地址包括第一地址和第二地址,其中,第一地址对应第一接入技术类型和第二接入技术类型,第二地址对应第一接入技术类型或第二地址类型。业务流包括采用第一传输方法传输的第一业务流和/或采用第二传输方法传输的第二业务流为例,则S302可以通过以下方式3实现:
需要说明的是,Case3中第一传输方法和第二传输方法的内容可以示例2-2处的描述,此处不再赘述。
方式C、用户面功能网元根据策略信息采用第一地址和/或第二地址传输第一业务流,以及根据策略信息采用第一地址传输第二业务流。
方式C的具体实现方式可以参考上面示例2-3处终端侧的描述,即将示例2-3处的终端替换成用户面功能网元即可。此处不再赘述。
Case4、以核心网网元分配的多个地址包括第一地址和第二地址。其中,第一地址对应通用业务流,第二地址对应第一业务流。业务流包括采用第一传输方法传输的第一业务流和/或采用第二传输方法传输的第二业务流为例。
Case4中的第一传输方法和第二传输方法的内容可以参考示例2-2中的描述,此处不再赘述。
方式D、用户面功能网元根据多个地址中每个地址对应的业务类型,采用第一地址和/或第二地址传输第一业务流,以及采用第一地址传输第二业务流。
方式D的具体实现方式可以参考上面示例2-4处终端侧的描述,即将示例2-4处的终端替换成用户面功能网元即可。此处不再赘述。
作为本申请的另一个实施例,如图10所示,本申请实施例提供的方法还包括:
S303、用户面功能网元接收发送给终端的业务流。
示例性的,用户面功能网元可以从该用户面功能网元对应的数据网络接收发送给终端的业务流。
S304、用户面功能网元确定发送给终端的业务流采用第一传输方法传输。
示例性的,用户面功能网元可以基于业务流当前的传输方法,服务器IP地址确定业务流采用第一传输方法传输。
示例性的,第一传输方法包括:MPTCP方法、MPTCP proxy方法、TCP方法、TCP proxy方法、UDP方法、UDP proxy方法、UDP QUIC方法、UDP QUIC proxy方法、UDP MP-QUIC方法、MP-QUIC proxy方法中的一项或者多项。
在基于传输方法确定业务流采用第一传输方法传输时,用户面功能网元将使用该传输方法传输的所有业务流使用相应的传输方法传输给终端。在基于服务器IP地址确定业务流采用第一传输方法传输时,用户面功能网元仅将某些IP地址的业务流通过第一传输方法传输给终端。
S305、用户面功能网元将发送给终端的业务流的目标地址替换为第一地址和/或第二地址。
通过执行S305可以避免业务传输中断。例如,终端在上行传输过程中使用第一地址向用户面功能网元发送业务流,如果用户面功能网元不进行地址转换,终端在下行传输过程中收到的业务流的地址将不是第一地址,从而可能引起业务中断。相应的,如图10所示,S302具体可以通过以下方式实现:用户面功能网元根据策略信息采用第一地址和/或第二地址向终端发送第一业务流。
具体的,用户面功能网元可以根据策略信息确定该业务流使用的接入技术。在确定该业务流所使用的接入技术后,将业务流的目标地址使用该业务流所使用的接入技术对应的地址处理。
例如,用户面功能网元确定该业务流采用3GPP接入技术传输,则用户面功能网元将该第一业务流的目标地址替换为与3GPP接入技术对应的IP1。
对于上行传输而言,终端可以采用实施例二中的方法传输业务流。用户面功能网元是否支持第二传输能力,终端传输第一业务流和第二业务流时使用的地址存在差异,下述将分别介绍:
a)、以多个地址包括第一地址和第二地址,第一地址对应第一接入技术类型,第二地址对应第二接入技术类型为例,如图11所示为本申请的另一个实施例,本申请实施例提供的方法还包括:
S306、终端向用户面功能网元发送源地址为第一地址和/或第二地址的第一业务流。
具体的,S306的具体实现方式可以参考上述示例2-1中的具体描述,此处不再赘述。
S307、用户面功能网元接收终端发送的源地址为第一地址和/或第二地址的第一业务流。
相应的,S302可以具体通过以下方式实现:用户面功能网元根据策略信息将终端发送的第一业务流的源地址替换为第四地址并传输。
示例性的,第四地址为用户面功能网元的地址或者第三地址。
通过S306和S307当用户面功能网元接收到终端在不同接入技术上传输的第一业务流时,由于在不同接入技术上传输的第一业务流对应第一地址和/第二地址。如果不对该第一业务流的地址做处理,则对应不同地址的第一业务流将被数据网络认为来自不同的 终端,从而导致第一业务流中断。因此,为了防止第一业务流中断,用户面功能网元可以将该第一业务流对应第一地址和/第二地址统一替换为第四地址。然后将对应第四地址的第一业务流发送给DN。
b)、以业务流包括采用第一传输方法传输的第一业务流和/或采用第二传输方法传输的第二业务流,多个地址包括第一地址、第二地址、第三地址,其中,第一地址对应第一接入技术类型,第二地址对应第二接入技术类型,第三地址对应第一接入技术类型和第二接入技术类型为例,作为本申请的又一个实施例,如图12所示,本申请实施例提供的方法还包括:
此处的,第一传输方法和第二传输方法的内容可以示例2-2处的描述,此处不再赘述。
S308、终端向用户面功能网元发送业务流,该业务流包括采用第一业务流和/或第二业务流,其中,第一业务流的源地址为第一地址和/或第二地址,第二业务流的源地址为第三地址。
具体的,S308的具体实现可以参考示例2-2中的具体描述,此处不再赘述。
S309、用户面功能网元接收终端发送的业务流。
相应的,如图12所示,S302可以具体通过以下方式实现:用户面功能网元根据策略信息将第一业务流的源地址替换为第四地址并传输。这是由于无论第二业务流使用第一接入技术类型和第二接入技术类型中的至少一个传输时,第二业务流的地址均为第三地址。因此,用户面功能网元在接到第二业务流时,可以直接将第二业务流发送出去。
示例性的,第四地址为用户面功能网元的地址或者为第三地址。
c)、作为本申请的另一个实施例,当用户面功能网元获取到的多个地址包括第一地址和第二地址。其中,第一地址对应第一接入技术类型和第二接入技术类型,第二地址对应第二接入技术类型时,或者,第一地址对应通用业务流,第二地址对应第一业务流时,S303、具体还可以通过以下方式实现:
S1、如果用户面功能网元接收到第二业务流,则用户面功能网元将接收到的第二业务流发送给终端。
例如,用户面功能网元接收到UDP业务流后,对UDP业务流不作地址处理处理,然后根据确定传输UDP业务流的接入技术传输UDP业务流。
S2、用户面功能网元确定接收到第一业务流,则用户面功能网元确定该第一业务流采用的接入技术,如果该第一业务流采用的接入技术为第二地址对应的第二接入技术类型,则用户面功能网元将该第一业务流的第一地址替换为第二地址并发送给终端。如果该第一业务流采用的接入技术不是第二地址对应的第二接入技术类型,则用户面功能网元将该第一业务流在确定的接入技术上使用第一地址发送给终端。
例如,对于MPTCP业务流,用户面功能网元首先确定传输该MPTCP业务流的接入技术,如果IP2对应non 3GPP接入技术,且传输该MPTCP业务流的接入技术为non 3GPP接入技术时,用户面功能网元将MPTCP业务流的地址从IP1替换为IP2。如果该MPTCP业务流的接入技术为3GPP接入技术时,用户面功能网元将MPTCP业务流在3GPP接入技术上使用IP1传输。
此外,如果用户面功能网元接收到终端发送的第二业务流后,用户面功能网元将该第二业务流发送出去。如果用户面功能网元接收到终端发送的第一业务流,用户面功能网元将第一业务流的地址从第二地址替换为第一地址。或者从第一地址替换为第二地址, 然后再发送出去。
例如,第二地址为IP2对应non 3GPP接入技术,第一地址为IP1对应3GPP接入技术和non 3GPP接入技术,如果终端使用IP1在3GPP接入技术上发送MPTCP业务流,则用户面功能网元接收到MPTCP业务流之后,将MPTCP业务流的地址替换为IP2。
例如,第二地址为IP2对应3GPP接入技术,第一地址为IP1对应3GPP接入技术和non 3GPP接入技术,如果终端使用IP2在3GPP接入技术上发送MPTCP业务流,则用户面功能网元接收到MPTCP业务流之后,将MPTCP业务流的地址变为IP1。
如图13所示,图13示出了一种基于MPTCP代理实现使用MPTCP等传输方法传输的业务流与使用QUIC等传输方法传输的业务流在3GPP接入技术与non 3GPP接入技术侧分流的具体实施例。该方案包括:
S401、终端注册到网络侧。
例如,终端可以通过3GPP接入技术接入网络侧并完成注册流程(registration procedure)。或者终端通过non 3GPP接入技术接入网络侧并完成注册流程。或者,终端分别通过non 3GPP接入技术和3GPP接入技术接入网络侧并完成注册流程。
可以理解的是,如果终端在S401中通过non 3GPP接入技术和3GPP接入技术接入中的一个完成注册,则终端通过non 3GPP接入技术和3GPP接入技术接入中的另一个接入技术完成注册。以使得终端通过non 3GPP接入技术和3GPP接入技术接入同时接入网络侧。
S402、对于注册成功的终端,PCF网元向AMF网元发送策略信息,该策略信息包括:流描述参数和业务流的传输方法,以及流描述参数和分流模式。
以使用MPTCP代理方法或MPTCP方法传输的业务流为例,该策略信息还包括:分流模式对应的MPTCP算法。或者,该策略信息还包括:业务流的传输方法对应的MPTCP算法。
S403、AMF网元通过NAS传输消息向终端发送策略信息。
S404、终端向SMF网元发送会话管理请求消息,该会话管理请求消息包括PDU会话标识,以及第一指示。
该第一指示用于指示终端支持MPTCP代理能力,或者用于指示该终端请求为PDU会话标识关联的PDU会话选择MPTCP代理。
可选的,终端可以根据S402中的策略信息决定是否发送第一指示。具体的,终端确定业务流的传输方法为MPTCP代理方法或MPTCP传输方法或TCP传输方法时,终端决定发送第一指示。
可选的,第一指示也可以携带在NAS传输消息中发送给SMF网元,此时,该会话管理请求消息也可以携带在NAS传输消息中。
S405、在AMF网元接收到第一指示的情况下,AMF网元基于第一指示,选择支持MPTCP代理的SMF网元。
S406、AMF网元向支持MPTCP代理的SMF网元发送会话管理请求消息。
S407、SMF网元基于收到的会话管理请求消息,向PCF网元发送策略请求消息。该策略请求消息中携带流描述参数与第二指示,该第二指示用于指示该流描述参数确定的业务流请求使用MPTCP方法和MPTCP proxy方法中的至少一个。
S408、PCF网元根据第二指示,向SMF网元发送分流策略,并授权使用第二指示所请求的传输方法传输业务流。
S409、SMF网元基于第一指示为PDU会话分配第一地址、第二地址和第三地址。其中,第一地址对应第一接入技术类型、第二地址对应第二接入技术类型,第三地址对应第一接入技术类型和第二接入技术类型。
例如,SMF网元分配三个IP地址,例如,IP1、IP2以及IP3。其中,IP1为使用3GPP接入技术传输业务流时使用的地址。IP2为使用non 3GPP接入技术传输业务流时使用的地址。IP3为使用3GPP接入技术和non 3GPP接入技术传输业务流时使用的地址。
S410、SMF网元基于第一指示选择支持MPTCP proxy的UPF网元,并将多个地址发送给UPF网元。
例如,SMF网元发送N4会话消息给UPF网元,该N4会话消息中包括多个地址,以及多个地址对应的接入技术类型或者隧道标识。
示例性的,SMF网元还向UPF网元或者终端发送第三地址和3GPP接入与non3GPP接入指示。或者;SMF网元还向UPF网元或者终端发送第三地址和通用地址指示。SMF网元还向UPF网元或者终端发送第三地址,因为第三地址不携带任何接入技术指示,则表示第三地址适用于任何接入技术。
可以理解的是,S409和S410是由SMF网元为终端的PDU会话分配多个地址。在实际过程中,也可以由UPF网元为终端的PDU会话分配多个地址。当由UPF网元为终端的PDU会话分配多个地址时,SMF网元在N4会话消息中携带第三指示,该第三指示为MPTCP proxy指示或多地址指示。UPF网元基于第三指示为终端的PDU会话分配多个地址。然后,将多个地址中每个地址对应的接入技术类型或者隧道标识发送给SMF网元。以由SMF网元发送终端。
S411、SMF网元向UPF网元发送业务流的接入技术。
可选的,对于支持MPTCP传输的业务流,SMF网元还向UPF网元发送业务流对应的分流模式。
可选的,对于支持MPTCP传输的业务流,SMF网元还向UPF网元发送分流指示。
S412、SMF网元向终端发送第一地址、与第一地址对应的第一接入技术类型、第二地址与第二地址对应的第二接入技术类型,第三地址,以及与第三地址对应的第一接入技术类型和第二接入技术类型。
此外,SMF网元向终端发送至少一个接入技术指示,或者MPTCP指示。MPTCP指示用表示该业务流使用MPTCP方法传输。至少一个接入技术指示用于指示业务流使用的传输技术。
可以理解的,当发送MPTCP指示时,终端可以基于MPTCP指示确定多路传输算法,从而确定业务流的接入技术。
S413、终端根据确定的接入技术,使用与该接入技术对应的地址传输使用MPTCP方法的业务流。
S414、UPF网元确定接收到的业务流使用MPTCP方法传输,则将该业务流的地址替换为第三地址或者第四地址。
S415、UPF网元接收向终端发送的业务流。
S416、UPF网元确定向终端发送的业务流使用MPTCP方法传输,则UPF网元将使用MPTCP方法传输的业务流的地址替换成根据策略信息确定的接入技术对应的地址,并发送给终端。
如图14所示,图14示出了基于MPTCP proxy与MP-QUIC proxy实现使用MPTCP业 务流与使用非MPTCP业务流在3GPP接入技术和non 3GPP接入技术中分流的方法,该方法包括:
S501-S504、具体的实现方式可以参考上述实施例中S401-S404的描述,此处不再赘述。区别在于S504中第一指示用于指示终端支持MP-QUIC proxy能力,或者支持MP-QUIC proxy能力或MPTCP代理能力。
S505、AMF网元接收到第一指示的情况下,AMF网元基于第一指示,选择支持MP-QUIC proxy能力或MPTCP代理能力的SMF网元或者支持MP-QUIC proxy能力的SMF网元。
S506、AMF网元向所选择的SMF网元发送会话管理请求消息。
S507、SMF网元基于收到的会话管理请求消息,向PCF网元发送策略请求消息。该策略请求消息中携带流描述参数与第二指示,该第二指示用于指示该流描述参数确定的业务流请求使用MPTCP代理方法或MP-QUIC proxy方法中的一个传输。
S508、PCF网元根据第二指示,向SMF网元发送分流策略,并授权使用第二指示所请求的传输方法传输业务流。
S509、SMF网元基于第一指示为终端的PDU会话分配第一地址和第二地址,第一地址对应第一接入技术类型,第二地址对应第二接入技术类型。
例如,第一地址为IP1、第二地址为IP2。其中,IP1为使用3GPP接入技术传输业务流时使用的地址。IP2为使用non 3GPP接入技术传输业务流时使用的地址。
S510、SMF网元基于第一指示选择支持MP-QUIC proxy能力或MPTCP代理能力的SMF网元或者支持MP-QUIC proxy能力的UPF网元,并将第一地址和第二地址,以及每个地址对应的接入技术类型发送给UPF网元。
此外,SMF网元向UPF网元发送业务流的策略信息给UPF网元。具体的策略信息参考上述实施例一中的描述,此处不再赘述。
可选的,SMF网元向UPF网元发送IP3。需要说明的是,当IP地址由UPF网元分配时,SMF网元向UPF网元发送多地址指示或者MP-QUIC proxy指示即可。
S511、SMF网元将第一地址和第二地址,以及每个地址对应的接入技术类型发送给终端。
终端使用SMF网元分配的地址向UPF网元发送业务流的方式可以参考上述实施例中的S413-S414,此处不再赘述。UPF网元向终端发送业务流的方式可以参考上述实施例中的描述S415-S416,此处不再赘述。
上述主要从各个网元之间交互的角度对本申请实施例的方案进行了介绍。可以理解的是,各个网元,例如业务流的传输装置、通信装置等为了实现上述功能,其包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例业务流的传输装置、通信装置进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
下面以采用对应各个功能划分各个功能模块为例进行说明:
在采用集成的单元的情况下,图15示出了上述实施例中所涉及的一种业务流的传输装置的一种可能的结构示意图,该业务流的传输装置可以为终端,或者为应用于终端中的芯片。该业务流的传输装置包括:接收单元201以及传输单元202。
其中,接收单元201用于支持业务流的传输装置执行上述实施例中的S103以及S107。传输单元202用于支持业务流的传输装置执行上述实施例中的S104。
作为一种可能的实现方式中,该业务流的传输装置包括:获取单元203。
其中,获取单元203,用于支持一种业务流的传输装置执行上述实施例中的S105。
上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。可以理解的是,获取单元203还可以用于执行S203。传输单元202,还可以用于支持一种业务流的传输装置执行上述实施例中的S204。
在采用集成的单元的情况下,图16示出了上述实施例中所涉及的一种业务流的传输装置的一种可能的逻辑结构示意图,该业务流的传输装置可以为上述实施例中的终端,或者为应用于终端中的芯片。业务流的传输装置包括:处理模块212和通信模块213。处理模块212用于对一种业务流的传输装置的动作进行控制管理,例如,处理模块212用于执行在一种业务流的传输装置侧进行消息或数据处理的步骤,通信模块213用于在一种业务流的传输装置侧进行消息或数据处理的步骤。
例如,处理模块212用于支持一种业务流的传输装置执行上述实施例中的S105。通信模块213用于支持业务流的传输装置执行上述实施例中的S103、S104、S107、S203以及S204。和/或用于本文所描述的技术的其他由业务流的传输装置执行的过程。
可选的,该业务流的传输装置还可以包括存储模块211,用于存储业务流的传输装置的程序代码和数据。
其中,处理模块212可以是处理器或控制器,例如可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包括一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。通信模块213可以是通信接口、收发器、收发电路或接口电路等。存储模块211可以是存储器。
当处理模块212为处理器220,通信模块213为接口电路230或收发器时,存储模块211为存储器240时,本申请所涉及的一种业务流的传输装置可以为图17所示的设备。
其中,接口电路230、一个或两个以上(包括两个)处理器220以及存储器240通过总线210相互连接。总线210可以是PCI总线或EISA总线等。总线210可以分为地址总线、数据总线、控制总线等。为便于表示,图17中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。其中,存储器240用于存储一种业务流的传输装置的程序代码和数据。接口电路230用于支持一种业务流的传输装置与其他设备(例如,通信装置)通信。处理器用于支持一种业务流的传输装置执行存储器240中存储的程序代码和数据,从而对一种业务流的传输装置的动作进行控制管理。
例如,接口电路230支持一种业务流的传输装置执行S103、S104、S107、S203以及S204。处理器220用于支持一种业务流的传输装置执行存储器240中存储的程序代码和数据以实现本申请实施例提供的S105。
在采用集成的单元的情况下,图18示出了上述实施例中所涉及的通信装置的一种可 能的结构示意图,该通信装置可以为核心网网元,或者为应用于核心网网元中的芯片。该通信装置包括:获取单元301和发送单元302。
其中,获取单元301用于支持通信装置执行上述实施例中的S101。发送单元302用于支持通信装置执行上述实施例中的S102以及S106。
在采用集成的单元的情况下,图19示出了上述实施例中所涉及的通信装置的一种可能的逻辑结构示意图,该通信装置可以为上述实施例中的核心网网元,或者为应用于核心网网元中的芯片。该通信装置包括:处理模块312和通信模块313。处理模块312用于对该通信装置的动作进行控制管理,通信模块313用于执行在通信装置侧进行消息或数据处理的步骤。
例如,通信模块313用于支持该通信装置执行上述实施例中的S101、S102、S106。和/或用于本文所描述的技术的其他由通信装置执行的过程。
可选的,该通信装置还可以包括存储模块311,用于存储该通信装置的程序代码和数据。
其中,处理模块312可以是处理器或控制器,例如可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包括一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。通信模块313可以是通信接口、收发器、收发电路或接口电路等。存储模块311可以是存储器。
当处理模块312为处理器320,通信模块313为接口电路330或收发器时,存储模块311为存储器340时,本申请所涉及的该通信装置可以为图20所示的设备。
其中,接口电路330、一个或两个以上(包括两个)处理器320以及存储器340通过总线310相互连接。总线310可以是PCI总线或EISA总线等。总线310可以分为地址总线、数据总线、控制总线等。为便于表示,图20中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。其中,存储器340用于存储该通信装置的程序代码和数据。接口电路330用于支持该通信装置与其他设备(例如,业务流的传输装置)通信,处理器320用于支持该通信装置执行存储器340中存储的程序代码和数据以实现在通信装置侧进行消息/数据控制的动作。
作为一种可能的实现方式中,接口电路330用于支持该通信装置执行上述实施例中的S101、S102、S106。和/或用于本文所描述的技术的其他由通信装置执行的过程。
在采用集成的单元的情况下,图21示出了上述实施例中所涉及的一种通信装置的一种可能的结构示意图,该通信装置可以为核心网网元,或者为应用于核心网网元中的芯片。该通信装置包括:分配单元401和发送单元402。
当核心网网元为会话管理网元时,分配单元401用于支持通信装置执行上述实施例中的S201。发送单元402用于支持通信装置执行上述实施例中的S202。
当核心网网元为用户面功能网元时,分配单元401用于支持通信装置执行上述实施例中的S201。发送单元402用于支持通信装置执行上述实施例中的S202。
作为一种可能的实现方式中,当核心网网元为用户面功能网元时,该通信装置还包括:接收单元403,用于支持通信装置执行上述实施例中的S205。一种可能的实现方式中,发送单元402还用于支持通信装置执行上述实施例中的S206。
在采用集成的单元的情况下,图22示出了上述实施例中所涉及的通信装置的一种可 能的逻辑结构示意图,该通信装置可以为上述实施例中的核心网网元,或者为应用于核心网网元中的芯片。该通信装置包括:处理模块412和通信模块413。处理模块412用于对该通信装置的动作进行控制管理,通信模块413用于执行在通信装置侧进行消息或数据处理的步骤。
一种示例,当核心网网元为会话管理网元时,通信模块413用于支持该通信装置执行上述实施例中的S202、S205。处理模块412用于支持该通信装置执行上述实施例中的S201。和/或用于本文所描述的技术的其他由通信装置执行的过程。
另一种示例,当核心网网元为用户面功能网元时,通信模块413用于支持该通信装置执行上述实施例中的S202、S205以及S206。处理模块412用于支持该通信装置执行上述实施例中的S201。
可选的,该通信装置还可以包括存储模块411,用于存储该通信装置的程序代码和数据。
其中,处理模块412可以是处理器或控制器,例如可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包括一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。通信模块413可以是通信接口、收发器、收发电路或接口电路等。存储模块411可以是存储器。
当处理模块412为处理器420,通信模块413为接口电路430或收发器时,存储模块411为存储器440时,本申请所涉及的该通信装置可以为图23所示的设备。
其中,接口电路430、一个或两个以上(包括两个)处理器420以及存储器440通过总线410相互连接。总线410可以是PCI总线或EISA总线等。总线410可以分为地址总线、数据总线、控制总线等。为便于表示,图23中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。其中,存储器440用于存储该通信装置的程序代码和数据。接口电路430用于支持该通信装置与其他设备(例如,终端)通信,处理器420用于支持该通信装置执行存储器440中存储的程序代码和数据以实现在通信装置侧进行消息/数据控制的动作。
作为一种可能的实现方式中,当核心网网元为会话管理网元时,接口电路330用于支持该通信装置执行上述实施例中的S202、S205。和/或用于本文所描述的技术的其他由通信装置执行的过程。处理器420用于支持该通信装置执行上述实施例中的S201。
作为另一种可能的实现方式中,当核心网网元为用户面功能网元时,接口电路330用于支持该通信装置执行上述实施例中的S202、S205以及S206。和/或用于本文所描述的技术的其他由通信装置执行的过程。处理器420用于支持该通信装置执行上述实施例中的S201。
在采用集成的单元的情况下,图24示出了上述实施例中所涉及的一种业务流的传输装置的一种可能的结构示意图,该业务流的传输装置可以为用户面功能网元,或者为应用于用户面功能网元中的芯片。该业务流的传输装置包括:获取单元501和传输单元502。
其中,获取单元501用于支持数据包传输装置执行上述实施例中的S301。传输单元502用于支持业务流的传输装置执行上述实施例中的S302。
作为一种可能的实现方式中,本申请实施例提供的一种业务流的传输装置,还包括:接收单元503,确定单元504以及处理单元505。
其中,接收单元503用于支持业务流的传输装置执行上述实施例中的S303、S307以及S309。确定单元504用于支持业务流的传输装置执行上述实施例中的S304。处理单元505,用于支持业务流的传输装置执行上述实施例中的S305。
在采用集成的单元的情况下,图25示出了上述实施例中所涉及的业务流的传输装置的一种可能的逻辑结构示意图,该业务流的传输装置可以为上述实施例中的用户面功能网元,或者为应用于用户面功能网元中的芯片。该业务流的传输装置包括:处理模块512和通信模块513。处理模块512用于对该业务流的传输装置的动作进行控制管理,通信模块513用于执行在业务流的传输装置侧进行消息或数据处理的步骤。
例如,通信模块513用于支持该业务流的传输装置执行上述实施例中的S302、S307以及S309。处理模块512用于支持该业务流的传输装置执行上述实施例中的S301、S304以及S305。和/或用于本文所描述的技术的其他由业务流的传输装置执行的过程。
可选的,该业务流的传输装置还可以包括存储模块511,用于存储该业务流的传输装置的程序代码和数据。
其中,处理模块512可以是处理器或控制器,例如可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包括一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。通信模块513可以是通信接口、收发器、收发电路或接口电路等。存储模块511可以是存储器。
当处理模块512为处理器520,通信模块513为接口电路530或收发器时,存储模块511为存储器540时,本申请所涉及的该数据包传输装置可以为图26所示的设备。
其中,接口电路530、一个或两个以上(包括两个)处理器520以及存储器540通过总线510相互连接。总线510可以是PCI总线或EISA总线等。总线510可以分为地址总线、数据总线、控制总线等。为便于表示,图26中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。其中,存储器540用于存储该业务流的传输装置的程序代码和数据。接口电路530用于支持该业务流的传输装置与其他设备(例如,终端)通信,处理器520用于支持该业务流的传输装置执行存储器540中存储的程序代码和数据以实现在业务流的传输装置侧进行消息/数据控制的动作。
作为一种可能的实现方式中,接口电路530用于支持该业务流的传输装置执行上述实施例中的S302、S307以及S309。处理器520用于支持该业务流的传输装置执行上述实施例中的S301、S304以及S305。和/或用于本文所描述的技术的其他由该业务流的传输装置执行的过程。
需要说明的是,本申请实施例中涉及接收单元、获取单元(或用于接收/获取的单元)是一种该装置的接口电路,用于从其它装置接收信号。例如,当该装置以芯片的方式实现时,该接收单元是该芯片用于从其它芯片或装置接收信号的接口电路。以上发送单元、传输单元(或用于发送/传输的单元)是一种该装置的接口电路,用于向其它装置发送信号。例如,当该装置以芯片的方式实现时,该发送单元是该芯片用于向其它芯片或装置发送信号的接口电路。本申请实施例中的处理单元,确定单元是一种该装置的处理器,用于处理接收到的信号或者处理自身的信号。例如,当该装置以芯片的方式实现时,该处理单元,确定单元是该芯片用于处理接收到的其它芯片或装置的信号的处理器。
图27是本发明实施例提供的芯片150的结构示意图。芯片150包括一个或两个以上 (包括两个)处理器1510和接口电路1530。
可选的,该芯片150还包括存储器1540,存储器1540可以包括只读存储器和随机存取存储器,并向处理器1510提供操作指令和数据。存储器1540的一部分还可以包括非易失性随机存取存储器(non-volatile random access memory,NVRAM)。
在一些实施方式中,存储器1540存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:
在本发明实施例中,通过调用存储器1540存储的操作指令(该操作指令可存储在操作***中),执行相应的操作。
一种可能的实现方式中为:通信装置和确定通信能力的装置,所用的芯片的结构类似,不同的装置可以使用不同的芯片以实现各自的功能。
处理器1510控制通信装置和确定通信能力的装置的操作,处理器1510还可以称为中央处理单元(central processing unit,CPU)。存储器1540可以包括只读存储器和随机存取存储器,并向处理器1510提供指令和数据。存储器1540的一部分还可以包括非易失性随机存取存储器(non-volatile random access memory,NVRAM)。例如应用中存储器1540、接口电路1530以及存储器1540通过总线***1520耦合在一起,其中总线***1520除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图27中将各种总线都标为总线***1520。
上述本发明实施例揭示的方法可以应用于处理器1510中,或者由处理器1510实现。处理器1510可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1510中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1510可以是通用处理器、数字信号处理器(digital signal processing,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field-programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1540,处理器1510读取存储器1540中的信息,结合其硬件完成上述方法的步骤。
一种可能的实现方式中,接口电路1530用于执行图5-图6所示的实施例中的终端和核心网网元的接收和发送的步骤。处理器1510用于执行图5-图6所示的实施例中的终端和核心网网元处理的步骤。
另一种可能的实现方式中,接口电路1530用于执行图7-图8所示的实施例中的终端和核心网网元的接收和发送的步骤。处理器1510用于执行图7-图8所示的实施例中的终端和核心网网元处理的步骤。
又一种可能的实现方式中,接口电路1530用于执行图9-图12所示的实施例中的终端和用户面功能网元的接收和发送的步骤。处理器1510用于执行图9-图12所示的实施例中的终端和用户面功能网元处理的步骤。
在上述实施例中,存储器存储的供处理器执行的指令可以以计算机程序产品的形式实现。计算机程序产品可以是事先写入在存储器中,也可以是以软件形式下载并安装在 存储器中。
计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘solid state disk,SSD)等。
一方面,提供一种计算机可读存储介质,计算机可读存储介质中存储有指令,当指令被运行时,使得终端或者应用于终端中的芯片执行实施例中的S103、S104、S105、S107、S203以及S204。和/或用于本文所描述的技术的其他由终端或者应用于终端中的芯片执行的过程。
又一方面,提供一种计算机可读存储介质,计算机可读存储介质中存储有指令,当指令被运行时,使得核心网网元或者应用于核心网网元中的芯片执行实施例中的S101、S102以及S106。和/或用于本文所描述的技术的其他由核心网网元或者应用于核心网网元中的芯片执行的过程。
再一方面,提供一种计算机可读存储介质,计算机可读存储介质中存储有指令,当指令被运行时,使得核心网网元或者应用于核心网网元中的芯片执行实施例中的S201、S202、S205以及S206。和/或用于本文所描述的技术的其他由核心网网元或者应用于核心网网元中的芯片执行的过程。
又一方面,提供一种计算机可读存储介质,计算机可读存储介质中存储有指令,当指令被运行时,使得终端或者应用于终端中的芯片执行实施例中的S203以及S204。和/或用于本文所描述的技术的其他由终端或者应用于终端中的芯片执行的过程。
另一方面,提供一种计算机可读存储介质,计算机可读存储介质中存储有指令,当指令被运行时,使得用户面功能网元或者应用于用户面功能网元中的芯片执行实施例中的S303、S304、S305、S307以及S309。和/或用于本文所描述的技术的其他由用户面功能网元或者应用于用户面功能网元中的芯片执行的过程。
前述的可读存储介质可以包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
一方面,提供一种包括指令的计算机程序产品,计算机程序产品中存储有指令,当指令被运行时,使得终端或者应用于终端中的芯片执行实施例中的S103、S104、S105、S107、S203以及S204。和/或用于本文所描述的技术的其他由终端或者应用于终端中的芯片执行的过程。
另一方面,提供一种包括指令的计算机程序产品,计算机程序产品中存储有指令,当指令被运行时,使得核心网网元或者应用于核心网网元中的芯片执行实施例中的S101、S102以及S106。和/或用于本文所描述的技术的其他由核心网网元或者应用于核心网网元中的芯片执行的过程。
另一方面,提供一种包括指令的计算机程序产品,计算机程序产品中存储有指令, 当指令被运行时,使得核心网网元或者应用于核心网网元中的芯片执行实施例中的S201、S202、S205以及S206。和/或用于本文所描述的技术的其他由核心网网元或者应用于核心网网元中的芯片执行的过程。
又一方面,提供一种包括指令的计算机程序产品,计算机程序产品中存储有指令,当指令被运行时,使得终端或者应用于终端中的芯片执行实施例中的S203以及S204。和/或用于本文所描述的技术的其他由终端或者应用于终端中的芯片执行的过程。
另一方面,提供一种包括指令的计算机程序产品,计算机程序产品中存储有指令,当指令被运行时,使得用户面功能网元或者应用于用户面功能网元中的芯片执行实施例中的S303、S304、S305、S307、以及S309。和/或用于本文所描述的技术的其他由用户面功能网元或者应用于用户面功能网元中的芯片执行的过程。
一方面,提供一种芯片,该芯片应用于终端中,芯片包括一个或两个以上(包括两个)处理器和接口电路,接口电路和该一个或两个以上(包括两个)处理器通过线路互联,处理器用于运行指令,以执行实施例中的S103、S104、S105、S107、S203以及S204。和/或用于本文所描述的技术的其他由终端执行的过程。
又一方面,提供一种芯片,该芯片应用于核心网网元中,芯片包括一个或两个以上(包括两个)处理器和接口电路,接口电路和该一个或两个以上(包括两个)处理器通过线路互联,处理器用于运行指令,以执行实施例中的S101、S102以及S106。和/或用于本文所描述的技术的其他由核心网网元执行的过程。
再一方面,提供一种芯片,该芯片应用于核心网网元中,芯片包括一个或两个以上(包括两个)处理器和接口电路,接口电路和该一个或两个以上(包括两个)处理器通过线路互联,处理器用于运行指令,以执行实施例中的S201、S202、S205以及S206。和/或用于本文所描述的技术的其他由核心网网元执行的过程。
再一方面,提供一种芯片,该芯片应用于终端中,芯片包括一个或两个以上(包括两个)处理器和接口电路,接口电路和该一个或两个以上(包括两个)处理器通过线路互联,处理器用于运行指令,以执行实施例中的S203以及S204。和/或用于本文所描述的技术的其他由终端执行的过程。
另一方面,提供一种芯片,该芯片应用于用户面功能网元中,芯片包括一个或两个以上(包括两个)处理器和接口电路,接口电路和该一个或两个以上(包括两个)处理器通过线路互联,处理器用于运行指令,以执行实施例中的S303、S304、S305、S307以及S309。和/或用于本文所描述的技术的其他由用户面功能网元执行的过程。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可以用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介 质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,简称SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看附图、公开内容、以及所附权利要求书,可理解并实现公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包括这些改动和变型在内。

Claims (49)

  1. 一种业务流的传输方法,其特征在于,包括:
    终端接收核心网网元发送的业务流的分流模式和/或所述业务流的传输方法,所述业务流所在的分组数据单元PDU会话支持多种接入技术;
    所述终端根据所述分流模式和/或所述业务流的传输方法采用所述多种接入技术中的至少一种传输所述业务流。
  2. 根据权利要求1所述的一种业务流的传输方法,其特征在于,所述业务流的传输方法包括以下一项或者多项:
    多路传输控制协议MPTCP方法、MPTCP代理proxy方法、传输控制协议TCP方法、TCP proxy方法、用户数据报协议UDP方法、UDP proxy方法、快速UDP互联网连接QUIC方法、快速UDP互联网连接QUIC proxy方法、多路径UDP互联网连接MP-QUIC方法、或MP-QUIC proxy方法。
  3. 根据权利要求1或2所述的一种业务流的传输方法,其特征在于,所述方法还包括:
    所述终端获取多路传输算法;
    所述终端根据所述分流模式和/或所述业务流的传输方法采用所述多种接入技术中的至少一种传输所述业务流,包括:
    所述终端根据所述分流模式和/或所述业务流的传输方法以及所述多路传输算法采用所述多种接入技术中的至少一种传输所述业务流。
  4. 根据权利要求3所述的一种业务流的传输方法,其特征在于,所述终端获取多路传输算法,包括:
    所述终端接收所述核心网网元发送的所述分流模式对应的多路传输算法;或者,
    所述终端接收所述核心网网元发送的所述业务流的传输方法对应的多路传输算法;或者,
    所述终端根据所述分流模式确定所述终端配置的多路传输算法;或者,
    所述终端根据所述业务流的传输方法确定所述终端配置的多路传输算法。
  5. 根据权利要求3或4所述的一种业务流的传输方法,所述多路传输算法为MPTCP算法或者QUIC算法或者MP-QUIC算法,所述MPTCP算法或者QUIC算法或者MP-QUIC算法包括以下一项或者多项:
    切换算法、优选最小往返时间RTT路径算法、多路聚合算法、轮询调度算法、缺省算法或冗余传输算法。
  6. 根据权利要求1或2所述的一种业务流的传输方法,其特征在于,所述方法还包括:
    所述终端接收所述核心网网元发送的指示信息,所述指示信息用于指示所述终端发送所述业务流采用的接入技术与所述终端接收所述业务流采用的接入技术相同;
    所述终端根据所述分流模式和/或所述业务流的传输方法采用所述多种接入技术中的至少一种传输所述业务流,包括:
    所述终端根据所述分流模式和/或所述业务流的传输方法以及所述指示信息采用所述多种接入技术中的至少一种传输所述业务流。
  7. 根据权利要求1-6任一项所述的一种业务流的传输方法,其特征在于,所述分流模式包括以下一项或者多项:
    接入技术优先指示,用于指示优先通过所述接入技术优先指示关联的接入技术传输所述业务流;
    最优链路分流指示,用于指示优先通过最优链路传输所述业务流;所述最优链路为链路状态优于其他链路的链路;
    基于链路负载均衡的分流指示,用于指示按照链路负载均衡策略传输所述业务流;
    接入技术与分流比例指示,用于指示按照所述接入技术对应的分流比例传输所述业务流;
    冗余传输指示,用于表示所述业务流中的相同数据包同时通过不同接入技术传输。
  8. 根据权利要求1-7任一项所述的一种业务流的传输方法,其特征在于,所述终端接收核心网网元发送的业务流的分流模式和/或所述业务流的传输方法,包括:
    所述终端从所述核心网网元发送的非接入层NAS传输消息中获取策略控制网元发送的所述业务流的分流模式和/或所述业务流的传输方法,或者,
    所述终端从所述核心网网元发送的会话管理响应消息中获取所述业务流的分流模式和/或所述业务流的传输方法。
  9. 根据权利要求1-8任一项所述的一种业务流的传输方法,其特征在于,所述方法还包括:
    所述终端获取所述核心网网元为所述终端的所述PDU会话分配的多个地址以及所述多个地址中每个地址对应的接入技术类型,所述终端根据策略信息以及所述多个地址传输所述业务流;或者,
    所述终端获取所述核心网网元为所述终端的所述PDU会话分配的多个地址以及所述多个地址中每个地址对应的业务类型,所述终端根据所述多个地址以及所述每个地址对应的业务类型传输所述业务流。
  10. 根据权利要求9所述的一种业务流的传输方法,其特征在于,所述业务流包括采用第一传输方法传输的第一业务流,所述多个地址包括第一地址和第二地址,所述第一地址对应第一接入技术类型,所述第二地址对应第二接入技术类型;
    所述终端根据策略信息以及所述多个地址传输所述业务流,包括:
    所述终端根据所述策略信息采用所述第一地址和/或所述第二地址传输所述第一业务流。
  11. 根据权利要求10所述的一种业务流的传输方法,其特征在于,所述第一传输方法包括多路传输控制协议MPTCP方法、MPTCP代理proxy方法、传输控制协议TCP方法、TCP proxy方法、用户数据报协议UDP方法、UDP proxy方法、快速UDP互联网连接QUIC方法、或多路径UDP互联网连接MP-QUIC proxy方法中的一项或者多项。
  12. 根据权利要求9所述的一种业务流的传输方法,其特征在于,所述业务流包括采用第一传输方法传输的第一业务流以及采用第二传输方法传输的第二业务流,所述多个地址包括第一地址、第二地址和第三地址,所述第一地址对应第一接入技术类型,所述第二地址对应第二接入技术类型,所述第三地址对应所述第一接入技术类型和所述第二接入技术类型;
    所述终端根据策略信息以及所述多个地址传输所述业务流,包括:
    所述终端根据策略信息采用所述第一地址和/或第二地址传输所述第一业务流,采用 所述第三地址传输所述第二业务流。
  13. 根据权利要求9所述的一种业务流的传输方法,其特征在于,所述业务流包括采用第一传输方法传输的第一业务流和/或采用第二传输方法传输的第二业务流,所述多个地址包括第一地址和第二地址,所述第一地址对应第一接入技术类型和第二接入技术类型,所述第二地址对应所述第一接入技术类型或所述第二地址类型,所述终端根据策略信息以及所述多个地址传输所述业务流,包括:
    所述终端根据策略信息采用所述第一地址和/或所述第二地址传输所述第一业务流,和/或,所述终端根据策略信息采用所述第一地址传输所述第二业务流;或者,
    所述第一地址对应通用业务流,所述第二地址对应所述第一业务流,所述终端根据所述多个地址以及所述每个地址对应的业务类型传输所述业务流,包括:
    所述终端采用所述第一地址和/或所述第二地址传输所述第一业务流,和/或,所述终端采用所述第一地址传输所述第二业务流。
  14. 一种通信方法,其特征在于,包括:
    核心网网元获取业务流的策略信息,所述策略信息包括所述业务流的分流模式和所述业务流的传输方法中的至少一个,所述业务流所在的分组数据单元PDU会话支持多种接入技术;
    所述核心网网元向终端或者用户面功能网元发送所述策略信息。
  15. 根据权利要求14所述的一种通信方法,其特征在于,所述策略信息还包括:多路传输算法。
  16. 根据权利要求15所述的一种通信方法,其特征在于,所述多路传输算法为多路径传输控制协议MPTCP算法或者快速UDP互联网连接QUIC算法或者MP-QUIC算法,所述MPTCP算法或者QUIC算法或者MP-QUIC算法包括以下一项或者多项:
    切换算法、优选最小往返时间RTT路径算法、多路聚合算法、轮询调度算法、缺省算法或冗余传输算法。
  17. 根据权利要求14-16任一项所述的一种通信方法,其特征在于,所述方法还包括:
    所述核心网网元向所述终端或者所述用户面功能网元发送指示信息,所述指示信息用于指示所述终端或者所述用户面功能网元发送所述业务流的采用的接入技术与所述终端或者所述用户面功能网元接收所述业务流时,所述业务流采用的接入技术相同。
  18. 根据权利要求14-17任一项所述的一种通信方法,其特征在于,所述核心网网元获取业务流的策略信息,包括:
    所述核心网网元在会话管理过程中接收策略控制网元发送的所述业务流的策略信息;或者,
    所述核心网网元在所述终端请求注册到网络的过程中,接收策略控制网元发送的所述业务流的策略信息。
  19. 根据权利要求14-18任一项所述的一种通信方法,其特征在于,所述方法还包括:
    所述核心网网元向所述终端发送为所述PDU会话分配的多个地址,以及所述多个地址中每个地址对应的接入技术类型或所述每个地址对应的业务类型。
  20. 根据权利要求19所述的一种通信方法,其特征在于,所述多个地址包括第一地址和第二地址,所述核心网网元向所述终端发送为所述PDU会话分配的多个地址,以及 所述多个地址中每个地址对应的接入技术类型或所述每个地址对应的业务类型,包括:
    所述核心网网元向所述终端发送所述第一地址、所述第二地址、与所述第一地址对应的第一类型指示信息,以及与所述第二地址对应的第二类型指示信息,其中,所述第一类型指示信息用于指示第一接入技术类型和第二接入技术类型,所述第二类型指示信息用于指示所述第一接入技术类型或所述第二接入技术类型中的任一个,或者,所述第一类型指示信息用于指示通用业务流,所述第二类型指示信息用于指示第一业务流。
  21. 根据权利要求19所述的通信方法,其特征在于,所述业务流包括采用第一传输方法传输的第一业务流,所述多个地址包括第一地址和第二地址,所述第一地址对应第一接入技术类型,所述第二地址对应第二接入技术类型。
  22. 根据权利要求19所述的通信方法,其特征在于,所述业务流包括采用第一传输方法传输的第一业务流以及采用第二传输方法传输的第二业务流,所述多个地址包括第一地址、第二地址和第三地址,所述第一地址对应第一接入技术类型,所述第二地址对应第二接入技术类型,所述第三地址对应所述第一接入技术类型和所述第二接入技术类型;所述第一地址和/或所述第二地址用于传输所述第一业务流,所述第三地址用于传输所述第二业务流。
  23. 一种业务流的传输装置,其特征在于,包括:
    接收单元,用于接收核心网网元发送的业务流的分流模式和/或所述业务流的传输方法,所述业务流所在的分组数据单元PDU会话支持多种接入技术;
    传输单元,用于根据所述分流模式和/或所述业务流的传输方法采用所述多种接入技术中的至少一种传输所述业务流。
  24. 根据权利要求23所述的一种业务流的传输装置,其特征在于,所述业务流的传输方法包括以下一项或者多项:
    多路传输控制协议MPTCP方法、MPTCP代理proxy方法、传输控制协议TCP方法、TCP proxy方法、用户数据报协议UDP方法、UDP proxy方法、快速UDP互联网连接QUIC方法、快速UDP互联网连接QUIC proxy方法或多路径UDP互联网连接MP-QUIC方法、MP-QUIC proxy方法。
  25. 根据权利要求23或24所述的一种业务流的传输装置,其特征在于,所述装置还包括:
    获取单元,用于获取多路传输算法;
    所述传输单元,具体用于根据所述分流模式和/或所述业务流的传输方法以及所述多路传输算法采用所述多种接入技术中的至少一种传输所述业务流。
  26. 根据权利要求25所述的一种业务流的传输装置,其特征在于,所述获取单元,具体用于从所述接收单元接收到的所述核心网网元发送的所述分流模式对应的多路传输算法中获取所述分流模式对应的多路传输算法;或者,
    所述获取单元,具体用于从所述接收单元接收到的所述核心网网元发送的所述业务流的传输方法对应的多路传输算法中获取所述业务流的传输方法对应的多路传输算法;或者,
    所述获取单元,具体用于根据所述分流模式确定所述终端配置的多路传输算法;或者,
    所述获取单元,具体用于根据所述业务流的传输方法确定所述终端配置的多路传输算法。
  27. 根据权利要求25或26所述的一种业务流的传输装置,所述多路传输算法为MPTCP算法或者QUIC算法或者MP-QUIC算法,所述MPTCP算法或者QUIC算法或者MP-QUIC算法包括以下一项或者多项:
    切换算法、优选最小往返时间RTT路径算法、多路聚合算法、轮询调度算法、缺省算法或冗余传输算法。
  28. 根据权利要求23或24所述的一种业务流的传输装置,其特征在于,所述接收单元,具体用于接收所述核心网网元发送的指示信息,所述指示信息用于指示所述终端发送所述业务流采用的接入技术与所述终端接收所述业务流采用的接入技术相同;
    所述传输单元,具体用于根据所述分流模式和/或所述业务流的传输方法以及所述指示信息采用所述多种接入技术中的至少一种传输所述业务流。
  29. 根据权利要求23-28任一项所述的一种业务流的传输装置,其特征在于,所述分流模式包括以下一项或者多项:
    接入技术优先指示,用于指示优先通过所述接入技术优先指示关联的接入技术传输所述业务流;
    最优链路分流指示,用于指示优先通过最优链路传输所述业务流;所述最优链路为链路状态优于其他链路的链路;
    基于链路负载均衡的分流指示,用于指示按照链路负载均衡策略传输所述业务流;
    接入技术与分流比例指示,用于指示按照所述接入技术对应的分流比例传输所述业务流;
    冗余传输指示,用于表示所述业务流中的相同数据包同时通过不同接入技术传输。
  30. 根据权利要求23-29任一项所述的一种业务流的传输装置,其特征在于,所述接收单元,具体用于从所述核心网网元发送的非接入层NAS传输消息中获取策略控制网元发送的所述业务流的分流模式和/或所述业务流的传输方法,或者,
    所述接收单元,具体用于从所述核心网网元发送的会话管理响应消息中获取所述业务流的分流模式和/或所述业务流的传输方法。
  31. 根据权利要求23-30任一项所述的一种业务流的传输装置,其特征在于,获取单元,还用于获取所述核心网网元为所述终端的所述PDU会话分配的多个地址以及所述多个地址中每个地址对应的接入技术类型;
    所述传输单元,还用于终端根据策略信息以及所述多个地址传输所述业务流。
  32. 根据权利要求31所述的一种业务流的传输装置,其特征在于,所述业务流包括采用第一传输方法传输的第一业务流,所述多个地址包括第一地址和第二地址,所述第一地址对应第一接入技术类型,所述第二地址对应第二接入技术类型;
    所述传输单元,还具体用于:根据所述策略信息采用所述第一地址和/或所述第二地址传输所述第一业务流。
  33. 根据权利要求32所述的一种业务流的传输装置,其特征在于,所述第一传输方法包括多路传输控制协议MPTCP方法、MPTCP代理proxy方法、传输控制协议TCP方法、TCP proxy方法、用户数据报协议UDP方法、UDP proxy方法、快速UDP互联网连接QUIC方法、或多路径UDP互联网连接MP-QUIC proxy方法中的一项或者多项。
  34. 根据权利要求31所述的一种业务流的传输装置,其特征在于,所述业务流包括采用第一传输方法传输的第一业务流以及采用第二传输方法传输的第二业务流,所述多个地址包括第一地址、第二地址和第三地址,所述第一地址对应第一接入技术类型,所 述第二地址对应第二接入技术类型,所述第三地址对应所述第一接入技术类型和所述第二接入技术类型;
    所述传输单元,还具体用于:根据策略信息采用所述第一地址和/或第二地址传输所述第一业务流,采用所述第三地址传输所述第二业务流。
  35. 根据权利要求31所述的一种业务流的传输装置,其特征在于,所述业务流包括采用第一传输方法传输的第一业务流和/或采用第二传输方法传输的第二业务流,所述多个地址包括第一地址和第二地址,所述第一地址对应第一接入技术类型和第二接入技术类型,所述第二地址对应所述第一接入技术类型或所述第二地址类型;
    所述传输单元,还具体用于:根据策略信息采用所述第一地址和/或所述第二地址传输所述第一业务流,和/或,根据策略信息采用所述第一地址传输所述第二业务流;
    或者,所述第一地址对应通用业务流,所述第二地址对应所述第一业务流,所述传输单元,还具体用于采用所述第一地址和/或所述第二地址传输所述第一业务流,和/或,具体用于采用所述第一地址传输所述第二业务流。
  36. 一种通信装置,其特征在于,包括:
    获取单元,具体用于获取业务流的策略信息,所述策略信息包括所述业务流的分流模式和所述业务流的传输方法中的至少一个,所述业务流所在的分组数据单元PDU会话支持多种接入技术;
    发送单元,用于向终端或者用户面功能网元发送所述策略信息。
  37. 根据权利要求36所述的一种通信装置,其特征在于,所述策略信息还包括:多路传输算法。
  38. 根据权利要求37所述的一种通信装置,其特征在于,所述多路传输算法为多路径传输控制协议MPTCP算法或者快速UDP互联网连接QUIC算法或者MP-QUIC算法,所述MPTCP算法或者QUIC算法或者MP-QUIC算法包括以下一项或者多项:
    切换算法、优选最小RTT路径算法、多路聚合算法、轮询调度算法、缺省算法或冗余传输算法。
  39. 根据权利要求36-38任一项所述的一种通信装置,其特征在于,所述发送单元,还用于向所述终端或者所述用户面功能网元发送指示信息,所述指示信息用于指示所述终端或者所述用户面功能网元发送所述业务流的采用的接入技术与所述终端或者所述用户面功能网元接收所述业务流时,所述业务流采用的接入技术相同。
  40. 根据权利要求36-39任一项所述的一种通信装置,其特征在于,所述获取单元,具体用于在会话管理过程中接收策略控制网元发送的所述业务流的策略信息;或者,
    所述获取单元,具体用于在所述终端请求注册到网络的过程中,接收策略控制网元发送的所述业务流的策略信息。
  41. 根据权利要求36-40任一项所述的一种通信装置,其特征在于,所述方法还包括:
    所述发送单元,还用于向所述终端发送为所述PDU会话分配的多个地址,以及所述多个地址中每个地址对应的接入技术类型或业务类型。
  42. 根据权利要求41所述的一种通信装置,其特征在于,所述多个地址包括第一地址和第二地址,所述发送单元,还具体用于向所述终端发送所述第一地址、所述第二地址、与所述第一地址对应的第一类型指示信息,以及与所述第二地址对应的第二类型指示信息,其中,所述第一类型指示信息用于表示所述第一地址对应所述第一接入技术类 型和所述第二接入技术类型,所述第二类型指示信息用于表示所述第二地址对应所述第一接入技术类型或所述第二接入技术类型中的任一个,或者,所述第一类型指示信息用于表示所述第一地址对应通用业务流,所述第二类型指示信息用于表示所述第二地址对应第一业务流。
  43. 根据权利要求41所述的一种通信装置,其特征在于,所述业务流包括采用第一传输方法传输的第一业务流,所述多个地址包括第一地址和第二地址,所述第一地址对应第一接入技术类型,所述第二地址对应第二接入技术类型。
  44. 根据权利要求41所述的一种通信装置,其特征在于,所述业务流包括采用第一传输方法传输的第一业务流以及采用第二传输方法传输的第二业务流,所述多个地址包括第一地址、第二地址和第三地址,所述第一地址对应第一接入技术类型,所述第二地址对应第二接入技术类型,所述第三地址对应所述第一接入技术类型和所述第二接入技术类型;所述第一地址和/或所述第二地址用于传输所述第一业务流,所述第三地址用于传输所述第二业务流。
  45. 一种通信装置,其特征在于,包括:
    存储器,用于存储计算机程序指令;
    至少一个处理器,用于执行所述计算机程序指令以使得该通信装置执行权利要求1-13中任一项所述的方法。
  46. 一种通信装置,其特征在于,包括:
    存储器,用于存储计算机程序指令;
    至少一个处理器,用于执行所述计算机程序指令以使得该通信装置执行权利要求14-22中任一项所述的方法。
  47. 一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当指令在计算机上运行时,使得计算机执行权利要求1-13中任一项所述的方法。
  48. 一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当指令在计算机上运行时,使得计算机执行权利要求14-22中任一项所述的方法。
  49. 一种通信***,包括如权利要求36-44中任意一项所述通信装置以及用于与该通信装置进行通信的策略控制网元。
PCT/CN2019/099353 2018-08-14 2019-08-06 一种业务流的传输方法、通信方法及装置 WO2020034869A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BR112021002578-2A BR112021002578A2 (pt) 2018-08-14 2019-08-06 método e aparelho de transmissão de fluxo de serviço e método e aparelho de comunicações
JP2021507559A JP7150140B2 (ja) 2018-08-14 2019-08-06 サービスフロー送信方法および装置ならびに通信方法および装置
EP19849792.7A EP3829130B1 (en) 2018-08-14 2019-08-06 Service flow transmission method and apparatus
KR1020217005623A KR102513813B1 (ko) 2018-08-14 2019-08-06 서비스 흐름 송신 방법 및 장치, 그리고 통신 방법 및 장치
US17/166,709 US11832352B2 (en) 2018-08-14 2021-02-03 Service flow transmission method and apparatus and communications method and apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810925079.7 2018-08-14
CN201810925079 2018-08-14
CN201811163077.5A CN110830429B (zh) 2018-08-14 2018-09-30 一种业务流的传输方法、通信方法及装置
CN201811163077.5 2018-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/166,709 Continuation US11832352B2 (en) 2018-08-14 2021-02-03 Service flow transmission method and apparatus and communications method and apparatus

Publications (1)

Publication Number Publication Date
WO2020034869A1 true WO2020034869A1 (zh) 2020-02-20

Family

ID=69525167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099353 WO2020034869A1 (zh) 2018-08-14 2019-08-06 一种业务流的传输方法、通信方法及装置

Country Status (1)

Country Link
WO (1) WO2020034869A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115277571A (zh) * 2022-07-29 2022-11-01 联想(北京)有限公司 处理方法和处理***
CN116582487A (zh) * 2023-07-10 2023-08-11 中国电信股份有限公司 数据分流传输方法、装置、电子设备及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016110318A1 (en) * 2015-01-06 2016-07-14 Telefonaktiebolaget Lm Ericsson (Publ) A method for controlling multipoint tcp in wireless communications networks and devices for use therein
CN106302204A (zh) * 2015-05-15 2017-01-04 中兴通讯股份有限公司 传输处理方法及装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016110318A1 (en) * 2015-01-06 2016-07-14 Telefonaktiebolaget Lm Ericsson (Publ) A method for controlling multipoint tcp in wireless communications networks and devices for use therein
CN106302204A (zh) * 2015-05-15 2017-01-04 中兴通讯股份有限公司 传输处理方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Study on Access Traffic Steering, Switching and Splitting support in the 5G system architecture (Release 16)", 3GPP STANDARD; TECHNICAL REPORT; 3GPP TR 23.793, vol. SA WG2, no. V0.6.0, 13 August 2018 (2018-08-13), pages 1 - 80, XP051475131 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115277571A (zh) * 2022-07-29 2022-11-01 联想(北京)有限公司 处理方法和处理***
CN115277571B (zh) * 2022-07-29 2024-03-29 联想(北京)有限公司 处理方法和处理***
CN116582487A (zh) * 2023-07-10 2023-08-11 中国电信股份有限公司 数据分流传输方法、装置、电子设备及存储介质
CN116582487B (zh) * 2023-07-10 2023-10-03 中国电信股份有限公司 数据分流传输方法、装置、电子设备及存储介质

Similar Documents

Publication Publication Date Title
CN110830429B (zh) 一种业务流的传输方法、通信方法及装置
US11588741B2 (en) Service flow processing method, communication method, and apparatus
CN108574969B (zh) 多接入场景中的连接处理方法和装置
KR20190133031A (ko) 통신 방법 및 장치
CN110662308B (zh) 一种通信方法及装置
WO2019201322A1 (zh) 一种通信方法及相关设备
CN111436057B (zh) 一种会话管理方法及装置
US11576219B2 (en) User equipment, control apparatus, and communication control method
WO2020073899A1 (zh) 数据传输方法及装置
WO2019149177A1 (zh) 一种业务分流的方法和装置
JP7192140B2 (ja) ポリシー管理方法及び装置
US20220217569A1 (en) Method and apparatus for controlling service flow transmission, and system
WO2020034869A1 (zh) 一种业务流的传输方法、通信方法及装置
WO2018167254A1 (en) Unique qos marking ranges for smfs in a 5g communications network
WO2020063316A1 (zh) 通信方法和装置
WO2022001738A1 (zh) 一种移动边缘计算处理方法以及相关设备
CN112714506B (zh) 数据传输方法和装置
WO2014179928A1 (zh) 运营商共享网络的流量控制方法及装置
WO2018233615A1 (zh) 一种pdu会话处理方法及装置
WO2023143212A1 (zh) 一种通信方法及装置
WO2020011173A1 (zh) 搬迁管理方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19849792

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021507559

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021002578

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20217005623

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019849792

Country of ref document: EP

Effective date: 20210224

ENP Entry into the national phase

Ref document number: 112021002578

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210210