WO2020034404A1 - Non-ideal articulated robot dynamics modeling and solution method based on axis invariant - Google Patents

Non-ideal articulated robot dynamics modeling and solution method based on axis invariant Download PDF

Info

Publication number
WO2020034404A1
WO2020034404A1 PCT/CN2018/112677 CN2018112677W WO2020034404A1 WO 2020034404 A1 WO2020034404 A1 WO 2020034404A1 CN 2018112677 W CN2018112677 W CN 2018112677W WO 2020034404 A1 WO2020034404 A1 WO 2020034404A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
force
equation
constraint
moment
Prior art date
Application number
PCT/CN2018/112677
Other languages
French (fr)
Chinese (zh)
Inventor
居鹤华
Original Assignee
居鹤华
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 居鹤华 filed Critical 居鹤华
Publication of WO2020034404A1 publication Critical patent/WO2020034404A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Definitions

  • the invention relates to a non-ideal articulated robot dynamics modeling and calculation method, and belongs to the field of robot technology.
  • Lagrangian proposed the Lagrangian method when studying the problem of lunar balance, which is a basic method for expressing dynamic equations in generalized coordinates; at the same time, it is also a basic method for describing quantum field theory.
  • the application of Lagrange's method to establish dynamic equations is a tedious process.
  • Lagrange's equations have the advantage of theoretical analysis to derive the dynamic equations of the system based on the invariance of system energy; With the increase of the degree of freedom of the system, the complexity of the derivation of the equation has increased dramatically and it is difficult to be universally applied.
  • the establishment of the Kane equation directly expresses the dynamic equation through the system's deflection velocity, velocity and acceleration.
  • the Kane dynamics method greatly reduces the difficulty of system modeling because it omits the expression of system energy and the derivation of time.
  • the Kane dynamics modeling method is also difficult to apply.
  • Lagrange's equation and Kane's equation have greatly promoted the study of multibody dynamics.
  • the dynamics based on the space operator algebra have improved the calculation speed and accuracy to a certain extent due to the application of the iterative process.
  • These dynamic methods require complex transformations in body space, body subspace, system space, and system subspace, both in kinematics and dynamics.
  • the modeling process and model expression are very complex, and it is difficult to meet high-degree-of-freedom systems.
  • the need for modeling and control therefore, a concise expression of the dynamic model needs to be established; both the accuracy of the modeling and the real-time nature of the modeling must be guaranteed. Without concise dynamic expressions, it is difficult to ensure the reliability and accuracy of dynamic engineering of high-degree-of-freedom systems.
  • the traditional unstructured kinematics and dynamics symbols are annotated with the meaning of the symbols, which cannot be understood by the computer. As a result, the computer cannot automatically establish and analyze the kinematics and dynamics models.
  • the technical problem to be solved by the present invention is to provide a non-ideal articulated robot dynamic modeling and calculation method based on axis invariants.
  • the present invention adopts the following technical solutions:
  • k I represents the centroid I of the rod k
  • the mass of the axis k and the moment of inertia of the centroid are recorded as m k and Is the inertia matrix of the rotation axis u
  • h R is the non-inertia force of the rotation axis u
  • h P is the non-inertia force of the translation axis u.
  • k I represents the centroid I of the rod k; the mass of the axis k and the moment of inertia of the centroid are recorded as m k and Is the inertia matrix of the rotation axis u; Is the inertial matrix of the translation axis u; h R is the non-inertia matrix of the rotation axis u; h P is the non-inertia matrix of the translation axis u; Is the translational joint angular velocity; Is the angular velocity of the turning joint.
  • the radial constraint force of the motion axis u is obtained. And restraining moment The magnitude of the internal friction force and the internal friction moment of the motion axis u are respectively and The viscous force and viscous moment of the motion axis u are and then
  • the Ju-Kane dynamic equation of the closed-chain rigid body system is established according to the tree-chain Ju-Kane canonical equation.
  • k I represents the centroid I of the rod k; the mass of the axis k and the moment of inertia of the centroid are recorded as m k and Is the inertia matrix of the rotation axis u; Is the inertia matrix of the translation axis u; h R is the non-inertia matrix of the rotation axis u; h P is the non-inertia matrix of the translation axis u; the combined external force and moment acting on the axis u are The components on and The combined external force and moment acting on the shaft u are The components on and The bilateral driving force and driving torque of the driving shaft u are between The components on and The acting force and acting moment of the environment i on the shaft l are And i ⁇ l ; l l k is a kinematic chain from axis l to axis k, and u L means obtaining a closed subtree composed of axis u and
  • non-tree motion pair u k u ′ ⁇ P constraints cannot express constraints such as rack and pinion, worm gear and worm.
  • the constraint algebra equation of the non-tree-constrained pair u k u ′ established in this application can express any kind of constraint, and the physical connotation is clear;
  • the non-tree motion algebraic constraint equation is about 6D vector space absolute acceleration, iterative formula about joint coordinates and joint speed, and it has cumulative errors
  • the constraint algebraic equation of the non-tree-constrained pair applied for is related to joint acceleration, which guarantees the accuracy of the constraint equation.
  • Figures 3 and 4 are schematic diagrams of internal friction and viscous forces of a moving shaft.
  • Closed-chain rigid body systems have a wide range of applications; for example, the rocker arm movement system of the CE3 patrol is a closed-chain with a differential, and heavy-duty mechanical arms are usually closed-chain systems with four links. At the same time, the actual motion axis usually contains internal friction and viscous forces. Therefore, it is necessary to study Ju-Kane dynamic modeling of closed-chain rigid body systems.
  • the motion chain is identified by a partial order set ().
  • l l k is the kinematic chain from axis l to axis k, and the output is expressed as And
  • the cardinality is written as
  • l l k execution process execution If Then execute Otherwise, end.
  • the computational complexity of l l k is O (
  • l L means to obtain a closed subtree composed of axis l and its subtrees, Is a subtree without l; recursively execute l l with a computational complexity of
  • the calculation complexity O () represents the number of operations in the calculation process, and usually refers to the number of floating-point multiplications and additions. It is very tedious to express the calculation complexity by the number of floating-point multiplication and addition, so the main operation times in the algorithm loop process are often used; for example, the number of operations such as joint pose, speed, and acceleration.
  • Natural coordinate axis The unit reference axis with a fixed origin that is coaxial with the motion axis or measurement axis is called the natural coordinate axis, also known as the natural reference axis.
  • Natural coordinate system If the multi-axis system D is at zero position, all Cartesian body coordinate systems have the same direction, and the origin of the body coordinate system is on the axis of the motion axis, then the coordinate system is a natural coordinate system, referred to as the natural coordinate system.
  • the advantages of the natural coordinate system are: (1) the coordinate system is easy to determine; (2) the joint variables at the zero position are zero; (3) the system attitude at the zero position is consistent; (4) it is not easy to introduce a measurement error.
  • Invariant A quantity that does not depend on a set of coordinate systems for measurement is called an invariant.
  • the axis invariant For axis invariants, its absolute derivative is its relative derivative. Since the axis invariant is a natural reference axis with invariance, its absolute derivative is always a zero vector. Therefore, the axis invariant is invariant to time differentiation. Have:
  • Natural coordinates take the natural coordinate axis vector as the reference direction, the angular position or line position relative to the zero position of the system, and record it as q l , which is called natural coordinates;
  • natural motion vector will be determined by the natural axis vector And the vector determined by natural coordinates q l Called the natural motion vector. among them:
  • the natural motion vector realizes the unified expression of axis translation and rotation.
  • a vector to be determined by the natural axis vector and the joint such as Called the free motion vector, also known as the free spiral.
  • the axis vector Is a specific free spiral.
  • joint space The space represented by the joint natural coordinates q l is called joint space.
  • the Cartesian space that expresses the position and pose (posture for short) is called a shape space, which is a double vector space or a 6D space.
  • Natural joint space using the natural coordinate system as a reference, through joint variables Means that there must be when the system is zero The joint space is called natural joint space.
  • any motion pair in the loop can be selected, and the stator and the mover constituting the motion pair can be separated; thus, a loop-free tree structure is obtained.
  • the Span tree represents a span tree with directions to describe the topological relationship of the tree chain movement.
  • I is a structural parameter; A is an axis sequence; F is a bar reference sequence; B is a bar body sequence; K is a motion pair type sequence; NT is a sequence of constrained axes, that is, a non-tree.
  • Axis sequence a member of.
  • Rotary pair R, prism pair P, spiral pair H, and contact pair O are special examples of cylindrical pair C.
  • means attribute placeholder; if the attribute p or P is about position, then Should be understood as a coordinate system To the origin of F [l] ; if the attribute p or P is about direction, then Should be understood as a coordinate system To F [l] .
  • attribute variables or constants with partial order include the indicators indicating partial order in the name; either include the upper left corner and lower right corner indexes, or include the upper right corner and lower right corner indexes; Their directions are always from the upper left corner indicator to the lower right corner indicator, or from the upper right corner indicator to the lower right corner indicator.
  • the description of the direction is sometimes omitted. Even if omitted, those skilled in the art can also use symbolic expressions. It is known that, for each parameter used in this application, for a certain attribute symbol, their directions are always from the upper left corner index to the lower right corner index of the partial order index, or from the upper right corner index to the lower right corner index.
  • Attribute Q represents the "rotation transformation matrix”
  • Attribute l represents the "kinematic chain”
  • Attribute u represents the "unit vector”
  • Attribute represents the "angular velocity”
  • Attribute J represents the centroid inertia
  • J represents the partial velocity Jac Ratio matrix
  • i indicates an inertial coordinate system or a geodetic coordinate system; other angle labels can be other letters or numbers.
  • the symbol specifications and conventions of this application are determined based on the two principles of the partial order of the kinematic chain and the chain link being the basic unit of the kinematic chain, reflecting the essential characteristics of the kinematic chain.
  • the chain indicator represents the connection relationship, and the upper right indicator represents the reference system.
  • This symbolic expression is concise and accurate, which is convenient for communication and written expression.
  • they are structured symbol systems that contain the elements and relationships that make up each attribute quantity, which is convenient for computer processing and lays the foundation for computer automatic modeling.
  • the meaning of the indicator needs to be understood through the background of the attribute, that is, the context; for example: if the attribute is a translation type, the indicator at the upper left corner indicates the origin and direction of the coordinate system; if the attribute is a rotation type, the indicator at the top left The direction of the coordinate system.
  • rotation vector / angle vector I is a free vector, that is, the vector can be freely translated
  • the angular position that is, the joint angle and joint variables, are scalars
  • T means transpose of ⁇ , which means transpose the collection, and do not perform transpose on the members; for example:
  • Projection symbol ⁇ represents vector or tensor of second order group reference projection vector or projection sequence, i.e. the vector of coordinates or coordinate array, that is, the dot product projection "*"; as: position vector
  • the projection vector in the coordinate system F [k] is written as
  • Is a cross multiplier for example: Is axis invariant Cross product matrix; given any vector
  • the cross product matrix is
  • the cross product matrix is a second-order tensor.
  • i l j represents a kinematic chain from i to j
  • l l k is a kinematic chain from axis l to k
  • n represents the Cartesian Cartesian system, then Is a Cartesian axis chain; if n represents a natural reference axis, then For natural shaft chains.
  • Equation (2) applies the energy of the system and generalized coordinates to establish the equations of the system.
  • Joint variable The relationship with the coordinate vector i r l is shown in equation (1), and equation (1) is called the point transformation of joint space and Cartesian space.
  • Constraints in a Lagrangian system can be either consolidation constraints between particles or motion constraints between particle systems; rigid bodies are particle systems Particle energy is additive; rigid body kinetic energy consists of the translational kinetic energy and rotational kinetic energy of the mass center.
  • rigid bodies are particle systems
  • Particle energy is additive
  • rigid body kinetic energy consists of the translational kinetic energy and rotational kinetic energy of the mass center.
  • Equation (6) is the governing equation of the axis u, that is, the invariant on the axis Force balance equation Heli in On the weight, Resultant torque in On the weight.
  • the Ju-Kane dynamics preliminary theorem is derived.
  • the translational kinetic energy and rotational kinetic energy of the dynamic system D are expressed as
  • Equations (7) and (8) are the basis for the proof of the Jue-Kane dynamics theorem, that is, the Jue-Kane dynamics theorem is essentially equivalent to the Lagrange method.
  • the right side of equation (8) contains the Kane equation of the multi-axis system; it shows that the calculation of the inertial force of the Lagrange method and the Kane method is consistent, that is, the Lagrange method and the Kane method are equivalent.
  • Equation (8) shows that there exists in Lagrange equation (4) The problem of double counting.
  • Equation (11), Equation (14), Equation (15), and Equation (16) were substituted for Equation (11), Equation (14), Equation (15), and Equation (16) into Equation (8),
  • Equation (17) has a tree chain topology.
  • k I represents the centroid I of the rod k. Because the generalized force in the closed subtree u L is additive; therefore, the nodes of the closed subtree have only one motion chain to the root, so the motion chain i l n can be replaced by the motion chain u L
  • Equations (26) and (27) show that the combined external force or moment acting on the axis k by the environment is equivalent to the combined external force or moment of the closed subtree k L on the axis k, and formulae (26) and (27) as
  • the closed subtree has an additivity to the generalized force of axis k; the force has a dual effect and is iterative in reverse.
  • the so-called reverse iteration refers to: It is necessary to iterate through the link position vector; Order and forward kinematics The order of calculation is reversed.
  • [ ⁇ ] means taking rows or columns; and Is a 3 ⁇ 3 block matrix, and Is a 3D vector, and q is the joint space.
  • the energy of ex is p ex is the instantaneous shaft power; p ac is the power generated by the driving force and driving torque of the drive shaft.
  • Formula (40) is obtained from formula (26), formula (27), formula (31), formula (33), and formula (41).
  • A (i, 1: 3]; apply the method of the present invention to establish the tree chain Ju-Kane dynamic equation, and obtain the generalized inertial matrix.
  • Step 1 establish an iterative motion equation based on the axis invariants.
  • Step 2 establish a kinetic equation.
  • First establish the kinetic equation of the first axis. From Equation (37),
  • the generalized mass matrix is obtained from equations (61), (63), and (67).
  • the normalization process is the process of merging all joint acceleration terms; thus, the coefficient of joint acceleration is obtained.
  • This problem is decomposed into two sub-problems, the canonical form of the kinematic chain and the canonical form of the closed subtree.
  • Equation (80) Substituting Equation (80) into Equation (85) to the right of the previous term is
  • Equation (79) Substituting Equation (79) into Equation (86) to the right of the next term gives
  • Equation (84) is obtained from equation (35), equation (83), and equation (89).
  • Equation (92), Equation (93), and Equation (94) are substituted into Equation (92).
  • k I represents the centroid I of the rod k; the mass of the axis k and the moment of inertia of the centroid are recorded as m k and Is the inertia matrix of the rotation axis u; Is the inertia matrix of the translation axis u; h R is the non-inertia matrix of the rotation axis u; h P is the non-inertia matrix of the translation axis u; the combined external force and moment acting on the axis u are The components on and The bilateral driving force and driving torque of the driving shaft u are between The components on and The acting force and acting moment of the environment i on the shaft l are And i ⁇ l ; l l k is a kinematic chain from axis l to axis k, and u L means obtaining a closed subtree composed of axis u and its subtrees.
  • k I represents the centroid I of the rod k; the mass of the axis k and the moment of inertia of the centroid are recorded as m k and Is the inertia matrix of the rotation axis u; Is the inertial matrix of the translation axis u; h R is the non-inertia matrix of the rotation axis u; h P is the non-inertia matrix of the translation axis u; Is the translational joint angular velocity; Is the angular velocity of the turning joint.
  • Non-tree constrained pair Keep the constraint points u S and u ′ S consistent, so
  • represents increment
  • Equation (109) is obtained from Equation (126) and Equation (127). It can be seen that the bias velocity is mainly used in the reverse iteration of the force. Generalized binding force and Considered external force.
  • Equations (103) and (104) are obtained according to the Ju-Kane kinetic norm equation of the axis u.
  • Equation (128) shows that the motion axis vector and the constraint force of the motion axis have a natural orthogonal complement.
  • Equation (130) Constraint moment when When, get from formula (130) And Equation (130) has the same motion state and internal and external forces at the same time. Equilibrium of force and moment occurs only in the axial direction of movement; while in the constraint axis, the dynamic equation is not satisfied, that is, the force and moment are not necessarily balanced.
  • the generalized inertia matrix of a rigid body motion chain expressed according to the type of the motion axis and the natural reference axis is referred to as the generalized inertia matrix of the rigid body of the axial chain, and is referred to as the generalized inertia matrix of the axial chain for short.
  • the generalized internal frictional force and viscous force of the moving shaft are the internal forces of the moving shaft, because they exist only in the moving axial direction and are always orthogonal to the radial restraining force of the shaft.
  • the axial dynamic forces of the moving shaft are balanced, no matter the existence or magnitude of the generalized internal friction and viscous forces, it does not affect the dynamic state of the dynamic system; therefore, it does not affect the radial restraining force of the moving shaft. Therefore, the radial restraining force of the motion axis u is calculated from equations (130) to (134). And restraining moment In this case, the generalized internal friction and viscous forces of the moving axis can be ignored.
  • the establishment process is:

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Manipulator (AREA)

Abstract

A non-ideal articulated robot dynamics and solution method based on an axis invariant. For a non-ideal constraint system, a Ju-Kane dynamic equation of a closed-chain rigid-body non-ideal constraint system is established. Ju-Kane closed-chain rigid-body dynamics based on a natural axis chain in a joint space overcomes the limitations of a Cartesian coordinate axis chain space: in Newton-Euler dynamics based on a Cartesian coordinate axis chain, non-tree kinematic pair constraints cannot express constraints such as rack and pinion, and worm gear and worm. In the method, the constraint algebraic equation of the non-tree constraint pair can express any kind of constraint, and the physical connotation is clear; the complexity of solving the system equation is reduced; the accuracy of the constraint equation is ensured.

Description

基于轴不变量的非理想关节机器人动力学建模与解算方法Dynamic modeling and solving method of non-ideal joint robot based on axis invariant 技术领域Technical field
本发明涉及一种非理想关节机器人动力学建模与解算方法,属于机器人技术领域。The invention relates to a non-ideal articulated robot dynamics modeling and calculation method, and belongs to the field of robot technology.
背景技术Background technique
拉格朗日在研究月球天平动问题时提出了拉格朗日方法,是以广义坐标表达动力学方程的基本方法;同时,也是描述量子场论的基本方法。应用拉格朗日法建立动力学方程已是一个烦琐的过程,尽管拉格朗日方程依据***能量的不变性推导***的动力学方程,具有理论分析上的优势;但是在工程应用中,随着***自由度的增加,方程推导的复杂性剧增,难以得到普遍应用。凯恩方程建立过程与拉格朗日方程相比,通过***的偏速度、速度及加速度直接表达动力学方程。故凯恩动力学方法与拉格朗日方法相比,由于省去了***能量的表达及对时间的求导过程,极大地降低了***建模的难度。然而,对于高自由度的***,凯恩动力学建模方法也是难以适用。Lagrangian proposed the Lagrangian method when studying the problem of lunar balance, which is a basic method for expressing dynamic equations in generalized coordinates; at the same time, it is also a basic method for describing quantum field theory. The application of Lagrange's method to establish dynamic equations is a tedious process. Although Lagrange's equations have the advantage of theoretical analysis to derive the dynamic equations of the system based on the invariance of system energy; With the increase of the degree of freedom of the system, the complexity of the derivation of the equation has increased dramatically and it is difficult to be universally applied. Compared with Lagrange's equation, the establishment of the Kane equation directly expresses the dynamic equation through the system's deflection velocity, velocity and acceleration. Therefore, compared with the Lagrangian method, the Kane dynamics method greatly reduces the difficulty of system modeling because it omits the expression of system energy and the derivation of time. However, for high-degree-of-freedom systems, the Kane dynamics modeling method is also difficult to apply.
拉格朗日方程及凯恩方程极大地推动了多体动力学的研究,以空间算子代数为基础的动力学由于应用了迭代式的过程,计算速度及精度都有了一定程度的提高。这些动力学方法无论是运动学过程还是动力学过程都需要在体空间、体子空间、***空间及***子空间中进行复杂的变换,建模过程及模型表达非常复杂,难以满足高自由度***建模与控制的需求,因此,需要建立动力学模型的简洁表达式;既要保证建模的准确性,又要保证建模的实时性。没有简洁的动力学表达式,就难以保证高自由度***动力学工程实现的可靠性与准确性。同时,传统非结构化运动学及动力学符号通过注释约定符号内涵,无法被计算机理解,导致计算机不能自主地建立及分析运动学及动力学模型。Lagrange's equation and Kane's equation have greatly promoted the study of multibody dynamics. The dynamics based on the space operator algebra have improved the calculation speed and accuracy to a certain extent due to the application of the iterative process. These dynamic methods require complex transformations in body space, body subspace, system space, and system subspace, both in kinematics and dynamics. The modeling process and model expression are very complex, and it is difficult to meet high-degree-of-freedom systems. The need for modeling and control, therefore, a concise expression of the dynamic model needs to be established; both the accuracy of the modeling and the real-time nature of the modeling must be guaranteed. Without concise dynamic expressions, it is difficult to ensure the reliability and accuracy of dynamic engineering of high-degree-of-freedom systems. At the same time, the traditional unstructured kinematics and dynamics symbols are annotated with the meaning of the symbols, which cannot be understood by the computer. As a result, the computer cannot automatically establish and analyze the kinematics and dynamics models.
发明内容Summary of the Invention
本发明所要解决的技术问题是提供一种基于轴不变量的非理想关节机器人动力学建模与解算方法。The technical problem to be solved by the present invention is to provide a non-ideal articulated robot dynamic modeling and calculation method based on axis invariants.
为解决上述技术问题,本发明采用以下技术方案:To solve the above technical problems, the present invention adopts the following technical solutions:
一种基于轴不变量的非理想关节机器人动力学建模与解算方法,其特征是,A non-ideal articulated robot dynamics modeling and solving method based on axis invariants is characterized by:
给定多轴刚体***D={A,K,T,NT,F,B},惯性系记为F [i]
Figure PCTCN2018112677-appb-000001
除了重力外,作用于轴u的合外力及力矩在
Figure PCTCN2018112677-appb-000002
上的分量分别记为
Figure PCTCN2018112677-appb-000003
Figure PCTCN2018112677-appb-000004
轴k的质量及质心转动惯量分别记为m k
Figure PCTCN2018112677-appb-000005
轴k的重力加速度为
Figure PCTCN2018112677-appb-000006
驱动轴u的双边驱动力及驱动力矩在
Figure PCTCN2018112677-appb-000007
上的分量分别记为
Figure PCTCN2018112677-appb-000008
Figure PCTCN2018112677-appb-000009
环境i对轴l的作用力及作用力矩分别为
Figure PCTCN2018112677-appb-000010
Figure PCTCN2018112677-appb-000011
轴u对轴u′的广义约束力记为
Figure PCTCN2018112677-appb-000012
Given a multi-axis rigid body system D = {A, K, T, NT, F, B}, the inertial system is denoted by F [i] ,
Figure PCTCN2018112677-appb-000001
In addition to gravity, the combined external force and moment acting on the axis u
Figure PCTCN2018112677-appb-000002
The components on
Figure PCTCN2018112677-appb-000003
and
Figure PCTCN2018112677-appb-000004
The mass of the axis k and the moment of inertia of the center of mass are recorded as m k and
Figure PCTCN2018112677-appb-000005
The acceleration of gravity of axis k is
Figure PCTCN2018112677-appb-000006
The bilateral driving force and driving torque of the driving shaft u are between
Figure PCTCN2018112677-appb-000007
The components on
Figure PCTCN2018112677-appb-000008
and
Figure PCTCN2018112677-appb-000009
The acting force and acting moment of the environment i on the shaft l are
Figure PCTCN2018112677-appb-000010
and
Figure PCTCN2018112677-appb-000011
The generalized binding force of axis u to axis u ′ is written as
Figure PCTCN2018112677-appb-000012
设运动轴u的广义内摩擦及粘滞的合力及合力矩分别为
Figure PCTCN2018112677-appb-000013
根据建立的闭链刚体***的Ju-Kane动力学方程,计算关节加速度
Figure PCTCN2018112677-appb-000014
后,计算径向约束力大小
Figure PCTCN2018112677-appb-000015
Figure PCTCN2018112677-appb-000016
约束力矩大小
Figure PCTCN2018112677-appb-000017
Figure PCTCN2018112677-appb-000018
再建立如下闭链刚体非理想约束***的Ju-Kane动力学方程:
Let the generalized internal friction and viscous combined force and moment of the motion axis u be
Figure PCTCN2018112677-appb-000013
Calculate joint acceleration based on the Ju-Kane dynamic equation of the closed-chain rigid body
Figure PCTCN2018112677-appb-000014
After calculating the radial binding force
Figure PCTCN2018112677-appb-000015
and
Figure PCTCN2018112677-appb-000016
Constraint moment
Figure PCTCN2018112677-appb-000017
and
Figure PCTCN2018112677-appb-000018
Then establish the following Ju-Kane dynamic equation of the closed-chain rigid body non-ideal constraint system:
【1】轴u及轴u′的Ju-Kane动力学规范方程分别为[1] The Ju-Kane kinetic norm equations for axis u and axis u ′ are
Figure PCTCN2018112677-appb-000019
Figure PCTCN2018112677-appb-000019
Figure PCTCN2018112677-appb-000020
Figure PCTCN2018112677-appb-000020
式中:
Figure PCTCN2018112677-appb-000021
Figure PCTCN2018112677-appb-000022
是3×3的分块矩阵,
Figure PCTCN2018112677-appb-000023
Figure PCTCN2018112677-appb-000024
是3D矢量;
Figure PCTCN2018112677-appb-000025
为转动轴u的惯性矩阵;
Figure PCTCN2018112677-appb-000026
为平动轴u的惯性矩阵;h R为转动轴u的非惯性矩阵;h P为平动轴u的非惯性矩阵;
In the formula:
Figure PCTCN2018112677-appb-000021
and
Figure PCTCN2018112677-appb-000022
Is a 3 × 3 block matrix,
Figure PCTCN2018112677-appb-000023
and
Figure PCTCN2018112677-appb-000024
Is a 3D vector;
Figure PCTCN2018112677-appb-000025
Is the inertia matrix of the rotation axis u;
Figure PCTCN2018112677-appb-000026
Is the inertial matrix of the translation axis u; h R is the non-inertia matrix of the rotation axis u; h P is the non-inertia matrix of the translation axis u;
【2】非树约束副 uk u′的约束代数方程为 [2] The constraint algebraic equation of the non-tree constrained pair u k u ′ is
Figure PCTCN2018112677-appb-000027
Figure PCTCN2018112677-appb-000027
Figure PCTCN2018112677-appb-000028
Figure PCTCN2018112677-appb-000028
Figure PCTCN2018112677-appb-000029
Figure PCTCN2018112677-appb-000029
Figure PCTCN2018112677-appb-000030
Figure PCTCN2018112677-appb-000030
闭链刚体***的Ju-Kane动力学方程:Ju-Kane dynamic equation of closed-chain rigid body system:
【1】轴u及轴u′的Ju-Kane动力学规范方程分别为[1] The Ju-Kane kinetic norm equations for axis u and axis u ′ are
Figure PCTCN2018112677-appb-000031
Figure PCTCN2018112677-appb-000031
Figure PCTCN2018112677-appb-000032
Figure PCTCN2018112677-appb-000032
其中:
Figure PCTCN2018112677-appb-000033
Figure PCTCN2018112677-appb-000034
是3×3的分块矩阵,
Figure PCTCN2018112677-appb-000035
Figure PCTCN2018112677-appb-000036
是3D矢量;k I表示杆k质心I;轴k的质量及质心转动惯量分别记为m k
Figure PCTCN2018112677-appb-000037
Figure PCTCN2018112677-appb-000038
为转动轴u的惯性矩阵;
Figure PCTCN2018112677-appb-000039
为平动轴u的惯性矩阵;h R为转动轴u的非惯性力;h P为平动轴u的非惯性力。
among them:
Figure PCTCN2018112677-appb-000033
and
Figure PCTCN2018112677-appb-000034
Is a 3 × 3 block matrix,
Figure PCTCN2018112677-appb-000035
and
Figure PCTCN2018112677-appb-000036
Is a 3D vector; k I represents the centroid I of the rod k; the mass of the axis k and the moment of inertia of the centroid are recorded as m k and
Figure PCTCN2018112677-appb-000037
Figure PCTCN2018112677-appb-000038
Is the inertia matrix of the rotation axis u;
Figure PCTCN2018112677-appb-000039
Is the inertial matrix of the translation axis u; h R is the non-inertia force of the rotation axis u; h P is the non-inertia force of the translation axis u.
【2】非树约束副 uk u′的约束代数方程为 [2] The constraint algebraic equation of the non-tree constrained pair u k u ′ is
Figure PCTCN2018112677-appb-000040
Figure PCTCN2018112677-appb-000040
Figure PCTCN2018112677-appb-000041
Figure PCTCN2018112677-appb-000041
Figure PCTCN2018112677-appb-000042
Figure PCTCN2018112677-appb-000042
Figure PCTCN2018112677-appb-000043
Figure PCTCN2018112677-appb-000043
其中:among them:
Figure PCTCN2018112677-appb-000044
Figure PCTCN2018112677-appb-000044
Figure PCTCN2018112677-appb-000045
Figure PCTCN2018112677-appb-000045
Figure PCTCN2018112677-appb-000046
Figure PCTCN2018112677-appb-000046
Figure PCTCN2018112677-appb-000047
Figure PCTCN2018112677-appb-000047
Figure PCTCN2018112677-appb-000048
Figure PCTCN2018112677-appb-000048
式中:
Figure PCTCN2018112677-appb-000049
Figure PCTCN2018112677-appb-000050
是3×3的分块矩阵,
Figure PCTCN2018112677-appb-000051
Figure PCTCN2018112677-appb-000052
是3D矢量;k I表示杆k质心I;轴k的质量及质心转动惯量分别记为m k
Figure PCTCN2018112677-appb-000053
Figure PCTCN2018112677-appb-000054
为转动轴u的惯性矩阵;
Figure PCTCN2018112677-appb-000055
为平动轴u的惯性矩阵;h R为转动轴u的非惯性矩阵;h P为平动轴u的非惯性矩阵;
Figure PCTCN2018112677-appb-000056
为平动关节角速度;
Figure PCTCN2018112677-appb-000057
为转动关节角速度。
In the formula:
Figure PCTCN2018112677-appb-000049
and
Figure PCTCN2018112677-appb-000050
Is a 3 × 3 block matrix,
Figure PCTCN2018112677-appb-000051
and
Figure PCTCN2018112677-appb-000052
Is a 3D vector; k I represents the centroid I of the rod k; the mass of the axis k and the moment of inertia of the centroid are recorded as m k and
Figure PCTCN2018112677-appb-000053
Figure PCTCN2018112677-appb-000054
Is the inertia matrix of the rotation axis u;
Figure PCTCN2018112677-appb-000055
Is the inertial matrix of the translation axis u; h R is the non-inertia matrix of the rotation axis u; h P is the non-inertia matrix of the translation axis u;
Figure PCTCN2018112677-appb-000056
Is the translational joint angular velocity;
Figure PCTCN2018112677-appb-000057
Is the angular velocity of the turning joint.
应用式(129)至式(134)计算径向约束力大小
Figure PCTCN2018112677-appb-000058
Figure PCTCN2018112677-appb-000059
约束力矩大小
Figure PCTCN2018112677-appb-000060
Figure PCTCN2018112677-appb-000061
对于无功率损耗的运动轴u,记其约束力及约束力矩矢量分别为
Figure PCTCN2018112677-appb-000062
则有
Apply equations (129) to (134) to calculate the radial restraining force
Figure PCTCN2018112677-appb-000058
and
Figure PCTCN2018112677-appb-000059
Constraint moment
Figure PCTCN2018112677-appb-000060
and
Figure PCTCN2018112677-appb-000061
For the motion axis u without power loss, record its constraint force and constraint torque vector as
Figure PCTCN2018112677-appb-000062
Then
Figure PCTCN2018112677-appb-000063
Figure PCTCN2018112677-appb-000063
上式表示运动轴矢量与运动轴约束力具有自然正交补的关系;The above formula indicates that the motion axis vector and the constraint force of the motion axis have a natural orthogonal complement relationship;
Figure PCTCN2018112677-appb-000064
Figure PCTCN2018112677-appb-000065
为运动副
Figure PCTCN2018112677-appb-000066
的两个正交约束轴,且约束轴与运动轴正交,即
If
Figure PCTCN2018112677-appb-000064
and
Figure PCTCN2018112677-appb-000065
For sports pair
Figure PCTCN2018112677-appb-000066
Two orthogonal constraint axes, and the constraint axis is orthogonal to the motion axis, ie
Figure PCTCN2018112677-appb-000067
Figure PCTCN2018112677-appb-000067
Figure PCTCN2018112677-appb-000068
为约束轴轴矢量,有
Remember
Figure PCTCN2018112677-appb-000068
For the constraint axis axis vector, there is
Figure PCTCN2018112677-appb-000069
Figure PCTCN2018112677-appb-000069
其中:among them:
Figure PCTCN2018112677-appb-000070
Figure PCTCN2018112677-appb-000070
Figure PCTCN2018112677-appb-000071
Figure PCTCN2018112677-appb-000071
由式(130)得到关节约束力大小
Figure PCTCN2018112677-appb-000072
Figure PCTCN2018112677-appb-000073
约束力矩大小
Figure PCTCN2018112677-appb-000074
Figure PCTCN2018112677-appb-000075
若记运动轴径向力矢量
Figure PCTCN2018112677-appb-000076
及力矩矢量
Figure PCTCN2018112677-appb-000077
则有
Get the size of the joint restraint force by (130)
Figure PCTCN2018112677-appb-000072
and
Figure PCTCN2018112677-appb-000073
Constraint moment
Figure PCTCN2018112677-appb-000074
and
Figure PCTCN2018112677-appb-000075
If you remember the motion axis radial force vector
Figure PCTCN2018112677-appb-000076
And torque vector
Figure PCTCN2018112677-appb-000077
Then
Figure PCTCN2018112677-appb-000078
Figure PCTCN2018112677-appb-000078
若记运动轴径向力大小为
Figure PCTCN2018112677-appb-000079
及力矩大小为
Figure PCTCN2018112677-appb-000080
由式(133)得
If the radial force of the moving axis is
Figure PCTCN2018112677-appb-000079
And the moment is
Figure PCTCN2018112677-appb-000080
From Equation (133),
Figure PCTCN2018112677-appb-000081
Figure PCTCN2018112677-appb-000081
至此,完成了轴径向约束广义力的计算。So far, the calculation of the generalized force of axial radial restraint is completed.
由式(130)至式(134)计算运动轴u的径向约束力大小
Figure PCTCN2018112677-appb-000082
及约束力矩大小
Figure PCTCN2018112677-appb-000083
时,不考虑运动轴的广义内摩擦力及粘滞力。
Calculate the radial restraining force of the motion axis u from equations (130) to (134)
Figure PCTCN2018112677-appb-000082
And restraining moment
Figure PCTCN2018112677-appb-000083
In this case, the generalized internal friction and viscous forces of the moving axis are not considered.
考虑广义内摩擦力及粘滞力的基于轴不变量的约束力求解步骤为:Considering the generalized internal friction and viscous forces, the solution steps of the constraint force based on the axis invariant are:
在完成轴径向约束广义力的计算后,得到运动轴u的径向约束力大小
Figure PCTCN2018112677-appb-000084
及约束力矩大小
Figure PCTCN2018112677-appb-000085
记运动轴u的内摩擦力大小及内摩擦力矩大小分别为
Figure PCTCN2018112677-appb-000086
Figure PCTCN2018112677-appb-000087
运动轴u的粘滞力及粘滞力矩大小分别为
Figure PCTCN2018112677-appb-000088
Figure PCTCN2018112677-appb-000089
After the calculation of the radial general constraint force of the axis is completed, the radial constraint force of the motion axis u is obtained.
Figure PCTCN2018112677-appb-000084
And restraining moment
Figure PCTCN2018112677-appb-000085
The magnitude of the internal friction force and the internal friction moment of the motion axis u are respectively
Figure PCTCN2018112677-appb-000086
and
Figure PCTCN2018112677-appb-000087
The viscous force and viscous moment of the motion axis u are
Figure PCTCN2018112677-appb-000088
and
Figure PCTCN2018112677-appb-000089
then
Figure PCTCN2018112677-appb-000090
Figure PCTCN2018112677-appb-000090
Figure PCTCN2018112677-appb-000091
Figure PCTCN2018112677-appb-000091
其中: sk [u]─运动轴u的内摩擦系数, ck [u]─运动轴u的粘滞系数;sign()表示取正或负符号; Wherein: s k [u] coefficient of friction u of the movement of the shaft ─, c k [u] ─ movement of the shaft of the viscosity coefficient u; Sign () indicates the sign of positive or negative;
记广义内摩擦力及粘滞力的合力及合力矩分别为
Figure PCTCN2018112677-appb-000092
由式(140)及式(141)得
The general and internal moments of generalized internal friction and viscous forces are
Figure PCTCN2018112677-appb-000092
From equations (140) and (141),
Figure PCTCN2018112677-appb-000093
Figure PCTCN2018112677-appb-000093
闭链刚体***的Ju-Kane动力学方程根据树链Ju-Kane规范型方程建立。The Ju-Kane dynamic equation of the closed-chain rigid body system is established according to the tree-chain Ju-Kane canonical equation.
树链Ju-Kane规范型方程Tree Chain Ju-Kane Canonical Equation
Figure PCTCN2018112677-appb-000094
Figure PCTCN2018112677-appb-000094
其中:
Figure PCTCN2018112677-appb-000095
Figure PCTCN2018112677-appb-000096
是3×3的分块矩阵,
Figure PCTCN2018112677-appb-000097
Figure PCTCN2018112677-appb-000098
是3D矢量;
Figure PCTCN2018112677-appb-000099
为轴u的合外力在
Figure PCTCN2018112677-appb-000100
上的分量,
Figure PCTCN2018112677-appb-000101
为轴u的合力矩在
Figure PCTCN2018112677-appb-000102
上的分量;
among them:
Figure PCTCN2018112677-appb-000095
and
Figure PCTCN2018112677-appb-000096
Is a 3 × 3 block matrix,
Figure PCTCN2018112677-appb-000097
and
Figure PCTCN2018112677-appb-000098
Is a 3D vector;
Figure PCTCN2018112677-appb-000099
The resulting external force for axis u is
Figure PCTCN2018112677-appb-000100
On the weight,
Figure PCTCN2018112677-appb-000101
The resultant moment of the shaft u is
Figure PCTCN2018112677-appb-000102
Weight
并且,and,
Figure PCTCN2018112677-appb-000103
Figure PCTCN2018112677-appb-000103
Figure PCTCN2018112677-appb-000104
Figure PCTCN2018112677-appb-000104
Figure PCTCN2018112677-appb-000105
Figure PCTCN2018112677-appb-000105
Figure PCTCN2018112677-appb-000106
Figure PCTCN2018112677-appb-000106
Figure PCTCN2018112677-appb-000107
Figure PCTCN2018112677-appb-000107
Figure PCTCN2018112677-appb-000108
Figure PCTCN2018112677-appb-000108
式中,k I表示杆k质心I;轴k的质量及质心转动惯量分别记为m k
Figure PCTCN2018112677-appb-000109
Figure PCTCN2018112677-appb-000110
为转动轴u的惯性矩阵;
Figure PCTCN2018112677-appb-000111
为平动轴u的惯性矩阵;h R为转动轴u的非惯性矩阵;h P为平动轴u的非惯性矩阵;作用于轴u的合外力及力矩在
Figure PCTCN2018112677-appb-000112
上的分量分别记为
Figure PCTCN2018112677-appb-000113
Figure PCTCN2018112677-appb-000114
Figure PCTCN2018112677-appb-000115
作用于轴u的合外力及力矩在
Figure PCTCN2018112677-appb-000116
上的分量分别记为
Figure PCTCN2018112677-appb-000117
Figure PCTCN2018112677-appb-000118
驱动轴u的双边驱动力及驱动力矩在
Figure PCTCN2018112677-appb-000119
上的分量分别记为
Figure PCTCN2018112677-appb-000120
Figure PCTCN2018112677-appb-000121
环境i对轴l的作用力及作用力矩分别为
Figure PCTCN2018112677-appb-000122
iτ lll k为取由轴l至轴k的运动链, uL表示获得由轴u及其子树构成的闭子树。
In the formula, k I represents the centroid I of the rod k; the mass of the axis k and the moment of inertia of the centroid are recorded as m k and
Figure PCTCN2018112677-appb-000109
Figure PCTCN2018112677-appb-000110
Is the inertia matrix of the rotation axis u;
Figure PCTCN2018112677-appb-000111
Is the inertia matrix of the translation axis u; h R is the non-inertia matrix of the rotation axis u; h P is the non-inertia matrix of the translation axis u; the combined external force and moment acting on the axis u are
Figure PCTCN2018112677-appb-000112
The components on
Figure PCTCN2018112677-appb-000113
and
Figure PCTCN2018112677-appb-000114
Figure PCTCN2018112677-appb-000115
The combined external force and moment acting on the shaft u are
Figure PCTCN2018112677-appb-000116
The components on
Figure PCTCN2018112677-appb-000117
and
Figure PCTCN2018112677-appb-000118
The bilateral driving force and driving torque of the driving shaft u are between
Figure PCTCN2018112677-appb-000119
The components on
Figure PCTCN2018112677-appb-000120
and
Figure PCTCN2018112677-appb-000121
The acting force and acting moment of the environment i on the shaft l are
Figure PCTCN2018112677-appb-000122
And i τ l ; l l k is a kinematic chain from axis l to axis k, and u L means obtaining a closed subtree composed of axis u and its subtrees.
本发明所达到的有益效果:Beneficial effects achieved by the present invention:
对于非理想约束***,建立了闭链刚体非理想约束***的Ju-Kane动力学方程。For non-ideal constraint systems, the Ju-Kane dynamic equations of closed-chain rigid-body non-ideal constraint systems are established.
【1】在基于笛卡尔坐标轴链的牛顿欧拉动力学中,非树运动副 uk u′∈P约束不能表达齿条与齿轮、蜗轮与蜗杆等约束。而本申请建立的非树约束副 uk u′的约束代数方程可表达任一种约束类形,并且物理内涵明晰; [1] In Newton Euler dynamics based on Cartesian coordinate axis chains, non-tree motion pair u k u ′ ∈ P constraints cannot express constraints such as rack and pinion, worm gear and worm. The constraint algebra equation of the non-tree-constrained pair u k u ′ established in this application can express any kind of constraint, and the physical connotation is clear;
【2】在基于笛卡尔坐标轴链的牛顿欧拉动力学当中,非树运动副代数约束方程是6D的;而本申请建立的非树约束副的约束代数方程表示是3D非树运动副代数约束方程,从而降低了***方程求解的复杂度;[2] In the Newton Euler dynamics based on the Cartesian coordinate axis chain, the algebraic constraint equation of the non-tree motion pair is 6D; and the constraint algebraic equation of the non-tree motion pair established in this application is a 3D non-tree motion pair algebraic constraint Equations, thereby reducing the complexity of solving system equations;
【3】在基于笛卡尔坐标轴链的牛顿欧拉动力学当中,非树运动副代数约束方程是关于6D矢量空间绝对加速度的,是关于关节坐标、关节速度的迭代式,具有累积误差;而本申请建立的非树约束副的约束代数方程是关于关节加速度的,保证了约束方程的准确性。[3] In the Newton Euler dynamics based on the Cartesian coordinate axis chain, the non-tree motion algebraic constraint equation is about 6D vector space absolute acceleration, iterative formula about joint coordinates and joint speed, and it has cumulative errors The constraint algebraic equation of the non-tree-constrained pair applied for is related to joint acceleration, which guarantees the accuracy of the constraint equation.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1自然坐标系与轴链;Figure 1 Natural coordinate system and axis chain;
图2固定轴不变量;Figure 2 Fixed axis invariant;
图3、图4为运动轴的内摩擦力及粘滞力示意图。Figures 3 and 4 are schematic diagrams of internal friction and viscous forces of a moving shaft.
具体实施方式detailed description
下面对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。The invention is further described below. The following embodiments are only used to more clearly illustrate the technical solution of the present invention, and cannot be used to limit the protection scope of the present invention.
闭链刚体***具有非常广泛的应用;比如,CE3巡视器的摇臂移动***是具有差速器的闭链,重载机械臂通常是具有四连杆的闭链***。同时,实际的运动轴通常包含内摩擦力及粘滞力。因此研究闭链刚体***的Ju-Kane动力学建模非常必要。Closed-chain rigid body systems have a wide range of applications; for example, the rocker arm movement system of the CE3 patrol is a closed-chain with a differential, and heavy-duty mechanical arms are usually closed-chain systems with four links. At the same time, the actual motion axis usually contains internal friction and viscous forces. Therefore, it is necessary to study Ju-Kane dynamic modeling of closed-chain rigid body systems.
描述运动链的基本拓扑符号及操作是构成运动链拓扑符号***的基础,定义如下:The basic topology symbols and operations describing the kinematic chain are the basis of the kinematic chain topology symbol system and are defined as follows:
【1】运动链由偏序集合(]标识。[1] The motion chain is identified by a partial order set ().
【2】A [l]为取轴序列A的成员;因轴名l具有唯一的编号对应于A [l]的序号,故A [l]计算复杂度为O(1)。 [2] A [l] for the take-up shaft member of the sequence A; l due to the shaft having a name corresponding to a unique number A [l] of the sequence number, so that A [l] computing complexity is O (1).
【3】
Figure PCTCN2018112677-appb-000123
为取轴l的父轴;由式
Figure PCTCN2018112677-appb-000124
Figure PCTCN2018112677-appb-000125
可知,
Figure PCTCN2018112677-appb-000126
计算复杂度为O(1)。
[3]
Figure PCTCN2018112677-appb-000123
Is the parent axis of axis l;
Figure PCTCN2018112677-appb-000124
Figure PCTCN2018112677-appb-000125
You know,
Figure PCTCN2018112677-appb-000126
The computational complexity is O (1).
【4】
Figure PCTCN2018112677-appb-000127
为取轴序列
Figure PCTCN2018112677-appb-000128
的成员;由式
Figure PCTCN2018112677-appb-000129
Figure PCTCN2018112677-appb-000130
可知,故
Figure PCTCN2018112677-appb-000131
计算复杂度为O(1)。
[4]
Figure PCTCN2018112677-appb-000127
Axis sequence
Figure PCTCN2018112677-appb-000128
Member of
Figure PCTCN2018112677-appb-000129
Figure PCTCN2018112677-appb-000130
Know that
Figure PCTCN2018112677-appb-000131
The computational complexity is O (1).
【5】 ll k为取由轴l至轴k的运动链,输出表示为
Figure PCTCN2018112677-appb-000132
Figure PCTCN2018112677-appb-000133
基数记为| ll k|。 ll k执行过程:执行
Figure PCTCN2018112677-appb-000134
Figure PCTCN2018112677-appb-000135
则执行
Figure PCTCN2018112677-appb-000136
否则,结束。 ll k计算复杂度为O(| ll k|)。
[5] l l k is the kinematic chain from axis l to axis k, and the output is expressed as
Figure PCTCN2018112677-appb-000132
And
Figure PCTCN2018112677-appb-000133
The cardinality is written as | l l k |. l l k execution process: execution
Figure PCTCN2018112677-appb-000134
If
Figure PCTCN2018112677-appb-000135
Then execute
Figure PCTCN2018112677-appb-000136
Otherwise, end. The computational complexity of l l k is O (| l l k |).
【6】 ll为取轴l的子。该操作表示在
Figure PCTCN2018112677-appb-000137
中找到成员l的地址k;从而,获得轴l的子A [k]。因
Figure PCTCN2018112677-appb-000138
不具有偏序结构,故 ll的计算复杂度为
Figure PCTCN2018112677-appb-000139
[6] l l is the child of axis l. The operation is expressed in
Figure PCTCN2018112677-appb-000137
Find the address k of member l; thus, obtain child A [k] of axis l. because
Figure PCTCN2018112677-appb-000138
Does not have a partial order structure, so the computational complexity of l l is
Figure PCTCN2018112677-appb-000139
【7】 lL表示获得由轴l及其子树构成的闭子树,
Figure PCTCN2018112677-appb-000140
为不含l的子树;递归执行 ll,计算复杂度为
Figure PCTCN2018112677-appb-000141
[7] l L means to obtain a closed subtree composed of axis l and its subtrees,
Figure PCTCN2018112677-appb-000140
Is a subtree without l; recursively execute l l with a computational complexity of
Figure PCTCN2018112677-appb-000141
【8】支路、子树及非树弧的增加与删除操作也是必要的组成部分;从而,通过动态Span树及动态图描述可变拓扑结构。在支路 ll k中,若
Figure PCTCN2018112677-appb-000142
则记
Figure PCTCN2018112677-appb-000143
Figure PCTCN2018112677-appb-000144
表示在支路中取成员m的子。
[8] The addition and deletion of branches, subtrees, and non-tree arcs are also necessary components; thus, the variable topology is described by a dynamic span tree and a dynamic graph. In the branch l l k , if
Figure PCTCN2018112677-appb-000142
Rule
Figure PCTCN2018112677-appb-000143
which is
Figure PCTCN2018112677-appb-000144
Represents taking the child of member m in the branch.
计算复杂度O()表示计算过程的操作次数,通常指浮点乘与加的次数。以浮点乘与加的次数表达计算复杂度非常烦琐,故常采用算法循环过程中的主要操作次数;比如:关节位姿、速度、加速度等操作的次数。The calculation complexity O () represents the number of operations in the calculation process, and usually refers to the number of floating-point multiplications and additions. It is very tedious to express the calculation complexity by the number of floating-point multiplication and addition, so the main operation times in the algorithm loop process are often used; for example, the number of operations such as joint pose, speed, and acceleration.
定义1自然坐标轴:称与运动轴或测量轴共轴的,具有固定原点的单位参考轴为自然坐标轴,亦 称为自然参考轴。 Definition 1 Natural coordinate axis: The unit reference axis with a fixed origin that is coaxial with the motion axis or measurement axis is called the natural coordinate axis, also known as the natural reference axis.
定义2自然坐标系:若多轴***D处于零位,所有笛卡尔体坐标系方向一致,且体坐标系原点位于运动轴的轴线上,则该坐标***为自然坐标***,简称自然坐标系。Definition 2 Natural coordinate system: If the multi-axis system D is at zero position, all Cartesian body coordinate systems have the same direction, and the origin of the body coordinate system is on the axis of the motion axis, then the coordinate system is a natural coordinate system, referred to as the natural coordinate system.
自然坐标系优点在于:(1)坐标***易确定;(2)零位时的关节变量为零;(3)零位时的***姿态一致;(4)不易引入测量累积误差。The advantages of the natural coordinate system are: (1) the coordinate system is easy to determine; (2) the joint variables at the zero position are zero; (3) the system attitude at the zero position is consistent; (4) it is not easy to introduce a measurement error.
定义3不变量:称不依赖于一组坐标系进行度量的量为不变量。Definition 3 Invariant: A quantity that does not depend on a set of coordinate systems for measurement is called an invariant.
由定义2可知,在***处于零位时,所有杆件的自然坐标系与底座或世界系的方向一致。***处于零位即
Figure PCTCN2018112677-appb-000145
时,自然坐标系
Figure PCTCN2018112677-appb-000146
绕轴矢量
Figure PCTCN2018112677-appb-000147
转动角度
Figure PCTCN2018112677-appb-000148
Figure PCTCN2018112677-appb-000149
转至F [l]
Figure PCTCN2018112677-appb-000150
Figure PCTCN2018112677-appb-000151
下的坐标矢量与
Figure PCTCN2018112677-appb-000152
在F [l]下的坐标矢量
Figure PCTCN2018112677-appb-000153
恒等,即有
It can be known from Definition 2 that when the system is at the zero position, the natural coordinate system of all members is consistent with the direction of the base or world system. The system is at zero
Figure PCTCN2018112677-appb-000145
Natural coordinate system
Figure PCTCN2018112677-appb-000146
Vector around axis
Figure PCTCN2018112677-appb-000147
Rotation angle
Figure PCTCN2018112677-appb-000148
will
Figure PCTCN2018112677-appb-000149
Go to F [l] ;
Figure PCTCN2018112677-appb-000150
in
Figure PCTCN2018112677-appb-000151
Coordinate vector with
Figure PCTCN2018112677-appb-000152
Coordinate vector under F [l]
Figure PCTCN2018112677-appb-000153
Identity, that is
Figure PCTCN2018112677-appb-000154
Figure PCTCN2018112677-appb-000154
由上式知,
Figure PCTCN2018112677-appb-000155
Figure PCTCN2018112677-appb-000156
不依赖于相邻的坐标系
Figure PCTCN2018112677-appb-000157
及F [l];故称
Figure PCTCN2018112677-appb-000158
Figure PCTCN2018112677-appb-000159
为轴不变量。在不强调不变性时,可以称之为坐标轴矢量(简称轴矢量)。
Figure PCTCN2018112677-appb-000160
Figure PCTCN2018112677-appb-000161
表征的是体
Figure PCTCN2018112677-appb-000162
与体l共有的参考单位坐标矢量,与参考点
Figure PCTCN2018112677-appb-000163
及O l无关。
Knowing from the above formula,
Figure PCTCN2018112677-appb-000155
or
Figure PCTCN2018112677-appb-000156
Does not depend on adjacent coordinate systems
Figure PCTCN2018112677-appb-000157
And F [l] ;
Figure PCTCN2018112677-appb-000158
or
Figure PCTCN2018112677-appb-000159
Is the axis invariant. When invariance is not emphasized, it can be called a coordinate axis vector (referred to as an axis vector).
Figure PCTCN2018112677-appb-000160
or
Figure PCTCN2018112677-appb-000161
Body
Figure PCTCN2018112677-appb-000162
Reference unit coordinate vector common to volume l, and reference point
Figure PCTCN2018112677-appb-000163
And O l has nothing to do.
对轴不变量而言,其绝对导数就是其相对导数。因轴不变量是具有不变性的自然参考轴,故其绝对导数恒为零矢量。因此,轴不变量具有对时间微分的不变性。有:For axis invariants, its absolute derivative is its relative derivative. Since the axis invariant is a natural reference axis with invariance, its absolute derivative is always a zero vector. Therefore, the axis invariant is invariant to time differentiation. Have:
Figure PCTCN2018112677-appb-000164
Figure PCTCN2018112677-appb-000164
定义4转动坐标矢量:绕坐标轴矢量
Figure PCTCN2018112677-appb-000165
转动到角位置
Figure PCTCN2018112677-appb-000166
的坐标矢量
Figure PCTCN2018112677-appb-000167
Definition 4 Rotating coordinate vector: vector around coordinate axis
Figure PCTCN2018112677-appb-000165
Turn to angular position
Figure PCTCN2018112677-appb-000166
Coordinate vector
Figure PCTCN2018112677-appb-000167
for
Figure PCTCN2018112677-appb-000168
Figure PCTCN2018112677-appb-000168
定义5平动坐标矢量:沿坐标轴矢量
Figure PCTCN2018112677-appb-000169
平动到线位置
Figure PCTCN2018112677-appb-000170
的坐标矢量
Figure PCTCN2018112677-appb-000171
Definition 5 translation coordinate vector: vector along the coordinate axis
Figure PCTCN2018112677-appb-000169
Pan to line position
Figure PCTCN2018112677-appb-000170
Coordinate vector
Figure PCTCN2018112677-appb-000171
for
Figure PCTCN2018112677-appb-000172
Figure PCTCN2018112677-appb-000172
定义6自然坐标:以自然坐标轴矢量为参考方向,相对***零位的角位置或线位置,记为q l,称为自然坐标;称与自然坐标一一映射的量为关节变量;其中: Definition 6 Natural coordinates: take the natural coordinate axis vector as the reference direction, the angular position or line position relative to the zero position of the system, and record it as q l , which is called natural coordinates;
Figure PCTCN2018112677-appb-000173
Figure PCTCN2018112677-appb-000173
定义7机械零位:对于运动副
Figure PCTCN2018112677-appb-000174
在初始时刻t 0时,关节绝对编码器的零位
Figure PCTCN2018112677-appb-000175
不一定为零,该零位称为机械零位;
Definition 7 mechanical zero: for motion pairs
Figure PCTCN2018112677-appb-000174
Zero position of joint absolute encoder at initial time t 0
Figure PCTCN2018112677-appb-000175
Not necessarily zero, this zero is called mechanical zero;
故关节
Figure PCTCN2018112677-appb-000176
的控制量
Figure PCTCN2018112677-appb-000177
Old joint
Figure PCTCN2018112677-appb-000176
Control amount
Figure PCTCN2018112677-appb-000177
for
Figure PCTCN2018112677-appb-000178
Figure PCTCN2018112677-appb-000178
定义8自然运动矢量:将由自然坐标轴矢量
Figure PCTCN2018112677-appb-000179
及自然坐标q l确定的矢量
Figure PCTCN2018112677-appb-000180
称为自然运动矢量。其中:
Definition 8 natural motion vector: will be determined by the natural axis vector
Figure PCTCN2018112677-appb-000179
And the vector determined by natural coordinates q l
Figure PCTCN2018112677-appb-000180
Called the natural motion vector. among them:
Figure PCTCN2018112677-appb-000181
Figure PCTCN2018112677-appb-000181
自然运动矢量实现了轴平动与转动的统一表达。将由自然坐标轴矢量及关节确定的矢量,例如
Figure PCTCN2018112677-appb-000182
称为***矢量,亦称为自由螺旋。显然,轴矢量
Figure PCTCN2018112677-appb-000183
是特定的自由螺旋。
The natural motion vector realizes the unified expression of axis translation and rotation. A vector to be determined by the natural axis vector and the joint, such as
Figure PCTCN2018112677-appb-000182
Called the free motion vector, also known as the free spiral. Obviously, the axis vector
Figure PCTCN2018112677-appb-000183
Is a specific free spiral.
定义9关节空间:以关节自然坐标q l表示的空间称为关节空间。 Definition 9 joint space: The space represented by the joint natural coordinates q l is called joint space.
定义10位形空间:称表达位置及姿态(简称位姿)的笛卡尔空间为位形空间,是双矢量空间或6D空间。Defining a 10-dimensional space: The Cartesian space that expresses the position and pose (posture for short) is called a shape space, which is a double vector space or a 6D space.
定义11自然关节空间:以自然坐标系为参考,通过关节变量
Figure PCTCN2018112677-appb-000184
表示,在***零位时必有
Figure PCTCN2018112677-appb-000185
的关节空间,称为自然关节空间。
Definition 11 Natural joint space: using the natural coordinate system as a reference, through joint variables
Figure PCTCN2018112677-appb-000184
Means that there must be when the system is zero
Figure PCTCN2018112677-appb-000185
The joint space is called natural joint space.
给定多轴***D={T,A,B,K,F,NT},在***零位时,只要建立底座系或惯性系,以及各轴上的参考点O l,其它杆件坐标系也自然确定。本质上,只需要确定底座系或惯性系。 Given a multi-axis system D = {T, A, B, K, F, NT}, when the system is in zero position, as long as the base system or inertial system is established, and the reference point O l on each axis, other coordinate systems of the member Naturally ok. Essentially, only the base or inertial system needs to be determined.
给定一个由运动副连接的具有闭链的结构简图,可以选定回路中任一个运动副,将组成该运动副的定子与动子分割开来;从而,获得一个无回路的树型结构,称之为Span树。T表示带方向的span树,以描述树链运动的拓扑关系。Given a schematic diagram of a closed chain structure connected by a motion pair, any motion pair in the loop can be selected, and the stator and the mover constituting the motion pair can be separated; thus, a loop-free tree structure is obtained. , Call it the Span tree. T represents a span tree with directions to describe the topological relationship of the tree chain movement.
I为结构参数;A为轴序列,F为杆件参考系序列,B为杆件体序列,K为运动副类型序列,NT为约束轴的序列即非树。
Figure PCTCN2018112677-appb-000186
为取轴序列
Figure PCTCN2018112677-appb-000187
的成员。转动副R,棱柱副P,螺旋副H,接触副O是圆柱副C的特例。
I is a structural parameter; A is an axis sequence; F is a bar reference sequence; B is a bar body sequence; K is a motion pair type sequence; NT is a sequence of constrained axes, that is, a non-tree.
Figure PCTCN2018112677-appb-000186
Axis sequence
Figure PCTCN2018112677-appb-000187
a member of. Rotary pair R, prism pair P, spiral pair H, and contact pair O are special examples of cylindrical pair C.
定义以下表达式或表达形式:Define the following expressions or expressions:
轴与杆件具有一一对应性;轴间的属性量
Figure PCTCN2018112677-appb-000188
及杆件间的属性量
Figure PCTCN2018112677-appb-000189
具有偏序性。
There is a one-to-one correspondence between the shaft and the member; the attribute amount between the shafts
Figure PCTCN2018112677-appb-000188
And attributes between members
Figure PCTCN2018112677-appb-000189
Partial order.
约定:“□”表示属性占位;若属性p或P是关于位置的,则
Figure PCTCN2018112677-appb-000190
应理解为坐标系
Figure PCTCN2018112677-appb-000191
的原点至F [l]的原点;若属性p或P是关于方向的,则
Figure PCTCN2018112677-appb-000192
应理解为坐标系
Figure PCTCN2018112677-appb-000193
至F [l]
Convention: "□" means attribute placeholder; if the attribute p or P is about position, then
Figure PCTCN2018112677-appb-000190
Should be understood as a coordinate system
Figure PCTCN2018112677-appb-000191
To the origin of F [l] ; if the attribute p or P is about direction, then
Figure PCTCN2018112677-appb-000192
Should be understood as a coordinate system
Figure PCTCN2018112677-appb-000193
To F [l] .
Figure PCTCN2018112677-appb-000194
Figure PCTCN2018112677-appb-000195
应分别理解为关于时间t的函数
Figure PCTCN2018112677-appb-000196
Figure PCTCN2018112677-appb-000197
Figure PCTCN2018112677-appb-000198
Figure PCTCN2018112677-appb-000199
是t 0时刻的常数或常数阵列。但是正体的
Figure PCTCN2018112677-appb-000200
Figure PCTCN2018112677-appb-000201
应视为常数或常数阵列。
Figure PCTCN2018112677-appb-000194
and
Figure PCTCN2018112677-appb-000195
Should be understood as a function of time t
Figure PCTCN2018112677-appb-000196
and
Figure PCTCN2018112677-appb-000197
And
Figure PCTCN2018112677-appb-000198
and
Figure PCTCN2018112677-appb-000199
Is a constant or constant array at time t 0 . But formal
Figure PCTCN2018112677-appb-000200
and
Figure PCTCN2018112677-appb-000201
Should be considered a constant or constant array.
本申请中约定:在运动链符号演算***中,具有偏序的属性变量或常量,在名称上包含表示偏序的指标;要么包含左上角及右下角指标,要么包含右上角及右下角指标;它们的方向总是由左上角指 标至右下角指标,或由右上角指标至右下角指标,本申请中为叙述简便,有时省略方向的描述,即使省略,本领域技术人员通过符号表达式也可以知道,本申请中采用的各参数,对于某种属性符,它们的方向总是由偏序指标的左上角指标至右下角指标,或由右上角指标至右下角指标。例如:
Figure PCTCN2018112677-appb-000202
可简述为(表示由k至l)平动矢量;
Figure PCTCN2018112677-appb-000203
表示(由k至l的)线位置; kr l表示(由k至l的)平动矢量;其中:r表示“平动”属性符,其余属性符对应为:属性符φ表示“转动”;属性符Q表示“旋转变换矩阵”;属性符l表示“运动链”;属性符u表示“单位矢量”;属性符ω表示“角速度”;属性符J表示质心转动惯量;J表示偏速度雅克比矩阵;角标为i表示惯性坐标系或大地坐标系;其他角标可以为其他字母,也可以为数字。
It is stipulated in this application that in the motion chain symbol calculation system, attribute variables or constants with partial order include the indicators indicating partial order in the name; either include the upper left corner and lower right corner indexes, or include the upper right corner and lower right corner indexes; Their directions are always from the upper left corner indicator to the lower right corner indicator, or from the upper right corner indicator to the lower right corner indicator. In this application, for simplicity of description, the description of the direction is sometimes omitted. Even if omitted, those skilled in the art can also use symbolic expressions. It is known that, for each parameter used in this application, for a certain attribute symbol, their directions are always from the upper left corner index to the lower right corner index of the partial order index, or from the upper right corner index to the lower right corner index. E.g:
Figure PCTCN2018112677-appb-000202
Can be briefly described (represented from k to l) translational vector;
Figure PCTCN2018112677-appb-000203
Represents the position of the line (from k to l); k r l represents the translation vector (from k to l); where: r represents the "translation" attribute, and the rest of the attributes correspond to: attribute φ represents "rotation" Attribute Q represents the "rotation transformation matrix"; Attribute l represents the "kinematic chain"; Attribute u represents the "unit vector"; Attribute represents the "angular velocity"; Attribute J represents the centroid inertia; J represents the partial velocity Jac Ratio matrix; i indicates an inertial coordinate system or a geodetic coordinate system; other angle labels can be other letters or numbers.
本申请的符号规范与约定是根据运动链的偏序性、链节是运动链的基本单位这两个原则确定的,反映了运动链的本质特征。链指标表示的是连接关系,右上指标表征参考系。采用这种符号表达简洁、准确,便于交流与书面表达。同时,它们是结构化的符号***,包含了组成各属性量的要素及关系,便于计算机处理,为计算机自动建模奠定基础。指标的含义需要通过属性符的背景即上下文进行理解;比如:若属性符是平动类型的,则左上角指标表示坐标系的原点及方向;若属性符是转动类型的,则左上角指标表示坐标系的方向。The symbol specifications and conventions of this application are determined based on the two principles of the partial order of the kinematic chain and the chain link being the basic unit of the kinematic chain, reflecting the essential characteristics of the kinematic chain. The chain indicator represents the connection relationship, and the upper right indicator represents the reference system. This symbolic expression is concise and accurate, which is convenient for communication and written expression. At the same time, they are structured symbol systems that contain the elements and relationships that make up each attribute quantity, which is convenient for computer processing and lays the foundation for computer automatic modeling. The meaning of the indicator needs to be understood through the background of the attribute, that is, the context; for example: if the attribute is a translation type, the indicator at the upper left corner indicates the origin and direction of the coordinate system; if the attribute is a rotation type, the indicator at the top left The direction of the coordinate system.
(1)l S-杆件l中的点S;而S表示空间中的一点S。 (1) l S -point S in rod l; and S represents a point S in space.
(2)
Figure PCTCN2018112677-appb-000204
-杆件k的原点O k至杆件l的原点O l的平动矢量;
(2)
Figure PCTCN2018112677-appb-000204
-The translation vector of the origin O k of the rod k to the origin O l of the rod l;
kr l
Figure PCTCN2018112677-appb-000205
在自然坐标系F [k]下的坐标矢量,即由k至l的坐标矢量;
k r l-
Figure PCTCN2018112677-appb-000205
The coordinate vector in the natural coordinate system F [k] , that is, the coordinate vector from k to l;
(3)
Figure PCTCN2018112677-appb-000206
-原点O k至点l S的平动矢量;
(3)
Figure PCTCN2018112677-appb-000206
-Translation vector from origin O k to point l S ;
Figure PCTCN2018112677-appb-000207
在F [k]下的坐标矢量;
Figure PCTCN2018112677-appb-000207
Coordinate vector under F [k] ;
(4)
Figure PCTCN2018112677-appb-000208
-原点O k至点S的平动矢量;
(4)
Figure PCTCN2018112677-appb-000208
-Translation vector from origin Ok to point S;
kr S
Figure PCTCN2018112677-appb-000209
在F [k]下的坐标矢量;
k r S-
Figure PCTCN2018112677-appb-000209
Coordinate vector under F [k] ;
(5)
Figure PCTCN2018112677-appb-000210
-连接杆件
Figure PCTCN2018112677-appb-000211
及杆件l的运动副;
(5)
Figure PCTCN2018112677-appb-000210
-Connecting rod
Figure PCTCN2018112677-appb-000211
And the movement pair of rod l;
Figure PCTCN2018112677-appb-000212
-运动副
Figure PCTCN2018112677-appb-000213
的轴矢量;
Figure PCTCN2018112677-appb-000212
-Sports Vice
Figure PCTCN2018112677-appb-000213
Axis vector
Figure PCTCN2018112677-appb-000214
Figure PCTCN2018112677-appb-000215
分别在
Figure PCTCN2018112677-appb-000216
及F [l]下的坐标矢量;
Figure PCTCN2018112677-appb-000217
是轴不变量,为一结构常数;
Figure PCTCN2018112677-appb-000214
and
Figure PCTCN2018112677-appb-000215
Respectively
Figure PCTCN2018112677-appb-000216
And the coordinate vector under F [l] ;
Figure PCTCN2018112677-appb-000217
Is the axis invariant and is a structural constant;
Figure PCTCN2018112677-appb-000218
为转动矢量,转动矢量/角矢量
Figure PCTCN2018112677-appb-000219
是自由矢量,即该矢量可自由平移;
Figure PCTCN2018112677-appb-000218
For rotation vector, rotation vector / angle vector
Figure PCTCN2018112677-appb-000219
Is a free vector, that is, the vector can be freely translated;
(6)
Figure PCTCN2018112677-appb-000220
-沿轴
Figure PCTCN2018112677-appb-000221
的线位置(平动位置),
(6)
Figure PCTCN2018112677-appb-000220
-Along the axis
Figure PCTCN2018112677-appb-000221
Line position (translation position),
Figure PCTCN2018112677-appb-000222
-绕轴
Figure PCTCN2018112677-appb-000223
的角位置,即关节角、关节变量,为标量;
Figure PCTCN2018112677-appb-000222
-Around the axis
Figure PCTCN2018112677-appb-000223
The angular position, that is, the joint angle and joint variables, are scalars;
(7)左下角指标为0时,表示机械零位;如:(7) When the index in the lower left corner is 0, it means the mechanical zero position; for example:
Figure PCTCN2018112677-appb-000224
-平动轴
Figure PCTCN2018112677-appb-000225
的机械零位,
Figure PCTCN2018112677-appb-000224
-Translation axis
Figure PCTCN2018112677-appb-000225
Mechanical zero position,
Figure PCTCN2018112677-appb-000226
-转动轴
Figure PCTCN2018112677-appb-000227
的机械零位;
Figure PCTCN2018112677-appb-000226
-Rotating shaft
Figure PCTCN2018112677-appb-000227
Mechanical zero
(8)0-三维零矩阵;0 3=[0 0 0] T;1-三维单位矩阵; (8) 0-three-dimensional zero matrix; 0 3 = [0 0 0] T ; 1- three-dimensional identity matrix;
(9)约定:“\”表示续行符;“□”表示属性占位;则(9) Convention: "\" means line continuation character; "□" means attribute placeholder;
幂符
Figure PCTCN2018112677-appb-000228
表示□的x次幂;右上角角标∧或
Figure PCTCN2018112677-appb-000229
表示分隔符;如:
Figure PCTCN2018112677-appb-000230
Figure PCTCN2018112677-appb-000231
Figure PCTCN2018112677-appb-000232
的x次幂。
Power
Figure PCTCN2018112677-appb-000228
Represents the xth power of □;
Figure PCTCN2018112677-appb-000229
Delimiter; for example:
Figure PCTCN2018112677-appb-000230
or
Figure PCTCN2018112677-appb-000231
for
Figure PCTCN2018112677-appb-000232
X power.
[□] T表示□的转置,表示对集合转置,不对成员执行转置;如:
Figure PCTCN2018112677-appb-000233
[□] T means transpose of □, which means transpose the collection, and do not perform transpose on the members; for example:
Figure PCTCN2018112677-appb-000233
|□为投影符,表示矢量或二阶张量对参考基的投影矢量或投影序列,即坐标矢量或坐标阵列,投影即是点积运算“·”;如:位置矢量
Figure PCTCN2018112677-appb-000234
在坐标系F [k]中的投影矢量记为
Figure PCTCN2018112677-appb-000235
| Projection symbol □ represents vector or tensor of second order group reference projection vector or projection sequence, i.e. the vector of coordinates or coordinate array, that is, the dot product projection "*"; as: position vector
Figure PCTCN2018112677-appb-000234
The projection vector in the coordinate system F [k] is written as
Figure PCTCN2018112677-appb-000235
Figure PCTCN2018112677-appb-000236
为叉乘符;如:
Figure PCTCN2018112677-appb-000237
是轴不变量
Figure PCTCN2018112677-appb-000238
的叉乘矩阵;给定任一矢量
Figure PCTCN2018112677-appb-000239
的叉乘矩阵为
Figure PCTCN2018112677-appb-000240
叉乘矩阵是二阶张量。
Figure PCTCN2018112677-appb-000236
Is a cross multiplier; for example:
Figure PCTCN2018112677-appb-000237
Is axis invariant
Figure PCTCN2018112677-appb-000238
Cross product matrix; given any vector
Figure PCTCN2018112677-appb-000239
The cross product matrix is
Figure PCTCN2018112677-appb-000240
The cross product matrix is a second-order tensor.
叉乘符运算的优先级高于投影符 |□的优先级。投影符 |□的优先级高于成员访问符□ [□]或□ [□],成员访问符□ [□]优先级高于幂符
Figure PCTCN2018112677-appb-000241
The cross-multiplier operation takes precedence over the projector | □. Projector | □ has higher priority than member access symbol □ [□] or □ [□] , member access symbol □ [□] has higher priority than power symbol
Figure PCTCN2018112677-appb-000241
(10)单位矢量在大地坐标系的投影矢量
Figure PCTCN2018112677-appb-000242
单位零位矢量
Figure PCTCN2018112677-appb-000243
(10) Projection vector of unit vector in the geodetic coordinate system
Figure PCTCN2018112677-appb-000242
Unit zero vector
Figure PCTCN2018112677-appb-000243
(11)
Figure PCTCN2018112677-appb-000244
-零位时由原点
Figure PCTCN2018112677-appb-000245
至原点O l的平动矢量,且记
Figure PCTCN2018112677-appb-000246
表示位置结构参数。
(11)
Figure PCTCN2018112677-appb-000244
-From zero point
Figure PCTCN2018112677-appb-000245
Translation vector to origin O l
Figure PCTCN2018112677-appb-000246
Represents the position structure parameter.
(12) iQ l,相对绝对空间的旋转变换阵; (12) i Q l , a rotation transformation matrix in relative absolute space;
(13)以自然坐标轴矢量为参考方向,相对***零位的角位置或线位置,记为q l,称为自然坐标;关节变量
Figure PCTCN2018112677-appb-000247
自然关节坐标为φ l
(13) Taking the natural coordinate axis vector as the reference direction, the angular position or line position relative to the zero position of the system is recorded as q l , which is called natural coordinate; joint variable
Figure PCTCN2018112677-appb-000247
Natural joint coordinates are φ l ;
(14)对于一给定有序的集合r=[1,4,3,2] T,记r [x]表示取集合r的第x行元素。常记[x]、[y]、 [z]及[w]表示取第1、2、3及4列元素。 (14) For a given ordered set r = [1,4,3,2] T , note that r [x] represents taking the x-th row element of the set r. The constants [x], [y], [z], and [w] indicate that the first, second, third, and fourth columns are taken.
(15) il j表示由i到j的运动链; ll k为取由轴l至轴k的运动链; (15) i l j represents a kinematic chain from i to j; l l k is a kinematic chain from axis l to k;
给定运动链
Figure PCTCN2018112677-appb-000248
Figure PCTCN2018112677-appb-000249
若n表示笛卡尔直角系,则称
Figure PCTCN2018112677-appb-000250
为笛卡尔轴链;若n表示自然参考轴,则称
Figure PCTCN2018112677-appb-000251
为自然轴链。
Given kinematic chain
Figure PCTCN2018112677-appb-000248
Figure PCTCN2018112677-appb-000249
If n represents the Cartesian Cartesian system, then
Figure PCTCN2018112677-appb-000250
Is a Cartesian axis chain; if n represents a natural reference axis, then
Figure PCTCN2018112677-appb-000251
For natural shaft chains.
1.建立多轴***的拉格朗日方程1. Establishing Lagrange's equation of a multi-axis system
应用链符号***建立关节空间的拉格朗日方程,考虑质点动力学***D={A,K,T,NT,F,B},首先根据牛顿力学推导自由质点
Figure PCTCN2018112677-appb-000252
的拉格朗日方程;然后,推广至受约束的质点***。
The Lagrange equation of joint space is established by using the chain symbol system. Considering the particle dynamics system D = {A, K, T, NT, F, B}, the free particle is first deduced according to Newtonian mechanics
Figure PCTCN2018112677-appb-000252
Lagrange's equation; then, generalize to the constrained particle system.
保守力
Figure PCTCN2018112677-appb-000253
相对质点惯性力
Figure PCTCN2018112677-appb-000254
具有相同的链序,即
Figure PCTCN2018112677-appb-000255
具有正序,质点
Figure PCTCN2018112677-appb-000256
的合力为零。质点
Figure PCTCN2018112677-appb-000257
的能量记为
Figure PCTCN2018112677-appb-000258
根据广义坐标序列
Figure PCTCN2018112677-appb-000259
与笛卡尔空间位置矢量序列{ ir l|l∈T}关系
Conservatism
Figure PCTCN2018112677-appb-000253
Relative particle inertial force
Figure PCTCN2018112677-appb-000254
Have the same chain order, i.e.
Figure PCTCN2018112677-appb-000255
Positive order, particle
Figure PCTCN2018112677-appb-000256
The resultant force is zero. Particle
Figure PCTCN2018112677-appb-000257
Is recorded as
Figure PCTCN2018112677-appb-000258
Sequence of generalized coordinates
Figure PCTCN2018112677-appb-000259
Relationship with Cartesian space position vector sequence { i r l | l∈T}
Figure PCTCN2018112677-appb-000260
Figure PCTCN2018112677-appb-000260
Get
Figure PCTCN2018112677-appb-000261
Figure PCTCN2018112677-appb-000261
式(2)应用***的能量及广义坐标建立***的方程。关节变量
Figure PCTCN2018112677-appb-000262
与坐标矢量 ir l的关系如式(1)所示,称式(1)为关节空间与笛卡尔空间的点变换。
Equation (2) applies the energy of the system and generalized coordinates to establish the equations of the system. Joint variable
Figure PCTCN2018112677-appb-000262
The relationship with the coordinate vector i r l is shown in equation (1), and equation (1) is called the point transformation of joint space and Cartesian space.
保守力与惯性力具有相反的链序。拉格朗日***内的约束既可以是质点间的固结约束,又可以是质点***间的运动约束;刚体自身是质点***
Figure PCTCN2018112677-appb-000263
质点能量具有可加性;刚体动能量由质心平动动能及转动动能组成。下面,就以简单运动副R/P分别建立拉格朗日方程,为后续进一步推出新的动力学理论奠定基础。
Conservative forces have inverse chain order with inertial forces. Constraints in a Lagrangian system can be either consolidation constraints between particles or motion constraints between particle systems; rigid bodies are particle systems
Figure PCTCN2018112677-appb-000263
Particle energy is additive; rigid body kinetic energy consists of the translational kinetic energy and rotational kinetic energy of the mass center. In the following, Lagrange's equations are established separately with simple motion pairs R / P, which lays the foundation for the subsequent introduction of new dynamics theories.
给定刚体多轴***D={A,K,T,NT,F,B},惯性空间记为i,
Figure PCTCN2018112677-appb-000264
轴l的能量记为
Figure PCTCN2018112677-appb-000265
其中平动动能为
Figure PCTCN2018112677-appb-000266
转动动能为
Figure PCTCN2018112677-appb-000267
引力势能为
Figure PCTCN2018112677-appb-000268
轴l受除引力外的外部合力及合力矩分别为 Df lDτ l;轴l的质量及质心转动惯量分别为m l
Figure PCTCN2018112677-appb-000269
轴u的单位轴不变量为
Figure PCTCN2018112677-appb-000270
环境i作用于l I的惯性加速度记为
Figure PCTCN2018112677-appb-000271
重力加速度
Figure PCTCN2018112677-appb-000272
链序由i至l I
Figure PCTCN2018112677-appb-000273
链序由l I至i;且有
Given a rigid body multi-axis system D = {A, K, T, NT, F, B}, the inertial space is recorded as i,
Figure PCTCN2018112677-appb-000264
The energy of axis l is written as
Figure PCTCN2018112677-appb-000265
Where translational kinetic energy is
Figure PCTCN2018112677-appb-000266
The kinetic energy of rotation is
Figure PCTCN2018112677-appb-000267
Gravitational potential energy is
Figure PCTCN2018112677-appb-000268
The external resultant force and moment other than the gravitational force of the shaft l are D f l and D τ l respectively ; the mass of the shaft l and the moment of inertia of the center of mass are m l and
Figure PCTCN2018112677-appb-000269
The unit axis invariant of axis u is
Figure PCTCN2018112677-appb-000270
The inertial acceleration of the environment i acting on l I is written as
Figure PCTCN2018112677-appb-000271
Gravitational acceleration
Figure PCTCN2018112677-appb-000272
Chain order from i to l I ;
Figure PCTCN2018112677-appb-000273
Chain order from l I to i;
Figure PCTCN2018112677-appb-000274
Figure PCTCN2018112677-appb-000274
【1】***能量[1] System energy
动力学***D能量
Figure PCTCN2018112677-appb-000275
表达为
Kinetic system D energy
Figure PCTCN2018112677-appb-000275
Expressed as
Figure PCTCN2018112677-appb-000276
Figure PCTCN2018112677-appb-000276
其中:among them:
Figure PCTCN2018112677-appb-000277
Figure PCTCN2018112677-appb-000277
【2】多轴***拉格朗日方程[2] Lagrange's equation of multi-axis system
由式(2)得多轴***拉格朗日方程,By the equation (2) Lagrange's equation of the multi-axis system,
Figure PCTCN2018112677-appb-000278
Figure PCTCN2018112677-appb-000278
式(6)为轴u的控制方程,即在轴不变量
Figure PCTCN2018112677-appb-000279
上的力平衡方程;
Figure PCTCN2018112677-appb-000280
是合力
Figure PCTCN2018112677-appb-000281
Figure PCTCN2018112677-appb-000282
上的分量,
Figure PCTCN2018112677-appb-000283
是合力矩
Figure PCTCN2018112677-appb-000284
Figure PCTCN2018112677-appb-000285
上的分量。
Equation (6) is the governing equation of the axis u, that is, the invariant on the axis
Figure PCTCN2018112677-appb-000279
Force balance equation
Figure PCTCN2018112677-appb-000280
Heli
Figure PCTCN2018112677-appb-000281
in
Figure PCTCN2018112677-appb-000282
On the weight,
Figure PCTCN2018112677-appb-000283
Resultant torque
Figure PCTCN2018112677-appb-000284
in
Figure PCTCN2018112677-appb-000285
On the weight.
2.建立Ju-Kane动力学预备方程:2. Establish the Ju-Kane kinetic equation:
基于多轴***拉格朗日方程(6)推导居―凯恩(Ju-Kane)动力学预备定理。先进行拉格朗日方程与凯恩方程的等价性证明;然后,计算能量对关节速度及坐标的偏速度,再对时间求导,最后给出Ju-Kane动力学预备定理。Based on the Lagrange equation (6) of the multi-axis system, the Ju-Kane dynamics preliminary theorem is derived. First, prove the equivalence of Lagrange's equation and Kane's equation; then, calculate the partial velocity of energy to joint velocity and coordinates, and then derive the time, and finally give the Ju-Kane dynamics preliminary theorem.
【1】拉格朗日方程与凯恩方程的等价性证明[1] Proof of equivalence between Lagrange's equation and Kane's equation
Figure PCTCN2018112677-appb-000286
Figure PCTCN2018112677-appb-000286
证明:考虑刚体k平动动能对
Figure PCTCN2018112677-appb-000287
的偏速度对时间的导数得
Proof: Consider the k-translational kinetic energy pair of rigid body
Figure PCTCN2018112677-appb-000287
The derivative of the partial velocity with time is
Figure PCTCN2018112677-appb-000288
Figure PCTCN2018112677-appb-000288
考虑刚体k转动动能对
Figure PCTCN2018112677-appb-000289
的偏速度对时间的导数得
Consider the kinetic energy of k
Figure PCTCN2018112677-appb-000289
The derivative of the partial velocity with time is
Figure PCTCN2018112677-appb-000290
Figure PCTCN2018112677-appb-000290
证毕。Certificate completed.
Figure PCTCN2018112677-appb-000291
Figure PCTCN2018112677-appb-000292
不相关,由式(7)及多轴***拉格朗日方程(6)得
because
Figure PCTCN2018112677-appb-000291
versus
Figure PCTCN2018112677-appb-000292
Irrelevant, obtained by equation (7) and Lagrange's equation (6)
Figure PCTCN2018112677-appb-000293
Figure PCTCN2018112677-appb-000293
动力学***D的平动动能及转动动能分别表示为The translational kinetic energy and rotational kinetic energy of the dynamic system D are expressed as
Figure PCTCN2018112677-appb-000294
Figure PCTCN2018112677-appb-000294
考虑式(4)及式(5),即有Considering equations (4) and (5), we have
Figure PCTCN2018112677-appb-000295
Figure PCTCN2018112677-appb-000295
式(7)及式(8)是居―凯恩动力学预备定理证明的依据,即居―凯恩动力学预备定理本质上与拉格朗日法是等价的。同时,式(8)右侧包含了多轴***凯恩方程;表明拉格朗日法与凯恩法的惯性力计算是一致的,即拉格朗日法与凯恩法也是等价的。式(8)表明:在拉格朗日方程(4)中存在
Figure PCTCN2018112677-appb-000296
重复计算的问题。
Equations (7) and (8) are the basis for the proof of the Jue-Kane dynamics theorem, that is, the Jue-Kane dynamics theorem is essentially equivalent to the Lagrange method. At the same time, the right side of equation (8) contains the Kane equation of the multi-axis system; it shows that the calculation of the inertial force of the Lagrange method and the Kane method is consistent, that is, the Lagrange method and the Kane method are equivalent. Equation (8) shows that there exists in Lagrange equation (4)
Figure PCTCN2018112677-appb-000296
The problem of double counting.
【2】能量对关节速度及坐标的偏速度[2] Partial velocity of energy on joint velocity and coordinates
【2-1】若
Figure PCTCN2018112677-appb-000297
并考虑
Figure PCTCN2018112677-appb-000298
Figure PCTCN2018112677-appb-000299
仅与闭子树 uL相关,由式(4)及式(5),得
[2-1] If
Figure PCTCN2018112677-appb-000297
And consider
Figure PCTCN2018112677-appb-000298
and
Figure PCTCN2018112677-appb-000299
It is only related to the closed subtree u L. From equations (4) and (5), we get
Figure PCTCN2018112677-appb-000300
Figure PCTCN2018112677-appb-000300
Figure PCTCN2018112677-appb-000301
Figure PCTCN2018112677-appb-000301
Figure PCTCN2018112677-appb-000302
Figure PCTCN2018112677-appb-000302
【2-2】若
Figure PCTCN2018112677-appb-000303
并考虑
Figure PCTCN2018112677-appb-000304
Figure PCTCN2018112677-appb-000305
仅与闭子树 uL相关,由式(4)及式(5),得
[2-2] If
Figure PCTCN2018112677-appb-000303
And consider
Figure PCTCN2018112677-appb-000304
and
Figure PCTCN2018112677-appb-000305
It is only related to the closed subtree u L. From equations (4) and (5), we get
Figure PCTCN2018112677-appb-000306
Figure PCTCN2018112677-appb-000306
Figure PCTCN2018112677-appb-000307
Figure PCTCN2018112677-appb-000307
Figure PCTCN2018112677-appb-000308
Figure PCTCN2018112677-appb-000308
至此,已完成能量对关节速度及坐标的偏速度计算。At this point, the calculation of energy's deflection speed on joint speed and coordinates has been completed.
【3】求对时间的导数[3] Find the derivative of time
【3-1】若
Figure PCTCN2018112677-appb-000309
由式(7)、式(9)及式(10)得
[3-1] If
Figure PCTCN2018112677-appb-000309
From formula (7), formula (9) and formula (10),
Figure PCTCN2018112677-appb-000310
Figure PCTCN2018112677-appb-000310
【3-2】若
Figure PCTCN2018112677-appb-000311
由式(7)、式(12)及式(13)得
[3-2] If
Figure PCTCN2018112677-appb-000311
From (7), (12), and (13),
Figure PCTCN2018112677-appb-000312
Figure PCTCN2018112677-appb-000312
至此,已完成对时间t的求导。So far, the differentiation of time t has been completed.
【4】Ju-Kane动力学预备定理[4] Ju-Kane Dynamics Theorem
将式(11)、式(14)、式(15)及式(16)代入式(8),Substituting Equation (11), Equation (14), Equation (15), and Equation (16) into Equation (8),
给定多轴刚体***D={A,K,T,NT,F,B},惯性系记为F [i]
Figure PCTCN2018112677-appb-000313
除了重力外,作用于轴u的合外力及力矩分别记为
Figure PCTCN2018112677-appb-000314
Figure PCTCN2018112677-appb-000315
轴k的质量及质心转动惯量分别记为m k
Figure PCTCN2018112677-appb-000316
轴k的重力加速度为
Figure PCTCN2018112677-appb-000317
则轴u的Ju-Kane动力学预备方程为
Given a multi-axis rigid body system D = {A, K, T, NT, F, B}, the inertial system is denoted by F [i] ,
Figure PCTCN2018112677-appb-000313
In addition to gravity, the resultant external force and moment acting on the axis u are recorded as
Figure PCTCN2018112677-appb-000314
and
Figure PCTCN2018112677-appb-000315
The mass of the axis k and the moment of inertia of the center of mass are recorded as m k and
Figure PCTCN2018112677-appb-000316
The acceleration of gravity of axis k is
Figure PCTCN2018112677-appb-000317
The Ju-Kane dynamics equation for axis u is
Figure PCTCN2018112677-appb-000318
Figure PCTCN2018112677-appb-000318
式(17)具有了树链拓扑结构。k I表示杆k质心I。因闭子树 uL中的广义力具有可加性;因此闭子树的节点有唯一一条至根的运动链,因此运动链 il n可以被运动链 uL替换。 Equation (17) has a tree chain topology. k I represents the centroid I of the rod k. Because the generalized force in the closed subtree u L is additive; therefore, the nodes of the closed subtree have only one motion chain to the root, so the motion chain i l n can be replaced by the motion chain u L
下面,针对Ju-Kane动力学预备方程,解决式(17)右侧 Df kDτ k的计算问题,从而建立树链刚体***Ju-Kane动力学方程。 Next, according to the Ju-Kane dynamics preparatory equation, the calculation of D f k and D τ k on the right side of equation (17) is solved, and the Ju-Kane dynamic equation of the tree chain rigid body system is established.
3.建立树链刚体***Ju-Kane动力学模型3. Establish Ju-Kane dynamic model of tree chain rigid body system
给定轴链
Figure PCTCN2018112677-appb-000319
k∈ il n,有以下偏速度计算公式:
Given shaft chain
Figure PCTCN2018112677-appb-000319
k∈ i l n has the following formula for calculating partial velocity:
Figure PCTCN2018112677-appb-000320
Figure PCTCN2018112677-appb-000320
Figure PCTCN2018112677-appb-000321
Figure PCTCN2018112677-appb-000321
Figure PCTCN2018112677-appb-000322
Figure PCTCN2018112677-appb-000322
对给定轴链
Figure PCTCN2018112677-appb-000323
| il l|≥2,有以下加速度迭代式:
For a given axis chain
Figure PCTCN2018112677-appb-000323
| i l l | ≥2, with the following acceleration iteration:
Figure PCTCN2018112677-appb-000324
Figure PCTCN2018112677-appb-000324
左序叉乘与转置的关系为:The relationship between left-order cross product and transpose is:
Figure PCTCN2018112677-appb-000325
Figure PCTCN2018112677-appb-000325
根据运动学迭代式,有:According to the iterative kinematics, there are:
Figure PCTCN2018112677-appb-000326
Figure PCTCN2018112677-appb-000326
Figure PCTCN2018112677-appb-000327
Figure PCTCN2018112677-appb-000327
3.1外力反向迭代3.1 External force reverse iteration
给定由环境i中施力点i S至轴l上点l S的双边外力
Figure PCTCN2018112677-appb-000328
及外力矩 iτ l,它们的瞬时轴功率p ex表示为
Given a bilateral external force from the force application point i S in the environment i to the point l S on the axis l
Figure PCTCN2018112677-appb-000328
And external moment i τ l , their instantaneous shaft power p ex is expressed as
Figure PCTCN2018112677-appb-000329
Figure PCTCN2018112677-appb-000329
其中:
Figure PCTCN2018112677-appb-000330
iτ l不受
Figure PCTCN2018112677-appb-000331
Figure PCTCN2018112677-appb-000332
控制,即
Figure PCTCN2018112677-appb-000333
iτ l不依赖于
Figure PCTCN2018112677-appb-000334
Figure PCTCN2018112677-appb-000335
among them:
Figure PCTCN2018112677-appb-000330
And i τ l is not affected by
Figure PCTCN2018112677-appb-000331
and
Figure PCTCN2018112677-appb-000332
Control, ie
Figure PCTCN2018112677-appb-000333
And i τ l does not depend on
Figure PCTCN2018112677-appb-000334
and
Figure PCTCN2018112677-appb-000335
【1】若k∈ il l,则有
Figure PCTCN2018112677-appb-000336
由式(19)及式(18)得
[1] If k∈ i l l , then
Figure PCTCN2018112677-appb-000336
From equations (19) and (18),
Figure PCTCN2018112677-appb-000337
Figure PCTCN2018112677-appb-000337
which is
Figure PCTCN2018112677-appb-000338
Figure PCTCN2018112677-appb-000338
式(26)中
Figure PCTCN2018112677-appb-000339
与式(21)中
Figure PCTCN2018112677-appb-000340
的链序不同;前者是作用力,后者是运动量,二者是对偶的,具有相反的序。
In (26)
Figure PCTCN2018112677-appb-000339
And (21)
Figure PCTCN2018112677-appb-000340
The chain order of is different; the former is the acting force and the latter is the amount of motion.
【2】若k∈ il l,则有
Figure PCTCN2018112677-appb-000341
由式(22)及式(25)得
[2] If k ∈ i l l , then
Figure PCTCN2018112677-appb-000341
From equations (22) and (25),
Figure PCTCN2018112677-appb-000342
Figure PCTCN2018112677-appb-000342
即有That is
Figure PCTCN2018112677-appb-000343
Figure PCTCN2018112677-appb-000343
式(26)及式(27)表明环境作用于轴k的合外力或力矩等价于闭子树 kL对轴k的合外力或力矩,将式(26)及式(27)合写为 Equations (26) and (27) show that the combined external force or moment acting on the axis k by the environment is equivalent to the combined external force or moment of the closed subtree k L on the axis k, and formulae (26) and (27) as
Figure PCTCN2018112677-appb-000344
Figure PCTCN2018112677-appb-000344
至此,解决了外力反向迭代的计算问题。在式(28)中,闭子树对轴k的广义力具有可加性;力的作用具有双重效应,且是反向迭代的。所谓反向迭代是指:
Figure PCTCN2018112677-appb-000345
是需要通过链节位置矢量迭代的;
Figure PCTCN2018112677-appb-000346
的序与前向运动学
Figure PCTCN2018112677-appb-000347
计算的序相反。
At this point, the calculation of the reverse iteration of the external force is solved. In Eq. (28), the closed subtree has an additivity to the generalized force of axis k; the force has a dual effect and is iterative in reverse. The so-called reverse iteration refers to:
Figure PCTCN2018112677-appb-000345
It is necessary to iterate through the link position vector;
Figure PCTCN2018112677-appb-000346
Order and forward kinematics
Figure PCTCN2018112677-appb-000347
The order of calculation is reversed.
3.2共轴驱动力反向迭代3.2 Coaxial driving force reverse iteration
若轴l是驱动轴,轴l的驱动力及驱动力矩分别为
Figure PCTCN2018112677-appb-000348
Figure PCTCN2018112677-appb-000349
则驱动力
Figure PCTCN2018112677-appb-000350
及驱动力矩
Figure PCTCN2018112677-appb-000351
产生的 功率p ac表示为
If the shaft l is a driving shaft, the driving force and driving torque of the shaft l are
Figure PCTCN2018112677-appb-000348
and
Figure PCTCN2018112677-appb-000349
Driving force
Figure PCTCN2018112677-appb-000350
And driving torque
Figure PCTCN2018112677-appb-000351
The generated power p ac is expressed as
Figure PCTCN2018112677-appb-000352
Figure PCTCN2018112677-appb-000352
【1】由式(18)、式(19)及式(29)得[1] Obtained from formula (18), formula (19), and formula (29)
Figure PCTCN2018112677-appb-000353
Figure PCTCN2018112677-appb-000353
which is
Figure PCTCN2018112677-appb-000354
Figure PCTCN2018112677-appb-000354
若轴u与轴
Figure PCTCN2018112677-appb-000355
共轴,则有
Figure PCTCN2018112677-appb-000356
Figure PCTCN2018112677-appb-000357
Figure PCTCN2018112677-appb-000358
Figure PCTCN2018112677-appb-000359
Figure PCTCN2018112677-appb-000360
无关,由式(30)得
If the axis u and the axis
Figure PCTCN2018112677-appb-000355
Co-axial, then
Figure PCTCN2018112677-appb-000356
Remember
Figure PCTCN2018112677-appb-000357
Figure PCTCN2018112677-appb-000358
because
Figure PCTCN2018112677-appb-000359
versus
Figure PCTCN2018112677-appb-000360
Irrelevant, it is obtained by equation (30)
Figure PCTCN2018112677-appb-000361
Figure PCTCN2018112677-appb-000361
Figure PCTCN2018112677-appb-000362
Figure PCTCN2018112677-appb-000363
共轴,故有
because
Figure PCTCN2018112677-appb-000362
versus
Figure PCTCN2018112677-appb-000363
Co-axial
Figure PCTCN2018112677-appb-000364
Figure PCTCN2018112677-appb-000364
【2】由式(19)、式(18)及式(29)得[2] Obtained from formula (19), formula (18) and formula (29)
Figure PCTCN2018112677-appb-000365
Figure PCTCN2018112677-appb-000365
which is
Figure PCTCN2018112677-appb-000366
Figure PCTCN2018112677-appb-000366
若轴u与
Figure PCTCN2018112677-appb-000367
共轴,则有
Figure PCTCN2018112677-appb-000368
Figure PCTCN2018112677-appb-000369
由式(32)得
If the axis u and
Figure PCTCN2018112677-appb-000367
Co-axial, then
Figure PCTCN2018112677-appb-000368
Remember
Figure PCTCN2018112677-appb-000369
From equation (32),
Figure PCTCN2018112677-appb-000370
Figure PCTCN2018112677-appb-000370
至此,完成了共轴驱动力反向迭代计算问题。At this point, the reverse iterative calculation of the coaxial driving force is completed.
3.3树链刚体***Ju-Kane动力学显式模型的建立:3.3 Establishment of Ju-Kane dynamic model of tree chain rigid body system:
下面,先陈述树链刚体***Ju-Kane动力学方程,简称Ju-Kane方程;然后,给出建立步骤。In the following, the Ju-Kane dynamic equation of the tree-chain rigid body system is first described, and the Ju-Kane equation is simply referred to; then, the establishment steps are given.
给定多轴刚体***D={A,K,T,NT,F,B},惯性系记为F [i]
Figure PCTCN2018112677-appb-000371
除了重力外,作用于轴u的合外力及力矩在
Figure PCTCN2018112677-appb-000372
上的分量分别记为
Figure PCTCN2018112677-appb-000373
Figure PCTCN2018112677-appb-000374
轴k的质量及质心转动惯量分别记为m k
Figure PCTCN2018112677-appb-000375
轴k的重力加速度为
Figure PCTCN2018112677-appb-000376
驱动轴u的双边驱动力及驱动力矩在
Figure PCTCN2018112677-appb-000377
上的分量分别记为
Figure PCTCN2018112677-appb-000378
Figure PCTCN2018112677-appb-000379
环境i对轴l的力及力矩分别为
Figure PCTCN2018112677-appb-000380
iτ l;则轴u树链Ju-Kane动力学方程为
Given a multi-axis rigid body system D = {A, K, T, NT, F, B}, the inertial system is denoted by F [i] ,
Figure PCTCN2018112677-appb-000371
In addition to gravity, the combined external force and moment acting on the axis u
Figure PCTCN2018112677-appb-000372
The components on
Figure PCTCN2018112677-appb-000373
and
Figure PCTCN2018112677-appb-000374
The mass of the axis k and the moment of inertia of the center of mass are recorded as m k and
Figure PCTCN2018112677-appb-000375
The acceleration of gravity of axis k is
Figure PCTCN2018112677-appb-000376
The bilateral driving force and driving torque of the driving shaft u are between
Figure PCTCN2018112677-appb-000377
The components on
Figure PCTCN2018112677-appb-000378
and
Figure PCTCN2018112677-appb-000379
The force and moment of the environment i on the axis l are
Figure PCTCN2018112677-appb-000380
And i τ l ; then the Ju-Kane dynamic equation of the axis u-tree chain is
Figure PCTCN2018112677-appb-000381
Figure PCTCN2018112677-appb-000381
其中:[·]表示取行或列;
Figure PCTCN2018112677-appb-000382
Figure PCTCN2018112677-appb-000383
是3×3的分块矩阵,
Figure PCTCN2018112677-appb-000384
Figure PCTCN2018112677-appb-000385
是3D矢量,q为关节空间。且有,
Among them: [·] means taking rows or columns;
Figure PCTCN2018112677-appb-000382
and
Figure PCTCN2018112677-appb-000383
Is a 3 × 3 block matrix,
Figure PCTCN2018112677-appb-000384
and
Figure PCTCN2018112677-appb-000385
Is a 3D vector, and q is the joint space. And yes,
Figure PCTCN2018112677-appb-000386
Figure PCTCN2018112677-appb-000386
Figure PCTCN2018112677-appb-000387
Figure PCTCN2018112677-appb-000387
Figure PCTCN2018112677-appb-000388
Figure PCTCN2018112677-appb-000388
Figure PCTCN2018112677-appb-000389
Figure PCTCN2018112677-appb-000389
Figure PCTCN2018112677-appb-000390
Figure PCTCN2018112677-appb-000390
Figure PCTCN2018112677-appb-000391
Figure PCTCN2018112677-appb-000391
其中,记
Figure PCTCN2018112677-appb-000392
Among them, remember
Figure PCTCN2018112677-appb-000392
Figure PCTCN2018112677-appb-000393
Remember
Figure PCTCN2018112677-appb-000393
上述方程的建立步骤为:The establishment steps of the above equation are:
Figure PCTCN2018112677-appb-000394
故有
Remember
Figure PCTCN2018112677-appb-000394
Therefore
Figure PCTCN2018112677-appb-000395
Figure PCTCN2018112677-appb-000395
ex的能量为
Figure PCTCN2018112677-appb-000396
p ex为瞬时轴功率;p ac为驱动轴的驱动力及驱动力矩产生的功率。
The energy of ex is
Figure PCTCN2018112677-appb-000396
p ex is the instantaneous shaft power; p ac is the power generated by the driving force and driving torque of the drive shaft.
由式(26)、式(27)、式(31)、式(33)及式(41)得式(40)。Formula (40) is obtained from formula (26), formula (27), formula (31), formula (33), and formula (41).
将偏速度计算公式式(19),式(18)及式(20)代入Ju-Kane动力学预备方程(17)得Substituting the formula (19), (18) and (20) into the Ju-Kane kinetic equation (17)
Figure PCTCN2018112677-appb-000397
Figure PCTCN2018112677-appb-000397
由式(21)得From (21),
Figure PCTCN2018112677-appb-000398
Figure PCTCN2018112677-appb-000398
考虑式(43),则有Considering equation (43), we have
Figure PCTCN2018112677-appb-000399
Figure PCTCN2018112677-appb-000399
同样,考虑式(43),得Similarly, considering equation (43), we get
Figure PCTCN2018112677-appb-000400
Figure PCTCN2018112677-appb-000400
将式(43)至式(45)代入式(42)得式(34)至式(39)。Substituting equations (43) to (45) into equation (42) gives equations (34) to (39).
实施例1Example 1
给定如图3所示的通用3R机械臂,A=(i,1:3];应用本发明的方法建立树链Ju-Kane动力学方程,并得到广义惯性矩阵。Given the universal 3R manipulator shown in FIG. 3, A = (i, 1: 3]; apply the method of the present invention to establish the tree chain Ju-Kane dynamic equation, and obtain the generalized inertial matrix.
步骤1建立基于轴不变量的迭代式运动方程。 Step 1 establish an iterative motion equation based on the axis invariants.
由式(46)基于轴不变量的转动变换矩阵Rotation transformation matrix based on axis invariant by equation (46)
Figure PCTCN2018112677-appb-000401
Figure PCTCN2018112677-appb-000401
Get
Figure PCTCN2018112677-appb-000402
Figure PCTCN2018112677-appb-000402
运动学迭代式:Kinematic iteration:
Figure PCTCN2018112677-appb-000403
Figure PCTCN2018112677-appb-000403
Figure PCTCN2018112677-appb-000404
Figure PCTCN2018112677-appb-000404
Figure PCTCN2018112677-appb-000405
Figure PCTCN2018112677-appb-000405
Figure PCTCN2018112677-appb-000406
Figure PCTCN2018112677-appb-000406
Figure PCTCN2018112677-appb-000407
Figure PCTCN2018112677-appb-000407
二阶张量投影式:Second-order tensor projection:
Figure PCTCN2018112677-appb-000408
Figure PCTCN2018112677-appb-000408
Figure PCTCN2018112677-appb-000409
Figure PCTCN2018112677-appb-000409
由式(48)及式(47)得From equations (48) and (47),
Figure PCTCN2018112677-appb-000410
Figure PCTCN2018112677-appb-000410
由式(49),式(47)及式(55)得From equations (49), (47), and (55),
Figure PCTCN2018112677-appb-000411
Figure PCTCN2018112677-appb-000411
由式(50)及式(55)得From equations (50) and (55),
Figure PCTCN2018112677-appb-000412
Figure PCTCN2018112677-appb-000412
由式(51)、式(55)及式(57)得From equations (51), (55), and (57),
Figure PCTCN2018112677-appb-000413
Figure PCTCN2018112677-appb-000413
由式(52)及式(55)得From equations (52) and (55),
Figure PCTCN2018112677-appb-000414
Figure PCTCN2018112677-appb-000414
由式(53)及式(55)得From equations (53) and (55),
Figure PCTCN2018112677-appb-000415
Figure PCTCN2018112677-appb-000415
步骤2建立动力学方程。先建立第1轴的动力学方程。由式(37)得Step 2 establish a kinetic equation. First establish the kinetic equation of the first axis. From Equation (37),
Figure PCTCN2018112677-appb-000416
Figure PCTCN2018112677-appb-000416
由式(39)得From Equation (39)
Figure PCTCN2018112677-appb-000417
Figure PCTCN2018112677-appb-000417
由式(61)及式(62)得第1轴的动力学方程,From equations (61) and (62), the kinetic equation of the first axis is obtained.
Figure PCTCN2018112677-appb-000418
Figure PCTCN2018112677-appb-000418
建立第2轴的动力学方程。由式(37)得Establish a dynamics equation for the second axis. From Equation (37),
Figure PCTCN2018112677-appb-000419
Figure PCTCN2018112677-appb-000419
由式(39)得From Equation (39)
Figure PCTCN2018112677-appb-000420
Figure PCTCN2018112677-appb-000420
由式(64)及式(65)得第2轴的动力学方程,From equations (64) and (65), the second-axis dynamic equation is obtained.
Figure PCTCN2018112677-appb-000421
Figure PCTCN2018112677-appb-000421
最后,建立第3轴的动力学方程。由式(37)得Finally, the dynamic equation of the third axis is established. From Equation (37),
Figure PCTCN2018112677-appb-000422
Figure PCTCN2018112677-appb-000422
由式(39)得From Equation (39)
Figure PCTCN2018112677-appb-000423
Figure PCTCN2018112677-appb-000423
由式(67)及式(68)得第3轴的动力学方程,From equations (67) and (68), the third-axis dynamic equation is obtained.
Figure PCTCN2018112677-appb-000424
Figure PCTCN2018112677-appb-000424
由式(61),式(63)及式(67)得广义质量阵。The generalized mass matrix is obtained from equations (61), (63), and (67).
Figure PCTCN2018112677-appb-000425
Figure PCTCN2018112677-appb-000425
由此可知,只要程式化地将***的拓扑、结构参数、质惯量等参数代入式(36)至式(40)就可以完成动力学建模。通过编程,很容易实现Ju-Kane动力学方程。因后续的树链Ju-Kane规范方程是以Ju-Kane动力学方程推导的,树链Ju-Kane动力学方程的有效性可由Ju-Kane规范型实例证明。It can be seen that as long as the topology, structural parameters, mass inertia and other parameters of the system are programmatically substituted into equations (36) to (40), dynamic modeling can be completed. By programming, it is easy to implement the Ju-Kane kinetic equation. Since the subsequent tree chain Ju-Kane gauge equation is derived from the Ju-Kane kinetic equation, the validity of the tree chain Ju-Kane kinetic equation can be proved by the Ju-Kane gauge type example.
3.4树链刚体***Ju-Kane动力学规范型3.4 Ju-Kane Dynamic Canonical Model of Tree Chain Rigid Body System
在建立***动力学方程后,紧接着就是方程求解的问题。在动力学***仿真时,通常给定环境作用的广义力及驱动轴的广义驱动力,需要求解动力学***的加速度;这是动力学方程求解的正问题。在求解前,首先需要得到式(71)所示的规范方程。After the system dynamics equation is established, it is followed by the problem of solving the equation. In dynamic system simulation, given the generalized force acting on the environment and the generalized driving force of the drive shaft, it is necessary to solve the acceleration of the dynamic system; this is a positive problem in solving dynamic equations. Before solving, we first need to get the canonical equation shown in equation (71).
规范化动力学方程,Normalized kinetic equations,
Figure PCTCN2018112677-appb-000426
Figure PCTCN2018112677-appb-000426
其中:RHS–右手侧(Right hand side)Of which: RHS-Right Hand Side
显然,规范化过程就是将所有关节加速度项进行合并的过程;从而,得到关节加速度的系数。将该问题分解为运动链的规范型及闭子树的规范型两个子问题。Obviously, the normalization process is the process of merging all joint acceleration terms; thus, the coefficient of joint acceleration is obtained. This problem is decomposed into two sub-problems, the canonical form of the kinematic chain and the canonical form of the closed subtree.
3.4.1运动链的规范型方程3.4.1 Canonical Equations of a Motion Chain
将式(36)及式(37)中关节加速度项的前向迭代过程转化为反向求和过程,以便后续应用;显然,其中含有6种不同类型的加速度项,分别予以处理。The forward iterative process of joint acceleration terms in equations (36) and (37) is converted into a reverse summation process for subsequent applications; obviously, there are six different types of acceleration terms, which are processed separately.
【1】给定运动链
Figure PCTCN2018112677-appb-000427
则有
[1] Given motion chain
Figure PCTCN2018112677-appb-000427
Then
Figure PCTCN2018112677-appb-000428
Figure PCTCN2018112677-appb-000428
上式的推导步骤为:The derivation steps of the above formula are:
Figure PCTCN2018112677-appb-000429
Figure PCTCN2018112677-appb-000429
【2】给定运动链
Figure PCTCN2018112677-appb-000430
则有
[2] Given motion chain
Figure PCTCN2018112677-appb-000430
Then
Figure PCTCN2018112677-appb-000431
Figure PCTCN2018112677-appb-000431
上式的推导步骤为:因
Figure PCTCN2018112677-appb-000432
故得
The derivation steps of the above formula are:
Figure PCTCN2018112677-appb-000432
Therefore
Figure PCTCN2018112677-appb-000433
Figure PCTCN2018112677-appb-000433
【3】给定运动链
Figure PCTCN2018112677-appb-000434
则有
[3] Given motion chain
Figure PCTCN2018112677-appb-000434
Then
Figure PCTCN2018112677-appb-000435
Figure PCTCN2018112677-appb-000435
上式可由下式而得,因
Figure PCTCN2018112677-appb-000436
故有
The above formula can be obtained from the following formula, because
Figure PCTCN2018112677-appb-000436
Therefore
Figure PCTCN2018112677-appb-000437
Figure PCTCN2018112677-appb-000437
【4】给定运动链
Figure PCTCN2018112677-appb-000438
则有
[4] Given motion chain
Figure PCTCN2018112677-appb-000438
Then
Figure PCTCN2018112677-appb-000439
Figure PCTCN2018112677-appb-000439
上式的推导步骤为:考虑
Figure PCTCN2018112677-appb-000440
将式(72)代入式(75)左侧得
The derivation steps of the above formula are: consider
Figure PCTCN2018112677-appb-000440
Substituting Equation (72) into Equation (75) to the left
Figure PCTCN2018112677-appb-000441
Figure PCTCN2018112677-appb-000441
【5】给定运动链
Figure PCTCN2018112677-appb-000442
则有
[5] Given motion chain
Figure PCTCN2018112677-appb-000442
Then
Figure PCTCN2018112677-appb-000443
Figure PCTCN2018112677-appb-000443
上式的推导步骤为:考虑
Figure PCTCN2018112677-appb-000444
将式(72)代入式(76)左侧得
The derivation steps of the above formula are: consider
Figure PCTCN2018112677-appb-000444
Substituting equation (72) into equation (76) to the left
Figure PCTCN2018112677-appb-000445
Figure PCTCN2018112677-appb-000445
【6】给定运动链
Figure PCTCN2018112677-appb-000446
则有
[6] Given motion chain
Figure PCTCN2018112677-appb-000446
Then
Figure PCTCN2018112677-appb-000447
Figure PCTCN2018112677-appb-000447
上式的推导步骤为:因
Figure PCTCN2018112677-appb-000448
故有
The derivation steps of the above formula are:
Figure PCTCN2018112677-appb-000448
Therefore
Figure PCTCN2018112677-appb-000449
Figure PCTCN2018112677-appb-000449
3.4.2闭子树的规范型方程3.4.2 Canonical Equations for Closed Subtrees
因闭子树 uL中的广义力具有可加性;因此闭子树的节点有唯一一条至根的运动链,式(73)至式(77)的运动链 il n可以被 uL替换。由式(73)得 Because the generalized force in the closed subtree u L is additive; therefore, the nodes of the closed subtree have only one motion chain to the root, and the motion chain i l n in equations (73) to (77) can be replaced by u L . From equation (73),
Figure PCTCN2018112677-appb-000450
Figure PCTCN2018112677-appb-000450
由式(74)得From equation (74),
Figure PCTCN2018112677-appb-000451
Figure PCTCN2018112677-appb-000451
由式(75)得From equation (75)
Figure PCTCN2018112677-appb-000452
Figure PCTCN2018112677-appb-000452
由式(76)得From equation (76),
Figure PCTCN2018112677-appb-000453
Figure PCTCN2018112677-appb-000453
由式(77)得From Equation (77)
Figure PCTCN2018112677-appb-000454
Figure PCTCN2018112677-appb-000454
至此,已具备建立规范型的前提条件。At this point, the prerequisites for establishing a standardized model have been established.
3.5树链刚体***Ju-Kane动力学规范方程3.5 Tree Chain Rigid Body System Ju-Kane Dynamics Specification Equation
下面,建立树结构刚体***的Ju-Kane规范化动力学方程。为表达方便,首先定义Next, a Ju-Kane normalized dynamic equation of a tree-structured rigid body system is established. For convenience, first define
Figure PCTCN2018112677-appb-000455
Figure PCTCN2018112677-appb-000455
然后,应用式(78)至式(82),将式(36)及式(37)表达为规范型。Then, apply equations (78) to (82) to express equations (36) and (37) as canonical.
【1】式(36)的规范型为[1] The canonical form of formula (36) is
Figure PCTCN2018112677-appb-000456
Figure PCTCN2018112677-appb-000456
上式的具体建立步骤为:由式(24)及式(36)得The specific establishment steps of the above formula are: from (24) and (36)
Figure PCTCN2018112677-appb-000457
Figure PCTCN2018112677-appb-000457
由式(52)及式(85)得From equations (52) and (85),
Figure PCTCN2018112677-appb-000458
Figure PCTCN2018112677-appb-000458
将式(80)代入式(85)右侧前一项得Substituting Equation (80) into Equation (85) to the right of the previous term is
Figure PCTCN2018112677-appb-000459
Figure PCTCN2018112677-appb-000459
将式(79)代入式(86)右侧后一项得Substituting Equation (79) into Equation (86) to the right of the next term gives
Figure PCTCN2018112677-appb-000460
Figure PCTCN2018112677-appb-000460
将式(87)及式(88)代入式(86)得Substituting equations (87) and (88) into equations (86) gives
Figure PCTCN2018112677-appb-000461
Figure PCTCN2018112677-appb-000461
对于刚体k,有
Figure PCTCN2018112677-appb-000462
由式(35)、式(83)及式(89)得式(84)。
For rigid body k, there is
Figure PCTCN2018112677-appb-000462
Equation (84) is obtained from equation (35), equation (83), and equation (89).
【2】式(37)的规范型为[2] The canonical form of formula (37) is
Figure PCTCN2018112677-appb-000463
Figure PCTCN2018112677-appb-000463
上式的具体建立步骤为:由式(37)得The specific establishment steps of the above formula are as follows:
Figure PCTCN2018112677-appb-000464
Figure PCTCN2018112677-appb-000464
将式(78)代入式右侧前一项(91)得Substituting equation (78) into the right-hand preceding term (91) gives
Figure PCTCN2018112677-appb-000465
Figure PCTCN2018112677-appb-000465
将式(81)代入式(91)右侧后一项得Substituting equation (81) into the right-hand side of equation (91) gives
Figure PCTCN2018112677-appb-000466
Figure PCTCN2018112677-appb-000466
将式(82)代入式(91)右侧中间一项得Substituting equation (82) into the right middle term of equation (91) gives
Figure PCTCN2018112677-appb-000467
Figure PCTCN2018112677-appb-000467
将式(92),式(93)及式(94)代入式(92)得Substituting Equation (92), Equation (93), and Equation (94) into Equation (92) gives
Figure PCTCN2018112677-appb-000468
Figure PCTCN2018112677-appb-000468
对于刚体k,有
Figure PCTCN2018112677-appb-000469
由式(35),式(83)及式(95)得式(90)。
For rigid body k, there is
Figure PCTCN2018112677-appb-000469
From formula (35), formula (83), and formula (95), formula (90) is obtained.
【3】应用式(84)及式(90),将Ju-Kane方程重新表述为如下树链Ju-Kane规范型方程:[3] Apply equations (84) and (90) to reformulate the Ju-Kane equation as the following tree-chain Ju-Kane canonical equation:
给定多轴刚体***D={A,K,T,NT,F,B},惯性系记为F [i]
Figure PCTCN2018112677-appb-000470
除了重力外,作用于轴u的合外力及力矩在
Figure PCTCN2018112677-appb-000471
上的分量分别记为
Figure PCTCN2018112677-appb-000472
Figure PCTCN2018112677-appb-000473
轴k的质量及质心转动惯量分别记为m k
Figure PCTCN2018112677-appb-000474
轴k的重力加速度为
Figure PCTCN2018112677-appb-000475
驱动轴u的双边驱动力及驱动力矩在
Figure PCTCN2018112677-appb-000476
上的分量分别记为
Figure PCTCN2018112677-appb-000477
Figure PCTCN2018112677-appb-000478
环境i对轴l的作用力及力矩分别为
Figure PCTCN2018112677-appb-000479
Figure PCTCN2018112677-appb-000480
则轴u的Ju-Kane动力学规范方程为
Given a multi-axis rigid body system D = {A, K, T, NT, F, B}, the inertial system is denoted by F [i] ,
Figure PCTCN2018112677-appb-000470
In addition to gravity, the combined external force and moment acting on the axis u
Figure PCTCN2018112677-appb-000471
The components on
Figure PCTCN2018112677-appb-000472
and
Figure PCTCN2018112677-appb-000473
The mass of the axis k and the moment of inertia of the center of mass are recorded as m k and
Figure PCTCN2018112677-appb-000474
The acceleration of gravity of axis k is
Figure PCTCN2018112677-appb-000475
The bilateral driving force and driving torque of the driving shaft u are between
Figure PCTCN2018112677-appb-000476
The components on
Figure PCTCN2018112677-appb-000477
and
Figure PCTCN2018112677-appb-000478
The force and moment of the environment i on the shaft l are
Figure PCTCN2018112677-appb-000479
and
Figure PCTCN2018112677-appb-000480
The Ju-Kane dynamics norm equation of axis u is
Figure PCTCN2018112677-appb-000481
Figure PCTCN2018112677-appb-000481
其中:
Figure PCTCN2018112677-appb-000482
Figure PCTCN2018112677-appb-000483
是3×3的分块矩阵,
Figure PCTCN2018112677-appb-000484
Figure PCTCN2018112677-appb-000485
是3D矢量。并且,
among them:
Figure PCTCN2018112677-appb-000482
and
Figure PCTCN2018112677-appb-000483
Is a 3 × 3 block matrix,
Figure PCTCN2018112677-appb-000484
and
Figure PCTCN2018112677-appb-000485
Is a 3D vector. and,
Figure PCTCN2018112677-appb-000486
Figure PCTCN2018112677-appb-000486
Figure PCTCN2018112677-appb-000487
Figure PCTCN2018112677-appb-000487
Figure PCTCN2018112677-appb-000488
Figure PCTCN2018112677-appb-000488
Figure PCTCN2018112677-appb-000489
Figure PCTCN2018112677-appb-000489
Figure PCTCN2018112677-appb-000490
Figure PCTCN2018112677-appb-000490
Figure PCTCN2018112677-appb-000491
Figure PCTCN2018112677-appb-000491
式中,k I表示杆k质心I;轴k的质量及质心转动惯量分别记为m k
Figure PCTCN2018112677-appb-000492
Figure PCTCN2018112677-appb-000493
为转动轴u的惯性矩阵;
Figure PCTCN2018112677-appb-000494
为平动轴u的惯性矩阵;h R为转动轴u的非惯性矩阵;h P为平动轴u的非惯性矩阵;作用于轴u的合外力及力矩在
Figure PCTCN2018112677-appb-000495
上的分量分别记为
Figure PCTCN2018112677-appb-000496
Figure PCTCN2018112677-appb-000497
Figure PCTCN2018112677-appb-000498
驱动轴u的双边驱动力及驱动力矩在
Figure PCTCN2018112677-appb-000499
上的分量分别记为
Figure PCTCN2018112677-appb-000500
Figure PCTCN2018112677-appb-000501
环境i对轴l的作用力及作用力矩分别为
Figure PCTCN2018112677-appb-000502
iτ lll k为取由轴l至轴k的运动链, uL表示获得由轴u及其子树构成的闭子树。
In the formula, k I represents the centroid I of the rod k; the mass of the axis k and the moment of inertia of the centroid are recorded as m k and
Figure PCTCN2018112677-appb-000492
Figure PCTCN2018112677-appb-000493
Is the inertia matrix of the rotation axis u;
Figure PCTCN2018112677-appb-000494
Is the inertia matrix of the translation axis u; h R is the non-inertia matrix of the rotation axis u; h P is the non-inertia matrix of the translation axis u; the combined external force and moment acting on the axis u are
Figure PCTCN2018112677-appb-000495
The components on
Figure PCTCN2018112677-appb-000496
and
Figure PCTCN2018112677-appb-000497
Figure PCTCN2018112677-appb-000498
The bilateral driving force and driving torque of the driving shaft u are between
Figure PCTCN2018112677-appb-000499
The components on
Figure PCTCN2018112677-appb-000500
and
Figure PCTCN2018112677-appb-000501
The acting force and acting moment of the environment i on the shaft l are
Figure PCTCN2018112677-appb-000502
And i τ l ; l l k is a kinematic chain from axis l to axis k, and u L means obtaining a closed subtree composed of axis u and its subtrees.
4.闭链刚体***的Ju-Kane动力学方程建立4. Establishment of Ju-Kane dynamic equation of closed-chain rigid body system
下面,先陈述闭链刚体***的居―凯恩(简称Ju-Kane)动力学方程;然后,给出具体建模过程。In the following, the Ju-Kane (Ju-Kane) dynamic equation of the closed-chain rigid-body system is stated first; then, the specific modeling process is given.
给定多轴刚体***D={A,K,T,NT,F,B},惯性系记为F [i]
Figure PCTCN2018112677-appb-000503
除了重力外,作用于轴u的合外力及力矩在
Figure PCTCN2018112677-appb-000504
上的分量分别记为
Figure PCTCN2018112677-appb-000505
Figure PCTCN2018112677-appb-000506
轴k的质量及质心转动惯量分别记为m k
Figure PCTCN2018112677-appb-000507
轴k的重力加速度为
Figure PCTCN2018112677-appb-000508
驱动轴u的双边驱动力及驱动力矩在
Figure PCTCN2018112677-appb-000509
上的分量分别记为
Figure PCTCN2018112677-appb-000510
Figure PCTCN2018112677-appb-000511
环境i对轴l的作用力及作用力矩分别为
Figure PCTCN2018112677-appb-000512
iτ l;轴u对轴u′的广义约束力记为
Figure PCTCN2018112677-appb-000513
则有闭链刚体***的Ju-Kane动力学方程:
Given a multi-axis rigid body system D = {A, K, T, NT, F, B}, the inertial system is denoted by F [i] ,
Figure PCTCN2018112677-appb-000503
In addition to gravity, the combined external force and moment acting on the axis u
Figure PCTCN2018112677-appb-000504
The components on
Figure PCTCN2018112677-appb-000505
and
Figure PCTCN2018112677-appb-000506
The mass of the axis k and the moment of inertia of the center of mass are recorded as m k and
Figure PCTCN2018112677-appb-000507
The acceleration of gravity of axis k is
Figure PCTCN2018112677-appb-000508
The bilateral driving force and driving torque of the driving shaft u are between
Figure PCTCN2018112677-appb-000509
The components on
Figure PCTCN2018112677-appb-000510
and
Figure PCTCN2018112677-appb-000511
The acting force and acting moment of the environment i on the shaft l are
Figure PCTCN2018112677-appb-000512
And i τ l ; the generalized binding force of axis u to axis u ′ is written as
Figure PCTCN2018112677-appb-000513
Then there are Ju-Kane dynamic equations of closed-chain rigid body systems:
【1】轴u及轴u′的Ju-Kane动力学规范方程分别为[1] The Ju-Kane kinetic norm equations for axis u and axis u ′ are
Figure PCTCN2018112677-appb-000514
Figure PCTCN2018112677-appb-000514
Figure PCTCN2018112677-appb-000515
Figure PCTCN2018112677-appb-000515
【2】非树约束副 uk u′的约束代数方程为 [2] The constraint algebraic equation of the non-tree constrained pair u k u ′ is
Figure PCTCN2018112677-appb-000516
Figure PCTCN2018112677-appb-000516
Figure PCTCN2018112677-appb-000517
Figure PCTCN2018112677-appb-000517
Figure PCTCN2018112677-appb-000518
Figure PCTCN2018112677-appb-000518
Figure PCTCN2018112677-appb-000519
Figure PCTCN2018112677-appb-000519
其中:among them:
Figure PCTCN2018112677-appb-000520
Figure PCTCN2018112677-appb-000520
Figure PCTCN2018112677-appb-000521
Figure PCTCN2018112677-appb-000521
Figure PCTCN2018112677-appb-000522
Figure PCTCN2018112677-appb-000522
Figure PCTCN2018112677-appb-000523
Figure PCTCN2018112677-appb-000523
Figure PCTCN2018112677-appb-000524
Figure PCTCN2018112677-appb-000524
式中:
Figure PCTCN2018112677-appb-000525
Figure PCTCN2018112677-appb-000526
是3×3的分块矩阵,
Figure PCTCN2018112677-appb-000527
Figure PCTCN2018112677-appb-000528
是3D矢量;k I表示杆k质心I;轴k的质量及质心转动惯量分别记为m k
Figure PCTCN2018112677-appb-000529
Figure PCTCN2018112677-appb-000530
为转动轴u的惯性矩阵;
Figure PCTCN2018112677-appb-000531
为平动轴u的惯性矩阵;h R为转动轴u的非惯性矩阵;h P为平动轴u的非惯性矩阵;
Figure PCTCN2018112677-appb-000532
为平动关节角速度;
Figure PCTCN2018112677-appb-000533
为转动关节角速度。
In the formula:
Figure PCTCN2018112677-appb-000525
and
Figure PCTCN2018112677-appb-000526
Is a 3 × 3 block matrix,
Figure PCTCN2018112677-appb-000527
and
Figure PCTCN2018112677-appb-000528
Is a 3D vector; k I represents the centroid I of the rod k; the mass of the axis k and the moment of inertia of the centroid are recorded as m k and
Figure PCTCN2018112677-appb-000529
Figure PCTCN2018112677-appb-000530
Is the inertia matrix of the rotation axis u;
Figure PCTCN2018112677-appb-000531
Is the inertial matrix of the translation axis u; h R is the non-inertia matrix of the rotation axis u; h P is the non-inertia matrix of the translation axis u;
Figure PCTCN2018112677-appb-000532
Is the translational joint angular velocity;
Figure PCTCN2018112677-appb-000533
Is the angular velocity of the turning joint.
具体建模过程如下:The specific modeling process is as follows:
非树约束副
Figure PCTCN2018112677-appb-000534
保持约束点u S及u′ S一致,故有
Non-tree constrained pair
Figure PCTCN2018112677-appb-000534
Keep the constraint points u S and u ′ S consistent, so
Figure PCTCN2018112677-appb-000535
Figure PCTCN2018112677-appb-000535
由式(114)得From equation (114),
Figure PCTCN2018112677-appb-000536
Figure PCTCN2018112677-appb-000536
轴u对轴u′在约束轴方向上的广义约束力
Figure PCTCN2018112677-appb-000537
及轴u′对轴u在约束轴方向上的广义约束力
Figure PCTCN2018112677-appb-000538
的功率分别为
Generalized constraint force of axis u to axis u ′ in the direction of the constraint axis
Figure PCTCN2018112677-appb-000537
And the generalized binding force of axis u ′ to axis u in the direction of the constraint axis
Figure PCTCN2018112677-appb-000538
The powers are
Figure PCTCN2018112677-appb-000539
Figure PCTCN2018112677-appb-000539
由式(115)及式(116)得From equations (115) and (116),
Figure PCTCN2018112677-appb-000540
Figure PCTCN2018112677-appb-000540
由式(115)得From equation (115),
Figure PCTCN2018112677-appb-000541
Figure PCTCN2018112677-appb-000541
Figure PCTCN2018112677-appb-000542
Figure PCTCN2018112677-appb-000542
Figure PCTCN2018112677-appb-000543
Figure PCTCN2018112677-appb-000543
Figure PCTCN2018112677-appb-000544
Figure PCTCN2018112677-appb-000544
δ表示增量;δ represents increment;
由式(18)及式(118)得From (18) and (118),
Figure PCTCN2018112677-appb-000545
Figure PCTCN2018112677-appb-000545
故有Therefore
Figure PCTCN2018112677-appb-000546
Figure PCTCN2018112677-appb-000546
由式(110)及式(122)得式(105)。由式(19)及式(119)得From formula (110) and formula (122), formula (105) is obtained. From (19) and (119),
Figure PCTCN2018112677-appb-000547
Figure PCTCN2018112677-appb-000547
由式(111)及式(123)得式(106)。由式(19)及式(120)得From formula (111) and formula (123), formula (106) is obtained. From equations (19) and (120),
Figure PCTCN2018112677-appb-000548
Figure PCTCN2018112677-appb-000548
由式(112)及式(124)得式(107)。由式(19)及式(121)得From formula (112) and formula (124), formula (107) is obtained. From equations (19) and (121),
Figure PCTCN2018112677-appb-000549
Figure PCTCN2018112677-appb-000549
由式(113)及式(125)得(108)。由式(18),式(116)及式(110)得From formula (113) and formula (125), (108) is obtained. From formula (18), formula (116) and formula (110),
Figure PCTCN2018112677-appb-000550
Figure PCTCN2018112677-appb-000550
Figure PCTCN2018112677-appb-000551
Figure PCTCN2018112677-appb-000551
广义约束力
Figure PCTCN2018112677-appb-000552
Figure PCTCN2018112677-appb-000553
是矢量,由式(126)及式(127)得式(109)。由此可知,偏速度主要应用于力的反向迭代。广义约束力
Figure PCTCN2018112677-appb-000554
Figure PCTCN2018112677-appb-000555
视为外力。
Generalized binding force
Figure PCTCN2018112677-appb-000552
and
Figure PCTCN2018112677-appb-000553
Is a vector, and Equation (109) is obtained from Equation (126) and Equation (127). It can be seen that the bias velocity is mainly used in the reverse iteration of the force. Generalized binding force
Figure PCTCN2018112677-appb-000554
and
Figure PCTCN2018112677-appb-000555
Considered external force.
根据轴u的Ju-Kane动力学规范方程得式(103)及式(104)。Equations (103) and (104) are obtained according to the Ju-Kane kinetic norm equation of the axis u.
以关节空间自然轴链为基础的Ju-Kane闭链刚体动力学克服了笛卡尔坐标轴链空间的局限:Ju-Kane closed-chain rigid body dynamics based on the natural axis chain in joint space overcomes the limitations of Cartesian axis chain space:
【1】在基于笛卡尔坐标轴链的牛顿欧拉动力学中,非树运动副 uk u′∈P约束不能表达
Figure PCTCN2018112677-appb-000556
Figure PCTCN2018112677-appb-000557
Figure PCTCN2018112677-appb-000558
Figure PCTCN2018112677-appb-000559
的情形,即不能表达齿条与齿轮、蜗轮与蜗杆等约束。而本申请的非树约束副 uk u′的约束代数方程式(105)至式(108)可表达任一种约束类形,并且物理内涵明晰;
[1] In Newton Euler dynamics based on Cartesian coordinate axis chains, non-tree motion pair u k u ′ ∈ P constraint cannot be expressed
Figure PCTCN2018112677-appb-000556
and
Figure PCTCN2018112677-appb-000557
or
Figure PCTCN2018112677-appb-000558
and
Figure PCTCN2018112677-appb-000559
In this case, constraints such as rack and pinion, worm gear and worm cannot be expressed. The constraint algebraic equations (105) to (108) of the non-tree constrained pair u k u ′ of the present application can express any kind of constraint, and the physical connotation is clear;
【2】在基于笛卡尔坐标轴链的牛顿欧拉动力学当中,非树运动副代数约束方程是6D的;而式(105)至式(108)表示是3D非树运动副代数约束方程,从而降低了***方程求解的复杂度;[2] In the Newton Euler dynamics based on the Cartesian coordinate axis chain, the non-tree motion auxiliary algebraic constraint equation is 6D; and equations (105) to (108) represent 3D non-tree motion auxiliary algebraic constraint equations, so that Reduce the complexity of solving system equations;
【3】在基于笛卡尔坐标轴链的牛顿欧拉动力学当中,非树运动副代数约束方程是关于6D矢量空间绝对加速度的,是关于关节坐标、关节速度的迭代式,具有累积误差;而式(105)至式(108)是关于关节加速度的,保证了约束方程的准确性。[3] In the Newton Euler dynamics based on the Cartesian coordinate axis chain, the algebraic constraint equation of non-tree motion pair is about the 6D vector space absolute acceleration, iterative formula about joint coordinates and joint speed, with cumulative error; (105) to (108) are about joint acceleration, which guarantees the accuracy of the constraint equation.
5.基于轴不变量的约束力求解5. Solving constraint forces based on axis invariants
对于无功率损耗的运动轴u,记其约束力及约束力矩矢量分别为
Figure PCTCN2018112677-appb-000560
显然,有
For the motion axis u without power loss, record its constraint force and constraint torque vector as
Figure PCTCN2018112677-appb-000560
Obviously, there is
Figure PCTCN2018112677-appb-000561
Figure PCTCN2018112677-appb-000561
由式(96)及式(139)计算得
Figure PCTCN2018112677-appb-000562
式(128)表示运动轴矢量与运动轴约束力具有自然正交补的关系。
Calculated from equations (96) and (139)
Figure PCTCN2018112677-appb-000562
Equation (128) shows that the motion axis vector and the constraint force of the motion axis have a natural orthogonal complement.
Figure PCTCN2018112677-appb-000563
Figure PCTCN2018112677-appb-000564
为运动副
Figure PCTCN2018112677-appb-000565
的两个正交约束轴,且约束轴与运动轴正交,即
If
Figure PCTCN2018112677-appb-000563
and
Figure PCTCN2018112677-appb-000564
For sports pair
Figure PCTCN2018112677-appb-000565
Two orthogonal constraint axes, and the constraint axis is orthogonal to the motion axis, ie
Figure PCTCN2018112677-appb-000566
Figure PCTCN2018112677-appb-000566
Figure PCTCN2018112677-appb-000567
为约束轴轴矢量,
Figure PCTCN2018112677-appb-000568
替换式(96)中
Figure PCTCN2018112677-appb-000569
重新计算得
Remember
Figure PCTCN2018112677-appb-000567
To constrain the axis vector,
Figure PCTCN2018112677-appb-000568
Replacement (96)
Figure PCTCN2018112677-appb-000569
Recalculated
Figure PCTCN2018112677-appb-000570
Figure PCTCN2018112677-appb-000570
其中:among them:
Figure PCTCN2018112677-appb-000571
Figure PCTCN2018112677-appb-000571
Figure PCTCN2018112677-appb-000572
Figure PCTCN2018112677-appb-000572
在完成前向动力学正解后,根据已计算的关节加速度
Figure PCTCN2018112677-appb-000573
由式(130)可以得到关节约束力大小
Figure PCTCN2018112677-appb-000574
约束力矩大小
Figure PCTCN2018112677-appb-000575
Figure PCTCN2018112677-appb-000576
时,由式(130)得
Figure PCTCN2018112677-appb-000577
Figure PCTCN2018112677-appb-000578
式(130)中同一时刻具有相同的运动状态及内外力。仅在运动轴向上出现力及力矩的平衡;而在约束轴向,动力学方程不满足,即力与力矩不一定平衡。
After completing the forward dynamics solution, based on the calculated joint acceleration
Figure PCTCN2018112677-appb-000573
The size of the joint restraint force can be obtained from equation (130)
Figure PCTCN2018112677-appb-000574
Constraint moment
Figure PCTCN2018112677-appb-000575
when
Figure PCTCN2018112677-appb-000576
When, get from formula (130)
Figure PCTCN2018112677-appb-000577
And
Figure PCTCN2018112677-appb-000578
Equation (130) has the same motion state and internal and external forces at the same time. Equilibrium of force and moment occurs only in the axial direction of movement; while in the constraint axis, the dynamic equation is not satisfied, that is, the force and moment are not necessarily balanced.
由式(130)可以得到关节约束力大小
Figure PCTCN2018112677-appb-000579
Figure PCTCN2018112677-appb-000580
约束力矩大小
Figure PCTCN2018112677-appb-000581
Figure PCTCN2018112677-appb-000582
若记运动轴径向力矢量
Figure PCTCN2018112677-appb-000583
及力矩矢量
Figure PCTCN2018112677-appb-000584
则有
The size of the joint restraint force can be obtained from equation (130)
Figure PCTCN2018112677-appb-000579
and
Figure PCTCN2018112677-appb-000580
Constraint moment
Figure PCTCN2018112677-appb-000581
and
Figure PCTCN2018112677-appb-000582
If you remember the motion axis radial force vector
Figure PCTCN2018112677-appb-000583
And torque vector
Figure PCTCN2018112677-appb-000584
Then
Figure PCTCN2018112677-appb-000585
Figure PCTCN2018112677-appb-000585
若记运动轴径向力大小为
Figure PCTCN2018112677-appb-000586
及力矩大小为
Figure PCTCN2018112677-appb-000587
由式(133)得
If the radial force of the moving axis is
Figure PCTCN2018112677-appb-000586
And the moment is
Figure PCTCN2018112677-appb-000587
From Equation (133),
Figure PCTCN2018112677-appb-000588
Figure PCTCN2018112677-appb-000588
至此,完成了轴径向约束广义力的计算。So far, the calculation of the generalized force of axial radial restraint is completed.
树链刚体***对应的关节加速度序列记
Figure PCTCN2018112677-appb-000589
可根据下述步骤计算:
Sequence of joint acceleration corresponding to tree chain rigid body system
Figure PCTCN2018112677-appb-000589
It can be calculated according to the following steps:
将根据运动轴类型及自然参考轴表达的刚体运动链广义惯性矩阵称为轴链刚体广义惯性矩阵,简称轴链广义惯性矩阵。The generalized inertia matrix of a rigid body motion chain expressed according to the type of the motion axis and the natural reference axis is referred to as the generalized inertia matrix of the rigid body of the axial chain, and is referred to as the generalized inertia matrix of the axial chain for short.
定义正交补矩阵
Figure PCTCN2018112677-appb-000590
及对应的叉乘矩阵
Figure PCTCN2018112677-appb-000591
Define orthogonal complement matrix
Figure PCTCN2018112677-appb-000590
And the corresponding cross product matrix
Figure PCTCN2018112677-appb-000591
Figure PCTCN2018112677-appb-000592
Figure PCTCN2018112677-appb-000592
给定多轴刚体***D={A,K,T,NT,F,B},
Figure PCTCN2018112677-appb-000593
将***中各轴动力学方程(96)按行排列;将重排后的轴驱动广义力及不可测的环境作用力记为f C,可测的环境广义作用力记为f i;将***对应的关节加速度序列记为
Figure PCTCN2018112677-appb-000594
将重排后的
Figure PCTCN2018112677-appb-000595
记为h;考虑式(135);则该***动力学方程为
Given a multi-axis rigid body system D = {A, K, T, NT, F, B}
Figure PCTCN2018112677-appb-000593
The dynamic equations of the axes in the system (96) are arranged in rows; the rearranged axis-driven generalized force and unmeasured environmental force are denoted as f C , and the measurable environmental generalized force is denoted as f i The corresponding joint acceleration sequence is written as
Figure PCTCN2018112677-appb-000594
Rearranged
Figure PCTCN2018112677-appb-000595
Let it be h; Consider equation (135); then the system dynamics equation is
Figure PCTCN2018112677-appb-000596
Figure PCTCN2018112677-appb-000596
由式(136)得From equation (136),
Figure PCTCN2018112677-appb-000597
Figure PCTCN2018112677-appb-000597
其中,among them,
Figure PCTCN2018112677-appb-000598
Figure PCTCN2018112677-appb-000598
由式(136)得From equation (136),
Figure PCTCN2018112677-appb-000599
Figure PCTCN2018112677-appb-000599
6.广义内摩擦力及粘滞力计算6. Calculation of generalized internal friction and viscous forces
在完成轴径向约束广义力的计算后,得到运动轴u的径向约束力大小
Figure PCTCN2018112677-appb-000600
及约束力矩大小
Figure PCTCN2018112677-appb-000601
如图3、图4所示,记运动轴u的内摩擦力大小及内摩擦力矩大小分别为
Figure PCTCN2018112677-appb-000602
Figure PCTCN2018112677-appb-000603
运动轴u的粘滞力及粘滞力矩大小分别为
Figure PCTCN2018112677-appb-000604
Figure PCTCN2018112677-appb-000605
After the calculation of the radial general constraint force of the axis is completed, the radial constraint force of the motion axis u is obtained.
Figure PCTCN2018112677-appb-000600
And restraining moment
Figure PCTCN2018112677-appb-000601
As shown in Figures 3 and 4, the internal frictional force and the internal frictional moment of the movement axis u are respectively
Figure PCTCN2018112677-appb-000602
and
Figure PCTCN2018112677-appb-000603
The viscous force and viscous moment of the motion axis u are
Figure PCTCN2018112677-appb-000604
and
Figure PCTCN2018112677-appb-000605
故有Therefore
Figure PCTCN2018112677-appb-000606
Figure PCTCN2018112677-appb-000606
Figure PCTCN2018112677-appb-000607
Figure PCTCN2018112677-appb-000607
其中: sk [u]─运动轴u的内摩擦系数, ck [u]─运动轴u的粘滞系数;sign()表示取正或负符号。 Wherein: s k [u] ─ the coefficient of friction u of the movement of the shaft, c k [u] ─ movement of the shaft of the viscosity coefficient u; Sign () takes a positive or negative sign represents.
记广义内摩擦力及粘滞力的合力及合力矩分别为
Figure PCTCN2018112677-appb-000608
由式(140)及式(141)得
The general and internal moments of generalized internal friction and viscous forces are
Figure PCTCN2018112677-appb-000608
From equations (140) and (141),
Figure PCTCN2018112677-appb-000609
Figure PCTCN2018112677-appb-000609
运动轴的广义内摩擦力及粘滞力是运动轴的内力,因为它们仅存在于运动轴向上,与轴径向约束力总是正交的。当运动轴轴向动态作用力平衡时,无论广义内摩擦力及粘滞力是否存在或大小如何,都不影响动力学***的运动状态;故而,不影响运动轴的径向约束力。因此,由式(130)至式(134)计算 运动轴u的径向约束力大小
Figure PCTCN2018112677-appb-000610
及约束力矩大小
Figure PCTCN2018112677-appb-000611
时,可以不考虑运动轴的广义内摩擦力及粘滞力。
The generalized internal frictional force and viscous force of the moving shaft are the internal forces of the moving shaft, because they exist only in the moving axial direction and are always orthogonal to the radial restraining force of the shaft. When the axial dynamic forces of the moving shaft are balanced, no matter the existence or magnitude of the generalized internal friction and viscous forces, it does not affect the dynamic state of the dynamic system; therefore, it does not affect the radial restraining force of the moving shaft. Therefore, the radial restraining force of the motion axis u is calculated from equations (130) to (134).
Figure PCTCN2018112677-appb-000610
And restraining moment
Figure PCTCN2018112677-appb-000611
In this case, the generalized internal friction and viscous forces of the moving axis can be ignored.
7.建立闭链刚体非理想约束***的Ju-Kane动力学显式模型7. Establishing Ju-Kane dynamic explicit model of closed-chain rigid body non-ideal constraint system
设运动轴u的广义内摩擦及粘滞的合力及合力矩分别为
Figure PCTCN2018112677-appb-000612
闭链刚体***的Ju-Kane动力学方程建立后,计算关节加速度
Figure PCTCN2018112677-appb-000613
后,应用式(129)至式(134)计算径向约束力大小
Figure PCTCN2018112677-appb-000614
Figure PCTCN2018112677-appb-000615
约束力矩大小
Figure PCTCN2018112677-appb-000616
Figure PCTCN2018112677-appb-000617
再建立如下闭链刚体非理想约束***的Ju-Kane动力学方程:
Let the generalized internal friction and viscous combined force and moment of the motion axis u be
Figure PCTCN2018112677-appb-000612
Calculate joint acceleration after the Ju-Kane dynamic equation of a closed-chain rigid body system
Figure PCTCN2018112677-appb-000613
Then, apply formulas (129) to (134) to calculate the radial restraint
Figure PCTCN2018112677-appb-000614
and
Figure PCTCN2018112677-appb-000615
Constraint moment
Figure PCTCN2018112677-appb-000616
and
Figure PCTCN2018112677-appb-000617
Then establish the following Ju-Kane dynamic equation of the closed-chain rigid body non-ideal constraint system:
【1】轴u及轴u′的Ju-Kane动力学规范方程分别为[1] The Ju-Kane kinetic norm equations for axis u and axis u ′ are
Figure PCTCN2018112677-appb-000618
Figure PCTCN2018112677-appb-000618
Figure PCTCN2018112677-appb-000619
Figure PCTCN2018112677-appb-000619
【2】非树约束副 uk u′的约束代数方程为 [2] The constraint algebraic equation of the non-tree constrained pair u k u ′ is
Figure PCTCN2018112677-appb-000620
Figure PCTCN2018112677-appb-000620
Figure PCTCN2018112677-appb-000621
Figure PCTCN2018112677-appb-000621
Figure PCTCN2018112677-appb-000622
Figure PCTCN2018112677-appb-000622
Figure PCTCN2018112677-appb-000623
Figure PCTCN2018112677-appb-000623
其它,参见式(103)至式(113)、式(97)至式(102)。For other details, see formulas (103) to (113) and formulas (97) to (102).
建立过程为:The establishment process is:
运动轴u的内摩擦及粘滞合力
Figure PCTCN2018112677-appb-000624
及合力矩
Figure PCTCN2018112677-appb-000625
是运动轴u的外力,故有式(143);运动轴u′的内摩擦及粘滞合力
Figure PCTCN2018112677-appb-000626
及合力矩
Figure PCTCN2018112677-appb-000627
是运动轴u′的外力,故有式(144)。其它过程与闭链刚体***的Ju-Kane动力学方程建模步骤相同。
Internal friction and viscous force of the moving shaft u
Figure PCTCN2018112677-appb-000624
Combined torque
Figure PCTCN2018112677-appb-000625
Is the external force of the motion axis u, so there is formula (143); the internal friction and viscous force of the motion axis u ′
Figure PCTCN2018112677-appb-000626
Combined torque
Figure PCTCN2018112677-appb-000627
Is the external force of the motion axis u ′, so there is equation (144). The other processes are the same as the Ju-Kane dynamic equation modeling steps of the closed-chain rigid body system.

Claims (7)

  1. 一种基于轴不变量的非理想关节机器人动力学建模与解算方法,其特征是,A non-ideal articulated robot dynamics modeling and solving method based on axis invariants is characterized by:
    给定多轴刚体***D={A,K,T,NT,F,B},惯性系记为F [i]
    Figure PCTCN2018112677-appb-100001
    除了重力外,作用于轴u的合外力及力矩在
    Figure PCTCN2018112677-appb-100002
    上的分量分别记为
    Figure PCTCN2018112677-appb-100003
    Figure PCTCN2018112677-appb-100004
    轴k的质量及质心转动惯量分别记为m k
    Figure PCTCN2018112677-appb-100005
    轴k的重力加速度为
    Figure PCTCN2018112677-appb-100006
    驱动轴u的双边驱动力及驱动力矩在
    Figure PCTCN2018112677-appb-100007
    上的分量分别记为
    Figure PCTCN2018112677-appb-100008
    Figure PCTCN2018112677-appb-100009
    环境i对轴l的作用力及作用力矩分别为
    Figure PCTCN2018112677-appb-100010
    iτ l;轴u对轴u′的广义约束力记为
    Figure PCTCN2018112677-appb-100011
    Given a multi-axis rigid body system D = {A, K, T, NT, F, B}, the inertial system is denoted by F [i] ,
    Figure PCTCN2018112677-appb-100001
    In addition to gravity, the combined external force and moment acting on the axis u
    Figure PCTCN2018112677-appb-100002
    The components on
    Figure PCTCN2018112677-appb-100003
    and
    Figure PCTCN2018112677-appb-100004
    The mass of the axis k and the moment of inertia of the center of mass are recorded as m k and
    Figure PCTCN2018112677-appb-100005
    The acceleration of gravity of axis k is
    Figure PCTCN2018112677-appb-100006
    The bilateral driving force and driving torque of the driving shaft u are between
    Figure PCTCN2018112677-appb-100007
    The components on
    Figure PCTCN2018112677-appb-100008
    and
    Figure PCTCN2018112677-appb-100009
    The acting force and acting moment of the environment i on the shaft l are
    Figure PCTCN2018112677-appb-100010
    And i τ l ; the generalized binding force of axis u to axis u ′ is written as
    Figure PCTCN2018112677-appb-100011
    设运动轴u的广义内摩擦及粘滞的合力及合力矩分别为
    Figure PCTCN2018112677-appb-100012
    根据建立的闭链刚体***的Ju-Kane动力学方程,计算关节加速度
    Figure PCTCN2018112677-appb-100013
    后,计算径向约束力大小
    Figure PCTCN2018112677-appb-100014
    Figure PCTCN2018112677-appb-100015
    约束力矩大小
    Figure PCTCN2018112677-appb-100016
    Figure PCTCN2018112677-appb-100017
    再建立如下闭链刚体非理想约束***的Ju-Kane动力学方程:
    Let the generalized internal friction and viscous combined force and moment of the motion axis u be
    Figure PCTCN2018112677-appb-100012
    Calculate joint acceleration based on the Ju-Kane dynamic equation of the closed-chain rigid body
    Figure PCTCN2018112677-appb-100013
    After calculating the radial binding force
    Figure PCTCN2018112677-appb-100014
    and
    Figure PCTCN2018112677-appb-100015
    Constraint moment
    Figure PCTCN2018112677-appb-100016
    and
    Figure PCTCN2018112677-appb-100017
    Then establish the following Ju-Kane dynamic equation of the closed-chain rigid body non-ideal constraint system:
    【1】轴u及轴u′的Ju-Kane动力学规范方程分别为[1] The Ju-Kane kinetic norm equations for axis u and axis u ′ are
    Figure PCTCN2018112677-appb-100018
    Figure PCTCN2018112677-appb-100018
    Figure PCTCN2018112677-appb-100019
    Figure PCTCN2018112677-appb-100019
    式中:
    Figure PCTCN2018112677-appb-100020
    Figure PCTCN2018112677-appb-100021
    是3×3的分块矩阵,
    Figure PCTCN2018112677-appb-100022
    Figure PCTCN2018112677-appb-100023
    是3D矢量;
    Figure PCTCN2018112677-appb-100024
    为转动轴u的惯性矩阵;
    Figure PCTCN2018112677-appb-100025
    为平动轴u的惯性矩阵;h R为转动轴u的非惯性矩阵;h P为平动轴u的非惯性矩阵;
    In the formula:
    Figure PCTCN2018112677-appb-100020
    and
    Figure PCTCN2018112677-appb-100021
    Is a 3 × 3 block matrix,
    Figure PCTCN2018112677-appb-100022
    and
    Figure PCTCN2018112677-appb-100023
    Is a 3D vector;
    Figure PCTCN2018112677-appb-100024
    Is the inertia matrix of the rotation axis u;
    Figure PCTCN2018112677-appb-100025
    Is the inertial matrix of the translation axis u; h R is the non-inertia matrix of the rotation axis u; h P is the non-inertia matrix of the translation axis u;
    【2】非树约束副 uk u′的约束代数方程为 [2] The constraint algebraic equation of the non-tree constrained pair u k u ′ is
    Figure PCTCN2018112677-appb-100026
    Figure PCTCN2018112677-appb-100026
    Figure PCTCN2018112677-appb-100027
    Figure PCTCN2018112677-appb-100027
    Figure PCTCN2018112677-appb-100028
    Figure PCTCN2018112677-appb-100028
    Figure PCTCN2018112677-appb-100029
    Figure PCTCN2018112677-appb-100029
  2. 根据权利要求1所述的基于轴不变量的非理想关节机器人动力学建模与解算方法,其特征是,闭链刚体***的Ju-Kane动力学方程:The non-ideal articulated robot dynamics modeling and solving method based on axis invariant according to claim 1, characterized in that the Ju-Kane dynamic equation of the closed-chain rigid body system:
    【1】轴u及轴u′的Ju-Kane动力学规范方程分别为[1] The Ju-Kane kinetic norm equations for axis u and axis u ′ are
    Figure PCTCN2018112677-appb-100030
    Figure PCTCN2018112677-appb-100030
    Figure PCTCN2018112677-appb-100031
    Figure PCTCN2018112677-appb-100031
    其中:
    Figure PCTCN2018112677-appb-100032
    Figure PCTCN2018112677-appb-100033
    是3×3的分块矩阵,
    Figure PCTCN2018112677-appb-100034
    Figure PCTCN2018112677-appb-100035
    是3D矢量;k I表示杆k质心I;轴k的质量及质心转动惯量分别记为m k
    Figure PCTCN2018112677-appb-100036
    为转动轴u的惯性矩阵;
    Figure PCTCN2018112677-appb-100037
    为平动轴u的惯性矩阵;h R为转动轴u的非惯性力;h P为平动轴u的非惯性力;
    among them:
    Figure PCTCN2018112677-appb-100032
    and
    Figure PCTCN2018112677-appb-100033
    Is a 3 × 3 block matrix,
    Figure PCTCN2018112677-appb-100034
    and
    Figure PCTCN2018112677-appb-100035
    Is a 3D vector; k I represents the centroid I of the rod k; the mass of the axis k and the moment of inertia of the centroid are recorded as m k and
    Figure PCTCN2018112677-appb-100036
    Is the inertia matrix of the rotation axis u;
    Figure PCTCN2018112677-appb-100037
    Is the inertial matrix of translation axis u; h R is the non-inertia force of rotation axis u; h P is the non-inertia force of translation axis u
    【2】非树约束副 uk u′的约束代数方程为 [2] The constraint algebraic equation of the non-tree constrained pair u k u ′ is
    Figure PCTCN2018112677-appb-100038
    Figure PCTCN2018112677-appb-100038
    Figure PCTCN2018112677-appb-100039
    Figure PCTCN2018112677-appb-100039
    Figure PCTCN2018112677-appb-100040
    Figure PCTCN2018112677-appb-100040
    Figure PCTCN2018112677-appb-100041
    Figure PCTCN2018112677-appb-100041
    其中:among them:
    Figure PCTCN2018112677-appb-100042
    Figure PCTCN2018112677-appb-100042
    Figure PCTCN2018112677-appb-100043
    Figure PCTCN2018112677-appb-100043
    Figure PCTCN2018112677-appb-100044
    Figure PCTCN2018112677-appb-100044
    Figure PCTCN2018112677-appb-100045
    Figure PCTCN2018112677-appb-100045
    Figure PCTCN2018112677-appb-100046
    Figure PCTCN2018112677-appb-100046
    式中:
    Figure PCTCN2018112677-appb-100047
    Figure PCTCN2018112677-appb-100048
    是3×3的分块矩阵,
    Figure PCTCN2018112677-appb-100049
    Figure PCTCN2018112677-appb-100050
    是3D矢量;k I表示杆k质心I;轴k的质量及质心转动惯量分别记为m k
    Figure PCTCN2018112677-appb-100051
    为转动轴u的惯性矩阵;
    Figure PCTCN2018112677-appb-100052
    为平动轴u的惯性矩阵;h R为转动轴u的非惯性矩阵;h P为平动轴u的非惯性矩阵;
    Figure PCTCN2018112677-appb-100053
    为平动关节角速度;
    Figure PCTCN2018112677-appb-100054
    为转动关节角速度。
    In the formula:
    Figure PCTCN2018112677-appb-100047
    and
    Figure PCTCN2018112677-appb-100048
    Is a 3 × 3 block matrix,
    Figure PCTCN2018112677-appb-100049
    and
    Figure PCTCN2018112677-appb-100050
    Is a 3D vector; k I represents the centroid I of the rod k; the mass of the axis k and the moment of inertia of the centroid are recorded as m k and
    Figure PCTCN2018112677-appb-100051
    Is the inertia matrix of the rotation axis u;
    Figure PCTCN2018112677-appb-100052
    Is the inertial matrix of the translation axis u; h R is the non-inertia matrix of the rotation axis u; h P is the non-inertia matrix of the translation axis u;
    Figure PCTCN2018112677-appb-100053
    Is the translational joint angular velocity;
    Figure PCTCN2018112677-appb-100054
    Is the angular velocity of the turning joint.
  3. 根据权利要求2所述的基于轴不变量的非理想关节机器人动力学建模与解算方法,其特征是,The method for modeling and solving a non-ideal articulated robot based on an axis invariant according to claim 2, wherein:
    应用式(129)至式(134)计算径向约束力大小
    Figure PCTCN2018112677-appb-100055
    Figure PCTCN2018112677-appb-100056
    约束力矩大小
    Figure PCTCN2018112677-appb-100057
    Figure PCTCN2018112677-appb-100058
    对于无功率损耗的运动轴u,记其约束力及约束力矩矢量分别为
    Figure PCTCN2018112677-appb-100059
    则有
    Apply equations (129) to (134) to calculate the radial restraining force
    Figure PCTCN2018112677-appb-100055
    and
    Figure PCTCN2018112677-appb-100056
    Constraint moment
    Figure PCTCN2018112677-appb-100057
    and
    Figure PCTCN2018112677-appb-100058
    For the motion axis u without power loss, record its constraint force and constraint torque vector as
    Figure PCTCN2018112677-appb-100059
    Then
    Figure PCTCN2018112677-appb-100060
    Figure PCTCN2018112677-appb-100060
    上式表示运动轴矢量与运动轴约束力具有自然正交补的关系;The above formula indicates that the motion axis vector and the constraint force of the motion axis have a natural orthogonal complement relationship;
    Figure PCTCN2018112677-appb-100061
    Figure PCTCN2018112677-appb-100062
    为运动副
    Figure PCTCN2018112677-appb-100063
    的两个正交约束轴,且约束轴与运动轴正交,即
    If
    Figure PCTCN2018112677-appb-100061
    and
    Figure PCTCN2018112677-appb-100062
    For sports pair
    Figure PCTCN2018112677-appb-100063
    Two orthogonal constraint axes, and the constraint axis is orthogonal to the motion axis, ie
    Figure PCTCN2018112677-appb-100064
    Figure PCTCN2018112677-appb-100064
    Figure PCTCN2018112677-appb-100065
    为约束轴轴矢量,有
    Remember
    Figure PCTCN2018112677-appb-100065
    For the constraint axis axis vector, there is
    Figure PCTCN2018112677-appb-100066
    Figure PCTCN2018112677-appb-100066
    其中:among them:
    Figure PCTCN2018112677-appb-100067
    Figure PCTCN2018112677-appb-100067
    Figure PCTCN2018112677-appb-100068
    Figure PCTCN2018112677-appb-100068
    由式(130)得到关节约束力大小
    Figure PCTCN2018112677-appb-100069
    Figure PCTCN2018112677-appb-100070
    约束力矩大小
    Figure PCTCN2018112677-appb-100071
    Figure PCTCN2018112677-appb-100072
    若记运动轴径向力矢量
    Figure PCTCN2018112677-appb-100073
    及力矩矢量
    Figure PCTCN2018112677-appb-100074
    则有
    Get the size of the joint restraint force by (130)
    Figure PCTCN2018112677-appb-100069
    and
    Figure PCTCN2018112677-appb-100070
    Constraint moment
    Figure PCTCN2018112677-appb-100071
    and
    Figure PCTCN2018112677-appb-100072
    If you remember the motion axis radial force vector
    Figure PCTCN2018112677-appb-100073
    And torque vector
    Figure PCTCN2018112677-appb-100074
    Then
    Figure PCTCN2018112677-appb-100075
    Figure PCTCN2018112677-appb-100075
    若记运动轴径向力大小为
    Figure PCTCN2018112677-appb-100076
    及力矩大小为
    Figure PCTCN2018112677-appb-100077
    由式(133)得
    If the radial force of the moving axis is
    Figure PCTCN2018112677-appb-100076
    And the moment is
    Figure PCTCN2018112677-appb-100077
    From Equation (133),
    Figure PCTCN2018112677-appb-100078
    Figure PCTCN2018112677-appb-100078
    至此,完成了轴径向约束广义力的计算。So far, the calculation of the generalized force of axial radial restraint is completed.
  4. 根据权利要求3所述的基于轴不变量的非理想关节机器人动力学建模与解算方法,其特征是,The non-ideal articulated robot dynamics modeling and solving method based on axis invariant according to claim 3, characterized in that:
    由式(130)至式(134)计算运动轴u的径向约束力大小
    Figure PCTCN2018112677-appb-100079
    及约束力矩大小
    Figure PCTCN2018112677-appb-100080
    时,不考虑运动轴的广义内摩擦力及粘滞力。
    Calculate the radial restraining force of the motion axis u from equations (130) to (134)
    Figure PCTCN2018112677-appb-100079
    And restraining moment
    Figure PCTCN2018112677-appb-100080
    In this case, the generalized internal friction and viscous forces of the moving axis are not considered.
  5. 根据权利要求3所述的基于轴不变量的非理想关节机器人动力学建模与解算方法,其特征是,The non-ideal articulated robot dynamics modeling and solving method based on axis invariant according to claim 3, characterized in that:
    考虑广义内摩擦力及粘滞力的基于轴不变量的约束力求解步骤为:Considering the generalized internal friction and viscous forces, the solution steps of the constraint force based on the axis invariant are:
    在完成轴径向约束广义力的计算后,得到运动轴u的径向约束力大小
    Figure PCTCN2018112677-appb-100081
    及约束力矩大小
    Figure PCTCN2018112677-appb-100082
    记运动轴u的内摩擦力大小及内摩擦力矩大小分别为
    Figure PCTCN2018112677-appb-100083
    Figure PCTCN2018112677-appb-100084
    运动轴u的粘滞力及粘滞力矩大小分别为
    Figure PCTCN2018112677-appb-100085
    Figure PCTCN2018112677-appb-100086
    After the calculation of the radial general constraint force of the axis is completed, the radial constraint force of the motion axis u is obtained.
    Figure PCTCN2018112677-appb-100081
    And restraining moment
    Figure PCTCN2018112677-appb-100082
    The magnitude of the internal friction force and the internal friction moment of the motion axis u are respectively
    Figure PCTCN2018112677-appb-100083
    and
    Figure PCTCN2018112677-appb-100084
    The viscous force and viscous moment of the motion axis u are
    Figure PCTCN2018112677-appb-100085
    and
    Figure PCTCN2018112677-appb-100086
    then
    Figure PCTCN2018112677-appb-100087
    Figure PCTCN2018112677-appb-100087
    Figure PCTCN2018112677-appb-100088
    Figure PCTCN2018112677-appb-100088
    其中: sk [u]─运动轴u的内摩擦系数, ck [u]─运动轴u的粘滞系数;sign()表示取正或负符号; Wherein: s k [u] coefficient of friction u of the movement of the shaft ─, c k [u] ─ movement of the shaft of the viscosity coefficient u; Sign () indicates the sign of positive or negative;
    记广义内摩擦力及粘滞力的合力及合力矩分别为
    Figure PCTCN2018112677-appb-100089
    由式(140)及式(141)得
    The general and internal moments of generalized internal friction and viscous forces are
    Figure PCTCN2018112677-appb-100089
    From equations (140) and (141),
    Figure PCTCN2018112677-appb-100090
    Figure PCTCN2018112677-appb-100090
  6. 根据权利要求1所述的基于轴不变量的非理想关节机器人动力学建模与解算方法,其特征是,The method for modeling and solving a non-ideal articulated robot based on an axis invariant according to claim 1, wherein:
    闭链刚体***的Ju-Kane动力学方程根据树链Ju-Kane规范型方程建立。The Ju-Kane dynamic equation of the closed-chain rigid body system is established according to the tree-chain Ju-Kane canonical equation.
  7. 根据权利要求6所述的基于轴不变量的非理想关节机器人动力学建模与解算方法,其特征是,树链Ju-Kane规范型方程The non-ideal articulated robot dynamics modeling and solving method based on axis invariant according to claim 6, wherein the tree chain Ju-Kane canonical equation
    Figure PCTCN2018112677-appb-100091
    Figure PCTCN2018112677-appb-100091
    其中:
    Figure PCTCN2018112677-appb-100092
    Figure PCTCN2018112677-appb-100093
    是3×3的分块矩阵,
    Figure PCTCN2018112677-appb-100094
    Figure PCTCN2018112677-appb-100095
    是3D矢量;
    Figure PCTCN2018112677-appb-100096
    为轴u的合外力在
    Figure PCTCN2018112677-appb-100097
    上的分量,
    Figure PCTCN2018112677-appb-100098
    为轴u的合力矩在
    Figure PCTCN2018112677-appb-100099
    上的分量;
    among them:
    Figure PCTCN2018112677-appb-100092
    and
    Figure PCTCN2018112677-appb-100093
    Is a 3 × 3 block matrix,
    Figure PCTCN2018112677-appb-100094
    and
    Figure PCTCN2018112677-appb-100095
    Is a 3D vector;
    Figure PCTCN2018112677-appb-100096
    The resulting external force for axis u is
    Figure PCTCN2018112677-appb-100097
    On the weight,
    Figure PCTCN2018112677-appb-100098
    The resultant moment of the shaft u is
    Figure PCTCN2018112677-appb-100099
    Weight
    并且,and,
    Figure PCTCN2018112677-appb-100100
    Figure PCTCN2018112677-appb-100100
    Figure PCTCN2018112677-appb-100101
    Figure PCTCN2018112677-appb-100101
    Figure PCTCN2018112677-appb-100102
    Figure PCTCN2018112677-appb-100102
    Figure PCTCN2018112677-appb-100103
    Figure PCTCN2018112677-appb-100103
    Figure PCTCN2018112677-appb-100104
    Figure PCTCN2018112677-appb-100104
    Figure PCTCN2018112677-appb-100105
    Figure PCTCN2018112677-appb-100105
    式中,k I表示杆k质心I;轴k的质量及质心转动惯量分别记为m k
    Figure PCTCN2018112677-appb-100106
    为转动轴u的惯性矩阵;
    Figure PCTCN2018112677-appb-100107
    为平动轴u的惯性矩阵;h R为转动轴u的非惯性矩阵;h P为平动轴u的非惯性矩阵;作用于轴u的合外力及力矩在
    Figure PCTCN2018112677-appb-100108
    上的分量分别记为
    Figure PCTCN2018112677-appb-100109
    Figure PCTCN2018112677-appb-100110
    作用于轴u的合外力及力矩在
    Figure PCTCN2018112677-appb-100111
    上的分量分别记为
    Figure PCTCN2018112677-appb-100112
    Figure PCTCN2018112677-appb-100113
    驱动轴u的双边驱动力及驱动力矩在
    Figure PCTCN2018112677-appb-100114
    上的分量分别记为
    Figure PCTCN2018112677-appb-100115
    Figure PCTCN2018112677-appb-100116
    环境i对轴l的作用力及作用力矩分别为
    Figure PCTCN2018112677-appb-100117
    iτ lll k为取由轴l至轴k的运动链, uL表示获得由轴u及其子树构成的闭子树。
    In the formula, k I represents the centroid I of the rod k; the mass of the axis k and the moment of inertia of the centroid are recorded as m k and
    Figure PCTCN2018112677-appb-100106
    Is the inertia matrix of the rotation axis u;
    Figure PCTCN2018112677-appb-100107
    Is the inertia matrix of the translation axis u; h R is the non-inertia matrix of the rotation axis u; h P is the non-inertia matrix of the translation axis u; the combined external force and moment acting on the axis u are
    Figure PCTCN2018112677-appb-100108
    The components on
    Figure PCTCN2018112677-appb-100109
    and
    Figure PCTCN2018112677-appb-100110
    The combined external force and moment acting on the shaft u are
    Figure PCTCN2018112677-appb-100111
    The components on
    Figure PCTCN2018112677-appb-100112
    and
    Figure PCTCN2018112677-appb-100113
    The bilateral driving force and driving torque of the driving shaft u are between
    Figure PCTCN2018112677-appb-100114
    The components on
    Figure PCTCN2018112677-appb-100115
    and
    Figure PCTCN2018112677-appb-100116
    The acting force and acting moment of the environment i on the shaft l are
    Figure PCTCN2018112677-appb-100117
    And i τ l ; l l k is a kinematic chain from axis l to axis k, and u L means obtaining a closed subtree composed of axis u and its subtrees.
PCT/CN2018/112677 2018-08-16 2018-10-30 Non-ideal articulated robot dynamics modeling and solution method based on axis invariant WO2020034404A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810933654.8 2018-08-16
CN201810933654.8A CN108959829B (en) 2018-08-16 2018-08-16 Non-ideal joint robot dynamics modeling method based on axis invariant

Publications (1)

Publication Number Publication Date
WO2020034404A1 true WO2020034404A1 (en) 2020-02-20

Family

ID=64469611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112677 WO2020034404A1 (en) 2018-08-16 2018-10-30 Non-ideal articulated robot dynamics modeling and solution method based on axis invariant

Country Status (2)

Country Link
CN (1) CN108959829B (en)
WO (1) WO2020034404A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109620410B (en) * 2018-12-04 2021-01-26 微创(上海)医疗机器人有限公司 Method and system for preventing collision of mechanical arm and medical robot

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102495550A (en) * 2011-11-21 2012-06-13 湖南湖大艾盛汽车技术开发有限公司 Forward dynamic and inverse dynamic response analysis and control method of parallel robot
US20160221189A1 (en) * 2013-08-27 2016-08-04 Cognibotics Ab Method and system for determination of at least one property of a manipulator
CN107529630A (en) * 2017-06-23 2018-01-02 西北工业大学 A kind of method that robot for space establishes kinetic model
CN108038286A (en) * 2017-11-30 2018-05-15 长安大学 A kind of dynamic modeling method of two degrees of freedom redundantly driven parallel device people

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102091967A (en) * 2011-02-24 2011-06-15 华中科技大学 Method for smoothing feed speed of multi-axis numerical control (NC) machining
CN103495969A (en) * 2013-09-28 2014-01-08 北京工业大学 Flexible-hinge parallel-connection robot control device based on contact-type sensor
CN105956254A (en) * 2016-04-27 2016-09-21 西安交通大学 Rigid body element method for dynamic modeling of rotor system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102495550A (en) * 2011-11-21 2012-06-13 湖南湖大艾盛汽车技术开发有限公司 Forward dynamic and inverse dynamic response analysis and control method of parallel robot
US20160221189A1 (en) * 2013-08-27 2016-08-04 Cognibotics Ab Method and system for determination of at least one property of a manipulator
CN107529630A (en) * 2017-06-23 2018-01-02 西北工业大学 A kind of method that robot for space establishes kinetic model
CN108038286A (en) * 2017-11-30 2018-05-15 长安大学 A kind of dynamic modeling method of two degrees of freedom redundantly driven parallel device people

Also Published As

Publication number Publication date
CN108959829A (en) 2018-12-07
CN108959829B (en) 2020-04-07

Similar Documents

Publication Publication Date Title
US11491649B2 (en) Axis-invariant based multi-axis robot kinematics modeling method
WO2020034420A1 (en) Axis-invariant-based inverse kinematics modeling and solving method for multi-axis robot
WO2020034422A1 (en) Axis-invariant-based forward kinematics modeling and solving method for multi-axis robot system
Park et al. Geometric algorithms for robot dynamics: A tutorial review
CN109079784B (en) A kind of multi-axis robot system modelling and control method based on axis invariant
Peiret et al. Co-simulation of multibody systems with contact using reduced interface models
WO2020034404A1 (en) Non-ideal articulated robot dynamics modeling and solution method based on axis invariant
WO2020034405A1 (en) Axis-invariant-based dynamics modeling and solving method for tree-chain robot
WO2020034399A1 (en) Closed-chain robot dynamics modeling and solution method based on axis invariant
WO2020034415A1 (en) Inverse modeling and resolving method of universal 6r mechanical arm based on shaft invariant
WO2020034403A1 (en) Axis invariant-based multi-axis robot forward kinematics calculation method
WO2020034401A1 (en) Axis-invariant-based dynamics modeling and solving method for moving-base multi-axis robot
Li et al. Establishing an improved Kane dynamic model for the 7-DOF reconfigurable modular robot
WO2020034417A1 (en) Axis invariant-based multi-axis robot d-h system and d-h parameter determination method
Carricato et al. On the modeling of leg constraints in the dynamic analysis of Gough/Stewart-type platforms
WO2020034418A1 (en) Modeling method for 1r/2r/3r inverse solutions on basis of axis invariants and dh parameters
Meng et al. Basic problems and criteria for synthesis of robotics
WO2020034416A1 (en) Axis-invariant based inverse solution modeling and solving method for universal 7r robotic arm
Li et al. A Hamiltonian Formulation on Manifolds for Dynamic Modeling of Constrained Mechanisms and Energy-Preserving Integration
Zhang et al. Analysis and Simulation of Mechanical Arm Dynamics Model Based on Simulink
WO2024103241A1 (en) Soft robot simulation method based on material point method
WO2020034402A1 (en) Axis-invariant-based accurate multi-axis robot structure parameter measurement method
Spiridonov et al. Simulation Modeling of the Tilting Mechanism of the Main Trolley of the Turnaround Charging Crane
Zhu Dynamics of general constrained robots derived from rigid bodies
Li et al. Simulation and trajectory optimization of articulated robots via spectral variational integrators

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18930111

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18930111

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18930111

Country of ref document: EP

Kind code of ref document: A1