WO2020034403A1 - 基于轴不变量的多轴机器人正运动学计算方法 - Google Patents

基于轴不变量的多轴机器人正运动学计算方法 Download PDF

Info

Publication number
WO2020034403A1
WO2020034403A1 PCT/CN2018/112658 CN2018112658W WO2020034403A1 WO 2020034403 A1 WO2020034403 A1 WO 2020034403A1 CN 2018112658 W CN2018112658 W CN 2018112658W WO 2020034403 A1 WO2020034403 A1 WO 2020034403A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
vector
velocity
calculate
calculating
Prior art date
Application number
PCT/CN2018/112658
Other languages
English (en)
French (fr)
Inventor
居鹤华
Original Assignee
居鹤华
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 居鹤华 filed Critical 居鹤华
Publication of WO2020034403A1 publication Critical patent/WO2020034403A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • B25J9/1607Calculation of inertia, jacobian matrixes and inverses

Definitions

  • the invention relates to a forward kinematics calculation method of a multi-axis robot, and belongs to the technical field of robots.
  • Robots are a very hot area right now. A lot of scientific and engineering manpower has been invested in this field over the past few decades, and it has been studied for many years. However, once the number of axes and degrees of freedom are increased to a certain number, according to the existing textbooks and known methods of observation, modeling, calculation and control, they often fall into complex and out-of-control problems, and even cannot be solved.
  • the technical problem to be solved by the present invention is to provide a forward kinematics calculation method of a multi-axis robot based on an axis invariant.
  • the present invention adopts the following technical solutions:
  • the multi-axis robot device includes a sequence of rods and a sequence of joints, and converts a sequence of joints in a tree chain into a corresponding sequence of axes and a sequence of parent axes thereof, and the axes of the sequence of axes are translation axes or rotation axes;
  • the invariance of the axis invariant is used to establish an iterative kinematic equation based on the axis invariant, and the symbol of the iterative kinematic equation corresponds to a pseudo code, which reflects the topological relationship and the chain order relationship of the kinematic chain of the multi-axis machine device ;
  • the inertial space is denoted by i, given the kinematic chain i l n from i to the rod n , the rod l, n, j ⁇ A , n> l, s is any point on the body l, and A is the sequence of axes; when Rotation vector, the iterative forward kinematics calculation steps of the motion chain i l n include:
  • the Euler quaternion is used to represent fixed-axis rotation; the calculation of the rotation transformation matrix is equivalent to the matrix calculation of the chain quaternion, and the rotation transformation matrix sequence ⁇ i Q j
  • Steps for iterative deceleration calculation based on axis invariants include:
  • k is a member belonging to the kinematic chain i l n ;
  • the method of the present invention proposes and proves an iterative real-time numerical modeling method based on axis invariant, including: iterative calculation of position vector, rotation vector, velocity vector, acceleration vector, and partial velocity vector based on axis invariant method. It has a concise motion chain symbol system, has the function of pseudo code, and has an iterative structure, which ensures the reliability of the system and mechanized calculations.
  • Figure 3 is a schematic diagram of the meaning of the deflection speed.
  • Natural coordinate axis The unit reference axis with a fixed origin that is coaxial with the motion axis or measurement axis is called the natural coordinate axis, also known as the natural reference axis.
  • Natural coordinate system As shown in Figure 1, if the multi-axis system D is at zero position, all Cartesian body coordinate systems have the same direction, and the origin of the body coordinate system is on the axis of the motion axis, then the coordinate system is a natural coordinate system. , Referred to as the natural coordinate system.
  • the advantages of the natural coordinate system are: (1) the coordinate system is easy to determine; (2) the joint variables at the zero position are zero; (3) the system attitude at the zero position is consistent; (4) it is not easy to introduce a measurement error.
  • the coordinate axis is a reference direction with a zero position and a unit scale. It can describe the position of translation in that direction, but it cannot fully describe the rotation angle around the direction, because the coordinate axis itself does not have a radial reference direction, that is There is a zero position that characterizes rotation. In practical applications, the radial reference of this shaft needs to be supplemented. For example: in Cartesian F [l] , to rotate around lx, you need to use ly or lz as the reference zero.
  • the coordinate axis itself is 1D, and three orthogonal 1D reference axes constitute a 3D Cartesian frame.
  • the axis invariant is a 3D spatial unit reference axis, which is itself a frame. It has its own radial reference axis, the reference mark.
  • the spatial coordinate axis and its own radial reference axis determine the Cartesian frame.
  • the spatial coordinate axis can reflect the three basic reference attributes of the motion axis and the measurement axis.
  • [2] is a 3D reference axis, which not only has an axial reference direction, but also has a radial reference zero position, which will be explained in section 3.3.1.
  • the axis invariant For axis invariants, its absolute derivative is its relative derivative. Since the axis invariant is a natural reference axis with invariance, its absolute derivative is always a zero vector. Therefore, the axis invariant is invariant to time differentiation. Have:
  • the basis vector e l is any vector consolidated with F [l] .
  • the basis vector With Any vector of consolidation, Is F [l] and Common unit vector, so Is F [l] and Shared basis vector. So the axis is invariant Is F [l] and Common reference base.
  • Axis invariants are parameterized natural coordinate bases and primitives for multi-axis systems. The translation and rotation of a fixed axis invariant are equivalent to the translation and rotation of a fixed coordinate system.
  • optical measurement equipment such as laser trackers can be applied to achieve accurate measurement of invariants of fixed axes.
  • the cylindrical pair can be applied to simplify the MAS kinematics and dynamics analysis.
  • Invariant A quantity that does not depend on a set of coordinate systems for measurement is called an invariant.
  • Natural coordinates take the natural coordinate axis vector as the reference direction, the angular position or line position relative to the zero position of the system, and record it as q l , which is called natural coordinates;
  • natural motion vector will be determined by the natural axis vector And the vector determined by natural coordinates q l Called the natural motion vector. among them:
  • the natural motion vector realizes the unified expression of axis translation and rotation.
  • a vector to be determined by the natural axis vector and the joint such as Called the free motion vector, also known as the free spiral.
  • the axis vector Is a specific free spiral.
  • joint space The space represented by the joint natural coordinates q l is called joint space.
  • the Cartesian space that expresses the position and pose (posture for short) is called a shape space, which is a double vector space or a 6D space.
  • Natural joint space using the natural coordinate system as a reference, through joint variables Means that there must be when the system is zero The joint space is called natural joint space.
  • Axis vector Is the natural reference axis of the natural coordinates of the joint. Because Is an axis invariant, so Is a fixed axis invariant, which characterizes the motion pair The structural relationship is determined by the natural coordinate axis. Fixed axis invariant Is a link Natural description of structural parameters.
  • Natural coordinate axis space The fixed axis invariant is used as the natural reference axis, and the space represented by the corresponding natural coordinate is called the natural coordinate axis space, which is referred to as the natural axis space. It is a 3D space with 1 degree of freedom.
  • any motion pair in the loop can be selected, and the stator and the mover constituting the motion pair can be separated; thus, a loop-free tree structure is obtained.
  • the Span tree represents a span tree with directions to describe the topological relationship of the tree chain movement.
  • I is a structural parameter; A is an axis sequence; F is a bar reference sequence; B is a bar body sequence; K is a motion pair type sequence; NT is a sequence of constrained axes, that is, a non-tree.
  • Axis sequence a member of.
  • Rotary pair R, prism pair P, spiral pair H, and contact pair O are special examples of cylindrical pair C.
  • the motion chain is identified by a partial order set ().
  • O () represents the number of operations in the calculation process, and usually refers to the number of floating-point multiplications and additions. It is very tedious to express the calculation complexity by the number of floating-point multiplication and addition. Therefore, the main operation times in the algorithm cycle are often used;
  • l l k is the kinematic chain from axis l to axis k, and the output is expressed as And
  • the cardinality is written as
  • l l k execution process execution If Then execute Otherwise, end.
  • the computational complexity of l l k is O (
  • l L means to obtain a closed subtree composed of axis l and its subtrees, l L is a subtree without l; recursive execution of l l, the computational complexity is
  • means attribute placeholder; if the attribute p or P is about position, then Should be understood as a coordinate system To the origin of F [l] ; if the attribute p or P is about direction, then Should be understood as a coordinate system To F [l] .
  • attribute variables or constants with partial order include the indicators indicating partial order in the name; either include the upper left corner and lower right corner indexes, or include the upper right corner and lower right corner indexes; Their directions are always from the upper left corner indicator to the lower right corner indicator, or from the upper right corner indicator to the lower right corner indicator.
  • the description of the direction is sometimes omitted. Even if omitted, those skilled in the art can also use symbolic expressions. It is known that, for each parameter used in this application, for a certain attribute symbol, their directions are always from the upper left corner index to the lower right corner index of the partial order index, or from the upper right corner index to the lower right corner index.
  • the symbol specifications and conventions of this application are determined based on the two principles of the partial order of the kinematic chain and the chain link being the basic unit of the kinematic chain, reflecting the essential characteristics of the kinematic chain.
  • the chain indicator represents the connection relationship, and the upper right indicator represents the reference system.
  • This symbolic expression is concise and accurate, which is convenient for communication and written expression.
  • they are structured symbol systems that contain the elements and relationships that make up each attribute quantity, which is convenient for computer processing and lays the foundation for computer automatic modeling.
  • the meaning of the indicator needs to be understood through the background of the attribute, that is, the context; for example: if the attribute is a translation type, the indicator at the upper left corner indicates the origin and direction of the coordinate system; if the attribute is a rotation type, the indicator at the top left The direction of the coordinate system.
  • the coordinate vector in the natural coordinate system F [k] that is, the coordinate vector from k to l;
  • rotation vector / angle vector I is a free vector, that is, the vector can be freely translated
  • the angular position that is, the joint angle and joint variables, are scalars
  • T means transpose of ⁇ , which means transpose the collection, and do not perform transpose on the members; for example:
  • Projection symbol ⁇ represents vector or tensor of second order group reference projection vector or projection sequence, i.e. the vector of coordinates or coordinate array, that is, the dot product projection "*"; as: position vector
  • the projection vector in the coordinate system F [k] is written as
  • Is a cross multiplier for example: Is axis invariant Cross product matrix; given any vector
  • the cross product matrix is
  • the cross product matrix is a second-order tensor.
  • i l j represents a kinematic chain from i to j
  • l l k is a kinematic chain from axis l to k
  • n represents the Cartesian Cartesian system, then Is a Cartesian axis chain; if n represents a natural reference axis, then For natural shaft chains.
  • the kinematic chain is a partially ordered chain; Both means The connection to the rod l, which also means from the rod l to the rod Connection Have total order;
  • total order and partial order are attributes of an object itself.
  • the corresponding symbol system has not yet appeared in mechanics and robot theory.
  • i l i an empty or ordinary chain.
  • the inertial space (environment) is denoted by i, and the ordinary chain i l i always exists.
  • the reference index in the upper left corner of the four-dimensional complex number only indicates the relationship of motion, and the meaning of the projection reference system has been lost.
  • the reference index is meaningless in a 4D complex number, it does not indicate that the index relationship is meaningless, because the multiplication and division of complex numbers is closely related to the order of action of complex numbers.
  • Equation (14) is called a quaternion concatenation operation, which corresponds to a homogeneous transformation. Therefore, the sequence pose operation has concatenation of motion chains. Similar to the vector cross product operation, the quaternion product can be replaced by the corresponding conjugate matrix.
  • Equation (18) contains only 16 multiplication operations and 12 addition operations. and Need to perform 27 multiplications and 18 additions.
  • Is a 4 ⁇ 4 matrix which is composed as follows: the fourth column is a right-handed quaternion The fourth line is the left-handed quaternion which is Top left 3 ⁇ 3 contains among them: The upper right triangle is a vector of right hand order The lower left triangle is a left-handed vector which is The main diagonal is The 4th element.
  • Equation (14) represents a position vector rotation operator, that is, rotation. Therefore, the Euler quaternion product operation corresponds to the product operation of the rotation transform matrix. Therefore, a rotation transformation chain is equivalent to a fixed-axis rotation chain, that is,
  • the Euler quaternion can uniquely determine the rotation transformation matrix; the rotation transformation matrix can also uniquely determine the Euler quaternion, that is, Euler quaternion is equivalent to the rotation transformation matrix.
  • the rotation vector has a one-to-one correspondence with the standard quaternion, that is, the quaternion represents the rotation of the fixed axis; the calculation of the rotation transformation matrix is equivalent to the matrix calculation of the chain quaternion.
  • Equation (21) is about with Multivariable linear equation is an axis invariant Second-order polynomial. Given a natural zero vector As Zero reference, and Respectively the zero vector and the radial vector. Equation (21) is Symmetry Represents zero-axis tensor, antisymmetric part Represents the radial axial tensor, and the axial outer product tensor, respectively Orthogonal to determine the three-dimensional natural axis space; Eq. (21) contains only one sine and cosine operation, six product operations, and six sum operations, and the calculation complexity is low; And joint variables The coordinate system and polarity are parameterized.
  • ⁇ ′ means to find absolute derivative of projection coordinate system i; angular velocity Axis vector Equation (24) shows that absolute angular velocity and relative angular velocity are equivalent.
  • Equation (28) the "absolute derivative of positive order" and the implication term Is the angular velocity cross-multiplication matrix from the projection reference system i to the measurement reference system l; The results are based on the projection coordinate system i, and the projection reference systems of all sum terms are consistent.
  • the calculation method of the Jacobian matrix is usually used in the prior art, but the conclusions are not proved and the conclusions are not comprehensive.
  • the Jacobian matrix In kinematics and dynamics analysis, it is more appropriate to refer to the Jacobian matrix as the deflection velocity.
  • the Jacobian matrix generally refers to partial derivatives, it is not necessarily additive; in kinematics and dynamics, partial velocity refers to the partial derivative of the vector on joint variables, which is additive.
  • the partial velocity is a transformation matrix corresponding to the velocity, and is a vector projection of a unit direction vector.
  • yaw speed plays a key role. The calculation of yaw speed is the basic premise of dynamic system calculation.
  • k is a member belonging to the kinematic chain i l l ;
  • Equation (39) can be obtained from Equations (35), (33), (36), and (34).
  • equation (40) is obtained. As i ⁇ n and versus with It has nothing to do with equation (41).
  • Equations (35) to (38) have very important effects on kinematics and dynamics analysis. Not only do they have a clear physical meaning, they can also simplify the expression of kinematics and dynamics equations.
  • the deflection velocity in equation (39) is the corresponding axis invariant
  • equation (40) represents the first order of the position vector to the axis invariant, that is, the axis Vector With vector
  • Equation (43) shows: Completed force Pair of axes The effect is the calculation of the moment.
  • Equation (45) shows that for the axis invariant, its absolute derivative is its relative derivative. Since the axis invariant is a natural reference axis with invariance, its absolute derivative is always a zero vector. Therefore, the axis invariant is invariant to time differentiation.
  • equation (47) the derivative of the bias velocity with respect to time t is still an iterative equation of the axis invariant.
  • Axis invariant Is the coordinate vector of the basis e l , Essentially represents the projection of the basis e l onto the reference frame i. If formula (45) does not hold, the invariance of the reference basis e l as a reference is denied, that is, objectivity.
  • the axis invariant of the MAS system is invariant to time, that is, the natural reference axis of the rigid body system is invariant. From equation (48), it can be known that the joint variables of the system are mapped one by one with the natural reference axis, and the number of joint variables of the body is determined by its independent motion dimension, but does not change the invariance of the natural reference axis to time differentiation.
  • the derivative of a function's argument is called a derivative, and it is represented by d.
  • the increment of the independent variable function is called variation, and it is expressed by ⁇ ; but variation does not consider the increment ⁇ t of time t, that is, ⁇ t ⁇ 0. It is precisely because the time increment ⁇ t is not taken into account that the variation of linear displacement and angular displacement is understood as the possible movement amount change at the same time t, that is, the virtual displacement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Automation & Control Theory (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

一种基于轴不变量的多轴机器人正运动学计算方法,使用轴集合来对应描述多轴机器人装置,以自然坐标系为基础,利用轴集合的轴对应的轴不变量来计算多轴机器人装置的控制参数;利用轴不变量的不变性建立基于轴不变量的迭代式运动学方程,并且迭代式运动学方程的符号对应到伪代码,反映多轴机器人装置运动链的拓扑关系与链序关系;计算运动链的迭代式正运动学数值;计算基于轴不变量的迭代式偏速度。

Description

基于轴不变量的多轴机器人正运动学计算方法 技术领域
本发明涉及一种多轴机器人正运动学计算方法,属于机器人技术领域。
背景技术
机器人是目前非常热门的领域。这个领域过去几十年已经投入了大量的科学与工程人力,而且研究了多年。然而,一旦遇到轴的数目与自由度增加到一定数量的时候,按照现有的教科书以及已知的观察、建模、计算与控制方式,往往会陷入复杂失控,甚至无法求解的难题。
首先,过去的做法缺少一般化的能力。对于不同的机器人往往需要重新研究,建立对应的运动学与力学模型。
其次,过去的做法在建模的过程,所用的图示以及语言通常是不精确也不完整的。这导致许多的参数在建模的初期并没有被考虑进去。后续的整个建模,包括程序化代码的编写时,就必须个别考虑跟解决之前没有考虑的参数与细节。这对于复杂***,例如自由度更高的机器人应用时,往往意味着大量的隐藏臭虫(bug)会藏在整个建模的***里头。这会影响整个***开发的效率,并且透过这种没有完整考量下开发出来的***,往往有很多稳定性问题难以解决。
此外,过去的做法在遇到复杂度比较高的时候,运算量会大幅增加或甚至找不出解答,以及计算精度大受影响。换言之,对于需要即时运算控制以达成自主控制的机器人来说,就成了重大的缺陷。
因此,虽然现在已经有很多的机器人相关的理论,但是却仍然缺少一个完整有效的设计框架与对应的运算与控制方法,可以在各种不同机器人实际开发过程中,方方面面地解决建模,模型内的运算结构与规则,到正运动学,逆运动学,以及力学计算的相关问题。
发明内容
本发明所要解决的技术问题是提供一种基于轴不变量的多轴机器人正运动学计算方法。
为解决上述技术问题,本发明采用以下技术方案:
一种基于轴不变量的多轴机器人正运动学计算方法,其特征是,
多轴机器人装置包含杆件序列与关节序列,将树链中的关节序列转换成对应的轴序列及 其父轴序列,所述轴序列的轴为平动轴或转动轴;
使用轴集合来对应描述多轴机器装置,以自然坐标系为基础,利用轴集合的轴对应的轴不变量来计算多轴机器装置的控制参数;
利用轴不变量的不变性建立基于轴不变量的迭代式运动学方程,并且所述迭代式运动学方程的符号对应到伪代码,反映所述多轴机器装置运动链的拓扑关系与链序关系;
计算运动链的迭代式正运动学数值;
计算基于轴不变量的迭代式偏速度。
惯性空间记为i,给定由i至杆件n的运动链 il n,杆件l,n,j∈A,n>l,s是体l上的任一点,A为轴序列;当转动矢量
Figure PCTCN2018112658-appb-000001
有测量噪声时,运动链 il n的迭代式正运动学数值计算步骤包括:
【1】链节
Figure PCTCN2018112658-appb-000002
正运动学计算步骤;
运动副
Figure PCTCN2018112658-appb-000003
对应的运动链
Figure PCTCN2018112658-appb-000004
通过区间符表示为:
Figure PCTCN2018112658-appb-000005
其中:
Figure PCTCN2018112658-appb-000006
是l的前继即父,l是
Figure PCTCN2018112658-appb-000007
的后继即子;
Figure PCTCN2018112658-appb-000008
为链节,是运动链中的一个基本环节;
【2】运动链 il n的位形计算步骤;
【3】运动链 il n的速度及加速度计算步骤。
链节
Figure PCTCN2018112658-appb-000009
正运动学计算步骤为:
【1-1】已知转动矢量
Figure PCTCN2018112658-appb-000010
根据欧拉四元数公式计算欧拉四元数
Figure PCTCN2018112658-appb-000011
【1-2】由欧拉四元数计算旋转变换阵
Figure PCTCN2018112658-appb-000012
【1-3】由下式计算链节速度:
Figure PCTCN2018112658-appb-000013
式中,运动副
Figure PCTCN2018112658-appb-000014
表示连接杆件
Figure PCTCN2018112658-appb-000015
及杆件l的运动副;转动副R,棱柱副P;沿轴
Figure PCTCN2018112658-appb-000016
的线位置
Figure PCTCN2018112658-appb-000017
绕轴
Figure PCTCN2018112658-appb-000018
的角位置
Figure PCTCN2018112658-appb-000019
轴矢量
Figure PCTCN2018112658-appb-000020
角速度
Figure PCTCN2018112658-appb-000021
线速度
Figure PCTCN2018112658-appb-000022
【1-4】由下式计算链节加速度:
Figure PCTCN2018112658-appb-000023
式中,转动加速度
Figure PCTCN2018112658-appb-000024
平动加速度
Figure PCTCN2018112658-appb-000025
运动链 il n的位形计算步骤为:
【2-1】由欧拉四元数的链关系,将四元数乘法运算用其共轭矩阵运算替代,计算欧拉 四元数序列
Figure PCTCN2018112658-appb-000026
【2-2】用欧拉四元数表示定轴转动;旋转变换阵的计算等价于链式四元数的矩阵计算,计算旋转变换阵序列{ iQ j|j∈A};
【2-3】由下式计算位置矢量
Figure PCTCN2018112658-appb-000027
Figure PCTCN2018112658-appb-000028
式中,轴矢量
Figure PCTCN2018112658-appb-000029
沿轴
Figure PCTCN2018112658-appb-000030
的线位置
Figure PCTCN2018112658-appb-000031
运动链 il n的速度及加速度计算步骤为:
【3-1】计算绝对角速度:
Figure PCTCN2018112658-appb-000032
式中,角速度
Figure PCTCN2018112658-appb-000033
轴矢量
Figure PCTCN2018112658-appb-000034
【3-2】计算绝对角加速度:
Figure PCTCN2018112658-appb-000035
式中,角加速度
Figure PCTCN2018112658-appb-000036
轴矢量
Figure PCTCN2018112658-appb-000037
【3-3】计算绝对平动速度:
Figure PCTCN2018112658-appb-000038
式中,线速度
Figure PCTCN2018112658-appb-000039
轴矢量
Figure PCTCN2018112658-appb-000040
【3-4】计算绝对平动加速度:
Figure PCTCN2018112658-appb-000041
式中,线速度
Figure PCTCN2018112658-appb-000042
轴矢量
Figure PCTCN2018112658-appb-000043
其中:
Figure PCTCN2018112658-appb-000044
—转动加速度,其中
Figure PCTCN2018112658-appb-000045
向心加速度;
Figure PCTCN2018112658-appb-000046
—哥氏加速度,是平动与转动的耦合加速度。
基于轴不变量的迭代式偏速度计算步骤包括:
定义使能函数:
Figure PCTCN2018112658-appb-000047
式中,k为属于运动链 il n的杆件;
由使能函数,
【1】计算绝对角速度对关节角速度的偏速度;
【2】计算绝对平动速度矢量对关节平动速度的偏速度;
【3】计算绝对转动矢量对关节角度的偏速度;
【4】计算绝对位置矢量对关节位移的偏速度;
【5】计算绝对位置矢量对关节角度的偏速度;
【6】计算绝对平动速度矢量对关节角速度的偏速度。
绝对角速度对关节角速度的偏速度计算公式为:
Figure PCTCN2018112658-appb-000048
式中,角速度
Figure PCTCN2018112658-appb-000049
轴矢量
Figure PCTCN2018112658-appb-000050
绝对平动速度矢量对关节平动速度的偏速度计算公式为:
Figure PCTCN2018112658-appb-000051
式中,线速度
Figure PCTCN2018112658-appb-000052
轴矢量
Figure PCTCN2018112658-appb-000053
绝对平动速度矢量对关节角速度的偏速度计算公式为:
Figure PCTCN2018112658-appb-000054
式中,角速度
Figure PCTCN2018112658-appb-000055
是轴不变量
Figure PCTCN2018112658-appb-000056
的叉乘矩阵。
绝对转动矢量对关节角度的偏速度计算公式为:
Figure PCTCN2018112658-appb-000057
式中,角位置
Figure PCTCN2018112658-appb-000058
轴矢量
Figure PCTCN2018112658-appb-000059
绝对位置矢量对关节位移的偏速度计算公式为:
Figure PCTCN2018112658-appb-000060
式中,线位置
Figure PCTCN2018112658-appb-000061
轴矢量
Figure PCTCN2018112658-appb-000062
绝对位置矢量对关节角度的偏速度计算公式为:
Figure PCTCN2018112658-appb-000063
式中,角位置
Figure PCTCN2018112658-appb-000064
是轴不变量
Figure PCTCN2018112658-appb-000065
的叉乘矩阵。
本发明所达到的有益效果:
本发明的方法提出并证明了基于轴不变量的迭代式运动学实时数值建模方法,包含:基于轴不变量的迭代式的位置矢量、转动矢量、速度矢量、加速度矢量及偏速度矢量的计算方 法。具有简洁的运动链符号***,具有伪代码的功能,具有迭代式结构,保证了***实现的可靠性及机械化演算;具有基于轴不变量的迭代式,保证计算的实时性;实现坐标系、极性及***结构参量的完全参数化建模,保证模型的通用性,避免了与***接口与用户接口的转换,通过轴不变量构建了内在紧凑***,提高了运动学计算的实时性及功能复用性能;轴运动矢量的统一表达及简洁的结构化层次模型不仅有助于简化多轴***运动学建模过程,而且为基于轴不变量的多轴***动力学建模奠定了基础。
附图说明
图1自然坐标系与轴链;
图2固定轴不变量;
图3偏速度的含义示意图。
具体实施方式
下面结合附图对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
定义1自然坐标轴:称与运动轴或测量轴共轴的,具有固定原点的单位参考轴为自然坐标轴,亦称为自然参考轴。
定义2自然坐标系:如图1所示,若多轴***D处于零位,所有笛卡尔体坐标系方向一致,且体坐标系原点位于运动轴的轴线上,则该坐标***为自然坐标***,简称自然坐标系。
自然坐标系优点在于:(1)坐标***易确定;(2)零位时的关节变量为零;(3)零位时的***姿态一致;(4)不易引入测量累积误差。
由定义2可知,在***处于零位时,所有杆件的自然坐标系与底座或世界系的方向一致。***处于零位即
Figure PCTCN2018112658-appb-000066
时,自然坐标系
Figure PCTCN2018112658-appb-000067
绕轴矢量
Figure PCTCN2018112658-appb-000068
转动角度
Figure PCTCN2018112658-appb-000069
Figure PCTCN2018112658-appb-000070
转至
Figure PCTCN2018112658-appb-000071
Figure PCTCN2018112658-appb-000072
下的坐标矢量与
Figure PCTCN2018112658-appb-000073
Figure PCTCN2018112658-appb-000074
下的坐标矢量
Figure PCTCN2018112658-appb-000075
恒等,即有
Figure PCTCN2018112658-appb-000076
由上式知,
Figure PCTCN2018112658-appb-000077
Figure PCTCN2018112658-appb-000078
不依赖于相邻的坐标系
Figure PCTCN2018112658-appb-000079
及F [l];故称
Figure PCTCN2018112658-appb-000080
Figure PCTCN2018112658-appb-000081
为轴不变量。在不强调不变性时,可以称之为坐标轴矢量(简称轴矢量)。
Figure PCTCN2018112658-appb-000082
Figure PCTCN2018112658-appb-000083
表征的是体
Figure PCTCN2018112658-appb-000084
与体l共有的参考单位坐标矢量,与参考点
Figure PCTCN2018112658-appb-000085
及O l无关。体
Figure PCTCN2018112658-appb-000086
与体l即为杆件或轴。
轴不变量与坐标轴具有本质区别:
(1)坐标轴是具有零位及单位刻度的参考方向,可以描述沿该方向平动的位置,但不能完整描述绕该方向的转动角度,因为坐标轴自身不具有径向参考方向,即不存在表征转动的 零位。在实际应用时,需要补充该轴的径向参考。例如:在笛卡尔系F [l]中,绕lx转动,需以ly或lz为参考零位。坐标轴自身是1D的,3个正交的1D参考轴构成3D的笛卡尔标架。
(2)轴不变量是3D的空间单位参考轴,其自身就是一个标架。其自身具有径向参考轴,即参考零位。空间坐标轴及其自身的径向参考轴可以确定笛卡尔标架。空间坐标轴可以反映运动轴及测量轴的三个基本参考属性。
已有文献将无链指标的轴矢量记为
Figure PCTCN2018112658-appb-000087
并称之为欧拉轴(Euler Axis),相应的关节角称为欧拉角(Euler Angle)。本申请之所以不再沿用欧拉轴,而称之为轴不变量,是因为轴不变量具有以下属性:
【1】给定旋转变换阵
Figure PCTCN2018112658-appb-000088
因其是实矩阵,其模是单位的,故其有一个实特征值λ 1及两个互为共轭的复特征值λ 2=e 及λ 3=e -iφ;其中:i为纯虚数。因此,|λ 1|·||λ 2||·||λ 3||=1,得λ 1=1。轴矢量
Figure PCTCN2018112658-appb-000089
是实特征值λ 1=1对应的特征矢量,是不变量;
【2】是3D参考轴,不仅具有轴向参考方向,而且具有径向参考零位,将在3.3.1节予以阐述。
【3】在自然坐标系下:
Figure PCTCN2018112658-appb-000090
即轴不变量
Figure PCTCN2018112658-appb-000091
是非常特殊的矢量,它对时间的导数也具有不变性,且有非常优良的数学操作性能;
对轴不变量而言,其绝对导数就是其相对导数。因轴不变量是具有不变性的自然参考轴,故其绝对导数恒为零矢量。因此,轴不变量具有对时间微分的不变性。有:
Figure PCTCN2018112658-appb-000092
【4】在自然坐标***中,通过轴矢量
Figure PCTCN2018112658-appb-000093
及关节变量
Figure PCTCN2018112658-appb-000094
可以直接描述旋转坐标阵
Figure PCTCN2018112658-appb-000095
没有必要为除根之外的杆件建立各自的体系。同时,以唯一需要定义的根坐标系为参考,可以提高***结构参数的测量精度;
【5】应用轴矢量
Figure PCTCN2018112658-appb-000096
的优良操作,将建立包含拓扑结构、坐标系、极性、结构参量及力学参量的完全参数化的统一的多轴***运动学及动力学模型。
因基矢量e l是与F [l]固结的任一矢量,基矢量
Figure PCTCN2018112658-appb-000097
是与
Figure PCTCN2018112658-appb-000098
固结的任一矢量,又
Figure PCTCN2018112658-appb-000099
是F [l]
Figure PCTCN2018112658-appb-000100
共有的单位矢量,故
Figure PCTCN2018112658-appb-000101
是F [l]
Figure PCTCN2018112658-appb-000102
共有的基矢量。因此,轴不变量
Figure PCTCN2018112658-appb-000103
是F [l]
Figure PCTCN2018112658-appb-000104
共有的参考基。轴不变量是参数化的自然坐标基,是多轴***的基元。固定轴不变量的平动与转动与其固结的坐标系的平动与转动等价。
在***处于零位时,以自然坐标系为参考,测量得到坐标轴矢量
Figure PCTCN2018112658-appb-000105
在运动副
Figure PCTCN2018112658-appb-000106
运动时,轴矢量
Figure PCTCN2018112658-appb-000107
是不变量;轴矢量
Figure PCTCN2018112658-appb-000108
及关节变量
Figure PCTCN2018112658-appb-000109
唯一确定运动副
Figure PCTCN2018112658-appb-000110
的转动关系。
因此,应用自然坐标***,当***处于零位时,只需确定一个公共的参考系,而不必为***中每一杆件确定各自的体坐标系,因为它们由轴不变量及自然坐标唯一确定。当进行***分析时,除底座系外,与杆件固结的其它自然坐标系只发生在概念上,而与实际的测量无关。自然坐标***对于多轴***(MAS)理论分析及工程作用在于:
(1)***的结构参数测量需要以统一的参考系测量;否则,不仅工程测量过程烦琐,而且引入不同的体系会引入更大的测量误差。
(2)应用自然坐标***,除根杆件外,其它杆件的自然坐标***由结构参量及关节变量自然确定,有助于MAS***的运动学与动力学分析。
(3)在工程上,可以应用激光跟踪仪等光学测量设备,实现对固定轴不变量的精确测量。
(4)由于运动副R及P、螺旋副H、接触副O是圆柱副C的特例,可以应用圆柱副简化MAS运动学及动力学分析。
定义3不变量:称不依赖于一组坐标系进行度量的量为不变量。
定义4转动坐标矢量:绕坐标轴矢量
Figure PCTCN2018112658-appb-000111
转动到角位置
Figure PCTCN2018112658-appb-000112
的坐标矢量
Figure PCTCN2018112658-appb-000113
Figure PCTCN2018112658-appb-000114
定义5平动坐标矢量:沿坐标轴矢量
Figure PCTCN2018112658-appb-000115
平动到线位置
Figure PCTCN2018112658-appb-000116
的坐标矢量
Figure PCTCN2018112658-appb-000117
Figure PCTCN2018112658-appb-000118
定义6自然坐标:以自然坐标轴矢量为参考方向,相对***零位的角位置或线位置,记为q l,称为自然坐标;称与自然坐标一一映射的量为关节变量;其中:
Figure PCTCN2018112658-appb-000119
定义7机械零位:对于运动副
Figure PCTCN2018112658-appb-000120
在初始时刻t 0时,关节绝对编码器的零位
Figure PCTCN2018112658-appb-000121
不一定为零,该零位称为机械零位;
故关节
Figure PCTCN2018112658-appb-000122
的控制量
Figure PCTCN2018112658-appb-000123
Figure PCTCN2018112658-appb-000124
定义8自然运动矢量:将由自然坐标轴矢量
Figure PCTCN2018112658-appb-000125
及自然坐标q l确定的矢量
Figure PCTCN2018112658-appb-000126
称为自然运动矢量。其中:
Figure PCTCN2018112658-appb-000127
自然运动矢量实现了轴平动与转动的统一表达。将由自然坐标轴矢量及关节确定的矢 量,例如
Figure PCTCN2018112658-appb-000128
称为***矢量,亦称为自由螺旋。显然,轴矢量
Figure PCTCN2018112658-appb-000129
是特定的自由螺旋。
定义9关节空间:以关节自然坐标q l表示的空间称为关节空间。
定义10位形空间:称表达位置及姿态(简称位姿)的笛卡尔空间为位形空间,是双矢量空间或6D空间。
定义11自然关节空间:以自然坐标系为参考,通过关节变量
Figure PCTCN2018112658-appb-000130
表示,在***零位时必有
Figure PCTCN2018112658-appb-000131
的关节空间,称为自然关节空间。
如图2所示,给定链节
Figure PCTCN2018112658-appb-000132
原点O l受位置矢量
Figure PCTCN2018112658-appb-000133
约束的轴矢量
Figure PCTCN2018112658-appb-000134
为固定轴矢量,记为
Figure PCTCN2018112658-appb-000135
其中:
Figure PCTCN2018112658-appb-000136
轴矢量
Figure PCTCN2018112658-appb-000137
是关节自然坐标的自然参考轴。因
Figure PCTCN2018112658-appb-000138
是轴不变量,故称
Figure PCTCN2018112658-appb-000139
为固定轴不变量,它表征了运动副
Figure PCTCN2018112658-appb-000140
的结构关系,即确定了自然坐标轴。固定轴不变量
Figure PCTCN2018112658-appb-000141
是链节
Figure PCTCN2018112658-appb-000142
结构参数的自然描述。
定义12自然坐标轴空间:以固定轴不变量作为自然参考轴,以对应的自然坐标表示的空间称为自然坐标轴空间,简称自然轴空间。它是具有1个自由度的3D空间。
如图2所示,
Figure PCTCN2018112658-appb-000143
Figure PCTCN2018112658-appb-000144
不因杆件Ω l的运动而改变,是不变的结构参考量。
Figure PCTCN2018112658-appb-000145
确定了轴l相对于轴
Figure PCTCN2018112658-appb-000146
的五个结构参数;与关节变量q l一起,完整地表达了杆件Ω l的6D位形。给定
Figure PCTCN2018112658-appb-000147
时,杆件固结的自然坐标系可由结构参数
Figure PCTCN2018112658-appb-000148
及关节变量
Figure PCTCN2018112658-appb-000149
唯一确定。称轴不变量
Figure PCTCN2018112658-appb-000150
固定轴不变量
Figure PCTCN2018112658-appb-000151
关节变量
Figure PCTCN2018112658-appb-000152
Figure PCTCN2018112658-appb-000153
为自然不变量。显然,由固定轴不变量
Figure PCTCN2018112658-appb-000154
及关节变量
Figure PCTCN2018112658-appb-000155
构成的关节自然不变量
Figure PCTCN2018112658-appb-000156
与由坐标系
Figure PCTCN2018112658-appb-000157
至F [l]确定的空间位形
Figure PCTCN2018112658-appb-000158
具有一一映射关系,即
Figure PCTCN2018112658-appb-000159
给定多轴***D={T,A,B,K,F,NT},在***零位时,只要建立底座系或惯性系,以及各轴上的参考点O l,其它杆件坐标系也自然确定。本质上,只需要确定底座系或惯性系。
给定一个由运动副连接的具有闭链的结构简图,可以选定回路中任一个运动副,将组成该运动副的定子与动子分割开来;从而,获得一个无回路的树型结构,称之为Span树。T表 示带方向的span树,以描述树链运动的拓扑关系。
I为结构参数;A为轴序列,F为杆件参考系序列,B为杆件体序列,K为运动副类型序列,NT为约束轴的序列即非树。
Figure PCTCN2018112658-appb-000160
为取轴序列
Figure PCTCN2018112658-appb-000161
的成员。转动副R,棱柱副P,螺旋副H,接触副O是圆柱副C的特例。
描述运动链的基本拓扑符号及操作是构成运动链拓扑符号***的基础,定义如下:
【1】运动链由偏序集合(]标识。
【2】A [l]为取轴序列A的成员;因轴名l具有唯一的编号对应于A [l]的序号,故A [l]计算复杂度为O(1)。
【3】
Figure PCTCN2018112658-appb-000162
为取轴l的父轴;轴
Figure PCTCN2018112658-appb-000163
的计算复杂度为O(1)。计算复杂度O()表示计算过程的操作次数,通常指浮点乘与加的次数。以浮点乘与加的次数表达计算复杂度非常烦琐,故常采用算法循环过程中的主要操作次数;比如:关节位姿、速度、加速度等操作的次数。
【4】
Figure PCTCN2018112658-appb-000164
为取轴序列
Figure PCTCN2018112658-appb-000165
的成员;
Figure PCTCN2018112658-appb-000166
计算复杂度为O(1)。
【5】 ll k为取由轴l至轴k的运动链,输出表示为
Figure PCTCN2018112658-appb-000167
Figure PCTCN2018112658-appb-000168
基数记为| ll k|。 ll k执行过程:执行
Figure PCTCN2018112658-appb-000169
Figure PCTCN2018112658-appb-000170
则执行
Figure PCTCN2018112658-appb-000171
否则,结束。 ll k计算复杂度为O(| ll k|)。
【6】 ll为取轴l的子。该操作表示在
Figure PCTCN2018112658-appb-000172
中找到成员l的地址k;从而,获得轴l的子A [k]。因
Figure PCTCN2018112658-appb-000173
不具有偏序结构,故 ll的计算复杂度为
Figure PCTCN2018112658-appb-000174
【7】 lL表示获得由轴l及其子树构成的闭子树, l L为不含l的子树;递归执行 ll,计算复杂度为
Figure PCTCN2018112658-appb-000175
【8】支路、子树及非树弧的增加与删除操作也是必要的组成部分;从而,通过动态Span树及动态图描述可变拓扑结构。在支路 ll k中,若
Figure PCTCN2018112658-appb-000176
则记
Figure PCTCN2018112658-appb-000177
Figure PCTCN2018112658-appb-000178
Figure PCTCN2018112658-appb-000179
表示在支路中取成员m的子。
定义以下表达式或表达形式:
轴与杆件具有一一对应性;轴间的属性量
Figure PCTCN2018112658-appb-000180
及杆件间的属性量
Figure PCTCN2018112658-appb-000181
具有偏序性。
约定:“□”表示属性占位;若属性p或P是关于位置的,则
Figure PCTCN2018112658-appb-000182
应理解为坐标系
Figure PCTCN2018112658-appb-000183
的原点至F [l]的原点;若属性p或P是关于方向的,则
Figure PCTCN2018112658-appb-000184
应理解为坐标系
Figure PCTCN2018112658-appb-000185
至F [l]
Figure PCTCN2018112658-appb-000186
Figure PCTCN2018112658-appb-000187
应分别理解为关于时间t的函数
Figure PCTCN2018112658-appb-000188
Figure PCTCN2018112658-appb-000189
Figure PCTCN2018112658-appb-000190
Figure PCTCN2018112658-appb-000191
是t 0时刻的常数或常数阵列。但是正体的
Figure PCTCN2018112658-appb-000192
Figure PCTCN2018112658-appb-000193
应视为常数或常数阵列。
本申请中约定:在运动链符号演算***中,具有偏序的属性变量或常量,在名称上包含表示偏序的指标;要么包含左上角及右下角指标,要么包含右上角及右下角指标;它们的方向总是由左上角指标至右下角指标,或由右上角指标至右下角指标,本申请中为叙述简便,有时省略方向的描述,即使省略,本领域技术人员通过符号表达式也可以知道,本申请中采用的各参数,对于某种属性符,它们的方向总是由偏序指标的左上角指标至右下角指标,或由右上角指标至右下角指标。例如:
Figure PCTCN2018112658-appb-000194
可简述为(表示由k至l)平动矢量;
Figure PCTCN2018112658-appb-000195
表示(由k至l的)线位置;
Figure PCTCN2018112658-appb-000196
表示(由k至l的)平动矢量;其中:r表示“平动”属性符,其余属性符对应为:属性符φ表示“转动”;属性符Q表示“旋转变换矩阵”;属性符l表示“运动链”;属性符u表示“单位矢量”;属性符w表示“角速度”;角标为i表示惯性坐标系或大地坐标系;其他角标可以为其他字母,也可以为数字。
本申请的符号规范与约定是根据运动链的偏序性、链节是运动链的基本单位这两个原则确定的,反映了运动链的本质特征。链指标表示的是连接关系,右上指标表征参考系。采用这种符号表达简洁、准确,便于交流与书面表达。同时,它们是结构化的符号***,包含了组成各属性量的要素及关系,便于计算机处理,为计算机自动建模奠定基础。指标的含义需要通过属性符的背景即上下文进行理解;比如:若属性符是平动类型的,则左上角指标表示坐标系的原点及方向;若属性符是转动类型的,则左上角指标表示坐标系的方向。
(1)l S-杆件l中的点S;而S表示空间中的一点S。
(2)
Figure PCTCN2018112658-appb-000197
-杆件k的原点O k至杆件l的原点O l的平动矢量;
Figure PCTCN2018112658-appb-000198
在自然坐标系F [k]下的坐标矢量,即由k至l的坐标矢量;
(3)
Figure PCTCN2018112658-appb-000199
-原点O k至点l S的平动矢量;
Figure PCTCN2018112658-appb-000200
在F [k]下的坐标矢量;
(4)
Figure PCTCN2018112658-appb-000201
-原点O k至点S的平动矢量;
Figure PCTCN2018112658-appb-000202
在F [k]下的坐标矢量;
(5)
Figure PCTCN2018112658-appb-000203
-连接杆件
Figure PCTCN2018112658-appb-000204
及杆件l的运动副;
Figure PCTCN2018112658-appb-000205
-运动副
Figure PCTCN2018112658-appb-000206
的轴矢量;
Figure PCTCN2018112658-appb-000207
Figure PCTCN2018112658-appb-000208
分别在
Figure PCTCN2018112658-appb-000209
及F [l]下的坐标矢量;
Figure PCTCN2018112658-appb-000210
是轴不变量,为一结构常数;
Figure PCTCN2018112658-appb-000211
为转动矢量,转动矢量/角矢量
Figure PCTCN2018112658-appb-000212
是自由矢量,即该矢量可自由平移;
(6)
Figure PCTCN2018112658-appb-000213
-沿轴
Figure PCTCN2018112658-appb-000214
的线位置(平动位置),
Figure PCTCN2018112658-appb-000215
-绕轴
Figure PCTCN2018112658-appb-000216
的角位置,即关节角、关节变量,为标量;
(7)左下角指标为0时,表示机械零位;如:
Figure PCTCN2018112658-appb-000217
-平动轴
Figure PCTCN2018112658-appb-000218
的机械零位,
Figure PCTCN2018112658-appb-000219
-转动轴
Figure PCTCN2018112658-appb-000220
的机械零位;
(8)0-三维零矩阵;1-三维单位矩阵;
(9)约定:“\”表示续行符;“□”表示属性占位;则
幂符
Figure PCTCN2018112658-appb-000221
表示□的x次幂;右上角角标∧或
Figure PCTCN2018112658-appb-000222
表示分隔符;如:
Figure PCTCN2018112658-appb-000223
Figure PCTCN2018112658-appb-000224
Figure PCTCN2018112658-appb-000225
的x次幂。
[□] T表示□的转置,表示对集合转置,不对成员执行转置;如:
Figure PCTCN2018112658-appb-000226
|□为投影符,表示矢量或二阶张量对参考基的投影矢量或投影序列,即坐标矢量或坐标阵列,投影即是点积运算“·”;如:位置矢量
Figure PCTCN2018112658-appb-000227
在坐标系F [k]中的投影矢量记为
Figure PCTCN2018112658-appb-000228
Figure PCTCN2018112658-appb-000229
为叉乘符;如:
Figure PCTCN2018112658-appb-000230
是轴不变量
Figure PCTCN2018112658-appb-000231
的叉乘矩阵;给定任一矢量
Figure PCTCN2018112658-appb-000232
的叉乘矩阵为
Figure PCTCN2018112658-appb-000233
叉乘矩阵是二阶张量。
叉乘符运算的优先级高于投影符 |□的优先级。投影符 |□的优先级高于成员访问符□ [□]或□ [□],成员访问符□ [□]优先级高于幂符
Figure PCTCN2018112658-appb-000234
(10)单位矢量在大地坐标系的投影矢量
Figure PCTCN2018112658-appb-000235
单位零位矢量
Figure PCTCN2018112658-appb-000236
(11)
Figure PCTCN2018112658-appb-000237
-零位时由原点
Figure PCTCN2018112658-appb-000238
至原点O l的平动矢量,且记
Figure PCTCN2018112658-appb-000239
表示位置结构参数。
(12) iQ l,相对绝对空间的旋转变换阵;
(13)以自然坐标轴矢量为参考方向,相对***零位的角位置或线位置,记为q l,称为自然坐标;关节变量
Figure PCTCN2018112658-appb-000240
自然关节坐标为φ l
(14)对于一给定有序的集合r=[1,4,3,2] T,记r [x]表示取集合r的第x行元素。常记[x]、[y]、[z]及[w]表示取第1、2、3及4列元素。
(15) il j表示由i到j的运动链; ll k为取由轴l至轴k的运动链;
给定运动链
Figure PCTCN2018112658-appb-000241
若n表示笛卡尔直角系,则称
Figure PCTCN2018112658-appb-000242
为笛卡尔轴链;若n表示自然参考轴,则称
Figure PCTCN2018112658-appb-000243
为自然轴链。
(16)Rodrigues四元数表达形式:
Figure PCTCN2018112658-appb-000244
欧拉四元数表达形式:
Figure PCTCN2018112658-appb-000245
不变量的四元数(也称为轴四元数)表达形式
Figure PCTCN2018112658-appb-000246
运动链是一个偏序的链;而运动副
Figure PCTCN2018112658-appb-000247
既表示由杆件
Figure PCTCN2018112658-appb-000248
至杆件l的连接,又表示由杆件l至杆件
Figure PCTCN2018112658-appb-000249
的连接,故运动副
Figure PCTCN2018112658-appb-000250
具有全序;故有
Figure PCTCN2018112658-appb-000251
显然,全序及偏序是一个对象自身的属性。而力学及机器人理论上尚未出现相应的符号***。
借鉴集合论的链理论,将运动副
Figure PCTCN2018112658-appb-000252
对应的简单运动链
Figure PCTCN2018112658-appb-000253
通过区间符表示为
Figure PCTCN2018112658-appb-000254
其中:
Figure PCTCN2018112658-appb-000255
是l的前继即父,l是
Figure PCTCN2018112658-appb-000256
的后继即子;称
Figure PCTCN2018112658-appb-000257
为链节,是运动链中的一个基本环节。
在Span树中,简单运动链
Figure PCTCN2018112658-appb-000258
与l一一映射,即
Figure PCTCN2018112658-appb-000259
故有
Figure PCTCN2018112658-appb-000260
因有序集合的子集也是有序的集合,故定义由
Figure PCTCN2018112658-appb-000261
至k的运动链
Figure PCTCN2018112658-appb-000262
Figure PCTCN2018112658-appb-000263
Figure PCTCN2018112658-appb-000264
Figure PCTCN2018112658-appb-000265
的前继(Predecessor)。故有
Figure PCTCN2018112658-appb-000266
同样,因有序集合的子集也是有序的集合,故有
il i=(i,i],| il i|=0。        (7)
il i为空链或平凡链。惯性空间(环境)记为i,平凡链 il i总是存在的。
1.基于轴不变量的迭代式运动学计算方法
给定运动链 il n,轴l,n∈A,n>l,s是体l上的任一点,A为轴序列。当转动矢量
Figure PCTCN2018112658-appb-000267
有测量噪声时,运动链 il n的迭代式正运动学数值计算步骤为:
【1】链节
Figure PCTCN2018112658-appb-000268
正运动学计算步骤
【1-1】已知转动矢量
Figure PCTCN2018112658-appb-000269
根据式(9)计算欧拉四元数
Figure PCTCN2018112658-appb-000270
定义四元数
Figure PCTCN2018112658-appb-000271
及保证模不变的共轭四元数
Figure PCTCN2018112658-appb-000272
Figure PCTCN2018112658-appb-000273
四元数
Figure PCTCN2018112658-appb-000274
的虚部与实部表示的是不变量,故左上角指标不表示参考系,而仅表示链的作用关系。因此,
Figure PCTCN2018112658-appb-000275
可视为四维空间的复数,其中
Figure PCTCN2018112658-appb-000276
是实部,
Figure PCTCN2018112658-appb-000277
是虚部。通过研究四维空间复数,人们认识了欧拉四元数。
Figure PCTCN2018112658-appb-000278
前三个数构成矢量,对应基i的坐标,最后一个是实部,即有
Figure PCTCN2018112658-appb-000279
因4D复数的矢部参考基是唯一的自然参考基,故四维复数的左上角的参考指标仅表明运动关系,已失去投影参考系的含义,具有不同左上角指标的4D复数可以进行代数运算。尽管参考指标在4D复数中无意义,但不表明指标关系无意义,因为复数的乘除运算与复数的作用顺序密切相关。
Figure PCTCN2018112658-appb-000280
【1-2】由式(10)计算旋转变换阵
Figure PCTCN2018112658-appb-000281
Figure PCTCN2018112658-appb-000282
显然,有
Figure PCTCN2018112658-appb-000283
【1-3】由式(12)计算链节速度:
Figure PCTCN2018112658-appb-000284
运动副
Figure PCTCN2018112658-appb-000285
表示连接杆件
Figure PCTCN2018112658-appb-000286
及杆件l的运动副;转动副R,棱柱副P;关节转动角度矢量
Figure PCTCN2018112658-appb-000287
位置矢量
Figure PCTCN2018112658-appb-000288
轴矢量
Figure PCTCN2018112658-appb-000289
角速度
Figure PCTCN2018112658-appb-000290
线速度
Figure PCTCN2018112658-appb-000291
角速度
Figure PCTCN2018112658-appb-000292
【1-4】由式(13)计算链节加速度:
Figure PCTCN2018112658-appb-000293
转动加速度
Figure PCTCN2018112658-appb-000294
平动加速度
Figure PCTCN2018112658-appb-000295
【2】运动链 il n的位形计算步骤
【2-1】由式(19)计算欧拉四元数序列
Figure PCTCN2018112658-appb-000296
由欧拉四元数的链关系,四元数
Figure PCTCN2018112658-appb-000297
乘法运算可用其共轭矩阵
Figure PCTCN2018112658-appb-000298
运算替代,有
Figure PCTCN2018112658-appb-000299
其中:
Figure PCTCN2018112658-appb-000300
且有
Figure PCTCN2018112658-appb-000301
Figure PCTCN2018112658-appb-000302
Figure PCTCN2018112658-appb-000303
的共轭矩阵。同时,因为四元数是四维空间复数,矢部对参考基的矢量投影应相对于同一个参考基。称式(14)为四元数串接性运算,与齐次变换相对应。因此,序列姿态运算具有运动链串接性;与矢量叉乘运算相似,四元数乘可应用相应的共轭矩阵替代。
当给定角度
Figure PCTCN2018112658-appb-000304
后,其正、余弦
Figure PCTCN2018112658-appb-000305
及其半角的正、余弦S l、C l均是常数;为方便表达,记
Figure PCTCN2018112658-appb-000306
由式(15)及式(16),结合欧拉四元数,得
Figure PCTCN2018112658-appb-000307
式(14)应用计算机编程实现时,可用下式替代。
Figure PCTCN2018112658-appb-000308
式(18)仅包含16个乘法运算及12个加法运算。而
Figure PCTCN2018112658-appb-000309
需要进行27个乘法运算及18个加法运算。在得到
Figure PCTCN2018112658-appb-000310
后,计算
Figure PCTCN2018112658-appb-000311
Figure PCTCN2018112658-appb-000312
再由式(21)计算
Figure PCTCN2018112658-appb-000313
是4·4的矩阵,其构成如下:第4列为右手序的四元数
Figure PCTCN2018112658-appb-000314
第4行为左手序的四元数
Figure PCTCN2018112658-appb-000315
Figure PCTCN2018112658-appb-000316
左上3×3包含为
Figure PCTCN2018112658-appb-000317
其中:
Figure PCTCN2018112658-appb-000318
的右上三角为右手序的矢量
Figure PCTCN2018112658-appb-000319
的左下三角为左手序的矢量
Figure PCTCN2018112658-appb-000320
Figure PCTCN2018112658-appb-000321
的主对角为
Figure PCTCN2018112658-appb-000322
的第4个元素。
由式(18)得
Figure PCTCN2018112658-appb-000323
式(14)表示的是位置矢量转动算子,即表示的是转动。因此,欧拉四元数乘积运算对应旋转变换阵的乘积运算。因此旋转变换链等价于定轴转动链,即
Figure PCTCN2018112658-appb-000324
由上可知,欧拉四元数可以唯一确定旋转变换阵;旋转变换阵也可以唯一确定欧拉四元数,即欧拉四元数与旋转变换阵等价。转动矢量与规范四元数一一对应,即四元数表示定轴转动;旋转变换阵的计算等价于链式四元数的矩阵计算。
【2-2】因式(10)较式(21)计算复杂度高,故由式(21)计算旋转变换阵序列{ iQ j|j∈A};
Figure PCTCN2018112658-appb-000325
式(21)是关于
Figure PCTCN2018112658-appb-000326
Figure PCTCN2018112658-appb-000327
的多重线性方程,是轴不变量
Figure PCTCN2018112658-appb-000328
的二阶多项式。给定自然零位矢量
Figure PCTCN2018112658-appb-000329
作为
Figure PCTCN2018112658-appb-000330
的零位参考,则
Figure PCTCN2018112658-appb-000331
Figure PCTCN2018112658-appb-000332
分别表示零位矢量及径向矢量。式(21)即为
Figure PCTCN2018112658-appb-000333
对称部分
Figure PCTCN2018112658-appb-000334
表示零位轴张量,反对称 部分
Figure PCTCN2018112658-appb-000335
表示径向轴张量,分别与轴向外积张量
Figure PCTCN2018112658-appb-000336
正交,从而确定三维自然轴空间;式(21)仅含一个正弦及余弦运算、6个积运算及6个和运算,计算复杂度低;同时,通过轴不变量
Figure PCTCN2018112658-appb-000337
及关节变量
Figure PCTCN2018112658-appb-000338
实现了坐标系及极性的参数化。
【2-3】由式(22)计算位置矢量
Figure PCTCN2018112658-appb-000339
Figure PCTCN2018112658-appb-000340
【3】运动链 il n的速度及加速度步骤
【3-1】由式(23)计算绝对角速度
Figure PCTCN2018112658-appb-000341
上式可由式(24)
Figure PCTCN2018112658-appb-000342
Figure PCTCN2018112658-appb-000343
绝对导数 i|□′表示对投影坐标系i求绝对导数;角速度
Figure PCTCN2018112658-appb-000344
轴矢量
Figure PCTCN2018112658-appb-000345
式(24)表明:绝对角速度与相对角速度是等价的。
【3-2】由式(25)计算绝对角加速度
Figure PCTCN2018112658-appb-000346
上式可由式(26)
Figure PCTCN2018112658-appb-000347
Figure PCTCN2018112658-appb-000348
转动加速度
Figure PCTCN2018112658-appb-000349
【3-3】由式(27)计算绝对平动速度
Figure PCTCN2018112658-appb-000350
上式可由式(28)求得,
Figure PCTCN2018112658-appb-000351
称式(28)为“正序的绝对求导式”,牵连项
Figure PCTCN2018112658-appb-000352
是由投影参考系i至测量参考系l的角速度叉乘矩阵;
Figure PCTCN2018112658-appb-000353
结果以投影坐标系i为参考,所有和项的投影参考系具有一致性。
【3-4】由式(29)计算绝对平动加速度
Figure PCTCN2018112658-appb-000354
上式可由式(30)得
Figure PCTCN2018112658-appb-000355
其中:
Figure PCTCN2018112658-appb-000356
—平动加速度;
Figure PCTCN2018112658-appb-000357
—转动加速度,其中
Figure PCTCN2018112658-appb-000358
向心加速度;
Figure PCTCN2018112658-appb-000359
—哥氏加速度,是平动与转动的耦合加速度。
由式(30)可知,平动加速度
Figure PCTCN2018112658-appb-000360
是矢量,具有可加性。
2.基于轴不变量的偏速度计算方法
现有技术中通常采用雅克比矩阵的计算方法,但均未对结论进行证明且结论不全面。在运动学及动力学分析时,将雅克比矩阵称为偏速度更合适。因为雅克比矩阵泛指偏导数,不一定具有可加性;而在运动学及动力学中偏速度特指矢量对关节变量的偏导数,具有可加性。偏速度是对应速度的变换矩阵,是对单位方向矢量的矢量投影。在运动学分析及动力学分析中,偏速度起着关键性的作用,偏速度的计算是动力学***演算的基本前提。
首先,定义使能(Enable)函数,
Figure PCTCN2018112658-appb-000361
式中,k为属于运动链 il l的杆件;
式(31)的特殊形式为
Figure PCTCN2018112658-appb-000362
下面,说明基于轴不变量的迭代式偏速度计算步骤:
【1】根据式(33)计算绝对角速度对关节角速度的偏速度,
Figure PCTCN2018112658-appb-000363
上式可由式(23)得
Figure PCTCN2018112658-appb-000364
【2】根据式(34)计算绝对平动速度矢量对关节平动速度的偏速度,
Figure PCTCN2018112658-appb-000365
Figure PCTCN2018112658-appb-000366
【3】根据式(35)计算绝对转动矢量对关节角度的偏速度,
Figure PCTCN2018112658-appb-000367
上式可由式(23)得
Figure PCTCN2018112658-appb-000368
【4】根据式(36)计算绝对位置矢量对关节位移的偏速度,
Figure PCTCN2018112658-appb-000369
上式可由式(22)得
Figure PCTCN2018112658-appb-000370
【5】根据式(37)计算绝对位置矢量对关节角度的偏速度,
Figure PCTCN2018112658-appb-000371
上式可由式(27)得
Figure PCTCN2018112658-appb-000372
Figure PCTCN2018112658-appb-000373
故有
Figure PCTCN2018112658-appb-000374
【6】根据式(38)计算绝对平动速度矢量对关节角速度的偏速度,
Figure PCTCN2018112658-appb-000375
上式可由式(27)得
Figure PCTCN2018112658-appb-000376
将上述结论,以专利中对应的式(39)、(40)、(41)统一表述,称之为偏速度定理。
若给定运动链运动链 il n,则有
Figure PCTCN2018112658-appb-000377
Figure PCTCN2018112658-appb-000378
Figure PCTCN2018112658-appb-000379
Figure PCTCN2018112658-appb-000380
Figure PCTCN2018112658-appb-000381
Figure PCTCN2018112658-appb-000382
时,由式(35),(33),(36)及(34)可得式(39)。
由式(37)及(38)得式(40)。因 iφ n
Figure PCTCN2018112658-appb-000383
Figure PCTCN2018112658-appb-000384
Figure PCTCN2018112658-appb-000385
无关,得式(41)。
式(35)至式(38)对运动学及动力学分析具有非常重要的作用。它们不仅物理意义清晰,还可以简化运动学及动力学方程的表达。
如图3所示,一方面,从几何角度看,式(39)中的偏速度即为对应的轴不变量,式(40)表示的是位置矢量对轴不变量的一阶距,即轴矢量
Figure PCTCN2018112658-appb-000386
与矢量
Figure PCTCN2018112658-appb-000387
的叉乘;另一方面,从力作用关系看,
Figure PCTCN2018112658-appb-000388
Figure PCTCN2018112658-appb-000389
在轴向
Figure PCTCN2018112658-appb-000390
的投影。
由式(42)左序叉乘与转置的关系式
Figure PCTCN2018112658-appb-000391
可知
Figure PCTCN2018112658-appb-000392
式(43)表明:
Figure PCTCN2018112658-appb-000393
完成了力
Figure PCTCN2018112658-appb-000394
对轴
Figure PCTCN2018112658-appb-000395
作用效应即力矩的计算。
式(43)中
Figure PCTCN2018112658-appb-000396
与式(27)中
Figure PCTCN2018112658-appb-000397
(即
Figure PCTCN2018112658-appb-000398
)的链序不同;前者是作用力,后者是运动量,二者是对偶的,具有相反的序。
3.轴不变量对时间微分的不变性
由式(24)及式(26)可知
Figure PCTCN2018112658-appb-000399
故有
Figure PCTCN2018112658-appb-000400
式(45)表明:对轴不变量而言,其绝对导数就是其相对导数。因轴不变量是具有不变性的自然参考轴,故其绝对导数恒为零矢量。因此,轴不变量具有对时间微分的不变性。
由式(39)及式(45)得
Figure PCTCN2018112658-appb-000401
由式(28)及式(45)得
Figure PCTCN2018112658-appb-000402
由上式得
Figure PCTCN2018112658-appb-000403
Figure PCTCN2018112658-appb-000404
由式(47)可知:偏速度对时间t的导数仍是轴不变量的迭代式。轴不变量
Figure PCTCN2018112658-appb-000405
是基e l的坐标矢量,
Figure PCTCN2018112658-appb-000406
本质上表示基e l在参考系i上的投影。若式(45)不成立,则否认了参考基e l作为参考的不变性即客观性。由
Figure PCTCN2018112658-appb-000407
Figure PCTCN2018112658-appb-000408
式(48)中左式表示:转动链 il c的DCM对该链全部关节角的偏速度之和;式(48)中右式表示:转动链 il c的轴不变量之和。因此,运动链的DCM对关节角的偏速度具有不变性。
对于MAS***的树
Figure PCTCN2018112658-appb-000409
由式(45)及式(48)得
Figure PCTCN2018112658-appb-000410
表明:MAS***的轴不变量对时间是不变的,即刚体***的自然参考轴具有不变性。由式(48)可知:***的关节变量与自然参考轴一一映射,体的关节变量数由其独立的运动维度确定,但不改变自然参考轴对时间微分的不变性。
4.树形运动链的变分计算步骤
将函数自变量的导数称为微商,以d表示。与微分相对应,将自变量函数的增量称为变分,以δ表示;但变分不考虑时间t的增量δt,即δt≡0。正是因为不考虑时间增量δt,故线位移及角位移的变分理解为同一时刻t可能的运动量变化,即虚位移。
【1】转动矢量的变分
Figure PCTCN2018112658-appb-000411
上式可由式(33)得
Figure PCTCN2018112658-appb-000412
【2】平动矢量的变分
Figure PCTCN2018112658-appb-000413
上式可由式(37)及式(38)得
Figure PCTCN2018112658-appb-000414
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (10)

  1. 一种基于轴不变量的多轴机器人正运动学计算方法,其特征是,
    多轴机器人装置包含杆件序列与关节序列,将树链中的关节序列转换成对应的轴序列及其父轴序列,所述轴序列的轴为平动轴或转动轴;
    使用轴集合来对应描述多轴机器装置,以自然坐标系为基础,利用轴集合的轴对应的轴不变量来计算多轴机器装置的控制参数;
    利用轴不变量的不变性建立基于轴不变量的迭代式运动学方程,并且所述迭代式运动学方程的符号对应到伪代码,反映所述多轴机器装置运动链的拓扑关系与链序关系;
    计算运动链的迭代式正运动学数值;
    计算基于轴不变量的迭代式偏速度。
  2. 根据权利要求1所述的基于轴不变量的多轴机器人正运动学计算方法,其特征是,
    惯性空间记为i,给定由i至杆件n的运动链 il n,杆件l,n,j∈A,n>l,s是体l上的任一点,A为轴序列;当转动矢量
    Figure PCTCN2018112658-appb-100001
    有测量噪声时,运动链 il n的迭代式正运动学数值计算步骤包括:
    【1】链节
    Figure PCTCN2018112658-appb-100002
    正运动学计算步骤;
    运动副
    Figure PCTCN2018112658-appb-100003
    对应的运动链
    Figure PCTCN2018112658-appb-100004
    通过区间符表示为:
    Figure PCTCN2018112658-appb-100005
    其中:
    Figure PCTCN2018112658-appb-100006
    是l的前继即父,l是
    Figure PCTCN2018112658-appb-100007
    的后继即子;
    Figure PCTCN2018112658-appb-100008
    为链节,是运动链中的一个基本环节;
    【2】运动链 il n的位形计算步骤;
    【3】运动链 il n的速度及加速度计算步骤。
  3. 根据权利要求2所述的基于轴不变量的多轴机器人正运动学计算方法,其特征是,
    链节
    Figure PCTCN2018112658-appb-100009
    正运动学计算步骤为:
    【1-1】已知转动矢量
    Figure PCTCN2018112658-appb-100010
    根据欧拉四元数公式计算欧拉四元数
    Figure PCTCN2018112658-appb-100011
    【1-2】由欧拉四元数计算旋转变换阵
    Figure PCTCN2018112658-appb-100012
    【1-3】由下式计算链节速度:
    Figure PCTCN2018112658-appb-100013
    式中,运动副
    Figure PCTCN2018112658-appb-100014
    表示连接杆件
    Figure PCTCN2018112658-appb-100015
    及杆件l的运动副;转动副R,棱柱副P;沿轴
    Figure PCTCN2018112658-appb-100016
    的线位置
    Figure PCTCN2018112658-appb-100017
    绕轴
    Figure PCTCN2018112658-appb-100018
    的角位置
    Figure PCTCN2018112658-appb-100019
    轴矢量
    Figure PCTCN2018112658-appb-100020
    角速度
    Figure PCTCN2018112658-appb-100021
    线速度
    Figure PCTCN2018112658-appb-100022
    【1-4】由下式计算链节加速度:
    Figure PCTCN2018112658-appb-100023
    式中,转动加速度
    Figure PCTCN2018112658-appb-100024
    平动加速度
    Figure PCTCN2018112658-appb-100025
  4. 根据权利要求2所述的基于轴不变量的多轴机器人正运动学计算方法,其特征是,
    运动链 il n的位形计算步骤为:
    【2-1】由欧拉四元数的链关系,将四元数乘法运算用其共轭矩阵运算替代,计算欧拉四元数序列
    Figure PCTCN2018112658-appb-100026
    【2-2】用欧拉四元数表示定轴转动;旋转变换阵的计算等价于链式四元数的矩阵计算,计算旋转变换阵序列{ iQ j|j∈A};
    【2-3】由下式计算位置矢量
    Figure PCTCN2018112658-appb-100027
    Figure PCTCN2018112658-appb-100028
    式中,轴矢量
    Figure PCTCN2018112658-appb-100029
    沿轴
    Figure PCTCN2018112658-appb-100030
    的线位置
    Figure PCTCN2018112658-appb-100031
  5. 根据权利要求2所述的基于轴不变量的多轴机器人正运动学计算方法,其特征是,
    运动链 il n的速度及加速度计算步骤为:
    【3-1】计算绝对角速度:
    Figure PCTCN2018112658-appb-100032
    式中,角速度
    Figure PCTCN2018112658-appb-100033
    轴矢量
    Figure PCTCN2018112658-appb-100034
    【3-2】计算绝对角加速度:
    Figure PCTCN2018112658-appb-100035
    式中,角加速度
    Figure PCTCN2018112658-appb-100036
    轴矢量
    Figure PCTCN2018112658-appb-100037
    【3-3】计算绝对平动速度:
    Figure PCTCN2018112658-appb-100038
    式中,线速度
    Figure PCTCN2018112658-appb-100039
    轴矢量
    Figure PCTCN2018112658-appb-100040
    【3-4】计算绝对平动加速度:
    Figure PCTCN2018112658-appb-100041
    式中,线速度
    Figure PCTCN2018112658-appb-100042
    轴矢量
    Figure PCTCN2018112658-appb-100043
    其中:
    Figure PCTCN2018112658-appb-100044
    转动加速度,其中
    Figure PCTCN2018112658-appb-100045
    向心加速度;
    Figure PCTCN2018112658-appb-100046
    哥氏加速度,是 平动与转动的耦合加速度。
  6. 根据权利要求1所述的基于轴不变量的多轴机器人正运动学计算方法,其特征是,基于轴不变量的迭代式偏速度计算步骤包括:
    定义使能函数:
    Figure PCTCN2018112658-appb-100047
    式中,k为属于运动链 il n的杆件;
    由使能函数,
    【1】计算绝对角速度对关节角速度的偏速度;
    【2】计算绝对平动速度矢量对关节平动速度的偏速度;
    【3】计算绝对转动矢量对关节角度的偏速度;
    【4】计算绝对位置矢量对关节位移的偏速度;
    【5】计算绝对位置矢量对关节角度的偏速度;
    【6】计算绝对平动速度矢量对关节角速度的偏速度。
  7. 根据权利要求6所述的基于轴不变量的多轴机器人正运动学计算方法,其特征是,绝对角速度对关节角速度的偏速度计算公式为:
    Figure PCTCN2018112658-appb-100048
    式中,角速度
    Figure PCTCN2018112658-appb-100049
    轴矢量
    Figure PCTCN2018112658-appb-100050
  8. 根据权利要求6所述的基于轴不变量的多轴机器人正运动学计算方法,其特征是,绝对平动速度矢量对关节平动速度的偏速度计算公式为:
    Figure PCTCN2018112658-appb-100051
    式中,线速度
    Figure PCTCN2018112658-appb-100052
    轴矢量
    Figure PCTCN2018112658-appb-100053
    绝对平动速度矢量对关节角速度的偏速度计算公式为:
    Figure PCTCN2018112658-appb-100054
    式中,角速度
    Figure PCTCN2018112658-appb-100055
    是轴不变量
    Figure PCTCN2018112658-appb-100056
    的叉乘矩阵。
  9. 根据权利要求6所述的基于轴不变量的多轴机器人正运动学计算方法,其特征是,绝对转动矢量对关节角度的偏速度计算公式为:
    Figure PCTCN2018112658-appb-100057
    式中,角位置
    Figure PCTCN2018112658-appb-100058
    轴矢量
    Figure PCTCN2018112658-appb-100059
  10. 根据权利要求6所述的基于轴不变量的多轴机器人正运动学计算方法,其特征是,绝对位置矢量对关节位移的偏速度计算公式为:
    Figure PCTCN2018112658-appb-100060
    式中,线位置
    Figure PCTCN2018112658-appb-100061
    轴矢量
    Figure PCTCN2018112658-appb-100062
    绝对位置矢量对关节角度的偏速度计算公式为:
    Figure PCTCN2018112658-appb-100063
    式中,角位置
    Figure PCTCN2018112658-appb-100064
    是轴不变量
    Figure PCTCN2018112658-appb-100065
    的叉乘矩阵。
PCT/CN2018/112658 2018-08-16 2018-10-30 基于轴不变量的多轴机器人正运动学计算方法 WO2020034403A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810933676.4 2018-08-16
CN201810933676.4A CN108942943B (zh) 2018-08-16 2018-08-16 基于轴不变量的多轴机器人正运动学计算方法

Publications (1)

Publication Number Publication Date
WO2020034403A1 true WO2020034403A1 (zh) 2020-02-20

Family

ID=64470083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112658 WO2020034403A1 (zh) 2018-08-16 2018-10-30 基于轴不变量的多轴机器人正运动学计算方法

Country Status (2)

Country Link
CN (1) CN108942943B (zh)
WO (1) WO2020034403A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113246133B (zh) * 2021-05-28 2022-09-27 北京世冠金洋科技发展有限公司 机械臂多关节的旋转指令计算方法、旋转控制方法及***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014014920A (ja) * 2012-06-15 2014-01-30 Kumamoto Univ 機構制御装置、プログラム及び機構制御方法
CN105269565A (zh) * 2015-10-30 2016-01-27 福建长江工业有限公司 一种六轴磨抛工业机器人离线编程及修正方法
CN105773620A (zh) * 2016-04-26 2016-07-20 南京工程学院 基于倍四元数的工业机器人自由曲线的轨迹规划控制方法
CN106625671A (zh) * 2016-12-27 2017-05-10 西北工业大学 一种空间机器人抓捕翻滚目标的最优轨迹规划方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10305693B4 (de) * 2003-02-12 2006-02-16 Jürgen Michael Knapp Vorrichtung zum Positionieren und/oder Bewegen eines chirurgischen Instrumentes
EP2345512A1 (en) * 2010-01-14 2011-07-20 Syddansk Universitet Method of finding feasible joint trajectories for an n-dof robot with rotation invariant process (N>5)
CN102982653B (zh) * 2012-11-07 2014-10-15 中南大学 基于加速度和高度信息的人体跌倒监测方法及装置
CN103035008B (zh) * 2012-12-15 2015-08-12 北京工业大学 一种多相机***的加权标定方法
CN103802656B (zh) * 2014-03-05 2016-06-22 北京工业大学 一种四轮行星车移动***
CN107791248B (zh) * 2017-09-28 2021-04-30 浙江理工大学 基于不满足Pieper准则的六自由度串联机器人的控制方法
CN107932504B (zh) * 2017-11-13 2020-11-13 浙江工业大学 基于PyQt的机械臂运行控制***
CN108081256A (zh) * 2017-12-07 2018-05-29 南京航空航天大学 检测制动一体化机器人关节驱动器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014014920A (ja) * 2012-06-15 2014-01-30 Kumamoto Univ 機構制御装置、プログラム及び機構制御方法
CN105269565A (zh) * 2015-10-30 2016-01-27 福建长江工业有限公司 一种六轴磨抛工业机器人离线编程及修正方法
CN105773620A (zh) * 2016-04-26 2016-07-20 南京工程学院 基于倍四元数的工业机器人自由曲线的轨迹规划控制方法
CN106625671A (zh) * 2016-12-27 2017-05-10 西北工业大学 一种空间机器人抓捕翻滚目标的最优轨迹规划方法

Also Published As

Publication number Publication date
CN108942943A (zh) 2018-12-07
CN108942943B (zh) 2020-03-17

Similar Documents

Publication Publication Date Title
US11491649B2 (en) Axis-invariant based multi-axis robot kinematics modeling method
US20200055192A1 (en) Axis-Invariant based Multi-axis robot inverse kinematics modeling and solving method
WO2021243945A1 (zh) 一种对于静止或低速工况下机械臂高精度力反馈的方法、机械臂辅助的外科手术方法和具有处理器可执行的非易失的程序代码的计算机可读介质
CN108983705A (zh) 一种基于轴不变量的多轴机器人***正运动学建模与解算方法
CN110757450B (zh) 一种肩关节康复机器人参数标定方法
CN109079784B (zh) 一种基于轴不变量的多轴机器人***建模与控制方法
CN108015763A (zh) 一种抗噪声干扰的冗余度机械臂路径规划方法
WO2022135011A1 (zh) 合质心状态获取方法、装置、仿人机器人和可读存储介质
CN105740503A (zh) 六轴隔振平台的优化设计方法
WO2020034403A1 (zh) 基于轴不变量的多轴机器人正运动学计算方法
WO2020034415A1 (zh) 基于轴不变量的通用6r机械臂逆解建模与解算方法
Li et al. Efficient industrial robot calibration via a novel unscented Kalman filter-incorporated variable step-size Levenberg–Marquardt algorithm
WO2020034417A1 (zh) 基于轴不变量多轴机器人d-h系及d-h参数确定方法
WO2020034405A1 (zh) 基于轴不变量的树链机器人动力学建模与解算方法
WO2020034402A1 (zh) 基于轴不变量的多轴机器人结构参数精测方法
WO2020034407A1 (zh) 基于轴不变量的通用3r机械臂逆解建模与解算方法
WO2020034404A1 (zh) 基于轴不变量的非理想关节机器人动力学建模与解算方法
WO2020034416A1 (zh) 基于轴不变量的通用7r机械臂逆解建模与解算方法
WO2020034418A1 (zh) 基于轴不变量及dh参数1r/2r/3r逆解建模方法
WO2020034399A1 (zh) 基于轴不变量的闭链机器人动力学建模与解算方法
Shi et al. Formal analysis of the kinematic Jacobian in screw theory
WO2020034401A1 (zh) 基于轴不变量的动基座多轴机器人动力学建模与解算方法
Moll et al. Ball joints for marker-less human motion capture
Wasmer et al. The geometrically exact beam model with a normalized quaternion discretization
Hang A 3D Gesture Modeling Method and Its Application in 3D Gesture Prediction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18929856

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18929856

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18929856

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12.08.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18929856

Country of ref document: EP

Kind code of ref document: A1