WO2020034359A1 - Rock core fidelity cabin having thermostatic function - Google Patents

Rock core fidelity cabin having thermostatic function Download PDF

Info

Publication number
WO2020034359A1
WO2020034359A1 PCT/CN2018/108980 CN2018108980W WO2020034359A1 WO 2020034359 A1 WO2020034359 A1 WO 2020034359A1 CN 2018108980 W CN2018108980 W CN 2018108980W WO 2020034359 A1 WO2020034359 A1 WO 2020034359A1
Authority
WO
WIPO (PCT)
Prior art keywords
core barrel
valve
fidelity
constant temperature
rock core
Prior art date
Application number
PCT/CN2018/108980
Other languages
French (fr)
Chinese (zh)
Inventor
高明忠
***
张茹
陈领
张泽天
张志龙
鲁义强
李聪
何志强
华夏
明传剑
彭高友
陆彤
Original Assignee
四川大学
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川大学, 深圳大学 filed Critical 四川大学
Publication of WO2020034359A1 publication Critical patent/WO2020034359A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B25/00Apparatus for obtaining or removing undisturbed cores, e.g. core barrels, core extractors
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B25/00Apparatus for obtaining or removing undisturbed cores, e.g. core barrels, core extractors
    • E21B25/10Formed core retaining or severing means

Definitions

  • the invention relates to the field of oil and gas field exploration, in particular to a rock core fidelity cabin with a constant temperature function.
  • cores are important data for discovering oil and gas layers and studying formations, oil layers, reservoirs, caps, structures, etc. Through the observation and study of cores, you can directly understand the lithology and physical properties of underground rocks. And oily, gas, aquatic characteristics.
  • Coring is the use of special coring tools to pull underground rocks into the ground during drilling.
  • This type of rock is called a core, which can be used to determine various properties of the rock and intuitively study the underground structure. And rock sedimentary environment, and understand the fluid properties.
  • the core tools are drilled into the well, and the core samples are drilled and stored in the core storage compartment. During the ascent, environmental parameters such as the temperature of the core storage compartment will decrease, making the core unable to maintain its state in the in-situ environment.
  • the invention aims to provide a rock core fidelity cabin with a constant temperature function, which can automatically control the temperature in the fidelity cabin, which is beneficial to the core keeping its state in the in-situ environment.
  • the rock core fidelity capsule with constant temperature function disclosed in the present invention includes a mechanical part and an electrical part, the mechanical part includes an inner core barrel and an outer core barrel, and the outer core barrel is sleeved on the inner core barrel, The upper end of the inner core barrel is connected to one end of a pipeline, and the other end of the pipeline is connected to a liquid nitrogen storage tank, the liquid nitrogen storage tank is located in an outer core barrel, and the outer core barrel is provided with a flap valve.
  • the electric part includes an electric heater, a temperature sensor and an electric control valve provided in a pipeline.
  • the temperature sensor is connected to a processing unit.
  • the electric heater and the electric control valve are both controlled by the processing unit.
  • the electric heater is used for The inside of the external coring cylinder is heated, and the temperature sensor is used to detect the temperature in the fidelity cabin.
  • the electric heater is a resistance wire
  • the resistance wire is embedded in the inner wall of the outer core barrel
  • the resistance wire is coated with an insulating layer.
  • a graphene layer is attached to an inner wall of the inner core cylinder.
  • the upper part of the inner core tube is filled with a dripping film-forming agent.
  • the flap valve includes a valve seat and a valve disc
  • the valve disc includes an elastic sealing ring, an elastic connecting bar, a sealing member, and a plurality of locking bars arranged in parallel in sequence.
  • the elastic connecting bar connects all the locking bars in series and All the lock bars are hooped together by the elastic sealing ring to form an integrated structure.
  • the lock bar has a card slot adapted to the elastic seal ring.
  • the elastic seal ring is installed in the card slot, and a seal is provided between two adjacent lock bars.
  • valve flap One end of the valve flap is movably connected to the upper end of the valve seat through a limit hinge; the valve flap is curved when it is not turned down, and the valve flap is in conformity with the outer wall of the inner core barrel; the valve flap is flat and covered when it is turned down. Upper end of valve seat.
  • a sealing cavity is provided on an inner wall of the outer coring cylinder, the flap is located in the sealing cavity, and the sealing cavity is in communication with the inner coring cylinder.
  • a sealing ring is provided on the inner wall of the outer core barrel, and the sealing ring is located below the flap valve.
  • the inner core barrel is made of PVC.
  • the power source of the electrical part is located on the outer core barrel.
  • the principle of the constant temperature of the present invention is as follows: the temperature in the fidelity cabin is detected in real time by a temperature sensor, and compared with the in-situ temperature of the core first tested, according to the difference between the two temperatures, the electric heater is controlled to heat or the electric control valve is opened to Liquid nitrogen is injected into the fidelity cabin to cool the fidelity cabin, so that the temperature in the constant fidelity cabin is the same as the core temperature in situ.
  • the present invention can automatically heat and cool the fidelity capsule, which is beneficial for the core to maintain its state in the in-situ environment.
  • the flap mechanism of the present invention can automatically close the fidelity compartment when the coring is completed, and has a simple structure, safety and reliability.
  • the graphene layer of the present invention can reduce the sliding resistance of the rock core on the inside of the PVC pipe, at the same time improve the strength and surface accuracy of the inside, and enhance the thermal conductivity.
  • the sealed cavity of the present invention can isolate the drilling fluid passing through the fidelity cavity.
  • FIG. 1 is a schematic structural diagram of the present invention
  • FIG. 2 is a schematic structural diagram when the flap is not turned down
  • FIG. 3 is a schematic structural diagram when the flap has been turned down
  • valve disc 4 is a schematic structural diagram of a valve disc
  • FIG. 5 is a schematic structural diagram of a sealed cavity
  • Figure 6 is a partial cross-sectional view of an inner core barrel
  • FIG. 7 is an electrical schematic diagram of the present invention.
  • the rock core fidelity capsule with constant temperature function disclosed in the present invention includes a mechanical part and an electrical part.
  • the mechanical part includes an inner core barrel 8 and an outer core barrel 6.
  • the inner core barrel 8 is used for placing Rock core 1
  • outer core cylinder 6 is set on inner core cylinder 6, the upper end of inner core cylinder 8 is connected to one end of a pipeline, and the other end of the pipeline is connected to a liquid nitrogen storage tank 25.
  • An electric control valve 26 is provided on the pipeline.
  • the nitrogen storage tank 25 is located inside the outer core cylinder 6, and the outer core cylinder 6 is provided with a flap valve 3.
  • the flap valve 3 includes a valve seat 36 and a valve disc 37
  • the valve disc 37 includes an elastic sealing ring 34, an elastic connecting bar 32, a seal, and a plurality of parallel arrays in order.
  • the lock strip 35 and the elastic connecting strip 32 connect all the lock strips 35 in series and hoop all the lock strips 35 together by the elastic seal ring 34 to form an integrated structure.
  • the lock strip 35 has a slot 31 adapted to the elastic seal ring.
  • An elastic seal ring 34 is installed in the slot 31, and a seal is provided between two adjacent lock bars 35.
  • One end of the valve flap 3 is movably connected to the upper end of the valve seat 36 through a limit hinge 33.
  • the valve flap 37 is In an arc shape, the valve flap 37 fits on the outer wall of the inner core barrel 8; the valve flap 37 is flat and covers the upper end of the valve seat 36 when it is turned down.
  • the electrical part includes an electric heater 29, a temperature sensor 5 and an electric control valve 26 provided in the pipeline.
  • the temperature sensor 5 is connected to the processing unit 24.
  • the electric heater 29 is connected to the power source 28 through a switch 27.
  • the control valves 26 are all controlled by the processing unit 24.
  • the electric heater is used to heat the inner core of the external core tube, and the temperature sensor 5 is used to detect the temperature in the fidelity cabin.
  • the electric heater 29 uses resistance wires, which are embedded in the outside core.
  • the inner wall of the barrel is covered with an insulation layer, and the power source 28 of the electrical part is located on the outer core barrel.
  • the inner wall of the outer coring cylinder 6 is provided with a sealing cavity 39, the flap is located in the sealing cavity, and the sealing cavity is in communication with the inner coring cylinder.
  • the inner core cylinder 8 is made of PVC.
  • a graphene layer 81 is attached to the inner wall of the inner core cylinder 8.
  • the upper part of the inner core cylinder 8 is filled with a dripping film-forming agent 82.

Abstract

A rock core fidelity cabin having a thermostatic function, comprising a mechanical part and an electric appliance part. The mechanical part comprises an inner coring barrel (8) and an outer coring barrel (6); the outer coring barrel (6) is sleeved on the inner coring barrel (8); the upper end of the inner coring barrel (8) is connected to one end of a pipeline, and the other end of the pipeline is connected to a liquid nitrogen storage tank (25); the liquid nitrogen storage tank (25) is located inside the outer coring barrel (6); the outer coring barrel (6) is provided with a flap valve (3); the electric appliance part comprises an electric heater (29), a temperature sensor (5), and an electrically controlled valve (26) provided in the pipeline; the temperature sensor (5) is connected to a processing unit (24); the electric heater (29) and the electrically controlled valve (26) are both controlled by the processing unit (24); the electric heater (29) is used for heating the interior of the outer coring barrel (6); the temperature sensor (5) is used for detecting the temperature in the fidelity cabin. The rock core fidelity cabin can automatically control the temperature in the fidelity cabin, and facilitates maintaining the state of a rock core in an in-situ environment.

Description

具有恒温功能的岩芯保真舱Rock core fidelity cabin with constant temperature function 技术领域Technical field
本发明涉及油气田勘探领域,尤其涉及一种具有恒温功能的岩芯保真舱。The invention relates to the field of oil and gas field exploration, in particular to a rock core fidelity cabin with a constant temperature function.
背景技术Background technique
在油气田勘探过程中,岩芯是发现油气层和研究地层、生油层、储油层、盖层、构造等的重要资料,通过对岩芯的观察研究,可以直接地了解地下岩层的岩性、物性和含油、气、水产状特征。油田投入开发后,要通过岩芯进一步研究和认识油层沉积特征,储层的物性、孔隙结构、润湿性、相对渗透率、岩相特征,油层物理模拟和油层水淹规律;认识和掌握不同开发阶段、不同含水阶段油层水淹特征,搞清剩余油分布,为油田开发方案设计,层系、井网调整和加密井提供科学依据。During the exploration of oil and gas fields, cores are important data for discovering oil and gas layers and studying formations, oil layers, reservoirs, caps, structures, etc. Through the observation and study of cores, you can directly understand the lithology and physical properties of underground rocks. And oily, gas, aquatic characteristics. After the oilfield is put into development, it is necessary to further study and understand the sedimentary characteristics of the reservoir through the core, the physical properties, pore structure, wettability, relative permeability, lithofacies of the reservoir, physical simulation of the reservoir, and the law of water flooding in the reservoir; Water flooding characteristics of the reservoirs in the development stage and in different water-cutting stages, to clarify the distribution of remaining oil, and to provide scientific basis for the design of oilfield development schemes, layer system, well pattern adjustment, and infill wells.
取岩芯是在钻井过程中使用特殊的取芯工具把地下岩石成块地取到地面上来,这种成块的岩石叫做岩芯,通过它可以测定岩石的各种性质,直观地研究地下构造和岩石沉积环境,了解其中的流体性质等。在矿产勘探和开发过程中,需要按地质设计的地层层位和深度,开展钻进工作,向井内下入取芯工具,钻取出的岩芯样品,并存储在岩芯存储舱中,在设备上升过程中,岩芯存储舱的温度等环境参数会降低,使得岩芯不能保持其在原位环境下的状态。Coring is the use of special coring tools to pull underground rocks into the ground during drilling. This type of rock is called a core, which can be used to determine various properties of the rock and intuitively study the underground structure. And rock sedimentary environment, and understand the fluid properties. In the process of mineral exploration and development, it is necessary to carry out drilling according to the stratigraphic level and depth of the geological design. The core tools are drilled into the well, and the core samples are drilled and stored in the core storage compartment. During the ascent, environmental parameters such as the temperature of the core storage compartment will decrease, making the core unable to maintain its state in the in-situ environment.
发明内容Summary of the Invention
本发明旨在提供具有恒温功能的岩芯保真舱,能够自动控制保真舱内的温度,有利于岩芯保持其在原位环境下的状态。The invention aims to provide a rock core fidelity cabin with a constant temperature function, which can automatically control the temperature in the fidelity cabin, which is beneficial to the core keeping its state in the in-situ environment.
为达到上述目的,本发明是采用以下技术方案实现的:To achieve the above object, the present invention is implemented by using the following technical solutions:
本发明公开的具有恒温功能的岩芯保真舱,包括机械部分和电器部分,所述机械部分包括内取芯筒和外取芯筒,所述外取芯筒套在内取芯筒上,所述内取芯筒上端连接管道的一端,所述管道的另一端连接液氮存储罐,所述液氮存储罐位于外取芯筒内,所述外取芯筒设有翻板阀。The rock core fidelity capsule with constant temperature function disclosed in the present invention includes a mechanical part and an electrical part, the mechanical part includes an inner core barrel and an outer core barrel, and the outer core barrel is sleeved on the inner core barrel, The upper end of the inner core barrel is connected to one end of a pipeline, and the other end of the pipeline is connected to a liquid nitrogen storage tank, the liquid nitrogen storage tank is located in an outer core barrel, and the outer core barrel is provided with a flap valve.
所述电器部分包括电加热器、温度传感器和设于管道的电控阀,所述温度传感器连接处理单元,所述电加热器、电控阀均受控于处理单元,所述电加热器用于对外取芯筒内部加热,所述温度传感器用于检测保真舱内的温度。The electric part includes an electric heater, a temperature sensor and an electric control valve provided in a pipeline. The temperature sensor is connected to a processing unit. The electric heater and the electric control valve are both controlled by the processing unit. The electric heater is used for The inside of the external coring cylinder is heated, and the temperature sensor is used to detect the temperature in the fidelity cabin.
优选的,所述电加热器为电阻丝,所述电阻丝嵌装在外取芯筒的内壁,电阻丝涂覆绝缘层。Preferably, the electric heater is a resistance wire, the resistance wire is embedded in the inner wall of the outer core barrel, and the resistance wire is coated with an insulating layer.
进一步的,所述内取芯筒的内壁附着石墨烯层。Further, a graphene layer is attached to an inner wall of the inner core cylinder.
进一步的,所述内取芯筒上部填充滴水成膜剂。Further, the upper part of the inner core tube is filled with a dripping film-forming agent.
优选的,所述翻板阀包括阀座和阀瓣,所述阀瓣包括弹性密封圈、弹性连接条、密封件和多个依次平行排列的锁条,弹性连接条将所有锁条串连并由弹性密封圈将所有锁条箍在一起形成整体结构,锁条上有与弹性密封圈适配的卡槽,弹性密封圈装在卡槽中,相邻两个锁条间设有密封件,阀瓣一端通过限位铰链活动连接在阀座上端;所述阀瓣在未翻下时为弧形,阀瓣与内取芯筒的外壁贴合;阀瓣在翻下时为平面并盖住阀座上端。Preferably, the flap valve includes a valve seat and a valve disc, and the valve disc includes an elastic sealing ring, an elastic connecting bar, a sealing member, and a plurality of locking bars arranged in parallel in sequence. The elastic connecting bar connects all the locking bars in series and All the lock bars are hooped together by the elastic sealing ring to form an integrated structure. The lock bar has a card slot adapted to the elastic seal ring. The elastic seal ring is installed in the card slot, and a seal is provided between two adjacent lock bars. One end of the valve flap is movably connected to the upper end of the valve seat through a limit hinge; the valve flap is curved when it is not turned down, and the valve flap is in conformity with the outer wall of the inner core barrel; the valve flap is flat and covered when it is turned down. Upper end of valve seat.
进一步的,所述外取芯筒内壁设有密封腔,所述翻板位于密封腔,所述密封腔与内取芯筒连通。Further, a sealing cavity is provided on an inner wall of the outer coring cylinder, the flap is located in the sealing cavity, and the sealing cavity is in communication with the inner coring cylinder.
进一步的,所述外取芯筒内壁设有密封圈,所述密封圈位于翻板阀的下方。Further, a sealing ring is provided on the inner wall of the outer core barrel, and the sealing ring is located below the flap valve.
优选的,所述内取芯筒为PVC材质。Preferably, the inner core barrel is made of PVC.
优选的,所述电器部分的电源位于外取芯筒上。Preferably, the power source of the electrical part is located on the outer core barrel.
本发明恒温的原理如下:通过温度传感器实时检测保真舱内的温度,并与先 测试的岩芯原位温度比较,根据两个温度的差异,控制电加热器加热或者控制电控阀打开向保真舱内注入液氮冷却保真舱,从而恒定保真舱内的温度与岩芯原位温度相同。The principle of the constant temperature of the present invention is as follows: the temperature in the fidelity cabin is detected in real time by a temperature sensor, and compared with the in-situ temperature of the core first tested, according to the difference between the two temperatures, the electric heater is controlled to heat or the electric control valve is opened to Liquid nitrogen is injected into the fidelity cabin to cool the fidelity cabin, so that the temperature in the constant fidelity cabin is the same as the core temperature in situ.
本发明的有益效果如下:The beneficial effects of the present invention are as follows:
1、本发明可自动加热和冷却保真舱,有利于岩芯保持其在原位环境下的状态。1. The present invention can automatically heat and cool the fidelity capsule, which is beneficial for the core to maintain its state in the in-situ environment.
2、本发明的翻板机构能够在取芯完成时自动封闭保真舱,结构简单,安全可靠。2. The flap mechanism of the present invention can automatically close the fidelity compartment when the coring is completed, and has a simple structure, safety and reliability.
3、本发明的石墨烯层能够降低岩芯在PVC管内侧的滑动阻力,同时提高内侧的强度和表面精度,增强热导系数等。3. The graphene layer of the present invention can reduce the sliding resistance of the rock core on the inside of the PVC pipe, at the same time improve the strength and surface accuracy of the inside, and enhance the thermal conductivity.
4、本发明的密封腔可以隔绝通过保真腔内的钻井液。4. The sealed cavity of the present invention can isolate the drilling fluid passing through the fidelity cavity.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本发明结构示意图;FIG. 1 is a schematic structural diagram of the present invention;
图2为翻板未翻下时的结构示意图;FIG. 2 is a schematic structural diagram when the flap is not turned down;
图3为翻板已翻下时的结构示意图;FIG. 3 is a schematic structural diagram when the flap has been turned down;
图4为阀瓣的结构示意图;4 is a schematic structural diagram of a valve disc;
图5为密封腔的结构示意图;5 is a schematic structural diagram of a sealed cavity;
图6为内取芯筒的局部剖视图;Figure 6 is a partial cross-sectional view of an inner core barrel;
图7为本发明的电气原理图。FIG. 7 is an electrical schematic diagram of the present invention.
具体实施方式detailed description
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图,对本发明进行进一步详细说明。In order to make the objectives, technical solutions, and advantages of the present invention clearer, the present invention is further described in detail below with reference to the accompanying drawings.
本发明公开的具有恒温功能的岩芯保真舱,包括机械部分和电器部分,如图 1所示,机械部分包括内取芯筒8和外取芯筒6,内取芯筒8用于放置岩芯1,外取芯筒6套在内取芯筒6上,内取芯筒8上端连接管道的一端,管道的另一端连接液氮存储罐25,管道上设有电控阀26,液氮存储罐25位于外取芯筒6内,外取芯筒6设有翻板阀3。The rock core fidelity capsule with constant temperature function disclosed in the present invention includes a mechanical part and an electrical part. As shown in FIG. 1, the mechanical part includes an inner core barrel 8 and an outer core barrel 6. The inner core barrel 8 is used for placing Rock core 1, outer core cylinder 6 is set on inner core cylinder 6, the upper end of inner core cylinder 8 is connected to one end of a pipeline, and the other end of the pipeline is connected to a liquid nitrogen storage tank 25. An electric control valve 26 is provided on the pipeline. The nitrogen storage tank 25 is located inside the outer core cylinder 6, and the outer core cylinder 6 is provided with a flap valve 3.
具体的,如图2、图3、图4所示,翻板阀3包括阀座36和阀瓣37,阀瓣37包括弹性密封圈34、弹性连接条32、密封件和多个依次平行排列的锁条35,弹性连接条32将所有锁条35串连并由弹性密封圈34将所有锁条35箍在一起形成整体结构,锁条35上有与弹性密封圈适配的卡槽31,弹性密封圈34装在卡槽31中,相邻两个锁条35间设有密封件,阀瓣3一端通过限位铰链33活动连接在阀座36上端;阀瓣37在未翻下时为弧形,阀瓣37与内取芯筒8的外壁贴合;阀瓣37在翻下时为平面并盖住阀座36上端。Specifically, as shown in FIG. 2, FIG. 3, and FIG. 4, the flap valve 3 includes a valve seat 36 and a valve disc 37, and the valve disc 37 includes an elastic sealing ring 34, an elastic connecting bar 32, a seal, and a plurality of parallel arrays in order. The lock strip 35 and the elastic connecting strip 32 connect all the lock strips 35 in series and hoop all the lock strips 35 together by the elastic seal ring 34 to form an integrated structure. The lock strip 35 has a slot 31 adapted to the elastic seal ring. An elastic seal ring 34 is installed in the slot 31, and a seal is provided between two adjacent lock bars 35. One end of the valve flap 3 is movably connected to the upper end of the valve seat 36 through a limit hinge 33. The valve flap 37 is In an arc shape, the valve flap 37 fits on the outer wall of the inner core barrel 8; the valve flap 37 is flat and covers the upper end of the valve seat 36 when it is turned down.
如图7所示,电器部分包括电加热器29、温度传感器5和设于管道的电控阀26,温度传感器5连接处理单元24,电加热器29通过开关27连接电源28,开关27、电控阀26均受控于处理单元24,电加热器用于对外取芯筒内部加热,温度传感器5用于检测保真舱内的温度;电加热器29采用电阻丝,电阻丝嵌装在外取芯筒的内壁,电阻丝涂覆绝缘层,电器部分的电源28位于外取芯筒上。As shown in FIG. 7, the electrical part includes an electric heater 29, a temperature sensor 5 and an electric control valve 26 provided in the pipeline. The temperature sensor 5 is connected to the processing unit 24. The electric heater 29 is connected to the power source 28 through a switch 27. The control valves 26 are all controlled by the processing unit 24. The electric heater is used to heat the inner core of the external core tube, and the temperature sensor 5 is used to detect the temperature in the fidelity cabin. The electric heater 29 uses resistance wires, which are embedded in the outside core. The inner wall of the barrel is covered with an insulation layer, and the power source 28 of the electrical part is located on the outer core barrel.
如图5所示,外取芯筒6内壁设有密封腔39,所述翻板位于密封腔,所述密封腔与内取芯筒连通。As shown in FIG. 5, the inner wall of the outer coring cylinder 6 is provided with a sealing cavity 39, the flap is located in the sealing cavity, and the sealing cavity is in communication with the inner coring cylinder.
如图6所示,内取芯筒8采用PVC材质,内取芯筒8的内壁附着石墨烯层81,内取芯筒8上部填充滴水成膜剂82。As shown in FIG. 6, the inner core cylinder 8 is made of PVC. A graphene layer 81 is attached to the inner wall of the inner core cylinder 8. The upper part of the inner core cylinder 8 is filled with a dripping film-forming agent 82.
当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。Of course, the present invention may have various other embodiments. Without departing from the spirit and essence of the present invention, those skilled in the art may make various corresponding changes and modifications according to the present invention, but these corresponding changes All modifications and variations shall fall within the protection scope of the appended claims.

Claims (9)

  1. 具有恒温功能的岩芯保真舱,其特征在于:包括机械部分和电器部分,所述机械部分包括内取芯筒和外取芯筒,所述外取芯筒套在内取芯筒上,所述内取芯筒上端连接管道的一端,所述管道的另一端连接液氮存储罐,所述液氮存储罐位于外取芯筒内,所述外取芯筒设有翻板阀;A rock core fidelity cabin with a constant temperature function is characterized in that it includes a mechanical part and an electrical part, the mechanical part includes an inner core barrel and an outer core barrel, and the outer core barrel is sleeved on the inner core barrel, The upper end of the inner core barrel is connected to one end of a pipeline, and the other end of the pipeline is connected to a liquid nitrogen storage tank, the liquid nitrogen storage tank is located in an outer core barrel, and the outer core barrel is provided with a flap valve;
    所述电器部分包括电加热器、温度传感器和设于管道的电控阀,所述温度传感器连接处理单元,所述电加热器、电控阀均受控于处理单元,所述电加热器用于对外取芯筒内部加热,所述温度传感器用于检测保真舱内的温度。The electric part includes an electric heater, a temperature sensor and an electric control valve provided in a pipeline. The temperature sensor is connected to a processing unit. The electric heater and the electric control valve are both controlled by the processing unit. The electric heater is used for The inside of the external coring cylinder is heated, and the temperature sensor is used to detect the temperature in the fidelity cabin.
  2. 根据权利要求1所述的具有恒温功能的岩芯保真舱,其特征在于:所述电加热器为电阻丝,所述电阻丝嵌装在外取芯筒的内壁,电阻丝涂覆绝缘层。The rock core fidelity cabin with a constant temperature function according to claim 1, wherein the electric heater is a resistance wire, the resistance wire is embedded in the inner wall of the outer core barrel, and the resistance wire is coated with an insulating layer.
  3. 根据权利要求1所述的具有恒温功能的岩芯保真舱,其特征在于:所述内取芯筒的内壁附着石墨烯层。The rock core fidelity capsule with a constant temperature function according to claim 1, wherein a graphene layer is attached to an inner wall of the inner core barrel.
  4. 根据权利要求2所述的具有恒温功能的岩芯保真舱,其特征在于:所述内取芯筒上部填充滴水成膜剂。The rock core fidelity capsule with a constant temperature function according to claim 2, wherein the upper part of the inner core tube is filled with a dripping film-forming agent.
  5. 根据权利要求1-4任意一项所述的具有恒温功能的岩芯保真舱,其特征在于:所述翻板阀包括阀座和阀瓣,所述阀瓣包括弹性密封圈、弹性连接条、密封件和多个依次平行排列的锁条,弹性连接条将所有锁条串连并由弹性密封圈将所有锁条箍在一起形成整体结构,锁条上有与弹性密封圈适配的卡槽,弹性密封圈装在卡槽中,相邻两个锁条间设有密封件,阀瓣一端通过限位铰链活动连接在阀座上端;所述阀瓣在未翻下时为弧形,阀瓣与内取芯筒的外壁贴合;阀瓣在翻下时为平面并盖住阀座上端。The rock core fidelity capsule with a constant temperature function according to any one of claims 1-4, wherein the flap valve includes a valve seat and a valve disc, and the valve disc includes an elastic sealing ring and an elastic connecting bar , Seals and a plurality of lock bars arranged in parallel in sequence, the elastic connecting bar connects all the lock bars in series and all the lock bars are hooped together by the elastic seal ring to form an integrated structure, and the lock bar has a card adapted to the elastic seal ring. The elastic sealing ring is installed in the card slot, and a seal is provided between two adjacent lock bars. One end of the valve flap is movably connected to the upper end of the valve seat through a limit hinge; the valve flap is curved when it is not turned down. The valve flap is in conformity with the outer wall of the inner core barrel; when the valve flap is turned down, it is flat and covers the upper end of the valve seat.
  6. 根据权利要求5所述的具有恒温功能的岩芯保真舱,其特征在于:所述外取芯筒内壁设有密封腔,所述翻板位于密封腔,所述密封腔与内取芯筒连通。The rock core fidelity cabin with a constant temperature function according to claim 5, characterized in that: an inner wall of the outer core barrel is provided with a sealed cavity, and the flap is located in the sealed cavity, the sealed cavity and the inner core barrel Connected.
  7. 根据权利要求5所述的具有恒温功能的岩芯保真舱,其特征在于:所述外取芯筒内壁设有密封圈,所述密封圈位于翻板阀的下方。The rock core fidelity capsule with a constant temperature function according to claim 5, wherein a seal ring is provided on an inner wall of the outer core barrel, and the seal ring is located below the flap valve.
  8. 根据权利要求5所述的具有恒温功能的岩芯保真舱,其特征在于:所述内取芯筒为PVC材质。The rock core fidelity capsule with a constant temperature function according to claim 5, characterized in that the inner core barrel is made of PVC.
  9. 根据权利要求1所述的具有恒温功能的岩芯保真舱,其特征在于:所述电器部分的电源位于外取芯筒上。The rock core fidelity capsule with a constant temperature function according to claim 1, wherein the power source of the electrical part is located on the outer core barrel.
PCT/CN2018/108980 2018-08-13 2018-09-30 Rock core fidelity cabin having thermostatic function WO2020034359A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810918700.7 2018-08-13
CN201810918700.7A CN109113611B (en) 2018-08-13 2018-08-13 Rock core fidelity cabin with constant temperature function

Publications (1)

Publication Number Publication Date
WO2020034359A1 true WO2020034359A1 (en) 2020-02-20

Family

ID=64852303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/108980 WO2020034359A1 (en) 2018-08-13 2018-09-30 Rock core fidelity cabin having thermostatic function

Country Status (2)

Country Link
CN (1) CN109113611B (en)
WO (1) WO2020034359A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110756243A (en) * 2019-11-26 2020-02-07 深圳大学 Constant temperature control water bath device and application
CN113882822B (en) * 2021-03-11 2023-07-18 四川大学 Deep coring high-temperature high-pressure analog test cabin

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1948940A (en) * 2006-09-30 2007-04-18 长沙矿山研究院 Deep sea hard rock fidelity corer
US20120111635A1 (en) * 2010-04-13 2012-05-10 George Caffell Sample Encapsulation and Cache Device and Methods
CN102561970A (en) * 2011-12-20 2012-07-11 大连理工大学 Fidelity transfer device for natural drill cores of natural gas hydrates and method
CN106124242A (en) * 2016-06-01 2016-11-16 四川大学 Fidelity coring system and coring method in situ
CN107313732A (en) * 2017-08-17 2017-11-03 北京探矿工程研究所 Rope rotation type heat preservation and pressure maintaining sampling drilling tool
CN108266147A (en) * 2018-01-16 2018-07-10 四川大学 Pressurize core transfer device and method
CN109113614A (en) * 2018-08-13 2019-01-01 四川大学 The core fidelity cabin of constant temperature, constant pressure

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2129816Y (en) * 1992-06-24 1993-04-14 胜利石油管理局钻井工艺研究院 Inner coated layer rock core tube capable of increasing core length taking
US6216804B1 (en) * 1998-07-29 2001-04-17 James T. Aumann Apparatus for recovering core samples under pressure
CN2402798Y (en) * 1999-12-13 2000-10-25 胜利石油管理局钻井工艺研究院 Shape-retaining seal coring tool
US8430186B2 (en) * 2009-05-08 2013-04-30 Schlumberger Technology Corporation Sealed core
CN101798924B (en) * 2010-03-25 2013-08-21 吉林大学 Icebound type pressure-maintaining and temperature-preserving sampler
CN202266217U (en) * 2011-08-28 2012-06-06 中国石油集团长城钻探工程有限公司 Heat-preserving and pressure-maintaining coring tool
CN203022668U (en) * 2012-12-08 2013-06-26 吉林大学 Liquid nitrogen hole bottom freezing rope coring drilling tool
CN204200132U (en) * 2014-08-07 2015-03-11 中国海洋石油总公司 A kind of initiatively pressurize coring tool
CN104653134B (en) * 2014-12-16 2016-10-12 吉林大学 Liquid nitrogen gas hydrate hole-bottom frozen core plugging notifying mechanism of rope core drilling
DE102015106835B3 (en) * 2015-05-01 2016-10-20 Eberspächer Exhaust Technology GmbH & Co. KG Three-way flap with curved flap
CN204878884U (en) * 2015-08-24 2015-12-16 泉州市合创鞋业有限公司 Butt clamp swing check valve
CN205713966U (en) * 2016-04-15 2016-11-23 中国地质科学院勘探技术研究所 A kind of combined type ocean gas hydrate seismic exploration drilling tool
CN205605891U (en) * 2016-05-13 2016-09-28 上海优强石油科技有限公司 Curved surface valve plate structure of downhole safety valve
CN106481297B (en) * 2016-12-02 2018-08-07 吉林大学 A kind of vortex tube heat preservation Sampling driller
CN106932223A (en) * 2017-05-11 2017-07-07 四川大学 Pressurize cylinder sealer and pressurize coring water-tight equipment
CN107339463B (en) * 2017-06-26 2018-11-16 辽宁科技大学 A kind of turn-plate T-junction material distributing valve that shock resistance is wear-resistant
CN209339885U (en) * 2018-08-13 2019-09-03 四川大学 A kind of core fidelity cabin with temperature incubation function

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1948940A (en) * 2006-09-30 2007-04-18 长沙矿山研究院 Deep sea hard rock fidelity corer
US20120111635A1 (en) * 2010-04-13 2012-05-10 George Caffell Sample Encapsulation and Cache Device and Methods
CN102561970A (en) * 2011-12-20 2012-07-11 大连理工大学 Fidelity transfer device for natural drill cores of natural gas hydrates and method
CN106124242A (en) * 2016-06-01 2016-11-16 四川大学 Fidelity coring system and coring method in situ
CN107313732A (en) * 2017-08-17 2017-11-03 北京探矿工程研究所 Rope rotation type heat preservation and pressure maintaining sampling drilling tool
CN108266147A (en) * 2018-01-16 2018-07-10 四川大学 Pressurize core transfer device and method
CN109113614A (en) * 2018-08-13 2019-01-01 四川大学 The core fidelity cabin of constant temperature, constant pressure

Also Published As

Publication number Publication date
CN109113611B (en) 2023-08-22
CN109113611A (en) 2019-01-01

Similar Documents

Publication Publication Date Title
WO2020034357A1 (en) Rock core fidelity cabin
WO2020133724A1 (en) Fidelity retaining type coring device for rock sample
WO2020034360A1 (en) Constant-temperature and constant-pressure core preservation chamber
US7083009B2 (en) Pressure controlled fluid sampling apparatus and method
WO2020034358A1 (en) Core preservation compartment having constant pressure function
Yielding et al. Fault seal calibration: a brief review
CA2747806C (en) Apparatus and methods for gas volume retained coring
US20050028974A1 (en) Apparatus for obtaining high quality formation fluid samples
US20120039668A1 (en) Method of detecting gas leakage in geological gas reservoir by using pressure monitoring and geological gas storage system
Bertani et al. The first results of the Descramble project
BRPI0408156B1 (en) Formation test device for sampling formation fluids in a borehole
Hawkins et al. Evaluation of inert tracers in a bedrock fracture using ground penetrating radar and thermal sensors
WO2020034359A1 (en) Rock core fidelity cabin having thermostatic function
MX2013014709A (en) Systems and methods for measuring parameters of a formation.
US9146333B2 (en) Systems and methods for collecting measurements and/or samples from within a borehole formed in a subsurface reservoir using a wireless interface
KR101197211B1 (en) System and method for controlling temperature of fluid for improving injectivity in stratum of supercritical carbon dioxide
CN209339889U (en) A kind of core fidelity cabin of constant temperature, constant pressure
CN209339885U (en) A kind of core fidelity cabin with temperature incubation function
WO2015026901A1 (en) Modified flow rate analysis
Langseth et al. Time-lapse 2D interpretation of gas migration in shallow sand layers–Compared to reservoir simulation
KR20150085415A (en) Apparatus for hydraulic testing using double packer
CN209339884U (en) A kind of core fidelity cabin
Al-Rushaid et al. Downhole Estimation of Relative Permeability With Integration of Formation-Tester Measurements and Advanced Well Logs
BR112016006169B1 (en) WELL BOTTOM FORMATION FLUID SAMPLER AND METHOD FOR SAMPLING FORMATION FLUID
Ishido et al. Application of self-potential measurements to geothermal reservoir engineering: characterization of fractured reservoirs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18929842

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18929842

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18929842

Country of ref document: EP

Kind code of ref document: A1