WO2020034240A1 - 再生能源管理*** - Google Patents

再生能源管理*** Download PDF

Info

Publication number
WO2020034240A1
WO2020034240A1 PCT/CN2018/101537 CN2018101537W WO2020034240A1 WO 2020034240 A1 WO2020034240 A1 WO 2020034240A1 CN 2018101537 W CN2018101537 W CN 2018101537W WO 2020034240 A1 WO2020034240 A1 WO 2020034240A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
curve
target
monitoring device
feed
Prior art date
Application number
PCT/CN2018/101537
Other languages
English (en)
French (fr)
Inventor
郭易夫
陈宗达
林贤能
Original Assignee
友达光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 友达光电股份有限公司 filed Critical 友达光电股份有限公司
Priority to SG11202101303UA priority Critical patent/SG11202101303UA/en
Publication of WO2020034240A1 publication Critical patent/WO2020034240A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • H02J3/382
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/30State monitoring, e.g. fault, temperature monitoring, insulator monitoring, corona discharge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof

Definitions

  • the invention relates to an energy system, and in particular to a management system for renewable energy.
  • An embodiment of the present invention is directed to a renewable energy management system including an energy system and a monitoring device.
  • the energy system is used to store battery power.
  • the monitoring device is coupled to the energy system.
  • the monitoring device is used to select a target curve from a plurality of estimation curves, and each estimation curve includes a plurality of time points and a target feed power corresponding to each time point.
  • the monitoring device is used to control the energy system to feed the external energy system with the target feed power at each time point.
  • the monitoring device is used to judge that the rate of change of the actual feed curve of the energy system exceeds the rated value, calculate smooth compensation parameters, and adjust the actual feed curve according to the smooth compensation parameters, so that the actual feed curve of the energy system conforms to the target curve.
  • the weather forecast can be used to select the power supply mode every other day and control the power supply change rate within a certain range to maintain the stability of the system;
  • the power output of renewable energy can be predicted to evaluate the initial battery capacity of the next time period when the time period is about to end, and at the same time to protect the battery circuit and give play to the best charging and discharging benefits of the battery;
  • FIG. 1 shows a functional block diagram of a renewable energy management system according to some embodiments of the present invention.
  • FIG. 2 shows a flowchart of steps in a method for managing renewable energy according to some embodiments of the present invention.
  • FIG. 3A shows a schematic diagram of a target curve in some embodiments according to the present invention.
  • FIG. 3B is a schematic diagram illustrating a method for managing a renewable energy source according to some embodiments of the present invention.
  • FIG. 4 is a functional block diagram of the internal structure of the monitoring device of the renewable energy management system in FIG. 1.
  • FIG. 5 shows a schematic diagram of a dynamic correction target curve of a renewable energy management system according to some embodiments of the present invention.
  • FIG. 6 is a schematic diagram of an actual feed curve adjusted by a renewable energy management system according to a target curve according to some embodiments of the present invention.
  • the renewable energy management system 100 includes a monitoring device 110 and an energy system 120.
  • the monitoring device 110 of the renewable energy management system 100 is connected to an external energy system 300.
  • the energy system 120 includes a plurality of power generation devices 121 and a plurality of power storage devices 123.
  • the energy system 120 can be used to store battery power.
  • the plurality of power generating devices 121 of the energy system 120 are configured to receive solar energy and obtain electrical energy through photoelectric conversion technology.
  • the power storage device 123 of the energy system 120 stores the received electrical energy.
  • the energy system 120 may be installed in a community, a school, a factory, or a company, etc. The present invention does not limit the places where the energy system 120 is installed and the degree of power demand thereof.
  • the renewable energy management system 100 can control the time interval of power spikes to overcome the problems caused by the unstable electricity demand of the conventional renewable energy system, excessive changes in single-day electricity consumption, and sudden weather changes.
  • the detailed method of controlling power generation spikes will be fully explained in the subsequent paragraphs.
  • the community includes multiple homes H1 to H4.
  • the home H1 is provided with a power generation device 121, a power storage device 123, and a charge and discharge control circuit 125.
  • the power storage device 123 is connected to the power generation device 121 so that the power storage device 123 can store the electric energy generated by the power generation device 121.
  • electricity is generated by the residential power generation device 121 and fed to the residential use. If the home is not provided with the power storage device 123, the excess power of the home is fed to the external energy system 300 for storage.
  • the external energy system 300 is, for example, a power grid system provided with a power storage system, a power generation system, and a monitoring center.
  • the charge and discharge control circuit 125 is coupled to the power generating device 121, the power storage device 123 and the monitoring device 110.
  • the homes H2 to H4 include a power generating device 121 and a charge-discharge control circuit 125, and a power storage device 123 may be selectively provided.
  • the monitoring devices 110 are respectively coupled to the charge and discharge control circuits 125 of the homes H1 to H4.
  • the charge / discharge control circuit 125 is used to adjust the operation of the power supply output and the stored power of the power generation device 121 and the power storage device 123 of each home.
  • the monitoring device 110 is coupled to the energy system 120.
  • the monitoring device 110 is used for managing and scheduling the renewable energy management and scheduling of the renewable energy management system 100, and also controls the power supply amount at each time point.
  • the monitoring device 110 stores power supply modes for different weather conditions in advance, and in order to manage and dispatch the demand every other day, it will select a most suitable power supply mode according to the weather forecast on the next day.
  • the monitoring device 110 controls the energy system 120 to supply power according to the time point and the corresponding power recorded in the power supply mode. Therefore, after one day, the actual power supply of the energy system 120 is the same or close to the change of the power supply mode.
  • the detailed operation of the energy management system will be explained below.
  • step S210 the monitoring device 110 selects a target curve from a plurality of estimation curves and adjusts the initial power of the battery, wherein each estimation curve is a continuous time function and includes multiple times. Points and the target feed power corresponding to each time point.
  • the prediction curve may also be a discrete time-power function.
  • These estimated curves are the curves of time and power in each power supply cycle (for example, one day), and represent the corresponding power at each time point.
  • the power supplied at each time point is, for example, the power supplied at 10:00 am, or the power supplied at a time interval, such as the power supplied between 10 am to 11 am, or 2 pm
  • the amount of power supplied between 2:30 pm and the present invention is not limited to the time interval or time zone referred to by the time point. Anything that can indicate the beginning of a period of time (such as 2 pm) and the passage of time (such as 30 minutes) Or 60 minutes) are within the scope of the present invention.
  • these prediction curves can be pre-designed smooth curves.
  • the slope of each point on the prediction curve will be between the first threshold r1 and the second threshold r2.
  • the slope of the estimated curve P (t) (that is, the instantaneous rate of change at each time point) dP (t) / dt of the present invention will be controlled to satisfy the following conditions: r2 ⁇ dP (t) / dt ⁇ r1.
  • r1 is the upper limit of the rate of change of the power supply, and r1 is, for example, 0.1%.
  • r2 is the lower limit of the rate of change of the power supply, and r2 is, for example, -0.1%. Therefore, the target curve selected by the monitoring device 110 from the plurality of estimated curves in step S210 will also be a smooth curve.
  • the target curve is a time-power curve, and the total power supply obtained by adding the power supply of the target curve at each time point (for example, integrating the curve in time, ⁇ P (t) dt), needs to be equal to the estimated next day energy system 120
  • the total power generation (EPV_estimated) will be the same.
  • the total power generation generated by the renewable energy management system 100 will be close to the total power supply of the day, and the fluctuation rate of power supply will be smoothed to avoid
  • the instantaneous changes in the feed power of the renewable energy management system 100 cause problems such as system instability or incapability of instant deployment.
  • the monitoring device 110 adjusts the current power of the battery so that the current power is less than the first power and greater than the second power.
  • the first power is a difference obtained by subtracting the power consumed by the battery from the energy required to charge the battery from 0% to 100%.
  • the second charge is the initial charge recorded on the target curve. For example, suppose the total capacity that a battery can store is 200,000 megawatts, and the total amount of electricity that can be generated next day is estimated to be 190,000 megawatts.
  • the remaining battery power is 60,000 megawatts
  • the initial time point corresponding to the target curve selected by the weather forecast every other day that is, the time when the power supply starts
  • the battery power is 10,000 MW, that is, transfer the excess 50,000 MW of power to other power grid systems (not shown).
  • the power required for power supply is reserved and the capacity required for future storage of the battery is reserved, which can reduce the continuous generation of power during the day and allow the battery to continue to be charged (the power generation is greater than the power supply), resulting in continuous charging.
  • the electricity keeps the battery at a high voltage. For example, in the case that 50,000 MW of electricity is not transmitted to other grid systems for storage, because the total estimated power generation is 190,000 MW plus the remaining battery power of 60,000 MW is 250,000 MW, but the total battery The capacity is only 200,000 megawatts, which may cause 50,000 megawatts of electricity to be stored and wasted. The battery will also be easily damaged due to the continuous high voltage state. On the other hand, part of the battery power retained in the initial time by the present invention is also sufficient to normally supply power during this period of time without causing a shortage of power.
  • FIG. 3A illustrates a schematic diagram of a target curve in some embodiments according to the present invention.
  • the monitoring device 110 stores a plurality of estimated curves.
  • a time period from 0 to T on the time axis represents a time period, for example, 0 am to 11:59 pm.
  • the first estimation curve P 1 (t), the second estimation curve P 2 (t), and the third estimation curve P 3 (t) indicate that the energy system 120 starts to supply power at point A (for example, 6:15 a.m.). And increase the power supplied over time.
  • time point C for example, 5 pm
  • time point E for example, 8 pm
  • time point D for example, 6:30 pm
  • the power supply amount is reduced with time, and the power supply amount at time point B (for example, 23:15 in the afternoon) is reduced to zero.
  • the first prediction curve P 1 (t), the second prediction curve P 2 (t), and the third prediction curve P 3 (t) correspond to a period of time (for example, 24 hours) for different weather.
  • State of power supply The better the weather conditions (for example, sunny and cloudless), the higher the amount of power that the energy system 120 can perform photoelectric conversion. The worse the weather conditions (such as a thunderstorm overcast), the lower the amount of electricity that the energy system 120 can perform photoelectric conversion.
  • the first prediction curve P 1 (t) represents weather suitable for sunny days, so it provides a comparison with the second prediction curve P 2 (t) and the third It is estimated that the power of the curve P 3 (t) is higher.
  • three estimation curves are used as an illustration. The present invention does not limit the number of estimation curves. Different numbers and patterns of estimation curves can be set according to implementation requirements.
  • the monitoring device 110 controls the energy system 120 to feed the target feed power at each time point using the target curve, such as feeding to the external energy system 130 or supplying energy. Used by other homes in the system 120.
  • the monitoring system 110 controls the power supply of the energy system 120 according to the target curve, which is described in detail below.
  • FIG. 3B is a schematic diagram illustrating a method for managing a renewable energy source according to some embodiments of the present invention.
  • the power generation curve GE (t) is a curve of the power generation amount at each time.
  • Each point on the target curve P C (t) corresponds to a time point and the target feed power, that is, the energy system 120 at that time point will use the target feed power to supply power.
  • the monitoring device 110 receives weather forecast data, and determines the power generation curve GE (t) according to the weather forecast data.
  • the total amount of power of the power generation curve GE (t) at each time is the total power generation amount of the energy system 120 in one day.
  • the power generation curve GE (t) is obtained according to the prediction technology of the solar photovoltaic power generation system.
  • the total power supply of each estimated curve at each time point and the power generation curve GE (t) are calculated.
  • an estimated curve having the same total power supply amount or closest to the total power generation amount is selected as the target curve P C (t).
  • the monitoring device 110 evaluates the storable power at each time point according to the power generation curve GE (t). For example, at the time point M x , the storable power is M y1 , and the target feed power of the target curve P C (t) is M y2 . Since the storable power M y1 is greater than the target feed power M y2 , the monitoring device 110 will control the energy system 120 to charge and store the extra power (for example, the difference between M y1 minus M y2 ) to the power storage device 123 (such as (Shown in Figure 1).
  • the extra power for example, the difference between M y1 minus M y2
  • the monitoring device 110 sends a charging instruction to the charge and discharge control circuit 125 to notify the charge and discharge control circuit 125 to start charging the power storage device 123.
  • the power fed by the energy system 120 is the instantaneous power of the power generation device 121 minus the power storage device 123
  • the stored power is charged so that the electric energy fed by the energy system 120 is close to the target feed electric quantity M y2 .
  • the storable power is N y1
  • the target feed power of the target curve P C (t) is N y2 . Since the storable power N y1 is smaller than the target feed power N y2 , the monitoring device 110 will control the energy system 120 to discharge, and output the required power (for example, the difference between N y2 minus N y1 ) from the power storage device 123 (such as (Shown in Figure 1).
  • the monitoring device 110 sends a discharge instruction to the charge and discharge control circuit 125 to notify the charge and discharge control circuit 125 to discharge the power storage device 123.
  • the power supplied by the energy system 120 includes the power generated by the power generation device 121 and the storage The sum of the discharge power of the electric device 123.
  • the charge-discharge control circuit 125 may also be provided in the monitoring device 110, and the charge-discharge control circuit of the monitoring device 110 may adjust the power generation device 121 and the power storage device 123 of each home together.
  • step S230 the monitoring device 110 determines whether the change rate of the actual feed curve of the energy system 120 exceeds the rated value.
  • the actual power supply curve is a time-power curve of the actual power supply of the energy system 120 at each time point of the day. For example, after the monitoring device 110 controls the power supply mode of the energy system 120 according to the target curve, the energy system 120 may suddenly change the power of the power generation device 121 due to the rapid changes in current weather factors, resulting in actual changes The change of the feed power on the power supply exceeds the rated value, and the power cannot be completely matched to the target curve.
  • step S240 a smoothing compensation parameter is calculated. A detailed description of calculating the smoothing compensation parameters is as follows.
  • FIG. 4 illustrates a functional block diagram of the internal structure of the monitoring device 110 of the renewable energy management system 100 in FIG. 1.
  • the monitoring device 110 includes a decision circuit 111, a control circuit 113, and a smoothing compensation circuit 115.
  • the control circuit 113 is coupled to the decision circuit 111 and the smoothing compensation circuit 115, respectively.
  • the decision circuit 111 is used to select the most suitable target curve from the multiple estimated curves according to the weather forecast (such as step S210 described above), so that the energy system 120 supplies power according to the time and power of the target curve.
  • the control circuit 113 monitors the change of the feed power of the energy system 120 and determines whether the rated value is exceeded (such as step S220 and step S230 described above).
  • the control circuit 113 determines that the change of the feed power exceeds the rated value, the control circuit 113 controls the smoothing compensation circuit 115 to correspondingly perform the calculation of the smoothing compensation parameters (such as the above-mentioned step S240). For example, when the change of the feed power is greater than or equal to the rated value, the smoothing compensation circuit 115 performs the calculation of the smoothing compensation parameters according to the following formula:
  • P smooth P smooth, pre + K * error
  • P smooth the compensation power
  • P smooth pre + K * error
  • error the error value between the current feed power and the average feed power
  • K the rate-of-change compensation parameter
  • the control circuit 113 monitors whether the change of the feed power of the energy system 120 is slowing down. If the energy system 120 after smooth compensation control is operated with a smooth feed power, the smooth compensation circuit 115 will output a cancel compensation command. For example, when the control circuit 113 determines that the change in the feed power is less than a rated release value, the control circuit 113 controls the smoothing compensation circuit 115 to stop performing the calculation of the smoothing compensation parameters. The smoothing compensation circuit 115 gradually decreases the compensation power P smooth to zero, and finally stops the smooth compensation of the energy system 120. At this time, the actual feeding curve of the energy system 120 will conform to the target curve.
  • the monitoring device 110 selects the most suitable target curve according to the weather forecast, and controls the energy system 120 to supply power in a smooth target curve mode, so that the power supply of the energy system 120 is stable and achieves the effect of stable system.
  • the monitoring device 120 monitors whether the actual feed power of the energy system is stable, and immediately feeds back the smooth compensation parameters to the energy system 120, so that the output of the energy system 120 can be adjusted in real time, and the smooth compensation correction can be performed in real time. This makes the energy system 120 more stable during the whole day of operation.
  • step S250 the monitoring device 110 determines the sum of the remaining battery power and the future power generation amount (the sum of the remaining battery power and the predicted power generation amount) at a point in time, compared with that time The sum of the target feed power after the point (the area of the target curve after a point in time), and whether the difference between the two exceeds a threshold value. If the judgment is yes, the target curve is reselected. For example, as shown in FIG future computing power generation amount curve GE (t) area under the curve at the time point after the estimated M x obtained, this generation and the amount of remaining battery power summed 3B, you can estimate obtained Total available power.
  • a target curve P C (t) area under the curve after the time point of M x obtained estimated total power consumption calculates the difference between the estimated total available power and the estimated total power consumption, and determine whether the difference exceeds the threshold. For example, when the total estimated power is less than the available total power consumption estimates, representative of high power energy system 120 according to the target curve P C (t) provided by the energy system 120, and in fact are not available (e.g., the time Weather Forecasts inferior status reports to the good), it is necessary to adjust the target curve P C (t), in order to reduce power energy systems 120.
  • the monitoring apparatus 110 will reselect the target curve P C (t) curve from among a plurality of prediction, the newly selected mode is, for example, based on current weather conditions.
  • the weather conditions suddenly become cloudy, it is necessary to select an estimated curve with a lower peak value of electricity as the target curve P C (t).
  • the estimated curve P 1 (t) was originally used as the target curve P C (t). Due to the weather conditions, it must be modified to use the estimated curve P 2 (t) as the target curve P C (t).
  • FIG. 5 illustrates a schematic diagram of an actual feed curve adjusted by a renewable energy management system according to a target curve according to some embodiments of the present invention.
  • the estimated total available power after the time point K1 is less than the total estimated power consumption
  • the monitoring device 110 selects the prediction curve P 2 (t) as a new target from a plurality of prediction curves.
  • Curve P C (t) Because it takes a buffer time to change the power supply mode of the energy system 120 from the estimated curve P 1 (t) to the estimated curve P 2 (t), the energy system 120 will slowly move from the estimated curve P 1 (t) at the time point K1.
  • regenerative energy management system 100 of the present invention can provide short-term weather forecast (e.g., every other day or day of the next four hours, etc.), and to evaluate whether to adjust the target curve P C (t).
  • step S250 if it is judged that the sum of the remaining battery power at a time point and the future power generation amount is compared with the sum of the target feed power amount after that time point, If the difference between them does not exceed the threshold, step S270 is performed.
  • step S270 it is determined whether the power monitoring of the entire time period (for example, one day / 24 hours) has been completed. If the judgment in step S270 is YES, it means that it is necessary to start the renewable energy prediction and feed control for another time period, then return to step S210 to perform the aforementioned renewable energy management technology with the weather forecast every other day. If the determination in step S270 is no, then return to step S220 and continue to perform feed monitoring.
  • FIG. 6 illustrates a schematic diagram of an actual feed curve adjusted by a renewable energy management system according to a target curve according to some embodiments of the present invention.
  • the time and power curve of the energy system 120 power supply is the actual feed curve P real (t), which is close to the target curve P C (t).
  • the actual feed curve P real (t) and the target curve P C (t) have the same peak power time period, where the peak power time period is a time period for peak power supply.
  • the power supply maximum value of the actual feed curve P real (t) is at the power supply peak P max .
  • the time segment T peak (for example, the power supply peak P max is 12 noon) between the time point T P1 (for example, 2 hours before the power supply peak P max ) and the time point T P2 (for example, 2 hours after the power supply peak P max ) , Then the time zone is from 10 am to 2 pm), and T peak in this time zone can generate the highest amount of power generation in a day.
  • the peak portion of the target curve P C (t) will also be in the time zone T peak between the time point T P1 and the time point T P2 .
  • the energy system 120 (as shown in FIG. 1) can generate power with the power generation curve GE (t).
  • the time segment G peak (such as the power generation peak G max ) between the time point T G1 (for example, 2 hours before the power generation peak G max ) and the time point T G2 (such as the power generation peak G max for 2 hours) It is 12:00 noon, and the time zone is from 10 am to 2 pm). In this time zone, G peak can generate the highest power generation in one day.
  • the energy system 120 uses the target curve P C (t) to feed power.
  • the power supply peak T peak of the actual feed curve P real (t) of the present invention is determined by the change in the target curve, not the power generation curve GE. (t).
  • the actual feed curve P real (t) and the target curve P C (t) have the same peak power use time section T peak , and not necessarily the power generation peak time zone of the power generation curve GE (t).
  • the segment G peak corresponds or overlaps.
  • the present invention can also design a target curve P C (t) corresponding to the peak power consumption time section T peak and the power generation peak time section G peak of the power generation curve GE (t), and make the monitoring device 110 The target curve P C (t) to control the feeding.
  • the power supply mode of the next day can be selected by weather forecast and the change rate of power supply can be controlled within a certain range to maintain the stability of the system.
  • the renewable energy management system and method provided by the present invention can predict the power output of renewable energy to evaluate the initial battery capacity of the next time period when the time period is about to end, and at the same time to protect the battery circuit and make the best use of the battery Charge and discharge benefits.
  • the renewable energy management system and method provided by the present invention can control the time interval of power supply spikes, overcome the problem that the conventional renewable energy system can only provide the maximum power at the power generation spikes, and have the technical effect of protecting the stability of the power plant .
  • the weather forecast can be used to select the power supply mode every other day and control the power supply change rate within a certain range to maintain the stability of the system;
  • the power output of renewable energy can be predicted to evaluate the initial battery capacity of the next time period when the time period is about to end, and at the same time to protect the battery circuit and give play to the best charging and discharging benefits of the battery;

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

一种再生能源管理***(100),包含能源***(120)以及监控装置(110)。能源***(120)用以储存电池电量。监控装置(110)耦接于能源***(120),监控装置(110)用以于多个预估曲线中选出目标曲线,各预估曲线包含多个时间点与对应各个时间点的目标馈电电量。监控装置(110)用以控制能源***(120)在各该时间点馈送目标馈电电量,判断能源***(120)的实际馈电曲线的变动率超出额定值时会计算平滑补偿参数,以及依照平滑补偿参数调整实际馈电曲线,使能源***(120)的实际馈电曲线符合目标曲线。

Description

再生能源管理*** 技术领域
本发明有关于一种能源***,且特别是有关于一种再生能源的管理***。
背景技术
发展再生能源为可供人类社会生活所使用的电力是目前永续经营的重要议题之一,太阳能光电转换技术已是世界各相关产业投入相当资源的标的。核能发电、燃煤发电或火力发电等方式虽能带来电力,然而在发电的过程中对自然环境的伤害例如是排放大量二氧化碳、产生无法处置的核电废料等,都是已开发环境国家必须面对的难题。
再生能源运用大自然资源亦存在需克服的问题,例如自然环境的天气、温度、潮汐或海象等变化,都是人类无法控制的,因此,能源转换量或能量的调节等问题,以及自然环境的变动性对电厂造成的电路损害,都是再生能源开发商所欲解决的技术问题。
发明公开
本发明内容之一实施方式关于一种再生能源管理***,包含能源***以及监控装置。能源***用以储存电池电量。监控装置耦接于能源***。监控装置用以于多个预估曲线中选出目标曲线,各预估曲线包含多个时间点与对应各个时间点的目标馈电电量。监控装置用以控制能源***在各该时间点以目标馈电电量馈送至外部能源***。监控装置用以判断能源***的实际馈电曲线的变动率超出额定值时,计算平滑补偿参数,以及依照平滑补偿参数调整实际馈电曲线,使能源***的实际馈电曲线符合目标曲线。
采用本发明所提出的再生能源管理***及其方法,具有以下有益效果:
(1)可以藉由天气预报来选择隔日的供电模式并控制供电的变动率在一定范围之内来维持***的稳定性;
(2)可以预测再生能源的电力产量,以在时间周期即将结束的时候评估下一个时间周期的初始电池电量,同时达到保护电池电路以及发挥电池最佳充放电效益;
(3)可以控制供电尖峰的时间区间,克服以往的再生能源***只能在发电尖峰提供最大电量的问题,具有达到保护电厂稳定性的技术功效。
以下结合附图和具体实施例对本发明进行详细描述,但不作为对本发明的限定。
附图简要说明
以下详细描述结合附图阅读时,将有利于较佳地理解本发明的实施方式。应注意,根据说明上实务的需求,附图中各特征并不一定按比例绘制。实际上,出于论述清晰的目的,可能任意增加或减小各特征的尺寸。
图1示出根据本发明一些实施例中一种再生能源管理***的功能方块示意图。
图2示出根据本发明一些实施例中一种再生能源管理方法的步骤流程图。
图3A示出根据本发明一些实施例中的目标曲线示意图。
图3B示出根据本发明一些实施例中的再生能源的管理方法的曲线示意图。
图4示出图1中的再生能源管理统的监控装置内部架构的功能方块示意图。
图5示出根据本发明一些实施例中的再生能源管理***的动态修正目标曲线示意图。
图6示出根据本发明一些实施例中的再生能源管理***依据目标曲线调整后的实际馈电曲线示意图。
为让本发明的上述和其他目的、特征、优点与实施例能更明显易懂,附图标记说明如下:
100    再生能源管理***
110    监控装置
111    决策电路
113    控制电路
115    平滑补偿电路
120    能源***
121    发电***
123    储电***
125    充放电控制电路
300    外部能源***
200    再生能源管理方法
H1~H4  住家
S210~S270  步骤
P 1(t)、P 2(t)、P 3(t)  预估曲线
GE(t)  发电曲线
P C(t)  目标曲线
P real(t)  实际馈电曲线
A、B、C、D、E、T、O、M x、N x、K1、K2、T G1、T G2、T P1、T P2时间点
M y1、M y2、N y1、N y2  电量
T peak、G peak  时间区段
P max、G max  峰值
实现本发明的最佳方式
下面结合附图对本发明的结构原理和工作原理作具体的描述:
以下内容提供许多不同实施例或实例,以便实施本发明的不同特征。下文描述元件及排列的特定实例以简化本发明。当然,该等实例仅为示例性且并不欲为限制性。另外,本发明可在各实例中重复元件符号和/或字母。此重复是出于简明性及清晰的目的,且本身并不表示所论述的各实施例和/或配置之间的关系。
请参阅图1,其示出根据本发明一些实施例中一种再生能源管理***的功能方块示意图。再生能源管理***100包含监控装置110以及能源***120。再生能源管理***100的监控装置110连接至外部能源***300。能源***120包含多个发电装置121和多个储电装置123。能源***120可用于储存电池电量。举例来说,能源***120的多个发电装置121用于接收太阳光能,并通过光电转换技术而获得电能。能源***120的储电装置123储存所接收的电能。能源***120可设置在社区、学校、工厂或公司等地方,本发明并不限制能源 ***120所设置的场所以及其需电程度。
于一实施例中,再生能源管理***100可以控制供电尖峰的时间区间,克服以往的再生能源***用电需求不稳定、单日用电量变化过大以及天气骤变所产生的问题,关于如何控制发电尖峰的详细作法,将在后续段落中有完整说明。
以社区为例,如图1所示,社区包含多个住家H1~H4,如图所示,住家H1设置有发电装置121、储电装置123以及充放电控制电路125。储电装置123连接于发电装置121,使得储电装置123可以储存发电装置121所产生的电能。白天的时候由住家的发电装置121产生电能,馈电给住家使用。未设置有储电装置123的住家,则将住家多余的电能,馈送至外部能源***300储存。外部能源***300例如为设置有储电***、发电***与监控中心的电网***。于一实施例中,充放电控制电路125耦接发电装置121、储电装置123以及监控装置110。于此实施例中,住家H2~H4包含发电装置121与充放电控制电路125,而可选择性地设置储电装置123。监控装置110分别耦接住家H1~H4的充放电控制电路125。充放电控制电路125用以调整各个住家的发电装置121与储电装置123的馈电输出、储存电能等运作。
监控装置110耦接能源***120。监控装置110用以管理与调度再生能源管理***100的再生能源管理与调度,也会控管在各时间点的供电量。举例来说,监控装置110会预先储存关于不同天气状况的供电模式,为了隔日的管理与调度需求,会根据隔日的天气预报而选择一个最适合的供电模式。监控装置110会控制能源***120根据该供电模式所记录的时间点与对应电量进行供电。因此,经过一日的时间后,能源***120的实际供电是相同或接近于供电模式的变化。详细的能源管理***运作将于以下说明。
请参阅图2,其示出根据本发明一些实施例中一种再生能源管理方法的步骤流程图。如图2所示,在步骤S210中,监控装置110会于多个预估曲线中选择一目标曲线,并调整电池电量的初始电量,其中各预估曲线为连续的时间函数,包含多个时间点与对应各个时间点的目标馈电电量。在部分实施例中,预估曲线也可以为离散型的时间-电量函数。
此些预估曲线为每个供电周期中(例如一日)的时间及电量的曲线,代表在各时间点对应的电量。为简化说明,各时间点所供应的电量是例如早上10点供应的电量,或者是一段时间区间所供应的电量,例如在上午10点到上午 11点之间所供应的电量或是下午2点到下午2点30分之间所供应的电量,本发明并不局限时间点所指的时间区间或时间区段,任何可以表示某一段时间开始(例如下午2点)经过一段时间(例如30分钟或60分钟)所对应的电量,都在本发明的范畴内。
此些预估曲线可以为预先设计的平滑曲线,举例来说,在预估曲线上各点的斜率会介于第一门限值r1与第二门限值r2之间。为说明预估曲线P(t)平滑程度,本发明的预估曲线P(t)的斜率(即,各时间点的瞬间变动率)dP(t)/dt,会控制在满足以下条件:r2<dP(t)/dt<r1。在一些实施例中,r1为供电功率变动率上限,r1例如是0.1%。在一些实施例中,r2为供电功率变动率下限,r2例如是-0.1%。因此,监控装置110在步骤S210中从多个预估曲线中选择出来的目标曲线也会是平滑的曲线。
目标曲线为时间-电量曲线,加总目标曲线在各时间点的供电量所得到的总供电量(例如对曲线进行时间积分,∫P(t)dt),需与预估的隔日能源***120会产生的总发电量(EPV_estimated)一致。
因此,通过供电(馈电)与发电(光电转换而产生电量)的预估技术,再生能源管理***100产生的总发电量会接近于当日的总供电量,并且使得供电的变动率平滑,避免再生能源管理***100的馈电功率的瞬间变化造成***不稳定或无法即时调配的问题。
继续步骤S210,获得预估总发电量与总供电量之后,监控装置110会调整电池的目前电量,使目前电量小于第一电量以及大于第二电量。其中,第一电量是电池从0%充电至100%所需的能量减去电池本身所消耗的电量所得到的差值。第二电量是目标曲线上记录的初始电量。举例来说,假设电池可以储存的总容量为200000兆瓦,预估隔日可发电的总电量为190000兆瓦。若在下午23点30分的时候,电池剩余电量为60000兆瓦(megawatts),而经过隔日的天气预报所选出的目标曲线的初始时间点(即开始供应电量的时间)对应的初始电量为10000兆瓦,因此调整电池电量为10000兆瓦,即将多余的50000兆瓦的电量输往其他的电网***(未示出)。
如此,通过预先调度电池电量,预留了供电所需的电量并保留了电池未来储电所需的容量,可减少白天持续产生电量使得电池持续充电(发电量大于供电量),而造成持续充满电而使得电池维持在高压状态。举例来说,在50000 兆瓦的电量没有输往其他的电网***储存的情况下,因为预估的总发电量190000兆瓦加上电池剩余电量60000兆瓦的总和为250000兆瓦,然而电池总容量仅为200000兆瓦,可能会造成50000兆瓦的电量无法储存而被浪费掉,电池也会因为持续高压状态而容易造成损坏。另一方面,本发明通过在初始时间保留的部分电池电量也足以在该段时间内正常地供电,而不会造成电量不足的情况。
请参阅图3A,其示出根据本发明一些实施例中的目标曲线示意图。监控装置110储存有多个预估曲线。如图3A所示,时间轴上的O点到T点之间表示一个时间周期,例如上午0时0分到下午11点59分。第一预估曲线P 1(t)、第二预估曲线P 2(t)以及第三预估曲线P 3(t)表示能源***120在A点(例如上午6点15分)开始供应电量,并随着时间提升供应的电量。在时间点C(例如下午5点)到时间点E(例如下午8点)之间的时间区间为供电高峰期,其中时间点D(例如下午6点半)为供电尖峰。经过供电高峰期,随着时间减少供电量,在时间点B(例如下午23点15分)的供电量降低至零。
在图3A中,第一预估曲线P 1(t)、第二预估曲线P 2(t)以及第三预估曲线P 3(t)对应一段时间周期(例如24小时)中,不同天气状态的供电量。天气状态越好(例如晴天无云),能源***120进行光电转换可以产生的电量越高。天气状态越差(例如乌云密布的雷雨),能源***120进行光电转换可以产生的电量越低。举例来说,在相同时间点C(例如17:00),第一预估曲线P 1(t)代表适用于大晴天的天气,因此提供较第二预估曲线P 2(t)与第三预估曲线P 3(t)较高的电量。值得一提的是,在此些实施例中以三个预估曲线作为说明,本发明并不局限预估曲线的数量,可根据实施需求而设置不同数目与模式(pattern)的预估曲线。
如图2所示,在步骤S220中,根据所选择的目标曲线,监控装置110控制能源***120以目标曲线在各时间点来馈送目标馈电电量,例如馈送至外部能源***130或是供能源***120中的其他住家所使用。监控***110根据目标曲线来控制能源***120的供电,详细说明如下。
请参阅图3B,其示出根据本发明一些实施例中的再生能源的管理方法的曲线示意图。如图3B所示,发电曲线GE(t)为各时间的发电电量的曲线。目标曲线P C(t)上的每一点对应一时间点与目标馈电电量,即在该时间点的能源 ***120会以该目标馈电电量来供电。在一些实施例中,监控装置110会接收天气预报数据,根据天气预报数据来决定发电曲线GE(t)。发电曲线GE(t)在各时间的电量总和(即发电曲线GE(t)的面积)为能源***120于一日的总发电量。举例来说,发电曲线GE(t)是根据太阳光电发电***预测技术而得到。在部分实施例中,图2所示的步骤S210,从多个预估曲线选择出目标曲线的步骤中,会计算各个预估曲线在各时间点的总供电量与发电曲线GE(t)的总发电量,选出总供电量相同或最接近总发电量的预估曲线作为目标曲线P C(t)。
另一方面,请同时参阅图1及图3B,监控装置110会根据发电曲线GE(t)来评估各时间点的可储存电量。举例来说,在时间点M x的时候,可储存电量为M y1,此时目标曲线P C(t)的目标馈电电量为M y2。由于可储存电量M y1大于目标馈电电量M y2,监控装置110会控制能源***120进行充电,将多出来的电量(例如M y1减去M y2的差值)储存到储电装置123(如图1所示)。
监控装置110发送充电指令至充放电控制电路125,以通知充放电控制电路125使储电装置123开始充电,此时能源***120馈送的电量为发电装置121的即时发电功率减去储电装置123充电储存的功率,使能源***120馈送的电能贴近目标馈电电量M y2
在时间点N x的时候,可储存电量为N y1,此时目标曲线P C(t)的目标馈电电量为N y2。由于可储存电量N y1小于目标馈电电量N y2,监控装置110会控制能源***120进行放电,将需要消耗的电量(例如N y2减去N y1的差值)从储电装置123输出(如图1所示)。
于一实施例中,监控装置110发送放电指令至充放电控制电路125,以通知充放电控制电路125使储电装置123放电,此时能源***120供应的电能包含发电装置121的发电功率与储电装置123放电功率的总和。
于另一实施例中,充放电控制电路125也可以改为设置在监控装置110中,由监控装置110的充放电控制电路一并调整各个住家的发电装置121与储电装置123。
如图1及图2所示,在步骤S230中,监控装置110会判断能源***120的实际馈电曲线的变动率是否超出额定值。实际馈电曲线为能源***120在当天的各时间点的实际馈电量的时间电量曲线。举例来说,监控装置110根据目标曲线来控制能源***120的馈电模式之后,能源***120可能会因为当下的 天气因素的急剧变化造成发电装置121的瞬间变化功率也会急剧变化,而导致实际上的馈电功率变化超出额定值,而无法完全符合目标曲线来供电。接着,若判断未超出额定值,则回到步骤S220。若判断超出额定值,则在步骤S240,计算平滑补偿参数。计算平滑补偿参数的详细说明如下。
请参阅图4,其示出图1中的再生能源管理统100的监控装置110内部架构的功能方块示意图。于图4中,监控装置110包含决策电路111、控制电路113以及平滑补偿电路115。控制电路113分别耦接至决策电路111以及平滑补偿电路115。决策电路111用于根据天气预报而从多个预估曲线来选择最适合的目标曲线(如上述的步骤S210),使能源***120根据目标曲线的时间与电量来供电。控制电路113会监控能源***120的馈电功率变化,并判断是否超出额定值(如上述的步骤S220及步骤S230)。当控制电路113判断出馈电功率变化超出额定值时,会控制平滑补偿电路115对应地执行平滑补偿参数的运算(如上述的步骤S240)。举例来说,当馈电功率变化大于或等于额定值时,平滑补偿电路115根据以下公式执行平滑补偿参数的运算:
P smooth=P smooth,pre+K*error,其中P smooth为补偿功率、P smooth,pre为前一次补偿功率、error为当下馈电功率与平均馈电功率的误差值、以及K为变动率补偿参数。控制电路113会将补偿功率回馈至能源***120,因此能源***120可以即时地调整馈电功率,让馈电功率变化慢慢地降低,据以调整实际馈电曲线。
另一方面,控制电路113会监控能源***120的馈电功率变化是否趋缓。若经过平滑补偿控制之后的能源***120以平滑的馈电功率运作,平滑补偿电路115会输出解除补偿指令。举例来说,控制电路113判断馈电功率变化小于一额定解除值时,会控制平滑补偿电路115停止执行平滑补偿参数的运算。平滑补偿电路115将补偿功率P smooth缓慢地递减至零,最后停止对能源***120的平滑补偿。此时,能源***120的实际馈电曲线会符合目标曲线。
因此,监控装置110会根据天气预报来选择最适合的目标曲线,控制能源***120以平滑的目标曲线的模式来供电,使得能源***120的供电平稳而达到稳定***的功效。此外,监控装置120会监控能源***实际上的馈电功率是否稳定,并即时地回馈平滑补偿参数至能源***120,而得以即时地调整能源***120的输出,而能作即时性地平滑补偿修正,使得能源***120在进行一整天的运作过程可以更稳定。
请继续参阅图1及图2,如步骤S250,监控装置110会判断在一时间点的电池的剩余电量与未来的发电量的总和(电池剩余电量与预测发电量总和),相较于该时间点后的目标馈电电量的总和(目标曲线在一时间点之后的面积),两者之间的差值是否超出门槛值。若判断为是,则重新选择目标曲线。举例来说,如图3B所示,计算发电曲线GE(t)在时间点M x之后的曲线面积而得到预估的未来发电量,将此发电量与电池剩余电量加总,可以得到预估可用的总电量。另一方面,计算目标曲线P C(t)在时间点M x之后的曲线面积而得到预估消耗的总电量。接着,计算预估可用的总电量与预估消耗的总电量两者之间的差值,并判断此差值是否超出门槛值。举例来说,当预估可用的总电量小于预估消耗的总电量,代表能源***120依据目标曲线P C(t)所提供的电量太高而实际上能源***120并无法提供(例如当时的天气状态不如天气预报的报导来的好),因此需要调整目标曲线P C(t),以降低能源***120的提供电量。如步骤S260,监控装置110会从多个预估曲线当中重新选择目标曲线P C(t),重新选择的方式例如是以当下的天气状况为依据。当天气状况骤变为阴天,需要选择电量峰值较低的预估曲线作为目标曲线P C(t)。举例来说,如图3A所示,原本以预估曲线P 1(t)作为目标曲线P C(t),因天气状态而必须修正为以预估曲线P 2(t)作为目标曲线P C(t)。
请参阅图5,其示出根据本发明一些实施例中的再生能源管理***依据目标曲线调整后的实际馈电曲线示意图。如图5所示,在时间点K1之后的预估可用的总电量小于预估消耗的总电量,监控装置110会从多个预估曲线当中选择预估曲线P 2(t)作为新的目标曲线P C(t)。因为能源***120的供电模式从预估曲线P 1(t)改变成预估曲线P 2(t)需要一段缓冲时间,能源***120会在时间点K1从预估曲线P 1(t)缓慢地递减(例如是预估曲线P 1(t)与预估曲线P 2(t)的平均值)至预估曲线P 2(t),在时间点K2时切换为预估曲线P 2(t)作为目标曲线P C(t)。因此,本发明提供的再生能源管理***100可以根据短期内(例如隔日或者当日的未来4小时等)的天气预报,来评估是否需要调整目标曲线P C(t)。
请继续参阅图2,在步骤S250的判断步骤中,若判断在一时间点的电池的剩余电量与未来的发电量总和,相较于该时间点后的目标馈电电量的总和,两者之间的差值没有超出门槛值,则执行步骤S270。在步骤S270中,判断是否已完成整个时间周期(例如一日/24小时)的电量监控。若步骤S270中的判 断为是,代表需要开始另一个时间周期的再生能源预测与馈电控制,则回到步骤S210,以隔日的天气预报来进行前述的再生能源管理技术。若步骤S270中的判断为否,则回到步骤S220,继续执行馈电监控。
请参阅图6,其示出根据本发明一些实施例中的再生能源管理***依据目标曲线调整后的实际馈电曲线示意图。如图1及图6所示,经过再生能源管理之后,能源***120供电的时间及电量曲线为实际馈电曲线P real(t),相对于目标曲线P C(t)两者为接近的曲线。举例来说,实际馈电曲线P real(t)与目标曲线P C(t)具有相同的峰值用电时间区段,其中峰值用电时间区段为尖峰供电的时间区段。
以下将说明实际馈电曲线P real(t)、目标曲线P C(t)以及发电曲线GE(t)的电量高峰所对应的时间区间。请参阅图6,实际馈电曲线P real(t)的供电最大值在供电尖峰P max。在时间点T P1(例如供电尖峰P max前2个小时)到时间点T P2(例如供电尖峰P max后2个小时)之间的时间区段T peak(例如供电尖峰P max为中午12时,则时间区段为上午10时到下午2时),此时间区段T peak可以产生一天之内最高的发电量。同样地,目标曲线P C(t)的峰值部也会在时间点T P1到时间点T P2之间的时间区段T peak。另一方面,能源***120(如图1所示)可以随着发电曲线GE(t)来产生电力,天气越晴朗代表曲线升幅越高,则产生的电量越高。举例来说,在时间点T G1(例如发电尖峰G max前2个小时)到时间点T G2(例如发电尖峰G max后2个小时)之间的时间区段G peak(例如发电尖峰G max为中午12时,则时间区段为上午10时到下午2时),此时间区段G peak可以产生一天之内最高的发电量。然而,能源***120以目标曲线P C(t)来馈电,本发明的实际馈电曲线P real(t)的供电尖峰T peak是由目标曲线的高低变化来决定,并不是根据发电曲线GE(t)而决定的。于此实施例中,实际馈电曲线P real(t)与目标曲线P C(t)具有相同的峰值用电时间区段T peak,而不必然与发电曲线GE(t)的发电峰值时间区段G peak对应或重叠。值得一提的是,本发明也可以设计出峰值用电时间区段T peak与发电曲线GE(t)的发电峰值时间区段G peak对应的目标曲线P C(t),并使得监控装置110根据目标曲线P C(t)来控制馈电。
综上所述,本发明所提出的再生能源管理***及其方法中,可以藉由天气预报来选择隔日的供电模式并控制供电的变动率在一定范围之内来维持***的稳定性。此外,本发明所提出的再生能源管理***及其方法可以预测再生能 源的电力产量,以在时间周期即将结束的时候评估下一个时间周期的初始电池电量,同时达到保护电池电路以及发挥电池最佳充放电效益。以及,本发明所提出的再生能源管理***及其方法中,可以控制供电尖峰的时间区间,克服以往的再生能源***只能在发电尖峰提供最大电量的问题,具有达到保护电厂稳定性的技术功效。
当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。
工业应用性
采用本发明所提出的再生能源管理***及其方法,具有以下有益效果:
(1)可以藉由天气预报来选择隔日的供电模式并控制供电的变动率在一定范围之内来维持***的稳定性;
(2)可以预测再生能源的电力产量,以在时间周期即将结束的时候评估下一个时间周期的初始电池电量,同时达到保护电池电路以及发挥电池最佳充放电效益;
(3)可以控制供电尖峰的时间区间,克服以往的再生能源***只能在发电尖峰提供最大电量的问题,具有达到保护电厂稳定性的技术功效。

Claims (10)

  1. 一种再生能源管理***,其特征在于,包含:
    一能源***,储存一电池电量;
    一监控装置,耦接该能源***,该监控装置用以:
    于多个预估曲线中选择一目标曲线,各该预估曲线包含多个时间点与对应各该时间点的一目标馈电电量;
    控制该能源***在各该时间点以该目标馈电电量馈送至一外部能源***;
    判断该能源***的一实际馈电曲线的一变动率超出一额定值时,计算一平滑补偿参数;以及
    依照该平滑补偿参数调整该实际馈电曲线,使该能源***的该实际馈电曲线符合该目标曲线。
  2. 如权利要求1所述的再生能源管理***,其特征在于,其中该监控装置还用以:
    接收一天气预报数据;
    根据该天气预报数据决定一发电曲线;以及
    该监控装置根据该发电曲线于多个预估曲线中选择该目标曲线,其中该发电曲线在各该时间点产生的总电量大于或等于该目标曲线在各该时间点馈送的总电量。
  3. 如权利要求1所述的再生能源管理***,其特征在于,其中该目标曲线的该目标馈电电量在各该时间点的一瞬间变动率小于一第一门限值且大于一第二门限值。
  4. 如权利要求2所述的再生能源管理***,其特征在于,其中该目标曲线包含一初始时间以及对应该初始时间的一初始电量,该监控装置控制该能源***于该初始时间的储存电量为该初始电量。
  5. 如权利要求1所述的再生能源管理***,其特征在于,其中该监控装 置还用以:
    根据一发电曲线判断各该时间点的一可储存电量;
    其中在该可储存电量大于该目标馈电电量时,该监控装置控制该能源***进行充电;以及
    在该可储存电量小于该目标馈电电量时,该监控装置控制该能源***进行放电。
  6. 如权利要求1所述的再生能源管理***,其特征在于,其中该监控装置还用以:
    判断在一时间点的该电池电量与在该时间点后的该目标馈电电量的总和之间的一差值超出一门槛值时,重新选择该目标曲线。
  7. 如权利要求6所述的再生能源管理***,其特征在于,其中该监控装置判断该差值小于一额定解除值时,控制该平滑补偿参数递减至零。
  8. 如权利要求6所述的再生能源管理***,其特征在于,其中该实际馈电曲线与该目标曲线具有相同的一峰值用电时间区段,其中该峰值用电时间区段为用电尖峰的时间区段。
  9. 如权利要求6所述的再生能源管理***,其特征在于,其中该监控装置还用以:
    判断在该时间点的该电池电量与在该时间点后的该目标馈电电量的总和之间的该差值未超出该门槛值时,继续以该目标曲线控制该能源***在各该时间点以该目标馈电电量馈送至该外部能源***。
  10. 如权利要求4所述的再生能源管理***,其特征在于,其中该目标曲线包含一时间周期,该监控装置还用以:
    当判断该目标曲线的该时间周期已结束,则接收该天气预报数据以选择下一时间周期的该发电曲线;
    根据该发电曲线于多个预估曲线中选择该目标曲线;以及
    判断该电池电量不等于该目标曲线的该初始电量时,控制该能源***的该初始时间的该电池电量为该初始电量。
PCT/CN2018/101537 2018-08-17 2018-08-21 再生能源管理*** WO2020034240A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SG11202101303UA SG11202101303UA (en) 2018-08-17 2018-08-21 Renewable energy management system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810945409.9A CN109038685B (zh) 2018-08-17 2018-08-17 再生能源管理***
CN201810945409.9 2018-08-17

Publications (1)

Publication Number Publication Date
WO2020034240A1 true WO2020034240A1 (zh) 2020-02-20

Family

ID=64632047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/101537 WO2020034240A1 (zh) 2018-08-17 2018-08-21 再生能源管理***

Country Status (4)

Country Link
CN (1) CN109038685B (zh)
SG (1) SG11202101303UA (zh)
TW (1) TWI667560B (zh)
WO (1) WO2020034240A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115392803A (zh) * 2022-10-28 2022-11-25 北京国电通网络技术有限公司 区域供电量调整方法、装置、电子设备、介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103904666A (zh) * 2014-02-25 2014-07-02 北京交通大学 一种并网光伏储能***的负载峰值期能量调配方法
CN105375479A (zh) * 2015-12-14 2016-03-02 东南大学 一种基于模型预测控制的分布式能源能量管理方法
CN106972534A (zh) * 2017-04-28 2017-07-21 国网山东省电力公司泰安供电公司 一种光伏充电站能量调度管理方法
CN107196310A (zh) * 2016-03-15 2017-09-22 中国电力科学研究院 考虑源网荷协调互动的主动配电网多时间尺度优化方法
CN107565585A (zh) * 2017-10-30 2018-01-09 暨南大学 储能装置调峰回报时间预测方法及其模型创建方法
US20180090943A1 (en) * 2016-09-26 2018-03-29 Institute For Information Industry Charge and discharge control apparatus and method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4636931A (en) * 1985-06-28 1987-01-13 Shikoku Denryoku Kabushiki Kaisha Photovoltaic power control system
US8019485B2 (en) * 2004-06-22 2011-09-13 Siemens Energy, Inc. System and method for controlling the performance of a power generating system
CN102193528B (zh) * 2010-03-05 2013-08-14 朗德华信(北京)自控技术有限公司 基于云计算的能源管理控制***及方法
CN101950980B (zh) * 2010-09-13 2012-10-31 江西省电力科学研究院 用于分布式光伏电源并网调控的储能装置容量配置方法
US9207735B2 (en) * 2011-08-02 2015-12-08 Gram Power, Inc. Power management device and system
CN103199556B (zh) * 2013-02-25 2015-04-01 中国电力科学研究院 一种微电网能量管理方法及其***
CN103390904B (zh) * 2013-07-18 2015-11-25 国家电网公司 可再生能源并网发电分析方法
CN103715663B (zh) * 2014-01-09 2016-09-21 惠州天能源科技有限公司 双向储能并网变换器过温功率降额的软件控制方法
CN103986190B (zh) * 2014-05-26 2016-03-23 电子科技大学 基于发电功率曲线的风光储联合发电***平滑控制方法
CN105140939B (zh) * 2015-08-10 2018-04-03 江苏方天电力技术有限公司 基于储能***的主动负荷多目标协调控制方法
CN105826944B (zh) * 2016-03-18 2018-08-14 上海电机学院 一种微电网群的功率预测方法和***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103904666A (zh) * 2014-02-25 2014-07-02 北京交通大学 一种并网光伏储能***的负载峰值期能量调配方法
CN105375479A (zh) * 2015-12-14 2016-03-02 东南大学 一种基于模型预测控制的分布式能源能量管理方法
CN107196310A (zh) * 2016-03-15 2017-09-22 中国电力科学研究院 考虑源网荷协调互动的主动配电网多时间尺度优化方法
US20180090943A1 (en) * 2016-09-26 2018-03-29 Institute For Information Industry Charge and discharge control apparatus and method
CN106972534A (zh) * 2017-04-28 2017-07-21 国网山东省电力公司泰安供电公司 一种光伏充电站能量调度管理方法
CN107565585A (zh) * 2017-10-30 2018-01-09 暨南大学 储能装置调峰回报时间预测方法及其模型创建方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115392803A (zh) * 2022-10-28 2022-11-25 北京国电通网络技术有限公司 区域供电量调整方法、装置、电子设备、介质
CN115392803B (zh) * 2022-10-28 2022-12-23 北京国电通网络技术有限公司 区域供电量调整方法、装置、电子设备、介质

Also Published As

Publication number Publication date
SG11202101303UA (en) 2021-03-30
TWI667560B (zh) 2019-08-01
CN109038685A (zh) 2018-12-18
CN109038685B (zh) 2022-06-28
TW202009619A (zh) 2020-03-01

Similar Documents

Publication Publication Date Title
WO2022100091A1 (zh) 一种广义源储***调度的集中控制方法
KR101834061B1 (ko) 신재생 에너지 연계형 ess의 전력 관리 방법
JP5507582B2 (ja) 電力供給方法、コンピュータ読み取り可能な記録媒体および発電システム
CN102214932A (zh) 一种风光储输综合发电站有功功率分配方法
WO2011078151A1 (ja) 電力供給方法、コンピュータ読み取り可能な記録媒体および発電システム
KR101445738B1 (ko) 전력 사용량 데이터베이스를 이용하여 전기에너지 저장량을 조정하는 전력저장 장치 및 그 운영 방법
CN103904686A (zh) 一种考虑电力***协同能力的经济调度方法
JP2015177606A (ja) 分散型電源システムの制御装置、パワーコンディショナ、分散型電源システム及び、分散型電源システムの制御方法
Ju et al. Energy management system for microgrids including batteries with degradation costs
WO2014112454A1 (ja) 制御装置及び方法並びにプログラム、それを備えた自然エネルギー発電装置
US20120253537A1 (en) Power supply method, recording medium which is computer readable and power generation system
JP2023138478A (ja) 高い動的負荷を有する電力システムのバッテリエネルギー貯蔵システムを制御する方法
JPWO2015059873A1 (ja) 電力管理装置
CN109936151B (zh) 一种由微电网***参与火电机组一次调频的控制方法
JP2013150473A (ja) 電力系統の需給制御システム、需給制御装置及び需給制御プログラム
TWI667560B (zh) 再生能源管理系統
JP6705319B2 (ja) 統括制御装置、統括制御システム、統括制御方法および統括制御プログラム
CN116231764B (zh) 一种源网荷储协调控制方法及***
WO2019193837A1 (ja) 発電システムおよびその制御方法
CN115841216A (zh) 计及分布式光伏消纳率的配电网储能优化配置方法
JP7356922B2 (ja) 分散型電源システムおよび分散型電源装置
CN107645172B (zh) 用于分布式发电***储能装置dc/dc变换器的控制方法及装置
JP6865651B2 (ja) 分散型電源システム
CN116316740B (zh) 一种考虑新能源影响的储能代替火电容量效率计算方法
CN117639106B (zh) 一种光伏水电储能集群微电网的调控方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18930405

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18930405

Country of ref document: EP

Kind code of ref document: A1