WO2020034137A1 - 一种基于无人机的四轴倾转旋翼机构及倾转方法 - Google Patents

一种基于无人机的四轴倾转旋翼机构及倾转方法 Download PDF

Info

Publication number
WO2020034137A1
WO2020034137A1 PCT/CN2018/100794 CN2018100794W WO2020034137A1 WO 2020034137 A1 WO2020034137 A1 WO 2020034137A1 CN 2018100794 W CN2018100794 W CN 2018100794W WO 2020034137 A1 WO2020034137 A1 WO 2020034137A1
Authority
WO
WIPO (PCT)
Prior art keywords
tilting
rotor
rod
push
screw
Prior art date
Application number
PCT/CN2018/100794
Other languages
English (en)
French (fr)
Inventor
房立金
陈俊杰
李林鲜
常新月
李圣昊
姜宇坤
Original Assignee
东北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北大学 filed Critical 东北大学
Publication of WO2020034137A1 publication Critical patent/WO2020034137A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/20Rotorcraft characterised by having shrouded rotors, e.g. flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/52Tilting of rotor bodily relative to fuselage

Definitions

  • the invention belongs to the technical field of tilting rotary wing unmanned aerial vehicles, and particularly relates to a four-axis tilting rotary wing mechanism and tilting method based on unmanned aerial vehicles.
  • Drones are mainly divided into multi-rotor drones and fixed-wing drones.
  • the take-off and landing of multi-rotor drones are not restricted by the site, but their endurance Time and speed are relatively limited.
  • fixed-wing UAVs have the advantages of long battery life and high speed, they need to take off the runway.
  • oil-driven multi-rotor In terms of power, domestic and foreign researchers have proposed the concept of oil-driven multi-rotor or hybrid electric multi-rotor.
  • oil-driven multi-rotor solution specific gasoline engine direct-drive rotors are used to improve the multi-rotor drone life.
  • the hybrid multi-rotor solution uses a gasoline engine to drive a generator to generate electrical energy, and then uses the electrical energy to drive the rotor to improve the multi-rotor drone's endurance time.
  • tilt-rotor UAVs have both high-speed cruising capabilities and vertical take-off and landing capabilities.
  • tilt rotor UAVs have both high-speed cruising capabilities and vertical take-off and landing capabilities.
  • they are less subject to site restrictions during take-off and landing, and have high take-off and landing flexibility. They have received the most attention.
  • the tilt rotor configuration was first proposed in the United States. It was originally designed to meet the requirements of the US military for higher speed and flight capabilities of manned helicopters. In the end, the helicopter adopted a horizontal double tilt rotor structure design.
  • the field of drones there are fewer types of drones that use tilt rotor layouts, but the market demand is huge, which has also become a new development direction for drones.
  • the present invention provides a four-axis tilting rotor mechanism and tilting method based on a drone.
  • a four-axis tilting rotor UAV When applied to a four-axis tilting rotor UAV, it has a simple structure and energy consumption. Low load, large load, high flight efficiency and high endurance.
  • a four-axis tilting rotor mechanism based on an unmanned aerial vehicle, including a rotor assembly, a rotor tilt driving assembly, and a rotor tilt locking execution assembly;
  • the rotor assembly includes a propeller blade And a brushless motor;
  • the rotor tilt drive assembly includes a tilting rod and a steering gear, and two brushless motors are symmetrically installed at both ends of the rod body of the tilting rod, and one motor shaft of each brushless motor is installed with one
  • a blade protection sleeve is installed on the outer side of each group of propeller blades, and the blade protection sleeves of the two sets of propeller blades are fixedly connected by a stabilizer bar;
  • an intermediate shaft is fixed in the middle of the tilting rod
  • the transfer shaft is perpendicular to the tilting rod, and the transfer shaft is fixedly connected to the power output shaft of the steering gear through a tilt drive coupling;
  • the rotor tilt-locking execution component includes a servo motor, a ball screw, a screw nut, a screw guide, a screw slider, a screw mounting bracket, a slider nut adapter, an adapter link, a push-pull rod, and a push-pull Disk, supporting sleeve and lock body;
  • the ball screw is arranged on the screw mounting frame, one end of the ball screw is fixedly connected with the motor shaft of the servo motor through tilting locking coupling, and the servo motor and the drone
  • the screw guide is arranged on the screw mounting frame, the screw guide is parallel to the ball screw, and the screw guide is symmetrically distributed on both sides of the ball screw; the screw nut is sleeved on the ball screw
  • the lead screw slider is sleeved on the lead screw guide rail, and the lead screw nut and the lead screw slider are fixedly connected by a slider nut adapter; one end of the adapter link is hinged on the slider nut adapter.
  • the other end of the transfer link is hinged to one end of the push-pull rod, and the other end of the push-pull rod is fixedly connected to the push-pull disk.
  • the push-pull rod is perpendicular to the ball screw and the screw guide
  • the lock body is fixedly mounted on the outer end of the support sleeve.
  • the lock body is provided with a guide cavity.
  • the push-pull disk is located in the guide cavity.
  • the push-pull disk has only axial freedom of movement in the guide cavity.
  • the end surface is provided with a plurality of tilting lever locking grooves, and the tilting lever locking grooves are matched with the tilting levers; the steering gear is fixed on the push-pull disk, and an adapter shaft penetration hole is provided on the lock body. .
  • a ball bearing is provided in the adapter shaft penetrating hole.
  • the outer ring of the ball bearing is in interference fit with the lock body, and the inner ring of the ball bearing is in clearance fit with the adapter shaft.
  • a plurality of axial guide holes are provided on the lock housing of the guide chamber.
  • a guide pin is fixed on the circumferential surface of the push-pull disk, and the guide pin is located in the axial guide hole.
  • the axial guide hole cooperates to limit the degree of freedom of the push-pull disk.
  • the tilting lever locking grooves are distributed radially, and include a tilting lever 0 ° locking groove, a tilting lever 45 ° locking groove, and a tilting lever 90 ° locking groove.
  • the tilting method of the four-axis tilting rotor mechanism based on the drone includes the following steps:
  • Step 1 Adjust the four-axis tilt rotor mechanism to the initial state, so that the screw nut stays at the end of the ball screw near the servo motor side. At this time, the push-pull rod and push-pull disk are in a retracted state, and the tilt lever is at the same time. The tilting lever of the lock body is in the 0 ° locking groove;
  • Step 2 Start the servo motor to drive the ball screw to rotate forward to move the screw nut to the end of the ball screw away from the servo motor.
  • use the accompanying slider nut adapter and adapter rod Adjust the push-pull lever and the push-pull disk to the extended state, and then make the tilt lever out of the lock lever's 0 ° locking groove of the lock body, and then turn off the servo motor;
  • Step 3 Start the steering gear and adjust the speed of the brushless motors at both ends of the tilting rod body to make the speed difference between the brushless motors at both ends of the tilting rod body to break the balance of the force couples at both ends of the tilting rod body to make the tilting
  • the rod body generates torque, thereby achieving forward or backward tilting of the rod body
  • Step 4 When the tilting rod body reaches the set forward or backward tilting angle, readjust the speed of the brushless motors at both ends of the tilting rod body and eliminate the speed between the brushless motors at both ends of the tilting rod body Poor, while maintaining the tilting angle of the tilting rod body through the steering gear;
  • Step 5 Restart the servo motor to drive the ball screw to rotate in the reverse direction to move the screw nut to the end of the ball screw near the servo motor side.
  • the connecting rod readjusts the push-pull rod and the push-pull disc to the retracted state, so that the tilting rod enters the 45 ° locking groove of the tilting rod or the 90 ° locking groove of the tilting rod.
  • the tilting rod achieves tilt lock.
  • turn off the steering gear, and the tilting process of the four-axis tilt rotor mechanism is completed.
  • the four-axis tilting rotor mechanism and tilting method based on the drone of the present invention utilize the speed difference between the rotors and supplement the steering gear to achieve tilting, which can effectively reduce the maximum torque requirement for the steering gear.
  • Mechanical lock is provided to provide stability for the working state of the drone during the whole flight.
  • the steering gear only needs to be started during the tilting process cycle.
  • the steering gear does not need to be started at all when the rotor is tilted and locked, which greatly reduces the drone.
  • the energy consumption has effectively alleviated the contradiction between the limited energy reserve of the four-axis tilting rotor drone and the high energy consumption.
  • the drone can have the characteristics of simple structure, low energy consumption, large load, high flight efficiency, and high endurance.
  • FIG. 1 is a schematic structural diagram of a four-axis tilting rotor mechanism based on the UAV (when the tilting angle is 0 ° in a locked state);
  • FIG. 2 is a schematic structural diagram of a four-axis tilting rotor mechanism based on the UAV (when the tilting angle is 45 ° in a locked state);
  • FIG. 3 is a schematic structural diagram of a four-axis tilting rotor mechanism based on the drone (when the tilting angle is 90 ° in a locked state) according to the present invention
  • FIG. 4 is an assembly view of a rotor assembly and a rotor tilt drive assembly of the present invention
  • FIG. 5 is a perspective view of a rotor tilt lock actuator (servo motor side) of the present invention.
  • FIG. 6 is a perspective view of a rotor tilt lock execution component (lock body side) of the present invention.
  • FIG. 7 is an axial sectional view of a rotor tilt-locking actuator (lock body side) of the present invention.
  • 1 rotor assembly
  • 2 rotor tilt drive assembly
  • 3 rotor tilt lock actuator
  • 4 propeller blades
  • 5 brushless motor
  • 6 tilt bar
  • 7 rudder gear
  • 8 piddle Leaf protection sleeve
  • 9 stabilize
  • 10 adaptive shaft
  • 11 tilt drive coupling
  • 12 servo motor
  • 13 ball screw
  • 14 screw
  • 15 screw
  • 16 wire Lever slider
  • 17 screw mounting bracket
  • 18 sliding nut adapter
  • 19 connecting link
  • 20 pushh-pull rod
  • 21 pushh-pull disk
  • 22 support sleeve
  • 23 lock body
  • 24 Tilt-locking coupling
  • 25 linear bearing
  • 26 guide cavity
  • 27 tilt rod lock groove
  • 28 ball bearing
  • 29 axial guide hole
  • 30 guide pin
  • a four-axis tilting rotor mechanism based on a drone includes a rotor assembly 1, a rotor tilt driving assembly 2, and a rotor tilt locking execution assembly 3;
  • the rotor assembly 1 includes a propeller blade 4 and brushless motor 5;
  • the rotor tilt drive assembly 2 includes a tilting rod 6 and a steering gear 7, two brushless motors 5 are symmetrically installed at both ends of the rod body of the tilting rod 6, and in each brushless motor
  • a set of propeller blades 4 are installed on the motor shaft of 5
  • a blade protection sleeve 8 is installed on the outside of each group of propeller blades 4, and the blade protection sleeves 8 of the two sets of propeller blades 4 are fixedly connected by a stabilizer bar 9;
  • An intermediate shaft 10 is fixed to the middle of the tilting lever 6.
  • the intermediate shaft 10 is perpendicular to the tilting lever 6.
  • the intermediate shaft 10 is driven to rotate with the power output shaft of the steering gear 7 by tilting the coupling 11.
  • Fixed connection; the rotor tilt drive assembly 2 is connected to the drone fuselage through the rotor tilt lock execution assembly 3, and the rotor tilt drive assembly 2 is symmetrically distributed on both sides of the drone fuselage.
  • the rotor tilt lock execution component 3 includes a servo motor 12, a ball screw 13, a screw nut 14, a screw guide 15, a screw slider 16, a screw mounting bracket 17, a slider nut adapter 18, a rotary The connecting rod 19, the push-pull rod 20, the push-pull disk 21, the support sleeve 22, and the lock body 23; the ball screw 13 is provided on the screw mounting bracket 17, and one end of the ball screw 13 is locked by tilting the coupling 24 It is fixedly connected to the motor shaft of the servo motor 12, and the servo motor 12 is fixedly connected to the drone body.
  • the lead screw guide 15 is arranged on the lead screw mounting bracket 17, and the lead screw guide 15 is parallel to the ball screw 13.
  • the screw guide rail 15 is symmetrically distributed on both sides of the ball screw 13; the screw nut 14 is set on the ball screw 13; the screw slider 16 is set on the screw guide 15; the screw nut 14 and the wire
  • the sliders 16 are fixedly connected by a slider nut adapter 18; one end of the adapter link 19 is hinged on the slider nut adapter 18, and the other end of the adapter link 19 is opposite to one end of the push-pull rod 20.
  • the other end of the push-pull rod 20 is fixed to the push-pull disk 21, and the push-pull rod 20 is threaded into the outer support rod 22 through a linear bearing 25, and the support sleeve 22
  • the drone body is fixedly connected; the push-pull rod 20 is perpendicular to the ball screw 13 and the screw guide rail 15; the lock body 23 is fixed to the outer end of the support sleeve 22, and a guide cavity is provided inside the lock body 23 Chamber 26, the push-pull disk 21 is located in the guide chamber 26, and the push-pull disk 21 has only axial freedom of movement in the guide chamber 26; a plurality of tilting rod locking grooves are provided on the outer end surface of the lock body 23 27.
  • the tilting lever locking groove 27 cooperates with the tilting lever 6; the steering gear 7 is fixed on the push-pull disk 21, and the lock body 23 is provided with a penetration shaft 10 penetration hole.
  • a ball bearing 28 is provided in the insertion shaft 10 through hole, an outer ring of the ball bearing 28 and the lock body 23 are in interference fit, and an inner ring of the ball bearing 28 and the adapter shaft 10 are clearance fit.
  • a plurality of axial guide holes 29 are provided in the lock housing of the guide chamber 26.
  • a guide pin 30 is fixed on the circumferential surface of the push-pull disk 21, and the guide pin 30 is located in the axial guide hole 29. Inside, the degree of freedom of the push-pull disk 21 is limited by the cooperation of the guide pin 30 and the axial guide hole 29.
  • the tilting lever locking grooves 27 are distributed radially, and include a tilting lever 0 ° locking groove, a tilting lever 45 ° locking groove, and a tilting lever 90 ° locking groove.
  • the tilting method of the four-axis tilting rotor mechanism based on the drone includes the following steps:
  • Step 1 Adjust the four-axis tilt rotor mechanism to the initial state so that the screw nut 14 stays at the end of the ball screw 13 near the servo motor 12 side. At this time, the push-pull rod 20 and the push-pull disk 21 are in a retracted state. At the same time, the tilting lever 6 is located in the 0 ° locking groove of the tilting lever 23 of the lock body 23;
  • Step 2 Start the servo motor 12 to drive the ball screw 13 to rotate forward to move the screw nut 14 to the end of the ball screw 13 far from the servo motor 12 side.
  • the follower slide nut adapter 18 and the transfer link 19 adjust the push-pull lever 20 and the push-pull disc 21 to the extended state, so that the tilt lever 6 is separated from the tilt lever 0 ° locking groove of the lock body 23, and then the servo motor 12 is turned off;
  • Step 3 Start the steering gear 7 and adjust the speed of the brushless motor 5 at both ends of the tilting rod 6 at the same time, so that the brushless motor 5 at both ends of the tilting rod 6 generates a speed difference to break the force couple at both ends of the tilting rod 6 Balance, so that the tilting rod 6 rod body generates torque, and then the tilting rod 6 rod body is tilted forward or backward;
  • Step 4 When the tilting rod 6 reaches the set forward or backward tilting angle, readjust the rotation speed of the brushless motor 5 at both ends of the tilting rod 6 and eliminate the brushless motor at both ends of the tilting rod 6 The rotation speed difference between 5 while maintaining the tilting angle of the tilting rod 6 by the steering gear 7;
  • Step 5 Restart the servo motor 12 to drive the ball screw 13 to rotate in the reverse direction to move the screw nut 14 to the end of the ball screw 13 near the servo motor 12 side.
  • the adaptor 18 and the transfer link 19 readjust the push-pull lever 20 and the push-pull disc 21 to the retracted state, so that the tilt lever 6 enters the tilt lever 45 ° lock groove or the tilt lever 90 ° lock groove, At this time, the tilting lever 6 realizes the tilt lock, and then the steering gear 7 is turned off, and the tilting process of the four-axis tilting rotor mechanism is ended.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Transmission Devices (AREA)
  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)
  • Power Steering Mechanism (AREA)

Abstract

一种基于无人机的四轴倾转旋翼机构及倾转方法,机构包括旋翼组件(1)、旋翼倾转驱动组件(2)及旋翼倾转锁定执行组件(3),旋翼倾转驱动组件(2)包括倾转杆(6)及舵机(7),旋翼倾转锁定执行组件(3)由伺服电机(12)驱动;旋翼倾转驱动组件(2)与无人机机身之间通过旋翼倾转锁定执行组件(3)相连,旋翼倾转驱动组件(2)对称分布在无人机机身两侧;旋翼倾转锁定执行组件(3)的锁体(23)上设有倾转杆0°锁止槽、45°锁止槽及90°锁止槽。倾转旋翼机构的倾转方法为:初始时倾转(6)杆位于0°锁止槽内;通过伺服电机(12)驱动使倾转杆(6)脱离0°锁止槽;启动舵机(7)并同步控制前后旋翼产生转速差,倾转杆(6)在扭矩作用下产生前倾或后倾;当倾转杆(6)达到设定前倾或后倾角度时,消除转速差并通过舵机(7)维持倾转角度不变;通过伺服电机(12)驱动使倾转杆(6)进入45°锁止槽或90°锁止槽内完成锁定。

Description

一种基于无人机的四轴倾转旋翼机构及倾转方法 技术领域
本发明属于倾转旋翼无人机技术领域,特别是涉及一种基于无人机的四轴倾转旋翼机构及倾转方法。
背景技术
目前,无人机领域已经成为了科技发展的前沿领域,无人机主要分为多旋翼无人机和固定翼无人机,多旋翼无人机的起降可以不受场地限制,但是其续航时间和速度却相对受限,而固定翼无人机虽然具有续航时间长及速度高的优点,但却需要起飞跑道。
近年来,随着经济与社会的发展,现有的多旋翼无人机和固定翼无人机已经越来越难以满足市场的需求,如何使无人机同时拥有起降方便、速度高、续航时间长及载重大的特点,已经成为一个亟待解决的难题。
科研人员一直在不断探索和研究,希望设计一种既可以垂直起降又可保障高航速和长航时的无人机,并且从动力、结构、飞行器布局等方面提出了诸多方案。
在动力方面,国内外学者提出了油动多旋翼或油电混合多旋翼的概念方案,关于油动多旋翼的方案,具体汽油发动机直驱旋翼来提升多旋翼无人机续航时间,关于油电混合多旋翼的方案,具体通过汽油发动机驱动发电机产生电能,再通过电能来驱动旋翼,用以提升多旋翼无人机续航时间。
在结构方面,部分学者提出在多旋翼机体外部增加流线型外型,使其在前飞过程中产生增升减阻效果,但实际效果并不太显著。
在飞行器布局方面,国内外学者提出了大量兼具垂直起降能力与长续航能力的设计方案,其中包含倾转旋翼无人机、尾座式无人机、复合式无人机及涵道式无人机,而倾转旋翼无人机因兼具高速巡航能力和垂直起降能力,同时起降时受场地限制小,而且起降灵活性高,其受到的关注程度也最高。在20世纪中叶,倾转旋翼布局首先在美国被提出,设计初衷是为了满足美军对载人直升机的更高速度和飞行能力的要求,最终该直升机采用了横列双倾转旋翼的结构设计。但在无人机领域,采用倾转旋翼布局的无人机种类较少,但市场需求却极大,这也成为了无人机的新发展方向。
现阶段,在快递运输、农业喷灌、地形勘察、灾情监视、交通巡逻、治安监控、消防抗灾、休闲娱乐、新闻报道等众多领域内,传统无人机已经难以满足需求,特别是在缺少起降场地但对航程和航时又有较高需求的领域,市场对新型无人机的诉求越来越急迫。
随着无人机产业发展和社会需求的提升,市场对大负载、大航程、长航时的无人机的需 求越来越迫切,但受限于传统无人机存在的飞行器结构较为单一、多为垂直起降、能量消耗大、负载低的弊端,是难以满足市场需求的。尽管市场上已经出现了一些倾转旋翼布局的无人机,但大多存在结构复杂、能量消耗大、负载低、飞行效率不高、续航能力差的缺点。
发明内容
针对现有技术存在的问题,本发明提供一种基于无人机的四轴倾转旋翼机构及倾转方法,当其应用于在四轴倾转旋翼无人机上时,具有结构简单、能量消耗低、负载大、飞行效率高、续航能力高的特点。
为了实现上述目的,本发明采用如下技术方案:一种基于无人机的四轴倾转旋翼机构,包括旋翼组件、旋翼倾转驱动组件及旋翼倾转锁定执行组件;所述旋翼组件包括螺旋桨叶片及无刷电机;所述旋翼倾转驱动组件包括倾转杆及舵机,在倾转杆的杆体两端对称安装有两台无刷电机,在每台无刷电机的电机轴上均安装有一组螺旋桨叶片,在每组螺旋桨叶片外侧均安装有桨叶保护套,两组螺旋桨叶片的桨叶保护套之间通过稳定杆相固连;在所述倾转杆的中部固定有一根转接轴,转接轴与倾转杆相垂直,转接轴通过倾转驱动联轴器与舵机的动力输出轴相固连;所述旋翼倾转驱动组件与无人机机身之间通过旋翼倾转锁定执行组件相连,旋翼倾转驱动组件对称分布在无人机机身两侧。
所述旋翼倾转锁定执行组件包括伺服电机、滚珠丝杠、丝杠螺母、丝杠导轨、丝杠滑块、丝杠安装架、滑块螺母转接架、转接连杆、推拉杆、推拉盘、支撑套管及锁体;所述滚珠丝杠设置在丝杠安装架上,滚珠丝杠一端通过倾转锁定联轴器与伺服电机的电机轴相固连,伺服电机与无人机机身相固连;所述丝杠导轨设置在丝杠安装架上,丝杠导轨与滚珠丝杠相平行,丝杠导轨对称分布在滚珠丝杠两侧;所述丝杠螺母套装在滚珠丝杠上,所述丝杠滑块套装在丝杠导轨上,丝杠螺母与丝杠滑块之间通过滑块螺母转接架相固连;所述转接连杆一端铰接在滑块螺母转接架上,转接连杆另一端与推拉杆一端相铰接,推拉杆另一端固连在推拉盘上,推拉杆通过直线轴承穿装在外支撑杆内部,支撑套管与无人机机身相固连;所述推拉杆与滚珠丝杠及丝杠导轨相垂直;所述锁体固装在支撑套管外端,锁体内部设有导向腔室,所述推拉盘位于导向腔室内,推拉盘在导向腔室内仅具有轴向移动自由度;在所述锁体外端面上设有若干倾转杆锁止槽,倾转杆锁止槽与倾转杆相配合;所述舵机固装在推拉盘上,在所述锁体上开设有转接轴穿入孔。
在所述转接轴穿入孔内设有滚珠轴承,滚珠轴承的外圈与锁体过盈配合,滚珠轴承的内圈与转接轴间隙配合。
在所述导向腔室的锁体外壳上开设有若干条轴向导向孔,在所述推拉盘的圆周面上固装有导向销,且导向销为位于轴向导向孔内,通过导向销与轴向导向孔配合对推拉盘的自由度 进行限定。
所述倾转杆锁止槽呈辐射状分布,包括倾转杆0°锁止槽、倾转杆45°锁止槽及倾转杆90°锁止槽。
所述的基于无人机的四轴倾转旋翼机构的倾转方法,包括如下步骤:
步骤一:将四轴倾转旋翼机构调整到初始状态,使丝杠螺母停留在靠近伺服电机一侧的滚珠丝杠端部,此时推拉杆及推拉盘处于回缩状态,同时倾转杆位于锁体的倾转杆0°锁止槽内;
步骤二:启动伺服电机,带动滚珠丝杠正向转动,以将丝杠螺母移动到远离伺服电机一侧的滚珠丝杠端部,同时通过随动的滑块螺母转接架及转接连杆将推拉杆及推拉盘调整到伸出状态,进而使倾转杆脱离锁体的倾转杆0°锁止槽,然后关闭伺服电机;
步骤三:启动舵机,同时调整倾转杆杆体两端的无刷电机的转速,使倾转杆杆体两端的无刷电机产生转速差,以打破倾转杆杆体两端的力偶平衡,从而使倾转杆杆体产生扭矩,进而实现倾转杆杆体的前倾或后倾;
步骤四:当倾转杆杆体达到设定的前倾角度或后倾角度时,重新调整倾转杆杆体两端的无刷电机的转速,并消除倾转杆杆体两端的无刷电机之间的转速差,同时通过舵机维持倾转杆杆体的倾转角度不变;
步骤五:重新启动伺服电机,带动滚珠丝杠反向转动,以将丝杠螺母重新移动到靠近伺服电机一侧的滚珠丝杠端部,同时通过随动的滑块螺母转接架及转接连杆将推拉杆及推拉盘重新调整到回缩状态,进而使倾转杆进入倾转杆45°锁止槽或倾转杆90°锁止槽中,此时倾转杆实现倾转锁定,然后关闭舵机,至此四轴倾转旋翼机构的倾转过程结束。
本发明的有益效果:
本发明的基于无人机的四轴倾转旋翼机构及倾转方法,利用旋翼间的转速差并辅以舵机实现倾转,可有效减少对舵机的最大扭力要求,倾转结束后可进行机械锁定,并为无人机飞行全程的工作状态提供维稳,而舵机仅需在倾转过程周期内启动,舵机在旋翼倾转锁定时完全不用启动,极大的降低了无人机的能耗,有效缓解了四轴倾转旋翼无人机能源储备有限与高能耗之间的矛盾,即使在无人机飞行过程中舵机出现问题,由于旋翼倾转角度已经被锁定,也能够最大程度的保证无人机的飞行稳定性。当本发明应用于在四轴倾转旋翼无人机上时,可使该无人机具有结构简单、能量消耗低、负载大、飞行效率高、续航能力高的特点。
附图说明
图1为本发明的一种基于无人机的四轴倾转旋翼机构(锁止状态下倾转角度为0°时)的结构示意图;
图2为本发明的一种基于无人机的四轴倾转旋翼机构(锁止状态下倾转角度为45°时)的结构示意图;
图3为本发明的一种基于无人机的四轴倾转旋翼机构(锁止状态下倾转角度为90°时)的结构示意图;
图4为本发明的旋翼组件及旋翼倾转驱动组件的装配图;
图5为本发明的旋翼倾转锁定执行组件(伺服电机侧)的立体图;
图6为本发明的旋翼倾转锁定执行组件(锁体侧)的立体图;
图7为本发明的旋翼倾转锁定执行组件(锁体侧)的轴向剖视图;
图中,1—旋翼组件,2—旋翼倾转驱动组件,3—旋翼倾转锁定执行组件,4—螺旋桨叶片,5—无刷电机,6—倾转杆,7—舵机,8—桨叶保护套,9—稳定杆,10—转接轴,11—倾转驱动联轴器,12—伺服电机,13—滚珠丝杠,14—丝杠螺母,15—丝杠导轨,16—丝杠滑块,17—丝杠安装架,18—滑块螺母转接架,19—转接连杆,20—推拉杆,21—推拉盘,22—支撑套管,23—锁体,24—倾转锁定联轴器,25—直线轴承,26—导向腔室,27—倾转杆锁止槽,28—滚珠轴承,29—轴向导向孔,30—导向销。
具体实施方式
下面结合附图和具体实施例对本发明做进一步的详细说明。
如图1~7所示,一种基于无人机的四轴倾转旋翼机构,包括旋翼组件1、旋翼倾转驱动组件2及旋翼倾转锁定执行组件3;所述旋翼组件1包括螺旋桨叶片4及无刷电机5;所述旋翼倾转驱动组件2包括倾转杆6及舵机7,在倾转杆6的杆体两端对称安装有两台无刷电机5,在每台无刷电机5的电机轴上均安装有一组螺旋桨叶片4,在每组螺旋桨叶片4外侧均安装有桨叶保护套8,两组螺旋桨叶片4的桨叶保护套8之间通过稳定杆9相固连;在所述倾转杆6的中部固定有一根转接轴10,转接轴10与倾转杆6相垂直,转接轴10通过倾转驱动联轴器11与舵机7的动力输出轴相固连;所述旋翼倾转驱动组件2与无人机机身之间通过旋翼倾转锁定执行组件3相连,旋翼倾转驱动组件2对称分布在无人机机身两侧。
所述旋翼倾转锁定执行组件3包括伺服电机12、滚珠丝杠13、丝杠螺母14、丝杠导轨15、丝杠滑块16、丝杠安装架17、滑块螺母转接架18、转接连杆19、推拉杆20、推拉盘21、支撑套管22及锁体23;所述滚珠丝杠13设置在丝杠安装架17上,滚珠丝杠13一端通过倾转锁定联轴器24与伺服电机12的电机轴相固连,伺服电机12与无人机机身相固连;所述丝杠导轨15设置在丝杠安装架17上,丝杠导轨15与滚珠丝杠13相平行,丝杠导轨15对称分布在滚珠丝杠13两侧;所述丝杠螺母14套装在滚珠丝杠13上,所述丝杠滑块16套装在丝杠导轨15上,丝杠螺母14与丝杠滑块16之间通过滑块螺母转接架18相固连;所述转接连 杆19一端铰接在滑块螺母转接架18上,转接连杆19另一端与推拉杆20一端相铰接,推拉杆20另一端固连在推拉盘21上,推拉杆20通过直线轴承25穿装在外支撑杆22内部,支撑套管22与无人机机身相固连;所述推拉杆20与滚珠丝杠13及丝杠导轨15相垂直;所述锁体23固装在支撑套管22外端,锁体23内部设有导向腔室26,所述推拉盘21位于导向腔室26内,推拉盘21在导向腔室26内仅具有轴向移动自由度;在所述锁体23外端面上设有若干倾转杆锁止槽27,倾转杆锁止槽27与倾转杆6相配合;所述舵机7固装在推拉盘21上,在所述锁体23上开设有转接轴10穿入孔。
在所述转接轴10穿入孔内设有滚珠轴承28,滚珠轴承28的外圈与锁体23过盈配合,滚珠轴承28的内圈与转接轴10间隙配合。
在所述导向腔室26的锁体外壳上开设有若干条轴向导向孔29,在所述推拉盘21的圆周面上固装有导向销30,且导向销30为位于轴向导向孔29内,通过导向销30与轴向导向孔29配合对推拉盘21的自由度进行限定。
所述倾转杆锁止槽27呈辐射状分布,包括倾转杆0°锁止槽、倾转杆45°锁止槽及倾转杆90°锁止槽。
所述的基于无人机的四轴倾转旋翼机构的倾转方法,包括如下步骤:
步骤一:将四轴倾转旋翼机构调整到初始状态,使丝杠螺母14停留在靠近伺服电机12一侧的滚珠丝杠13端部,此时推拉杆20及推拉盘21处于回缩状态,同时倾转杆6位于锁体23的倾转杆0°锁止槽内;
步骤二:启动伺服电机12,带动滚珠丝杠13正向转动,以将丝杠螺母14移动到远离伺服电机12一侧的滚珠丝杠13端部,同时通过随动的滑块螺母转接架18及转接连杆19将推拉杆20及推拉盘21调整到伸出状态,进而使倾转杆6脱离锁体23的倾转杆0°锁止槽,然后关闭伺服电机12;
步骤三:启动舵机7,同时调整倾转杆6杆体两端的无刷电机5的转速,使倾转杆6杆体两端的无刷电机5产生转速差,以打破倾转杆6杆体两端的力偶平衡,从而使倾转杆6杆体产生扭矩,进而实现倾转杆6杆体的前倾或后倾;
步骤四:当倾转杆6杆体达到设定的前倾角度或后倾角度时,重新调整倾转杆6杆体两端的无刷电机5的转速,并消除倾转杆6杆体两端的无刷电机5之间的转速差,同时通过舵机7维持倾转杆6杆体的倾转角度不变;
步骤五:重新启动伺服电机12,带动滚珠丝杠13反向转动,以将丝杠螺母14重新移动到靠近伺服电机12一侧的滚珠丝杠13端部,同时通过随动的滑块螺母转接架18及转接连杆19将推拉杆20及推拉盘21重新调整到回缩状态,进而使倾转杆6进入倾转杆45°锁止槽或 倾转杆90°锁止槽中,此时倾转杆6实现倾转锁定,然后关闭舵机7,至此四轴倾转旋翼机构的倾转过程结束。
实施例中的方案并非用以限制本发明的专利保护范围,凡未脱离本发明所为的等效实施或变更,均包含于本案的专利范围中。

Claims (6)

  1. 一种基于无人机的四轴倾转旋翼机构,其特征在于:包括旋翼组件、旋翼倾转驱动组件及旋翼倾转锁定执行组件;所述旋翼组件包括螺旋桨叶片及无刷电机;所述旋翼倾转驱动组件包括倾转杆及舵机,在倾转杆的杆体两端对称安装有两台无刷电机,在每台无刷电机的电机轴上均安装有一组螺旋桨叶片,在每组螺旋桨叶片外侧均安装有桨叶保护套,两组螺旋桨叶片的桨叶保护套之间通过稳定杆相固连;在所述倾转杆的中部固定有一根转接轴,转接轴与倾转杆相垂直,转接轴通过倾转驱动联轴器与舵机的动力输出轴相固连;所述旋翼倾转驱动组件与无人机机身之间通过旋翼倾转锁定执行组件相连,旋翼倾转驱动组件对称分布在无人机机身两侧。
  2. 根据权利要求1所述的一种基于无人机的四轴倾转旋翼机构,其特征在于:所述旋翼倾转锁定执行组件包括伺服电机、滚珠丝杠、丝杠螺母、丝杠导轨、丝杠滑块、丝杠安装架、滑块螺母转接架、转接连杆、推拉杆、推拉盘、支撑套管及锁体;所述滚珠丝杠设置在丝杠安装架上,滚珠丝杠一端通过倾转锁定联轴器与伺服电机的电机轴相固连,伺服电机与无人机机身相固连;所述丝杠导轨设置在丝杠安装架上,丝杠导轨与滚珠丝杠相平行,丝杠导轨对称分布在滚珠丝杠两侧;所述丝杠螺母套装在滚珠丝杠上,所述丝杠滑块套装在丝杠导轨上,丝杠螺母与丝杠滑块之间通过滑块螺母转接架相固连;所述转接连杆一端铰接在滑块螺母转接架上,转接连杆另一端与推拉杆一端相铰接,推拉杆另一端固连在推拉盘上,推拉杆通过直线轴承穿装在外支撑杆内部,支撑套管与无人机机身相固连;所述推拉杆与滚珠丝杠及丝杠导轨相垂直;所述锁体固装在支撑套管外端,锁体内部设有导向腔室,所述推拉盘位于导向腔室内,推拉盘在导向腔室内仅具有轴向移动自由度;在所述锁体外端面上设有若干倾转杆锁止槽,倾转杆锁止槽与倾转杆相配合;所述舵机固装在推拉盘上,在所述锁体上开设有转接轴穿入孔。
  3. 根据权利要求2所述的一种基于无人机的四轴倾转旋翼机构,其特征在于:在所述转接轴穿入孔内设有滚珠轴承,滚珠轴承的外圈与锁体过盈配合,滚珠轴承的内圈与转接轴间隙配合。
  4. 根据权利要求2所述的一种基于无人机的四轴倾转旋翼机构,其特征在于:在所述导向腔室的锁体外壳上开设有若干条轴向导向孔,在所述推拉盘的圆周面上固装有导向销,且导向销为位于轴向导向孔内,通过导向销与轴向导向孔配合对推拉盘的自由度进行限定。
  5. 根据权利要求2所述的一种基于无人机的四轴倾转旋翼机构,其特征在于:所述倾转杆锁止槽呈辐射状分布,包括倾转杆0°锁止槽、倾转杆45°锁止槽及倾转杆90°锁止槽。
  6. 权利要求1所述的基于无人机的四轴倾转旋翼机构的倾转方法,其特征在于包括如下步骤:
    步骤一:将四轴倾转旋翼机构调整到初始状态,使丝杠螺母停留在靠近伺服电机一侧的滚珠丝杠端部,此时推拉杆及推拉盘处于回缩状态,同时倾转杆位于锁体的倾转杆0°锁止槽内;
    步骤二:启动伺服电机,带动滚珠丝杠正向转动,以将丝杠螺母移动到远离伺服电机一侧的滚珠丝杠端部,同时通过随动的滑块螺母转接架及转接连杆将推拉杆及推拉盘调整到伸出状态,进而使倾转杆脱离锁体的倾转杆0°锁止槽,然后关闭伺服电机;
    步骤三:启动舵机,同时调整倾转杆杆体两端的无刷电机的转速,使倾转杆杆体两端的无刷电机产生转速差,以打破倾转杆杆体两端的力偶平衡,从而使倾转杆杆体产生扭矩,进而实现倾转杆杆体的前倾或后倾;
    步骤四:当倾转杆杆体达到设定的前倾角度或后倾角度时,重新调整倾转杆杆体两端的无刷电机的转速,并消除倾转杆杆体两端的无刷电机之间的转速差,同时通过舵机维持倾转杆杆体的倾转角度不变;
    步骤五:重新启动伺服电机,带动滚珠丝杠反向转动,以将丝杠螺母重新移动到靠近伺服电机一侧的滚珠丝杠端部,同时通过随动的滑块螺母转接架及转接连杆将推拉杆及推拉盘重新调整到回缩状态,进而使倾转杆进入倾转杆45°锁止槽或倾转杆90°锁止槽中,此时倾转杆实现倾转锁定,然后关闭舵机,至此四轴倾转旋翼机构的倾转过程结束。
PCT/CN2018/100794 2018-08-15 2018-08-16 一种基于无人机的四轴倾转旋翼机构及倾转方法 WO2020034137A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810929533.6A CN108945420B (zh) 2018-08-15 2018-08-15 一种基于无人机的四轴倾转旋翼机构及倾转方法
CN201810929533.6 2018-08-15

Publications (1)

Publication Number Publication Date
WO2020034137A1 true WO2020034137A1 (zh) 2020-02-20

Family

ID=64469984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100794 WO2020034137A1 (zh) 2018-08-15 2018-08-16 一种基于无人机的四轴倾转旋翼机构及倾转方法

Country Status (2)

Country Link
CN (1) CN108945420B (zh)
WO (1) WO2020034137A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112339980A (zh) * 2020-11-27 2021-02-09 中国科学院沈阳自动化研究所 一种火炬传递无人机
CN114476047A (zh) * 2021-12-03 2022-05-13 南昌三瑞智能科技有限公司 一种倾转旋翼无人机电机倾转机构
CN115465446A (zh) * 2022-10-25 2022-12-13 铜仁市*** 一种森林资源调查野外调查用的无人机
CN117125252A (zh) * 2023-10-09 2023-11-28 南京航空航天大学 一种微型飞行器动力***驱动装置
CN117446163A (zh) * 2023-12-22 2024-01-26 中国航空工业集团公司西安飞机设计研究所 一种倾转旋翼飞机多余度倾转操纵机构

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110641680B (zh) * 2018-12-18 2021-07-23 深圳市格上格创新科技有限公司 可折叠多旋翼无人机
CN110316370B (zh) * 2019-06-25 2021-07-06 北京航空航天大学 一种分布式动力倾转机翼飞机的布局与控制方法
CN110697035B (zh) * 2019-09-16 2022-07-12 南京航空航天大学 一种六自由度独立可控飞行器及其控制方法
CN111516866B (zh) * 2020-04-29 2022-08-19 燕山大学 单驱动倾转双旋翼机
CN114838629A (zh) * 2022-04-18 2022-08-02 南京理工大学 一种滚珠丝杠式燃气舵伺服机构
CN118182902B (zh) * 2024-05-18 2024-07-12 厦门天源欧瑞科技有限公司 一种具有保护结构的激光雷达载机

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103359283A (zh) * 2013-06-29 2013-10-23 天津大学 一种高可靠性倾转旋翼无人飞行器
CN103381885A (zh) * 2012-05-02 2013-11-06 田瑜 多旋翼飞行器
CN104859854A (zh) * 2015-04-16 2015-08-26 北京航空航天大学 一种大载荷低结构复杂度双共轴双旋翼无人飞行器
EP2990332A1 (en) * 2014-08-19 2016-03-02 Tau Emerald Rotors Inc. Controlling rotary wing aircraft
WO2017043980A1 (en) * 2015-09-09 2017-03-16 Altus IP Limited Systems and methods for stabilisation of aerial vehicles
CN106628141A (zh) * 2013-01-10 2017-05-10 深圳市大疆创新科技有限公司 可变形飞行器
KR20170114354A (ko) * 2016-04-04 2017-10-16 선문대학교 산학협력단 드론
CN207450249U (zh) * 2017-11-08 2018-06-05 沈阳旋飞航空技术有限公司 一种无人机旋翼变桨距机构

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB769206A (en) * 1954-03-30 1957-03-06 William Leslie Edward Brewer Improvements in or relating to rotary wing aircraft
CN102709838B (zh) * 2011-12-15 2014-12-10 东北大学 一种高压输电线巡检机器人机构
KR101767943B1 (ko) * 2015-05-08 2017-08-17 광주과학기술원 추력의 방향 설정이 가능한 멀티로터 타입의 무인 비행체
CN105235897B (zh) * 2015-10-16 2017-10-20 华南理工大学 一种机臂轴可转动的平行轴四轴飞行器
CN205440861U (zh) * 2015-12-24 2016-08-10 刘海涛 多旋翼飞行器
CN106379521B (zh) * 2016-09-20 2019-02-12 东莞飞侠智能科技股份有限公司 一种智能无人飞机
KR101884902B1 (ko) * 2017-01-12 2018-08-02 삼성중공업 주식회사 무인비행체
CN207670663U (zh) * 2017-12-21 2018-07-31 湘优加(北京)产业信息技术研究院有限公司 一种无人机用倾转机构
CN208855867U (zh) * 2018-08-15 2019-05-14 东北大学 一种基于无人机的四轴倾转旋翼机构

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103381885A (zh) * 2012-05-02 2013-11-06 田瑜 多旋翼飞行器
CN106628141A (zh) * 2013-01-10 2017-05-10 深圳市大疆创新科技有限公司 可变形飞行器
CN103359283A (zh) * 2013-06-29 2013-10-23 天津大学 一种高可靠性倾转旋翼无人飞行器
EP2990332A1 (en) * 2014-08-19 2016-03-02 Tau Emerald Rotors Inc. Controlling rotary wing aircraft
CN104859854A (zh) * 2015-04-16 2015-08-26 北京航空航天大学 一种大载荷低结构复杂度双共轴双旋翼无人飞行器
WO2017043980A1 (en) * 2015-09-09 2017-03-16 Altus IP Limited Systems and methods for stabilisation of aerial vehicles
KR20170114354A (ko) * 2016-04-04 2017-10-16 선문대학교 산학협력단 드론
CN207450249U (zh) * 2017-11-08 2018-06-05 沈阳旋飞航空技术有限公司 一种无人机旋翼变桨距机构

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112339980A (zh) * 2020-11-27 2021-02-09 中国科学院沈阳自动化研究所 一种火炬传递无人机
CN114476047A (zh) * 2021-12-03 2022-05-13 南昌三瑞智能科技有限公司 一种倾转旋翼无人机电机倾转机构
CN114476047B (zh) * 2021-12-03 2024-02-13 南昌三瑞智能科技有限公司 一种倾转旋翼无人机电机倾转机构
CN115465446A (zh) * 2022-10-25 2022-12-13 铜仁市*** 一种森林资源调查野外调查用的无人机
CN117125252A (zh) * 2023-10-09 2023-11-28 南京航空航天大学 一种微型飞行器动力***驱动装置
CN117446163A (zh) * 2023-12-22 2024-01-26 中国航空工业集团公司西安飞机设计研究所 一种倾转旋翼飞机多余度倾转操纵机构
CN117446163B (zh) * 2023-12-22 2024-04-09 中国航空工业集团公司西安飞机设计研究所 一种倾转旋翼飞机多余度倾转操纵机构

Also Published As

Publication number Publication date
CN108945420B (zh) 2023-08-04
CN108945420A (zh) 2018-12-07

Similar Documents

Publication Publication Date Title
WO2020034137A1 (zh) 一种基于无人机的四轴倾转旋翼机构及倾转方法
CN202754143U (zh) 旋转发动机垂直起降飞机
CN107416200B (zh) 一种电动复合翼飞行器
CN107140198B (zh) 双共轴倾转旋翼无人机短舱结构
EP3663197B1 (en) High-speed hybrid propulsion for aircraft
WO2013056493A1 (zh) 固定翼与电动多旋翼组成的复合飞行器
CN103935511A (zh) 一种倾转三旋翼飞行器
CN103332293A (zh) 倾转式双涵道超小型无人机
WO2013056492A1 (zh) 固定翼与电动多桨组成的具有直升机功能的复合飞行器
CN105270619A (zh) 一种油动变距四旋翼无人机
CN106927035B (zh) 大机动性自转旋翼机及其控制方法
CN110001949A (zh) 一种共轴式复合自转无人直升机
CN103708028A (zh) 一种垂直起降的电动飞机
CN101177167A (zh) 飞行器的动力驱动***
CN109466751A (zh) 一种直升旋翼机
CN113401350A (zh) 涵道飞行器
CN210793660U (zh) 一种单旋翼尾座式垂直起降无人机
CN212766736U (zh) 倾转翼机构及具有倾转翼机构的无人机
CN214029126U (zh) 一种共轴双桨复合推力直升机
CN107215458B (zh) 电动双共轴倾转旋翼飞行器
CN215475777U (zh) 涵道飞行器
CN212047876U (zh) 单轴双旋桨无人机
CN210526851U (zh) 用于航空器的变距驱动组合部件
CN209427011U (zh) 一种直升旋翼机
CN213323678U (zh) 一种动力分配型式的可垂直起降无人飞行器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18930113

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18930113

Country of ref document: EP

Kind code of ref document: A1