WO2020031809A1 - Lighting device and lighting unit - Google Patents

Lighting device and lighting unit Download PDF

Info

Publication number
WO2020031809A1
WO2020031809A1 PCT/JP2019/030026 JP2019030026W WO2020031809A1 WO 2020031809 A1 WO2020031809 A1 WO 2020031809A1 JP 2019030026 W JP2019030026 W JP 2019030026W WO 2020031809 A1 WO2020031809 A1 WO 2020031809A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
unit
aperture
lighting device
light source
Prior art date
Application number
PCT/JP2019/030026
Other languages
French (fr)
Japanese (ja)
Inventor
はるか 山崎
覚 岡垣
佑輔 藤井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201980051465.0A priority Critical patent/CN112534180A/en
Priority to JP2020535696A priority patent/JP7066304B2/en
Publication of WO2020031809A1 publication Critical patent/WO2020031809A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V14/00Controlling the distribution of the light emitted by adjustment of elements
    • F21V14/08Controlling the distribution of the light emitted by adjustment of elements by movement of the screens or filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices

Definitions

  • the present invention relates to a lighting device and a lighting unit.
  • JP 2013-092616 A (for example, Claim 1, paragraph 0017, FIG. 1)
  • the above-mentioned conventional lighting device illuminates with light transmitted through the display means for displaying an image, so that the configuration of the device is complicated. It is also desired to provide a lighting environment that simulates the insertion of sunlight from a window with a lighting device having a simple configuration.
  • An object of the present invention is to provide a lighting device and a lighting unit which can irradiate light simulating insertion of sunlight with a simple configuration.
  • a lighting device includes a light source unit that emits light, a first light blocking unit, and a first light passage unit, and the first light source out of the light emitted by the light source unit.
  • a first aperture unit that emits light that has passed through the light transmission unit, and a driving unit that moves at least one of the light source unit and the first aperture unit.
  • a lighting unit includes a first lighting device that is the above-described lighting device, and a second lighting device that emits illumination light, wherein the second lighting device includes the second lighting device. Changing the color of the light emitted from the second lighting device such that the color change of the light emitted from the device is synchronized with the color change of the light emitted from the first lighting device. It is characterized by the following.
  • FIG. 1 is a perspective view schematically showing a configuration of a lighting device according to Embodiment 1 of the present invention.
  • FIG. 2 is a longitudinal sectional view schematically showing a configuration of the lighting device according to Embodiment 1.
  • FIG. 3 is a front view schematically showing an aperture unit shown in FIGS. 1 and 2.
  • FIG. 4 is a front view schematically showing another aperture unit shown in FIGS. 1 and 2.
  • FIG. 2 is a functional block diagram schematically showing a configuration of a control system of the lighting device according to Embodiment 1.
  • (A) and (B) are side views which show the structure of the lens shown in FIG. 2 schematically.
  • FIG. 2 is a perspective view schematically showing a state in the room when the lighting device according to Embodiment 1 is installed in a ceiling of the room.
  • FIGS. 3A to 3D are diagrams illustrating a temporal change in the shape of a light irradiation area formed by irradiation light emitted from the illumination device according to the first embodiment.
  • FIG. 3 is a diagram illustrating changes in the shape and brightness distribution of irradiation light emitted from the illumination device according to Embodiment 1.
  • FIG. 3 is a diagram illustrating changes in the shape and brightness distribution of irradiation light emitted from the illumination device according to Embodiment 1.
  • FIG. 9 is a perspective view schematically showing a configuration of a lighting unit according to Embodiment 2 of the present invention.
  • FIG. 9 is a functional block diagram schematically showing a configuration of a control system of a lighting unit according to Embodiment 2.
  • FIG. 10 is a perspective view schematically showing a state in a room when the lighting unit according to Embodiment 2 is installed in a ceiling of the room.
  • FIG. 13 is a perspective view schematically showing a configuration of a lighting device according to Embodiment 3 of the present invention.
  • FIG. 14 is a longitudinal sectional view schematically showing a configuration of a lighting device according to a third embodiment.
  • FIG. 15 is a perspective view schematically showing a state in a room when the lighting device according to Embodiment 3 is installed in a ceiling of the room.
  • FIG. 14 is a diagram showing a change in the shape of a light irradiation area formed by irradiation light emitted from the illumination device according to Embodiment 3.
  • FIG. 14 is a diagram showing a change in the shape of a light irradiation area formed by irradiation light emitted from the illumination device according to Embodiment 3.
  • FIG. 13 is a diagram illustrating a relationship between a configuration of a lighting device according to Embodiment 3 and a shape of irradiation light emitted from the lighting device.
  • FIG. 13 is a perspective view schematically showing a configuration of a lighting device according to Embodiment 4 of the present invention. It is a perspective view which shows roughly the structure of the illuminating device which concerns on Embodiment 5 of this invention.
  • FIG. 15 is a functional block diagram schematically showing a configuration of a control system of the lighting device according to Embodiment 5.
  • FIG. 17 is a perspective view schematically showing a configuration of a lighting unit according to Embodiment 6 of the present invention.
  • FIG. 19 is a perspective view schematically showing a state in a room when the lighting unit according to Embodiment 6 is installed in a ceiling of the room.
  • the figure shows the coordinate axes of the XYZ rectangular coordinate system.
  • the X axis and the Z axis are horizontal coordinate axes.
  • the Y axis is a coordinate axis in the vertical direction (that is, the height direction).
  • coordinate axes of an X 1 Y 1 Z 1 orthogonal coordinate system are shown for easy understanding of the description of the components of the lighting device.
  • the X 1 Y 1 Z 1 rectangular coordinate system is obtained by rotating the XYZ rectangular coordinate system about the X axis.
  • the lighting device is a device that can emit light simulating insertion of sunlight.
  • the lighting device changes one or more of the irradiation position, shape, color, brightness, and the like of irradiation light over time. That is, the irradiation position, shape, color, brightness, and the like of the irradiation light change in accordance with the time change of the actual irradiation position, shape, color, brightness, and the like of sunlight.
  • the irradiation light is, for example, light simulating insertion of sunlight through a window.
  • the lighting device can make a person in a room without a window, a passage without a window, or the like feel an outdoor atmosphere or the passage of time.
  • the lighting device can make a person in a room without a window, a passage without a window, or the like feel a sense of openness.
  • a room without a window includes, for example, a basement.
  • Windowless walkways include, for example, underpasses and underground shopping malls.
  • the plurality of lighting devices when installing a plurality of lighting devices according to the embodiment on the ceiling of a passage, the plurality of lighting devices are arranged with an interval therebetween.
  • the plurality of irradiation lights emitted from the plurality of lighting devices are irradiated on the irradiation object, and as a result, a light irradiation area is formed on the irradiation object.
  • the object to be irradiated is, for example, a wall or a floor of a passage.
  • the plurality of light irradiation areas irradiated with the plurality of irradiation lights emitted from the plurality of lighting devices move with the passage of time.
  • a light irradiation area formed by irradiation light moves along a predetermined route as time passes.
  • the shape of the irradiation light applied to the wall of the passage (that is, the shape of the light irradiation area) changes with the movement of the light irradiation area. Due to the movement of the light irradiation area and the change in the shape, a person who is in a passage without windows can feel as if there are a plurality of windows and sunlight is entering through the plurality of windows. Also, a person in a passage without a window can eliminate a feeling of obstruction, which is a sensation of feeling uncomfortable in a closed narrow space.
  • the lighting device according to the embodiment be installed at a position where it is difficult for a person to see directly.
  • the lighting device according to the embodiment is embedded and mounted on a ceiling.
  • a person who is in the room where the lighting device is installed cannot easily grasp where the insertion light simulated by the irradiation light enters the room.
  • a person in a room in which the lighting device according to the embodiment is installed can obtain a feeling as if sunlight were entering through a window.
  • FIG. 1 is a perspective view schematically showing a configuration of a lighting device 1 according to the first embodiment.
  • FIG. 2 is a longitudinal sectional view schematically showing the configuration of the lighting device according to the first embodiment.
  • the lighting device 1 includes a light source unit 10, an aperture unit 20 as a first aperture unit, and a driving unit 40.
  • the light source unit 10 emits light L1.
  • the aperture section 20 has a light-blocking section 21 as a first light-blocking section that does not allow light to pass therethrough, and a light-passing section 22 as a first light-passing section that passes light.
  • the aperture section 20 emits the light L2 of the light L1 emitted from the light source section 10 that has passed through the light passage section 22.
  • the driving section 40 has a mechanism for moving at least one of the light source section 10 and the aperture section 20.
  • This mechanism is, for example, a driving force transmission mechanism such as a support member that movably supports at least one of the light source unit 10 and the aperture unit 20, a guide member that guides the support member, and a gear that applies force to the support member.
  • a driving force generating mechanism such as a motor that applies a driving force to the driving force transmission mechanism.
  • the mechanism for moving at least one of the light source unit 10 and the aperture unit 20 is not particularly limited.
  • the lighting device 1 includes an aperture unit 30 as a second aperture unit.
  • the aperture section 30 has a light-blocking section 31 as a second light-blocking section that is a section that does not allow light to pass through, and a light-passing section 32 as a second light-passing section that is a section that allows light to pass through.
  • the aperture section 30 emits the light L3 that has passed through the light passing section 32 of the light L2 that has passed through the light passing section 22 of the aperture section 20.
  • the light L3 that has passed through the light passage section 32 of the aperture section 30 is irradiated on, for example, a wall 82 as an irradiation target, and forms a light irradiation area 91 on the wall 82.
  • the illumination device 1 may not include the aperture unit 30.
  • the light L2 that has passed through the light passage section 22 of the aperture section 20 is irradiated on the wall 82 to form a light irradiation area 91 on the wall 82.
  • the driving section 40 may have a mechanism for moving the aperture section 30. That is, the driving unit 40 may have a mechanism for moving one or more of the light source unit 10, the aperture unit 20, and the aperture unit 30.
  • the driving unit 40 moves the light irradiation region 91 by moving at least one of the light source unit 10 and the aperture unit 20 in the X-axis direction, for example.
  • the shape is changed will be described.
  • the direction of the central ray of the light L1 passing through the light passage section 22 is defined as a first direction (that is, the Y 1 axis direction), and is orthogonal to the Y 1 axis direction and the direction parallel to one side a second direction (i.e., X 1 axial direction) and, a direction perpendicular to both the Y 1 axis direction and X 1 axial third direction (i.e., Z 1 axial direction) .
  • the driving unit 40 determines the absolute position of at least one of the light source unit 10 and the aperture unit 20, the relative position between the light source unit 10 and the aperture unit 20, and both the absolute position and the relative position in the second direction. (i.e., X 1 axial direction) is moved in a direction including a component of.
  • the driving unit 40 determines the absolute position of at least one of the light source unit 10 and the aperture unit 20, the relative position between the light source unit 10 and the aperture unit 20, and both the absolute position and the relative position. It may be moved in a direction including a component in one direction (that is, the Y 1 axis direction). Such a function will be described in detail in Embodiments 3 to 6 described below.
  • the lighting device 1 may include a lens 50 as an optical unit between the light source unit 10 and the aperture unit 20.
  • the lens 50 is, for example, a condenser lens.
  • the driving unit 40 includes an absolute position of at least one of the light source unit 10, the aperture unit 20, and the lens 50, a relative position between the light source unit 10, the aperture unit 20, and the lens 50, and the absolute position and the relative position. both, the second direction (i.e., X 1 axial direction) may be provided with a mechanism for moving in a direction including a component of.
  • the driving unit 40 includes an absolute position of at least one of the light source unit 10, the aperture unit 20, and the lens 50, a relative position between the light source unit 10, the aperture unit 20, and the lens 50, and the absolute position and the relative position.
  • a mechanism for moving both of the positions in a direction including a component in the first direction may be provided.
  • the light source unit 10 emits light L1.
  • the light L ⁇ b> 1 is emitted to the irradiation target as light L ⁇ b> 3 through the light passing part 22 of the aperture part 20 and the light passing part 32 of the aperture part 30.
  • the irradiation target is, for example, indoor walls 82 and 83, a floor 84, and the like.
  • the surface of the object to be irradiated with the light L3 is also called an irradiated surface.
  • the light source unit 10 may have a function of changing a light emission color.
  • the light source unit 10 may include a plurality of light sources that emit light of different colors. Further, the light source unit 10 may have a function of changing the light emission intensity.
  • the light source unit 10 preferably includes a semiconductor light source having high luminous efficiency.
  • the semiconductor light source is, for example, a light emitting diode (LED) or a laser diode (LD).
  • the light source unit 10 may include a lamp light source such as an incandescent lamp, a halogen lamp, or a fluorescent lamp. Further, the light source unit 10 may include a solid light source.
  • the solid-state light source includes, for example, an organic electroluminescence (organic EL) or a light source that emits the phosphor by irradiating the phosphor with excitation light.
  • Semiconductor light sources are a type of solid-state light source. In the following description, a case where the light source unit 10 has one or more LED light sources will be described.
  • FIG. 3 is a front view schematically showing the aperture unit 20 shown in FIGS. 1 and 2.
  • aperture means an opening of a frame that limits the size of a screen in an optical device that handles an image.
  • the aperture section 20 is a member having an aperture. That is, the aperture section 20 is a member including the light passing section 22.
  • the aperture unit 20 includes a light-shielding unit 21 that is a plate-shaped light-shielding member, and a light-passing unit 22 that is a trapezoidal opening formed in the light-shielding unit 21.
  • the light passing unit is configured such that the lower bottom 22a, which is the long side of the bottom of the light passing unit 22, is closer to the wall 82, which is the object to be irradiated, and the upper bottom 22b, which is the shorter side, is farther from the wall 82. 22 are formed.
  • the aperture unit 20 blocks a part of the light L1 emitted from the light source unit 10 and passes another part.
  • the aperture which is the light transmitting part 22 of the aperture part 20, has a shape for adjusting the size (that is, size) of the light to be transmitted.
  • the aperture unit 20 is a light distribution forming member that forms a light distribution of the emitted light L2 by passing a part of the light L1 emitted from the light source unit 10 and blocking the other part of the light L1. It is.
  • the aperture unit 20 emits light L2 having a cross section that is long in the X-axis direction and short in the Z-axis direction by blocking a part of the light L1 emitted from the light source unit 10.
  • the light passage section 22 of the aperture section 20 is an opening, but is not limited to the opening.
  • the light passage section 22 may be formed by a light transmissive member.
  • the aperture section 20 includes a base made of a light transmissive member and a light shielding member such as a mask provided in a region to be the light shielding section 21.
  • the light irradiation area 91 corresponding to the shape of the window is formed on the wall 82 by the aperture unit 20.
  • the illumination device 1 forms a light-irradiated area 91 in the shape of a window formed by the aperture section 20 and an aperture section 30 described later on a wall 82 as an object to be irradiated.
  • the shape of the light passage section 22 of the aperture section 20 is not limited to a trapezoidal shape.
  • the X-axis direction is a moving direction of the aperture unit 20 with respect to the light source unit 10.
  • the X-axis direction is, for example, the horizontal direction of the window-shaped light irradiation area 91.
  • the direction of movement of the aperture unit 20 with respect to the light source unit 10 does not have to coincide with the X-axis direction as long as it includes a component in the X-axis direction.
  • the aperture unit 20 may swing on a trajectory that draws a circle around the light source unit 10.
  • a rectangular light irradiation area For example, when light having a rectangular cross section in a direction orthogonal to the central ray is irradiated toward a wall 82 that stands perpendicular to a ceiling 81 on which the lighting device 1 is arranged, a rectangular light irradiation area
  • the side of the cross-sectional shape of the light corresponding to the side extending in the vertical direction in 91 extends, for example, in the horizontal direction (that is, the direction parallel to the ZX plane) at the positions of the aperture units 20 and 30. Further, the position of the light irradiation area 91 (that is, the position of the window-shaped light) moves in the horizontal direction (the X-axis direction in FIG. 2) with the passage of time.
  • the aperture unit 20 partially blocks light that spreads in the X-axis direction, which is the horizontal direction, in the window-shaped light irradiation area 91.
  • the aperture section 20 forms a horizontal edge shape of the illumination light corresponding to the vertical side in the rectangular window shape.
  • the driving unit 40 moves the aperture unit 20 in the X-axis direction corresponding to the horizontal direction of the light irradiation region 91. Accordingly, the horizontal edge shape of the irradiation light corresponding to the vertical side (for example, the sides 22a and 22b in FIG. 3) in the rectangular window shape also moves in the X-axis direction. Moves.
  • the center of the light emitting surface of the light source unit 10 is set as the rotation axis.
  • the light source unit 10 and the aperture unit 20 may be rotated in the X-axis direction. Thereby, the position and shape of the light irradiation area 91 change in the order of FIGS. 8A to 8D described later.
  • FIG. 4 is a front view schematically showing the aperture unit 30 shown in FIGS. 1 and 2.
  • the aperture section 30 is a member having an aperture. That is, the aperture section 30 is a member including the light passing section 32.
  • the aperture unit 30 includes a light shielding unit 31 that is a plate-shaped light shielding member, and a light passing unit 32 that is a rectangular opening formed in the light shielding unit 31.
  • the aperture unit 30 blocks a part of the light L2 emitted from the light source unit 10 and passed through the light transmitting unit 22, and allows the other part to pass.
  • the aperture, which is the light passing section 32 of the aperture section 30, has a shape that adjusts the size (that is, size) of light to be passed.
  • the aperture unit 30 partially blocks light that spreads in the Z-axis direction orthogonal to the X-axis direction.
  • the aperture unit 30 shields part of the light L2 emitted from the aperture unit 20 and emits light L3.
  • the shape of the light illuminated on the wall 82 is not a rectangle, It becomes a trapezoid.
  • the shape of the light passage part 32 (for example, opening) of the aperture part 30 is rectangular.
  • An edge forming a horizontal side of the light having a rectangular cross section is formed by light having a predetermined irradiation range in the Z-axis direction with respect to the center of the optical axis, that is, light having at least a spread in the Z-axis direction.
  • the position of the window-shaped light irradiation area 91 moves in the horizontal direction as time passes.
  • the aperture unit 30 partially blocks light that spreads in the Z-axis direction orthogonal to the X-axis direction.
  • the aperture section 30 forms a vertical edge shape of the illumination light corresponding to the horizontal side in the rectangular window shape.
  • the shape of the irradiation light on the wall 82 formed by the aperture section 30 does not change due to the swing of the aperture section 20 and the light source section 10. Therefore, the shape of the light passage portion 32 of the aperture portion 30 is, for example, a rectangular shape having parallel sides.
  • the aperture unit 30 does not block, for example, light that spreads in the X-axis direction. Partial light blocking of light spreading in the X-axis direction is performed by the aperture unit 20.
  • FIG. 5 is a functional block diagram schematically showing a configuration of a control system of the lighting device 1.
  • the lighting device 1 includes a light source unit 10, a light source driving unit 71 that drives the light source unit 10, and a driving force transmission mechanism such as a gear that moves at least one of the light source unit 10 and the aperture unit 20.
  • a motor 41 as a driving force generating unit that applies a driving force to the motor
  • a motor driving unit 42 such as a motor driving circuit
  • the drive unit 40 changes the absolute position of at least one of the light source unit 10 and the aperture unit 20, the relative position between the light source unit 10 and the aperture unit 20, or both the absolute position and the relative position.
  • the change in the relative position between the light source unit 10 and the aperture unit 20 includes a change in the attitude of the light source unit 10 with respect to the aperture unit 20. That is, if any one of the angle and the position when the light from the light source unit 10 enters the aperture unit 20 is different, it is considered that the relative position between the light source unit 10 and the aperture unit 20 has changed.
  • movement such a change in the absolute position or the relative position is collectively referred to as “movement” of the light source unit 10 or the aperture unit 20.
  • the drive unit 40 moves the aperture unit 20 or the light source unit 10 in the X-axis direction, for example.
  • the drive unit 40 includes a drive circuit for executing the movement of the aperture unit 20 or the light source unit 10, a motor, a gear, or the like.
  • the control unit 72 can change the emission color or emission intensity of the light source unit 10.
  • the control unit 72 can include a circuit for driving the light source unit 10.
  • the light source unit 10 may include a processor that executes a program.
  • the lens 50 condenses the light L1 emitted from the light source unit 10.
  • Condensing refers to collecting light in one place or one direction.
  • the lens 50 reduces the divergence angle of the light L1 emitted from the light source unit 10.
  • the lens 50 changes the light L1 emitted from the light source unit 10 into a light beam close to a parallel light.
  • the divergence angle of the light emitted from the aperture units 20 and 30 is smaller than the divergence angle of the light L1 emitted from the light source unit 10.
  • the divergence angle between the light L2 and the light L3 can be changed depending on the distance from the light source unit 10 to the aperture units 20 and 30 and the sizes of the light passing units 22 and 32 of the aperture units 20 and 30.
  • the size of the lighting device 1 can be reduced.
  • the distance from the light source unit 10 to the aperture units 20 and 30 can be shortened by using the lens 50. Further, by using the lens 50, the light use efficiency of the light L1 emitted from the light source unit 10 can be increased.
  • FIGS. 6A and 6B are side views schematically showing the configuration of the lens 50 as the optical unit shown in FIG.
  • the lens 50 is, for example, a collimator lens.
  • a lens array is provided on the light emitting surface side of the lens 50. Curved surface constituting each lens surface of the lens array may be different radii of curvature in the X 1 axis direction and the Z 1 axial direction.
  • the lens array may employ a toroidal lens surface or a cylindrical lens surface.
  • the drive unit 40 controls the absolute position of at least one of the light source unit 10 and the aperture unit 20, or the relative position between the light source unit 10 and the aperture unit 20, or Change both the absolute position and the relative position. Specifically, the drive unit 40 changes the position of the aperture unit 20 with respect to the light source unit 10. For example, the driving unit 40 changes the position of the aperture unit 20 on a circumference around the light source unit 10. That is, the drive unit 40 swings the aperture unit 20 in the X-axis direction around the light source unit 10. "Wobble" is to wobble.
  • the light source unit 10 may move in the X-axis direction along the aperture unit 20. That is, the light source unit 10 may move in the X-axis direction while keeping a constant distance from the aperture unit 20.
  • the aperture unit 20 may move in the X-axis direction while keeping a constant distance from the light source unit 10. Further, the light source unit 10 may change the attitude in the X-axis direction (that is, the direction of the light emitting surface of the light source unit 10) while keeping the distance from the aperture unit 20 constant.
  • the light L3 is emitted from the light passage section 32 of the aperture section 30 of the illumination device 1 installed on the ceiling 81.
  • Light L3 is irradiation light.
  • the light L3 is applied to a wall 82 as an object to be irradiated.
  • the wall 82 is, for example, an indoor wall.
  • the light irradiation area 91 is an area where the wall 82 is irradiated with the light L3.
  • the light irradiation area 91 is, for example, rectangular.
  • FIGS. 8A to 8D are diagrams showing changes in the shape of the light irradiation area 91 on the wall 82 of the light L3 radiated from the light passage portion 32 of the ceiling 81 by the lighting device 1.
  • the upper side is the ceiling 81 side
  • the lower side is the floor 84 side.
  • the right side is the east side
  • the left side is the west side.
  • FIG. 8B corresponds to a time in the middle of the sun.
  • the shape of the window projected on the wall 82 (that is, the shape of the light irradiation area 91) changes.
  • the positional relationship between the side of the aperture section 20 on the X-axis direction side and the light source section 10 changes, as shown in FIGS. 8A to 8D, the left and right sides of the light irradiation area 91 of the light L3 are exposed.
  • the slope of the side changes.
  • the shape of the light irradiation region 91 of the irradiated light L3 changes from the parallelogram shown in FIG. 8A to the rectangle shown in FIG. 8B, and then changes to the shape shown in FIG.
  • the rectangle changes from the illustrated rectangle to the parallelogram illustrated in FIG.
  • the shape of the emitted light L3 is, for example, similar to the shape of the sun's insertion light inserted from an opening such as a window.
  • the shape of the light L3 is, for example, linked to the time change of the actual sunlight.
  • the positional relationship between the aperture unit 20 and the light source unit 10 changes in conjunction with the actual time change of sunlight.
  • the color or intensity of the light of the light source unit 10 changes, for example, in conjunction with the actual time change of sunlight.
  • the light source unit 10 emits strong white light L1.
  • the light source unit 10 emits the weak red light L1. Therefore, the viewer can feel that the light L3 is the insertion light of the sunlight.
  • FIG. 9 is a diagram illustrating a result obtained by simulating a brightness distribution of a light irradiation area at the time.
  • the distance from the light source unit 10 to the aperture unit 20 is defined as a distance A1.
  • the distance from the aperture unit 20 to the aperture unit 30 is defined as a distance A2.
  • the distance from the light source unit 10 to the object to be irradiated is referred to as a distance A3.
  • the light L ⁇ b> 3 is irradiated on the irradiation target vertically.
  • the distance A1 and the distance A2 are set so as to satisfy the following three conditions even while the light source unit 10 and the aperture unit 20 are being driven.
  • the size of the light passing portion 22 of the aperture section 20 in the X-axis direction is smaller than the size of the light beam of the light L1 at the position of the aperture section 20. That is, the side on the X-axis direction side of the light passage section 22 of the aperture section 20 blocks a part of the light L1.
  • the size of the light passing portion 32 of the aperture portion 30 in the Z-axis direction orthogonal to the X-axis direction is smaller than the size of the light beam of the light L2 at the position of the aperture portion 30. That is, the side of the light passing portion 32 of the aperture portion 30 on the Z-axis direction orthogonal to the X-axis direction blocks a part of the light L2.
  • the shape of the light flux of the light L3 is determined by partially blocking the light L1 by the light blocking unit 21 of the aperture unit 20 and partially blocking the light L2 by the light blocking unit 31 of the aperture unit 30.
  • the cross-sectional shape of the light L3 formed by the partial light blocking of the aperture unit 20 and the partial light blocking of the aperture unit 30 is formed inside the cross-sectional shape of the light beam of the light L1.
  • the side of the light beam in the X-axis direction partially shielded by the aperture unit 20 and the side of the light beam in the Z-axis direction orthogonal to the X-axis direction partially shielded by the aperture unit 30 are on the irradiation target. Are in a meeting.
  • the divergence angle of the light L3 emitted from the aperture unit 20 will be described by simulation.
  • the shape of the irradiation light on the irradiation target in the part partially shielded by the aperture unit 20 is evaluated. Therefore, the aperture section 30 is not arranged.
  • the simulation conditions are as follows.
  • the light distribution of the light source unit 10 is a Lambertian light distribution.
  • Lambertian light distribution is light distribution in which the luminance of the light emitting surface is constant regardless of the viewing direction.
  • the light source unit 10 includes, for example, an LED as a light source.
  • the distance A1 is 10 mm.
  • the distance A3 is 200 mm.
  • the width of the aperture section 20 in the X-axis direction is 228 mm.
  • the divergence angle of the light L2 in the X-axis direction is 170 degrees. That is, the aperture unit 20 partially blocks the light L2 having a divergence angle of 170 degrees or more emitted from the light source unit 10.
  • the divergence angle emitted from the aperture section 20 is 170 degrees or less, the shape of the light-shielding section 21 of the aperture section 20 is projected onto the irradiation target.
  • the divergence angle emitted from the aperture section 20 is larger than 170 degrees, the reproducibility of the shape of the projected aperture section 20 decreases.
  • the shape of the irradiation light on the object to be irradiated in the portion that is partially shielded by the aperture section 20 has a rounded shape. More optimally, when the divergence angle emitted from the aperture section 20 is 90 degrees or less, the shape of the light-shielding portion of the aperture section 20 is more clearly projected onto the irradiation target.
  • ⁇ 1-3 Effect As described above, according to the lighting device 1 of the first embodiment, it is possible to irradiate light simulating insertion of sunlight with a simple configuration.
  • FIG. 11 is a perspective view schematically showing a configuration of a lighting unit 2 according to the second embodiment. 11, the same or corresponding components as those shown in FIG. 1 are denoted by the same reference numerals as those shown in FIG.
  • FIG. 12 is a functional block diagram schematically showing a configuration of a control system of lighting unit 2 according to the second embodiment. 12, the same or corresponding components as those shown in FIG. 5 are denoted by the same reference numerals as those shown in FIG.
  • FIG. 13 is a perspective view schematically showing a state in the room when the lighting unit 2 is installed in the ceiling 81 of the room. 13, components that are the same as or correspond to the components shown in FIG. 7 are denoted by the same reference numerals as those shown in FIG.
  • the lighting unit 2 includes a lighting device 1 (also referred to as a “first lighting device”) according to the first embodiment and another lighting device 1a (“second lighting device”).
  • the lighting device 1a is a device that can simulate a blue sky, for example.
  • the lighting device 1a emits blue light. That is, the light emitting surface of the lighting device 1a is blue. Blue light is generated using, for example, Rayleigh scattering.
  • the lighting device 1a has, for example, a rectangular light emitting surface.
  • the lighting device 1a is, for example, a device that displays a scene outside a window. An observer under the lighting device 1a can feel as if he / she is looking at the blue sky through the skylight by looking at the light emitting surface of the lighting device 1a.
  • the lighting device 1 is disposed between the lighting device 1a and the wall 82.
  • the wall 82 is an irradiation target to which the lighting device 1 emits light.
  • the shape of the light irradiation area 91 of the light L3 applied to the wall 82 is determined based on the shape of the illumination device 1a that simulates a skylight.
  • the size of the light irradiation area 91 of the light L3 applied to the wall 82 is determined based on the size of the lighting device 1a.
  • the position and size of the light irradiation area 91 formed by the light L3 irradiated on the wall 82 are determined. You. In other words, the shape and size of the light passing portion 22 of the aperture section 20 and the shape and size of the light passing portion 32 of the aperture portion 30 are determined.
  • the lighting device 1a changes the color of the light emitted from the lighting device 1a such that the color change of the light emitted from the lighting device 1a is synchronized with the color change of the light emitted from the lighting device 1. That is, the change in the color of the light emitted from the lighting device 1a is synchronized with the change in the color of the light emitted from the lighting device 1a.
  • the color of light emitted from the lighting device 1a and the color of light emitted from the lighting device 1 do not need to be the same.
  • the color or shape of the light L3 emitted from the lighting device 1 also changes over time.
  • the change in the color of the light L3 is linked to, for example, the color of sunlight that changes with time.
  • the illumination device 1a changes the emission intensity or the color of the emission light, for example, with the deformation of the illumination light of the illumination device 1. For example, at the time of the evening, the light emitted from the lighting device 1a changes from blue to orange.
  • the control unit 72 controls, for example, the lighting device 1a.
  • the light L ⁇ b> 3 is emitted from the aperture unit 30 of the lighting device 1 installed on the ceiling 81.
  • the light irradiation area 91 of the light L3 applied to the wall 82 has, for example, a shape obtained by deforming the shape of the illumination device 1a.
  • the light L3 emitted from the illumination device 1 is linked with the illumination light emitted from the illumination device 1a, so that the observer feels that the light L3 is light inserted from the illumination device 1a.
  • the observer feels that the light L3 emitted from the light passage portion 32 of the illumination device 1 is emitted from the illumination device 1a.
  • the observer feels the blue sky by looking at the lighting device 1a, and feels the sunlight by looking at the light L3 emitted by the lighting device 1.
  • Circadian rhythm is a 24-hour mechanism that adjusts the rhythm of the day so that it wakes up during the day and sleeps at night.
  • Embodiment 3 The lighting device 1 according to Embodiment 1 has a function of setting the degree of “bleeding” or “blurring” at a boundary between a region irradiated with sunlight and a region not irradiated with sunlight. Not. Lighting device 3 according to Embodiment 3 has a simple configuration and adjusts the degree of “bleeding” or “blurring” at a boundary between a region irradiated with sunlight and a region not irradiated with sunlight. it can.
  • FIG. 14 is a perspective view schematically showing a configuration of lighting device 3 according to Embodiment 3. 14, components that are the same as or correspond to the components shown in FIG. 1 are given the same reference numerals as those shown in FIG.
  • FIG. 15 is a longitudinal sectional view schematically showing a configuration of lighting device 3 according to Embodiment 3. 15, the same or corresponding components as those shown in FIG. 2 are denoted by the same reference numerals as those shown in FIG.
  • the driving unit 60 is configured such that the driving unit 60 has at least one of the absolute position of the light source unit 10 and the aperture unit 20, or the relative position between the light source unit 10 and the aperture unit 20, or the absolute position. wherein both the relative position in terms of changing the Y 1 axis direction is different from the illumination device 1 shown in FIGS. 1 and 2.
  • the lighting device 3 according to the third embodiment differs from the lighting device 1 shown in FIGS. 1 and 2 in that the lighting device 3 does not include the aperture unit 30.
  • FIG. 16 is a perspective view schematically showing a state in the room when lighting device 3 is installed in ceiling 81 of the room.
  • the same or corresponding components as those shown in FIG. 7 are denoted by the same reference numerals as those shown in FIG. 17 and 18 are diagrams showing changes in the shape of a light irradiation area formed by irradiation light emitted from the lighting device 3.
  • FIG. FIG. 19 is a diagram showing the relationship between the configuration of the illumination device 3 and the shape of the irradiation light.
  • Driving unit 60 the distance between the light source portion 10 and the aperture section 20, i.e., the optical axis of the light source portion 10 and an aperture unit 20 (i.e., Y 1 axial direction) to change the position of the.
  • the drive unit 60, the relative position of the aperture portion 20 and the light source unit 10 may be changed in Y 1 axially.
  • the drive unit 60 includes a drive circuit, a motor, a gear, or the like for changing a relative position between the aperture unit 20 and the light source unit 10.
  • the driving unit 60 can change the emission color or emission intensity of the light source unit 10.
  • the driving unit 60 can include a circuit for driving the light source unit 10.
  • 17 and 18 are diagrams illustrating, for example, a change in the shape of the light irradiation area on the wall 82 of the light L2 irradiated from the ceiling 81 by the illumination device 1.
  • the upper side is the ceiling 81 side
  • the lower side is the floor 84 or the ground side.
  • the dotted line in the figure indicates the height at which the wall 82 crosses the ceiling 81.
  • heading toward the wall 82 shown in FIGS. 17 and 18 corresponds to a case where there is a window on the back side.
  • the shape of the light irradiation area is changed to 18 from 17.
  • the shape of the light L2 is a shape obtained by projecting the shape of the window.
  • FIG. 17 corresponds to a state in which the sun is not covered with clouds.
  • the divergence angle is large becomes light L2 of the light is partially shielded by the aperture portion 20 has a shape which diffused light is irradiated.
  • FIG. 18 corresponds to the case where the sun is hidden by the clouds.
  • the color or intensity of light of the light source unit 10 changes, for example, due to the transition between fine and cloudy. For example, when there is no cloud on the sun, the light source unit 10 emits light L1 having a strong color temperature and a low color. Then, when the sun is hidden by the clouds, the light source unit 10 emits weak white light L1. Therefore, the observer can feel that the light L2 is the insertion light of the sunlight.
  • the light that has passed through the light passage section 22 of the aperture section 20 forms a light irradiation area 92 on a wall 82 as an irradiation target.
  • the size and blurring of the light irradiation area 92 are determined by the relationship between the size of the light source unit 10, the position of the light passing unit 22 of the aperture unit 20, and the wall 82 as the irradiation object.
  • the light L2 that has passed through the light passage section 22 of the aperture section 20 is irradiated perpendicularly to a wall 82 as an irradiation target.
  • the size of the vertical side of the light irradiation area 92 in the X-axis direction and the amount of blur in that direction are as follows, as follows: the size of the light source unit 10, the position of the aperture unit 20, and the wall 82 as the irradiation object. It depends on the relationship.
  • optical axis plane a plane extending in the X-axis direction passing through the center of the light irradiation area 92 in the Y-axis direction and the center of the light source unit 10 (hereinafter, referred to as “optical axis plane”) will be considered.
  • the width B 2 of the light irradiation region 92 as shown in Figure 19, the light passing portion 22 end of the aperture portion 20 the light emitted from the end portion of the light emitting surface of the light source unit 10 is at its end side direction
  • the position where the light passes through the area C is defined as an end of the light irradiation area 92.
  • B 1 a 1 ⁇ d 1 / c 1 (1)
  • B 2 ⁇ 2b 1 ⁇ (c 1 + d 1 ) / c 1 ⁇ + a 1 (2)
  • the relationship between the width B 2 and the blur width B 1 of the irradiation region 92, B 1 / B 2 ⁇ 0 . is preferably 5, more preferably a B 1 / B 2 ⁇ 0.1.
  • the blur width B 1 and the width B 2 of the light irradiation area 92 increase as the distance c 1 increases.
  • the width B 1 blur When the width B 1 blur is large enough, the width of the X-axis direction of the light irradiation region 92 spreads, the light irradiation region 92 is felt to be due to diffused light. For this reason, the person looks at the light irradiation area 92 and feels as if the sunlight when the sun was hidden by the clouds had entered.
  • the blur width in the Y-axis direction of the horizontal sides of the irradiation region 92 size also blur width B 1 is the same as that. Note that the above relationship is not limited to the X-axis direction and the Y-axis direction.
  • the boundary of the light irradiation region formed by the aperture section 20 partially blocking the light. Can be applied to the size in the light spreading direction and the amount of blur in that direction.
  • the driving unit 60 may change the width B 1 blurred over time.
  • the drive unit 60 by changing the d 1 or c 1 or both of these, it is possible to change the blur width B 1.
  • the drive unit 60 has a mechanism capable of controlling the height position of the light source unit 10, the height position of the aperture unit 20, the height position of the aperture unit 30, or all of them in addition to the movement control described above. Is also good.
  • the drive unit 60 may have a mechanism that can change the position of the aperture unit 30 with respect to the light source unit 10 in addition to the position of the aperture unit 20 with respect to the light source unit 10.
  • the blur By using the blur, a person (that is, an observer) under the lighting device 3 can be made to feel that the light L2 is the insertion light of sunlight.
  • At least one of the light source unit 10, the aperture unit 20, and the lens 50 is parallel to the ZX plane ( For example, it may have a function of moving in the X-axis direction).
  • FIG. 20 is a perspective view schematically showing a configuration of lighting device 4 according to Embodiment 4. 20, the same or corresponding components as those shown in FIG. 14 are denoted by the same reference numerals as those shown in FIG. Illumination device 4 according to Embodiment 4 is different from illumination device shown in FIG. 14 in that aperture unit 30 as a second aperture unit is further provided between aperture unit 20 and wall 82 as an object to be irradiated. 3 is different.
  • the aperture unit 30 is the same as that described in the first embodiment. Except for this point, the fourth embodiment is the same as the third embodiment.
  • the light L3 arriving at the light irradiation area 93 is transmitted through the light passing portion 22 of the aperture portion 20 and the light passing portion 32 of the aperture portion 30 to form a window in the wall 82.
  • the shape of the light irradiation area 93 is determined.
  • the drive unit 60 can cause blur at the end of the light irradiation area 93 by moving at least one of the light source unit 10 and the aperture unit 20 in the optical axis direction.
  • the fourth embodiment is the same as the third embodiment.
  • FIG. 21 is a perspective view schematically showing a configuration of lighting device 5 according to Embodiment 5.
  • 21 components that are the same as or correspond to the components shown in FIG. 20 are given the same reference numerals as those shown in FIG.
  • FIG. 22 is a functional block diagram schematically illustrating a configuration of a control system of the lighting device 5.
  • 22 components that are the same as or correspond to the components shown in FIG. 5 are denoted by the same reference numerals as those shown in FIG.
  • the lighting device 5 according to the fifth embodiment further includes a light diffuser 25 that diffuses light between the aperture unit 20 and the aperture unit 30 and a light diffuser driving unit 26 that is a circuit for driving the light diffuser 25.
  • the light diffuser 25 is, for example, a liquid crystal panel or a plate-like member having electrochromic characteristics. "Electrochromic” refers to the property of reversibly changing color when an electric current or voltage is applied to a certain substance.
  • the light diffuser 25 is arranged on an optical path in the lighting device 5.
  • the light diffuser 25 is provided inside the opening, which is the light passing part 22 of the aperture part 20, between the light source part 10 and the aperture part 20, between the aperture part 20 and the aperture part 30, and the light passing part of the aperture part 30. It is arranged at any one or more positions inside the opening 32 and between the aperture section 30 and the wall 82 as the irradiation target.
  • the light diffuser 25 is formed of, for example, a material that changes at least one of light diffusivity, light transmissivity, and color when a voltage is applied.
  • the light diffuser 25 When the light diffuser 25 is transparent and has no light diffusing property, the light irradiation area 94 formed by the light L3 is rectangular, and it is possible to make a person feel that the sun is not hidden by the clouds.
  • the light diffuser 25 has a light diffusing property, the light diffuser 25 serves as a light emitting surface, and the light irradiation area 94 formed by the light L3 is not a rectangle but has a shape wider than the rectangle. This can make a person feel that the sun is hidden by the clouds, that is, the sun is shading.
  • the light diffuser 25 is, for example, a light diffuser, a light transmissive, and a diffuser plate or a diffuser sheet, a cotton, a paper, or a material formed of a material that changes at least one of colors by applying a voltage. It may be configured by a combination or the like.
  • the light diffuser 25 When the light diffuser 25 is on the optical path of the lighting device 5, the light applied to the light diffuser 25 is diffused, and the light diffuser 25 becomes a part of the light exit surface. As a result, part or all of the illuminating light is diffused, and it is possible to make the observer feel that the sun is hidden by the clouds or that there is a tree outside the window.
  • the fifth embodiment is the same as the third or fourth embodiment.
  • FIG. 23 is a perspective view schematically showing a configuration of a lighting unit 6 according to the sixth embodiment.
  • components that are the same as or correspond to the components shown in FIG. 20 are denoted by the same reference numerals as those shown in FIG.
  • the lighting unit 6 according to the sixth embodiment is obtained by adding another lighting device 1a to the lighting device 5 according to the fifth embodiment.
  • Illumination device 1a is the same as illumination device 1a according to the second embodiment shown in FIG.
  • FIG. 24 is a perspective view schematically showing a state in the room when lighting unit 6 is installed in ceiling 81 of the room.
  • components that are the same as or correspond to the components shown in FIG. 13 are given the same reference numerals as those shown in FIG.
  • the lighting unit 6 includes the lighting device 4 according to Embodiment 4 and another lighting device 1a.
  • the illumination device 1a is, for example, the same as that described in the second embodiment, which is a device capable of simulating a blue sky.
  • light L3 arriving at light irradiation area 94 is shaped like a window in wall 82 by light passage section 22 of aperture section 20 and light passage section 32 of aperture section 30.
  • the shape of the light irradiation area 93 is determined.
  • the drive unit 60 can cause blur at the end of the light irradiation area 93 by moving at least one of the light source unit 10 and the aperture unit 20 in the optical axis direction.
  • the sixth embodiment is the same as the third to fifth embodiments.
  • the term indicating the positional relationship between components or the shape of the components is used to include a range that takes into account manufacturing tolerances, assembly variations, and the like.

Abstract

The lighting device (1) is provided with: a light source unit (10) for generating light (L1); a first aperture unit (20) having a first light-shielding part (21) and a first light-transmitting part (22), and through which is emitted light (L2) which is light from light (L1) generated by the light source unit (10) which has passed through the first light transmission part (22); and a drive unit (40) for causing the light source unit (10) and/or the first aperture unit (20) to move.

Description

照明装置及び照明ユニットLighting device and lighting unit
 本発明は、照明装置及び照明ユニットに関する。 The present invention relates to a lighting device and a lighting unit.
 映像を表示する表示手段(例えば、液晶パネル)を透過した光で被照射面を照明する照明装置が提案されている。例えば、特許文献1を参照。この照明装置を用いれば、表示手段に表示されている映像の投影によって多様な照明環境を提供することができる。 (4) There has been proposed an illumination device that illuminates a surface to be irradiated with light transmitted through a display unit (for example, a liquid crystal panel) that displays an image. See, for example, Patent Document 1. With this lighting device, it is possible to provide various lighting environments by projecting images displayed on the display means.
特開2013-092616号公報(例えば、請求項1、段落0017、図1)JP 2013-092616 A (for example, Claim 1, paragraph 0017, FIG. 1)
 しかしながら、上記従来の照明装置は、映像を表示する表示手段を透過した光で照明を行うので、装置の構成が複雑である。また、簡易な構成の照明装置によって、窓からの太陽光の差し込みを模擬した照明環境を提供することが望まれている。 However, the above-mentioned conventional lighting device illuminates with light transmitted through the display means for displaying an image, so that the configuration of the device is complicated. It is also desired to provide a lighting environment that simulates the insertion of sunlight from a window with a lighting device having a simple configuration.
 本発明は、簡易な構成で太陽光の差し込みを模擬した光を照射することができる照明装置及び照明ユニットを提供することを目的とする。 An object of the present invention is to provide a lighting device and a lighting unit which can irradiate light simulating insertion of sunlight with a simple configuration.
 本発明の一態様に係る照明装置は、光を発する光源部と、第1の遮光部と第1の光通過部とを有し、前記光源部で発せられた前記光のうちの前記第1の光通過部を通過した光を出射する第1のアパーチャ部と、前記光源部及び前記第1のアパーチャ部のうちの少なくとも1つを移動させる駆動部とを備えたことを特徴とする。 A lighting device according to one embodiment of the present invention includes a light source unit that emits light, a first light blocking unit, and a first light passage unit, and the first light source out of the light emitted by the light source unit. A first aperture unit that emits light that has passed through the light transmission unit, and a driving unit that moves at least one of the light source unit and the first aperture unit.
 本発明の他の態様に係る照明ユニットは、上記照明装置である第1の照明装置と、照明光を発する第2の照明装置とを備え、前記第2の照明装置は、前記第2の照明装置から発せられる前記光の色の変化が、前記第1の照明装置から出射される前記光の色の変化と同期するように、前記第2の照明装置から発せられる前記光の色を変化させることを特徴とする。 A lighting unit according to another aspect of the present invention includes a first lighting device that is the above-described lighting device, and a second lighting device that emits illumination light, wherein the second lighting device includes the second lighting device. Changing the color of the light emitted from the second lighting device such that the color change of the light emitted from the device is synchronized with the color change of the light emitted from the first lighting device. It is characterized by the following.
 本発明によれば、簡易な構成で太陽光の差し込みを模擬した光を照射することができる。 According to the present invention, it is possible to irradiate light simulating insertion of sunlight with a simple configuration.
本発明の実施の形態1に係る照明装置の構成を概略的に示す斜視図である。1 is a perspective view schematically showing a configuration of a lighting device according to Embodiment 1 of the present invention. 実施の形態1に係る照明装置の構成を概略的に示す縦断面図である。FIG. 2 is a longitudinal sectional view schematically showing a configuration of the lighting device according to Embodiment 1. 図1及び図2に示されるアパーチャ部を概略的に示す正面図である。FIG. 3 is a front view schematically showing an aperture unit shown in FIGS. 1 and 2. 図1及び図2に示される他のアパーチャ部を概略的に示す正面図である。FIG. 4 is a front view schematically showing another aperture unit shown in FIGS. 1 and 2. 実施の形態1に係る照明装置の制御系の構成を概略的に示す機能ブロック図である。FIG. 2 is a functional block diagram schematically showing a configuration of a control system of the lighting device according to Embodiment 1. (A)及び(B)は、図2に示されるレンズの構成を概略的に示す側面図である。(A) and (B) are side views which show the structure of the lens shown in FIG. 2 schematically. 実施の形態1に係る照明装置を部屋の天井内に設置したときの部屋内の状態を概略的に示す斜視図である。FIG. 2 is a perspective view schematically showing a state in the room when the lighting device according to Embodiment 1 is installed in a ceiling of the room. (A)から(D)は、実施の形態1に係る照明装置から出射された照射光によって形成された光照射領域の形状の時間変化を示す図である。FIGS. 3A to 3D are diagrams illustrating a temporal change in the shape of a light irradiation area formed by irradiation light emitted from the illumination device according to the first embodiment. 実施の形態1に係る照明装置から出射された照射光の形状及び明るさ分布の変化を示す図である。FIG. 3 is a diagram illustrating changes in the shape and brightness distribution of irradiation light emitted from the illumination device according to Embodiment 1. 実施の形態1に係る照明装置から出射された照射光の形状及び明るさ分布の変化を示す図である。FIG. 3 is a diagram illustrating changes in the shape and brightness distribution of irradiation light emitted from the illumination device according to Embodiment 1. 本発明の実施の形態2に係る照明ユニットの構成を概略的に示す斜視図である。FIG. 9 is a perspective view schematically showing a configuration of a lighting unit according to Embodiment 2 of the present invention. 実施の形態2に係る照明ユニットの制御系の構成を概略的に示す機能ブロック図である。FIG. 9 is a functional block diagram schematically showing a configuration of a control system of a lighting unit according to Embodiment 2. 実施の形態2に係る照明ユニットを部屋の天井内に設置したときの部屋内の状態を概略的に示す斜視図である。FIG. 10 is a perspective view schematically showing a state in a room when the lighting unit according to Embodiment 2 is installed in a ceiling of the room. 本発明の実施の形態3に係る照明装置の構成を概略的に示す斜視図である。FIG. 13 is a perspective view schematically showing a configuration of a lighting device according to Embodiment 3 of the present invention. 実施の形態3に係る照明装置の構成を概略的に示す縦断面図である。FIG. 14 is a longitudinal sectional view schematically showing a configuration of a lighting device according to a third embodiment. 実施の形態3に係る照明装置を部屋の天井内に設置したときの部屋内の状態を概略的に示す斜視図である。FIG. 15 is a perspective view schematically showing a state in a room when the lighting device according to Embodiment 3 is installed in a ceiling of the room. 実施の形態3に係る照明装置から出射された照射光によって形成された光照射領域の形状の変化を示す図である。FIG. 14 is a diagram showing a change in the shape of a light irradiation area formed by irradiation light emitted from the illumination device according to Embodiment 3. 実施の形態3に係る照明装置から出射された照射光によって形成された光照射領域の形状の変化を示す図である。FIG. 14 is a diagram showing a change in the shape of a light irradiation area formed by irradiation light emitted from the illumination device according to Embodiment 3. 実施の形態3に係る照明装置の構成と照明装置から出射された照射光の形状との関係を示す図である。FIG. 13 is a diagram illustrating a relationship between a configuration of a lighting device according to Embodiment 3 and a shape of irradiation light emitted from the lighting device. 本発明の実施の形態4に係る照明装置の構成を概略的に示す斜視図である。FIG. 13 is a perspective view schematically showing a configuration of a lighting device according to Embodiment 4 of the present invention. 本発明の実施の形態5に係る照明装置の構成を概略的に示す斜視図である。It is a perspective view which shows roughly the structure of the illuminating device which concerns on Embodiment 5 of this invention. 実施の形態5に係る照明装置の制御系の構成を概略的に示す機能ブロック図である。FIG. 15 is a functional block diagram schematically showing a configuration of a control system of the lighting device according to Embodiment 5. 本発明の実施の形態6に係る照明ユニットの構成を概略的に示す斜視図である。FIG. 17 is a perspective view schematically showing a configuration of a lighting unit according to Embodiment 6 of the present invention. 実施の形態6に係る照明ユニットを部屋の天井内に設置したときの部屋内の状態を概略的に示す斜視図である。FIG. 19 is a perspective view schematically showing a state in a room when the lighting unit according to Embodiment 6 is installed in a ceiling of the room.
 以下に、実施の形態1、3、4及び5に係る照明装置並びに実施の形態2及び6に係る照明ユニットを、図面を参照しながら説明する。図において、同一又は同様の構成には、同じ符号が付されている。以下の実施の形態は、例にすぎず、本発明の範囲内で種々の変更が可能である。 Hereinafter, the lighting device according to the first, third, fourth and fifth embodiments and the lighting unit according to the second and sixth embodiments will be described with reference to the drawings. In the drawings, the same or similar components are denoted by the same reference numerals. The following embodiments are merely examples, and various modifications can be made within the scope of the present invention.
 図には、XYZ直交座標系の座標軸が示されている。X軸及びZ軸は、水平方向の座標軸である。Y軸は、垂直方向(すなわち、高さ方向)の座標軸である。また、照明装置の構成部品の説明を理解しやすくするために、X直交座標系の座標軸が示されている。X直交座標系は、XYZ直交座標系をX軸を中心にして回転させることによって得られる。 The figure shows the coordinate axes of the XYZ rectangular coordinate system. The X axis and the Z axis are horizontal coordinate axes. The Y axis is a coordinate axis in the vertical direction (that is, the height direction). In addition, coordinate axes of an X 1 Y 1 Z 1 orthogonal coordinate system are shown for easy understanding of the description of the components of the lighting device. The X 1 Y 1 Z 1 rectangular coordinate system is obtained by rotating the XYZ rectangular coordinate system about the X axis.
 実施の形態に係る照明装置は、太陽光の差し込みを模擬した光を照射することができる装置である。実施の形態に係る照明装置は、時間の経過に伴って照射光の照射位置、形状、色、明るさ、などのうちのいずれか1つ以上を変化させる。つまり、照射光の照射位置、形状、色、明るさ、などは、実際の太陽光の照射位置、形状、色、明るさ、などの時間変化に対応して変化する。照射光は、例えば、窓を通した太陽光の差し込みを模擬した光である。実施の形態に係る照明装置は、窓のない部屋又は窓のない通路などの中にいる人に、屋外の雰囲気又は時間の経過を感じさせることができる。また、実施の形態に係る照明装置は、窓のない部屋又は窓のない通路などの中にいる人に、開放感を感じさせることができる。窓のない部屋は、例えば、地下室を含む。窓のない通路は、例えば、地下道及び地下街を含む。 The lighting device according to the embodiment is a device that can emit light simulating insertion of sunlight. The lighting device according to the embodiment changes one or more of the irradiation position, shape, color, brightness, and the like of irradiation light over time. That is, the irradiation position, shape, color, brightness, and the like of the irradiation light change in accordance with the time change of the actual irradiation position, shape, color, brightness, and the like of sunlight. The irradiation light is, for example, light simulating insertion of sunlight through a window. The lighting device according to the embodiment can make a person in a room without a window, a passage without a window, or the like feel an outdoor atmosphere or the passage of time. Further, the lighting device according to the embodiment can make a person in a room without a window, a passage without a window, or the like feel a sense of openness. A room without a window includes, for example, a basement. Windowless walkways include, for example, underpasses and underground shopping malls.
 例えば、実施の形態に係る複数の照明装置を通路の天井に設置する場合には、複数の照明装置は互いに間隔をあけて配列される。複数の照明装置から出射される複数の照射光は、被照射物に照射され、その結果、被照射物に光照射領域が形成される。被照射物は、例えば、通路の壁、床、などである。複数の照明装置から出射される複数の照射光が照射される複数の光照射領域は、時間の経過に伴って移動する。例えば、照射光によって形成される光照射領域は、時間の経過に伴って、予め決められた経路に沿って移動する。通路の壁に照射された照射光の形状(すなわち、光照射領域の形状)は、光照射領域の移動に伴って変化する。光照射領域の移動及び形状の変化によって、窓のない通路にいる人は、あたかも複数の窓があり、複数の窓から太陽光が差し込んでいるかのような感覚を得ることができる。また、窓のない通路にいる人は、閉ざされた狭い空間にいることを不快に思う感覚である閉塞感を解消することができる。 For example, when installing a plurality of lighting devices according to the embodiment on the ceiling of a passage, the plurality of lighting devices are arranged with an interval therebetween. The plurality of irradiation lights emitted from the plurality of lighting devices are irradiated on the irradiation object, and as a result, a light irradiation area is formed on the irradiation object. The object to be irradiated is, for example, a wall or a floor of a passage. The plurality of light irradiation areas irradiated with the plurality of irradiation lights emitted from the plurality of lighting devices move with the passage of time. For example, a light irradiation area formed by irradiation light moves along a predetermined route as time passes. The shape of the irradiation light applied to the wall of the passage (that is, the shape of the light irradiation area) changes with the movement of the light irradiation area. Due to the movement of the light irradiation area and the change in the shape, a person who is in a passage without windows can feel as if there are a plurality of windows and sunlight is entering through the plurality of windows. Also, a person in a passage without a window can eliminate a feeling of obstruction, which is a sensation of feeling uncomfortable in a closed narrow space.
 実施の形態に係る照明装置は、人から直接見え難い位置に設置されることが望ましい。例えば、実施の形態に係る照明装置は、天井に埋め込まれて取り付けられる。この場合には、照明装置が設置されている部屋にいる人は、照射光によって模擬された差し込み光が、どこから部屋内に入射しているのかを容易に把握できない。これによって、実施の形態に係る照明装置が設置されている部屋にいる人は、あたかも窓から太陽光が差し込んでいるかのような感覚を得ることができる。 照明 It is desirable that the lighting device according to the embodiment be installed at a position where it is difficult for a person to see directly. For example, the lighting device according to the embodiment is embedded and mounted on a ceiling. In this case, a person who is in the room where the lighting device is installed cannot easily grasp where the insertion light simulated by the irradiation light enters the room. Thus, a person in a room in which the lighting device according to the embodiment is installed can obtain a feeling as if sunlight were entering through a window.
《1》実施の形態1
《1-1》構成
〈照明装置1〉
 図1は、実施の形態1に係る照明装置1の構成を概略的に示す斜視図である。図2は、実施の形態1に係る照明装置の構成を概略的に示す縦断面図である。図1及び図2に示されるように、照明装置1は、光源部10と、第1のアパーチャ部としてのアパーチャ部20と、駆動部40とを備えている。光源部10は、光L1を発する。アパーチャ部20は、光を通過させない部分である第1の遮光部としての遮光部21と、光を通過させる部分である第1の光通過部としての光通過部22とを有している。アパーチャ部20は、光源部10で発せられた光L1のうちの光通過部22を通過した光L2を出射する。駆動部40は、光源部10及びアパーチャ部20のうちの少なくとも1つを移動させる機構を有している。この機構は、例えば、光源部10及びアパーチャ部20のうちの少なくとも1つを移動可能に支持する支持部材、支持部材を案内するガイド部材、支持部材に力を付与する歯車などの駆動力伝達機構、駆動力伝達機構に駆動力を与えるモータなどの駆動力発生機構を含む。光源部10及びアパーチャ部20のうちの少なくとも1つを移動させる機構は、特に限定されない。
<< 1 >> Embodiment 1
<< 1-1 >> Configuration <Lighting device 1>
FIG. 1 is a perspective view schematically showing a configuration of a lighting device 1 according to the first embodiment. FIG. 2 is a longitudinal sectional view schematically showing the configuration of the lighting device according to the first embodiment. As shown in FIGS. 1 and 2, the lighting device 1 includes a light source unit 10, an aperture unit 20 as a first aperture unit, and a driving unit 40. The light source unit 10 emits light L1. The aperture section 20 has a light-blocking section 21 as a first light-blocking section that does not allow light to pass therethrough, and a light-passing section 22 as a first light-passing section that passes light. The aperture section 20 emits the light L2 of the light L1 emitted from the light source section 10 that has passed through the light passage section 22. The driving section 40 has a mechanism for moving at least one of the light source section 10 and the aperture section 20. This mechanism is, for example, a driving force transmission mechanism such as a support member that movably supports at least one of the light source unit 10 and the aperture unit 20, a guide member that guides the support member, and a gear that applies force to the support member. And a driving force generating mechanism such as a motor that applies a driving force to the driving force transmission mechanism. The mechanism for moving at least one of the light source unit 10 and the aperture unit 20 is not particularly limited.
 図1及び図2に示されるように、照明装置1は、第2のアパーチャ部としてのアパーチャ部30を備えている。アパーチャ部30は、光を通過させない部分である第2の遮光部としての遮光部31と、光を通過させる部分である第2の光通過部としての光通過部32とを有している。アパーチャ部30は、アパーチャ部20の光通過部22を通過した光L2のうちの光通過部32を通過した光L3を出射する。アパーチャ部30の光通過部32を通過した光L3は、例えば、被照射物としての壁82に照射されて、壁82上に光照射領域91を形成する。なお、照明装置1は、アパーチャ部30を備えないことも可能である。この場合には、アパーチャ部20の光通過部22を通過した光L2が壁82に照射されて、壁82上に光照射領域91を形成する。また、駆動部40は、アパーチャ部30を移動させる機構を有してもよい。つまり、駆動部40は、光源部10、アパーチャ部20、及びアパーチャ部30のうちの1つ以上を移動させる機構を有してもよい。 照明 As shown in FIGS. 1 and 2, the lighting device 1 includes an aperture unit 30 as a second aperture unit. The aperture section 30 has a light-blocking section 31 as a second light-blocking section that is a section that does not allow light to pass through, and a light-passing section 32 as a second light-passing section that is a section that allows light to pass through. The aperture section 30 emits the light L3 that has passed through the light passing section 32 of the light L2 that has passed through the light passing section 22 of the aperture section 20. The light L3 that has passed through the light passage section 32 of the aperture section 30 is irradiated on, for example, a wall 82 as an irradiation target, and forms a light irradiation area 91 on the wall 82. The illumination device 1 may not include the aperture unit 30. In this case, the light L2 that has passed through the light passage section 22 of the aperture section 20 is irradiated on the wall 82 to form a light irradiation area 91 on the wall 82. Further, the driving section 40 may have a mechanism for moving the aperture section 30. That is, the driving unit 40 may have a mechanism for moving one or more of the light source unit 10, the aperture unit 20, and the aperture unit 30.
 実施の形態1では、駆動部40が、光源部10及びアパーチャ部20のうちの少なくとも1つを、例えば、X軸方向に移動させることによって、光照射領域91を移動させ、光照射領域91の形状を変化させる例を説明する。 In the first embodiment, the driving unit 40 moves the light irradiation region 91 by moving at least one of the light source unit 10 and the aperture unit 20 in the X-axis direction, for example. An example in which the shape is changed will be described.
 図2に示されるように、光通過部22を通過する光L1の中心光線の方向を第1の方向(すなわち、Y軸方向)とし、Y軸方向に直交し且つ光通過部22の一辺に平行な方向を第2の方向(すなわち、X軸方向)とし、Y軸方向及びX軸方向の両方に直交する方向を第3の方向(すなわち、Z軸方向)としている。駆動部40は、光源部10及びアパーチャ部20のうちの少なくとも1つの絶対位置、光源部10及びアパーチャ部20の間の相対位置、及び前記絶対位置と前記相対位置の両方を、第2の方向(すなわち、X軸方向)の成分を含む方向に移動させる。 As shown in FIG. 2, the direction of the central ray of the light L1 passing through the light passage section 22 is defined as a first direction (that is, the Y 1 axis direction), and is orthogonal to the Y 1 axis direction and the direction parallel to one side a second direction (i.e., X 1 axial direction) and, a direction perpendicular to both the Y 1 axis direction and X 1 axial third direction (i.e., Z 1 axial direction) . The driving unit 40 determines the absolute position of at least one of the light source unit 10 and the aperture unit 20, the relative position between the light source unit 10 and the aperture unit 20, and both the absolute position and the relative position in the second direction. (i.e., X 1 axial direction) is moved in a direction including a component of.
 加えて、駆動部40は、光源部10及びアパーチャ部20のうちの少なくとも1つの絶対位置、光源部10及びアパーチャ部20の間の相対位置、及び前記絶対位置と前記相対位置の両方を、第1の方向(すなわち、Y軸方向)の成分を含む方向に移動させてもよい。このような機能は、後述の実施の形態3から6において詳細に説明される。 In addition, the driving unit 40 determines the absolute position of at least one of the light source unit 10 and the aperture unit 20, the relative position between the light source unit 10 and the aperture unit 20, and both the absolute position and the relative position. It may be moved in a direction including a component in one direction (that is, the Y 1 axis direction). Such a function will be described in detail in Embodiments 3 to 6 described below.
 また、図2に示されるように、照明装置1は、光源部10とアパーチャ部20との間に光学部としてのレンズ50を備えてもよい。レンズ50は、例えば、集光レンズである。ただし、照明装置1は、レンズ50を備えないことも可能である。また、駆動部40は、光源部10、アパーチャ部20及びレンズ50のうちの少なくとも1つの絶対位置、光源部10とアパーチャ部20とレンズ50の間の相対位置、及び前記絶対位置と前記相対位置の両方を、第2の方向(すなわち、X軸方向)の成分を含む方向に移動させる機構を備えてもよい。加えて、駆動部40は、光源部10、アパーチャ部20及びレンズ50のうちの少なくとも1つの絶対位置、光源部10とアパーチャ部20とレンズ50の間の相対位置、及び前記絶対位置と前記相対位置の両方を、第1の方向(すなわち、Y軸方向)の成分を含む方向に移動させる機構を備えてもよい。 Further, as shown in FIG. 2, the lighting device 1 may include a lens 50 as an optical unit between the light source unit 10 and the aperture unit 20. The lens 50 is, for example, a condenser lens. However, the lighting device 1 may not include the lens 50. Further, the driving unit 40 includes an absolute position of at least one of the light source unit 10, the aperture unit 20, and the lens 50, a relative position between the light source unit 10, the aperture unit 20, and the lens 50, and the absolute position and the relative position. both, the second direction (i.e., X 1 axial direction) may be provided with a mechanism for moving in a direction including a component of. In addition, the driving unit 40 includes an absolute position of at least one of the light source unit 10, the aperture unit 20, and the lens 50, a relative position between the light source unit 10, the aperture unit 20, and the lens 50, and the absolute position and the relative position. A mechanism for moving both of the positions in a direction including a component in the first direction (that is, the Y1 axis direction) may be provided.
〈光源部10〉
 光源部10は、光L1を発する。光L1は、アパーチャ部20の光通過部22及びアパーチャ部30の光通過部32を通して、光L3として被照射物に照射される。被照射物は、例えば、室内の壁82及び83、床84、などである。また、光L3が照射される被照射物の表面は、被照射面とも呼ばれる。光源部10は、発光色を変更することができる機能を備えてもよい。例えば、光源部10は、互いに異なる色の光を発する複数の光源を有してもよい。また、光源部10は、発光強度を変更することができる機能を備えてもよい。
<Light source 10>
The light source unit 10 emits light L1. The light L <b> 1 is emitted to the irradiation target as light L <b> 3 through the light passing part 22 of the aperture part 20 and the light passing part 32 of the aperture part 30. The irradiation target is, for example, indoor walls 82 and 83, a floor 84, and the like. The surface of the object to be irradiated with the light L3 is also called an irradiated surface. The light source unit 10 may have a function of changing a light emission color. For example, the light source unit 10 may include a plurality of light sources that emit light of different colors. Further, the light source unit 10 may have a function of changing the light emission intensity.
 光源部10は、発光効率の高い半導体光源を有することが望ましい。半導体光源は、例えば、発光ダイオード(LED)又はレーザーダイオード(LD)である。光源部10は、白熱電球、ハロゲンランプ又は蛍光ランプなどのランプ光源を有してもよい。また、光源部10は、固体光源を有してもよい。固体光源は、例えば、有機エレクトロルミネッセンス(有機EL)又は蛍光体に励起光を照射して蛍光体を発光させる光源などを含む。半導体光源は、固体光源の一種である。以下の説明では、光源部10が1つ以上のLED光源を有する場合を説明する。 The light source unit 10 preferably includes a semiconductor light source having high luminous efficiency. The semiconductor light source is, for example, a light emitting diode (LED) or a laser diode (LD). The light source unit 10 may include a lamp light source such as an incandescent lamp, a halogen lamp, or a fluorescent lamp. Further, the light source unit 10 may include a solid light source. The solid-state light source includes, for example, an organic electroluminescence (organic EL) or a light source that emits the phosphor by irradiating the phosphor with excitation light. Semiconductor light sources are a type of solid-state light source. In the following description, a case where the light source unit 10 has one or more LED light sources will be described.
〈アパーチャ部20〉
 図3は、図1及び図2に示されるアパーチャ部20を概略的に示す正面図である。一般に、「アパーチャ」は、画像を扱う光学機器において、画面の大きさを制限する枠の開口を意味する。アパーチャ部20は、アパーチャを備えた部材である。つまり、アパーチャ部20は、光通過部22を備えた部材である。図3に示される例では、アパーチャ部20は、板状の遮光部材である遮光部21と、遮光部21に形成された台形状の開口である光通過部22とを有している。光通過部22の底辺のうちの長い辺である下底22aを被照射物である壁82に近い側に、短い辺である上底22bを壁82から遠い側になるように、光通過部22が形成されている。アパーチャ部20は、光源部10から出射された光L1の一部を遮光し、他の一部を通過させる。アパーチャ部20の光通過部22である開口は、通過させる光の大きさ(すなわち、サイズ)を調整する形状を有する。つまり、アパーチャ部20は、光源部10から出射された光L1の一部を通過させ、光L1の他の一部を遮光することにより、出射する光L2の配光を形成する配光形成部材である。アパーチャ部20は、光源部10から出射された光L1の一部を遮光することによって、X軸方向に長く、Z軸方向に短い断面形状を有する光L2を出射する。
<Aperture part 20>
FIG. 3 is a front view schematically showing the aperture unit 20 shown in FIGS. 1 and 2. Generally, “aperture” means an opening of a frame that limits the size of a screen in an optical device that handles an image. The aperture section 20 is a member having an aperture. That is, the aperture section 20 is a member including the light passing section 22. In the example illustrated in FIG. 3, the aperture unit 20 includes a light-shielding unit 21 that is a plate-shaped light-shielding member, and a light-passing unit 22 that is a trapezoidal opening formed in the light-shielding unit 21. The light passing unit is configured such that the lower bottom 22a, which is the long side of the bottom of the light passing unit 22, is closer to the wall 82, which is the object to be irradiated, and the upper bottom 22b, which is the shorter side, is farther from the wall 82. 22 are formed. The aperture unit 20 blocks a part of the light L1 emitted from the light source unit 10 and passes another part. The aperture, which is the light transmitting part 22 of the aperture part 20, has a shape for adjusting the size (that is, size) of the light to be transmitted. That is, the aperture unit 20 is a light distribution forming member that forms a light distribution of the emitted light L2 by passing a part of the light L1 emitted from the light source unit 10 and blocking the other part of the light L1. It is. The aperture unit 20 emits light L2 having a cross section that is long in the X-axis direction and short in the Z-axis direction by blocking a part of the light L1 emitted from the light source unit 10.
 なお、アパーチャ部20の光通過部22は、開口であるが、開口に限定されない。例えば、光通過部22は、光透過性部材によって形成されてもよい。その場合、アパーチャ部20は、光透過性部材からなる基材と、遮光部21となる領域に備えられたマスクなどの光遮蔽部材とから構成される。照明装置1は、アパーチャ部20によって、窓の形状に対応する光照射領域91を壁82に形成する。或いは、照明装置1は、アパーチャ部20と後述されるアパーチャ部30とによって形成された窓の形状の光照射領域91を被照射物としての壁82に形成する。また、アパーチャ部20の光通過部22の形状は、台形状の形状に限定されない。 The light passage section 22 of the aperture section 20 is an opening, but is not limited to the opening. For example, the light passage section 22 may be formed by a light transmissive member. In this case, the aperture section 20 includes a base made of a light transmissive member and a light shielding member such as a mask provided in a region to be the light shielding section 21. In the lighting device 1, the light irradiation area 91 corresponding to the shape of the window is formed on the wall 82 by the aperture unit 20. Alternatively, the illumination device 1 forms a light-irradiated area 91 in the shape of a window formed by the aperture section 20 and an aperture section 30 described later on a wall 82 as an object to be irradiated. In addition, the shape of the light passage section 22 of the aperture section 20 is not limited to a trapezoidal shape.
 実施の形態1において、X軸方向は、光源部10に対するアパーチャ部20の移動方向である。実施の形態1において、X軸方向は、例えば、窓形状の光照射領域91の水平方向である。なお、光源部10に対するアパーチャ部20の移動方向(すなわち、アパーチャ部20の位置変化方向)は、X軸方向の成分を含んでいれば、X軸方向に一致しなくてもよい。例えば、アパーチャ部20は、光源部10を中心とする円周を描く軌道上で揺動してもよい。 In the first embodiment, the X-axis direction is a moving direction of the aperture unit 20 with respect to the light source unit 10. In the first embodiment, the X-axis direction is, for example, the horizontal direction of the window-shaped light irradiation area 91. Note that the direction of movement of the aperture unit 20 with respect to the light source unit 10 (that is, the direction in which the position of the aperture unit 20 changes) does not have to coincide with the X-axis direction as long as it includes a component in the X-axis direction. For example, the aperture unit 20 may swing on a trajectory that draws a circle around the light source unit 10.
 例えば、照明装置1が配置される天井81に対して垂直に立つ壁82に向けて、中心光線に直交する方向の断面形状が矩形状である光が照射される場合、矩形状の光照射領域91において上下方向に延びる辺に対応する光の断面形状の辺は、例えば、アパーチャ部20及び30の位置において、水平方向(すなわち、ZX平面に平行な方向)に延びている。また、光照射領域91の位置(すなわち、窓形状の光の位置)は、時間の経過に伴って水平方向(図2におけるX軸方向)に移動する。この場合、アパーチャ部20は、窓形状の光照射領域91において水平方向となるX軸方向に広がる光を部分的に遮光する。これにより、アパーチャ部20は、矩形状の窓形状において垂直方向の辺に相当する照明光の水平方向のエッジ形状を形成する。 For example, when light having a rectangular cross section in a direction orthogonal to the central ray is irradiated toward a wall 82 that stands perpendicular to a ceiling 81 on which the lighting device 1 is arranged, a rectangular light irradiation area The side of the cross-sectional shape of the light corresponding to the side extending in the vertical direction in 91 extends, for example, in the horizontal direction (that is, the direction parallel to the ZX plane) at the positions of the aperture units 20 and 30. Further, the position of the light irradiation area 91 (that is, the position of the window-shaped light) moves in the horizontal direction (the X-axis direction in FIG. 2) with the passage of time. In this case, the aperture unit 20 partially blocks light that spreads in the X-axis direction, which is the horizontal direction, in the window-shaped light irradiation area 91. Thus, the aperture section 20 forms a horizontal edge shape of the illumination light corresponding to the vertical side in the rectangular window shape.
 また、光照射領域91の位置を時間の経過に伴って水平方向に移動させる場合、駆動部40は、アパーチャ部20を、光照射領域91の水平方向に対応するX軸方向に移動させる。これにより、矩形状の窓形状において垂直方向の辺(例えば、図3における辺22a、22b)に相当する照射光の水平方向のエッジ形状もX軸方向に移動するため、光照射領域91の位置が移動する。 In the case where the position of the light irradiation region 91 is moved in the horizontal direction with the passage of time, the driving unit 40 moves the aperture unit 20 in the X-axis direction corresponding to the horizontal direction of the light irradiation region 91. Accordingly, the horizontal edge shape of the irradiation light corresponding to the vertical side (for example, the sides 22a and 22b in FIG. 3) in the rectangular window shape also moves in the X-axis direction. Moves.
 このとき、アパーチャ部20と光源部10とを一体に保持しながら(すなわち、アパーチャ部20に対する光源部10の向き及び距離を固定した上で)、光源部10の発光面の中心を回転軸として、光源部10とアパーチャ部20とをX軸方向に回転させてもよい。これにより、後述の図8(A)から(D)の順に、光照射領域91の位置と形状が変化する。 At this time, while holding the aperture unit 20 and the light source unit 10 integrally (that is, after fixing the direction and the distance of the light source unit 10 with respect to the aperture unit 20), the center of the light emitting surface of the light source unit 10 is set as the rotation axis. Alternatively, the light source unit 10 and the aperture unit 20 may be rotated in the X-axis direction. Thereby, the position and shape of the light irradiation area 91 change in the order of FIGS. 8A to 8D described later.
〈アパーチャ部30〉
 図4は、図1及び図2に示されるアパーチャ部30を概略的に示す正面図である。アパーチャ部30は、アパーチャを備えた部材である。つまり、アパーチャ部30は、光通過部32を備えた部材である。図4に示される例では、アパーチャ部30は、板状の遮光部材である遮光部31と、遮光部31に形成された長方形状の開口である光通過部32とを有している。アパーチャ部30は、光源部10から出射され光通過部22を通過した光L2の一部を遮光し、他の一部を通過させる。アパーチャ部30の光通過部32である開口は、通過させる光の大きさ(すなわち、サイズ)を調整する形状を有する。アパーチャ部30は、X軸方向に直交するZ軸方向に広がる光を部分的に遮光する。アパーチャ部30は、アパーチャ部20から出射された光L2の一部を遮光して光L3を出射する。
<Aperture part 30>
FIG. 4 is a front view schematically showing the aperture unit 30 shown in FIGS. 1 and 2. The aperture section 30 is a member having an aperture. That is, the aperture section 30 is a member including the light passing section 32. In the example illustrated in FIG. 4, the aperture unit 30 includes a light shielding unit 31 that is a plate-shaped light shielding member, and a light passing unit 32 that is a rectangular opening formed in the light shielding unit 31. The aperture unit 30 blocks a part of the light L2 emitted from the light source unit 10 and passed through the light transmitting unit 22, and allows the other part to pass. The aperture, which is the light passing section 32 of the aperture section 30, has a shape that adjusts the size (that is, size) of light to be passed. The aperture unit 30 partially blocks light that spreads in the Z-axis direction orthogonal to the X-axis direction. The aperture unit 30 shields part of the light L2 emitted from the aperture unit 20 and emits light L3.
 例えば、天井81に配置された照明装置1から壁82に対して、窓からの光を模した断面が矩形状の光を照射すると、壁82に照射された光の形状は、長方形ではなく、台形となる。アパーチャ部30の光通過部32(例えば、開口)の形状は、長方形状をしている。断面が長方形状の光における水平方向の辺を形成するエッジは、光軸中心に対してZ軸方向に所定の照射範囲を有する光、すなわち少なくともZ軸方向に広がりを有する光によって形成される。また、窓形状の光照射領域91の位置は、時間の経過に伴って水平方向に移動する。この場合には、アパーチャ部30は、X軸方向と直交するZ軸方向に広がる光を部分的に遮光する。これにより、アパーチャ部30は、矩形状の窓形状において水平方向の辺に相当する照明光の垂直方向のエッジ形状を形成する。 For example, when the illumination device 1 arranged on the ceiling 81 illuminates the wall 82 with light having a rectangular cross section imitating light from a window, the shape of the light illuminated on the wall 82 is not a rectangle, It becomes a trapezoid. The shape of the light passage part 32 (for example, opening) of the aperture part 30 is rectangular. An edge forming a horizontal side of the light having a rectangular cross section is formed by light having a predetermined irradiation range in the Z-axis direction with respect to the center of the optical axis, that is, light having at least a spread in the Z-axis direction. Further, the position of the window-shaped light irradiation area 91 moves in the horizontal direction as time passes. In this case, the aperture unit 30 partially blocks light that spreads in the Z-axis direction orthogonal to the X-axis direction. Thus, the aperture section 30 forms a vertical edge shape of the illumination light corresponding to the horizontal side in the rectangular window shape.
 アパーチャ部20と光源部10との揺動によって、アパーチャ部30が形成する壁82上の照射光の形状は変化しない。そのため、アパーチャ部30の光通過部32の形状は、例えば、平行な辺を有する長方形状である。 (4) The shape of the irradiation light on the wall 82 formed by the aperture section 30 does not change due to the swing of the aperture section 20 and the light source section 10. Therefore, the shape of the light passage portion 32 of the aperture portion 30 is, for example, a rectangular shape having parallel sides.
 また、図4に示されるように、アパーチャ部30は、例えば、X軸方向に広がる光を遮光しない。X軸方向に広がる光の部分的な遮光は、アパーチャ部20によって行われる。 {Circle around (4)} As shown in FIG. 4, the aperture unit 30 does not block, for example, light that spreads in the X-axis direction. Partial light blocking of light spreading in the X-axis direction is performed by the aperture unit 20.
〈駆動部40〉
 図5は、照明装置1の制御系の構成を概略的に示す機能ブロック図である。図5に示されるように、照明装置1は、光源部10と、光源部10を駆動する光源駆動部71と、光源部10及びアパーチャ部20の少なくとも一方を移動させる歯車などの駆動力伝達機構に駆動力を与える駆動力発生部としてのモータ41と、モータ駆動回路などのモータ駆動部42と、制御部72とを有している。駆動部40は、光源部10及びアパーチャ部20のうちの少なくとも1つの絶対位置、光源部10とアパーチャ部20との相対位置、又はこれらの絶対位置と相対位置の両方を変化させる。ここで、光源部10とアパーチャ部20との相対位置の変化は、アパーチャ部20に対する光源部10の姿勢の変化を含む。すなわち、光源部10からの光がアパーチャ部20に入射するときの角度及び位置のいずれかが異なれば、光源部10とアパーチャ部20との相対位置が変化したとみなす。以下、このような絶対位置又は相対位置の変化を総称して、光源部10又はアパーチャ部20の「移動」という。駆動部40は、例えば、アパーチャ部20又は光源部10の移動をX軸方向において行う。駆動部40は、アパーチャ部20又は光源部10の移動を実行するための駆動回路、モータ又は歯車などを含んでいる。
<Drive unit 40>
FIG. 5 is a functional block diagram schematically showing a configuration of a control system of the lighting device 1. As illustrated in FIG. 5, the lighting device 1 includes a light source unit 10, a light source driving unit 71 that drives the light source unit 10, and a driving force transmission mechanism such as a gear that moves at least one of the light source unit 10 and the aperture unit 20. A motor 41 as a driving force generating unit that applies a driving force to the motor, a motor driving unit 42 such as a motor driving circuit, and a control unit 72. The drive unit 40 changes the absolute position of at least one of the light source unit 10 and the aperture unit 20, the relative position between the light source unit 10 and the aperture unit 20, or both the absolute position and the relative position. Here, the change in the relative position between the light source unit 10 and the aperture unit 20 includes a change in the attitude of the light source unit 10 with respect to the aperture unit 20. That is, if any one of the angle and the position when the light from the light source unit 10 enters the aperture unit 20 is different, it is considered that the relative position between the light source unit 10 and the aperture unit 20 has changed. Hereinafter, such a change in the absolute position or the relative position is collectively referred to as “movement” of the light source unit 10 or the aperture unit 20. The drive unit 40 moves the aperture unit 20 or the light source unit 10 in the X-axis direction, for example. The drive unit 40 includes a drive circuit for executing the movement of the aperture unit 20 or the light source unit 10, a motor, a gear, or the like.
 また、制御部72は、光源部10の発光色又は発光強度などを変更することができる。制御部72は、光源部10を駆動するための回路を含むことができる。また、光源部10は、プログラムを実行するプロセッサを有してもよい。 The control unit 72 can change the emission color or emission intensity of the light source unit 10. The control unit 72 can include a circuit for driving the light source unit 10. Further, the light source unit 10 may include a processor that executes a program.
〈レンズ50〉
 図2に示されるように、レンズ50は、光源部10から出射された光L1を集光する。「集光」とは、光を一ヶ所又は一方向に集めることである。レンズ50は、光源部10から出射された光L1の発散角を小さくする。レンズ50は、光源部10から出射された光L1を平行光に近い光線に変更する。
<Lens 50>
As shown in FIG. 2, the lens 50 condenses the light L1 emitted from the light source unit 10. "Condensing" refers to collecting light in one place or one direction. The lens 50 reduces the divergence angle of the light L1 emitted from the light source unit 10. The lens 50 changes the light L1 emitted from the light source unit 10 into a light beam close to a parallel light.
 アパーチャ部20及び30を通過した光が出射される光の発散角は、光源部10から出射された光L1の発散角よりも小さくなる。光L2と光L3との発散角は、光源部10からアパーチャ部20及び30までの距離とアパーチャ部20及び30の光通過部22及び32の大きさとによって変更することができる。そして、光源部10からアパーチャ部20及び30までの距離を短くすると、照明装置1を小型化することができる。 The divergence angle of the light emitted from the aperture units 20 and 30 is smaller than the divergence angle of the light L1 emitted from the light source unit 10. The divergence angle between the light L2 and the light L3 can be changed depending on the distance from the light source unit 10 to the aperture units 20 and 30 and the sizes of the light passing units 22 and 32 of the aperture units 20 and 30. When the distance from the light source unit 10 to the aperture units 20 and 30 is reduced, the size of the lighting device 1 can be reduced.
 レンズ50を用いることで、光源部10からアパーチャ部20及び30までの距離を短くすることができる。また、レンズ50を用いることで、光源部10から出射される光L1の光利用効率を上げることができる。 The distance from the light source unit 10 to the aperture units 20 and 30 can be shortened by using the lens 50. Further, by using the lens 50, the light use efficiency of the light L1 emitted from the light source unit 10 can be increased.
 図6(A)及び(B)は、図2に示される光学部としてのレンズ50の構成を概略的に示す側面図である。図6(A)及び(B)に示されるように、レンズ50は、例えば、コリメーターレンズである。レンズ50の光出射面側には、レンズアレイが備えられている。レンズアレイの各レンズ面を構成する曲面は、X軸方向とZ軸方向で曲率半径が異なってもよい。例えば、レンズアレイは、トロイダルレンズ面又はシリンドリカルレンズ面を採用してもよい。光源部10から発せられた光L1をアパーチャ部20の光通過部22のサイズに近づけることで光利用効率を上げる効果がある。なお、被照射物が光軸に対して垂直な場合には、レンズ50がアパーチャ部20と同一の効果を持つため、アパーチャ部20を省略することも可能である。 FIGS. 6A and 6B are side views schematically showing the configuration of the lens 50 as the optical unit shown in FIG. As shown in FIGS. 6A and 6B, the lens 50 is, for example, a collimator lens. A lens array is provided on the light emitting surface side of the lens 50. Curved surface constituting each lens surface of the lens array may be different radii of curvature in the X 1 axis direction and the Z 1 axial direction. For example, the lens array may employ a toroidal lens surface or a cylindrical lens surface. By bringing the light L1 emitted from the light source unit 10 close to the size of the light passing unit 22 of the aperture unit 20, there is an effect of increasing light use efficiency. When the object to be irradiated is perpendicular to the optical axis, the lens 50 has the same effect as that of the aperture section 20. Therefore, the aperture section 20 can be omitted.
《1-2》動作
 実施の形態1において、駆動部40は、光源部10及びアパーチャ部20のうちの少なくとも1つの絶対位置、又は光源部10とアパーチャ部20との間の相対位置、又は前記絶対位置及び前記相対位置の両方を変化させる。具体的には、駆動部40は、光源部10に対するアパーチャ部20の位置を変化させる。例えば、駆動部40は、光源部10を中心とする円周上でアパーチャ部20の位置を変化させる。すなわち、駆動部40は、光源部10を中心としてアパーチャ部20をX軸方向に揺動させる。「揺動」とは、揺れ動くことである。
<< 1-2 >> Operation In the first embodiment, the drive unit 40 controls the absolute position of at least one of the light source unit 10 and the aperture unit 20, or the relative position between the light source unit 10 and the aperture unit 20, or Change both the absolute position and the relative position. Specifically, the drive unit 40 changes the position of the aperture unit 20 with respect to the light source unit 10. For example, the driving unit 40 changes the position of the aperture unit 20 on a circumference around the light source unit 10. That is, the drive unit 40 swings the aperture unit 20 in the X-axis direction around the light source unit 10. "Wobble" is to wobble.
 また、光源部10は、アパーチャ部20に沿ってX軸方向に移動してもよい。つまり、光源部10は、アパーチャ部20との間隔を一定に保ってX軸方向に移動してもよい。 The light source unit 10 may move in the X-axis direction along the aperture unit 20. That is, the light source unit 10 may move in the X-axis direction while keeping a constant distance from the aperture unit 20.
 また、アパーチャ部20は、光源部10との間隔を一定に保ってX軸方向に移動してもよい。また、光源部10は、アパーチャ部20との間隔を一定に保ってX軸方向に姿勢(すなわち、光源部10の発光面の向き)を変更してもよい。 The aperture unit 20 may move in the X-axis direction while keeping a constant distance from the light source unit 10. Further, the light source unit 10 may change the attitude in the X-axis direction (that is, the direction of the light emitting surface of the light source unit 10) while keeping the distance from the aperture unit 20 constant.
 図7に示されるように、例えば、天井81に設置された照明装置1のアパーチャ部30の光通過部32から光L3が照射される。光L3は、照射光である。光L3は、被照射物としての壁82に照射される。壁82は、例えば、室内の壁である。光照射領域91は、壁82に光L3が照射されている領域である。光照射領域91は、例えば、矩形状である。 光 As shown in FIG. 7, for example, the light L3 is emitted from the light passage section 32 of the aperture section 30 of the illumination device 1 installed on the ceiling 81. Light L3 is irradiation light. The light L3 is applied to a wall 82 as an object to be irradiated. The wall 82 is, for example, an indoor wall. The light irradiation area 91 is an area where the wall 82 is irradiated with the light L3. The light irradiation area 91 is, for example, rectangular.
 図8(A)から(D)は、照明装置1によって天井81の光通過部32から照射された光L3の壁82上での光照射領域91の形状の変化を示す図である。図8(A)から(D)の上側が天井81側で、下方が床84側である。例えば、図8(A)から(D)に示される壁82に向かった場合には、背中側に窓があり、右側が東側であり、左側が西側である。 FIGS. 8A to 8D are diagrams showing changes in the shape of the light irradiation area 91 on the wall 82 of the light L3 radiated from the light passage portion 32 of the ceiling 81 by the lighting device 1. 8A to 8D, the upper side is the ceiling 81 side, and the lower side is the floor 84 side. For example, when facing the wall 82 shown in FIGS. 8A to 8D, there is a window on the back side, the right side is the east side, and the left side is the west side.
 X軸方向において光源部10又はアパーチャ部20が移動すると、例えば、光照射領域91の形状は、図8(A)から図8(B)へと変化し、図8(B)から図8(C)へと変化し、図8(C)から図8(D)へと変化する。例えば、図8(B)が太陽の南中時刻に相当する。 When the light source unit 10 or the aperture unit 20 moves in the X-axis direction, for example, the shape of the light irradiation area 91 changes from FIG. 8A to FIG. 8B, and FIG. 8B to FIG. C), and changes from FIG. 8 (C) to FIG. 8 (D). For example, FIG. 8B corresponds to a time in the middle of the sun.
 例えば、太陽が東から西へと移動すると、壁82上に映し出される窓の形状(すなわち、光照射領域91の形状)は変化する。アパーチャ部20のX軸方向側の辺と、光源部10との位置関係が変化することで、図8(A)から(D)に示されるように、光L3の光照射領域91の左右の辺の傾きが変化する。つまり、照射された光L3の光照射領域91の形状は、図8(A)に示される平行四辺形から図8(B)に示される長方形へと変化し、その後、図8(C)に示される長方形から図8(D)に示される平行四辺形へと変化する。 For example, when the sun moves from east to west, the shape of the window projected on the wall 82 (that is, the shape of the light irradiation area 91) changes. As the positional relationship between the side of the aperture section 20 on the X-axis direction side and the light source section 10 changes, as shown in FIGS. 8A to 8D, the left and right sides of the light irradiation area 91 of the light L3 are exposed. The slope of the side changes. In other words, the shape of the light irradiation region 91 of the irradiated light L3 changes from the parallelogram shown in FIG. 8A to the rectangle shown in FIG. 8B, and then changes to the shape shown in FIG. The rectangle changes from the illustrated rectangle to the parallelogram illustrated in FIG.
 X軸方向において光源部10又はアパーチャ部20の移動によって、壁82上に映し出される窓の形状(すなわち、光照射領域91の形状)の変化を模擬することができる。照射された光L3の形状は、例えば、窓などの開口から差し込んだ太陽の差し込み光と同様の形状である。 By moving the light source unit 10 or the aperture unit 20 in the X-axis direction, it is possible to simulate a change in the shape of the window projected on the wall 82 (ie, the shape of the light irradiation area 91). The shape of the emitted light L3 is, for example, similar to the shape of the sun's insertion light inserted from an opening such as a window.
 そして、光L3の形状は、例えば、実際の太陽光の時間変化と連動している。例えば、アパーチャ部20と光源部10との位置関係は、実際の太陽光の時間変化と連動して変化する。また、光源部10の光の色又は光の強さは、例えば、実際の太陽光の時間変化と連動して変化する。例えば、太陽の南中時刻には、光源部10は、強い白色の光L1を出射する。そして、太陽が西に傾く時刻には、光源部10は、弱い赤色の光L1を出射する。そのため、観察者は、光L3は太陽光の差し込み光であると感じさせることができる。 The shape of the light L3 is, for example, linked to the time change of the actual sunlight. For example, the positional relationship between the aperture unit 20 and the light source unit 10 changes in conjunction with the actual time change of sunlight. The color or intensity of the light of the light source unit 10 changes, for example, in conjunction with the actual time change of sunlight. For example, at the mid-sun time of the sun, the light source unit 10 emits strong white light L1. Then, at the time when the sun inclines to the west, the light source unit 10 emits the weak red light L1. Therefore, the viewer can feel that the light L3 is the insertion light of the sunlight.
 図9及び図10は、光源部10の発光面の中心を回転中心として、光源部10とアパーチャ部20とを一体として、光照射領域91における水平方向に対応するX軸方向に回転移動させたときの、光照射領域の明るさの分布をシミュレーションにより求めた結果を表す図である。 9 and 10, the light source unit 10 and the aperture unit 20 are integrally rotated about the center of the light emitting surface of the light source unit 10 in the X-axis direction corresponding to the horizontal direction in the light irradiation area 91. FIG. 9 is a diagram illustrating a result obtained by simulating a brightness distribution of a light irradiation area at the time.
〈光源部10、アパーチャ部20、アパーチャ部30、及び被照射物の関係〉
 光源部10からアパーチャ部20までの距離を距離A1とする。アパーチャ部20からアパーチャ部30までの距離を距離A2とする。光源部10から被照射物までの距離を距離A3とする。ここで、光L3は、被照射物に垂直に照射されると仮定する。
<Relationship between light source unit 10, aperture unit 20, aperture unit 30, and object to be irradiated>
The distance from the light source unit 10 to the aperture unit 20 is defined as a distance A1. The distance from the aperture unit 20 to the aperture unit 30 is defined as a distance A2. The distance from the light source unit 10 to the object to be irradiated is referred to as a distance A3. Here, it is assumed that the light L <b> 3 is irradiated on the irradiation target vertically.
 距離A1及び距離A2は、光源部10及びアパーチャ部20が駆動されている間でも下記の3つの条件を満たすように設定される。 The distance A1 and the distance A2 are set so as to satisfy the following three conditions even while the light source unit 10 and the aperture unit 20 are being driven.
 第1に、アパーチャ部20の光通過部22のX軸方向の大きさがアパーチャ部20の位置での光L1の光束の大きさより小さい。つまり、アパーチャ部20の光通過部22のX軸方向側の辺は光L1の一部を遮る。 First, the size of the light passing portion 22 of the aperture section 20 in the X-axis direction is smaller than the size of the light beam of the light L1 at the position of the aperture section 20. That is, the side on the X-axis direction side of the light passage section 22 of the aperture section 20 blocks a part of the light L1.
 第2に、アパーチャ部30の光通過部32のX軸方向に直交するZ軸方向の大きさが、アパーチャ部30の位置での光L2の光束の大きさより小さい。つまり、アパーチャ部30の光通過部32のX軸方向に直交するZ軸方向側の辺は、光L2の一部を遮る。 Second, the size of the light passing portion 32 of the aperture portion 30 in the Z-axis direction orthogonal to the X-axis direction is smaller than the size of the light beam of the light L2 at the position of the aperture portion 30. That is, the side of the light passing portion 32 of the aperture portion 30 on the Z-axis direction orthogonal to the X-axis direction blocks a part of the light L2.
 第3に、アパーチャ部20の遮光部21による光L1の一部の遮光と、アパーチャ部30の遮光部31による光L2の一部の遮光とによって、光L3の光束の形状が決定される。アパーチャ部20の部分的な遮光とアパーチャ部30の部分的な遮光とによって形成される光L3の断面形状は、光L1の光束の断面形状の内部に形成される。つまり、アパーチャ部20によって部分的に遮光されたX軸方向の光束の辺とアパーチャ部30によって部分的に遮光されたX軸方向に直交するZ軸方向の光束の辺とは、被照射物上で交わっている。 Third, the shape of the light flux of the light L3 is determined by partially blocking the light L1 by the light blocking unit 21 of the aperture unit 20 and partially blocking the light L2 by the light blocking unit 31 of the aperture unit 30. The cross-sectional shape of the light L3 formed by the partial light blocking of the aperture unit 20 and the partial light blocking of the aperture unit 30 is formed inside the cross-sectional shape of the light beam of the light L1. In other words, the side of the light beam in the X-axis direction partially shielded by the aperture unit 20 and the side of the light beam in the Z-axis direction orthogonal to the X-axis direction partially shielded by the aperture unit 30 are on the irradiation target. Are in a meeting.
 次に、シミュレーションによって、アパーチャ部20から出射される光L3の発散角について説明する。アパーチャ部20で部分的に遮光された光L3の発散角に対して、アパーチャ部20で部分的に遮光された部分の被照射物上での照射光の形状を評価する。そのため、アパーチャ部30は、配置していない。シミュレーションの条件は、次の通りである。 Next, the divergence angle of the light L3 emitted from the aperture unit 20 will be described by simulation. With respect to the divergence angle of the light L3 partially shielded by the aperture unit 20, the shape of the irradiation light on the irradiation target in the part partially shielded by the aperture unit 20 is evaluated. Therefore, the aperture section 30 is not arranged. The simulation conditions are as follows.
 光源部10の配光は、ランバーシアン配光である。ランバーシアン配光は、発光面の輝度が見る方向によらず一定となる配光である。光源部10は、例えば、光源としてLEDを含む。距離A1は、10mmである。距離A3は、200mmである。アパーチャ部20のX軸方向の幅は、228mmである。 光 The light distribution of the light source unit 10 is a Lambertian light distribution. Lambertian light distribution is light distribution in which the luminance of the light emitting surface is constant regardless of the viewing direction. The light source unit 10 includes, for example, an LED as a light source. The distance A1 is 10 mm. The distance A3 is 200 mm. The width of the aperture section 20 in the X-axis direction is 228 mm.
 この条件では、X軸方向の光L2の発散角は、170度となる。つまり、アパーチャ部20は、光源部10から出射された発散角170度以上の光L2を部分的に遮る。アパーチャ部20から出射される発散角が170度以下の場合には、アパーチャ部20の遮光部21の形状は、被照射物の上に投影される。しかし、アパーチャ部20から出射される発散角が170度よりも大きくなると、投影されたアパーチャ部20の形状の再現性は、低下する。そして、アパーチャ部20で部分的に遮光された部分の被照射物上での照射光の形状は、丸みをおびた形状となる。また、より最適には、アパーチャ部20から出射される発散角が90度以下の場合には、アパーチャ部20の遮光部分の形状は、より明瞭に被照射物の上に投影される。 で は Under this condition, the divergence angle of the light L2 in the X-axis direction is 170 degrees. That is, the aperture unit 20 partially blocks the light L2 having a divergence angle of 170 degrees or more emitted from the light source unit 10. When the divergence angle emitted from the aperture section 20 is 170 degrees or less, the shape of the light-shielding section 21 of the aperture section 20 is projected onto the irradiation target. However, when the divergence angle emitted from the aperture section 20 is larger than 170 degrees, the reproducibility of the shape of the projected aperture section 20 decreases. Then, the shape of the irradiation light on the object to be irradiated in the portion that is partially shielded by the aperture section 20 has a rounded shape. More optimally, when the divergence angle emitted from the aperture section 20 is 90 degrees or less, the shape of the light-shielding portion of the aperture section 20 is more clearly projected onto the irradiation target.
《1-3》効果
 以上に説明したように、実施の形態1に係る照明装置1によれば、簡易な構成で太陽光の差し込みを模擬した光を照射することができる。
<< 1-3 >> Effect As described above, according to the lighting device 1 of the first embodiment, it is possible to irradiate light simulating insertion of sunlight with a simple configuration.
《2》実施の形態2
 図11は、実施の形態2に係る照明ユニット2の構成を概略的に示す斜視図である。図11において、図1に示される構成要素と同一又は対応する構成要素には、図1に示される符号と同じ符号が付される。図12は、実施の形態2に係る照明ユニット2の制御系の構成を概略的に示す機能ブロック図である。図12において、図5に示される構成要素と同一又は対応する構成要素には、図5に示される符号と同じ符号が付される。図13は、照明ユニット2を部屋の天井81内に設置したときの部屋内の状態を概略的に示す斜視図である。図13において、図7に示される構成要素と同一又は対応する構成要素には、図7に示される符号と同じ符号が付される。
<< 2 >> Embodiment 2
FIG. 11 is a perspective view schematically showing a configuration of a lighting unit 2 according to the second embodiment. 11, the same or corresponding components as those shown in FIG. 1 are denoted by the same reference numerals as those shown in FIG. FIG. 12 is a functional block diagram schematically showing a configuration of a control system of lighting unit 2 according to the second embodiment. 12, the same or corresponding components as those shown in FIG. 5 are denoted by the same reference numerals as those shown in FIG. FIG. 13 is a perspective view schematically showing a state in the room when the lighting unit 2 is installed in the ceiling 81 of the room. 13, components that are the same as or correspond to the components shown in FIG. 7 are denoted by the same reference numerals as those shown in FIG.
 図11及び図12に示されるように、照明ユニット2は、実施の形態1に係る照明装置1(「第1の照明装置」ともいう。)と、他の照明装置1a(「第2の照明装置」ともいう。)とを備えている。照明装置1aは、例えば、青空を模擬することができる装置である。照明装置1aは、青色の光を出射する。つまり、照明装置1aの発光面は青色である。青色の光は、例えば、レイリー散乱を利用して生成される。照明装置1aは、例えば、矩形状の発光面を有する。照明装置1aは、例えば、窓の外の情景を表示する装置である。照明装置1aの下にいる観察者は、照明装置1aの発光面を見ることで、天窓を通して青空を見ているような感覚を得ることができる。 As shown in FIGS. 11 and 12, the lighting unit 2 includes a lighting device 1 (also referred to as a “first lighting device”) according to the first embodiment and another lighting device 1a (“second lighting device”). Device "). The lighting device 1a is a device that can simulate a blue sky, for example. The lighting device 1a emits blue light. That is, the light emitting surface of the lighting device 1a is blue. Blue light is generated using, for example, Rayleigh scattering. The lighting device 1a has, for example, a rectangular light emitting surface. The lighting device 1a is, for example, a device that displays a scene outside a window. An observer under the lighting device 1a can feel as if he / she is looking at the blue sky through the skylight by looking at the light emitting surface of the lighting device 1a.
 照明装置1は、照明装置1aと壁82との間に配置されている。壁82は、照明装置1が光を照射する被照射物である。例えば、壁82に照射される光L3の光照射領域91の形状は、天窓を模擬する照明装置1aの形状に基づいて決められる。壁82に照射される光L3の光照射領域91の大きさは、照明装置1aの大きさに基づいて決められる。想定された太陽の位置と照明装置1aの位置と被照射物である壁82の位置との関係から、壁82に照射される光L3によって形成される光照射領域91の位置と寸法が決定される。つまり、アパーチャ部20の光通過部22の形状及び寸法、並びにアパーチャ部30の光通過部32の形状及び寸法が決定する。 The lighting device 1 is disposed between the lighting device 1a and the wall 82. The wall 82 is an irradiation target to which the lighting device 1 emits light. For example, the shape of the light irradiation area 91 of the light L3 applied to the wall 82 is determined based on the shape of the illumination device 1a that simulates a skylight. The size of the light irradiation area 91 of the light L3 applied to the wall 82 is determined based on the size of the lighting device 1a. From the assumed relationship between the position of the sun, the position of the illumination device 1a, and the position of the wall 82, which is the object to be irradiated, the position and size of the light irradiation area 91 formed by the light L3 irradiated on the wall 82 are determined. You. In other words, the shape and size of the light passing portion 22 of the aperture section 20 and the shape and size of the light passing portion 32 of the aperture portion 30 are determined.
 照明装置1aは、照明装置1aから発せられる光の色の変化が、照明装置1から出射される光の色の変化と同期するように、照明装置1aから発せられる光の色を変化させる。つまり、照明装置1aから発せられる光の色の変化と、照明装置1aから発せられる光の色の変化とが同期している。照明装置1aから発せられる光の色と、照明装置1から出射される光の色とは、同じである必要はない。照明装置1aに表示される色又は情景が時間の経過に伴って変化する場合には、照明装置1から出射される光L3の色又は形状も時間の経過に伴って変化する。光L3の色の変化は、例えば、時間の経過に伴って変化する太陽光の色と連動する。照明装置1aは、例えば、照明装置1の照射光の変形に伴って、発光強度又は発光光の色を変化させる。例えば、夕方の時刻には、照明装置1aの発する光は、青色から橙色に変化する。制御部72は、例えば、照明装置1aを制御する。 The lighting device 1a changes the color of the light emitted from the lighting device 1a such that the color change of the light emitted from the lighting device 1a is synchronized with the color change of the light emitted from the lighting device 1. That is, the change in the color of the light emitted from the lighting device 1a is synchronized with the change in the color of the light emitted from the lighting device 1a. The color of light emitted from the lighting device 1a and the color of light emitted from the lighting device 1 do not need to be the same. When the color or the scene displayed on the lighting device 1a changes over time, the color or shape of the light L3 emitted from the lighting device 1 also changes over time. The change in the color of the light L3 is linked to, for example, the color of sunlight that changes with time. The illumination device 1a changes the emission intensity or the color of the emission light, for example, with the deformation of the illumination light of the illumination device 1. For example, at the time of the evening, the light emitted from the lighting device 1a changes from blue to orange. The control unit 72 controls, for example, the lighting device 1a.
 図13に示されるように、例えば、天井81に設置された照明装置1のアパーチャ部30から光L3が照射される。壁82に照射された光L3の光照射領域91は、例えば、照明装置1aの形状を変形した形状である。 As shown in FIG. 13, for example, the light L <b> 3 is emitted from the aperture unit 30 of the lighting device 1 installed on the ceiling 81. The light irradiation area 91 of the light L3 applied to the wall 82 has, for example, a shape obtained by deforming the shape of the illumination device 1a.
 照明装置1から出射される光L3が照明装置1aから出射される照明光と連動することで、観察者は、光L3は、照明装置1aから差し込んだ光であると感じる。観察者は、照明装置1の光通過部32から出射された光L3が照明装置1aから出射されたように感じる。そして、観察者は、照明装置1aを見て青空を感じ、照明装置1が照射する光L3を見て太陽光を感じる。 光 The light L3 emitted from the illumination device 1 is linked with the illumination light emitted from the illumination device 1a, so that the observer feels that the light L3 is light inserted from the illumination device 1a. The observer feels that the light L3 emitted from the light passage portion 32 of the illumination device 1 is emitted from the illumination device 1a. Then, the observer feels the blue sky by looking at the lighting device 1a, and feels the sunlight by looking at the light L3 emitted by the lighting device 1.
 観察者は、例えば、地下室などの閉ざされた空間にいるときでも、開放感を感じることができる。また、太陽光を取り込むことができない場所においても、観察者は、屋外の雰囲気又は時間の経過を感じることができる。そして、観察者は、サーカディアンリズムを維持することが期待できる。サーカディアンリズムは、昼間は覚醒し、夜は睡眠をとるように、1日のリズムを調整する24時間周期のメカニズムのことである。 The observer can feel a sense of openness even when in a closed space such as a basement, for example. Further, even in a place where sunlight cannot be taken in, the observer can feel the outdoor atmosphere or the passage of time. And the observer can be expected to maintain the circadian rhythm. Circadian rhythm is a 24-hour mechanism that adjusts the rhythm of the day so that it wakes up during the day and sleeps at night.
《3》実施の形態3
 上記実施の形態1に係る照明装置1は、太陽光によって照射されている領域と太陽光が照射されていない領域との間の境界における「にじみ」すなわち「ぼやけ」の程度を設定する機能を備えていない。実施の形態3に係る照明装置3は、簡易な構成で、太陽光によって照射されている領域と太陽光が照射されていない領域との間の境界における「にじみ」すなわち「ぼやけ」の程度を調整できる。
<< 3 >> Embodiment 3
The lighting device 1 according to Embodiment 1 has a function of setting the degree of “bleeding” or “blurring” at a boundary between a region irradiated with sunlight and a region not irradiated with sunlight. Not. Lighting device 3 according to Embodiment 3 has a simple configuration and adjusts the degree of “bleeding” or “blurring” at a boundary between a region irradiated with sunlight and a region not irradiated with sunlight. it can.
 図14は、実施の形態3に係る照明装置3の構成を概略的に示す斜視図である。図14において、図1に示される構成要素と同一又は対応する構成要素には、図1に示される符号と同じ符号が付される。図15は、実施の形態3に係る照明装置3の構成を概略的に示す縦断面図である。図15において、図2に示される構成要素と同一又は対応する構成要素には、図2に示される符号と同じ符号が付される。 FIG. 14 is a perspective view schematically showing a configuration of lighting device 3 according to Embodiment 3. 14, components that are the same as or correspond to the components shown in FIG. 1 are given the same reference numerals as those shown in FIG. FIG. 15 is a longitudinal sectional view schematically showing a configuration of lighting device 3 according to Embodiment 3. 15, the same or corresponding components as those shown in FIG. 2 are denoted by the same reference numerals as those shown in FIG.
 実施の形態3に係る照明装置3は、駆動部60が光源部10及びアパーチャ部20のうちの少なくとも1つの絶対位置、又は光源部10とアパーチャ部20との間の相対位置、又は前記絶対位置と前記相対位置との両方をY軸方向に変化させる点において、図1及び図2に示される照明装置1と相違する。また、実施の形態3に係る照明装置3は、アパーチャ部30を備えていない点において、図1及び図2に示される照明装置1と相違する。 In the lighting device 3 according to the third embodiment, the driving unit 60 is configured such that the driving unit 60 has at least one of the absolute position of the light source unit 10 and the aperture unit 20, or the relative position between the light source unit 10 and the aperture unit 20, or the absolute position. wherein both the relative position in terms of changing the Y 1 axis direction is different from the illumination device 1 shown in FIGS. 1 and 2. The lighting device 3 according to the third embodiment differs from the lighting device 1 shown in FIGS. 1 and 2 in that the lighting device 3 does not include the aperture unit 30.
 図16は、照明装置3を部屋の天井81内に設置したときの部屋内の状態を概略的に示す斜視図である。図16において、図7に示される構成要素と同一又は対応する構成要素には、図7に示される符号と同じ符号が付される。また、図17及び図18は、照明装置3から出射された照射光によって形成された光照射領域の形状の変化を示す図である。また、図19は、照明装置3の構成と照射光の形状との関係を示す図である。 FIG. 16 is a perspective view schematically showing a state in the room when lighting device 3 is installed in ceiling 81 of the room. 16, the same or corresponding components as those shown in FIG. 7 are denoted by the same reference numerals as those shown in FIG. 17 and 18 are diagrams showing changes in the shape of a light irradiation area formed by irradiation light emitted from the lighting device 3. FIG. FIG. 19 is a diagram showing the relationship between the configuration of the illumination device 3 and the shape of the irradiation light.
〈駆動部60〉
 駆動部60は、光源部10とアパーチャ部20との間の距離、すなわち、光源部10及びアパーチャ部20の光軸方向(すなわち、Y軸方向)の位置を変化させる。例えば、駆動部60は、アパーチャ部20と光源部10との相対位置をY軸方向において変更してもよい。駆動部60は、アパーチャ部20と光源部10の相対位置を変更するための駆動回路、モータ又は歯車などを含んでいる。
<Drive unit 60>
Driving unit 60, the distance between the light source portion 10 and the aperture section 20, i.e., the optical axis of the light source portion 10 and an aperture unit 20 (i.e., Y 1 axial direction) to change the position of the. For example, the drive unit 60, the relative position of the aperture portion 20 and the light source unit 10 may be changed in Y 1 axially. The drive unit 60 includes a drive circuit, a motor, a gear, or the like for changing a relative position between the aperture unit 20 and the light source unit 10.
 また、駆動部60は、光源部10の発光色又は発光強度などを変更することができる。駆動部60は、光源部10を駆動するための回路を含むことができる。 The driving unit 60 can change the emission color or emission intensity of the light source unit 10. The driving unit 60 can include a circuit for driving the light source unit 10.
〈照射光の形状の変化〉
 図17及び図18は、例えば、照明装置1によって天井81から照射された光L2の壁82上での光照射領域の形状の変化を示す図である。図17及び図18の上側が天井81側で、下方が床84又は地面側である。図中の点線は、壁82面が天井81と交差する高さを示している。例えば、図17及び図18に示された壁82に向かった場合には、背中側に窓がある場合に相当する。
<Change in shape of irradiation light>
17 and 18 are diagrams illustrating, for example, a change in the shape of the light irradiation area on the wall 82 of the light L2 irradiated from the ceiling 81 by the illumination device 1. 17 and 18, the upper side is the ceiling 81 side, and the lower side is the floor 84 or the ground side. The dotted line in the figure indicates the height at which the wall 82 crosses the ceiling 81. For example, heading toward the wall 82 shown in FIGS. 17 and 18 corresponds to a case where there is a window on the back side.
 Y軸方向において光源部10とアパーチャ部20との相対位置が変化すると、例えば、光照射領域の形状は、図17から図18へと変化する。図17に示されるように、アパーチャ部20を移動させる前は、光L2の形状は、窓の形状を投影した形状となっている。図17は、太陽に雲がかかっていない状態に相当する。例えば、距離cを短くすると、図18に示されるように、アパーチャ部20で部分的に遮光される光の発散角が大きくなり光L2は、拡散光が照射された形状となる。図18は、太陽が雲に隠れた場合に相当する。 When the relative position between the light source portion 10 and the aperture section 20 is changed in Y 1 axis direction, for example, the shape of the light irradiation area is changed to 18 from 17. As shown in FIG. 17, before moving the aperture section 20, the shape of the light L2 is a shape obtained by projecting the shape of the window. FIG. 17 corresponds to a state in which the sun is not covered with clouds. For example, if the distance c 1 is shortened, as shown in FIG. 18, the divergence angle is large becomes light L2 of the light is partially shielded by the aperture portion 20 has a shape which diffused light is irradiated. FIG. 18 corresponds to the case where the sun is hidden by the clouds.
 そして、光源部10の光の色又は光の強さは、例えば、晴曇の移り変わりにより変化する。例えば、太陽に雲がかかっていないときには、光源部10は、強い色温度の低い光L1を出射する。そして、太陽が雲に隠れたときには、光源部10は、弱い白色の光L1を出射する。そのため、観察者に、光L2は、太陽光の差し込み光であると感じさせることができる。 (4) The color or intensity of light of the light source unit 10 changes, for example, due to the transition between fine and cloudy. For example, when there is no cloud on the sun, the light source unit 10 emits light L1 having a strong color temperature and a low color. Then, when the sun is hidden by the clouds, the light source unit 10 emits weak white light L1. Therefore, the observer can feel that the light L2 is the insertion light of the sunlight.
〈光源部10、アパーチャ部20の距離と光L2の形状の関係〉
 アパーチャ部20の光通過部22を通過した光は、被照射物としての壁82上に光照射領域92を形成する。光照射領域92の大きさ及びぼやけ方は、光源部10の大きさ、アパーチャ部20の光通過部22の位置、及び被照射物としての壁82の関係によって決まる。ここで、アパーチャ部20の光通過部22を通過した光L2は、被照射物としての壁82に垂直に照射されると仮定する。例えば、光照射領域92の垂直方向の辺のX軸方向での大きさとその方向におけるぼやけ量とは、以下のように光源部10の大きさとアパーチャ部20の位置と被照射物としての壁82との関係によって決まる。
<Relationship between distance between light source unit 10 and aperture unit 20 and shape of light L2>
The light that has passed through the light passage section 22 of the aperture section 20 forms a light irradiation area 92 on a wall 82 as an irradiation target. The size and blurring of the light irradiation area 92 are determined by the relationship between the size of the light source unit 10, the position of the light passing unit 22 of the aperture unit 20, and the wall 82 as the irradiation object. Here, it is assumed that the light L2 that has passed through the light passage section 22 of the aperture section 20 is irradiated perpendicularly to a wall 82 as an irradiation target. For example, the size of the vertical side of the light irradiation area 92 in the X-axis direction and the amount of blur in that direction are as follows, as follows: the size of the light source unit 10, the position of the aperture unit 20, and the wall 82 as the irradiation object. It depends on the relationship.
 以下、光照射領域92のY軸方向の中央と光源部10の中心を通るX軸方向に延びる平面(以下「光軸平面」という)について考える。図19に示されるように、光軸平面における光源部10の発光面の幅をa、光源部10の発光面の端部とアパーチャ部20の光通過部22の端のZ軸方向の距離をb、光源部10の発光面とアパーチャ部20の光通過部22とのY軸方向の距離をc、アパーチャ部20の光通過部22と被照射物としての壁82とのY軸方向の距離をd、光源部10の大きさによる像のぼやけ幅をB、光照射領域92のX軸方向中央でのZ軸方向幅をBとしたとき、ぼやけ幅B、光照射領域92の幅Bは、以下の式(1)及び(2)で表すことができる。なお、光照射領域92の幅Bは、図19に示されるように、光源部10の発光面の端部から発した光がその端部側方向におけるアパーチャ部20の光通過部22端を通って領域Cに照射される位置を光照射領域92の端部とする領域をいう。
=a・d/c             (1)
={2b・(c+d)/c}+a  (2)
Hereinafter, a plane extending in the X-axis direction passing through the center of the light irradiation area 92 in the Y-axis direction and the center of the light source unit 10 (hereinafter, referred to as “optical axis plane”) will be considered. As shown in Figure 19, the width of the light emitting surface of the light source unit 10 in the optical axis plane a 1, the light-emitting surface of the end portion and the aperture portion 20 of the light source section 10 of the edge of the light transmitting portion 22 Z 1 axial direction distance b 1, the light-emitting surface and the aperture portion 20 of the light source portion 10 c 1 a distance Y 1 axis direction between the light passing portion 22, a light transmitting portion 22 of the aperture portion 20 of the wall 82 of the object to be irradiated Y 1 axially d 1 distance, B 1 the blur width of the image due to the size of the light source unit 10, when the Z-axis direction width in the X-axis direction center of the light irradiation area 92 was set to B 2, blur width B 1, the width B 2 of the light irradiation region 92 can be expressed by the following equation (1) and (2). The width B 2 of the light irradiation region 92, as shown in Figure 19, the light passing portion 22 end of the aperture portion 20 the light emitted from the end portion of the light emitting surface of the light source unit 10 is at its end side direction The position where the light passes through the area C is defined as an end of the light irradiation area 92.
B 1 = a 1 · d 1 / c 1 (1)
B 2 = {2b 1 · (c 1 + d 1 ) / c 1 } + a 1 (2)
 室内にいる人に、光照射領域92をあたかも太陽の差し込み光であると感じさせるためには、光照射領域92の幅Bとぼやけ幅Bの関係は、B/B<0.5であることが好ましく、B/B<0.1であることがさらに好ましい。例えば、距離cが短くなるように光源部10とアパーチャ部20の相対位置を変化させる場合、ぼやけ幅Bと光照射領域92の幅Bは、距離cが増加するほど広がる。ぼやけ幅Bが十分に大きい場合、光照射領域92のX軸方向の幅は広がり、光照射領域92が拡散光によるものであると感じられる。このため、人は、光照射領域92をみて、あたかも太陽が雲に隠れたときの太陽光が差し込んでいるかのように感じる。 The person in the room, in order to feel the light irradiation region 92 it were light insertion of the sun, the relationship between the width B 2 and the blur width B 1 of the irradiation region 92, B 1 / B 2 <0 . is preferably 5, more preferably a B 1 / B 2 <0.1. For example, when the relative position between the light source unit 10 and the aperture unit 20 is changed so that the distance c 1 becomes shorter, the blur width B 1 and the width B 2 of the light irradiation area 92 increase as the distance c 1 increases. When the width B 1 blur is large enough, the width of the X-axis direction of the light irradiation region 92 spreads, the light irradiation region 92 is felt to be due to diffused light. For this reason, the person looks at the light irradiation area 92 and feels as if the sunlight when the sun was hidden by the clouds had entered.
 なお、光照射領域92の垂直方向の辺のX軸方向のぼやけ幅Bの大きさを示したが、光照射領域92の水平方向の辺のY軸方向でのぼやけ幅の大きさもぼやけ幅Bと同様である。なお、上記の関係は、X軸方向及びY軸方向に限定されず、例えば、窓形状が矩形以外の場合など、アパーチャ部20が光を部分的に遮ることによって形成される光照射領域の境界のすべてにおいて、光の広がる方向での大きさと、その方向におけるぼやけ量に適用できる。 Incidentally, although the X-axis direction of the blur size of the width B 1 of the vertical sides of the light irradiation area 92, the blur width in the Y-axis direction of the horizontal sides of the irradiation region 92 size also blur width B 1 is the same as that. Note that the above relationship is not limited to the X-axis direction and the Y-axis direction. For example, when the window shape is other than rectangular, the boundary of the light irradiation region formed by the aperture section 20 partially blocking the light. Can be applied to the size in the light spreading direction and the amount of blur in that direction.
 なお、駆動部60は、時間の経過に伴ってぼやけ幅Bを変化させてもよい。例えば、駆動部60は、d又はc又はこれらの両方を変化させることにより、ぼやけ幅Bを変化させることができる。例えば、駆動部60は、上述した移動制御に加えて、光源部10の高さ位置、アパーチャ部20の高さ位置又はアパーチャ部30の高さ位置もしくはそれらすべてを制御できる機構を有していてもよい。例えば、駆動部60は、光源部10に対するアパーチャ部20の位置に加えて、光源部10に対するアパーチャ部30の位置を変化させられる機構を有していてもよい。 The driving unit 60 may change the width B 1 blurred over time. For example, the drive unit 60 by changing the d 1 or c 1 or both of these, it is possible to change the blur width B 1. For example, the drive unit 60 has a mechanism capable of controlling the height position of the light source unit 10, the height position of the aperture unit 20, the height position of the aperture unit 30, or all of them in addition to the movement control described above. Is also good. For example, the drive unit 60 may have a mechanism that can change the position of the aperture unit 30 with respect to the light source unit 10 in addition to the position of the aperture unit 20 with respect to the light source unit 10.
 ぼやけを用いることによって、照明装置3の下にいる人(すなわち、観察者)に、光L2は、太陽光の差し込み光であると感じさせることができる。 By using the blur, a person (that is, an observer) under the lighting device 3 can be made to feel that the light L2 is the insertion light of sunlight.
 なお、実施の形態3に係る照明装置3は、実施の形態1に係る照明装置1と同様に、光源部10、アパーチャ部20、レンズ50のいずれか1つ以上をZX平面に平行な方向(例えば、X軸方向)に移動させる機能を有してもよい。 In the lighting device 3 according to the third embodiment, as in the lighting device 1 according to the first embodiment, at least one of the light source unit 10, the aperture unit 20, and the lens 50 is parallel to the ZX plane ( For example, it may have a function of moving in the X-axis direction).
《4》実施の形態4
 図20は、実施の形態4に係る照明装置4の構成を概略的に示す斜視図である。図20において、図14に示される構成要素と同一又は対応する構成要素には、図14に示される符号と同じ符号が付される。実施の形態4に係る照明装置4は、アパーチャ部20と被照射物としての壁82の間に第2のアパーチャ部としてのアパーチャ部30をさらに備えている点において、図14に示される照明装置3と相違する。アパーチャ部30は、実施の形態1で説明されたものと同じである。この点以外に関し、実施の形態4は、実施の形態3と同じである。
<< 4 >> Embodiment 4
FIG. 20 is a perspective view schematically showing a configuration of lighting device 4 according to Embodiment 4. 20, the same or corresponding components as those shown in FIG. 14 are denoted by the same reference numerals as those shown in FIG. Illumination device 4 according to Embodiment 4 is different from illumination device shown in FIG. 14 in that aperture unit 30 as a second aperture unit is further provided between aperture unit 20 and wall 82 as an object to be irradiated. 3 is different. The aperture unit 30 is the same as that described in the first embodiment. Except for this point, the fourth embodiment is the same as the third embodiment.
 実施の形態4に係る照明装置4によれば、光照射領域93に到達する光L3は、アパーチャ部20の光通過部22とアパーチャ部30の光通過部32とによって、壁82における窓形状の光照射領域93の形状が決まる。また、例えば、駆動部60は、光源部10とアパーチャ部20の少なくとも一方を光軸方向に移動させることによって、光照射領域93の端部にぼやけを生じさせることができる。 According to the illuminating device 4 according to the fourth embodiment, the light L3 arriving at the light irradiation area 93 is transmitted through the light passing portion 22 of the aperture portion 20 and the light passing portion 32 of the aperture portion 30 to form a window in the wall 82. The shape of the light irradiation area 93 is determined. Further, for example, the drive unit 60 can cause blur at the end of the light irradiation area 93 by moving at least one of the light source unit 10 and the aperture unit 20 in the optical axis direction.
 上記以外に関し、実施の形態4は、実施の形態3と同じである。 Other than the above, the fourth embodiment is the same as the third embodiment.
《5》実施の形態5
 図21は、実施の形態5に係る照明装置5の構成を概略的に示す斜視図である。図21において、図20に示される構成要素と同一又は対応する構成要素には、図20に示される符号と同じ符号が付される。図22は、照明装置5の制御系の構成を概略的に示す機能ブロック図である。図22において、図5に示される構成要素と同一又は対応する構成要素には、図5に示される符号と同じ符号が付される。実施の形態5に係る照明装置5は、アパーチャ部20とアパーチャ部30との間に光を拡散させる光拡散体25及びこれを駆動する回路である光拡散体駆動部26をさらに備えた点において、図20に示される照明装置3と相違する。
<< 5 >> Embodiment 5
FIG. 21 is a perspective view schematically showing a configuration of lighting device 5 according to Embodiment 5. 21, components that are the same as or correspond to the components shown in FIG. 20 are given the same reference numerals as those shown in FIG. FIG. 22 is a functional block diagram schematically illustrating a configuration of a control system of the lighting device 5. 22, components that are the same as or correspond to the components shown in FIG. 5 are denoted by the same reference numerals as those shown in FIG. The lighting device 5 according to the fifth embodiment further includes a light diffuser 25 that diffuses light between the aperture unit 20 and the aperture unit 30 and a light diffuser driving unit 26 that is a circuit for driving the light diffuser 25. , The lighting device 3 shown in FIG.
 光拡散体25は、例えば、液晶パネル又はエレクトロクロミックの特性を持つ板状部材などである。「エレクトロクロミック」とは、ある種の物質に電流を流し又は電圧をかけると色が可逆的に変化する性質を持つことである。光拡散体25は、照明装置5における光路上に配置されている。例えば、光拡散体25は、アパーチャ部20の光通過部22である開口内、光源部10とアパーチャ部20との間、アパーチャ部20とアパーチャ部30との間、アパーチャ部30の光通過部32である開口内、アパーチャ部30と被照射物である壁82との間、のいずれか1つ以上の位置に配置される。光拡散体25は、例えば、電圧を印加することで光拡散性、光透過性、及び色のうちの少なくとも1つが変化する材料で形成されている。 The light diffuser 25 is, for example, a liquid crystal panel or a plate-like member having electrochromic characteristics. "Electrochromic" refers to the property of reversibly changing color when an electric current or voltage is applied to a certain substance. The light diffuser 25 is arranged on an optical path in the lighting device 5. For example, the light diffuser 25 is provided inside the opening, which is the light passing part 22 of the aperture part 20, between the light source part 10 and the aperture part 20, between the aperture part 20 and the aperture part 30, and the light passing part of the aperture part 30. It is arranged at any one or more positions inside the opening 32 and between the aperture section 30 and the wall 82 as the irradiation target. The light diffuser 25 is formed of, for example, a material that changes at least one of light diffusivity, light transmissivity, and color when a voltage is applied.
 光拡散体25が透明で光拡散性を持たない場合は、光L3によって形成される光照射領域94は矩形であり、人に太陽が雲に隠れていない状態を感じさせることができる。光拡散体25が光拡散性を持つ場合は、光拡散体25が光出射面となり、光L3によって形成される光照射領域94は矩形ではなくなり、矩形よりも広がった形状になる。これによって、人に太陽が雲に隠れた、すなわち、太陽に陰りが生じたと感じさせることができる。 (4) When the light diffuser 25 is transparent and has no light diffusing property, the light irradiation area 94 formed by the light L3 is rectangular, and it is possible to make a person feel that the sun is not hidden by the clouds. When the light diffuser 25 has a light diffusing property, the light diffuser 25 serves as a light emitting surface, and the light irradiation area 94 formed by the light L3 is not a rectangle but has a shape wider than the rectangle. This can make a person feel that the sun is hidden by the clouds, that is, the sun is shading.
 光拡散体25は、例えば、電圧を印加することで光拡散性、光透過性、及び色のうちの少なくとも1つが変化する材料で形成された拡散板若しくは拡散シート、わた、紙、又はこれらの組み合わせなどによって構成されてもよい。光拡散体25が照明装置5の光路上にある場合、光拡散体25に照射された光は、拡散され、光拡散体25は、光出射面の一部となる。これにより照射光は、その一部又は全部が拡散され、観察者に、太陽が雲に隠れたと感じさせること、又は、窓の外に木があると感じさせることができる。 The light diffuser 25 is, for example, a light diffuser, a light transmissive, and a diffuser plate or a diffuser sheet, a cotton, a paper, or a material formed of a material that changes at least one of colors by applying a voltage. It may be configured by a combination or the like. When the light diffuser 25 is on the optical path of the lighting device 5, the light applied to the light diffuser 25 is diffused, and the light diffuser 25 becomes a part of the light exit surface. As a result, part or all of the illuminating light is diffused, and it is possible to make the observer feel that the sun is hidden by the clouds or that there is a tree outside the window.
 上記以外に関し、実施の形態5は、実施の形態3又は4と同じである。 Other than the above, the fifth embodiment is the same as the third or fourth embodiment.
《6》実施の形態6
 図23は、実施の形態6に係る照明ユニット6の構成を概略的に示す斜視図である。図23において、図20に示される構成要素と同一又は対応する構成要素には、図20に示される符号と同じ符号が付される。実施の形態6に係る照明ユニット6は、実施の形態5に係る照明装置5に他の照明装置1aを加えたものである。照明装置1aは、図11に示される実施の形態2に係る照明装置1aと同じである。
<< 6 >> Embodiment 6
FIG. 23 is a perspective view schematically showing a configuration of a lighting unit 6 according to the sixth embodiment. 23, components that are the same as or correspond to the components shown in FIG. 20 are denoted by the same reference numerals as those shown in FIG. The lighting unit 6 according to the sixth embodiment is obtained by adding another lighting device 1a to the lighting device 5 according to the fifth embodiment. Illumination device 1a is the same as illumination device 1a according to the second embodiment shown in FIG.
 図24は、照明ユニット6を部屋の天井81内に設置したときの部屋内の状態を概略的に示す斜視図である。図24において、図13に示される構成要素と同一又は対応する構成要素には、図13に示される符号と同じ符号が付される。 FIG. 24 is a perspective view schematically showing a state in the room when lighting unit 6 is installed in ceiling 81 of the room. In FIG. 24, components that are the same as or correspond to the components shown in FIG. 13 are given the same reference numerals as those shown in FIG.
 図23及び図24に示されるように、照明ユニット6は、実施の形態4に係る照明装置4と、他の照明装置1aとを備えている。照明装置1aは、例えば、青空を模擬することができる装置である、実施の形態2で説明したものと同じである。 As shown in FIGS. 23 and 24, the lighting unit 6 includes the lighting device 4 according to Embodiment 4 and another lighting device 1a. The illumination device 1a is, for example, the same as that described in the second embodiment, which is a device capable of simulating a blue sky.
 実施の形態6に係る照明ユニット6によれば、光照射領域94に到達する光L3は、アパーチャ部20の光通過部22とアパーチャ部30の光通過部32とによって、壁82における窓形状の光照射領域93の形状が決まる。また、例えば、駆動部60は、光源部10とアパーチャ部20の少なくとも一方を光軸方向に移動させることによって、光照射領域93の端部にぼやけを生じさせることができる。 According to illumination unit 6 according to Embodiment 6, light L3 arriving at light irradiation area 94 is shaped like a window in wall 82 by light passage section 22 of aperture section 20 and light passage section 32 of aperture section 30. The shape of the light irradiation area 93 is determined. Further, for example, the drive unit 60 can cause blur at the end of the light irradiation area 93 by moving at least one of the light source unit 10 and the aperture unit 20 in the optical axis direction.
 上記以外に関し、実施の形態6は、実施の形態3から5と同じである。 Other than the above, the sixth embodiment is the same as the third to fifth embodiments.
《7》変形例
 上記実施の形態1から6における照明装置及び照明ユニットの構成部品を適宜組み合わせることができる。
<< 7 >> Modifications The components of the lighting device and the lighting unit in Embodiments 1 to 6 can be appropriately combined.
 上記実施の形態1から6において、部品間の位置関係又は部品の形状を示す用語は、製造上の公差及び組立て上のばらつきなどを考慮した範囲を含む意味で用いられている。 In the first to sixth embodiments, the term indicating the positional relationship between components or the shape of the components is used to include a range that takes into account manufacturing tolerances, assembly variations, and the like.
 1、3~5 照明装置、 1a 照明装置、 2、6 照明ユニット、 10 光源部、 20 アパーチャ部、 21 遮光部、 22 光通過部、 25 光拡散体、 30 アパーチャ部、 31 遮光部、 32 光通過部、 40、60 駆動部、 50 レンズ、 81 天井、 82、83 壁、 84 床、 91~94 光照射領域。 1, 3-5 lighting device, {1a} lighting device, {2, 6} lighting unit, {10} light source portion, {20} aperture portion, {21} light shielding portion, {22} light passing portion, {25} light diffuser, {30} aperture portion, {31} light shielding portion, {32} light Passing part, {40, 60} driving part, {50} lens, {81} ceiling, {82, 83} wall, {84} floor, {91-94} light irradiation area.

Claims (20)

  1.  光を発する光源部と、
     第1の遮光部と第1の光通過部とを有し、前記光源部で発せられた前記光のうちの前記第1の光通過部を通過した光を出射する第1のアパーチャ部と、
     前記光源部及び前記第1のアパーチャ部のうちの少なくとも1つを移動させる駆動部と
     を備えた照明装置。
    A light source unit that emits light,
    A first aperture unit that has a first light-blocking unit and a first light-passing unit, and emits light that has passed through the first light-passing unit among the light emitted by the light source unit;
    A driving unit that moves at least one of the light source unit and the first aperture unit.
  2.  前記駆動部は、前記光源部及び前記第1のアパーチャ部のうちの少なくとも1つの絶対位置、又は前記光源部と前記第1のアパーチャ部との間の相対位置、又は前記絶対位置と前記相対位置との両方を変化させる
     請求項1に記載の照明装置。
    The drive unit may be an absolute position of at least one of the light source unit and the first aperture unit, or a relative position between the light source unit and the first aperture unit, or the absolute position and the relative position The lighting device according to claim 1, wherein both are changed.
  3.  前記第1の光通過部を通過する光の中心光線の方向を第1の方向とし、前記第1の方向に直交し且つ前記第1の光通過部の一辺に平行な方向を第2の方向とし、前記第1の方向及び前記第2の方向の両方に直交する方向を第3の方向としたときに、
     前記駆動部は、前記絶対位置、前記相対位置、又は前記絶対位置と前記相対位置との両方を、前記第2の方向の成分を含む方向に移動させる
     請求項2に記載の照明装置。
    The direction of a central ray of light passing through the first light passing portion is defined as a first direction, and a direction orthogonal to the first direction and parallel to one side of the first light passing portion is defined as a second direction. When a direction orthogonal to both the first direction and the second direction is defined as a third direction,
    The lighting device according to claim 2, wherein the driving unit moves the absolute position, the relative position, or both the absolute position and the relative position in a direction including a component in the second direction.
  4.  前記駆動部は、前記光源部を中心とする円周上で前記第1のアパーチャ部を移動させる
     請求項1から3のいずれか1項に記載の照明装置。
    The lighting device according to any one of claims 1 to 3, wherein the driving unit moves the first aperture unit on a circumference around the light source unit.
  5.  前記第1の光通過部を通過する光の中心光線の方向を第1の方向とし、前記第1の方向に直交し且つ前記第1の光通過部の一辺に平行な方向を第2の方向とし、前記第1の方向及び前記第2の方向の両方に直交する方向を第3の方向としたときに、
     前記駆動部は、前記絶対位置、前記相対位置、又は前記絶対位置と前記相対位置との両方を、前記第1の方向の成分を含む方向に移動させる
     請求項2又は3に記載の照明装置。
    The direction of a central ray of light passing through the first light passing portion is defined as a first direction, and a direction orthogonal to the first direction and parallel to one side of the first light passing portion is defined as a second direction. When a direction orthogonal to both the first direction and the second direction is defined as a third direction,
    The lighting device according to claim 2, wherein the driving unit moves the absolute position, the relative position, or both the absolute position and the relative position in a direction including a component in the first direction.
  6.  前記駆動部は、前記光源部に対する前記第1のアパーチャ部の位置を変化させる
     請求項1から5のいずれか1項に記載の照明装置。
    The lighting device according to claim 1, wherein the driving unit changes a position of the first aperture unit with respect to the light source unit.
  7.  前記第1の光通過部は、前記第2の方向の辺が前記第3の方向の辺より長い
     請求項3又は5に記載の照明装置。
    The lighting device according to claim 3, wherein the first light passage portion has a side in the second direction longer than a side in the third direction.
  8.  前記光源部から発せられた前記光の発散角を小さくして、前記第1のアパーチャ部に向けて出射する光学部をさらに備えた請求項1から7のいずれか1項に記載の照明装置。 8. The lighting device according to claim 1, further comprising an optical unit configured to reduce a divergence angle of the light emitted from the light source unit and emit the light toward the first aperture unit. 9.
  9.  前記第1のアパーチャ部の前記第1の光通過部は、台形状である
     請求項1から8のいずれか1項に記載の照明装置。
    The lighting device according to any one of claims 1 to 8, wherein the first light passage portion of the first aperture portion has a trapezoidal shape.
  10.  第2の遮光部と第2の光通過部とを有し、前記第1の光通過部を通過した光のうちの前記第2の光通過部を通過した光を出射する第2のアパーチャ部をさらに備えた
     請求項1から9のいずれか1項に記載の照明装置。
    A second aperture section having a second light-blocking section and a second light-passing section, and emitting light passing through the second light-passing section out of light passing through the first light-passing section; The lighting device according to any one of claims 1 to 9, further comprising:
  11.  前記駆動部は、前記光源部に対する前記第2のアパーチャ部の位置を変更する
     請求項10に記載の照明装置。
    The lighting device according to claim 10, wherein the driving unit changes a position of the second aperture unit with respect to the light source unit.
  12.  前記位置の変更は、前記第2のアパーチャ部の前記光源部からの距離の変更を含む
     請求項11に記載の照明装置。
    The lighting device according to claim 11, wherein the change of the position includes a change of a distance of the second aperture unit from the light source unit.
  13.  前記第2のアパーチャ部の前記第2の光通過部は、長方形状である
     請求項10から12のいずれか1項に記載の照明装置。
    The lighting device according to any one of claims 10 to 12, wherein the second light passage portion of the second aperture portion has a rectangular shape.
  14.  前記光源部から発せられた光の光路上に、前記光を拡散させる光拡散体をさらに備えた
     請求項1から13のいずれか1項に記載の照明装置。
    The lighting device according to claim 1, further comprising a light diffuser that diffuses the light on an optical path of the light emitted from the light source unit.
  15.  前記光拡散体は、前記光源部と前記第1のアパーチャ部との間の前記光の光路上、前記第1のアパーチャ部の前記第1の光通過部内、前記第1のアパーチャ部の前記第1の光通過部の下流側の光路上のうちの少なくとも1つに配置される
     請求項14に記載の照明装置。
    The light diffuser is disposed on the optical path of the light between the light source unit and the first aperture unit, in the first light passage unit of the first aperture unit, and in the first aperture unit. The lighting device according to claim 14, wherein the lighting device is disposed on at least one of the optical paths on the downstream side of the one light passage unit.
  16.  前記光拡散体は、電圧の印加により拡散透過率が変化する部材で形成されている
     請求項14又は15に記載の照明装置。
    The lighting device according to claim 14, wherein the light diffuser is formed of a member whose diffusion transmittance changes when a voltage is applied.
  17.  前記光源部は、前記光源部から発せられる光の色を変化させる調色機能と前記光源部から発せられる光の強度を変化させる調光機能の少なくとも一方を有する
     請求項1から16のいずれか1項に記載の照明装置。
    The light source unit has at least one of a toning function of changing a color of light emitted from the light source unit and a dimming function of changing an intensity of light emitted from the light source unit. The lighting device according to any one of the preceding claims.
  18.  前記光源部を駆動する光源駆動部と、
     前記駆動部及び前記光源駆動部を制御する制御部と
     をさらに備え、
     前記制御部は、前記光源部及び前記第1のアパーチャ部の少なくとも一方の位置の変化に伴って前記光源部から発せられる前記光の色及び強度の少なくとも一方を変化させる
     請求項17に記載の照明装置。
    A light source driving unit that drives the light source unit,
    A control unit that controls the driving unit and the light source driving unit,
    The lighting according to claim 17, wherein the control unit changes at least one of a color and an intensity of the light emitted from the light source unit according to a change in a position of at least one of the light source unit and the first aperture unit. apparatus.
  19.  光を発する光源部と、
     前記光の発散角を小さくする集光するレンズと、
     第1の遮光部と第1の光通過部とを有し、前記レンズを通過した前記光のうちの前記第1の光通過部を通過した光を出射する第1のアパーチャ部と、
     前記光源部、前記第1のアパーチャ部及び前記レンズのうちの少なくとも1つを移動させる駆動部と
     を備えた照明装置。
    A light source unit that emits light,
    A focusing lens for reducing the divergence angle of the light,
    A first aperture unit that has a first light-blocking unit and a first light-passing unit, and emits light that has passed through the first light-passing unit among the light that has passed through the lens;
    A driving unit configured to move at least one of the light source unit, the first aperture unit, and the lens.
  20.  請求項1から19のいずれか1項に記載の照明装置である第1の照明装置と、
     照明光を発する第2の照明装置と
     を備え、
     前記第2の照明装置は、前記第2の照明装置から発せられる前記光の色の変化が、前記第1の照明装置から出射される前記光の色の変化と同期するように、前記第2の照明装置から発せられる前記光の色を変化させる
     照明ユニット。
    A first lighting device, which is the lighting device according to any one of claims 1 to 19,
    A second lighting device that emits illumination light,
    The second illuminating device may be configured to control the second illuminating device so that a color change of the light emitted from the second illuminating device is synchronized with a color change of the light emitted from the first illuminating device. A lighting unit that changes a color of the light emitted from the lighting device.
PCT/JP2019/030026 2018-08-07 2019-07-31 Lighting device and lighting unit WO2020031809A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980051465.0A CN112534180A (en) 2018-08-07 2019-07-31 Lighting device and lighting unit
JP2020535696A JP7066304B2 (en) 2018-08-07 2019-07-31 Lighting equipment and lighting unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018148398 2018-08-07
JP2018-148398 2018-08-07

Publications (1)

Publication Number Publication Date
WO2020031809A1 true WO2020031809A1 (en) 2020-02-13

Family

ID=69413288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030026 WO2020031809A1 (en) 2018-08-07 2019-07-31 Lighting device and lighting unit

Country Status (3)

Country Link
JP (1) JP7066304B2 (en)
CN (1) CN112534180A (en)
WO (1) WO2020031809A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231008A (en) * 2001-02-05 2002-08-16 Matsushita Electric Works Ltd Lighting device
JP2007041218A (en) * 2005-08-02 2007-02-15 Pioneer Electronic Corp Image display device
JP2009245834A (en) * 2008-03-31 2009-10-22 Sharp Corp Lighting fixture and lighting system
JP2011204654A (en) * 2010-03-26 2011-10-13 Toshiba Lighting & Technology Corp Lighting device
JP2013037317A (en) * 2011-08-11 2013-02-21 Seiko Epson Corp Video device
JP2017513193A (en) * 2014-04-02 2017-05-25 フィリップス ライティング ホールディング ビー ヴィ Lighting unit with reflective elements

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101268304A (en) * 2005-06-01 2008-09-17 皇家飞利浦电子股份有限公司 Artificial window
ITMI20081135A1 (en) * 2008-06-24 2009-12-25 Trapani Paolo Di LIGHTING DEVICE
JP6125434B2 (en) * 2011-01-13 2017-05-10 フィリップス ライティング ホールディング ビー ヴィ Optical system and method
ITTO20120988A1 (en) * 2012-11-14 2014-05-15 Light In Light S R L ARTIFICIAL LIGHTING SYSTEM TO SIMULATE A NATURAL LIGHTING
RU2657860C2 (en) * 2014-03-10 2018-06-18 Коелюкс С.Р.Л. Lighting system
US10088125B2 (en) * 2015-02-23 2018-10-02 Coelux S.R.L. Illumination system for optically widened perception
US10670228B2 (en) * 2016-03-07 2020-06-02 Coelux S.R.L. Sun-sky imitating lighting system with enlarged perceived window area
CN206904858U (en) * 2017-01-16 2018-01-19 东莞市新迪电子科技有限公司 A kind of virtual window scene lighting system of H types
CN207847403U (en) * 2018-01-31 2018-09-11 仲恺农业工程学院 The Intelligent indoor emulation window of natural light variation can be simulated

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231008A (en) * 2001-02-05 2002-08-16 Matsushita Electric Works Ltd Lighting device
JP2007041218A (en) * 2005-08-02 2007-02-15 Pioneer Electronic Corp Image display device
JP2009245834A (en) * 2008-03-31 2009-10-22 Sharp Corp Lighting fixture and lighting system
JP2011204654A (en) * 2010-03-26 2011-10-13 Toshiba Lighting & Technology Corp Lighting device
JP2013037317A (en) * 2011-08-11 2013-02-21 Seiko Epson Corp Video device
JP2017513193A (en) * 2014-04-02 2017-05-25 フィリップス ライティング ホールディング ビー ヴィ Lighting unit with reflective elements

Also Published As

Publication number Publication date
CN112534180A (en) 2021-03-19
JP7066304B2 (en) 2022-05-13
JPWO2020031809A1 (en) 2021-02-25

Similar Documents

Publication Publication Date Title
CN108626639B (en) Lighting device and lighting system
JP5723271B2 (en) Imaging method and system
US10775026B2 (en) Moon appearance generating system
US20220221130A1 (en) Illumination device
JP2018170154A (en) Lighting device and lighting system
CN213299822U (en) Lighting system and artificial window
WO2020031809A1 (en) Lighting device and lighting unit
JP2008524877A (en) Electronic window based on high brightness display screen
US11662079B1 (en) Systems and methods for emulating natural daylight with an interior luminaire
US20230417406A1 (en) Lighting device, air conditioner, and control system
US20220326425A1 (en) Optical Display Device
JP6114774B2 (en) Imaging method and system
WO2021085545A1 (en) False window unit and false window
WO2024027517A1 (en) Lamp
JP7066992B2 (en) Surface light emitting device and indoor structure using it
JP2856873B2 (en) Irradiation unit for artificial sky
JP7228452B2 (en) sky perception device
JP2023129712A (en) Diffuser and lighting device
JPH09171361A (en) Light controlled visual sign
Mochizuki et al. LED flat panel capable of seamless connection for use in lighting
JP2022066227A (en) Illumination device and illumination system
KR102097591B1 (en) Entertainment lighting apparatus
JPH01122502A (en) Wall lighting method
JP2020052205A (en) Display control system, display control method and program
JPS6031388A (en) Projective type television device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19847598

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020535696

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19847598

Country of ref document: EP

Kind code of ref document: A1