WO2020031393A1 - Fuel gas adsorption cartridge, fuel gas adsorption device employing same, and method for determining replacement time of fuel gas adsorption cartridge - Google Patents

Fuel gas adsorption cartridge, fuel gas adsorption device employing same, and method for determining replacement time of fuel gas adsorption cartridge Download PDF

Info

Publication number
WO2020031393A1
WO2020031393A1 PCT/JP2018/032607 JP2018032607W WO2020031393A1 WO 2020031393 A1 WO2020031393 A1 WO 2020031393A1 JP 2018032607 W JP2018032607 W JP 2018032607W WO 2020031393 A1 WO2020031393 A1 WO 2020031393A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel gas
gas
gas adsorption
fine
adsorbent
Prior art date
Application number
PCT/JP2018/032607
Other languages
French (fr)
Japanese (ja)
Inventor
淳 金子
満 野末
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Publication of WO2020031393A1 publication Critical patent/WO2020031393A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels

Definitions

  • the present invention relates to a fuel gas adsorption cartridge capable of determining a replacement time and a fuel gas adsorption device using the same. Further, the present invention relates to a method for determining a replacement time of a fuel gas adsorption cartridge, which can be replaced before the fuel gas adsorption capacity of the fuel gas adsorption cartridge breaks through.
  • a one-time fuel gas adsorption cartridge that selectively adsorbs a target fuel gas component when the fuel gas passes through the gas adsorbent is being developed.
  • this one-time fuel gas adsorption method using a gas adsorbent in order to prevent leakage of the fuel gas, the timing of breakthrough of the gas adsorbent is grasped, the fuel gas purging process is stopped in advance, It is necessary to replace the fuel gas adsorption container used in the purging process in advance in order to prevent fuel gas from leaking into the atmosphere and improve safety.
  • the amount of gas adsorption is grasped in advance, and it is possible to roughly calculate the total amount of ventilation and the absolute amount of gas concentration.
  • the gas processing end time is predicted, and gas leakage is detected using a sensor that measures the concentration of the fuel gas to be adsorbed.
  • the present invention is a fuel gas adsorption cartridge comprising a fuel gas adsorption container having an inlet and an outlet filled with a fine-grained porous gas adsorbent, wherein the fine-grained porous gas
  • the present invention provides a fuel gas adsorption cartridge in which at least a part of the heavy gas adsorbent has adsorbed a component having lower adsorbability than the fuel gas to be adsorbed (Invention 1).
  • the fuel gas can be adsorbed from the inlet of the fuel gas adsorption cartridge.
  • the fine-grained porous gas adsorbent that adsorbs a component having lower adsorbability than the fuel gas adsorbs the fuel gas, while a component having lower adsorbability than the adsorbed fuel gas flows from the outlet. Since the fuel gas flows out, it is detected by a sensor, and by monitoring the behavior (increase / decrease) of the concentration of the component having a low adsorptivity, the breakthrough time of the fuel gas adsorption cartridge can be predicted in advance.
  • a fuel gas adsorption container having an inlet and an outlet is filled with a fine-grained porous gas adsorbent, and at least a part of the fine-grained porous gas adsorbent is to be adsorbed.
  • a fuel gas adsorption device comprising: a fuel gas adsorption cartridge that adsorbs a component having lower adsorbability than fuel gas; and a sensor for the lower adsorbent component provided on an outlet side of the fuel gas adsorption container. (Invention 2).
  • the fuel gas to be adsorbed from the inlet of the fuel gas adsorption cartridge filled with the fine-grained porous gas adsorbent that adsorbs a component having lower adsorbability than the fuel gas to be adsorbed ,
  • the fine-grained porous gas adsorbent that adsorbs a component having lower adsorbability than the fuel gas adsorbs the fuel gas, while a component having lower adsorbability than the adsorbed fuel gas flows out of the outlet.
  • the fuel gas to be adsorbed is preferably methane gas, propane gas, butane gas or a mixed gas containing these gases as a main component (Invention 3).
  • invention 3 it is possible to suitably cope with adsorption of methane gas, propane gas, butane gas, or a mixed gas containing these gases as a main component, which is generally distributed as a fuel gas.
  • the fine-granular porous gas adsorbent is selected from a carbon-based porous material, zeolite, silica gel or porous alumina (Invention 4).
  • these fine-grained porous gas adsorbents can adsorb fuel gas and adsorb nitrogen, oxygen, water, alcohols, and the like with a weaker adsorbing power than fuel gas.
  • these components are released. By detecting this, the breakthrough time of the fuel gas adsorption cartridge can be detected in advance. .
  • the fine-grained porous gas adsorbent on which the component having low adsorbability is adsorbed, is disposed on the downstream side of the fuel gas adsorption container with respect to the fuel gas flow direction. (Invention 5).
  • the component having low adsorptivity when the fine-grained porous gas adsorbent on which the component having low adsorptivity is adsorbed adsorbs the fuel gas, the component having low adsorptivity is released instead. Then, the fine-grained porous gas adsorbent breaks through from the upstream side of the fuel gas adsorption container in the flow direction of the fuel gas, and then gradually progresses toward the downstream side.
  • the fact that the concentration of the low-adsorptive component in the exhaust gas rises and starts to decrease indicates that the breakthrough of the fuel gas-adsorbing cartridge is near, so by monitoring the behavior of the low-adsorbing component, The replacement time can be determined.
  • the fine porous gas adsorbent on which the component having low adsorptivity is adsorbed is 2 to 50% by volume based on the total amount of the fine porous gas adsorbent gas. Is preferable (Invention 6).
  • the fine-grained porous gas adsorbent on which the component having low adsorptivity is adsorbed is set in this range, and is disposed downstream of the fuel gas adsorption container with respect to the fuel gas flow direction.
  • the present invention comprises a fuel gas adsorption vessel having an inlet and an outlet filled with a fine-grained porous gas adsorbent, and at least a part of the fine-grained porous gas adsorbent is to be adsorbed.
  • a gas to be adsorbed flows from the inlet side of the fuel gas adsorption container of the fuel gas adsorption cartridge, which adsorbs a component having lower adsorbability than the fuel gas, and is provided on the outlet side of the fuel gas adsorption cartridge.
  • a fuel gas adsorption cartridge replacement timing judging method is provided in which the low adsorbability component is measured by the low adsorbability component sensor to predict the gas adsorption capacity of the fuel gas adsorption cartridge (Invention 7).
  • the fuel gas to be adsorbed from the inlet of the fuel gas adsorption cartridge filled with the fine-grained porous gas adsorbent that adsorbs a component having lower adsorbability than the fuel gas to be adsorbed ,
  • the fine-grained porous gas adsorbent that adsorbs a component having lower adsorbability than the fuel gas adsorbs the fuel gas, while a component having lower adsorbability than the adsorbed fuel gas flows out of the outlet.
  • this is detected by a sensor for the low-adsorbing component provided on the outlet side of the fuel gas adsorption container, and the behavior (increase / decrease) of the concentration of the low-adsorbing component is monitored. Since the breakthrough time of the fuel gas adsorption cartridge can be predicted in advance, the replacement time of the fuel gas adsorption cartridge can be determined.
  • the fuel gas adsorption device of the present invention fills a fuel gas adsorption container with a fine-grained porous gas adsorbent at least partially adsorbing a component having low adsorbability, and adsorbs the adsorbent material downstream of the fuel gas adsorption container. Since a sensor with a low component is provided, a component having a lower adsorptivity than the fuel gas is detected by the sensor, and a change in the concentration of the component having a lower adsorptivity is monitored to thereby replace the fuel gas adsorption cartridge. By judging the timing, leakage of the fuel gas can be prevented.
  • FIG. 2 is a schematic diagram showing a filling state of a fuel gas adsorption cartridge of the fuel gas adsorption device according to one embodiment of the present invention. It is a schematic diagram showing a fuel gas adsorption device by the above-mentioned embodiment.
  • 5 is a graph showing the propane gas concentration at the inlet and the outlet of the fuel gas adsorption device of Example 1 and the carbon dioxide concentration at the outlet.
  • 4 is a graph showing a carbon dioxide concentration at an outlet of the fuel gas adsorption device in FIG.
  • the fuel gas adsorption device of the present embodiment has a fuel gas adsorption cartridge, and an adsorbent for a fine-grained porous gas adsorbent, which is provided on the outlet side of the fuel gas adsorption cartridge and is smaller than a fuel gas to be adsorbed, which will be described later. Consists of low component sensors.
  • the fuel gas adsorption cartridge comprises a fine-grained porous gas adsorbent and a one-time fuel gas adsorption container having an inlet and an outlet for filling the fine-grained porous gas adsorbent.
  • each component will be described.
  • the fuel gas to be adsorbed is a hydrocarbon-based gas such as methane gas, propane gas, or butane gas, or a mixed gas containing these gases as a main component. It can be suitably applied to those containing an agent. Among these, propane gas and methane gas are preferred.
  • the fuel gas adsorption container to be filled with the fine-grained porous gas adsorbent is a one-time type, in which both ends of a columnar or rectangular cylindrical container are opened and an inlet portion and an outlet portion respectively. Or a cylindrical or rectangular cylindrical container having an inlet and an outlet formed by a hollow discharge pipe. A tube pipe connected to a fuel gas source is connected to the inlet portion, and a tube tube for discharge is connected to the outlet portion, and a sensor described later is provided in the middle thereof.
  • the fine-grained porous gas adsorbent is not particularly limited as long as it is a porous material having a gas adsorbing ability, and an inorganic porous material or a carbon-based porous material can be suitably used.
  • Inorganic porous materials include porous silica, metal porous structure, calcium silicate, magnesium silicate, magnesium metasilicate aluminate, zeolite, porous alumina, titanium oxide, apatite, porous glass, magnesium oxide, silicic acid Aluminum or the like can be used.
  • As the carbon-based porous material fine-grained activated carbon can be used.
  • inorganic porous materials and carbon-based porous materials may be used alone or in combination of two or more.
  • a carbon-based porous material, zeolite, silica gel or porous alumina is preferred, and a fine-grained carbon-based porous material is particularly preferred.
  • This fine-grained carbon-based porous material generally has selectivity for adsorbable molecules depending on the pore diameter and polarity. Therefore, by adjusting the pore diameter and the polarity, it can be made suitable for the fuel gas to be adsorbed, such as methane gas, propane gas, and butane gas.
  • the fine carbonaceous adsorbent preferably has an average pore diameter of 20 ° or less. If the average pore diameter is larger than 20 °, it becomes difficult to retain the adsorbed fuel gas. It is difficult to set the lower limit of the average pore diameter to an average pore diameter smaller than 4 °.
  • the fine-grained carbon-based adsorbent is less than 0.3 mm, the pressure loss when the fuel gas is ventilated becomes too large, and when it exceeds 5 mm, the fuel gas is easily permeated. It is preferred that
  • the surface functional group of the fine-grained carbon-based adsorbent can be adjusted to impart polarity.
  • the adjustment of the surface functional group of the fine-grained carbon-based adsorbent can be performed by activating the fine-grained carbon-based adsorbent with carbon dioxide gas, nitrogen gas or argon gas.
  • the surface of the untreated (initial state) fine-grained carbon-based adsorbent is a carboxyl group or a phenol-based hydroxyl group, and all or part of the surface is activated by carbon dioxide gas so that all or part of the surface is -CH terminal. It can be.
  • bromine it is preferable to add bromine to the surface of the fine-grained carbon-based adsorbent to obtain bromine-impregnated activated carbon, because the selective adsorption of fuel gas and the adsorption of odorant can be improved.
  • This activated carbon with bromine impregnation is obtained by, for example, subjecting activated carbon to heat treatment at 350 to 900 ° C. in the absence of oxygen to remove water and chloride contained in the activated carbon, and to add about 1 to 15% by weight of bromine to the obtained activated carbon. It can be obtained by impregnation.
  • the fine carbonaceous adsorbent preferably has a surface area of 100 to 1000 m 2 / g, preferably 200 to 800 m 2 / g.
  • the specific surface area, pore volume and average pore diameter are values measured by, for example, “BELSORP-max” (trade name) manufactured by Microtrac Bell.
  • the fuel gas adsorption cartridge is formed by filling the above-described fuel gas adsorption container with a fine-grained porous gas adsorbent.
  • the fine-grained porous gas adsorbent particularly the fine-grained carbon-based adsorbent, has different adsorbability depending on the adsorption target.
  • the strength of the adsorbing power is in the following order.
  • a fine-grained porous gas adsorbent obtained by previously adsorbing a component having lower adsorbability than the fuel gas to be adsorbed is used.
  • those fuel gas to be adsorbed target was pre-adsorbed of CO 2 in the case of propane gas, when the fuel gas to be adsorbed target is methane gas, nitrogen, oxygen, or water and methanol It is preferable to use those that have been adsorbed in advance.
  • the fuel gas adsorption cartridge preferably has a filling structure as shown in FIG.
  • a fuel gas adsorption cartridge 1 has a gas inflow member 3 as an inlet portion provided at an upper portion, and a discharge pipe 4 as an outlet portion extending from a bottom portion.
  • spacer members 5A and 5B through which gas can flow and which do not allow the fine-grained porous gas adsorbent to pass therethrough are installed in the gas flow direction (from the gas inflow member 3 to the bottom of the discharge pipe 4).
  • the normal fine-grained porous gas adsorbent 6 (which does not adsorb components having low adsorptivity) upstream of (direction) adsorbs components having lower adsorbability than the fuel gas to be adsorbed downstream. It has a one-time structure in which the fine-grained porous gas adsorbents 7 are arranged. That is, in the present embodiment, the lower end of the gas inflow member 3 communicates with the spacer member 5A, and the lower end of the discharge pipe 4 communicates with the spacer member 5B.
  • the outer shell of the fuel gas adsorption container 2 may be made of metal such as stainless steel, and the exhaust pipe 4 and the spacer members 5A and 5B may be made of resin such as polypropylene.
  • Such a one-time type fuel gas adsorption cartridge 1 has a small volume of 5,000 cc or less and is excellent in handleability as compared with a decompression type container in which the inside of a container filled with a gas adsorbent is depressurized to suction and adsorb fuel gas. , Has the feature.
  • the reason why such a structure is preferable is as follows. That is, when propane gas G (including a mixed gas of propane gas G) as fuel gas is supplied from the gas inflow member 3 of the fuel gas adsorption container 2, the propane gas G is supplied to the entire periphery of the fuel gas adsorption container 2 in the spacer member 5A. It diffuses in the direction and flows into the fine-grained porous gas adsorbent 6, and the fine-grained porous gas adsorbents 6, 7 adsorb propane and odorant components in the propane gas G. Then, only the exhaust gas G1 containing no propane gas G is exhausted from the spacer member 5B via the exhaust pipe 4.
  • the fine-grained porous gas adsorbents 6 and 7 break through from the upstream side, and gradually progress toward the downstream side. Then, when the fine-grained porous gas adsorbent 7 adsorbing the component having low adsorbability adsorbs the propane gas G, the component having low adsorbability previously adsorbed is released instead. Then, by detecting a component having low adsorptivity in the exhaust gas G1 from the exhaust pipe 4 and monitoring the behavior (change in concentration), the breakthrough time of the fuel gas adsorption cartridge 1 can be predicted in advance.
  • the fine-grained porous gas adsorbent 7 to which the component having low adsorptivity is adsorbed has a length equal to or longer than the adsorption zone of the fine-grained porous gas adsorbent on the downstream side in the gas flow direction of the fuel gas adsorption container 2. It is preferable that the volume is not more than 5 times the absorption band. If the fine-grained porous gas adsorbent 7 adsorbing the low-adsorptive component is shorter than the adsorption zone of the fine-grained porous gas adsorbent, the fuel gas adsorption cartridge 1 is broken after the low-adsorbent component is detected.
  • the fine-grained porous gas adsorbent 7 adsorbing a component having low adsorbability has a total amount of the fine-grained porous gas adsorbent (fine-grained porous gas) downstream of the fuel gas adsorption container 2 in the gas flow direction. It is preferable that the content of the porous gas adsorbent 6 + fine-grained porous gas adsorbent 7) be 100% by volume and 2 to 50% by volume, particularly 3 to 30% by volume.
  • the amount of the fine-grained porous gas adsorbent 7 to which the component having low adsorptivity is adsorbed is less than 2% by volume, the time from when the component having low adsorptivity is detected to when the fuel gas adsorption cartridge 1 breaks through becomes short.
  • the propane gas G as a fuel gas is not stopped in time, and the propane gas G easily leaks.
  • the volume of the propane gas G exceeds 50% by volume, a component having low adsorptivity is released in a short time. This is not preferable because long-term monitoring is required to determine the timing of breakthrough.
  • a sensor capable of detecting a component having lower adsorbability than the fuel gas to be adsorbed is used.
  • a carbon dioxide sensor is used.
  • nitrogen or oxygen is adsorbed, each sensor of nitrogen or oxygen is used.
  • water or methanol is adsorbed, a humidity sensor is used.
  • an alcohol meter may be used.
  • FIG. 2 shows a test apparatus using the fuel gas adsorption device according to one embodiment of the present invention to determine whether or not it is time to replace the fuel gas adsorption cartridge.
  • a fuel gas adsorption cartridge 12 in which a fuel gas adsorption container 13 is filled with a fine-grained porous gas adsorbent, and a fuel gas supply pipe connected to an inlet 14 of the fuel gas adsorption container 13 of the fuel gas adsorption cartridge 12.
  • the outlet portion 15 is a tubular member in the present embodiment, and extends to the bottom of the fuel gas adsorption container 13.
  • the exhaust pipe 15A is provided with a calorimeter 16 and a CO 2 sensor 17 capable of detecting a component (CO 2 in this embodiment) having lower adsorbability than the fuel gas to be adsorbed.
  • a gas cylinder 18 for propane gas G as a fuel gas is connected to a base end side of the fuel gas supply pipe 14A, and a flow meter 19 is provided.
  • Reference numeral 20 denotes an opening / closing valve for starting and stopping the supply of the propane gas G.
  • the fine-grained porous gas adsorbent filled in the fuel gas adsorption cartridge 12 is obtained by adsorbing CO 2 in advance on the fuel gas adsorption container 13 on the downstream side in the gas flow direction of propane gas G. Is arranged.
  • the opening / closing valve 20 is opened and the propane gas G is supplied from the gas cylinder 18.
  • the flow rate of the propane gas G is measured by the flow meter 19.
  • the propane gas G passes through the fuel gas supply pipe 14A, flows into the fuel gas adsorption container 13 from the inlet portion 14, and passes through the fine-grained porous gas adsorbent in the fuel gas adsorption container 11 to form fine-grained gas.
  • the propane component and the odorant component in the propane gas G are adsorbed by the porous gas adsorbent.
  • the calorific value of the exhaust gas G1 discharged from the outlet portion 15 is measured by the calorimeter 16, and the CO 2 concentration is measured by the CO 2 sensor 17.
  • the fine-grained porous gas adsorbent breaks through from the inlet portion 14 and gradually breaks down in the flow direction of the propane gas G.
  • the pre-CO 2 on the downstream side of the fuel gas adsorption vessels 13 are arranged finely divided porous gas adsorbent adsorbed, fine particulate, porous gas adsorbed the CO 2
  • CO 2 which is a component having low adsorbability is released instead.
  • the CO 2 concentration in the exhaust gas G1 detected by the CO 2 sensor 17 increases, so that the leakage of the propane gas G is reliably prevented based on the CO 2 concentration, and the fine-grained porous gas adsorbent It is possible to judge a replacement time at which it can be used efficiently.
  • the CO 2 concentration in the exhaust gas G1 increases as the breakthrough of the fine-grained porous gas adsorbent layer on which CO 2 is adsorbed progresses, reaches a peak thereafter, and is maintained for a while. . Then, when breakthrough of the fine-grained porous gas adsorbent layer on which CO 2 is adsorbed progresses and the adsorbing ability of the fuel gas starts to decrease, the CO 2 concentration shows a decreasing behavior. It can be considered that the fuel gas adsorption cartridge 12 completely breaks through.
  • the volume of the fuel gas adsorption container 13, the volume of the fine-grained porous gas adsorbent, the volume of the fine-grained porous gas adsorbent in which CO 2 is adsorbed in advance, and the flow rate and the concentration of the propane gas G are increased to peak.
  • By appropriately setting whether to replace the fuel gas adsorption cartridge 12 at any time of the descent, it is possible to reliably prevent the leakage of the propane gas G and to efficiently use the fine-grained porous gas adsorbent. Possible replacement times can be determined.
  • the fuel gas adsorption device according to the present embodiment has been described above, the present invention is not limited to the above embodiment, and various modifications can be made.
  • the fine-grained porous gas adsorbent 7 adsorbing a component having a low adsorptivity is disposed on the downstream side of the fuel gas adsorption container 2, but it is not necessary to be the most downstream, It may be arranged.
  • the fine-grained porous gas adsorbent 7 only needs to be present in the fuel gas adsorption vessel 2, and the entire amount of the fine-grained porous gas adsorbent may be obtained by adsorbing a component having low adsorptivity, In some cases, a mixture of the fine-grained porous gas adsorbent 6 and the fine-grained porous gas adsorbent 7 adsorbing a component having a low adsorptivity at a predetermined ratio is applied to the whole of the fuel gas adsorption container 2. It may be filled.
  • Example 2 was used as the fuel gas adsorption device 11, and a fuel gas adsorption cartridge 13 was prepared by filling the fuel gas adsorption container 13 with a total of 1500 g of bromine-impregnated activated carbon (average particle size: 4 mm, average pore size: 15 °). . At this time, 60 g (4% by volume) of activated carbon in which CO 2 was previously adsorbed was filled in the downstream side of the fuel gas adsorption container 13 with respect to the fuel gas flow direction. As the CO 2 sensor 17, a “MH-Z14A” CO 2 sensor manufactured by WINSEN was used.
  • propane gas G is circulated as a fuel gas at a flow rate of 10 L / min, the calorie of the exhaust gas from the outlet of the fuel gas adsorption cartridge 12 is measured by the calorimeter 16, and the CO 2 sensor is used. 17 shows the result of measuring the concentration of CO 2 gas together with the calorie of the propane gas G flowing into the fuel gas adsorption cartridge 12 in FIG.
  • FIG. 4 shows the transition of the CO 2 gas concentration in FIG. 3 for 12 minutes.
  • Example 2 In Example 1, the fuel gas adsorption apparatus 11 was configured in the same manner except that the downstream side was filled with 410 g (27% by volume) of activated carbon to which CO 2 had been previously adsorbed. circulated at a flow rate, a result of measuring the concentration of CO 2 gas by CO 2 sensor 17 with the calorie of the exhaust gas from the outlet of the fuel gas adsorption cartridge 12 measured by the calorimeter 16, and flows into the fuel gas adsorption cartridge 12 The results are shown in FIG. 3 together with the calories of propane gas G. FIG. 4 also shows the transition of the concentration of CO 2 gas in FIG.
  • the calorie of the exhaust gas from the outlet of the fuel gas adsorption cartridge 12 is almost “0” until about 15 minutes elapse, and therefore, the fuel gas adsorption devices 11 of the first and second embodiments are used.
  • propane gas G can be adsorbed.
  • the CO 2 concentration of the exhaust gas starts to increase after about 10 minutes, and starts to decrease after about 13 minutes.
  • the calorie of the exhaust gas increases after about 15 minutes (propane gas G leaks).
  • the CO 2 sensor 17 detects CO 2. It can be seen that it is possible to determine the time to replace the fuel gas adsorption cartridge 12 from the behavior of the gas. As described above, the time until the fuel gas adsorption cartridge 12 breaks through varies depending on the concentration and flow rate of the fuel gas such as the propane gas G. Therefore, the replacement time of the fuel gas adsorption cartridge 12 is changed according to the CO 2 concentration fluctuation. Can be set as appropriate.
  • the fuel gas adsorption device of the present invention as described above is capable of determining the breakthrough time of a one-time fuel gas adsorption cartridge, and uses a city gas alternative propane gas generator, a one-time fuel gas adsorption cartridge.
  • a city gas alternative propane gas generator for replacement of fuel gas flow meters, for fuel gas purging when constructing new gas pipes, for venting VOCs in the ventilation process during regular maintenance of VOC tanks, for removing hydrogen sulfide odor at the outlet of the septic tank, It is used to prevent corrosive gas and sulfur-based gas from being released into the atmosphere during the replacement of activated carbon adsorption towers, and is also filled with sulfur-based gas at the time of opening of ports in sewage manholes (for example, sulfur-based gas such as hydrogen sulfide and methyl mercaptan). It can be applied to various uses such as removal of poison gas, and its industrial utility value is great.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

A fuel gas adsorption device 11 is provided with: a fuel gas adsorption cartridge 12 comprising a fuel gas adsorption container 13 filled with a fine particulate porous gas adsorbing material; a fuel gas supply pipeline 14A which communicates with an inlet portion 14 of the fuel gas adsorption container 13 of the fuel gas adsorption cartridge 12; and a discharge pipeline 15A communicating with an outlet portion 15. A CO2 sensor 17 is provided in the discharge pipeline 15A. Meanwhile, a gas cylinder 18 for propane gas G is connected to a base end side on the fuel gas supply pipeline 14A side. In such a fuel gas adsorption cartridge 12, the fine particulate porous gas adsorbing material, which has been caused to adsorb CO2 in advance, is disposed on a downstream side of the fuel gas adsorption container 13. This fuel gas adsorption device makes it possible to determine the replacement time of the fuel gas adsorption cartridge.

Description

燃料ガス吸着カートリッジ、これを用いた燃料ガス吸着装置、及び燃料ガス吸着カートリッジの交換時期判断方法Fuel gas adsorption cartridge, fuel gas adsorption device using the same, and method of determining replacement time of fuel gas adsorption cartridge
 本発明は、交換時期の判断が可能な燃料ガス吸着カートリッジ、及びこれを用いた燃料ガス吸着装置に関する。また、本発明は、燃料ガス吸着カートリッジの燃料ガス吸着能が破過する前に交換することを可能とした燃料ガス吸着カートリッジの交換時期判断方法に関する。 The present invention relates to a fuel gas adsorption cartridge capable of determining a replacement time and a fuel gas adsorption device using the same. Further, the present invention relates to a method for determining a replacement time of a fuel gas adsorption cartridge, which can be replaced before the fuel gas adsorption capacity of the fuel gas adsorption cartridge breaks through.
 従来、都市ガスのガスメータの交換やプロパンガスボンベの交換時などには、配管内には燃料ガスが残存しているため、そのまま処理すると燃焼性の燃料ガスを大気に放散させたり、付臭ガス成分が拡散したりするため好ましくない。また、これとは逆に燃料ガスの配管に対しパージ処理を行う際には、配管内を燃料ガスで置換してやる必要があり、所定のカロリーとなるまで燃料ガスと管内空気との混合ガスを排出する必要がある。このような場合において、都市ガスの成分であるメタンガスは空気よりも軽い一方、プロパンガスは空気より重いため、高層マンションでの燃料ガスの漏洩は作業階だけでなくその上下の階層にも配慮する必要があり、地上階においては近隣周辺にも配慮する必要がある。そこで、従来はガス吸着材を充填した減圧ガス吸着容器を接続して、このガス吸着容器に燃料ガスを吸着させることで、燃料ガスの漏洩を防止することが行われている。 Conventionally, when a gas meter for city gas is replaced or a propane gas cylinder is replaced, fuel gas remains in the piping, and if it is processed as it is, combustible fuel gas can be released to the atmosphere or odorous gas components can be removed. Are not preferred because they are diffused. Conversely, when purging the fuel gas pipe, it is necessary to replace the inside of the pipe with fuel gas, and discharge the mixed gas of fuel gas and air in the pipe until the calorie reaches a predetermined value. There is a need to. In such a case, while methane gas, which is a component of city gas, is lighter than air, propane gas is heavier than air, so leakage of fuel gas in high-rise apartments should be considered not only on the working floor but also on the floor above and below. It is necessary to consider the surrounding area on the ground floor. Therefore, conventionally, a pressure-reduced gas adsorption container filled with a gas adsorbent is connected, and the fuel gas is adsorbed to the gas adsorption container, thereby preventing the leakage of the fuel gas.
 しかしながら、この減圧容器に燃料ガスを吸着させる方法では、燃料ガスだけでなく、混合ガス成分や空気なども一緒に吸着し、容器内が常圧になると吸着できなくなるため、十分な量の燃料ガスを吸着させるためには容器を大型化する必要があるだけでなく、減圧容器としての耐圧性を備えたものとする必要があり、これらに伴い多量のガス吸着材を充填することになるので、重量が過大で持ち運び等の作業性が良くない。 However, in the method in which fuel gas is adsorbed to the decompression container, not only the fuel gas, but also a mixed gas component and air are adsorbed together, and if the pressure in the container becomes normal pressure, it becomes impossible to adsorb the fuel gas. In order to adsorb the gas, it is necessary not only to increase the size of the container, but also to have pressure resistance as a decompression container. Excessive weight and poor workability such as carrying.
 そこで、最近では小型化が可能であることから、燃料ガスがガス吸着材を通過する際に対象となる燃料ガス成分を選択的に吸着する一過式の燃料ガス吸着カートリッジも開発されつつある。このガス吸着材による一過式の燃料ガスの吸着法では、燃料ガスの漏洩を防止するために、ガス吸着材の破過の時期を把握して、あらかじめ燃料ガスのパージ処理を停止したり、パージ処理に用いた燃料ガス吸着容器を事前に交換したりすることが、燃料ガスの大気への漏洩を防止して安全性を向上する上で必要である。 Therefore, recently, because of the possibility of miniaturization, a one-time fuel gas adsorption cartridge that selectively adsorbs a target fuel gas component when the fuel gas passes through the gas adsorbent is being developed. In this one-time fuel gas adsorption method using a gas adsorbent, in order to prevent leakage of the fuel gas, the timing of breakthrough of the gas adsorbent is grasped, the fuel gas purging process is stopped in advance, It is necessary to replace the fuel gas adsorption container used in the purging process in advance in order to prevent fuel gas from leaking into the atmosphere and improve safety.
 このような一過式のガス吸着カートリッジの場合、ガス吸着材の破過の時期を予測するために、事前にガス吸着量を把握することで、通風累計流量やガス濃度の絶対量から、おおよそのガス処理終了時間を予測したり、また吸着対象となる燃料ガスの濃度を測定するセンサを用いてガスの漏洩を検知したりしている。 In the case of such a one-time type gas adsorption cartridge, in order to predict the time of breakthrough of the gas adsorbent, the amount of gas adsorption is grasped in advance, and it is possible to roughly calculate the total amount of ventilation and the absolute amount of gas concentration. The gas processing end time is predicted, and gas leakage is detected using a sensor that measures the concentration of the fuel gas to be adsorbed.
 しかしながら、通風累計流量やガス濃度の絶対量から、ガス処理終了時間を予測する方法では、燃料ガスの漏洩を完全に防止するには、ある程度余裕をもって処理終了時間を設定せざるを得ず、燃料ガス吸着カートリッジ内のガス吸着材の有効利用が図れない、という問題点がある。また、吸着対象となる燃料ガスの濃度を測定するセンサを用いてガスの漏洩を検知する方法では、燃料ガスが漏れてからでなければ検知できないだけでなく、燃料ガスが検出されたとしても、上流側の燃料ガスの濃度変動により一次的に漏洩する場合もあり、ガス吸着材が破過したかの判断が必ずしもできない、という問題点がある。 However, in the method of predicting the gas processing end time from the total ventilation flow rate and the absolute amount of the gas concentration, in order to completely prevent the leakage of the fuel gas, it is necessary to set the processing end time with some margin, There is a problem that the gas adsorbent in the gas adsorption cartridge cannot be effectively used. Also, in the method of detecting gas leakage using a sensor that measures the concentration of the fuel gas to be adsorbed, not only can the detection be performed after the fuel gas has leaked, but even if the fuel gas is detected, There is a case where the fuel gas leaks temporarily due to the fluctuation of the concentration of the fuel gas on the upstream side, and it is not always possible to determine whether the gas adsorbent has passed.
 一方、ガス吸着材におけるガス吸着がどの程度進行したかを調査分析する方法もある。この方法は、燃料ガス吸着カートリッジ内ではガスの流通方向に対して上流側からガス吸着材が破過していくので、通ガス途中で一旦処理を停止し、燃料ガス吸着カートリッジ内のガス吸着材を前段、中段、後段とそれぞれサンプルを取り出し、サンプルの燃料ガスの吸着能の劣化の進行具合をそれぞれ分析して、破過する前に確認する方法である。しかしながら、この方法ではメンテナンスが煩雑となるばかりか、分析結果がでるまで時間を要するだけでなく、何度も停止・分析を繰り返さない限り、おおよその結果しか得られないため現実的でない、という問題点がある。 On the other hand, there is a method of investigating and analyzing how much the gas adsorption in the gas adsorbent has progressed. In this method, since the gas adsorbent breaks through from the upstream side in the gas flow direction in the fuel gas adsorption cartridge, the process is temporarily stopped halfway through the gas, and the gas adsorbent in the fuel gas adsorption cartridge is stopped. In this method, the samples are taken out of the former, middle, and later stages, and the progress of the deterioration of the fuel gas adsorption capacity of the sample is analyzed to confirm before breakthrough. However, this method not only complicates maintenance, but also takes time until the analysis results are obtained, and it is not realistic because only approximate results can be obtained unless the stop and analysis are repeated many times. There is a point.
 本発明は、上記課題に鑑みてなされたものであり、交換時期の判断が可能な燃料ガス吸着カートリッジ、及びこれを用いた燃料ガス吸着装置を提供することを目的とする。また、本発明は、燃料ガス吸着カートリッジの燃料ガス吸着能が破過する前に交換することを可能とした燃料ガス吸着カートリッジの交換時期判断方法を提供することを目的とする。 The present invention has been made in view of the above problems, and has as its object to provide a fuel gas adsorption cartridge capable of determining a replacement time and a fuel gas adsorption device using the same. Another object of the present invention is to provide a method for determining the replacement timing of a fuel gas adsorption cartridge, which allows replacement before the fuel gas adsorption capacity of the fuel gas adsorption cartridge breaks through.
 上記課題を解決するために、第一に本発明は、入口と出口とを有する燃料ガス吸着容器に細粒状多孔質ガス吸着材を充填してなる燃料ガス吸着カートリッジであって、前記細粒状多孔質ガス吸着材の少なくとも一部が吸着対象となる燃料ガスよりも吸着性の低い成分を吸着させたものである、燃料ガス吸着カートリッジを提供する(発明1)。 In order to solve the above problems, first, the present invention is a fuel gas adsorption cartridge comprising a fuel gas adsorption container having an inlet and an outlet filled with a fine-grained porous gas adsorbent, wherein the fine-grained porous gas The present invention provides a fuel gas adsorption cartridge in which at least a part of the heavy gas adsorbent has adsorbed a component having lower adsorbability than the fuel gas to be adsorbed (Invention 1).
 かかる発明(発明1)によれば、吸着対象となる燃料ガスよりも吸着性の低い成分を吸着させた細粒状多孔質ガス吸着材を用いることで、燃料ガス吸着カートリッジの入口から吸着対象となる燃料ガスを流通すると、燃料ガスよりも吸着性の低い成分を吸着させた細粒状多孔質ガス吸着材が燃料ガスを吸着する一方、吸着されていた燃料ガスよりも吸着性の低い成分が出口から流出するので、これをセンサで検出して、その吸着性の低い成分の濃度の挙動(増減)を監視することにより、燃料ガス吸着カートリッジの破過時期を事前に予測することができる。 According to this invention (Invention 1), by using the fine-grained porous gas adsorbent that adsorbs a component having lower adsorbability than the fuel gas to be adsorbed, the fuel gas can be adsorbed from the inlet of the fuel gas adsorption cartridge. When the fuel gas flows, the fine-grained porous gas adsorbent that adsorbs a component having lower adsorbability than the fuel gas adsorbs the fuel gas, while a component having lower adsorbability than the adsorbed fuel gas flows from the outlet. Since the fuel gas flows out, it is detected by a sensor, and by monitoring the behavior (increase / decrease) of the concentration of the component having a low adsorptivity, the breakthrough time of the fuel gas adsorption cartridge can be predicted in advance.
 また、第二に本発明は、入口と出口とを有する燃料ガス吸着容器に細粒状多孔質ガス吸着材を充填してなり、前記細粒状多孔質ガス吸着材の少なくとも一部が吸着対象となる燃料ガスよりも吸着性の低い成分を吸着させたものである燃料ガス吸着カートリッジと、前記燃料ガス吸着容器の出口側に設けられた前記吸着性の低い成分のセンサとを有する、燃料ガス吸着装置を提供する(発明2)。 Secondly, according to the present invention, a fuel gas adsorption container having an inlet and an outlet is filled with a fine-grained porous gas adsorbent, and at least a part of the fine-grained porous gas adsorbent is to be adsorbed. A fuel gas adsorption device, comprising: a fuel gas adsorption cartridge that adsorbs a component having lower adsorbability than fuel gas; and a sensor for the lower adsorbent component provided on an outlet side of the fuel gas adsorption container. (Invention 2).
 かかる発明(発明2)によれば、吸着対象となる燃料ガスよりも吸着性の低い成分を吸着させた細粒状多孔質ガス吸着材を充填した燃料ガス吸着カートリッジの入口から吸着対象となる燃料ガスを流通すると、燃料ガスよりも吸着性の低い成分を吸着させた細粒状多孔質ガス吸着材が燃料ガスを吸着する一方、吸着されていた燃料ガスよりも吸着性の低い成分が出口から流出するので、これを燃料ガス吸着容器の出口側に設けられた吸着性の低い成分のセンサで検出して、その吸着性の低い成分の濃度の挙動(増減)を監視することにより、燃料ガス吸着カートリッジの破過時期を事前に予測することができる。 According to this invention (Invention 2), the fuel gas to be adsorbed from the inlet of the fuel gas adsorption cartridge filled with the fine-grained porous gas adsorbent that adsorbs a component having lower adsorbability than the fuel gas to be adsorbed , The fine-grained porous gas adsorbent that adsorbs a component having lower adsorbability than the fuel gas adsorbs the fuel gas, while a component having lower adsorbability than the adsorbed fuel gas flows out of the outlet. Therefore, this is detected by a sensor for the low-adsorbing component provided on the outlet side of the fuel gas adsorption container, and the behavior (increase / decrease) of the concentration of the low-adsorbing component is monitored. Can be predicted in advance.
 上記発明(発明2)においては、前記吸着対象となる燃料ガスが、メタンガス、プロパンガス、ブタンガス又はこれらのガスを主成分とする混合ガスであることが好ましい(発明3)。 In the above invention (Invention 2), the fuel gas to be adsorbed is preferably methane gas, propane gas, butane gas or a mixed gas containing these gases as a main component (Invention 3).
 かかる発明(発明3)によれば、燃料ガスとして一般に流通しているメタンガス、プロパンガス、ブタンガス又はこれらのガスを主成分とする混合ガスの吸着に好適に対応することができる。 According to the invention (Invention 3), it is possible to suitably cope with adsorption of methane gas, propane gas, butane gas, or a mixed gas containing these gases as a main component, which is generally distributed as a fuel gas.
 上記発明(発明2,3)においては、前記細粒状多孔質ガス吸着材が、炭素系多孔質材料、ゼオライト、シリカゲル又は多孔質アルミナから選ばれたものであることが好ましい(発明4)。 In the above inventions (Inventions 2 and 3), it is preferable that the fine-granular porous gas adsorbent is selected from a carbon-based porous material, zeolite, silica gel or porous alumina (Invention 4).
 かかる発明(発明4)によれば、これらの細粒状多孔質ガス吸着材は、燃料ガスを吸着することができるとともに、窒素、酸素、水、アルコール類などを燃料ガスよりも弱い吸着力で吸着することができ、これをあらかじめ吸着した状態で燃料ガスを吸着すると、これらの成分が開放されるので、これを検出することで、燃料ガス吸着カートリッジの破過時期を事前に検知することができる。 According to this invention (Invention 4), these fine-grained porous gas adsorbents can adsorb fuel gas and adsorb nitrogen, oxygen, water, alcohols, and the like with a weaker adsorbing power than fuel gas. When the fuel gas is adsorbed in a state where the fuel gas is adsorbed in advance, these components are released. By detecting this, the breakthrough time of the fuel gas adsorption cartridge can be detected in advance. .
 上記発明(発明2~4)においては、前記吸着性の低い成分を吸着させた細粒状多孔質ガス吸着材が、燃料ガスの流通方向に対して前記燃料ガス吸着容器の下流側に配置されていることが好ましい(発明5)。 In the above inventions (Inventions 2 to 4), the fine-grained porous gas adsorbent, on which the component having low adsorbability is adsorbed, is disposed on the downstream side of the fuel gas adsorption container with respect to the fuel gas flow direction. (Invention 5).
 かかる発明(発明5)によれば、吸着性の低い成分を吸着させた細粒状多孔質ガス吸着材が燃料ガスを吸着すると代わりに吸着性の低い成分が放出される。そして、細粒状多孔質ガス吸着材は、燃料ガスの流通方向に対して燃料ガス吸着容器の上流側から破過し、その後次第に下流側に向けて破過が進行していくので、出口からの排出ガスにおける吸着性の低い成分濃度が上昇し低下し始めることは、燃料ガス吸着カートリッジの破過が近いことがわかるので、吸着性の低い成分の挙動を監視することで、燃料ガス吸着カートリッジの交換時期を判断することができる。 According to the invention (Invention 5), when the fine-grained porous gas adsorbent on which the component having low adsorptivity is adsorbed adsorbs the fuel gas, the component having low adsorptivity is released instead. Then, the fine-grained porous gas adsorbent breaks through from the upstream side of the fuel gas adsorption container in the flow direction of the fuel gas, and then gradually progresses toward the downstream side. The fact that the concentration of the low-adsorptive component in the exhaust gas rises and starts to decrease indicates that the breakthrough of the fuel gas-adsorbing cartridge is near, so by monitoring the behavior of the low-adsorbing component, The replacement time can be determined.
 上記発明(発明5)においては、前記吸着性の低い成分を吸着させた細粒状多孔質ガス吸着材が、細粒状多孔質ガス吸着材ガスの総量に対して、2~50容積%であることが好ましい(発明6)。 In the above invention (Invention 5), the fine porous gas adsorbent on which the component having low adsorptivity is adsorbed is 2 to 50% by volume based on the total amount of the fine porous gas adsorbent gas. Is preferable (Invention 6).
 かかる発明(発明6)によれば、吸着性の低い成分を吸着させた細粒状多孔質ガス吸着材をこの範囲として、燃料ガスの流通方向に対して前記燃料ガス吸着容器の下流側に配置することにより、吸着性の低い成分の放出から燃料ガス吸着カートリッジの破過まで適切な時間を確保することができ燃料ガスの漏洩を防止することができるとともに、吸着性の低い成分が早く検出されすぎることがないので、破過の時期の見極めを容易なものとすることができる。 According to this invention (Invention 6), the fine-grained porous gas adsorbent on which the component having low adsorptivity is adsorbed is set in this range, and is disposed downstream of the fuel gas adsorption container with respect to the fuel gas flow direction. This makes it possible to secure an appropriate time from the release of the component having low adsorptivity to the breakthrough of the fuel gas adsorption cartridge, prevent the leakage of the fuel gas, and detect the component having low adsorptivity too early. Since there is no such situation, it is possible to easily determine the time of breakthrough.
 さらに、第三に本発明は、入口と出口とを有する燃料ガス吸着容器に細粒状多孔質ガス吸着材を充填してなり、前記細粒状多孔質ガス吸着材の少なくとも一部が吸着対象となる燃料ガスよりも吸着性の低い成分を吸着させたものである燃料ガス吸着カートリッジの前記燃料ガス吸着容器の入口側から吸着対象となるガスを流通し、前記燃料ガス吸着カートリッジの出口側に設けた前記吸着性の低い成分のセンサにより該吸着性の低い成分を計測して、前記燃料ガス吸着カートリッジのガス吸着能を予測する、燃料ガス吸着カートリッジの交換時期判断方法を提供する(発明7)。 Furthermore, thirdly, the present invention comprises a fuel gas adsorption vessel having an inlet and an outlet filled with a fine-grained porous gas adsorbent, and at least a part of the fine-grained porous gas adsorbent is to be adsorbed. A gas to be adsorbed flows from the inlet side of the fuel gas adsorption container of the fuel gas adsorption cartridge, which adsorbs a component having lower adsorbability than the fuel gas, and is provided on the outlet side of the fuel gas adsorption cartridge. A fuel gas adsorption cartridge replacement timing judging method is provided in which the low adsorbability component is measured by the low adsorbability component sensor to predict the gas adsorption capacity of the fuel gas adsorption cartridge (Invention 7).
 かかる発明(発明7)によれば、吸着対象となる燃料ガスよりも吸着性の低い成分を吸着させた細粒状多孔質ガス吸着材を充填した燃料ガス吸着カートリッジの入口から吸着対象となる燃料ガスを流通すると、燃料ガスよりも吸着性の低い成分を吸着させた細粒状多孔質ガス吸着材が燃料ガスを吸着する一方、吸着されていた燃料ガスよりも吸着性の低い成分が出口から流出するので、これを燃料ガス吸着容器の出口側に設けられた吸着性の低い成分のセンサで検出して、その吸着性の低い成分の濃度の挙動(増減)を監視することにより、燃料ガス吸着カートリッジの破過時期を事前に予測することができるため、燃料ガス吸着カートリッジの交換時期を判断することができる。 According to this invention (Invention 7), the fuel gas to be adsorbed from the inlet of the fuel gas adsorption cartridge filled with the fine-grained porous gas adsorbent that adsorbs a component having lower adsorbability than the fuel gas to be adsorbed , The fine-grained porous gas adsorbent that adsorbs a component having lower adsorbability than the fuel gas adsorbs the fuel gas, while a component having lower adsorbability than the adsorbed fuel gas flows out of the outlet. Therefore, this is detected by a sensor for the low-adsorbing component provided on the outlet side of the fuel gas adsorption container, and the behavior (increase / decrease) of the concentration of the low-adsorbing component is monitored. Since the breakthrough time of the fuel gas adsorption cartridge can be predicted in advance, the replacement time of the fuel gas adsorption cartridge can be determined.
 本発明の燃料ガス吸着装置は、少なくとも一部に吸着性の低い成分を吸着させた細粒状多孔質ガス吸着材を燃料ガス吸着容器に充填し、この燃料ガス吸着容器の下流側に吸着性の低い成分のセンサを設けたものであるので、燃料ガスよりも吸着性の低い成分をセンサで検出して、その吸着性の低い成分の濃度の増減を監視することにより、燃料ガス吸着カートリッジの交換時期を判断して、燃料ガスの漏洩を防止することができる。 The fuel gas adsorption device of the present invention fills a fuel gas adsorption container with a fine-grained porous gas adsorbent at least partially adsorbing a component having low adsorbability, and adsorbs the adsorbent material downstream of the fuel gas adsorption container. Since a sensor with a low component is provided, a component having a lower adsorptivity than the fuel gas is detected by the sensor, and a change in the concentration of the component having a lower adsorptivity is monitored to thereby replace the fuel gas adsorption cartridge. By judging the timing, leakage of the fuel gas can be prevented.
本発明の一実施形態による燃料ガス吸着装置の燃料ガス吸着カートリッジの充填状態を示す概略図である。FIG. 2 is a schematic diagram showing a filling state of a fuel gas adsorption cartridge of the fuel gas adsorption device according to one embodiment of the present invention. 前記実施形態による燃料ガス吸着装置を示す概略図である。It is a schematic diagram showing a fuel gas adsorption device by the above-mentioned embodiment. 実施例1及び実施例2の燃料ガス吸着装置の入口と出口におけるプロパンガス濃度と出口における二酸化炭素濃度を示すグラフである。5 is a graph showing the propane gas concentration at the inlet and the outlet of the fuel gas adsorption device of Example 1 and the carbon dioxide concentration at the outlet. 図3における燃料ガス吸着装置の出口における二酸化炭素濃度を示すグラフである。4 is a graph showing a carbon dioxide concentration at an outlet of the fuel gas adsorption device in FIG.
 以下、本実施形態の燃料ガス吸着装置について詳細に説明する。 Hereinafter, the fuel gas adsorption device of the present embodiment will be described in detail.
 本実施形態の燃料ガス吸着装置は、燃料ガス吸着カートリッジ、及び燃料ガス吸着カートリッジの出口側に設けられた後述する吸着対象となる燃料ガスよりも細粒状多孔質ガス吸着材に対して吸着性の低い成分のセンサからなる。この燃料ガス吸着カートリッジは、細粒状多孔質ガス吸着材とこの細粒状多孔質ガス吸着材を充填する入口と出口とを有する一過式の燃料ガス吸着容器とからなる。以下、各構成要素について説明する。 The fuel gas adsorption device of the present embodiment has a fuel gas adsorption cartridge, and an adsorbent for a fine-grained porous gas adsorbent, which is provided on the outlet side of the fuel gas adsorption cartridge and is smaller than a fuel gas to be adsorbed, which will be described later. Consists of low component sensors. The fuel gas adsorption cartridge comprises a fine-grained porous gas adsorbent and a one-time fuel gas adsorption container having an inlet and an outlet for filling the fine-grained porous gas adsorbent. Hereinafter, each component will be described.
〔燃料ガス〕
 本実施形態において、吸着対象となる燃料ガスとしては、メタンガス、プロパンガス、ブタンガスなどの炭化水素系のガス、またはこれらのガスを主成分とする混合ガスであり、特に安全性のために着臭剤を含有しているものに対して好適に適用することができる。これらの中では、プロパンガス及びメタンガスが好適である。
[Fuel gas]
In the present embodiment, the fuel gas to be adsorbed is a hydrocarbon-based gas such as methane gas, propane gas, or butane gas, or a mixed gas containing these gases as a main component. It can be suitably applied to those containing an agent. Among these, propane gas and methane gas are preferred.
〔燃料ガス吸着カートリッジ〕
(燃料ガス吸着容器)
 本実施形態において、細粒状多孔質ガス吸着材を充填する燃料ガス吸着容器は、一過式のものであり、円柱状や矩形筒状の容器の両端が開口してそれぞれ入口部と出口部とが形成された筐体、あるいは入口部と中空排出管により形成された出口部とを有する円柱状や矩形筒状の容器を用いることができる。この入口部には燃料ガス源に接続したチューブ配管が接続されるとともに、出口部には排出用のチューブ配管が接続され、その途中には後述するセンサが設けられる。
[Fuel gas adsorption cartridge]
(Fuel gas adsorption container)
In the present embodiment, the fuel gas adsorption container to be filled with the fine-grained porous gas adsorbent is a one-time type, in which both ends of a columnar or rectangular cylindrical container are opened and an inlet portion and an outlet portion respectively. Or a cylindrical or rectangular cylindrical container having an inlet and an outlet formed by a hollow discharge pipe. A tube pipe connected to a fuel gas source is connected to the inlet portion, and a tube tube for discharge is connected to the outlet portion, and a sensor described later is provided in the middle thereof.
(細粒状多孔質ガス吸着材)
 本実施形態において細粒状多孔質ガス吸着材としては、ガス吸着能を有する多孔質材料であれば特に制限はなく、無機多孔質材料や炭素系多孔質材料を好適に用いることができる。
(Fine-grained porous gas adsorbent)
In the present embodiment, the fine-grained porous gas adsorbent is not particularly limited as long as it is a porous material having a gas adsorbing ability, and an inorganic porous material or a carbon-based porous material can be suitably used.
 無機多孔質材料としては、多孔質シリカ、金属ポーラス構造体、ケイ酸カルシウム、ケイ酸マグネシウム、メタケイ酸アルミン酸マグネシウム、ゼオライト、多孔質アルミナ、酸化チタン、アパタイト、多孔質ガラス、酸化マグネシウム、ケイ酸アルミニウム等を用いることができる。また、炭素系多孔質材料としては、細粒状活性炭を用いることができる。 Inorganic porous materials include porous silica, metal porous structure, calcium silicate, magnesium silicate, magnesium metasilicate aluminate, zeolite, porous alumina, titanium oxide, apatite, porous glass, magnesium oxide, silicic acid Aluminum or the like can be used. As the carbon-based porous material, fine-grained activated carbon can be used.
 これらの無機多孔質材料及び炭素系多孔質材料は単独で用いてもよいし、2種類以上の素材を併用してもよい。これらの中では、炭素系多孔質材料、ゼオライト、シリカゲル又は多孔質アルミナが好ましく、特に細粒状炭素系多孔質材料が好ましい。 These inorganic porous materials and carbon-based porous materials may be used alone or in combination of two or more. Among these, a carbon-based porous material, zeolite, silica gel or porous alumina is preferred, and a fine-grained carbon-based porous material is particularly preferred.
 この細粒状炭素系多孔質材料は、一般に細孔径と極性とによって、吸着可能な分子の選択性を有する。したがって、細孔径と極性を調整することによってメタンガス、プロパンガス、ブタンガスなどの吸着対象の燃料ガスに対して好適なものとすることができる。具体的には細粒状炭素系吸着材は、平均細孔径が20Å以下であることが好ましい。平均細孔径が20Åより大きいと吸着した燃料ガスを保持するのが困難となる。なお、平均細孔径の下限については、4Åより小さい平均細孔径とするのは困難である。この細粒状炭素系吸着材は、0.3mm未満では、燃料ガスを通気した際の圧損が大きくなりすぎる一方、5mmを超えると燃料ガスが透過しやすくなるため、平均粒径0.3~5mmであることが好ましい。 This fine-grained carbon-based porous material generally has selectivity for adsorbable molecules depending on the pore diameter and polarity. Therefore, by adjusting the pore diameter and the polarity, it can be made suitable for the fuel gas to be adsorbed, such as methane gas, propane gas, and butane gas. Specifically, the fine carbonaceous adsorbent preferably has an average pore diameter of 20 ° or less. If the average pore diameter is larger than 20 °, it becomes difficult to retain the adsorbed fuel gas. It is difficult to set the lower limit of the average pore diameter to an average pore diameter smaller than 4 °. When the fine-grained carbon-based adsorbent is less than 0.3 mm, the pressure loss when the fuel gas is ventilated becomes too large, and when it exceeds 5 mm, the fuel gas is easily permeated. It is preferred that
 また、細粒状炭素系吸着材は、プロパンガス、ブタンガスなどの極性のある燃料ガスを吸着する場合には、その表面官能基を調整して極性を付与したものであることが好ましい。この細粒状炭素系吸着材の表面官能基の調整は、細粒状炭素系吸着材を炭酸ガス、窒素ガス又はアルゴンガスで賦活処理を行うことにより行うことができる。具体的には、未処理(初期状態)の細粒状炭素系吸着材の表面は、カルボキシル基やフェノール系水酸基であるが、炭酸ガスで賦活化することにより、その全部または一部を-CH末端とすることができる。特に細粒状炭素系吸着材の表面に臭素を添着して臭素添着担持活性炭とすることで、燃料ガスの選択的吸着性及び着臭気剤の吸着性を向上させることができて好ましい。 When the fine particulate carbon-based adsorbent adsorbs a fuel gas having a polarity such as propane gas or butane gas, it is preferable that the surface functional group be adjusted to impart polarity. The adjustment of the surface functional group of the fine-grained carbon-based adsorbent can be performed by activating the fine-grained carbon-based adsorbent with carbon dioxide gas, nitrogen gas or argon gas. Specifically, the surface of the untreated (initial state) fine-grained carbon-based adsorbent is a carboxyl group or a phenol-based hydroxyl group, and all or part of the surface is activated by carbon dioxide gas so that all or part of the surface is -CH terminal. It can be. In particular, it is preferable to add bromine to the surface of the fine-grained carbon-based adsorbent to obtain bromine-impregnated activated carbon, because the selective adsorption of fuel gas and the adsorption of odorant can be improved.
 この臭素添着担持活性炭は、例えば活性炭を酸素不存在下で350~900℃で熱処理することにより、活性炭に含まれる水分及び塩化物を除去し、得られた活性炭に臭素を1~15重量%程度添着することにより得ることができる。 This activated carbon with bromine impregnation is obtained by, for example, subjecting activated carbon to heat treatment at 350 to 900 ° C. in the absence of oxygen to remove water and chloride contained in the activated carbon, and to add about 1 to 15% by weight of bromine to the obtained activated carbon. It can be obtained by impregnation.
 なお、細粒状炭素系吸着材は、その表面積が100~1000m/g、好ましくは200~800m/gであることが好ましい。 The fine carbonaceous adsorbent preferably has a surface area of 100 to 1000 m 2 / g, preferably 200 to 800 m 2 / g.
 これら比表面積、細孔容積及び平均細孔径は、例えばマイクロトラック・ベル社製「BELSORP-max」(商品名)により測定した値である。 The specific surface area, pore volume and average pore diameter are values measured by, for example, “BELSORP-max” (trade name) manufactured by Microtrac Bell.
(燃料ガス吸着カートリッジの構造)
 燃料ガス吸着カートリッジは、上述したような燃料ガス吸着容器に細粒状多孔質ガス吸着材を充填してなる。
(Structure of fuel gas adsorption cartridge)
The fuel gas adsorption cartridge is formed by filling the above-described fuel gas adsorption container with a fine-grained porous gas adsorbent.
 ここで、細粒状多孔質ガス吸着材、特に細粒状炭素系吸着材は、吸着対象により吸着性が異なる。例えば、代表的な吸着物質を例にするとその吸着力の強さは下記順番となる。
 プロパンガス>CO>メタンガス>窒素>酸素>水>メタノール
Here, the fine-grained porous gas adsorbent, particularly the fine-grained carbon-based adsorbent, has different adsorbability depending on the adsorption target. For example, taking a typical adsorbing substance as an example, the strength of the adsorbing power is in the following order.
Propane gas> CO 2 > Methane gas>Nitrogen>Oxygen>Water> Methanol
 そこで、本実施形態においては、細粒状多孔質ガス吸着材として、吸着対象となる燃料ガスよりも吸着性の低い成分をあらかじめ吸着させたものを少なくとも一部に用いる。具体的には、吸着対象となる燃料ガスがプロパンガスの場合にはCOをあらかじめ吸着させたものを、吸着対象となる燃料ガスがメタンガスの場合には、窒素や酸素、あるいは水やメタノールをあらかじめ吸着させたものを用いることが好ましい。 Therefore, in the present embodiment, at least a part of a fine-grained porous gas adsorbent obtained by previously adsorbing a component having lower adsorbability than the fuel gas to be adsorbed is used. Specifically, those fuel gas to be adsorbed target was pre-adsorbed of CO 2 in the case of propane gas, when the fuel gas to be adsorbed target is methane gas, nitrogen, oxygen, or water and methanol It is preferable to use those that have been adsorbed in advance.
 具体的には、燃料ガス吸着カートリッジは、図1に示すような充填構造を有するのが好ましい。図1において、燃料ガス吸着カートリッジ1は、入口部としてのガス流入部材3が上部に設けられているとともに、出口部としての排出管4が底部より延在しており、燃料ガス吸着容器2の上端部及び下端部には、気体が流通可能で細粒状多孔質ガス吸着材を透過させないスペーサ部材5A及び5Bを設置し、ガス流通方向(ガス流入部材3から排出管4の底部へ向けての方向)の上流側に通常の(吸着性の低い成分を吸着させていない)細粒状多孔質ガス吸着材6が、下流側に吸着対象となる燃料ガスよりも吸着性の低い成分を吸着させた細粒状多孔質ガス吸着材7がそれぞれ配置された一過式の構造を有する。すなわち、本実施形態において、ガス流入部材3は、その下端がスペーサ部材5Aに連通しており、排出管4は、その下端がスペーサ部材5Bに連通している。燃料ガス吸着容器2は、外殻部はステンレスなどの金属製のものを、排出管4、スペーサ部材5A及び5Bはポリプロピレンなどの樹脂製のものをそれぞれ用いることができる。このような一過式の燃料ガス吸着カートリッジ1は、ガス吸着材を充填した容器内を減圧して燃料ガスを吸引吸着する減圧式容器と比較して、容積が5000cc以下と小さく取扱い性に優れる、という特徴を有する。 Specifically, the fuel gas adsorption cartridge preferably has a filling structure as shown in FIG. In FIG. 1, a fuel gas adsorption cartridge 1 has a gas inflow member 3 as an inlet portion provided at an upper portion, and a discharge pipe 4 as an outlet portion extending from a bottom portion. At the upper end and the lower end, spacer members 5A and 5B through which gas can flow and which do not allow the fine-grained porous gas adsorbent to pass therethrough are installed in the gas flow direction (from the gas inflow member 3 to the bottom of the discharge pipe 4). The normal fine-grained porous gas adsorbent 6 (which does not adsorb components having low adsorptivity) upstream of (direction) adsorbs components having lower adsorbability than the fuel gas to be adsorbed downstream. It has a one-time structure in which the fine-grained porous gas adsorbents 7 are arranged. That is, in the present embodiment, the lower end of the gas inflow member 3 communicates with the spacer member 5A, and the lower end of the discharge pipe 4 communicates with the spacer member 5B. The outer shell of the fuel gas adsorption container 2 may be made of metal such as stainless steel, and the exhaust pipe 4 and the spacer members 5A and 5B may be made of resin such as polypropylene. Such a one-time type fuel gas adsorption cartridge 1 has a small volume of 5,000 cc or less and is excellent in handleability as compared with a decompression type container in which the inside of a container filled with a gas adsorbent is depressurized to suction and adsorb fuel gas. , Has the feature.
 このような構造とすることが好ましい理由は、以下のとおりである。すなわち、燃料ガス吸着容器2のガス流入部材3から燃料ガスとしてのプロパンガスG(プロパンガスGの混合ガスを含む)を供給すると、プロパンガスGはスペーサ部材5Aにおいて燃料ガス吸着容器2の全周方向に拡散して細粒状多孔質ガス吸着材6に流入し、細粒状多孔質ガス吸着材6,7がプロパンガスG中のプロパンや着臭成分を吸着する。そして、プロパンガスGが含まれない排出ガスG1のみがスペーサ部材5Bから排出管4を経て排出されることになる。このような処理を継続すると、細粒状多孔質ガス吸着材6,7は上流側から破過し、次第に下流側に向けて破過が進行していく。そして、吸着性の低い成分を吸着させた細粒状多孔質ガス吸着材7がプロパンガスGを吸着すると、代わりにあらかじめ吸着させておいた吸着性の低い成分が放出される。そして、排出管4からの排出ガスG1における吸着性の低い成分を検出し、その挙動(濃度変化)を監視することにより、燃料ガス吸着カートリッジ1の破過時期を事前に予測することができる。 理由 The reason why such a structure is preferable is as follows. That is, when propane gas G (including a mixed gas of propane gas G) as fuel gas is supplied from the gas inflow member 3 of the fuel gas adsorption container 2, the propane gas G is supplied to the entire periphery of the fuel gas adsorption container 2 in the spacer member 5A. It diffuses in the direction and flows into the fine-grained porous gas adsorbent 6, and the fine-grained porous gas adsorbents 6, 7 adsorb propane and odorant components in the propane gas G. Then, only the exhaust gas G1 containing no propane gas G is exhausted from the spacer member 5B via the exhaust pipe 4. When such treatment is continued, the fine-grained porous gas adsorbents 6 and 7 break through from the upstream side, and gradually progress toward the downstream side. Then, when the fine-grained porous gas adsorbent 7 adsorbing the component having low adsorbability adsorbs the propane gas G, the component having low adsorbability previously adsorbed is released instead. Then, by detecting a component having low adsorptivity in the exhaust gas G1 from the exhaust pipe 4 and monitoring the behavior (change in concentration), the breakthrough time of the fuel gas adsorption cartridge 1 can be predicted in advance.
 この吸着性の低い成分を吸着させた細粒状多孔質ガス吸着材7は、燃料ガス吸着容器2のガス流通方向の下流側で、細粒状多孔質ガス吸着材による吸着帯以上の長さで、該吸着帯の5倍以下の容積とすることが好ましい。吸着性の低い成分を吸着させた細粒状多孔質ガス吸着材7が細粒状多孔質ガス吸着材による吸着帯よりも短いと、吸着性の低い成分が検出されてから燃料ガス吸着カートリッジ1が破過するまでの時間が短時間となり、燃料ガスとしてのプロパンガスGの流通の停止が間に合わず、プロパンガスGが漏洩しやすくなる一方、細粒状多孔質ガス吸着材による吸着帯の5倍を超えると、吸着性の低い成分が短時間で放出されるようになるため、破過の時期の見極めのために長期間の監視が必要となるため、好ましくない。 The fine-grained porous gas adsorbent 7 to which the component having low adsorptivity is adsorbed has a length equal to or longer than the adsorption zone of the fine-grained porous gas adsorbent on the downstream side in the gas flow direction of the fuel gas adsorption container 2. It is preferable that the volume is not more than 5 times the absorption band. If the fine-grained porous gas adsorbent 7 adsorbing the low-adsorptive component is shorter than the adsorption zone of the fine-grained porous gas adsorbent, the fuel gas adsorption cartridge 1 is broken after the low-adsorbent component is detected. The time until the passage of the fuel gas becomes short, the suspension of the flow of propane gas G as the fuel gas cannot be made in time, and the propane gas G is likely to leak, while exceeding five times the adsorption band by the fine-grained porous gas adsorbent. This is not preferable because components having low adsorptivity are released in a short time, and long-term monitoring is required to determine the timing of breakthrough.
 一般的には、吸着性の低い成分を吸着させた細粒状多孔質ガス吸着材7は、燃料ガス吸着容器2のガス流通方向下流側で、細粒状多孔質ガス吸着材の総量(細粒状多孔質ガス吸着材6+細粒状多孔質ガス吸着材7)を100容積%として、2~50容積%、特に3~30容積%とすることが好ましい。吸着性の低い成分を吸着させた細粒状多孔質ガス吸着材7が2容積%未満では、吸着性の低い成分が検出されてから燃料ガス吸着カートリッジ1が破過するまでの時間が短時間となり、燃料ガスとしてのプロパンガスGの流通の停止が間に合わず、プロパンガスGが漏洩しやすくなる一方、50容積%を超えると、吸着性の低い成分が短時間で放出されるようになるため、破過の時期の見極めのために長期間の監視が必要となるため、好ましくない。 In general, the fine-grained porous gas adsorbent 7 adsorbing a component having low adsorbability has a total amount of the fine-grained porous gas adsorbent (fine-grained porous gas) downstream of the fuel gas adsorption container 2 in the gas flow direction. It is preferable that the content of the porous gas adsorbent 6 + fine-grained porous gas adsorbent 7) be 100% by volume and 2 to 50% by volume, particularly 3 to 30% by volume. When the amount of the fine-grained porous gas adsorbent 7 to which the component having low adsorptivity is adsorbed is less than 2% by volume, the time from when the component having low adsorptivity is detected to when the fuel gas adsorption cartridge 1 breaks through becomes short. The propane gas G as a fuel gas is not stopped in time, and the propane gas G easily leaks. On the other hand, when the volume of the propane gas G exceeds 50% by volume, a component having low adsorptivity is released in a short time. This is not preferable because long-term monitoring is required to determine the timing of breakthrough.
〔センサ〕
 本実施形態においてセンサとしては、吸着対象となる燃料ガスよりも吸着性の低い成分を検出可能なものを用いる。具体的には、COを吸着させた場合には炭酸ガスセンサを、窒素や酸素を吸着させた場合には窒素や酸素のそれぞれのセンサを、水やメタノールを吸着させた場合には、湿度センサあるいはアルコール計を用いればよい。
[Sensor]
In the present embodiment, a sensor capable of detecting a component having lower adsorbability than the fuel gas to be adsorbed is used. Specifically, when CO 2 is adsorbed, a carbon dioxide sensor is used. When nitrogen or oxygen is adsorbed, each sensor of nitrogen or oxygen is used. When water or methanol is adsorbed, a humidity sensor is used. Alternatively, an alcohol meter may be used.
〔燃料ガス吸着カートリッジの交換時期判断方法〕
 次に上述したような燃料ガス吸着装置を用いた燃料ガス吸着カートリッジの交換時期判断方法について説明する。
[How to determine when to replace the fuel gas adsorption cartridge]
Next, a method of determining the replacement time of the fuel gas adsorption cartridge using the above-described fuel gas adsorption device will be described.
 図2は、本発明の一実施形態による燃料ガス吸着装置を用いた、燃料ガス吸着カートリッジの交換時期の判断の可否を判定するための試験装置を示しており、同図において燃料ガス吸着装置11は、燃料ガス吸着容器13に細粒状多孔質ガス吸着材を充填してなる燃料ガス吸着カートリッジ12と、この燃料ガス吸着カートリッジ12の燃料ガス吸着容器13の入口部14に接続した燃料ガス供給配管14Aと、出口部15に接続した排出用配管15Aとを備える。この出口部15は本実施形態においては管状部材であり、燃料ガス吸着容器13の底部にまで延在している。そして、排出用配管15Aには、熱量計16と、吸着対象となる燃料ガスよりも吸着性の低い成分(本実施形態においてはCO)を検出可能なCOセンサ17が設けられている。一方、燃料ガス供給配管14Aの基端側には、燃料ガスとしてのプロパンガスGのガスボンベ18が接続されているとともに、流量計19が設けられている。なお、符号20はプロパンガスGの供給を開始・停止する開閉バルブである。このような試験装置において、燃料ガス吸着カートリッジ12に充填される細粒状多孔質ガス吸着材は、燃料ガス吸着容器13のプロパンガスGのガス流通方向の下流側にあらかじめCOを吸着させたものが配置されている。 FIG. 2 shows a test apparatus using the fuel gas adsorption device according to one embodiment of the present invention to determine whether or not it is time to replace the fuel gas adsorption cartridge. Is a fuel gas adsorption cartridge 12 in which a fuel gas adsorption container 13 is filled with a fine-grained porous gas adsorbent, and a fuel gas supply pipe connected to an inlet 14 of the fuel gas adsorption container 13 of the fuel gas adsorption cartridge 12. 14A, and a discharge pipe 15A connected to the outlet 15. The outlet portion 15 is a tubular member in the present embodiment, and extends to the bottom of the fuel gas adsorption container 13. The exhaust pipe 15A is provided with a calorimeter 16 and a CO 2 sensor 17 capable of detecting a component (CO 2 in this embodiment) having lower adsorbability than the fuel gas to be adsorbed. On the other hand, a gas cylinder 18 for propane gas G as a fuel gas is connected to a base end side of the fuel gas supply pipe 14A, and a flow meter 19 is provided. Reference numeral 20 denotes an opening / closing valve for starting and stopping the supply of the propane gas G. In such a test apparatus, the fine-grained porous gas adsorbent filled in the fuel gas adsorption cartridge 12 is obtained by adsorbing CO 2 in advance on the fuel gas adsorption container 13 on the downstream side in the gas flow direction of propane gas G. Is arranged.
 上述したような試験装置において、開閉バルブ20を開いてガスボンベ18からプロパンガスGを供給する。このときプロパンガスGの流量を流量計19で計測する。このプロパンガスGは、燃料ガス供給配管14Aを通って、入口部14から燃料ガス吸着容器13に流入し、燃料ガス吸着容器11中の細粒状多孔質ガス吸着材を通過することにより、細粒状多孔質ガス吸着材によりプロパンガスG中のプロパン成分や着臭成分が吸着される。そして、出口部15から吐出された排出ガスG1の熱量を熱量計16で計測するとともに、COセンサ17によりCO濃度を計測する。 In the test apparatus as described above, the opening / closing valve 20 is opened and the propane gas G is supplied from the gas cylinder 18. At this time, the flow rate of the propane gas G is measured by the flow meter 19. The propane gas G passes through the fuel gas supply pipe 14A, flows into the fuel gas adsorption container 13 from the inlet portion 14, and passes through the fine-grained porous gas adsorbent in the fuel gas adsorption container 11 to form fine-grained gas. The propane component and the odorant component in the propane gas G are adsorbed by the porous gas adsorbent. Then, the calorific value of the exhaust gas G1 discharged from the outlet portion 15 is measured by the calorimeter 16, and the CO 2 concentration is measured by the CO 2 sensor 17.
 このプロパンガスGの流通した状態を継続すると、細粒状多孔質ガス吸着材は入口部14側から破過し、プロパンガスGの流通方向に対して次第に下流側に破過が進行していく。このとき本実施形態においては、燃料ガス吸着容器13の下流側にあらかじめCOを吸着させた細粒状多孔質ガス吸着材を配置しているので、このCOを吸着させた細粒状多孔質ガス吸着材のエリアまで破過が進行してプロパンガスGを吸着すると、代わりに吸着性の低い成分であるCOが放出される。その結果、COセンサ17で検出される排出ガスG1中のCO濃度が上昇するので、このCO濃度に基づき、プロパンガスGの漏洩を確実に防止し、かつ細粒状多孔質ガス吸着材を効率的に利用することの可能な交換時期を判断することができる。 When the propane gas G continues to flow, the fine-grained porous gas adsorbent breaks through from the inlet portion 14 and gradually breaks down in the flow direction of the propane gas G. In the present embodiment this time, since the pre-CO 2 on the downstream side of the fuel gas adsorption vessels 13 are arranged finely divided porous gas adsorbent adsorbed, fine particulate, porous gas adsorbed the CO 2 When the breakthrough progresses to the area of the adsorbent and the propane gas G is adsorbed, CO 2 which is a component having low adsorbability is released instead. As a result, the CO 2 concentration in the exhaust gas G1 detected by the CO 2 sensor 17 increases, so that the leakage of the propane gas G is reliably prevented based on the CO 2 concentration, and the fine-grained porous gas adsorbent It is possible to judge a replacement time at which it can be used efficiently.
 具体的にはCOを吸着させた細粒状多孔質ガス吸着材がプロパンガスGを吸着すると、代わりにCOを放出する。
 これは下記式(1)のような化学反応による。
 R-CO+C → R-C+CO↑+吸着熱  ・・・・(1)
 (式中、Rはガス吸着材である)
Specifically, when the fine-grained porous gas adsorbent that has adsorbed CO 2 adsorbs propane gas G, it emits CO 2 instead.
This is due to a chemical reaction represented by the following formula (1).
R-CO 2 + C 3 H 8 → RC 3 H 8 + CO 2 ↑ + heat of adsorption ··· (1)
(Where R is a gas adsorbent)
 この結果、排出ガスG1中のCO濃度は、COを吸着させた細粒状多孔質ガス吸着材層の破過が進行するに伴い上昇し、その後ピークに至り、その状態がしばらく維持される。そして、COを吸着させた細粒状多孔質ガス吸着材層の破過が進行して、燃料ガスの吸着能が低下し始めると、CO濃度は下降の挙動を示し、下降しきった時点で燃料ガス吸着カートリッジ12が完全に破過したとみなすことができる。そこで、燃料ガス吸着容器13の容積と細粒状多孔質ガス吸着材の容積とあらかじめCOを吸着させた細粒状多孔質ガス吸着材の容積とプロパンガスGの流量と濃度とから、上昇→ピーク→下降のいずれかの時点で燃料ガス吸着カートリッジ12を交換するかを適宜設定することで、プロパンガスGの漏洩を確実に防止できるとともに細粒状多孔質ガス吸着材を効率的に利用することの可能な交換時期を判断することができる。 As a result, the CO 2 concentration in the exhaust gas G1 increases as the breakthrough of the fine-grained porous gas adsorbent layer on which CO 2 is adsorbed progresses, reaches a peak thereafter, and is maintained for a while. . Then, when breakthrough of the fine-grained porous gas adsorbent layer on which CO 2 is adsorbed progresses and the adsorbing ability of the fuel gas starts to decrease, the CO 2 concentration shows a decreasing behavior. It can be considered that the fuel gas adsorption cartridge 12 completely breaks through. Therefore, the volume of the fuel gas adsorption container 13, the volume of the fine-grained porous gas adsorbent, the volume of the fine-grained porous gas adsorbent in which CO 2 is adsorbed in advance, and the flow rate and the concentration of the propane gas G are increased to peak. → By appropriately setting whether to replace the fuel gas adsorption cartridge 12 at any time of the descent, it is possible to reliably prevent the leakage of the propane gas G and to efficiently use the fine-grained porous gas adsorbent. Possible replacement times can be determined.
 以上、本実施形態の燃料ガス吸着装置について説明してきたが、本発明は前記実施形態に限定されず種々の変形実施が可能である。例えば、吸着性の低い成分を吸着させた細粒状多孔質ガス吸着材7は、燃料ガス吸着容器2の下流側に配置するのが好ましいが、最下流である必要はなく、下流側の途中に配置してもよい。さらに、細粒状多孔質ガス吸着材7は燃料ガス吸着容器2内に存在していればよく、細粒状多孔質ガス吸着材の全量を吸着性の低い成分を吸着させたものとしてもよいし、場合によっては、細粒状多孔質ガス吸着材6と、吸着性の低い成分を吸着させた細粒状多孔質ガス吸着材7とを所定の比率で混合したものを燃料ガス吸着容器2内の全体に充填してもよい。 Although the fuel gas adsorption device according to the present embodiment has been described above, the present invention is not limited to the above embodiment, and various modifications can be made. For example, it is preferable that the fine-grained porous gas adsorbent 7 adsorbing a component having a low adsorptivity is disposed on the downstream side of the fuel gas adsorption container 2, but it is not necessary to be the most downstream, It may be arranged. Further, the fine-grained porous gas adsorbent 7 only needs to be present in the fuel gas adsorption vessel 2, and the entire amount of the fine-grained porous gas adsorbent may be obtained by adsorbing a component having low adsorptivity, In some cases, a mixture of the fine-grained porous gas adsorbent 6 and the fine-grained porous gas adsorbent 7 adsorbing a component having a low adsorptivity at a predetermined ratio is applied to the whole of the fuel gas adsorption container 2. It may be filled.
 以下の具体的実施例に基づき本発明をさらに詳細に説明するが、本発明は下記の実施例に限定されるものではない。 The present invention will be described in more detail based on the following specific examples, but the present invention is not limited to the following examples.
(実施例1)
 燃料ガス吸着装置11として図2に示す装置を用い、燃料ガス吸着容器13に臭素添着活性炭(平均粒径4mm、平均細孔径15Å)を総量で1500g充填したものを燃料ガス吸着カートリッジ12として用意した。この際、燃料ガスの流通方向に対して燃料ガス吸着容器13の下流側にあらかじめCOを吸着させた活性炭を60g(4容積%)充填した。なお、COセンサ17としては、WINSEN社製「MH-Z14A」COセンサを使用した。
(Example 1)
2 was used as the fuel gas adsorption device 11, and a fuel gas adsorption cartridge 13 was prepared by filling the fuel gas adsorption container 13 with a total of 1500 g of bromine-impregnated activated carbon (average particle size: 4 mm, average pore size: 15 °). . At this time, 60 g (4% by volume) of activated carbon in which CO 2 was previously adsorbed was filled in the downstream side of the fuel gas adsorption container 13 with respect to the fuel gas flow direction. As the CO 2 sensor 17, a “MH-Z14A” CO 2 sensor manufactured by WINSEN was used.
 このような燃料ガス吸着装置11において、燃料ガスとしてプロパンガスGを10L/分の流量で流通し、燃料ガス吸着カートリッジ12の出口からの排出ガスのカロリーを熱量計16により測定するとともにCOセンサ17によりCOガスの濃度を測定した結果を燃料ガス吸着カートリッジ12に流入するプロパンガスGのカロリーとともに図3に示す。また、図3におけるCOガスの濃度の12分間の推移を図4に示す。 In such a fuel gas adsorption device 11, propane gas G is circulated as a fuel gas at a flow rate of 10 L / min, the calorie of the exhaust gas from the outlet of the fuel gas adsorption cartridge 12 is measured by the calorimeter 16, and the CO 2 sensor is used. 17 shows the result of measuring the concentration of CO 2 gas together with the calorie of the propane gas G flowing into the fuel gas adsorption cartridge 12 in FIG. FIG. 4 shows the transition of the CO 2 gas concentration in FIG. 3 for 12 minutes.
(実施例2)
 実施例1において、下流側にあらかじめCOを吸着させた活性炭を410g(27容積%)充填した以外は同様にして燃料ガス吸着装置11を構成し、同様にしてプロパンガスGを10L/分の流量で流通し、燃料ガス吸着カートリッジ12の出口からの排出ガスのカロリーを熱量計16により測定するとともにCOセンサ17によりCOガスの濃度を測定した結果を、燃料ガス吸着カートリッジ12に流入するプロパンガスGのカロリーとともに図3にあわせて示す。また、図3におけるCOガスの濃度の推移を図4にあわせて示す。
(Example 2)
In Example 1, the fuel gas adsorption apparatus 11 was configured in the same manner except that the downstream side was filled with 410 g (27% by volume) of activated carbon to which CO 2 had been previously adsorbed. circulated at a flow rate, a result of measuring the concentration of CO 2 gas by CO 2 sensor 17 with the calorie of the exhaust gas from the outlet of the fuel gas adsorption cartridge 12 measured by the calorimeter 16, and flows into the fuel gas adsorption cartridge 12 The results are shown in FIG. 3 together with the calories of propane gas G. FIG. 4 also shows the transition of the concentration of CO 2 gas in FIG.
 図3及び図4から明らかなとおり、燃料ガス吸着カートリッジ12の出口からの排出ガスのカロリーは約15分経過するまでほぼ「0」であることから、実施例1,2の燃料ガス吸着装置11により、プロパンガスGを吸着することができることがわかる。一方、排出ガスのCO濃度は約10分経過後から上昇し始め、約13分経過後から低下しはじめ、これとともに排出ガスのカロリーは約15分後から上昇(プロパンガスGが漏洩)し始め、燃料ガス吸着カートリッジ12が破過したことが確認でき、CO濃度が低下しはじめてから燃料ガス吸着カートリッジ12の破過まで約2分要することから、COセンサ17で検出されるCOガスの挙動により、燃料ガス吸着カートリッジ12の交換時期の判断が可能であることがわかる。このようにプロパンガスGなどの燃料ガスの濃度や流量により、燃料ガス吸着カートリッジ12が破過するまでの時間は変動するので、CO濃度の変動に応じて、燃料ガス吸着カートリッジ12の交換時期を適宜設定することができる。 As is clear from FIGS. 3 and 4, the calorie of the exhaust gas from the outlet of the fuel gas adsorption cartridge 12 is almost “0” until about 15 minutes elapse, and therefore, the fuel gas adsorption devices 11 of the first and second embodiments are used. Thus, it can be understood that propane gas G can be adsorbed. On the other hand, the CO 2 concentration of the exhaust gas starts to increase after about 10 minutes, and starts to decrease after about 13 minutes. At the same time, the calorie of the exhaust gas increases after about 15 minutes (propane gas G leaks). At first, it can be confirmed that the fuel gas adsorption cartridge 12 breaks through, and since it takes about 2 minutes from when the CO 2 concentration starts to decrease until the fuel gas adsorption cartridge 12 breaks through, the CO 2 sensor 17 detects CO 2. It can be seen that it is possible to determine the time to replace the fuel gas adsorption cartridge 12 from the behavior of the gas. As described above, the time until the fuel gas adsorption cartridge 12 breaks through varies depending on the concentration and flow rate of the fuel gas such as the propane gas G. Therefore, the replacement time of the fuel gas adsorption cartridge 12 is changed according to the CO 2 concentration fluctuation. Can be set as appropriate.
 上述したような本発明の燃料ガス吸着装置は、一過式の燃料ガス吸着カートリッジの破過時期を判断可能とするものであり、都市ガス代替プロパンガスジェネレータ、一過式の燃料ガス吸着カートリッジを燃料ガスのガス流量メータの交換用、ガス配管新設施工時の燃料ガスパージ処理用の他、VOCタンクの定修時の換気工程におけるVOCの大気放出用、浄化槽出口での硫化水素臭の除去用、活性炭吸着塔の入れ替え工事の際の腐食性ガス及び硫黄系ガスの大気放散防止用、さらには、下水マンホールにおける開港時の硫黄分主体の充満ガス(例えば、硫化水素、メチルメルカプタン等の硫黄系有毒ガス)の除去用など各種用途に適用することができ、その産業上の利用価値は大きい。 The fuel gas adsorption device of the present invention as described above is capable of determining the breakthrough time of a one-time fuel gas adsorption cartridge, and uses a city gas alternative propane gas generator, a one-time fuel gas adsorption cartridge. For replacement of fuel gas flow meters, for fuel gas purging when constructing new gas pipes, for venting VOCs in the ventilation process during regular maintenance of VOC tanks, for removing hydrogen sulfide odor at the outlet of the septic tank, It is used to prevent corrosive gas and sulfur-based gas from being released into the atmosphere during the replacement of activated carbon adsorption towers, and is also filled with sulfur-based gas at the time of opening of ports in sewage manholes (for example, sulfur-based gas such as hydrogen sulfide and methyl mercaptan). It can be applied to various uses such as removal of poison gas, and its industrial utility value is great.
1,12 燃料ガス吸着カートリッジ
2,13 燃料ガス吸着容器
3 入口部(ガス流入部材)
4 出口部(排出管)
5A,5B スペーサ部材
6,7 細粒状多孔質ガス吸着材
11 燃料ガス吸着装置
14 入口部
14A 燃料ガス供給配管
15 出口部
15A 排出用配管
16 熱量計
17 COセンサ(吸着性の低い成分のセンサ)
18 ガスボンベ
19 流量計
20 開閉バルブ
G プロパンガス(燃料ガス)
G1 排出ガス
1,12 fuel gas adsorption cartridge 2,13 fuel gas adsorption container 3 inlet (gas inflow member)
4 Exit (discharge pipe)
5A, 5B Spacer members 6, 7 Fine-grained porous gas adsorbent 11 Fuel gas adsorber 14 Inlet 14A Fuel gas supply pipe 15 Outlet 15A Discharge pipe 16 Calorimeter 17 CO 2 sensor (sensor with low adsorptivity) )
18 Gas cylinder 19 Flow meter 20 Opening / closing valve G Propane gas (fuel gas)
G1 Exhaust gas

Claims (7)

  1.  入口と出口とを有する燃料ガス吸着容器に細粒状多孔質ガス吸着材を充填してなる燃料ガス吸着カートリッジであって、前記細粒状多孔質ガス吸着材の少なくとも一部が吸着対象となる燃料ガスよりも吸着性の低い成分を吸着させたものである、燃料ガス吸着カートリッジ。 A fuel gas adsorption cartridge comprising a fuel gas adsorption container having an inlet and an outlet filled with a fine-grained porous gas adsorbent, wherein at least a part of the fine-grained porous gas adsorbent is a fuel gas to be adsorbed. A fuel gas adsorption cartridge in which a component having lower adsorbability is adsorbed.
  2.  入口と出口とを有する燃料ガス吸着容器に細粒状多孔質ガス吸着材を充填してなり、前記細粒状多孔質ガス吸着材の少なくとも一部が吸着対象となる燃料ガスよりも吸着性の低い成分を吸着させたものである燃料ガス吸着カートリッジと、
     前記燃料ガス吸着容器の出口側に設けられた前記吸着性の低い成分のセンサと
     を有する、燃料ガス吸着装置。
    A fuel gas adsorption vessel having an inlet and an outlet filled with a fine-grained porous gas adsorbent, wherein at least a part of the fine-grained porous gas adsorbent has a lower adsorbability than the fuel gas to be adsorbed. A fuel gas adsorption cartridge in which
    A sensor for the component having a low adsorptivity provided on the outlet side of the fuel gas adsorption container.
  3.  前記吸着対象となる燃料ガスが、メタンガス、プロパンガス、ブタンガス又はこれらのガスを主成分とする混合ガスである、請求項2に記載の燃料ガス吸着装置。 The fuel gas adsorption device according to claim 2, wherein the fuel gas to be adsorbed is methane gas, propane gas, butane gas, or a mixed gas containing these gases as a main component.
  4.  前記細粒状多孔質ガス吸着材が、炭素系多孔質材料、ゼオライト、シリカゲル又は多孔質アルミナから選ばれたものである、請求項2又は3に記載の燃料ガス吸着装置。 4. The fuel gas adsorption device according to claim 2, wherein the fine-grained porous gas adsorbent is selected from a carbon-based porous material, zeolite, silica gel, and porous alumina.
  5.  前記吸着性の低い成分を吸着させた細粒状多孔質ガス吸着材が、燃料ガスの流通方向に対して前記燃料ガス吸着容器の下流側に配置されている、請求項2~4のいずれか一項に記載の燃料ガス吸着装置。 The method according to any one of claims 2 to 4, wherein the fine-grained porous gas adsorbent that has adsorbed the component having low adsorptivity is disposed downstream of the fuel gas adsorption container with respect to the fuel gas flow direction. Item 13. The fuel gas adsorption device according to Item 1.
  6.  前記吸着性の低い成分を吸着させた細粒状多孔質ガス吸着材が、細粒状多孔質ガス吸着材の総量に対して、2~50容積%である、請求項5に記載の燃料ガス吸着装置。 The fuel gas adsorption device according to claim 5, wherein the amount of the fine-grained porous gas adsorbent to which the component having low adsorptivity is adsorbed is 2 to 50% by volume based on the total amount of the fine-grained porous gas adsorbent. .
  7.  入口と出口とを有する燃料ガス吸着容器に細粒状多孔質ガス吸着材を充填してなり、前記細粒状多孔質ガス吸着材の少なくとも一部が吸着対象となる燃料ガスよりも吸着性の低い成分を吸着させたものである燃料ガス吸着カートリッジの前記燃料ガス吸着容器の入口側から吸着対象となるガスを流通し、前記燃料ガス吸着カートリッジの出口側に設けた前記吸着性の低い成分のセンサにより該吸着性の低い成分を計測して、前記燃料ガス吸着カートリッジのガス吸着能を予測する、燃料ガス吸着カートリッジの交換時期判断方法。 A fuel gas adsorption vessel having an inlet and an outlet filled with a fine-grained porous gas adsorbent, wherein at least a part of the fine-grained porous gas adsorbent has a lower adsorbability than the fuel gas to be adsorbed. The gas to be adsorbed flows from the inlet side of the fuel gas adsorption container of the fuel gas adsorption cartridge, which is the one on which the gas is adsorbed, and the low adsorptivity component sensor provided at the outlet side of the fuel gas adsorption cartridge is used. A method for determining the replacement time of a fuel gas adsorption cartridge, wherein the component having a low adsorptivity is measured to predict the gas adsorption capacity of the fuel gas adsorption cartridge.
PCT/JP2018/032607 2018-08-10 2018-09-03 Fuel gas adsorption cartridge, fuel gas adsorption device employing same, and method for determining replacement time of fuel gas adsorption cartridge WO2020031393A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018151837A JP7206686B2 (en) 2018-08-10 2018-08-10 Fuel gas adsorption cartridge, fuel gas adsorption device using the same, and method for judging replacement timing of fuel gas adsorption cartridge
JP2018-151837 2018-08-10

Publications (1)

Publication Number Publication Date
WO2020031393A1 true WO2020031393A1 (en) 2020-02-13

Family

ID=69414575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032607 WO2020031393A1 (en) 2018-08-10 2018-09-03 Fuel gas adsorption cartridge, fuel gas adsorption device employing same, and method for determining replacement time of fuel gas adsorption cartridge

Country Status (2)

Country Link
JP (1) JP7206686B2 (en)
WO (1) WO2020031393A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241270A1 (en) * 2020-05-29 2021-12-02 株式会社 東芝 Monitoring device and monitoring method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7231288B1 (en) 2022-02-04 2023-03-01 圭介 中根 Gas traps and gas trap bags

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040083896A1 (en) * 2002-07-17 2004-05-06 Mihaylov Gueorgui Milev End of service life indicator for fluid filter
US20140109879A1 (en) * 2012-10-22 2014-04-24 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Filter arrangement for a tank ventilation system of a fuel tank
JP2014202269A (en) * 2013-04-03 2014-10-27 株式会社豊田中央研究所 Ammonia discharging device
JP2015505731A (en) * 2011-12-12 2015-02-26 スリーエム イノベイティブ プロパティズ カンパニー End-of-life indication system for multilayer filter cartridges

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040083896A1 (en) * 2002-07-17 2004-05-06 Mihaylov Gueorgui Milev End of service life indicator for fluid filter
JP2015505731A (en) * 2011-12-12 2015-02-26 スリーエム イノベイティブ プロパティズ カンパニー End-of-life indication system for multilayer filter cartridges
US20140109879A1 (en) * 2012-10-22 2014-04-24 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Filter arrangement for a tank ventilation system of a fuel tank
JP2014202269A (en) * 2013-04-03 2014-10-27 株式会社豊田中央研究所 Ammonia discharging device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241270A1 (en) * 2020-05-29 2021-12-02 株式会社 東芝 Monitoring device and monitoring method

Also Published As

Publication number Publication date
JP7206686B2 (en) 2023-01-18
JP2020025924A (en) 2020-02-20

Similar Documents

Publication Publication Date Title
Pei et al. Determination of adsorption isotherm and diffusion coefficient of toluene on activated carbon at low concentrations
US11318413B2 (en) Swing adsorption processes using zeolite structures
CA2779127C (en) Controlled discharge gas vent and method of reducing corrosion in a dry fire protection sprinkler system
Lillo-Ródenas et al. Competitive adsorption of a benzene–toluene mixture on activated carbons at low concentration
KR100699293B1 (en) Built in purifier for reactive gases
WO2020031393A1 (en) Fuel gas adsorption cartridge, fuel gas adsorption device employing same, and method for determining replacement time of fuel gas adsorption cartridge
TW201021898A (en) Performance stability in shallow beds in pressure swing adsorption systems
JP5731458B2 (en) Protective layer for rapid cycle pressure swing adsorber
JPH10332091A (en) Gas storage and measurement distribution device
WO2019156212A1 (en) Pressure swing adsorption (psa) device and pressure swing adsorption method
Zhang et al. Influence of pore volume and surface area on benzene adsorption capacity of activated carbons in indoor environments
Bastani et al. Assessing the performance of air cleaning devices–A full-scale test method
Khararoodi et al. Modelling of sorbent-based gas filters for indoor environment: A comprehensive review
Delgado et al. Fixed-bed adsorption of carbon dioxide–helium, nitrogen–helium and carbon dioxide–nitrogen mixtures onto silicalite pellets
US20130074689A1 (en) Device for the adsorption treatment of a fluid or fluid stream
Scahill et al. A new method for the rapid determination of volatile organic compound breakthrough times for a sorbent at concentrations relevant to indoor air quality
Zheng et al. Dynamic adsorption behavior of 1.1. 1.2-tetrafluoroethane (R134a) on activated carbon beds under different humidity and moisture levels
JP7234530B2 (en) Method for regenerating fuel gas adsorption column
Gray et al. Adsorption and desorption dynamics of sulphur dioxide on a single large activated carbon particle
Lodewyckx et al. Application of the Wheeler-Jonas equation for the calculation of carbon monolith breakthrough times
CN114965892B (en) Renewable adsorption material evaluation device and evaluation method thereof
Tang et al. CO 2 desorption characteristics on zeolite-A, X and CMS under different regeneration conditions
Uttamaroop et al. Sensitivity Analysis and Development of Mathematical Model for Water Breakthrough Curves of a Multi-Layer Adsorber
He et al. Testing and evaluation of filter media performance: correlation between high and low challenge concentration tests for toluene and formaldehyde (ASHRAE 1557)
Eberhardt et al. Tertiary butyl mercaptan adsorption in soils. Determination of kinetic and transport parameters from experimental data

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18929300

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18929300

Country of ref document: EP

Kind code of ref document: A1