WO2020030148A1 - An electrical energy storage device - Google Patents

An electrical energy storage device Download PDF

Info

Publication number
WO2020030148A1
WO2020030148A1 PCT/CN2019/100081 CN2019100081W WO2020030148A1 WO 2020030148 A1 WO2020030148 A1 WO 2020030148A1 CN 2019100081 W CN2019100081 W CN 2019100081W WO 2020030148 A1 WO2020030148 A1 WO 2020030148A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
electrical energy
storage device
accordance
cathode
Prior art date
Application number
PCT/CN2019/100081
Other languages
French (fr)
Inventor
Yafei WEI
Original Assignee
Eco Innotech Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eco Innotech Limited filed Critical Eco Innotech Limited
Publication of WO2020030148A1 publication Critical patent/WO2020030148A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/30Deferred-action cells
    • H01M6/32Deferred-action cells activated through external addition of electrolyte or of electrolyte components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • H01M4/806Nonwoven fibrous fabric containing only fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/42Grouping of primary cells into batteries
    • H01M6/46Grouping of primary cells into batteries of flat cells
    • H01M6/48Grouping of primary cells into batteries of flat cells with bipolar electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrical energy storage device, more particularly a water battery operable to generate electrical energy upon being injected with water supply.
  • electric battery is commonly used for a wide range of electronic applications to provide electrical energy.
  • these electronic applications may be torches, mobile phones, electric cars, laptops, watches and so on.
  • battery may comprise different form factor, capacity, material and so on.
  • a battery may comprise a positive terminal namely the cathode, a negative terminal namely the anode and the electrolyte.
  • the chemical reaction depending on the material used in the battery, causes the electrons to accumulate at the anode. In subsequence, this causes an electrical difference between the anode and the cathode. In order to balance such difference and to reach equilibrium between the anode and the cathode, electrons due to the repelling force may then push each other specifically towards the cathode. Such flow of electrons creates the electric current and voltage.
  • batteries such as dry battery, fuel cell and water battery are created for difference electrical appliances or devices. These types of batteries may store the potential electrical energy and release upon connecting to a load or injecting some liquid into the water battery. Such energy may be released until for example the electrode materials cannot charge or discharge or the liquid within a water battery is dried up.
  • an electrical storage device comprising: an anode including a metal plate, a cathode including a current collector component, a device activator sandwiched between a pair of the anode and the cathode.
  • the device activator includes a water absorbent arranged to absorb water for transforming salt contained in the device activator into an electrolyte disposed between the anode and the cathode, so as to facilitate an electrochemical reaction taking place at the anode and/or the cathode in a presence of water supply to the device activator.
  • the electrical energy storage device remains deactivated when the water absorbent is substantially dehydrated.
  • the device activator comprises a salt-containing carrier adjacent to water absorbent.
  • the salt-containing carrier includes salt-containing cloth.
  • the salt-containing carrier includes salt-containing paper.
  • the salt-containing paper includes a multi-layered structure.
  • the salt-containing carrier includes solid-state salt produced by dehydration of a salt solution.
  • the salt solution includes a concentration of salt greater than 15 %.
  • the water absorbent includes at least one of nonwoven cloth, cotton cloth, water-absorbing paper and sponge.
  • the current collector component comprises an electrically conductive material.
  • the electrically conductive material includes copper and/or carbon nanotube.
  • the current collector component comprises nonwoven fabric of the electrically conductive material.
  • the nonwoven fabric is disposed on a positive terminal support structure.
  • the nonwoven fabric wraps around the positive terminal support structure.
  • the positive terminal support structure includes an electrical insulator.
  • the metal plate comprises at least one of titanium, magnesium, aluminum and lithium.
  • the metal plate defines a negative terminal support structure.
  • the electrical energy storage device further comprises a cell unit encapsulation arranged to substantially encapsulate the anode, the cathode, and the device activator to define a single cell unit.
  • the cell unit encapsulation comprises at least one opening which allows an access of water supply to the water absorbent encapsulated therein.
  • the electrical energy storage device further comprises a positive terminal connector and a negative terminal connector respectively connected to the current collector and to the metal plate encapsulated within the cell unit encapsulation.
  • the positive terminal connector and the negative terminal connector respectively weld or soldered on separate electrode support planes in the cathode and the anode.
  • the positive terminal connector and the negative terminal connector include copper.
  • the cell unit encapsulation includes heat-shrink tubing.
  • elastic plastic tape also may be used for encapsulating the cell unit.
  • the electrical energy storage device further comprises a housing accommodating a single cell unit, or a plurality of single cell units in series and/or parallel connections.
  • the housing comprises a fluidic cavity for receiving and at least temporally retaining the water supply, wherein the fluidic cavity is accessible to the water absorbent within the encapsulation.
  • the housing further comprises an inlet in fluid communication with the fluidic cavity.
  • the housing further comprises a vent for gas exchange between an internal cavity of the housing and an external environment.
  • the plurality of single cell units are physically fixed together.
  • the electrical energy storage system comprises an electrical connector in electrical connection with the anode and the cathode in the housing.
  • the water supply includes at least one of freshwater, drinkable water, waste water and urine.
  • Other sources of water may include beverages such as tea, juice, beer or soft drinks.
  • the water supply includes any aqueous solution with a pH value between 4 –10.
  • Figure 1 illustrates an embodiment of a single cell unit.
  • Figure 2 illustrates a planar diagram of a piece of material such as carbon fabric and CNT for measurement of resistance between the points A, B, C, D, E.
  • Figure 3 illustrates a perspective view of an embodiment of a cylindrical single cell unit.
  • Figure 4 illustrates an embodiment of a cell unit encapsulation.
  • Figure 5a illustrates a schematic diagram of a single cell unit
  • Figure 5b illustrates a schematic diagram of 2 single cell units connecting to each other physically and electrically in parallel, forming a plurality of cell units.
  • Figure 5c illustrates a schematic diagram of 4 single cell units connecting to each other physically and electrically in parallel, forming a plurality of cell units.
  • Figure 5d illustrates a schematic diagram of 2 single cell units connecting to each other physically and electrically in series, forming a plurality of cell units.
  • Figure 5e illustrates a schematic diagram of 4 single cell units connecting to each other physically and electrically in series, forming a plurality of cell units.
  • Figure 6 illustrates an embodiment of multiple physically connected cell unit encapsulations.
  • Figure 7 illustrates a perspective view of an embodiment of a housing which contains a cell unit encapsulation within.
  • water battery that generates a difference in salinity of fresh water and sea water have been developed.
  • the positive and negative electrodes are immersed in ionic liquid. Upon activation, fresh water is injected into the battery. It will then discharge the fresh water and be injected with salt water. Since electron ions in seawater is sixty to a hundred times more than in fresh water, this will increase the voltage between the positive electrode and the negative electrode and thus yield an output voltage.
  • This embodiment is arranged to provide a single cell unit 10 of an electrical energy storage device, comprising: anode 17 including metal plate; cathode 14 including a current collector component, and device activator 15 sandwiched between a pair of the anode 17 and the cathode 14.
  • the device activator 15 may include a water absorbent arranged to absorb water for transforming salt contained in the device activator 15 into an electrolyte disposed between the anode 17 and the cathode 14, so as to facilitate an electrochemical reaction taking place at the anode 17 and/or the cathode 14 in a presence of water supply to the device activator 15.
  • the single cell unit 10 provides an anode material 17 and a cathode material 14 that would typically undergo chemical reaction with an electrolyte to generate a current.
  • the current generated would then be collected by a current collector component.
  • the anode material 17 and the cathode material 14 are separated by separating means that is initially in a solid state.
  • the separating means is transformable from the solid state to an aqueous state upon contacting by a fluid e.g. ingress of water, thereby providing a medium for chemical reaction in an activated configuration.
  • the water absorbent or even other components of the single cell unit 10 may be initially in a dehydrated state.
  • the single cell unit 10 may be activated by injecting water supply therein and subsequently hydrating the water absorbent and maybe other components of the single cell unit 10.
  • the separating means may be a device activator 15 that includes a water absorbent.
  • the water absorbent may be made of an environmentally friendly material that has great water absorption ability. Such material may include at least one of nonwoven cloth, cotton cloth, water-absorbing paper, sponge, or otherwise.
  • environmentally friendly material that has great water absorption ability, it may extend the length of each battery cycle as the battery may produce voltage until the water absorbent is dehydrated, while it may rectify the environmental problem brought upon by traditional fuel cell.
  • the device activator 15 may also comprise a salt-containing carrier adjacent to water absorbent.
  • a salt-containing carrier may be any material that can contain salt within or on its surface. Such material may be cloth, paper, towel, fabric or otherwise which may be a multi-layered structure.
  • the salt-containing carrier may contain at least two layers of paper.
  • the salt-containing carrier may further contain a composite of different materials. For example, it may be made of at least two layers of paper and at least two layers of fabric.
  • the material may be immersed, submerged, being poured with salt solution that may have at least fifteen percent concentration of salt.
  • the material once soaked in salt solution may then be dried thereby to dehydrate the salt solution to extract solid-state salt, such that the salt-containing carrier may be dry.
  • salt solution with at least fifteen percent concentration of salt may be dehydrated thereby to extract solid-state salt in advance before being sprinkled, smeared, spread or otherwise on the material.
  • the device activator 15 may be activated by injecting water supply or hydrating with the supply of water.
  • the water supply may be any liquid or aqueous solution that may be conducive to the flow of electrons or ionized salt.
  • the aqueous solution may include a pH value between 4 –10.
  • the water supply for activating the cell may be fresh water, drinkable water, waste water, urine and so on.
  • Other sources of water such as can/bottle drinks or beverages such as beer, juice or soft drinks may also be used.
  • an emergency situation may not allow a specific type of water supply, however, as this single cell unit 10 accepts a wide range of water supply, a user may still be able to provide urine as the last resort to activate the single cell unit 10.
  • this device may have the ability to handle variety of emergencies to power up devices such as but not limited to torch, power bank and so on.
  • the solid-state salt may dissolve into electrolyte ion when the water absorbent is soaked with water supply injected and may thereafter form an electrolyte solution.
  • the cathode 14 may then react to the ions and release positive electrons.
  • anode 17 may then react to the ions and receive the released positive electrons from the cathode 14.
  • the inventors have, through their own research, trials and experiments, devised that the internal resistance of cathode 14 should be as small as possible such that the voltage source can yield greater voltage. To achieve that, the internal resistance of cathode should have low resistance.
  • the cathode 14 may include a current collector component.
  • the current collector component within the cathode 14 may comprise an electrically conductive material.
  • the electrically conductive material may include a material that has a low resistance.
  • such material may be made of nonwoven fabric which may include copper and/or carbon nanotube (CNT) .
  • the measured resistance on a piece of carbon fabric which is commonly used for water battery and CNT material both materials have the same surface area.
  • the resistance measured between point A and point B for carbon fabric and CNT give 5.2 ⁇ and 0.8 ⁇ respectively.
  • the resistance measured between point C and point D give 5.3 ⁇ and 0.6 ⁇ respectively.
  • the resistance measured between point A and point D give 4.4 ⁇ and 0.84 ⁇ respectively.
  • the resistance measured between point C and point B give 4.6 ⁇ and 0.3 ⁇ respectively.
  • the resistance measured between point A and point E give 4.3 ⁇ and 0.32 ⁇ respectively.
  • the resistance of CNT is generally six times to twelve times smaller than that of carbon fabric.
  • a low cathode internal resistance may help establish a greater source voltage and source current. It may also warrant the stability of voltage thereby to avoid problems such as but not limited to voltage spike or expected voltage drop.
  • the cell unit 10 may include one or more positive terminal support structures 11 and negative terminal support structures.
  • the cathode 14 or the current collector component may wrap around the positive terminal support structure 11.
  • the positive terminal support structure 11 may be used as a “backbone” for the cathode 14 or the current collector component, such that it may forestall for example but not limited to any dislocation or unnecessary movement of the cathode 14 or the current collector component.
  • Such positive terminal support structure 11 may be made of any electrically insulated material. For example, it may be plastic, wood, glass, ceramic and so on.
  • the positive terminal support structure 11 may be connected to a positive terminal connector 12.
  • the positive terminal connector 12 may be made of conductive metal such as but not limited to copper, silver, aluminum and so on. They may be connected by means such as but not limited to welding, soldering and so on.
  • the positive terminal connector 12 may also be physically and electrically connected to the cathode 14.
  • this structure may help secure the positive terminal connector 12 in place from moving, dislocating or losing the connection with the positive terminal support structure 11 and the cathode 14.
  • the anode 17 of the single cell unit 10 may be made of metal plate.
  • metal plate may be copper, silver, aluminum, titanium, magnesium, lithium and so on. Additionally, such metal plate may also be acted as a negative terminal support structure, such that it may properly sandwich the positive terminal support structure 11, the cathode14 and the device activator 15 and thus may keep them in place from any dislocation.
  • a negative terminal connector 18 may also be physically and electrically connected to the anode 17.
  • the negative terminal connector 18 may be made of conductive metal such as but not limited to copper, silver, aluminum and so on.
  • the negative terminal connector 18 may be connected by means such as but not limited to welding, soldering and so on to the anode 17.
  • this structure may help secure the positive terminal connector 12 in place from moving, dislocating or losing the connection with the positive terminal support structure 11 and the cathode 14.
  • an aforementioned single cell unit 10 may be rolled up to form a single cell unit 30 preferably in circular shape as shown in Figure 3.
  • the single cell unit 30 also includes an anode 31, a cathode 39, a device activator 36, each fabricated in a sheet form.
  • the single cell unit 30 further includes a positive terminal support structure that is also provided in sheet form.
  • a positive terminal connector 38a and a negative terminal connector 38b are at least partially exposed from the cell unit 30.
  • a water tube 32 in fluid communication with the device activator 36 is also provided on and partially exposed from the cell unit 30.
  • the single cell unit 30 may be rolled about an axis aligned with the longitudinal axis of the water tube 32, such that two opposite sides of each of the positive terminal support structure 37, the cathode 39, the device activator 36 and the anode 31 may be in physical touch. Such physical contact may be reinforced or secured by any possible means without sacrificing the electrical conductivity such as welding, soldering and so on.
  • the positive terminal connector 38a and the negative terminal connector 38b may be in physical and electrical contact with the cathode 39 and the anode 31 respectively.
  • such configuration may facilitate easy and convenient stowing of the single cell unit 30 within any container.
  • the anode and the cathode are not necessarily exposed on the outer side of a single cell unit.
  • these electrical components may be covered by a cell unit encapsulation of arbitrary shape such as circular, rectangular etc.
  • a cell unit encapsulation 51 containing a single cell unit may encapsulate the anode, the cathode, the device activator, the positive terminal connector, the negative terminal connector which are not shown in the diagram.
  • Such cell unit encapsulation 51 may contain a single cell unit and also provide a fluid cavity within to contain water supply upon activation.
  • the cavity may be accessible through one or more openings 52a, 52b.
  • wires from the external which may be the positive connection 56b and the negative connection 56a may be connected to the positive terminal connector and the negative terminal connector through the opening 52b respectively.
  • water supply may be injected into the single cell unit by the water tube 55 through the opening 52a.
  • such design may provide a compact and secure compartment to contain a single cell unit.
  • the single cell unit may not be easily damaged or dislocated during traveling, work or operation.
  • the cell unit encapsulation 51 may also include material or protective coat for such as but not limited to wires, connections, joints, terminals and other components in an electrical device.
  • material or protective coat may be heat-shrink tubing, in which the tubing may tightly wrap around the single cell unit.
  • one of the two openings of the tubing may allow an access to water supply in the storage device structure to activate the cell unit, while the other opening at the opposite end may allow the wires and/or electrical connections to pass through.
  • material or protective coat may be able to provide the required insulation, abrasion resistance and mechanical protection for the aforementioned entities.
  • elastic plastic tape also may be used for encapsulating the cell unit.
  • elastic plastic tape may be wrapped around each of the single cell unit to form one or more layers of protection film to provide protection/insulation similar to that of the abovementioned heat-shrink tubing.
  • the wires 56a, 56b connecting to positive terminal connector and the negative terminal connector of the single cell unit may be connected to a load which may consume electricity from batteries.
  • the load may be a torch, a neon sign or light, a toy, a power bank, a fan and so on.
  • the components such as the water absorbent may be soaked in the water supply.
  • the solid-state salt may be dissolved and may thus form an electrolyte solution containing electrolyte ion.
  • the electrolyte ion may flow from the anode to the cathode and the positive terminal support structure through the device activator.
  • the electrolyte ion may then flow between the load and the single cell unit via the positive terminal connector through the wire 56b and the negative terminal connector through the wire 56a respectively.
  • the inventors have also devised that electrical devices normally may require more than one cell unit to power up as they may require a voltage greater than a single battery can provide. To satisfy such prerequisite, the present invention also discloses method and system physically and electrically connecting multiple cell units such that the connected cell units may provide a sufficient voltage to the load.
  • FIG. 5a to 5e there is provided a cross-sectional schematic diagram of an activated cell unit 205.
  • components such as the water absorbent, salt-containing carrier etc. are not shown in the figures.
  • the cell unit encapsulation 201 may include a cathode 204 and an anode 203 which may enclose three sides of the cathode 204 with a distal end on either one side.
  • the anode 203 may surround two long sides and one short side of the cathode 204 i.e. with one short side of the cathode exposed from the anode 203.
  • the cathode 204 and anode 203 may be switched around such that the cathode 204 may surround and enclose any three sides of the anode 203, leaving a distal end on the remaining one side.
  • the distal end of the cathode 204 and anode 203 may be electrical connection means which may be the positive connector and negative connector respectively for connection to the load or other cell units 205.
  • an open-end configuration of anode 203 and cathode 204 may allow easier and simpler interconnection between the anode 203 and cathode 204 between multiple cell units 201.
  • cell units 205 may be placed such that they are aligned along the same lateral axis and their respective longitudinal axis are in parallel to each other such that their long sides may be abutting each other.
  • These cell units 205 may further be arranged such that that the distal end of the anodes 203 faces towards one direction whereas distal end of the anode 203 of the adjacent cell unit 205 may face the opposite direction.
  • the distal end of anodes 203 of the cell units within the same plurality of single cell units 200 may face towards the same direction.
  • two or more cell units 205 may be arranged such that they are aligned on the same longitudinal axis and their respective lateral axis are in parallel with each other such that their short sides are abutting each other.
  • some cell units 205 in a plurality of single cell units 200 may be placed in accordance with the first embodiment while some in the same plurality of single cell units 200 may be arranged in accordance with the second embodiment.
  • the aforementioned physical arrangement of the cell units 205 within a plurality of single cell units 200 may provide flexibility to the overall shape of the plurality of single cell units 200. For example, this may help accommodate the shape of the plurality of single cell units 200 to fit within a compartment or space within a device.
  • the cell units 205 within a plurality of single cell units 200 may be fastened with each other by some mechanical or physical means 206.
  • These mechanical or physical means 206 may be fastened, attached, welded or soldered to the outer surface of the cell unit encapsulation 201 of each cell unit 205 by manufacturer, user or other personnel.
  • the mechanical or physical means 206 may be rivet, plastic tapes, screw, clamp, nail and so on.
  • such mechanical or physical means 206 may keep the cell units 205 intact with each other such that the cell units 205 may not dislocate or move relative to other cell units 205 during, for example, work or operation.
  • such fastening means may allow the user, manufacturer or other personnel to add or remove cell units 205 in a plurality of single cell units 200 by for example unscrewing and dismounting the mechanical or physical means 206.
  • the ability to add or remove cell units 205 in a plurality of single cell units 200 may provide extra flexibility to the number of cell units 205 required based on various factors such as but not exhaustive to the required output voltage, internal capacity of a device reserved for the container containing the plurality of single cell units 200, water supply 202 available for activation. In subsequence, this may boost the efficiency of the entire process.
  • FIG. 5b and 5c there is provided a configuration of a plurality of single cell units 200 in which two or four cell units 205 are respectively connected electrically in parallel to each other.
  • the cathodes 204 of the cell units 205 within a plurality of single cell units 200 may be all electrically connected.
  • the anodes 203 of the cell units 205 with the same plurality of single cell units 200 may be all electrically connected as well.
  • FIG. 5d and 5e there is provided a configuration of a plurality of single cell units 200 in which two and four cell units 205 respectively are connected in series to each other.
  • the cathode 204 of a cell unit 205 may be connected to the anode 203 of the adjacent cell unit 205.
  • the anode 203 of the cell unit 205 may be connected to the cathode 204 of another adjacent cell unit 205.
  • the electrical connection connecting cell units 205 within a plurality of single cell units 200 may be made of conductive material.
  • such conduct material may be copper, aluminum, steel and so on.
  • a plurality of cell units 205 may generate a higher output voltage than a single cell unit 200.
  • a single cell unit 200 may be able to yield 0.8-1.1 direct current voltage; whereas the plurality of cell units 205 may be able to provide 1.1-12 direct current voltage.
  • the combined usage of single cell unit 200 and cell units 205 may be able to power more types of electrical devices such as torches, neon light or signs, power bank and so on.
  • FIG. 6 there is shown an embodiment in which multiple cell encapsulations 10 may be joined and electrically connected with each other. These multiple cell encapsulations 10 may be kept in a housing all together.
  • Figure 7 illustrates an example embodiment of a cell unit that comprises a housing 80, a cell unit encapsulation 84 for encapsulating essential electrical components including an anode, a cathode, a device activator, a fluidic cavity 89 within which the cell unit encapsulation 84 is kept, and an inlet 82 in fluid communication with the fluidic cavity 89.
  • the housing 80 may be in a circular shape although there is no constraint to the shape of the housing 80.
  • the housing 80 may be sealed by a sealing mechanism such as a lid 81.
  • the cell unit encapsulation 84 may contain single cell unit or multiple cell units as aforementioned which are not shown in the present diagram.
  • the cell unit within the cell unit encapsulation 84 may connect to the external load connected to the housing 80 through the wires 85.
  • the housing 80 and the sealing mechanism 81 may keep for example the wires, connections, joints, terminals and so on within, such that it may avoid unnecessary or unintended mishandling of the aforementioned entities and may provide sufficient protection to its content.
  • the sealing mechanism 81 may allow easy fixing, changing, adding, removing, or other types of handling the cell unit encapsulation 84 or the cell unit within the cell unit encapsulation 84.
  • a user, manufacturer or other personnel may pour water supply into the inlet 82 for water on the sealing mechanism 81.
  • An external tube connecting the inlet 82 may connect to the cell unit encapsulation 84, which may direct the water supply to the single cell unit or multiple cell units within for activation.
  • the external inlet 82 may be exposed from the housing 80 through the lid and thus allow easy and convenient activation of the cell unit by user, manufacturer and other personnel.
  • the water supplied from the external source is not necessarily introduced into the device activator encapsulated by the cell unit encapsulation 84 immediately.
  • the fluidic cavity 89 may temporally receive and store the water supply injected in the inlet 82.
  • Such design may separate the water supply from physical contact with the cell unit and retain the supplied water within the cell unit encapsulation 84.
  • this may prevent over soaking the cell unit for a long period thus causing any form of damage.
  • the cell unit may be activated anytime even if there is no water supply in the environment.
  • the housing 80 may also provide a vent 83 for gas exchange on the lid 81, such that it may maintain the balance of pressure between the internal cavity of the housing 80 and the external environment.
  • a vent 83 for gas exchange on the lid 81 such that it may maintain the balance of pressure between the internal cavity of the housing 80 and the external environment.
  • such design may avoid damaging the cell unit encapsulation 84 or its content due to shrinking or expansion of the housing 80.
  • the battery itself may not necessarily contain any form of liquid at start in non-operating state, it may facilitate easier and more convenient transport.
  • such design may also facilitate long-term storage as the problem of corrosion expansive prevalent in traditional water battery may be avoided.
  • such type of electrical energy storage device may have a battery life ranging between 100-300 hours; whereas the traditional fuel cell may normally have a battery life ranging between 5-10 hours.
  • the electrical energy storage device of the present invention may have a longer lifespan as compared to other types of batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Primary Cells (AREA)
  • Hybrid Cells (AREA)
  • Secondary Cells (AREA)

Abstract

Embodiments of an electrical energy storage device is described. Such electrical energy storage device comprises an anode including a metal plate, a cathode including a current collector component, a device activator sandwiched between a pair of the anode and the cathode. The device activator includes a water absorbent arranged to absorb water for transforming salt contained in the device activator into an electrolyte disposed between the anode and the cathode, so as to facilitate an electrochemical reaction taking place at the anode and/or the cathode in a presence of water supply to the device activator.

Description

AN ELECTRICAL ENERGY STORAGE DEVICE TECHNICAL FIELD
The present invention relates to an electrical energy storage device, more particularly a water battery operable to generate electrical energy upon being injected with water supply.
BACKGROUND
To date, electric battery is commonly used for a wide range of electronic applications to provide electrical energy. For example, these electronic applications may be torches, mobile phones, electric cars, laptops, watches and so on. Owing to the form factor of these applications and other needs, battery may comprise different form factor, capacity, material and so on.
Despite the aforementioned potential differences amongst various types of batteries, the technical theory behind a battery remains more or less the same. A battery may comprise a positive terminal namely the cathode, a negative terminal namely the anode and the electrolyte. The chemical reaction, depending on the material used in the battery, causes the electrons to accumulate at the anode. In subsequence, this causes an electrical difference between the anode and the cathode. In order to balance such difference and to reach equilibrium between the anode and the cathode, electrons due to the repelling force may then push each other specifically towards the cathode. Such flow of electrons creates the electric current and voltage.
Based on this theory, various types of batteries such as dry battery, fuel cell and water battery are created for difference electrical appliances or devices. These types of batteries may store the potential electrical energy and release upon connecting to a load or injecting some liquid into the water battery. Such energy may be released until for example the electrode materials cannot charge or discharge or the liquid within a water battery is dried up.
SUMMARY OF THE INVENTION
In accordance with an aspect of the present invention, there is provided an electrical storage device, comprising: an anode including a metal plate, a cathode including a current collector component, a device activator sandwiched between a pair of the anode and the cathode. The device activator includes a water absorbent arranged to absorb water for transforming salt contained in the device activator into an electrolyte disposed between the anode and the cathode, so as to facilitate an electrochemical reaction taking place at the anode and/or the cathode in a presence of water supply to the device activator.
Preferably, the electrical energy storage device remains deactivated when the water absorbent is substantially dehydrated.
Preferably, the device activator comprises a salt-containing carrier adjacent to water absorbent.
More preferably, the salt-containing carrier includes salt-containing cloth.
More preferably, the salt-containing carrier includes salt-containing paper.
Furthermore preferably, the salt-containing paper includes a multi-layered structure.
More preferably, the salt-containing carrier includes solid-state salt produced by dehydration of a salt solution.
Furthermore preferably, the salt solution includes a concentration of salt greater than 15 %.
Preferably, the water absorbent includes at least one of nonwoven cloth, cotton cloth, water-absorbing paper and sponge.
Preferably, the current collector component comprises an electrically conductive material.
More preferably, the electrically conductive material includes copper and/or carbon nanotube.
More preferably, the current collector component comprises nonwoven fabric of the electrically conductive material.
Furthermore preferably, the nonwoven fabric is disposed on a positive terminal support structure.
Yet furthermore preferably, the nonwoven fabric wraps around the positive terminal support structure.
Yet furthermore preferably, the positive terminal support structure includes an electrical insulator.
Preferably, the metal plate comprises at least one of titanium, magnesium, aluminum and lithium.
Preferably, the metal plate defines a negative terminal support structure.
Preferably, the electrical energy storage device further comprises a cell unit encapsulation arranged to substantially encapsulate the anode, the cathode, and the device activator to define a single cell unit.
More preferably, the cell unit encapsulation comprises at least one opening which allows an access of water supply to the water absorbent encapsulated therein.
More preferably, the electrical energy storage device further comprises a positive terminal connector and a negative terminal connector respectively connected to the current collector and to the metal plate encapsulated within the cell unit encapsulation.
Furthermore preferably, the positive terminal connector and the negative terminal connector respectively weld or soldered on separate electrode support planes in the cathode and the anode.
Furthermore preferably, the positive terminal connector and the negative terminal connector include copper.
More preferably, the cell unit encapsulation includes heat-shrink tubing. Alternatively, elastic plastic tape also may be used for encapsulating the cell unit.
More preferably, the electrical energy storage device further comprises a housing accommodating a single cell unit, or a plurality of single cell units in series and/or parallel connections.
Furthermore preferably, the housing comprises a fluidic cavity for receiving and at least temporally retaining the water supply, wherein the fluidic cavity is accessible to the water absorbent within the encapsulation.
Yet furthermore preferably, the housing further comprises an inlet in fluid communication with the fluidic cavity.
Yet furthermore preferably, the housing further comprises a vent for gas exchange between an internal cavity of the housing and an external environment.
Furthermore preferably, the plurality of single cell units are physically fixed together.
Furthermore preferably, the electrical energy storage system comprises an electrical connector in electrical connection with the anode and the cathode in the housing.
Preferably, the water supply includes at least one of freshwater, drinkable water, waste water and urine. Other sources of water may include beverages such as tea, juice, beer or soft drinks.
Preferably, the water supply includes any aqueous solution with a pH value between 4 –10.
BRIEF DESCRIPTION OF THE DRAWINGS
Embodiments of the device for generating electrical energy will now be described, by way of example, with reference to the accompanying drawings in which:
Figure 1 illustrates an embodiment of a single cell unit.
Figure 2 illustrates a planar diagram of a piece of material such as carbon fabric and CNT for measurement of resistance between the points A, B, C, D, E.
Figure 3 illustrates a perspective view of an embodiment of a cylindrical single cell unit.
Figure 4 illustrates an embodiment of a cell unit encapsulation.
Figure 5a illustrates a schematic diagram of a single cell unit
Figure 5b illustrates a schematic diagram of 2 single cell units connecting to each other physically and electrically in parallel, forming a plurality of cell units.
Figure 5c illustrates a schematic diagram of 4 single cell units connecting to each other physically and electrically in parallel, forming a plurality of cell units.
Figure 5d illustrates a schematic diagram of 2 single cell units connecting to each other physically and electrically in series, forming a plurality of cell units.
Figure 5e illustrates a schematic diagram of 4 single cell units connecting to each other physically and electrically in series, forming a plurality of cell units.
Figure 6 illustrates an embodiment of multiple physically connected cell unit encapsulations.
Figure 7 illustrates a perspective view of an embodiment of a housing which contains a cell unit encapsulation within.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
Traditional fuel cell such as but not limited to manganese dioxide battery, lead-acid battery and so on are normally made of various substances such as acid, lead, nickel and so on. If these batteries are being discarded improperly, the battery may disintegrate and the toxic chemicals or even heavy metals may infiltrate into soil and water resources. Thus, it may pollute the environment and cause direct harmful effects such as cancer or other disease to plants, animals and human.
To solve problem brought by the traditional fuel batteries, water battery that generates a difference in salinity of fresh water and sea water have been developed. In this water battery, the positive and negative electrodes are immersed in ionic liquid. Upon activation, fresh water is injected into the battery. It will then discharge the fresh water and be injected with salt water. Since electron ions in seawater is sixty to a hundred times more than in fresh water, this will increase the voltage between the positive electrode and the negative electrode and thus yield an output voltage.
However, such traditional water battery also suffers a problem. As both the positive and negative electrodes are immersed in the seawater and stored in this manner, it is thus prone to corrosion expansion. Hence, this type of battery may be dead without knowing. This may be a problem in emergencies whenever electricity is required for lightings.
With reference to Figure 1, an embodiment of the present invention is illustrated. This embodiment is arranged to provide a single cell unit 10 of an  electrical energy storage device, comprising: anode 17 including metal plate; cathode 14 including a current collector component, and device activator 15 sandwiched between a pair of the anode 17 and the cathode 14. The device activator 15 may include a water absorbent arranged to absorb water for transforming salt contained in the device activator 15 into an electrolyte disposed between the anode 17 and the cathode 14, so as to facilitate an electrochemical reaction taking place at the anode 17 and/or the cathode 14 in a presence of water supply to the device activator 15.
In this embodiment, the single cell unit 10 provides an anode material 17 and a cathode material 14 that would typically undergo chemical reaction with an electrolyte to generate a current. The current generated would then be collected by a current collector component. In a default configuration, the anode material 17 and the cathode material 14 are separated by separating means that is initially in a solid state. The separating means is transformable from the solid state to an aqueous state upon contacting by a fluid e.g. ingress of water, thereby providing a medium for chemical reaction in an activated configuration.
When the electrical energy storage device is in a non-operating state, the water absorbent or even other components of the single cell unit 10 may be initially in a dehydrated state. In other words, the single cell unit 10 may be activated by injecting water supply therein and subsequently hydrating the water absorbent and maybe other components of the single cell unit 10.
The separating means may be a device activator 15 that includes a water absorbent. Preferably, the water absorbent may be made of an environmentally friendly material that has great water absorption ability. Such material may include at least one of nonwoven cloth, cotton cloth, water-absorbing paper, sponge, or otherwise. Advantageously, by using environmentally friendly material that has great water absorption ability, it may extend the length of each battery cycle as the battery may produce voltage until the water absorbent is dehydrated, while it may rectify the environmental problem brought upon by traditional fuel cell.
The device activator 15 may also comprise a salt-containing carrier adjacent to water absorbent. Such salt-containing carrier may be any material that can contain salt  within or on its surface. Such material may be cloth, paper, towel, fabric or otherwise which may be a multi-layered structure. For example, the salt-containing carrier may contain at least two layers of paper. The salt-containing carrier may further contain a composite of different materials. For example, it may be made of at least two layers of paper and at least two layers of fabric.
To introduce salt onto or into the material, in one embodiment, the material may be immersed, submerged, being poured with salt solution that may have at least fifteen percent concentration of salt. The material once soaked in salt solution may then be dried thereby to dehydrate the salt solution to extract solid-state salt, such that the salt-containing carrier may be dry. In an alternative embodiment, salt solution with at least fifteen percent concentration of salt may be dehydrated thereby to extract solid-state salt in advance before being sprinkled, smeared, spread or otherwise on the material.
The device activator 15 may be activated by injecting water supply or hydrating with the supply of water. The water supply may be any liquid or aqueous solution that may be conducive to the flow of electrons or ionized salt. Preferably, the aqueous solution may include a pH value between 4 –10.
For example, the water supply for activating the cell may be fresh water, drinkable water, waste water, urine and so on. Other sources of water, such as can/bottle drinks or beverages such as beer, juice or soft drinks may also be used.
Advantageously, for example, an emergency situation may not allow a specific type of water supply, however, as this single cell unit 10 accepts a wide range of water supply, a user may still be able to provide urine as the last resort to activate the single cell unit 10. Hence, this device may have the ability to handle variety of emergencies to power up devices such as but not limited to torch, power bank and so on.
The solid-state salt may dissolve into electrolyte ion when the water absorbent is soaked with water supply injected and may thereafter form an electrolyte solution. The cathode 14 may then react to the ions and release positive electrons. At the same  time, anode 17 may then react to the ions and receive the released positive electrons from the cathode 14.
Without wishing to be bound by theory, the inventors have, through their own research, trials and experiments, devised that the internal resistance of cathode 14 should be as small as possible such that the voltage source can yield greater voltage. To achieve that, the internal resistance of cathode should have low resistance.
In one example embodiment of the present invention, the cathode 14 may include a current collector component. The current collector component within the cathode 14 may comprise an electrically conductive material. Preferably, in one embodiment, the electrically conductive material may include a material that has a low resistance. For example, such material may be made of nonwoven fabric which may include copper and/or carbon nanotube (CNT) .
With reference to the following table and Figure 2, there is shown the measured resistance on a piece of carbon fabric which is commonly used for water battery and CNT material, both materials have the same surface area. In one embodiment, the resistance measured between point A and point B for carbon fabric and CNT give 5.2 Ω and 0.8 Ω respectively. In an alternative embodiment, the resistance measured between point C and point D give 5.3 Ω and 0.6 Ω respectively. In a different embodiment, the resistance measured between point A and point D give 4.4 Ω and 0.84Ω respectively. In another embodiment, the resistance measured between point C and point B give 4.6Ω and 0.3 Ω respectively. In an alternative embodiment, the resistance measured between point A and point E give 4.3 Ω and 0.32 Ω respectively. The resistance of CNT is generally six times to twelve times smaller than that of carbon fabric.
Advantageously, a low cathode internal resistance may help establish a greater source voltage and source current. It may also warrant the stability of voltage thereby to avoid problems such as but not limited to voltage spike or expected voltage drop.
Figure PCTCN2019100081-appb-000001
Figure PCTCN2019100081-appb-000002
To reinforce the single cell unit 10, there is provided one or more terminal support structures for holding the inner components of the single cell unit 10 in place. For instance, the cell unit 10 may include one or more positive terminal support structures 11 and negative terminal support structures.
The cathode 14 or the current collector component may wrap around the positive terminal support structure 11. The positive terminal support structure 11 may be used as a “backbone” for the cathode 14 or the current collector component, such that it may forestall for example but not limited to any dislocation or unnecessary movement of the cathode 14 or the current collector component. Such positive terminal support structure 11 may be made of any electrically insulated material. For example, it may be plastic, wood, glass, ceramic and so on.
At the same time, the positive terminal support structure 11 may be connected to a positive terminal connector 12. The positive terminal connector 12 may be made of conductive metal such as but not limited to copper, silver, aluminum and so on. They may be connected by means such as but not limited to welding, soldering and so on.The positive terminal connector 12 may also be physically and electrically connected to the cathode 14. Advantageously, this structure may help secure the positive terminal connector 12 in place from moving, dislocating or losing the connection with the positive terminal support structure 11 and the cathode 14.
On the other hand, the anode 17 of the single cell unit 10 may be made of metal plate. Such kind of metal plate may be copper, silver, aluminum, titanium, magnesium, lithium and so on. Additionally, such metal plate may also be acted as a negative terminal support structure, such that it may properly sandwich the positive  terminal support structure 11, the cathode14 and the device activator 15 and thus may keep them in place from any dislocation.
negative terminal connector 18 may also be physically and electrically connected to the anode 17. The negative terminal connector 18 may be made of conductive metal such as but not limited to copper, silver, aluminum and so on. The negative terminal connector 18 may be connected by means such as but not limited to welding, soldering and so on to the anode 17. Advantageously, this structure may help secure the positive terminal connector 12 in place from moving, dislocating or losing the connection with the positive terminal support structure 11 and the cathode 14.
In an alternative embodiment, an aforementioned single cell unit 10 may be rolled up to form a single cell unit 30 preferably in circular shape as shown in Figure 3.In this embodiment, the single cell unit 30 also includes an anode 31, a cathode 39, a device activator 36, each fabricated in a sheet form. The single cell unit 30 further includes a positive terminal support structure that is also provided in sheet form. A positive terminal connector 38a and a negative terminal connector 38b are at least partially exposed from the cell unit 30. A water tube 32 in fluid communication with the device activator 36 is also provided on and partially exposed from the cell unit 30.
The single cell unit 30 may be rolled about an axis aligned with the longitudinal axis of the water tube 32, such that two opposite sides of each of the positive terminal support structure 37, the cathode 39, the device activator 36 and the anode 31 may be in physical touch. Such physical contact may be reinforced or secured by any possible means without sacrificing the electrical conductivity such as welding, soldering and so on. The positive terminal connector 38a and the negative terminal connector 38b may be in physical and electrical contact with the cathode 39 and the anode 31 respectively.
Advantageously, such configuration may facilitate easy and convenient stowing of the single cell unit 30 within any container.
In one or more preferred embodiment, the anode and the cathode are not necessarily exposed on the outer side of a single cell unit. For instance, these  electrical components may be covered by a cell unit encapsulation of arbitrary shape such as circular, rectangular etc.
Referring to Figure 4, a cell unit encapsulation 51 containing a single cell unit may encapsulate the anode, the cathode, the device activator, the positive terminal connector, the negative terminal connector which are not shown in the diagram. Such cell unit encapsulation 51 may contain a single cell unit and also provide a fluid cavity within to contain water supply upon activation. The cavity may be accessible through one or more openings 52a, 52b. For instance, wires from the external which may be the positive connection 56b and the negative connection 56a may be connected to the positive terminal connector and the negative terminal connector through the opening 52b respectively. In addition, water supply may be injected into the single cell unit by the water tube 55 through the opening 52a.
Advantageously, such design may provide a compact and secure compartment to contain a single cell unit. In this way, the single cell unit may not be easily damaged or dislocated during traveling, work or operation.
Preferably, the cell unit encapsulation 51 may also include material or protective coat for such as but not limited to wires, connections, joints, terminals and other components in an electrical device. Such material or protective coat may be heat-shrink tubing, in which the tubing may tightly wrap around the single cell unit. In addition, one of the two openings of the tubing may allow an access to water supply in the storage device structure to activate the cell unit, while the other opening at the opposite end may allow the wires and/or electrical connections to pass through. Advantageously, such material or protective coat may be able to provide the required insulation, abrasion resistance and mechanical protection for the aforementioned entities.
Alternatively, elastic plastic tape also may be used for encapsulating the cell unit. For example, elastic plastic tape may be wrapped around each of the single cell unit to form one or more layers of protection film to provide protection/insulation similar to that of the abovementioned heat-shrink tubing.
In one application of the example embodiment, the  wires  56a, 56b connecting to positive terminal connector and the negative terminal connector of the single cell unit may be connected to a load which may consume electricity from batteries. For example, the load may be a torch, a neon sign or light, a toy, a power bank, a fan and so on. After injecting water supply through the water tube 55 to the single cell unit, the components such as the water absorbent may be soaked in the water supply. The solid-state salt may be dissolved and may thus form an electrolyte solution containing electrolyte ion. For example, the electrolyte ion may flow from the anode to the cathode and the positive terminal support structure through the device activator. The electrolyte ion may then flow between the load and the single cell unit via the positive terminal connector through the wire 56b and the negative terminal connector through the wire 56a respectively.
The inventors have also devised that electrical devices normally may require more than one cell unit to power up as they may require a voltage greater than a single battery can provide. To satisfy such prerequisite, the present invention also discloses method and system physically and electrically connecting multiple cell units such that the connected cell units may provide a sufficient voltage to the load.
Referring to Figure 5a to 5e, there is provided a cross-sectional schematic diagram of an activated cell unit 205. For the ease of illustration of how cell unit 205 may be interconnected in parallel or in series, components such as the water absorbent, salt-containing carrier etc. are not shown in the figures.
In Figure 5a, the cell unit encapsulation 201 may include a cathode 204 and an anode 203 which may enclose three sides of the cathode 204 with a distal end on either one side. In one embodiment, the anode 203 may surround two long sides and one short side of the cathode 204 i.e. with one short side of the cathode exposed from the anode 203. In one alternative embodiment not shown in the figure, the cathode 204 and anode 203 may be switched around such that the cathode 204 may surround and enclose any three sides of the anode 203, leaving a distal end on the remaining one side. The distal end of the cathode 204 and anode 203 may be electrical connection means which may be the positive connector and negative connector respectively for connection to the load or other cell units 205.
Advantageously, such an open-end configuration of anode 203 and cathode 204 may allow easier and simpler interconnection between the anode 203 and cathode 204 between multiple cell units 201.
Referring to Figure 5b to 5d, there is provided cross-sectional schematic diagrams of two or four cell units 205 connected to each other physically and electrically. In the first embodiment, cell units 205 may be placed such that they are aligned along the same lateral axis and their respective longitudinal axis are in parallel to each other such that their long sides may be abutting each other. These cell units 205 may further be arranged such that that the distal end of the anodes 203 faces towards one direction whereas distal end of the anode 203 of the adjacent cell unit 205 may face the opposite direction. In another example, the distal end of anodes 203 of the cell units within the same plurality of single cell units 200 may face towards the same direction.
In the second embodiment not shown in diagram, two or more cell units 205 may be arranged such that they are aligned on the same longitudinal axis and their respective lateral axis are in parallel with each other such that their short sides are abutting each other. In another embodiment, some cell units 205 in a plurality of single cell units 200 may be placed in accordance with the first embodiment while some in the same plurality of single cell units 200 may be arranged in accordance with the second embodiment.
Advantageously, the aforementioned physical arrangement of the cell units 205 within a plurality of single cell units 200 may provide flexibility to the overall shape of the plurality of single cell units 200. For example, this may help accommodate the shape of the plurality of single cell units 200 to fit within a compartment or space within a device.
The cell units 205 within a plurality of single cell units 200 may be fastened with each other by some mechanical or physical means 206. These mechanical or physical means 206 may be fastened, attached, welded or soldered to the outer surface of the cell unit encapsulation 201 of each cell unit 205 by manufacturer, user or other  personnel. For example, the mechanical or physical means 206 may be rivet, plastic tapes, screw, clamp, nail and so on. Advantageously, such mechanical or physical means 206 may keep the cell units 205 intact with each other such that the cell units 205 may not dislocate or move relative to other cell units 205 during, for example, work or operation.
Preferably, such fastening means may allow the user, manufacturer or other personnel to add or remove cell units 205 in a plurality of single cell units 200 by for example unscrewing and dismounting the mechanical or physical means 206. Advantageously, the ability to add or remove cell units 205 in a plurality of single cell units 200 may provide extra flexibility to the number of cell units 205 required based on various factors such as but not exhaustive to the required output voltage, internal capacity of a device reserved for the container containing the plurality of single cell units 200, water supply 202 available for activation. In subsequence, this may boost the efficiency of the entire process.
Referring to Figure 5b and 5c, there is provided a configuration of a plurality of single cell units 200 in which two or four cell units 205 are respectively connected electrically in parallel to each other. In one embodiment, the cathodes 204 of the cell units 205 within a plurality of single cell units 200 may be all electrically connected. In the meantime, the anodes 203 of the cell units 205 with the same plurality of single cell units 200 may be all electrically connected as well.
Referring to Figure 5d and 5e, there is provided a configuration of a plurality of single cell units 200 in which two and four cell units 205 respectively are connected in series to each other. In one embodiment, the cathode 204 of a cell unit 205 may be connected to the anode 203 of the adjacent cell unit 205. Likewise, the anode 203 of the cell unit 205 may be connected to the cathode 204 of another adjacent cell unit 205.
The electrical connection connecting cell units 205 within a plurality of single cell units 200 may be made of conductive material. For example, such conduct material may be copper, aluminum, steel and so on.
Advantageously, a plurality of cell units 205 may generate a higher output voltage than a single cell unit 200. In one embodiment, a single cell unit 200 may be able to yield 0.8-1.1 direct current voltage; whereas the plurality of cell units 205 may be able to provide 1.1-12 direct current voltage. Thus, the combined usage of single cell unit 200 and cell units 205 may be able to power more types of electrical devices such as torches, neon light or signs, power bank and so on.
Referring to Figure 6, there is shown an embodiment in which multiple cell encapsulations 10 may be joined and electrically connected with each other. These multiple cell encapsulations 10 may be kept in a housing all together.
Figure 7 illustrates an example embodiment of a cell unit that comprises a housing 80, a cell unit encapsulation 84 for encapsulating essential electrical components including an anode, a cathode, a device activator, a fluidic cavity 89 within which the cell unit encapsulation 84 is kept, and an inlet 82 in fluid communication with the fluidic cavity 89.
In one embodiment, the housing 80 may be in a circular shape although there is no constraint to the shape of the housing 80. The housing 80 may be sealed by a sealing mechanism such as a lid 81. The cell unit encapsulation 84 may contain single cell unit or multiple cell units as aforementioned which are not shown in the present diagram. The cell unit within the cell unit encapsulation 84 may connect to the external load connected to the housing 80 through the wires 85.
Advantageously, the housing 80 and the sealing mechanism 81 may keep for example the wires, connections, joints, terminals and so on within, such that it may avoid unnecessary or unintended mishandling of the aforementioned entities and may provide sufficient protection to its content. Furthermore, the sealing mechanism 81 may allow easy fixing, changing, adding, removing, or other types of handling the cell unit encapsulation 84 or the cell unit within the cell unit encapsulation 84.
In one embodiment, to activate the cell unit, a user, manufacturer or other personnel may pour water supply into the inlet 82 for water on the sealing mechanism 81. An external tube connecting the inlet 82 may connect to the cell unit  encapsulation 84, which may direct the water supply to the single cell unit or multiple cell units within for activation. Advantageously, the external inlet 82 may be exposed from the housing 80 through the lid and thus allow easy and convenient activation of the cell unit by user, manufacturer and other personnel.
The water supplied from the external source is not necessarily introduced into the device activator encapsulated by the cell unit encapsulation 84 immediately. Optionally, the fluidic cavity 89 may temporally receive and store the water supply injected in the inlet 82. Such design may separate the water supply from physical contact with the cell unit and retain the supplied water within the cell unit encapsulation 84. Advantageously, this may prevent over soaking the cell unit for a long period thus causing any form of damage. Furthermore, with such storage of water supply, the cell unit may be activated anytime even if there is no water supply in the environment.
In case the external and internal pressure of the housing 80 differ, for example, in which the cell unit may generate heat during charge or discharge process due to enthalpy charges or the cell unit itself may generate gas during charge or discharge. In one embodiment, the housing 80 may also provide a vent 83 for gas exchange on the lid 81, such that it may maintain the balance of pressure between the internal cavity of the housing 80 and the external environment. Advantageously, such design may avoid damaging the cell unit encapsulation 84 or its content due to shrinking or expansion of the housing 80.
Advantageously, as the battery itself may not necessarily contain any form of liquid at start in non-operating state, it may facilitate easier and more convenient transport. In addition, such design may also facilitate long-term storage as the problem of corrosion expansive prevalent in traditional water battery may be avoided.
Furthermore, advantageously in one embodiment, such type of electrical energy storage device may have a battery life ranging between 100-300 hours; whereas the traditional fuel cell may normally have a battery life ranging between 5-10 hours. Thus, the electrical energy storage device of the present invention may have a longer lifespan as compared to other types of batteries.
It will also be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific embodiments without departing from the spirit or scope of the invention as broadly described. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive.
Any reference to prior art contained herein is not to be taken as an admission that the information is common general knowledge, unless otherwise indicated.

Claims (31)

  1. An electrical energy storage device comprising:
    an anode including a metal plate;
    a cathode including a current collector component;
    a device activator sandwiched between a pair of the anode and the cathode, wherein the device activator includes a water absorbent arranged to absorb water for transforming salt contained in the device activator into an electrolyte disposed between the anode and the cathode, so as to facilitate an electrochemical reaction taking place at the anode and/or the cathode in a presence of water supply to the device activator.
  2. The electrical energy storage device in accordance with Claim 1, wherein the electrical energy storage device remains deactivated when the water absorbent is substantially dehydrated.
  3. The electrical energy storage device in accordance with Claim 1, wherein the device activator comprises a salt-containing carrier adjacent to water absorbent.
  4. The electrical energy storage device in accordance with Claim 3, wherein the salt-containing carrier includes salt-containing cloth.
  5. The electrical energy storage device in accordance with Claim 3, wherein the salt-containing carrier includes salt-containing paper.
  6. The electrical energy storage device in accordance with Claim 5, wherein the salt-containing paper includes a multi-layered structure.
  7. The electrical energy storage device in accordance with Claim 3, wherein the salt-containing carrier includes solid-state salt produced by dehydration of a salt solution.
  8. The electrical energy storage device in accordance with Claim 7, wherein the salt solution includes a concentration of salt greater than 15 %.
  9. The electrical energy storage device in accordance with Claim 1, wherein the water absorbent includes at least one of nonwoven cloth, cotton cloth, water-absorbing paper and sponge.
  10. The electrical energy storage device in accordance with Claim 1, wherein the current collector component comprises an electrically conductive material.
  11. The electrical energy storage device in accordance with Claim 10, wherein the electrically conductive material includes copper and/or carbon nanotube.
  12. The electrical energy storage device in accordance with Claim 10, wherein the current collector component comprises nonwoven fabric of the electrically conductive material.
  13. The electrical energy storage device in accordance with Claim 12, wherein the nonwoven fabric is disposed on a positive terminal support structure.
  14. The electrical energy storage device in accordance with Claim 13, wherein the nonwoven fabric wraps around the positive terminal support structure.
  15. The electrical energy storage device in accordance with Claim 13, wherein the positive terminal support structure includes an electrical insulator.
  16. The electrical energy storage device in accordance with Claim 1, wherein the metal plate comprises at least one of titanium, magnesium, aluminum and lithium.
  17. The electrical energy storage device in accordance with Claim 1, wherein the metal plate defines a negative terminal support structure.
  18. The electrical energy storage device in accordance with Claim 1, further comprising a cell unit encapsulation arranged to substantially encapsulate the anode, the cathode, and the device activator to define a single cell unit.
  19. The electrical energy storage device in accordance with Claim 18, wherein the cell unit encapsulation comprises at least one opening which allows an access of water supply to the water absorbent encapsulated therein.
  20. The electrical energy storage device in accordance with Claim 18, further comprising a positive terminal connector and a negative terminal connector respectively connected to the current collector and to the metal plate encapsulated within the cell unit encapsulation.
  21. The electrical energy storage device in accordance with Claim 20, wherein the positive terminal connector and the negative terminal connector respectively weld or soldered on separate electrode support planes in the cathode and the anode.
  22. The electrical energy storage device in accordance with Claim 20, wherein the positive terminal connector and the negative terminal connector include copper.
  23. The electrical energy storage device in accordance with Claim 18, wherein the cell unit encapsulation includes heat-shrink tubing or an elastic plastic tape.
  24. The electrical energy storage device in accordance with Claim 18, further comprising a housing accommodating a single cell unit, or a plurality of single cell units in series and/or parallel connections.
  25. The electrical energy storage device in accordance with Claim 24, wherein the housing comprises a fluidic cavity for receiving and at least temporally retaining the water supply, wherein the fluidic cavity is accessible to the water absorbent within the encapsulation.
  26. The electrical energy storage device in accordance with Claim 25, wherein the housing further comprises an inlet in fluid communication with the fluidic cavity.
  27. The electrical energy storage device in accordance with Claim 25, wherein the housing further comprises a vent for gas exchange between an internal cavity of the housing and an external environment.
  28. The electrical energy storage device in accordance with Claim 24, wherein the plurality of single cell units are physically fixed together.
  29. The electrical energy storage device in accordance with Claim 24, further comprising an electrical connector in electrical connection with the anode and the cathode in the housing.
  30. The electrical energy storage device in accordance with Claim 1, wherein the water supply includes at least one of freshwater, drinkable water, waste water, a beverage and urine.
  31. The electrical energy storage device in accordance with Claim 1, wherein the water supply includes an aqueous solution with a pH value between 4 to 10.
PCT/CN2019/100081 2018-08-10 2019-08-09 An electrical energy storage device WO2020030148A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810909882.1 2018-08-10
CN201810909882.1A CN109103487B (en) 2018-08-10 2018-08-10 Water-based capacitor battery

Publications (1)

Publication Number Publication Date
WO2020030148A1 true WO2020030148A1 (en) 2020-02-13

Family

ID=64849314

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2018/111671 WO2020029434A1 (en) 2018-08-10 2018-10-24 Aqueous capacitor battery
PCT/CN2019/100081 WO2020030148A1 (en) 2018-08-10 2019-08-09 An electrical energy storage device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111671 WO2020029434A1 (en) 2018-08-10 2018-10-24 Aqueous capacitor battery

Country Status (2)

Country Link
CN (1) CN109103487B (en)
WO (2) WO2020029434A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109103487B (en) * 2018-08-10 2021-01-22 环保创新科技有限公司 Water-based capacitor battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012124142A (en) * 2010-11-17 2012-06-28 Mishimadenshi Co Ltd Applied battery and emergency power supply device
CN103618096A (en) * 2013-10-26 2014-03-05 新山胜广 Portable water battery element and water battery device comprising the same
CN103682385A (en) * 2012-09-10 2014-03-26 环保电池科技有限公司 Portable water battery components and water battery device comprising same
US20160056477A1 (en) * 2013-04-10 2016-02-25 Mishima Denshi Co., Ltd. Water Battery
CN109103487A (en) * 2018-08-10 2018-12-28 环保创新科技有限公司 A kind of aqueous capacitor battery
JP3220136U (en) * 2018-08-10 2019-02-14 環保創新科技有限公司Eco Innotech Limited Aqueous capacitor battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102054995A (en) * 2009-10-27 2011-05-11 黄忠勇 Magnesium water battery
US20150228986A1 (en) * 2012-11-07 2015-08-13 James Y. Wang Liquid-activated hydrogel battery
CN105355844B (en) * 2015-10-14 2018-10-16 深圳先进技术研究院 Water-injection power generation environment-friendly battery and positive electrode and battery pack thereof
US9825311B2 (en) * 2016-02-11 2017-11-21 Epsilor Electric Fuel, LTD. Water activated battery
CN106099139A (en) * 2016-08-03 2016-11-09 陈庆红 Water battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012124142A (en) * 2010-11-17 2012-06-28 Mishimadenshi Co Ltd Applied battery and emergency power supply device
CN103682385A (en) * 2012-09-10 2014-03-26 环保电池科技有限公司 Portable water battery components and water battery device comprising same
US20160056477A1 (en) * 2013-04-10 2016-02-25 Mishima Denshi Co., Ltd. Water Battery
CN103618096A (en) * 2013-10-26 2014-03-05 新山胜广 Portable water battery element and water battery device comprising the same
CN109103487A (en) * 2018-08-10 2018-12-28 环保创新科技有限公司 A kind of aqueous capacitor battery
JP3220136U (en) * 2018-08-10 2019-02-14 環保創新科技有限公司Eco Innotech Limited Aqueous capacitor battery
CN208548407U (en) * 2018-08-10 2019-02-26 环保创新科技有限公司 A kind of aqueous capacitor battery

Also Published As

Publication number Publication date
CN109103487A (en) 2018-12-28
WO2020029434A1 (en) 2020-02-13
CN109103487B (en) 2021-01-22

Similar Documents

Publication Publication Date Title
Wang et al. Parametric study and optimization of a low-cost paper-based Al-air battery with corrosion inhibition ability
JP3512112B2 (en) Flexible thin-layer open electrochemical cell
JP4928824B2 (en) Method for manufacturing lithium ion storage element
JP6641362B2 (en) Secondary battery module and method of manufacturing secondary battery module
US10608243B2 (en) Batteries with replaceable zinc cartridges
CN101176222A (en) Wafer alkaline cell
US10411286B2 (en) Alkali/oxidant battery
JP2019079791A (en) Composite battery cell
TW200618369A (en) Secondary battery for surface mounting
US20130244085A1 (en) Battery with non-porous alkali metal ion conductive honeycomb structure separator
JP2015515723A (en) Batteries having non-polar alkali metal ion conducting honeycomb structure separator
US3625764A (en) Electrode for electric storage batteries containing zinc halide in aqueous solution, of the type having a soluble cathode and a dissolved anode
US3285782A (en) Water activated primary battery having a mercury-magnesium alloy anode
WO2020030148A1 (en) An electrical energy storage device
JP5385570B2 (en) Batteries using acidic electrolyte
US11652213B2 (en) Electrode structure, method of manufacturing the same, secondary battery including the same
WO2015079689A1 (en) High capacity alkali/oxidant battery
US10938024B2 (en) Manufacturing method of anode for secondary battery and anode for secondary battery manufactured thereby
JP2017004934A (en) Aluminum-manganese electrochemical cell
JP2016207353A (en) Secondary battery
CN210379307U (en) Lithium ion battery cell with long service life
EP4300638A1 (en) Gravitational unreactive galvanic battery cell
JP7050898B2 (en) Solid melanin battery
CN111668450B (en) Paper-based aluminum air battery with liquid alloy modified anode and preparation method
CN206098549U (en) Water injection type emergency battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19848169

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19848169

Country of ref document: EP

Kind code of ref document: A1