WO2020030147A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2020030147A1
WO2020030147A1 PCT/CN2019/100075 CN2019100075W WO2020030147A1 WO 2020030147 A1 WO2020030147 A1 WO 2020030147A1 CN 2019100075 W CN2019100075 W CN 2019100075W WO 2020030147 A1 WO2020030147 A1 WO 2020030147A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
uplink data
data transmission
control channel
transmission time
Prior art date
Application number
PCT/CN2019/100075
Other languages
English (en)
French (fr)
Inventor
张向东
常俊仁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811415971.7A external-priority patent/CN110831141A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19848081.6A priority Critical patent/EP3823365A4/en
Priority to JP2021507050A priority patent/JP7451492B2/ja
Publication of WO2020030147A1 publication Critical patent/WO2020030147A1/zh
Priority to US17/171,826 priority patent/US20210168734A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a communication method and device.
  • a terminal device reports its power headroom (PH) to the network device, and then the network device determines the subsequent uplink scheduling for the UE according to the PH reported by the UE. If the PH reported by the UE indicates that the UE has no power to support more uplink transmission, then it cannot allocate more uplink resources to the UE during subsequent scheduling, otherwise it can allocate more uplink resources to the UE to increase the uplink transmission rate. .
  • PH power headroom
  • the UE when calculating a PH to be reported, the UE needs to consider a power headroom report (PHR) event trigger, and schedule each first new uplink data on each CC (component carrier).
  • PHR power headroom report
  • the control channel transmitted and the control channel preceding the control channel. Due to the fact that the control channel and data channel on different CCs of the UE may be misaligned, the UE needs to continue to monitor the control channel after receiving an uplink grant that schedules new transmission of uplink data on the downlink control channel. solved problem.
  • PHR power headroom report
  • the embodiments of the present application provide a communication method and device, which are used to determine a time required for a terminal device to monitor a control channel during a PH calculation.
  • an embodiment of the present application provides a communication method.
  • the method includes: a terminal device determining a first uplink data transmission time and a first duration; and the terminal device according to the first uplink data transmission time and the first uplink data transmission time. For the duration, a first time is determined, and the control channel is monitored according to the first time; the terminal device sends a power headroom report PHR according to the monitored control channel.
  • the method may be executed by a terminal device, which may be a terminal device or a communication device or device capable of supporting the terminal device to implement the functions required by the foregoing method, for example, a chip provided in the terminal device.
  • a terminal device which may be a terminal device or a communication device or device capable of supporting the terminal device to implement the functions required by the foregoing method, for example, a chip provided in the terminal device.
  • the terminal device may determine the first time according to the first uplink data transmission time and the first duration, and monitor the control channel according to the first time. . In this way, the terminal device can send the PHR to the network device according to the control channel monitored at the first moment, thereby effectively improving the efficiency of the terminal device's feedback of the PHR.
  • the first uplink data transmission time includes a transmission time of the first uplink data transmission of the terminal device after a PHR trigger; the first time is the first uplink data transmission The time before the time and the time from the time of the first uplink data transmission is the time of the first time.
  • the determining, by the terminal device, a first uplink data transmission time includes:
  • the terminal device monitors the first control channel, if the control channel of the scheduled uplink data transmission time before the third time is not monitored before the second time, the third time is used as the first uplink Data transmission time, the third time is the transmission time of the uplink data scheduled by the first control channel, the second time is before the third time, and the duration from the third time is the first time A moment of time.
  • the determining, by the terminal device, a first uplink data transmission time further includes:
  • the fourth time is used as the first uplink data transmission time, and the fourth time is The transmission time of the uplink data scheduled by the second control channel, and the fourth time is before the third time.
  • the terminal device may retain the triggered PHR event.
  • the terminal device may retain the triggered PHR after sending the PHR. Event, in this way, when the terminal device listens to the new control channel after the first moment, the uplink resources scheduled by the control channel transmit PHR again, so that the network device can know the real and accurate power headroom of the terminal device in time. This makes the allocation of uplink resources to terminal equipment more reasonable.
  • the PHR includes first indication information, where the first indication information is used to indicate whether the terminal device has borrowed power.
  • an embodiment of the present application provides another communication method.
  • the method includes: a network device determines a first uplink data transmission time and a first duration; and the network device is located before the first uplink data transmission time. Within the first duration, the third control channel is ignored.
  • the method may be executed by a network device, and the network device may be a network device or a communication device or device capable of supporting the functions required by the network device to implement the foregoing method, for example, a chip provided in the network device.
  • the terminal device since the terminal device does not consider the control channel sent by the network device between the first time and the first uplink data transmission time at the PH value, if the network device is not in the first duration range before the first uplink data transmission time
  • the third control channel is sent internally, so that the network device and the terminal device cooperate with each other, which can make the PH value calculated by the terminal device more accurate, and more in line with the actual data transmission situation at the first uplink data transmission time.
  • an embodiment of the present application provides another communication method.
  • the method includes: a network device determines a first uplink data transmission time and a first duration; if the network device is located before the first uplink data transmission time, When the third control channel is sent to the terminal device within the first duration, the type of the PH is determined according to the power headroom PH report sent by the terminal device.
  • the method may be executed by a network device, and the network device may be a network device or a communication device or device capable of supporting the functions required by the network device to implement the foregoing method, for example, a chip provided in the network device.
  • a terminal device indicates in a reported PHR that the PH type on a CC is a virtual type, and the network device sends a first on the CC within the first duration range before the first uplink data transmission time.
  • the network device may consider that the PH type on the CC fed back by the terminal device is inaccurate, ignore the PH type of the CC fed back by the terminal device, and determine that the actual PH type of the CC is the real type.
  • an embodiment of the present application provides another terminal device, which has a function of implementing the terminal device in the first aspect or any possible design of the first aspect, and the function may be implemented by hardware or
  • the corresponding software is implemented by executing hardware, and the hardware or software includes one or more modules corresponding to the foregoing functions.
  • the structure of the terminal device includes a processing module and a transceiver module, and the processing module is configured to support the terminal device to execute the corresponding first aspect or any one of the first aspect of the design.
  • the transceiver module is used to support communication between the terminal device and other communication devices.
  • the terminal device may further include a storage module, which is coupled to the processing module and stores program instructions and data necessary for the terminal device.
  • the processing module may be a processor
  • the communication module may be a transceiver
  • the storage module may be a memory.
  • an embodiment of the present application provides a computer-readable storage medium, where the computer-readable instructions are stored in the computer storage medium, and when the computer reads and executes the computer-readable instructions, causes the computer to execute the foregoing first An approach in any of the possible design aspects.
  • an embodiment of the present application provides a computer program product.
  • the computer reads and executes the computer program product, the computer is caused to execute the method in any one of the possible designs of the first aspect.
  • an embodiment of the present application provides a chip that is connected to a memory and is configured to read and execute a software program stored in the memory, so as to implement any one of the possible designs in the first aspect. method.
  • an embodiment of the present application provides a network device that has a function of implementing the network device in the second aspect or any one of the possible designs of the second aspect, and the function may be implemented by hardware or by The hardware executes the corresponding software implementation, and the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the network device includes a processing module and a transceiver module, and the processing module is configured to support the network device to execute the corresponding second aspect or any one of the second aspect of the design.
  • the transceiver module is configured to support communication between the network device and other communication devices.
  • the network device may further include a storage module, which is coupled to the processing module and stores program instructions and data necessary for the network device.
  • the processing module may be a processor
  • the communication module may be a transceiver
  • the storage module may be a memory.
  • an embodiment of the present application provides a computer-readable storage medium, where the computer-readable instructions are stored in the computer storage medium, and when the computer reads and executes the computer-readable instructions, the computer is caused to execute the second embodiment described above.
  • an embodiment of the present application provides a computer program product.
  • the computer reads and executes the computer program product, the computer is caused to execute the method in any one of the possible designs of the second aspect.
  • an embodiment of the present application provides a chip that is connected to a memory and is configured to read and execute a software program stored in the memory to implement any one of the possible designs in the second aspect.
  • an embodiment of the present application provides another network device, and the network device has a function of implementing the network device in the third aspect or any one of the possible designs of the third aspect, and the function may be implemented by hardware.
  • the corresponding software may be implemented by executing hardware, and the hardware or software includes one or more modules corresponding to the foregoing functions.
  • the structure of the network device includes a processing module and a transceiver module, and the processing module is configured to support the network device to implement the third aspect or any one of the corresponding designs in the third aspect.
  • the transceiver module is configured to support communication between the network device and other communication devices.
  • the network device may further include a storage module, which is coupled to the processing module and stores program instructions and data necessary for the network device.
  • the processing module may be a processor
  • the communication module may be a transceiver
  • the storage module may be a memory.
  • an embodiment of the present application provides a computer-readable storage medium, where the computer-readable instructions are stored in the computer storage medium, and when the computer reads and executes the computer-readable instructions, the computer executes the first Any of the three possible design methods.
  • an embodiment of the present application provides a computer program product.
  • the computer reads and executes the computer program product, the computer is caused to execute the method in any one of the possible designs of the third aspect.
  • an embodiment of the present application provides a chip that is connected to a memory and is configured to read and execute a software program stored in the memory to implement any one of the possible designs in the third aspect.
  • an embodiment of the present application provides a communication system including a terminal device and a network device, where the terminal device may be configured to implement the first aspect or any one of the possible designs described in the first aspect.
  • the network device may be used to execute the method described in the second aspect or any possible design of the second aspect, or may be used to perform the method described in the third aspect or any possible design of the third aspect Methods.
  • FIG. 1a and 1b are schematic diagrams of an application scenario applicable to an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a terminal device monitoring a control channel according to an embodiment of the present application.
  • FIG. 4 is a flowchart of a procedure for a terminal device to determine a first uplink data transmission time according to an embodiment of the present application
  • FIG. 5 is a schematic flowchart of another communication method according to an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of another communication method according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another communication device according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another network device according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 12 is another schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 13 is another schematic structural diagram of a communication device according to an embodiment of the present application.
  • Terminal devices including devices that provide voice and / or data connectivity to users, may include, for example, a handheld device with a wireless connection function, or a processing device connected to a wireless modem.
  • the terminal device can communicate with the core network via a radio access network (RAN) and exchange voice and / or data with the RAN.
  • the terminal equipment may include user equipment (UE), wireless terminal equipment, mobile terminal equipment, subscriber unit, subscriber station, mobile station, mobile station, remote Station (remote station), access point (access point (AP)), remote terminal device (remote terminal), access terminal device (access terminal), user terminal device (user terminal), user agent (user agent), or user Equipment (user device) and so on.
  • a mobile phone or a "cellular" phone
  • a computer with a mobile terminal device a portable, pocket, handheld, computer-built or vehicle-mounted mobile device, a smart wearable device, and the like.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • restricted devices such as devices with lower power consumption, devices with limited storage capabilities, or devices with limited computing capabilities.
  • it includes bar code, radio frequency identification (RFID), sensors, global positioning system (GPS), laser scanner, and other information sensing equipment.
  • RFID radio frequency identification
  • GPS global positioning system
  • laser scanner and other information sensing equipment.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be referred to as wearable smart devices. They are the general name for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a device that is worn directly on the body or is integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also powerful functions through software support, data interaction, and cloud interaction.
  • Broad-spectrum wearable smart devices include full-featured, large-sized, full or partial functions that do not rely on smart phones, such as smart watches or smart glasses, and only focus on certain types of application functions, and need to cooperate with other devices such as smart phones Use, such as smart bracelets, smart helmets, smart jewelry, etc. for physical signs monitoring.
  • a network device including, for example, a base station (for example, an access point), may refer to a device in an access network that communicates with a wireless terminal device through one or more cells over an air interface.
  • the network device can be used to convert the received air frame and the Internet Protocol (IP) packet to each other, and serve as a router between the terminal device and the rest of the access network, where the rest of the access network can include an IP network.
  • IP Internet Protocol
  • the network equipment can also coordinate the attribute management of the air interface.
  • the network device may include an evolved base station (NodeB or eNB or e-NodeB, evolutional NodeB) in a long term evolution (LTE) system or an evolved LTE system (LTE-Advanced, LTE-A), or It can also include the next generation node B (gNB) in the fifth generation (5G) new radio (NR) system, or it can also include the cloud access network (cloud radio access A centralized unit (CU) and a distributed unit (DU) in a network (CloudRAN) system are not limited in the embodiments of the present application.
  • NodeB or eNB or e-NodeB, evolutional NodeB in a long term evolution (LTE) system or an evolved LTE system (LTE-Advanced, LTE-A), or It can also include the next generation node B (gNB) in the fifth generation (5G) new radio (NR) system, or it can also include the cloud access network (cloud radio access A centralized unit (CU) and a distributed unit (DU) in a network (Cloud
  • GSM global system
  • CDMA code division multiple access
  • WCDMA broadband code Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD time division duplex
  • UMTS universal mobile communication system
  • WiMAX worldwide interoperability for microwave access
  • the embodiments of the present application can also be applied to an evolved universal mobile communication system (evolved universal mobile telecommunication system, terrestrial radio access network, E-UTRAN) system, or a next generation (NG) -RAN
  • E-UTRAN evolved universal mobile telecommunication system
  • NG next generation
  • the system may also be applied to a next-generation communication system or a similar communication system.
  • the network architecture may be a network architecture of the E-UTRAN system.
  • the E-UTRAN is composed of eNBs, and provides the E-UTRA user plane and control plane protocols for terminal equipment.
  • the eNBs are interconnected through an X2 interface.
  • the eNB is also connected to a mobility management entity (MME) through an S1-MME interface, and is connected to a service gateway (S-GW) through an S1-U interface.
  • MME mobility management entity
  • S-GW service gateway
  • FIG. 1a three eNBs are taken as an example, and the eNBs are represented as network devices in FIG.
  • each eNB in FIG. 1a may serve one or more terminal equipment.
  • the technical solution provided in the embodiment of the present application can be implemented through the terminal equipment and the terminal equipment. eNB executes.
  • the network architecture may be a network architecture of the NG-RAN system.
  • gNB provides terminal-oriented NR user plane and control plane protocols, and gNB is connected to the core network of the 5G system.
  • Ng-eNB provides terminal equipment-oriented E-UTRA user plane and control plane protocols.
  • Ng-eNB It is also connected to the core network of 5G systems.
  • the gNB and ng-eNB are interconnected through the Xn interface, and both the gNB and the ng-eNB are connected to the access and mobility management function (AMF) in the 5G core network (5GC) through the NG interface.
  • AMF access and mobility management function
  • each gNB or ng-gNB in FIG. 1b may serve one or more terminal devices.
  • the technical solution provided in the embodiment of this application can be implemented through the terminal device and The gNB serving the terminal device is executed, or may also be executed by the terminal device and the ng-gNB serving the terminal device.
  • FIG. 2 is a schematic flowchart of a communication method according to an embodiment of the present application. Please refer to FIG. 2. The method specifically includes the following steps:
  • Step S201 the terminal device determines a first uplink data transmission time and a first duration
  • Step S202 the terminal device determines a first time according to the first uplink data transmission time and the first time duration, and monitors a control channel according to the first time;
  • Step S203 The terminal device sends a power headroom report PHR according to the monitored control channel.
  • the terminal device may determine the first time according to the first uplink data transmission time and the first duration, and according to the first Always monitor the control channel. In this way, the terminal device can send the PHR to the network device according to the control channel monitored at the first moment, thereby effectively improving the efficiency of the terminal device's feedback of the PHR.
  • the first uplink data transmission time may be the transmission time of the first uplink data transmission of the terminal device after the PHR is triggered.
  • the first uplink data transmission time may specifically be a transmission time of the first uplink data new transmission (that is, a new data transmission different from data retransmission) of the terminal device after the PHR is triggered.
  • the terminal device may send a PHR to the network device at the first uplink data transmission time.
  • the first duration may be a duration parameter value determined according to a preset rule or configured by a network device through a signaling interaction or the like.
  • the first duration may be an absolute time, such as 0.5ms, 1us, etc .; in another possible design, the first duration may be the number of data symbols, such as one or more Orthogonal frequency division multiplexing (OFDM) symbols or slot length, etc., it should be noted that, even for the first duration with the same absolute time, the corresponding data under different subcarrier spacing (SCS) The number of symbols may be different, which is not specifically limited in the embodiment of the present application.
  • OFDM Orthogonal frequency division multiplexing
  • the first duration may be a set parameter value that is specified in the communication protocol and stored in the terminal device, and the terminal device may obtain the first duration from the local storage; or, if The first duration may be configured by the network device, and then the network device may further configure the parameter value according to the subcarrier interval of each carrier of the terminal device, and then send the parameter value to the terminal device, which is not specifically limited in the embodiment of the present application.
  • the subcarrier interval corresponds to a second duration. Further, different subcarrier intervals may correspond to different second durations. Then, the first duration may be the longest duration among the plurality of second durations. Can also be called maximum duration. That is, the length of its duration is the largest. Optionally, the first duration may be the shortest duration among the multiple second durations. It can also be called the minimum duration. That is, the length of its duration is the smallest.
  • the corresponding network side may also adopt the same or similar method, and will not be described again. Furthermore, the terminal device and the network device in the following embodiments can adopt similar setting methods.
  • the network device may indicate the information of the uplink resource allocated to the terminal device by issuing a control channel, and the information of the uplink resource may specifically be uplink grant (UL grant) information. Therefore, the terminal device can obtain the uplink resource allocated to the network device by monitoring the control channel, and determines the first uplink data transmission time according to the control channel monitored after the PHR is triggered.
  • a terminal device in a connected state can monitor a control channel based on the configuration of the network device. For example, it can be a configuration based on a connected state discontinuous reception (DRX).
  • DRX discontinuous reception
  • the terminal device may determine the first uplink data transmission time in the following manner:
  • the terminal device can listen to the first control channel at a certain time after the PHR is triggered.
  • the first control channel can be issued by the network device, and is used to schedule a new data transmission (that is, a new data transmission) control for the terminal device. channel. It can be understood that the uplink resources allocated by the network device to the terminal device through the first control channel are used to transmit new uplink data of the terminal device, rather than to transmit the terminal device to the network device before, but The network equipment did not successfully receive the uplink data that needs to be retransmitted.
  • the third time can be used as the first uplink data transmission time.
  • the second time is a time before the third time and the duration from the third time is the first time.
  • the terminal device needs to send the PHR to the network device at the third time (that is, the transmission time of the uplink data scheduled by the first control channel), in order to allow the terminal device to calculate a PH value, a certain processing time is required. Set a cut-off point before the third moment.
  • the terminal device only needs to calculate the PH value based on the control channel monitored before the cut-off point and send the PHR to the network device, without having to consider monitoring after the cut-off point. To the control channel. In this example, if the terminal device does not monitor the control channel of the scheduled uplink data transmission time before the third time before the second time, then the cut-off time point is the second time, and the second time is equal to the third time The time minus the first duration.
  • the terminal device listens to the first control channel, it listens to the second control channel before the second moment arrives.
  • the second control channel is issued by the network device and is used to schedule another control channel for the terminal device to newly transmit data.
  • the transmission time of the uplink data scheduled by the second control channel is recorded as the fourth time, then when the fourth time is before the third time (that is, the fourth time is earlier than the third time), the terminal device may The fourth time is used as the first uplink data transmission time. Conversely, if the fourth time is after the third time (that is, the fourth time is later than the third and second time), the terminal device can ignore the fourth time scheduled by the second control channel for the terminal device and still use the third time as the first time. Upstream data transmission time.
  • the first control channel may also specifically be the first control channel monitored by the terminal device for scheduling new transmission of data after the PHR is triggered.
  • the process by which the terminal device determines the first uplink data transmission time is essentially a process of finding the transmission time of the first uplink data new transmission of the terminal device through a cyclic iteration method.
  • a control channel sent by a network device is a physical downlink control channel (PDCCH), and a corresponding data channel scheduled is a physical uplink shared channel (PUSCH) as an example, as shown in FIG. 3
  • PDCCH1 on CC0 at time t1 is the first control channel used for scheduling new transmission of data that the terminal device monitors after PHR triggering.
  • This PDCCH1 schedules PUSCH1 at time t2 for transmitting uplink data.
  • the time t2 can be used as the initial first uplink data transmission time, and then the control channel can be continuously monitored within the time range from time t1 to time t2-k.
  • k refers to the first For a while.
  • the terminal device can use time t2 as the final first uplink data transmission time, and according to the time after the PHR triggers to time t2-
  • the control channel monitored at time k the PH value is calculated, and when time t2 arrives, PHR is sent to the network device on PUSCH1.
  • the terminal device monitors PDCCH2 at time t3 in the time range from time t1 to time t2-k, the PDCCH2 schedules a PUSCH2 at time t4, and time t4 is before time t2, then the terminal device can send the first uplink data
  • the transmission time is updated from the initial time t2 to the latest time t4, that is, the current time t4 is considered to be the transmission time of the first uplink data transmission of the terminal device after the PHR trigger.
  • the terminal device can continue to monitor the control channel within the time range from time t3 to time t4-k. Until time t4-k arrives, if no other PDCCH is monitored, time t4 can be determined as the final first uplink data. Transmission time. Conversely, if PDCCH3 is monitored at time t5 before time t4-k arrives, the PDCCH3 schedules a PUSCH3 at time t6, and time t6 is before time t4, then the terminal device can change the first uplink data transmission time from The previous time t4 is updated to the latest time t6, that is, the current time t6 is considered to be the transmission time of the first uplink data transmission of the terminal device after the PHR is triggered.
  • the terminal device can continue to monitor the control channel. Whenever the time of the scheduled PUSCH is monitored by the PDCCH before the current latest first uplink data transmission time, the above is repeated. Steps are to update the first uplink data transmission time, and then continue to monitor until the time of k duration before the latest first uplink data transmission time arrives.
  • subcarrier intervals of the three combined carriers shown in FIG. 3 may be different.
  • subcarriers of some carriers may have the same or different subcarrier intervals, and this embodiment of the present application does not specifically limit this.
  • the terminal device may determine the first time according to the first uplink data transmission time and the first duration.
  • the first time is before the first uplink data transmission time and is away from the first uplink transmission time.
  • the duration is equal to the first duration.
  • the terminal device does not monitor the control channel whose scheduled transmission time of the uplink data is before the third time after monitoring the first control channel, the first time is before the third time , The time from the third time is the time of the first time; if the terminal device monitors the first control channel, before the second time arrives, the second control channel is monitored, and the uplink data scheduled by the second control channel is transmitted The time (that is, the fourth time) is earlier than the third time, then the first time is before the fourth time, and the time from the fourth time is the time of the first time.
  • the first time is time t2-k; if the terminal device monitors PDCCH1 and PDCCH2, then the first time is time t4-k If the terminal device monitors PDCCH1, PDCCH2, and PDCCH3, the first time is time t6-k. It should be noted that, during the actual monitoring process of the terminal device, the first time is also updated synchronously with the latest first uplink data transmission time. In other words, after monitoring the PDCCH1, the terminal device can use the time t2-k as the initial first time. If no other monitoring uplink control data transmission time before the time t2 is monitored, the t2-k can be used as the initial first time.
  • Time k is the final first time.
  • the terminal device monitors the PDCCH2 of the scheduled uplink data at time t4, the terminal device can update the first uplink data transmission time to time t4, and at the same time, update the first time from the previous time t2-k to Time t4-k.
  • the first uplink data transmission time and the first time are also updated in the same way until the latest first time arrives.
  • the terminal device may calculate the PH value according to the control channel monitored before the first time, and send the PHR to the network device at the first uplink data transmission time. More specifically, the terminal device may calculate the PH value according to the control channel monitored between the PHR trigger and the first time, and send the PHR to the network device at the first uplink data transmission time. Wherein, the terminal device calculates the PH value specifically, and the terminal device calculates a power headroom according to the power required for all data transmission on each carrier at the time of the first uplink data transmission.
  • the data transmission performed at the time of the first uplink data transmission may include any one or more types of data transmission in the new data transmission, data retransmission, or semi-static configuration data transmission scheduled by the network device, This embodiment of the present application does not specifically limit this.
  • the terminal device calculates the PH value
  • the PH type corresponding to the CC in the PHR is real (actual)
  • the calculation method of the PH on the CC can use the formula corresponding to the real type; otherwise, if no control channel is monitored on a CC, the PH type corresponding to the CC in the PHR is virtual, and accordingly,
  • the calculation method of the PH on the CC may adopt a calculation formula corresponding to the real type.
  • the PH of the real type means that there is actual data transmission on a CC.
  • the data transmission may include new data transmission, repeated transmission of previous data, or any one or more of semi-statically configured data transmission.
  • the terminal The device calculates the power headroom based on these actual data transmissions; and the virtual type PH means that there is no actual data transmission on the CC, and the terminal device calculates the power headroom based on a reference format. It can be seen that, compared to the virtual type, the real type power headroom calculated based on the actual transmission is more valuable to network equipment. According to the real type power headroom, the network device can more accurately schedule uplink resources, thereby Improve upstream resource utilization.
  • the first moment is a time node used to define which control channels the terminal device calculates the PH value according to the monitoring.
  • the terminal device In order to send a PHR report by using the uplink resources newly transmitted by the first uplink data scheduled by the network device after the PHR triggers, the terminal device must package the PHR to be sent before the first uplink data transmission time arrives.
  • This first time is Refers to the start time node for which the terminal device calculates the PH value and performs data processing according to the control channel previously monitored.
  • the network device may continue to send the control channel, and the uplink resources scheduled for the newly sent control channel may be before or after the first uplink data transmission time, but in order to leave the terminal device with a PH value calculation, Processing time.
  • the terminal device calculates the PH value, this part of the control channel is no longer considered.
  • the terminal device includes one or more PHR events. These PHR events can be triggered when a preset trigger condition is met, or can be triggered when a preset time node arrives.
  • the “PHR trigger” means that a certain PHR event of the terminal device is triggered.
  • the method flow of determining the first uplink data transmission time and sending the PHR as described in steps S201 to S203 in the embodiment of the present application is triggered.
  • the terminal device may delete the triggered PHR event, or may retain the triggered PHR event. It can be seen that if the network device still sends a control channel that schedules uplink resources for the terminal device between the first time and the first uplink data transmission time, the terminal device can retain the triggered PHR event after sending the PHR. In this way, when the terminal device listens to the new control channel after the first moment, the uplink resources scheduled through the control channel transmit PHR again, so that the network device can know the real and accurate power headroom of the terminal device in time, so that Scheduling and allocation of uplink resources for terminal equipment is more reasonable.
  • the PHR sent by the terminal device may further include first instruction information for indicating whether the terminal device has borrowed power.
  • the embodiment of the present application also provides another communication method applied to the network device side, so that the PHR sent by the terminal device is more in line with the actual transmission conditions of the terminal device. Referring to FIG. step:
  • Step S501 the network device determines a first uplink data transmission time and a first duration
  • Step S502 The network device ignores sending the third control channel within the first duration range before the first uplink data transmission time.
  • the network device may determine the first uplink data transmission time according to the PHR trigger time and each control channel sent by the network device to the terminal.
  • the first uplink data transmission time is the transmission time of the first uplink data transmission scheduled by the network device for the terminal device. More specifically, the first uplink data transmission time may also be the first time that the network device schedules for the terminal device. Transmission time of a new uplink data transmission.
  • the first duration is the same as the first duration of the terminal device.
  • the first duration may be a set parameter value determined by a preset rule (such as a communication protocol) or a parameter value configured by the network device itself and stored locally. It is further sent to the terminal device, which is not limited in the embodiment of the present application.
  • step S502 after determining the first uplink data transmission time and the first duration, the network device may ignore sending the third control channel within the first duration range before the first uplink data transmission time.
  • ignoring sending the third control channel may refer to not sending the third control channel, wherein the transmission time of the uplink data scheduled by the third control channel may be before or after the first uplink data transmission time This embodiment of the present application does not specifically limit this.
  • the terminal device since the terminal device does not consider the control channel sent by the network device between the first time and the first uplink data transmission time at the PH value, if the network device is not in the first duration range before the first uplink data transmission time
  • the third control channel is sent internally, so that the network device and the terminal device cooperate with each other, which can make the PH value calculated by the terminal device more accurate, and more in line with the actual data transmission situation at the first uplink data transmission time.
  • the network device does not send the third control channel. Specifically, the network device does not send the scheduled time between t6-k and t6.
  • the uplink resource is PDCCH4 before time t6.
  • this embodiment of the present application also provides another communication method applied to the network device side.
  • This method also has the effect of making the PHR sent by the terminal device more consistent with the actual transmission situation of the terminal device, as shown in FIG. 6.
  • the method includes the following steps:
  • Step S601 the network device determines a first uplink data transmission time and a first duration
  • Step S602 if the network device sends a third control channel to a terminal device within the first duration range before the first uplink data transmission time, the power device PH report is sent according to the power headroom sent by the terminal device To determine the type of PH.
  • step S601 may be consistent with the description in step S501, which is not repeatedly described in this embodiment of the present application.
  • the network device may not know the PHR trigger time of the terminal device, or the network device may still be the first before the first uplink data transmission time when the PHR trigger time of the terminal device is known.
  • the third control channel is sent within the time range. After receiving the PHR report sent by the terminal device, the network device can determine the type of power headroom according to the power headroom report fed back by the terminal device.
  • the power headroom includes two types: real and virtual. If the terminal device indicates in the reported PHR that the PH type on a CC is a virtual type, And the network device sends the third control channel on the CC within the first duration range before the first uplink data transmission time, then the network device may consider that the PH type on the CC fed back by the terminal device is inaccurate and can be ignored The terminal device feedbacks the PH type of the CC, and determines that the actual PH type of the CC is the real type.
  • FIG. 7 is a schematic structural diagram of a terminal device provided in an embodiment of the present application. As shown in FIG. 7, the terminal device includes:
  • a processing module 710 configured to determine a first uplink data transmission time and a first duration; determine a first time according to the first uplink data transmission time and the first duration; and monitor a control channel according to the first time;
  • the transceiver module 720 is configured to send a power headroom report PHR according to the monitored control channel.
  • the first uplink data transmission time includes a transmission time of a first uplink data transmission of the terminal device after a PHR trigger; the first time is the first uplink data The time before the transmission time and the time from the first uplink data transmission time is the first time.
  • the processing module 710 is specifically configured to: after monitoring the first control channel, if the control channel for which the scheduled uplink data transmission time is before the third time is not monitored before the second time, , The third time is taken as the first uplink data transmission time, the third time is the transmission time of the uplink data scheduled by the first control channel, and the second time is before the third time And the duration from the third moment is the moment at the first duration.
  • the processing module 710 is further specifically configured to: after monitoring the first control channel, if the second control channel is monitored before the second time, use the fourth time as The first uplink data transmission time, the fourth time is a transmission time of the uplink data scheduled by the second control channel, and the fourth time is before the third time.
  • the processing module 710 is further configured to: after the sending and receiving module 702 sends the PHR, keep the triggered PHR event.
  • the PHR includes first indication information, where the first indication information is used to indicate whether the terminal device has borrowed power.
  • processing module 710 in the embodiment of the present invention may be implemented by a processor or a processor-related circuit component
  • transceiver module 720 may be implemented by a transceiver or a transceiver-related circuit component.
  • FIG. 8 is another schematic structural diagram of a terminal device provided in an embodiment of the present application.
  • the terminal device 800 includes a processor 810, a memory 820, and a transceiver 830.
  • the memory 820 stores instructions or programs
  • the processor 810 is configured to execute the instructions or programs stored in the memory 820.
  • the processor 810 is configured to perform operations performed by the processing module 710 in the foregoing embodiment
  • the transceiver 830 is configured to perform operations performed by the transceiver module 720 in the foregoing embodiment.
  • terminal device 700 or the terminal device 800 may correspond to the terminal device in the communication methods S201 to S203 of the embodiment of the present invention, and the operations of each module in the terminal device 700 or the terminal device 800 and / The OR functions are respectively used to implement the corresponding processes of the methods in FIG. 2, FIG. 5, and FIG. 6. For brevity, details are not described herein again.
  • an embodiment of the present application further provides a network device.
  • FIG. 9 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • the network device includes : A processing module 910 and a transceiver module 920.
  • the processing module 910 is configured to determine a first uplink data transmission time and a first duration
  • the transceiver module 920 is configured to not send a third control channel within the first duration range before the first uplink data transmission time.
  • the processing module 910 is configured to determine a first uplink data transmission time and a first duration
  • the transceiving module 920 is configured to: if it is determined that the third control channel is sent to the terminal device through the transceiving module within the first duration range before the first uplink data transmission time, according to the information sent by the terminal device
  • the power headroom PH report determines the type of PH.
  • processing module 910 in the embodiment of the present invention may be implemented by a processor or a processor-related circuit component
  • transceiver module 920 may be implemented by a transceiver or a transceiver-related circuit component.
  • FIG. 10 is another schematic structural diagram of a network device provided in an embodiment of the present application.
  • the network device 1000 includes a processor 1010, a memory 1020, and a transceiver 1030.
  • the memory 1020 stores instructions or programs
  • the processor 1010 is configured to execute the instructions or programs stored in the memory 1020.
  • the processor 1010 is configured to perform operations performed by the processing module 920 in the foregoing embodiment
  • the transceiver 1030 is configured to perform operations performed by the transceiver module 910 in the foregoing embodiment.
  • the network device 900 or the network device 1000 may correspond to the network devices in S501 to S502 in the communication method in the embodiment of the present invention, or the network devices in S601 to S602 in the communication method, and the network device Operations and / or functions of each module in 900 or network device 1000 are to implement the corresponding processes of the methods in FIG. 5 or FIG. 6, respectively, and are not repeated here for brevity.
  • An embodiment of the present application further provides a communication device, which may be a terminal device or a circuit.
  • the communication apparatus may be configured to perform an action performed by a terminal device in the foregoing method embodiment.
  • FIG. 11 shows a simplified schematic diagram of the structure of the terminal device. It is easy to understand and easy to illustrate.
  • the terminal device uses a mobile phone as an example.
  • the terminal device includes a processor, a memory, a radio frequency circuit, an antenna, and an input / output device.
  • the processor is mainly used for processing communication protocols and communication data, controlling terminal devices, executing software programs, and processing data of the software programs.
  • the memory is mainly used for storing software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signals and radio frequency signals and the processing of radio frequency signals.
  • the antenna is mainly used to transmit and receive radio frequency signals in the form of electromagnetic waves.
  • Input / output devices such as a touch screen, a display screen, and a keyboard, are mainly used to receive data input by the user and output data to the user. It should be noted that some types of terminal equipment may not have an input / output device.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit. After the radio frequency circuit processes the baseband signal, the radio frequency signal is sent out through the antenna in the form of electromagnetic waves.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor.
  • the processor converts the baseband signal into data and processes the data.
  • FIG. 11 In an actual terminal equipment product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or a storage device.
  • the memory may be set independently of the processor or integrated with the processor, which is not limited in the embodiment of the present application.
  • an antenna and a radio frequency circuit having a transmitting and receiving function may be regarded as a transmitting and receiving unit of a terminal device, and a processor having a processing function may be regarded as a processing unit of the terminal device.
  • the terminal device includes a transceiver unit 1110 and a processing unit 1120.
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver device, and the like.
  • the processing unit may also be called a processor, a processing single board, a processing module, a processing device, and the like.
  • a device used to implement the receiving function in the transceiver unit 1110 may be regarded as a receiving unit, and a device used to implement the transmitting function in the transceiver unit 1110 may be regarded as a transmitting unit, that is, the transceiver unit 1110 includes a receiving unit and a transmitting unit.
  • the transceiver unit may also be called a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may also be called a receiver, a receiver, or a receiving circuit.
  • the transmitting unit may also be called a transmitter, a transmitter, or a transmitting circuit.
  • transceiver unit 1110 is configured to perform the sending operation and the reception operation on the terminal device side in the foregoing method embodiment
  • processing unit 1120 is configured to perform operations other than the transceiver operation on the terminal device in the foregoing method embodiment.
  • the transceiver unit 1110 is configured to perform a sending operation on the terminal device side in FIG. 2, and / or the transceiver unit 1110 is further configured to perform other transceiver steps on the terminal device side in the embodiments of the present application.
  • the processing unit 1120 is configured to execute step S201 in FIG. 2, and / or the processing unit 1120 is further configured to execute other processing steps on the terminal device side in the embodiment of the present application.
  • the chip When the communication device is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input / output circuit or a communication interface;
  • the processing unit is a processor or a microprocessor or an integrated circuit integrated on the chip.
  • the communication device in this embodiment is a terminal device
  • the device may perform functions similar to the processor 810 in FIG. 8.
  • the device includes a processor 1210, a transmitting data processor 1220, and a receiving data processor 1230.
  • the processing module 710 in the above embodiment may be the processor 1210 in FIG. 12 and perform corresponding functions.
  • the transceiver module 720 in the above embodiment may be the sending data processor 1220 and / or the receiving data processor 1230 in FIG. 12.
  • a channel encoder and a channel decoder are shown in FIG. 12, it can be understood that these modules do not constitute a restrictive description of this embodiment, but are only schematic.
  • FIG. 13 shows another form of this embodiment.
  • the processing device 1300 includes modules such as a modulation subsystem, a central processing subsystem, and a peripheral subsystem.
  • the communication device in this embodiment may serve as a modulation subsystem therein.
  • the modulation subsystem may include a processor 1303 and an interface 1304.
  • the processor 1303 performs the functions of the processing module 710, and the interface 1304 performs the functions of the transceiver module 720.
  • the modulation subsystem includes a memory 1306, a processor 1303, and a program stored on the memory 1306 and executable on the processor.
  • the terminal device side in the foregoing method embodiment is implemented.
  • Methods It should be noted that the memory 1306 may be non-volatile or volatile, and its location may be located inside the modulation subsystem or in the processing device 1300, as long as the memory 1306 can be connected to the memory 1306.
  • the processor 1303 is sufficient.
  • a computer-readable storage medium which stores instructions thereon, and when the instructions are executed, the method on the terminal device side in the foregoing method embodiment is executed.
  • a computer program product containing instructions is provided, and when the instructions are executed, the method on the terminal device side in the foregoing method embodiment is executed.
  • An embodiment of the present application further provides a computer-readable storage medium, where the computer-readable instructions are stored in the computer storage medium, and when the computer reads and executes the computer-readable instructions, the computer is caused to execute any one of the foregoing method embodiments Method on the network device side.
  • An embodiment of the present application provides a computer program product.
  • the computer reads and executes the computer program product, the computer is caused to execute the method on the network device side in any one of the foregoing method embodiments.
  • An embodiment of the present application provides a chip that is connected to a memory and is configured to read and execute a software program stored in the memory to implement the method on the terminal device side in any one of the foregoing method embodiments.
  • An embodiment of the present application provides a chip that is connected to a memory and is used to read and execute a software program stored in the memory to implement the method on the network device side in any one of the foregoing method embodiments.
  • An embodiment of the present application provides a communication system.
  • the system includes a terminal device and a network device.
  • the terminal device may be used to execute the method on the terminal device side in any one of the foregoing method embodiments, and the network device may be used to execute any of the foregoing method embodiments. Method on the network device side.
  • processors mentioned in the embodiments of the present application may be a central processing unit (CPU), or other general-purpose processors, digital signal processors (DSPs), and application-specific integrated circuits (DSPs).
  • DSPs digital signal processors
  • DSPs application-specific integrated circuits
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrical memory Erase programmable read-only memory (EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double SDRAM double SDRAM
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • enhanced SDRAM enhanced SDRAM
  • SLDRAM synchronous connection dynamic random access memory
  • direct RAMbus RAM direct RAMbus RAM
  • the processor is a general-purpose processor, a DSP, an ASIC, an FPGA, or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component
  • the memory memory module
  • memory described herein is intended to include, but is not limited to, these and any other suitable types of memory.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of this application is essentially a part that contributes to the existing technology or a part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in the embodiments of the present application.
  • the aforementioned storage media include: U disks, mobile hard disks, read-only memory (ROM), random access memory (RAM), magnetic disks or compact discs, and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及装置,包括:终端设备在确定第一上行数据传输时刻和第一时长后,根据该第一上行数据传输时刻和该第一时长确定第一时刻,并根据该第一时刻监听控制信道。如此,终端设备可根据在该第一时刻监听到的控制信道,向网络设备发送PHR,从而可有效提高终端设备反馈PHR的效率。

Description

一种通信方法及装置 技术领域
本发明涉及无线通信技术领域,特别涉及一种通信方法及装置。
背景技术
在现有的无线通信***(如LTE)中,存在着上行功控的机制。终端设备(user equipment,UE)会向网络设备上报自己的功率余量(power headroom,PH),随后网络设备根据UE上报的PH,来决定后续对该UE的上行调度。如果UE上报的PH显示,该UE已经没有功率支持更多上行传输了,那么后续调度时不能给该UE分配更多的上行资源,否则可以给该UE分配更多上行资源,以提高上行传输速率。
现有技术中,UE在计算需上报的PH时,需要考虑功率余量报告(power headroom report,PHR)事件触发后,各个CC(component carrier,组合载波)上,调度第一个新的上行数据传输的控制信道以及该控制信道之前的控制信道。由于同一在UE的不同CC上的控制信道和数据信道可能不对齐等原因,UE在下行控制信道上接收到一个调度上行数据新传的上行授权后,还需要继续监听多久控制信道,是一个需要解决的问题。
发明内容
本申请实施例提供一种通信方法及装置,用以确定终端设备在PH计算时需监听控制信道的时间。
第一方面,本申请实施例提供一种通信方法,该方法包括:终端设备确定第一上行数据传输时刻和第一时长;所述终端设备根据所述第一上行数据传输时刻和所述第一时长,确定第一时刻,并根据所述第一时刻,监听控制信道;所述终端设备根据监听的控制信道,发送功率余量报告PHR。
该方法可由终端设备执行,该终端设备可以为终端设备或能够支持终端设备实现上述方法所需功能的通信设备或装置,例如可以为设置在终端设备内的芯片。
本申请实施例中,终端设备在确定第一上行数据传输时刻和第一时长后,可根据该第一上行数据传输时刻和该第一时长确定第一时刻,并根据该第一时刻监听控制信道。如此,终端设备可根据在该第一时刻监听到的控制信道,向网络设备发送PHR,从而可有效提高终端设备反馈PHR的效率。
在一种可能的设计中,所述第一上行数据传输时刻包括,所述终端设备在PHR触发后的第一次上行数据传输的传输时刻;所述第一时刻为所述第一上行数据传输时刻之前,且距离所述第一上行数据传输时刻的时长为所述第一时长的时刻。
在一种可能的设计中,所述终端设备确定第一上行数据传输时刻,包括:
所述终端设备监听到第一控制信道后,若未在第二时刻前监听到调度的上行数据的传输时刻在第三时刻之前的控制信道,则将所述第三时刻作为所述第一上行数据传输时刻,所述第三时刻为所述第一控制信道调度的上行数据的传输时刻,所述第二时刻为所 述第三时刻之前,且距离所述第三时刻的时长为所述第一时长的时刻。
在另一种可能的设计中,所述终端设备确定第一上行数据传输时刻,还包括:
所述终端设备监听到所述第一控制信道后,若在所述第二时刻前监听到第二控制信道,则将第四时刻作为所述第一上行数据传输时刻,所述第四时刻为所述第二控制信道调度的上行数据的传输时刻,所述第四时刻在所述第三时刻之前。
在一种可能的设计中,所述终端设备根据监听的控制信道,发送所述PHR之后,可保留已触发的PHR事件。本申请实施例中,若网络设备在第一时刻至第一上行数据传输时刻之间,仍会发送为终端设备调度上行资源的控制信道,那么终端设备在发送PHR后,可保留已触发的PHR事件,如此,终端设备可在第一时刻后监听到新的控制信道时,通过该控制信道调度的上行资源再次传输PHR,从而可使网络设备可及时获知终端设备真实、准确的功率余量情况,使得对终端设备的上行资源分配更加合理。
在一种可能的设计中,所述PHR中包括第一指示信息,所述第一指示信息用于指示所述终端设备是否进行了功率借用。
第二方面,本申请实施例提供另一种通信方法,该方法包括:网络设备确定第一上行数据传输时刻和第一时长;所述网络设备在所述第一上行数据传输时刻之前的所述第一时长范围内,忽略发送第三控制信道。
该方法可由网络设备执行,该网络设备可以为网络设备或能够支持网络设备实现上述方法所需功能的通信设备或装置,例如可以为设置在网络设备内的芯片。
如此,由于终端设备在PH值时不会考虑网络设备在第一时刻至第一上行数据传输时刻之间发送的控制信道,那么如果网络设备也不在第一上行数据传输时刻之前的第一时长范围内发送第三控制信道,那么在网络设备与终端设备相互配合下,可使得终端设备计算的PH值更加准确,更符合在第一上行数据传输时刻实际进行的数据传输情况。
第三方面,本申请实施例提供另一种通信方法,该方法包括:网络设备确定第一上行数据传输时刻和第一时长;所述网络设备若在所述第一上行数据传输时刻之前的所述第一时长范围内,向终端设备发送了第三控制信道,则根据所述终端设备发送的功率余量PH报告,确定所述PH的类型。
该方法可由网络设备执行,该网络设备可以为网络设备或能够支持网络设备实现上述方法所需功能的通信设备或装置,例如可以为设置在网络设备内的芯片。
本申请实施例中,如果终端设备在上报的PHR中指示某个CC上的PH类型为virtual类型,而网络设备在第一上行数据传输时刻之前的第一时长范围内的该CC上发送了第三控制信道,那么网络设备可以认为终端设备反馈的该CC上的PH类型是不准确的,可忽略终端设备反馈的该CC的PH类型,并确定该CC的实际PH类型是real类型。
第四方面,本申请实施例提供另一种终端设备,该终端设备具有实现上述第一方面或第一方面的任一种可能的设计中终端设备的功能,该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,所述终端设备的结构中包括处理模块和收发模块,所述处理模块被配置为支持该终端设备执行上述第一方面或第一方面的任一种设计中相应的功能。所述收发模块用于支持该终端设备与其他通信设备之间的通信。所述终端设备还可以包括存储模块,所述存储模块与处理模块耦合,其保存有终端设备必要的程序指令和数据。作为一种示例,处理模块可以为处理器,通信模块可以为收发器,存储模块可以为存储器。
第五方面,本申请实施例提供一种计算机可读存储介质,所述计算机存储介质中存储有计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机执行上述第一方面中任一种可能的设计中的方法。
第六方面,本申请实施例提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述第一方面中任一种可能的设计中的方法。
第七方面,本申请实施例提供一种芯片,所述芯片与存储器相连,用于读取并执行所述存储器中存储的软件程序,以实现上述第一方面中任一种可能的设计中的方法。
第八方面,本申请实施例提供一种网络设备,该网络设备具有实现上述第二方面或第二方面的任一种可能的设计中网络设备的功能,该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,所述网络设备的结构中包括处理模块和收发模块,所述处理模块被配置为支持该网络设备执行上述第二方面或第二方面的任一种设计中相应的功能。所述收发模块用于支持该网络设备与其他通信设备之间的通信。所述网络设备还可以包括存储模块,所述存储模块与处理模块耦合,其保存有网络设备必要的程序指令和数据。作为一种示例,处理模块可以为处理器,通信模块可以为收发器,存储模块可以为存储器。
第九方面,本申请实施例提供一种计算机可读存储介质,所述计算机存储介质中存储有计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机执行上述第二方面中任一种可能的设计中的方法。
第十方面,本申请实施例提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述第二方面中任一种可能的设计中的方法。
第十一方面,本申请实施例提供一种芯片,所述芯片与存储器相连,用于读取并执行所述存储器中存储的软件程序,以实现上述第二方面中任一种可能的设计中的方法。
第十二方面,本申请实施例提供另一种网络设备,该网络设备具有实现上述第三方面或第三方面的任一种可能的设计中网络设备的功能,该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,所述网络设备的结构中包括处理模块和收发模块,所述处理模块被配置为支持该网络设备执行上述第三方面或第三方面的任一种设计中相应的功 能。所述收发模块用于支持该网络设备与其他通信设备之间的通信。所述网络设备还可以包括存储模块,所述存储模块与处理模块耦合,其保存有网络设备必要的程序指令和数据。作为一种示例,处理模块可以为处理器,通信模块可以为收发器,存储模块可以为存储器。
第十三方面,本申请实施例提供一种计算机可读存储介质,所述计算机存储介质中存储有计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机执行上述第三方面中任一种可能的设计中的方法。
第十四方面,本申请实施例提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述第三方面中任一种可能的设计中的方法。
第十五方面,本申请实施例提供一种芯片,所述芯片与存储器相连,用于读取并执行所述存储器中存储的软件程序,以实现上述第三方面中任一种可能的设计中的方法。
第十六方面,本申请实施例提供一种通信***,该***包括终端设备和网络设备,其中,终端设备可用于执行上述第一方面或第一方面的任一种可能的设计中所述的方法,网络设备可用于执行上述第二方面或第二方面的任一种可能的设计中所述的方法,或者可用于执行上述第三方面或第三方面的任一种可能的设计中所述的方法。
附图说明
图1a和图1b为本申请实施例适用的一种应用场景示意图;
图2为本申请实施例提供的一种通信方法所对应的流程示意图;
图3为本申请实施例提供的终端设备监听控制信道的示意图;
图4为本申请实施例提供的终端设备确定第一上行数据传输时刻的程序流程图;
图5为本申请实施例提供的另一种通信方法所对应的流程示意图;
图6为本申请实施例提供的另一种通信方法所对应的流程示意图;
图7为本申请实施例提供的一种终端设备的结构示意图;
图8为本申请实施例提供的另一种通信设备的结构示意图;
图9为本申请实施例提供的一种网络设备的结构示意图;
图10为本申请实施例提供的另一种网络设备的结构示意图;
图11为本申请实施例提供的通信装置的一种结构示意图;
图12为本申请实施例提供的通信装置的另一结构示意图;
图13为本申请实施例提供的通信装置的再一结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面结合说明书附图对本申请实施例 进行具体描述。需要说明的是,本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端设备,包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point,AP)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,智能穿戴式设备等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位***(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
2)网络设备,例如包括基站(例如,接入点),可以是指接入网中在空口通过一个或多个小区与无线终端设备通信的设备。网络设备可用于将收到的空中帧与网际协议(IP)分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。网络设备还可协调对空口的属性管理。例如,网络设备可以包括长期演进(long term evolution,LTE)***或演进的LTE***(LTE-Advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括第五代移动通信技术(fifth generation,5G)新无线(new radio,NR)***中的下一代节点B(next generation node B,gNB)或者也可以包括云接入网(cloud radio access network,CloudRAN)***中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),本申请实施例并不限定。
需要理解的是,在下文的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
应理解,本申请实施例的技术方案可以应用于各种通信***,例如:全球移动通信(global system of mobile communication,GSM)***、码分多址(code division multiple access,CDMA) ***、宽带码分多址(wideband code division multiple access,WCDMA)***、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)***、LTE频分双工(frequency division duplex,FDD)***、LTE时分双工(time division duplex,TDD)、通用移动通信***(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信***、以及未来的5G通信***等。
进一步地,本申请实施例还可应用于演进的通用移动通信***陆地无线接入网(evolved universal mobile telecommunications system terrestrial radio access network,E-UTRAN)***,或者下一代(next generation,NG)-RAN***,或者还可以应用于下一代通信***或者类似的通信***。
请参见图1a,为本申请实施例的一种应用场景,或者说是本申请实施例应用的一种网络架构,该网络架构可以为E-UTRAN***的一种网络架构。在图1a中,E-UTRAN由eNB组成,提供面向终端设备的E-UTRA用户面和控制面的协议。eNB之间通过X2接口互连。eNB也通过S1-MME接口连接到移动管理实体(mobility management entity,MME),以及通过S1-U接口连接到服务网关(service gateway,S-GW)。图1a中以3个eNB为例,且eNB在图1a中表示为网络设备,分别为第一网络设备、第二网络设备和第三网络设备。在图1a中未画出终端设备,实际上图1a中的每个eNB都可能服务于一个或多个终端设备,本申请实施例所提供的技术方案就可以通过终端设备和服务于终端设备的eNB执行。
请参见图1b,为本申请实施例的另一种应用场景,或者说是本申请实施例应用的另一种网络架构,该网络架构可以为NG-RAN***的一种网络架构。在图1b中,gNB提供面向终端设备的NR用户平面和控制平面协议,且gNB连接到5G***的核心网,ng-eNB提供面向终端设备的E-UTRA用户平面和控制平面协议,ng-eNB也连接到5G***的核心网。gNB与ng-eNB之间通过Xn接口互连,且gNB与ng-eNB均通过NG接口连接到5G核心网(5GC)中的接入和移动性管理功能(access and mobility management function,AMF)/用户面功能(user plane function,UPF)。在图1b中,第四网络设备和第五网络设备均为gNB,第六网络设备和第七网络设备均为ng-gNB。在图4中也未画出终端设备,实际上图1b中的每个gNB或者ng-gNB都可能服务于一个或多个终端设备,本申请实施例所提供的技术方案就可以通过终端设备和服务于终端设备的gNB执行,或者也可以通过终端设备和服务于终端设备的ng-gNB执行。
基于上述网络结构,图2为本申请实施例提供的一种通信方法的流程示意图,请参见图2,该方法具体包括如下步骤:
步骤S201:终端设备确定第一上行数据传输时刻和第一时长;
步骤S202:所述终端设备根据所述第一上行数据传输时刻和所述第一时长,确定第一时刻,并根据所述第一时刻监听控制信道;
步骤S203:所述终端设备根据监听的控制信道,发送功率余量报告PHR。
由此可见,本申请实施例中,终端设备在确定第一上行数据传输时刻和第一时长后,可根据该第一上行数据传输时刻和该第一时长确定第一时刻,并根据该第一时刻监听控制信道。如此,终端设备可根据该第一时刻监听到的控制信道,向网络设备发送PHR,从而可有效提高终端设备反馈PHR的效率。
在步骤S201的具体实施中,所述第一上行数据传输时刻可为终端设备在PHR触发后的第一次上行数据传输的传输时刻。在一种可能的设计中,该第一上行数据传输时刻具体可以是终端设备在PHR触发后的第一次上行数据新传(即区别于数据重传的新的数据传输)的传输时刻。终端设备在确定出该第一上行数据传输时刻后,可在该第一上行数据传输时刻向网络设备发送PHR。
所述第一时长可为根据预设规则确定的,或者通过信令交互等方式由网络设备配置的时长参数值。在一种可能的设计中,该第一时长可为一个绝对时间,如0.5ms,1us等;在另一种可能的设计中,该第一时长可为数据符号的个数,如一个或多个(orthogonal frequency division multiplexing,OFDM)符号或时隙(slot)长度等,需要注意的是,即使是绝对时间相同的第一时长,在不同的子载波间隔(subcarrier spacing,SCS)下对应的数据符号个数可能不同,本申请实施例对此不作具体限制。具体的,本申请实施例中,该第一时长可以为在通信协议中已规定,并存储在终端设备中的设定参数值,终端设备可从本地存储中获取该第一时长;或者,若第一时长可由网络设备配置,那么网络设备可进一步根据终端设备的各载波的子载波间隔配置该参数值,进而将该参数值发送给终端设备,本申请实施例同样不作具体限制。
在一个可能的实施例中,所述子载波间隔对应第二时长。进一步的,不同的子载波间隔可以对应不同的第二时长。则上述第一时长可以是多个第二时长中最长的时长。也可以叫最大的时长。即其时长的长度是最大的。可选的,上述第一时长可以是多个第二时长中最短的时长。也可以叫最小的时长。即其时长的长度是最小的。采用这样的时长设置方式,可以节省终端的复杂度,因为其运算量更少。进一步的,还可以节省功率消耗。
对应的网络侧也可以采取相同或者类似的方法,不再赘述。进而下述实施例中的终端设备、网络设备都可以采用相似的设置方式。
本申请实施例中,网络设备可通过下发控制信道,向终端设备指示出为其分配的上行资源的信息,该上行资源的信息具体可以为上行授权(uplink grant,UL grant)信息。于是,终端设备可通过监听控制信道获取网络设备为其分配的上行资源,并根据在PHR触发后监听到的控制信道,确定出第一上行数据传输时刻。需要说明的是,本申请实施例是以终端设备持续监听控制信道为例进行描述的。在实际的应用场景中,处于连接态的终端设备可基于网络设备的配置监听控制信道,比如,可以是基于连接态非连续接收(discontinuous reception,DRX)的配置,处于DRX休眠期内的终端设备可以不监听控制信道,而处于DRX活跃期的终端设备则是持续监听控制信道。
具体的,本申请实施例中,终端设备可通过如下方式确定第一上行数据传输时刻:
终端设备可在PHR触发后的某一时刻监听到第一控制信道,该第一控制信道可为网络设备下发的,用于为终端设备调度数据新传(即新的数据传输)的一个控制信道。这可以理解为,网络设备通过第一控制信道为终端设备分配的上行资源是用来传输该终端设备的新的上行数据的,而不是用来传输在此之前终端设备已发送给网络设备,但网络设备未成功接收,且需要重传的上行数据的。
以第一控制信道为终端调度第三时刻的上行资源为例,若终端设备在监听到第一控制信道后,未在第二时刻前监听到调度的上行数据的传输时刻在第三时刻之前的控制信道,则可将该第三时刻作为第一上行数据传输时刻。其中,该第二时刻为在第三时刻之前,且距离第 三时刻的时长为第一时长的时刻。也就是说,由于终端设备需要在第三时刻(即第一控制信道调度的上行数据的传输时刻)向网络设备发送PHR,为了给终端设备计算PH值留出一定的处理时间,因此,需要在第三时刻之前设定一个截止时间点,终端设备只需要根据在该截止时间点前监听到的控制信道,计算PH值,并向网络设备发送PHR,而不需要考虑在该截止时间点之后监听到的控制信道。在此示例中,若终端设备未在第二时刻前监听到调度的上行数据的传输时刻在第三时刻之前的控制信道,那么该截止时间点即为第二时刻,该第二时刻等于第三时刻减去第一时长后的时刻。
若终端设备监听到第一控制信道后,在第二时刻到来前监听到了第二控制信道,该第二控制信道为网络设备下发的,用来为终端设备调度数据新传的另一个控制信道,将该第二控制信道调度的上行数据的传输时刻记做第四时刻,那么在第四时刻在第三时刻之前(即第四时刻早于第三时刻)的情况下,终端设备可将该第四时刻作为第一上行数据传输时刻。反之,若第四时刻在第三时刻之后(即第四时刻晚于第三二时刻),终端设备可忽略该第二控制信道为终端设备调度的第四时刻,仍将第三时刻作为第一上行数据传输时刻。
本申请实施例中,所述第一控制信道具体还可以为终端设备在PHR触发后,监听到的第一个用于调度数据新传的控制信道,如此,可以看出,本申请实施例中终端设备确定第一上行数据传输时刻的过程,实质上为一个通过循环迭代的方式,寻找终端设备的第一次上行数据新传的传输时刻的过程。
举例来说,以网络设备发送的控制信道为物理下行控制信道(physical downlink control channel,PDCCH),调度的相应数据信道为物理上行共享信道(physical uplink shared channel,PUSCH)为例,如图3所示,终端设备具有三个组合载波,分别为CC0、CC1、CC2。其中,t1时刻CC0上的PDCCH1为,终端设备在PHR触发后监听到的第一个用于调度数据新传的控制信道,该PDCCH1调度了一个t2时刻的PUSCH1用于传输上行数据。因而,当终端设备监听到PDCCH1时,可将t2时刻作为初始的第一上行数据传输时刻,进而,在t1时刻至t2-k时刻的时间范围内继续监听控制信道,此处,k是指第一时长。
若终端设备在t1时刻至t2-k时刻的时间范围内,没有监听到其它PDCCH,那么终端设备便可将该t2时刻作为最终的第一上行数据传输时刻,并根据在PHR触发后至t2-k时刻之间监听到的控制信道,计算PH值,在t2时刻到来时,在PUSCH1上向网络设备发送PHR。
若终端设备在t1时刻至t2-k时刻的时间范围内的t3时刻,监听到了PDCCH2,该PDCCH2调度了一个t4时刻的PUSCH2,且t4时刻在t2时刻之前,那么终端设备可将第一上行数据传输时刻由初始的t2时刻,更新为最新的t4时刻,即认为目前t4时刻为终端设备在PHR触发后第一次上行数据新传的传输时刻。
进而,终端设备可在t3时刻至t4-k时刻的时间范围内继续监听控制信道,直到t4-k时刻到来时,若未监听到其它PDCCH,则可将t4时刻确定为最终的第一上行数据传输时刻,反之,若在t4-k时刻到来前的t5时刻监听到了PDCCH3,该PDCCH3调度了一个t6时刻的PUSCH3,且t6时刻在t4时刻之前,那么终端设备可将第一上行数据传输时刻由之前的t4时刻,更新为最新的t6时刻,即认为目前的t6时刻为终端设备在PHR触发后第一次上行数据新传的传输时刻。
以此类推,如图4中的程序流程图所示,终端设备可继续监听控制信道,每当监听到调度的PUSCH的时刻在当前最新的第一上行数据传输时刻之前的PDCCH时,重复执行上述步 骤以更新第一上行数据传输时刻,然后继续监听,直至最新的第一上行数据传输时刻之前的k时长的时刻到来。
需要说明的是,虽未示出,但图3中示出的三个组合载波的子载波间隔可以不同。在实际的应用场景中,某一终端包括的多个组合载波中,可以存在部分载波的子载波间隔相同,或者不相同,本申请实施例对此不作具体限制。
在步骤S202的具体实施中,终端设备可根据第一上行数据传输时刻和第一时长,确定第一时刻,该第一时刻为在第一上行数据传输时刻之前,且距离该第一上行传输时刻的时长等于第一时长的时刻。
具体来说,若终端设备在监听到第一控制信道后,未在第二时刻前监听到调度的上行数据的传输时刻在第三时刻之前的控制信道,那么该第一时刻为第三时刻之前,距离第三时刻的时长为第一时长的时刻;若终端设备监听到第一控制信道后,在第二时刻到来前监听到了第二控制信道,且该第二控制信道调度的上行数据的传输时刻(即第四时刻)早于第三时刻,那么该第一时刻为第四时刻之前,距离第四时刻的时长为第一时长的时刻。
再例如,在图3所示的示例中,若终端设备仅监听到了PDCCH1,那么该第一时刻为t2-k时刻;若终端设备监听到了PDCCH1和PDCCH2,那么该第一时刻为t4-k时刻;若终端设备监听到了PDCCH1、PDCCH2和PDCCH3,那么该第一时刻为t6-k时刻。需要说明的是,在终端设备实际监听的过程中,第一时刻也是随着最新的第一上行数据传输时刻在同步更新的。也就是说,终端设备监听到PDCCH1之后,可将t2-k时刻作为初始的第一时刻,若后面没有监听到其它调度的上行数据的传输时刻在t2时刻之前的控制信道,可将该t2-k时刻作为最终的第一时刻。而当终端设备因监听到调度的上行数据在t4时刻的PDCCH2时,终端设备可将第一上行数据传输时刻更新为t4时刻,同时一并将第一时刻由之前的t2-k时刻,更新为t4-k时刻。当后续在监听到调度的PUSCH比t4时刻更早的PDCCH时,也按照同样的方法,更新第一上行数据传输时间和第一时刻,直至最新的第一时刻到来。
在步骤S203的具体实施中,终端设备可根据在该第一时刻之前监听到的控制信道,计算PH值,并在第一上行数据传输时刻向网络设备发送PHR。更具体的,终端设备可根据在PHR触发之后至第一时刻之间监听到的控制信道,计算PH值,并在第一上行数据传输时刻向网络设备发送PHR。其中,终端设备计算PH值具体指示,终端设备根据在第一上行数据传输时刻时,在各个载波上进行所有数据传输所需的功率,计算功率余量。而且,在第一上行数据传输时刻进行的数据传输,可以包括网络设备调度的数据新传、数据重传、或者网络设备半静态配置的数据传输中的任一种或多种类型的数据传输,本申请实施例对此不作具体限制。
具体来说,终端设备在计算PH值时,若在第一时刻之前,在某一组合载波CC上监听到的控制信道,那么PHR中对应该CC的PH类型为real(实际的),相应地,在该CC上PH的计算方法可采用real类型对应的计算公式;否则,若某一CC上没有监听到控制信道,PHR中对应该CC的PH类型就为virtual(虚拟的),相应地,在该CC上PH的计算方法可采用real类型对应的计算公式。
在此,需要说明一下本申请实施例中PH的real和virtual两种类型。real类型的PH是指,某个CC上有实际的数据传输,该数据传输可能包括新的数据传输、之前数据的重复传输,或半静态配置的数据传输中的任一种或几种,终端设备基于这些实际的数据传输来计算功率余量;而virtual类型的PH是指,CC上没有实际的数据传输,终端设备基于一个参考格式来 计算的功率余量。可以看出,相比virtual类型,基于实际传输计算的real类型的功率余量对网络设备来说更具有价值,网络设备根据real类型的功率余量,可对上行资源进行更准确的调度,从而提高上行资源利用率。
需要说明的是,本申请实施例中,所述第一时刻是用来界定终端设备根据监听到的哪些控制信道计算PH值的一个时间节点。为了在PHR触发后,利用网络设备调度的第一次上行数据新传的上行资源发送PHR报告,终端设备必须在第一上行数据传输时刻到来前,打包好待发送的PHR,该第一时刻即指终端设备根据之前监听到的控制信道,计算PH值,进行数据处理的开始时间节点。在该第一时刻之后,网络设备可能会继续发送控制信道,新发送的控制信道调度的上行资源可能在第一上行数据传输时刻之前或之后,但是为了给终端设备留出对PH值的计算、处理时间,终端设备在计算PH值时,便不再考虑这部分控制信道了。
本申请实施例中,终端设备中包括有一个或多个PHR事件,这些PHR事件可以在预设的触发条件满足时被触发,也可以在预设的时间节点到来时被触发。本申请实施例中,所述的“PHR触发”即是指终端设备的某个PHR事件被触发。当某个PHR触发后,便触发了本申请实施例中如步骤S201至步骤S203中所描述的确定第一上行数据传输时刻,并发送PHR的方法流程。
进一步地,终端设备在发送所述PHR之后,可以删除已触发的PHR事件,也可以保留已触发的PHR事件。由此可见,若网络设备在第一时刻至第一上行数据传输时刻之间,仍会发送为终端设备调度上行资源的控制信道,那么终端设备在发送PHR后,可保留已触发的PHR事件,如此,终端设备可在第一时刻后监听到新的控制信道时,通过该控制信道调度的上行资源再次传输PHR,从而可使网络设备可及时获知终端设备真实、准确的功率余量情况,使得对终端设备的上行资源调度和分配更加合理。
此外,终端设备发送的PHR中,还可进一步包括用于指示终端设备是否进行了功率借用的第一指示信息。
基于相同的发明构思,本申请实施例还提供另一种应用于网络设备侧的通信方法,以使终端设备发送的PHR更加符合终端设备的实际传输情况,参照图5所示,该方法包括如下步骤:
步骤S501:网络设备确定第一上行数据传输时刻和第一时长;
步骤S502:所述网络设备在所述第一上行数据传输时刻之前的所述第一时长范围内,忽略发送第三控制信道。
在本申请实施例中,若网络设备已知终端设备的PHR触发时刻,那么网络设备可根据该PHR触发时刻,和网络设备向终端发送的各个控制信道,确定该第一上行数据传输时刻。该第一上行数据传输时刻即为,网络设备为终端设备调度的第一次上行数据传输的传输时刻,更具体的,该第一上行数据传输时刻还可以为,网络设备为终端设备调度的第一次上行数据新传的传输时刻。
所述第一时长与终端设备终端的第一时长相同,该第一时长可以为预设规则(如通信协议)确定的设定参数值,也可以是网络设备自身配置的参数值并存储在本地的,进而再发送给终端设备的,本申请实施例对此不作限制。
在步骤S502的具体实施中,网络设备在确定第一上行数据传输时刻和第一时长后,可在该第一上行数据传输时刻之前的第一时长范围内,忽略发送第三控制信道。在一种可能的设 计中,忽略发送第三控制信道可以是指,不发送第三控制信道,其中,该第三控制信道调度的上行数据的传输时刻可以在第一上行数据传输时刻之前或之后,本申请实施例对此不做具体限制。如此,由于终端设备在PH值时不会考虑网络设备在第一时刻至第一上行数据传输时刻之间发送的控制信道,那么如果网络设备也不在第一上行数据传输时刻之前的第一时长范围内发送第三控制信道,那么在网络设备与终端设备相互配合下,可使得终端设备计算的PH值更加准确,更符合在第一上行数据传输时刻实际进行的数据传输情况。
举例来说,结合图3,若终端设备监听到了PDCCH1、PDCCH2和PDCCH3,本申请实施例中网络设备不发送第三控制信道具体是指,网络设备不在t6-k至t6时刻之间发送调度的上行资源在t6时刻前的PDCCH4。
基于相同的发明构思,本申请实施例还提供另一种应用于网络设备侧的通信方法,该方法同样具有使终端设备发送的PHR更加符合终端设备的实际传输情况的作用,参照图6所示,该方法包括如下步骤:
步骤S601:网络设备确定第一上行数据传输时刻和第一时长;
步骤S602:所述网络设备若在所述第一上行数据传输时刻之前的所述第一时长范围内,向终端设备发送了第三控制信道,则根据所述终端设备发送的功率余量PH报告,确定所述PH的类型。
具体的,上述步骤S601的具体实施方式可与步骤S501中的描述一致,本申请实施例在此不再赘述。
在步骤S602的具体实施中,网络设备可能未得知终端设备的PHR触发时刻,或者也有可能网络设备在知道终端设备的PHR触发时刻的情况下,仍旧在第一上行数据传输时刻之前的第一时长范围内,发送了第三控制信道,那么网络设备在接收到终端设备发送的PHR报告后,可根据终端设备反馈的功率余量报告,确定功率余量的类型。
如前所述,本申请实施例中,功率余量包括真实的(real)和虚拟的(virtual)两种类型,如果终端设备在上报的PHR中指示某个CC上的PH类型为virtual类型,而网络设备在第一上行数据传输时刻之前的第一时长范围内的该CC上发送了第三控制信道,那么网络设备可以认为终端设备反馈的该CC上的PH类型是不准确的,可忽略终端设备反馈的该CC的PH类型,并确定该CC的实际PH类型是real类型。
本申请实施例还提供一种终端设备,请参见图7所示,为本申请实施例提供的一种终端设备的结构示意图,如图7所示,所述终端设备包括:
处理模块710,用于确定第一上行数据传输时刻和第一时长;根据所述第一上行数据传输时刻和所述第一时长,确定第一时刻;根据所述第一时刻监听控制信道;
收发模块720,用于根据监听的控制信道,发送功率余量报告PHR。
在一种可能的设计中,所述第一上行数据传输时刻包括,所述终端设备在PHR触发后的第一次上行数据传输的传输时刻;所述第一时刻为,所述第一上行数据传输时刻之前,且距离所述第一上行数据传输时刻的时长为所述第一时长的时刻。
在一种可能的设计中,所述处理模块710具体用于:在监听到第一控制信道后,若未在第二时刻前监听到调度的上行数据的传输时刻在第三时刻之前的控制信道,则将所述第三时刻作为所述第一上行数据传输时刻,所述第三时刻为所述第一控制信道调度的上行数据的传输时刻,所述第二时刻为所述第三时刻之前,且距离所述第三时刻的时长为所述第一时长的 时刻。
在一种可能的设计中,所述处理模块710还具体用于:在监听到所述第一控制信道后,若在所述第二时刻前监听到第二控制信道,则将第四时刻作为所述第一上行数据传输时刻,所述第四时刻为所述第二控制信道调度的上行数据的传输时刻,所述第四时刻在所述第三时刻之前。
在一种可能的设计中,所述处理模块710还用于:在所述收发模块702发送所述PHR之后,保留已触发的PHR事件。
在一种可能的设计中,所述PHR中包括第一指示信息,所述第一指示信息用于指示所述终端设备是否进行了功率借用。
应理解,本发明实施例中的处理模块710可以由处理器或处理器相关电路组件实现,收发模块720可以由收发器或收发器相关电路组件实现。
请参见图8所示,为本申请实施例中提供的终端设备的另一种结构示意图。如图8所示,终端设备800包括:处理器810,存储器820与收发器830,其中,存储器820中存储指令或程序,处理器810用于执行存储器820中存储的指令或程序。存储器820中存储的指令或程序被执行时,该处理器810用于执行上述实施例中处理模块710执行的操作,收发器830用于执行上述实施例中收发模块720执行的操作。
应理解,根据本发明实施例的终端设备700或终端设备800可对应于本发明实施例的通信方法S201至S203中的终端设备,并且终端设备700或终端设备800中的各个模块的操作和/或功能分别为了实现图2、图5、图6中的各个方法的相应流程,为了简洁,在此不再赘述。
基于相同的发明构思,本申请实施例还提供一种网络设备,请参见图9所示,为本申请实施例提供的一种网络设备的结构示意图,如图9所示,所述网络设备包括:处理模块910和收发模块920。
在一种可能的设计中,所述处理模块910,用于确定第一上行数据传输时刻和第一时长;
所述收发模块920,用于在所述第一上行数据传输时刻之前的所述第一时长范围内,不发送第三控制信道。
在另一种可能的设计中,所述处理模块910,用于确定第一上行数据传输时刻和第一时长;
所述收发模块920,用于若确定在所述第一上行数据传输时刻之前的所述第一时长范围内,通过收发模块向终端设备发送了第三控制信道,则根据所述终端设备发送的功率余量PH报告,确定所述PH的类型。
应理解,本发明实施例中的处理模块910可以由处理器或处理器相关电路组件实现,收发模块920可以由收发器或收发器相关电路组件实现。
请参见图10所示,为本申请实施例中提供的网络设备的另一种结构示意图。如图10所示,该网络设备1000包括处理器1010,存储器1020与收发器1030,其中,存储器1020中存储指令或程序,处理器1010用于执行存储器1020中存储的指令或程序。存储器1020中存储的指令或程序被执行时,该处理器1010用于执行上述实施例中处理模块920执行的操作,收发器1030用于执行上述实施例中收发模块910执行的操作。
应理解,根据本发明实施例的网络设备900或网络设备1000可对应于本发明实施例的通 信方法中S501至S502中的网络设备,或者通信方法中S601至S602中的网络设备,并且网络设备900或网络设备1000中的各个模块的操作和/或功能分别为了实现图5或图6中的各个方法的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供一种通信装置,该通信装置可以是终端设备也可以是电路。该通信装置可以用于执行上述方法实施例中由终端设备所执行的动作。
当该通信装置为终端设备时,图11示出了一种简化的终端设备的结构示意图。便于理解和图示方便,图11中,终端设备以手机作为例子。如图11所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图11中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。如图11所示,终端设备包括收发单元1110和处理单元1120。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元1110中用于实现接收功能的器件视为接收单元,将收发单元1110中用于实现发送功能的器件视为发送单元,即收发单元1110包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元1110用于执行上述方法实施例中终端设备侧的发送操作和接收操作,处理单元1120用于执行上述方法实施例中终端设备上除了收发操作之外的其他操作。
例如,在一种实现方式中,收发单元1110用于执行图2中终端设备侧的发送操作,和/或收发单元1110还用于执行本申请实施例中终端设备侧的其他收发步骤。处理单元1120,用于执行图2中的步骤S201,和/或处理单元1120还用于执行本申请实施例中终端设备侧的其他处理步骤。
当该通信装置为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。
本实施例中的通信装置为终端设备时,可以参照图12所示的设备。作为一个例子,该设备可以完成类似于图8中处理器810的功能。在图12中,该设备包括处理器1210,发送数据处理器1220,接收数据处理器1230。上述实施例中的处理模块710可以是图12中的该处 理器1210,并完成相应的功能。上述实施例中的收发模块720可以是图12中的发送数据处理器1220,和/或接收数据处理器1230。虽然图12中示出了信道编码器、信道解码器,但是可以理解这些模块并不对本实施例构成限制性说明,仅是示意性的。
图13示出本实施例的另一种形式。处理装置1300中包括调制子***、中央处理子***、周边子***等模块。本实施例中的通信装置可以作为其中的调制子***。具体的,该调制子***可以包括处理器1303,接口1304。其中处理器1303完成上述处理模块710的功能,接口1304完成上述收发模块720的功能。作为另一种变形,该调制子***包括存储器1306、处理器1303及存储在存储器1306上并可在处理器上运行的程序,该处理器1303执行该程序时实现上述方法实施例中终端设备侧的方法。需要注意的是,所述存储器1306可以是非易失性的,也可以是易失性的,其位置可以位于调制子***内部,也可以位于处理装置1300中,只要该存储器1306可以连接到所述处理器1303即可。
作为本实施例的另一种形式,提供一种计算机可读存储介质,其上存储有指令,该指令被执行时执行上述方法实施例中终端设备侧的方法。
作为本实施例的另一种形式,提供一种包含指令的计算机程序产品,该指令被执行时执行上述方法实施例中终端设备侧的方法。
本申请实施例还提供一种计算机可读存储介质,所述计算机存储介质中存储有计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机执行上述任一方法实施例中网络设备侧的方法。
本申请实施例提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述任一方法实施例中网络设备侧的方法。
本申请实施例提供一种芯片,所述芯片与存储器相连,用于读取并执行所述存储器中存储的软件程序,以实现上述任一方法实施例中终端设备侧的方法。
本申请实施例提供一种芯片,所述芯片与存储器相连,用于读取并执行所述存储器中存储的软件程序,以实现上述任一方法实施例中网络设备侧的方法。
本申请实施例提供一种通信***,该***包括终端设备和网络设备,其中,终端设备可用于执行上述任一方法实施例中终端设备侧的方法,网络设备可用于执行上述任一方法实施例中网络设备侧的方法。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同 步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
还应理解,本文中涉及的第一、第二、第三、第四以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请的范围。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (23)

  1. 一种通信方法,其特征在于,所述方法包括:
    确定第一上行数据传输时刻和第一时长;
    根据所述第一上行数据传输时刻和所述第一时长,确定第一时刻,并根据所述第一时刻监听控制信道;
    根据监听的控制信道,发送功率余量报告PHR。
  2. 根据权利要求1所述的方法,其特征在于,所述第一上行数据传输时刻包括,在PHR触发后的第一次上行数据传输的传输时刻;
    所述第一时刻为,所述第一上行数据传输时刻之前,且距离所述第一上行数据传输时刻的时长为所述第一时长的时刻。
  3. 根据权利要求1或2所述的方法,其特征在于,确定第一上行数据传输时刻,包括:
    监听到第一控制信道后,若未在第二时刻前监听到调度的上行数据的传输时刻在第三时刻之前的控制信道,则将所述第三时刻作为所述第一上行数据传输时刻,所述第三时刻为所述第一控制信道调度的上行数据的传输时刻,所述第二时刻为所述第三时刻之前,且距离所述第三时刻的时长为所述第一时长的时刻。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    监听到所述第一控制信道后,若在所述第二时刻前监听到第二控制信道,则将第四时刻作为所述第一上行数据传输时刻,所述第四时刻为所述第二控制信道调度的上行数据的传输时刻,所述第四时刻在所述第三时刻之前。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,根据监听的控制信道,发送PHR之后,还包括:保留已触发的PHR事件。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述PHR中包括第一指示信息,所述第一指示信息用于指示是否进行了功率借用。
  7. 如权利要求1至6中任一项所述的方法,其特征还包括,上述第一时长是多个第二时长中最长的时长,所述第二时长对应子载波间隔。
  8. 一种通信方法,其特征在于,所述方法包括:
    网络设备确定第一上行数据传输时刻和第一时长;
    所述网络设备在所述第一上行数据传输时刻之前的所述第一时长范围内,忽略发送第三控制信道。
  9. 一种通信方法,其特征在于,所述方法包括:
    网络设备确定第一上行数据传输时刻和第一时长;
    所述网络设备若在所述第一上行数据传输时刻之前的所述第一时长范围内,向终端设备发送了第三控制信道,则根据所述终端设备发送的功率余量PH报告,确定所述PH的类型。
  10. 一种通信装置,其特征在于,所述装置包括:
    处理模块,用于确定第一上行数据传输时刻和第一时长;根据所述第一上行数据传输时刻和所述第一时长,确定第一时刻;根据所述第一时刻监听控制信道;
    收发模块,用于根据监听的控制信道,发送功率余量报告PHR。
  11. 根据权利要求10所述的通信装置,其特征在于,所述第一上行数据传输时刻包括,所述通信装置在PHR触发后的第一次上行数据传输的传输时刻;
    所述第一时刻为,所述第一上行数据传输时刻之前,且距离所述第一上行数据传输时刻的时长为所述第一时长的时刻。
  12. 根据权利要求10或11所述的通信装置,其特征在于,所述处理模块具体用于:
    所述通信装置监听到第一控制信道后,若未在第二时刻前监听到调度的上行数据的传输时刻在第三时刻之前的控制信道,则将所述第三时刻作为所述第一上行数据传输时刻,所述第三时刻为所述第一控制信道调度的上行数据的传输时刻,所述第二时刻为所述第三时刻之前,且距离所述第三时刻的时长为所述第一时长的时刻。
  13. 根据权利要求12所述的通信装置,其特征在于,所述处理模块还具体用于:
    监听到所述第一控制信道后,若在所述第二时刻前监听到第二控制信道,则将第四时刻作为所述第一上行数据传输时刻,所述第四时刻为所述第二控制信道调度的上行数据的传输时刻,所述第四时刻在所述第三时刻之前。
  14. 根据权利要求10至13中任一项所述的通信装置,其特征在于,所述处理模块还用于:
    在所述收发模块发送所述PHR之后,保留已触发的PHR事件。
  15. 根据权利要求10至14中任一项所述的通信装置,其特征在于,所述PHR中包括第一指示信息,所述第一指示信息用于指示所述通信装置是否进行了功率借用。
  16. 如权利要求10至15中任一项所述的通信装置,其特征还包括,上述第一时长是多个第二时长中最长的时长,所述第二时长对应子载波间隔。
  17. 一种网络设备,其特征在于,所述装置包括:
    处理模块,用于确定第一上行数据传输时刻和第一时长;
    收发模块,用于在所述第一上行数据传输时刻之前的所述第一时长范围内,忽略发送第三控制信道。
  18. 一种网络设备,其特征在于,所述装置包括:
    处理模块,用于确定第一上行数据传输时刻和第一时长;
    收发模块,用于若确定在所述第一上行数据传输时刻之前的所述第一时长范围内,通过收发模块向终端设备发送了第三控制信道,则根据所述终端设备发送的功率余量PH报告,确定所述PH的类型。
  19. 一种通信装置,其特征在于,包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合:
    所述至少一个处理器,用于执行所述至少一个存储器中存储的计算机程序或指令,以使得所述装置执行如权利要求1至7中任一项所述的方法。
  20. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序或指令,当计算机读取并执行所述计算机程序或指令时,使得计算机执行如权利要求1至7中任意一项所述的方法。
  21. 一种计算机程序,其特征在于,所述计算机程序被执行时,运行如权利要求1至9中任意一项所述的方法。
  22. 一种通信***,包括如权利要求10至16中任意一项所述的通信装置。
  23. 如权利要求21的通信***,其特征还包括,如权利要求17或18的网络设备。
PCT/CN2019/100075 2018-08-10 2019-08-09 一种通信方法及装置 WO2020030147A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19848081.6A EP3823365A4 (en) 2018-08-10 2019-08-09 COMMUNICATION METHOD AND DEVICE
JP2021507050A JP7451492B2 (ja) 2018-08-10 2019-08-09 通信方法および装置
US17/171,826 US20210168734A1 (en) 2018-08-10 2021-02-09 Communication method and apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810911035.9 2018-08-10
CN201810911035 2018-08-10
CN201811415971.7A CN110831141A (zh) 2018-08-10 2018-11-26 一种通信方法及装置
CN201811415971.7 2018-11-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/171,826 Continuation US20210168734A1 (en) 2018-08-10 2021-02-09 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2020030147A1 true WO2020030147A1 (zh) 2020-02-13

Family

ID=69414044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100075 WO2020030147A1 (zh) 2018-08-10 2019-08-09 一种通信方法及装置

Country Status (1)

Country Link
WO (1) WO2020030147A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102573032A (zh) * 2012-02-16 2012-07-11 电信科学技术研究院 一种功率余量上报的方法、***和设备
US20160205681A1 (en) * 2013-08-14 2016-07-14 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving data using multiple carriers in mobile communication system
CN106162853A (zh) * 2015-03-24 2016-11-23 中兴通讯股份有限公司 功率余量上报phr处理方法、装置、终端及基站
CN107371229A (zh) * 2016-05-13 2017-11-21 中兴通讯股份有限公司 功率控制方法、装置及用户设备
CN107682923A (zh) * 2016-08-01 2018-02-09 北京三星通信技术研究有限公司 功率余量上报的方法及相应的用户设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102573032A (zh) * 2012-02-16 2012-07-11 电信科学技术研究院 一种功率余量上报的方法、***和设备
US20160205681A1 (en) * 2013-08-14 2016-07-14 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving data using multiple carriers in mobile communication system
CN106162853A (zh) * 2015-03-24 2016-11-23 中兴通讯股份有限公司 功率余量上报phr处理方法、装置、终端及基站
CN107371229A (zh) * 2016-05-13 2017-11-21 中兴通讯股份有限公司 功率控制方法、装置及用户设备
CN107682923A (zh) * 2016-08-01 2018-02-09 北京三星通信技术研究有限公司 功率余量上报的方法及相应的用户设备

Similar Documents

Publication Publication Date Title
JP6151445B2 (ja) Tdd−fddキャリアアグリゲーションのためのharqタイムライン
US9391743B2 (en) Method and apparatus for defining HARQ functionality for cells having different time division duplex subframe configurations
WO2020020180A1 (zh) 一种资源配置方法及装置
US20150043398A1 (en) Techniques for Device-to-Device Communications
WO2019095212A1 (zh) 无线通信的方法、终端设备和网络设备
KR20230019969A (ko) 타이밍 어드밴스(ta) 결정 방법, 네트워크 디바이스 및 단말
WO2019157733A1 (zh) 物理上行共享信道传输方法和终端设备
TW201818706A (zh) 通訊方法、終端和網路設備
WO2020088088A1 (zh) 一种数据传输方法及终端设备
JP7483806B2 (ja) 通信方法および通信装置
KR20220038425A (ko) 전력 절감 신호 전송 방법, 기지국 및 단말 기기
EP3836647A1 (en) Power determination method and device
EP4133669A1 (en) Processing time for fast-switched ul tx across carriers
WO2018171461A1 (zh) 信息传输方法、装置及***
CN108809606A (zh) 信道状态信息反馈的方法与装置
WO2021056587A1 (zh) 一种通信方法及装置
WO2022022591A1 (zh) 一种测量方法及装置
WO2020057564A1 (zh) 一种能力信息发送、接收方法及设备
US20220225394A1 (en) Communication method and communications apparatus
WO2020030147A1 (zh) 一种通信方法及装置
US20230421340A1 (en) Implicit update of activated tci states
WO2019100344A1 (zh) 双注册终端设备无线通信的方法、网络设备和终端设备
US20210168734A1 (en) Communication method and apparatus
WO2020097920A1 (zh) 参数重配的方法和装置
WO2022151266A1 (zh) 一种媒体接入访问mac信令适用时间的确定方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19848081

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021507050

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019848081

Country of ref document: EP

Effective date: 20210215