WO2020029772A1 - 同步信号块位置的指示及获取方法、基站、终端、介质 - Google Patents

同步信号块位置的指示及获取方法、基站、终端、介质 Download PDF

Info

Publication number
WO2020029772A1
WO2020029772A1 PCT/CN2019/096780 CN2019096780W WO2020029772A1 WO 2020029772 A1 WO2020029772 A1 WO 2020029772A1 CN 2019096780 W CN2019096780 W CN 2019096780W WO 2020029772 A1 WO2020029772 A1 WO 2020029772A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronization signal
signal block
offset information
theoretical
actual
Prior art date
Application number
PCT/CN2019/096780
Other languages
English (en)
French (fr)
Inventor
周欢
周化雨
Original Assignee
北京展讯高科通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京展讯高科通信技术有限公司 filed Critical 北京展讯高科通信技术有限公司
Priority to EP19848733.2A priority Critical patent/EP3836652A4/en
Priority to US17/265,881 priority patent/US20210185626A1/en
Publication of WO2020029772A1 publication Critical patent/WO2020029772A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0055Synchronisation arrangements determining timing error of reception due to propagation delay
    • H04W56/006Synchronisation arrangements determining timing error of reception due to propagation delay using known positions of transmitter and receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a method for indicating and acquiring a synchronization signal block, a base station, a terminal, and a medium.
  • the 3rd Generation Partnership Project (the 3rd Generation, Partnership Project, 3GPP) standards organization will study how to deploy a New Radio (NR) network on unlicensed spectrum, so as to achieve fair and effective use of unlicensed spectrum and improve the NR system.
  • NR's use of unlicensed spectrum includes: 1) the NR cell of the unlicensed spectrum serves as the primary cell; 2) the user equipment (User Equipment) accesses the NR cell of the unlicensed spectrum through Long Term Evolution (LTE); ) The UE accesses the NR cell of the unlicensed spectrum through the NR cell.
  • LTE Long Term Evolution
  • the UE and an evolved base station may work on the licensed spectrum and the unlicensed spectrum at the same time. Therefore, the solutions 2) and 3) are also called NR-U (new RAT unlicense) technology.
  • NR-U new RAT unlicense
  • Licensed, Assisted, Accessing, LAA can adopt the Listen-Before-Talk (LBT) process to achieve the coexistence of different operators LAA and other systems in the unlicensed spectrum.
  • LBT process is as follows: In an unlicensed spectrum, a node first determines whether the current channel is available through Clear Channel Detection (CCA) before transmitting data.
  • CCA Clear Channel Detection
  • the base station uses a fixed time window to transmit the synchronization signal, and there are cases where transmission opportunities are lost due to LBT failure.
  • the base station can wait to transmit the synchronization signal until the next synchronization signal is sent, but it needs to wait for a long time.
  • the base station can perform multiple CCA detections, and after any successful CCA detection, the synchronization signal can be transmitted.
  • the above solution will cause the actual transmission position of the synchronization signal to be different from the theoretical transmission position, and affect the cell synchronization performed by the UE.
  • the embodiments of the present invention solve the technical problem that the UE's cell synchronization is affected because the actual transmission location of the SSB does not match the theoretical location.
  • an embodiment of the present invention provides a method for indicating the position of a synchronization signal block, including: obtaining position offset information between an actual transmission position of the synchronization signal block and the theoretical transmission position; Sending the synchronization signal block to a user terminal at a location, where the synchronization signal block carries the position offset information; so that the user terminal determines the theory based on the position offset information and the actual transmission position Send location for synchronization.
  • the position offset information is indicated by an initial sequence of PBCH and DMRS in the synchronization signal block.
  • the position offset information is: the number of synchronization signal blocks whose theoretical transmission positions are offset relative to the actual transmission positions.
  • the position offset information is: the number of time slots in which the theoretical transmission position is offset relative to the actual transmission position.
  • An embodiment of the present invention further provides a method for acquiring a position of a synchronization signal block, including: receiving a synchronization signal block issued by a base station; and obtaining a theoretical transmission position and an actual transmission position of the synchronization signal block from the synchronization signal block. Position offset information between the two; based on the position offset information and the actual transmission position, determining a theoretical transmission position of the synchronization signal block and performing synchronization.
  • the acquiring position offset information between a theoretical transmission position and an actual transmission position of the synchronization signal block from the synchronization signal block includes: an initial sequence of PBCH and DMRS in the synchronization signal block Instruct to acquire the position offset information.
  • the position offset information is: the number of synchronization signal blocks whose theoretical transmission positions are offset relative to the actual transmission positions.
  • the position offset information is: the number of time slots in which the theoretical transmission position is offset relative to the actual transmission position.
  • An embodiment of the present invention further provides a base station, including: a first obtaining unit, configured to obtain position offset information between an actual sending position of a synchronization signal block and the theoretical sending position; a sending unit, configured to The synchronization signal block is sent to the user terminal at the actual sending position, and the synchronization signal block carries the position offset information; so that the user terminal determines the location based on the position offset information and the actual transmission position.
  • the theoretical sending position is described for synchronization.
  • the position offset information is indicated by an initial sequence of PBCH and DMRS in the synchronization signal block.
  • the position offset information is: the number of synchronization signal blocks whose theoretical transmission positions are offset relative to the actual transmission positions.
  • the position offset information is: the number of time slots in which the theoretical transmission position is offset relative to the actual transmission position.
  • An embodiment of the present invention further provides a user terminal, including: a receiving unit for receiving a synchronization signal block issued by a base station; and a second obtaining unit for obtaining the synchronization signal block from the synchronization signal block.
  • Position offset information between a theoretical transmission position and an actual transmission position a determining unit, configured to determine and synchronize a theoretical transmission position of the synchronization signal block according to the position offset information and the actual transmission position.
  • the second obtaining unit is configured to obtain the position offset information from an initial sequence indication of PBCH and DMRS in the synchronization signal block.
  • the position offset information is: the number of synchronization signal blocks whose theoretical transmission positions are offset relative to the actual transmission positions.
  • the position offset information is: the number of time slots in which the theoretical transmission position is offset relative to the actual transmission position.
  • An embodiment of the present invention further provides a computer-readable storage medium having computer instructions stored thereon, where the computer instructions execute the steps of the method for indicating a position of a synchronization signal block according to any one of the foregoing.
  • An embodiment of the present invention further provides another computer-readable storage medium having computer instructions stored thereon.
  • the computer instructions run, the steps of the method for acquiring a synchronization signal block location according to any one of the foregoing are performed.
  • An embodiment of the present invention further provides a base station, which includes a memory and a processor.
  • the memory stores computer instructions that can run on the processor, and the processor executes any one of the foregoing when the computer instructions are run. The steps of the method for indicating the position of a synchronization signal block.
  • An embodiment of the present invention further provides a user terminal including a memory and a processor.
  • the memory stores computer instructions that can be run on the processor, and the processor executes any one of the foregoing when the computer instructions are run.
  • the location offset information is indicated to the user terminal in the synchronization signal block transmitted to the user terminal.
  • the user terminal may determine the theoretical transmission position of the synchronization signal block according to the position offset information and the actual transmission position of the synchronization signal block, and perform corresponding synchronization operations.
  • the user terminal can know the theoretical transmission position of the synchronization signal block, so that the user terminal can avoid the influence caused by the actual transmission position of the synchronization signal block being different from the theoretical transmission position.
  • FIG. 1 is a flowchart of a method for indicating a position of a synchronization signal block according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a position shift of a synchronization signal block in an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a position shift of another synchronization signal block in an embodiment of the present invention.
  • FIG. 4 is a flowchart of a method for acquiring a position of a synchronization signal block according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a user terminal according to an embodiment of the present invention.
  • the base station uses a fixed time window to transmit the synchronization signal, and there are cases where transmission opportunities are lost due to LBT failure.
  • the base station can wait to transmit the synchronization signal until the next synchronization signal is sent, but it needs to wait for a long time.
  • the base station can perform multiple CCA detections, and after any successful CCA detection, the synchronization signal can be transmitted.
  • the above solution will cause the actual transmission position of the synchronization signal to be different from the theoretical transmission position, and affect the cell synchronization performed by the UE.
  • the user terminal by indicating the position offset information to the user in the synchronization signal block, the user terminal can know the theoretical sending position of the synchronization signal block, so that the user terminal can avoid the actual sending position and theory of the synchronization signal block. Impact of different sending locations.
  • An embodiment of the present invention provides a method for indicating the position of a synchronization signal block. Referring to FIG. 1, detailed description is provided below through specific steps.
  • Step S101 Obtain position offset information between an actual transmission position and a theoretical transmission position of a synchronization signal block.
  • the base station may perform clear channel assessment (CCA) detection.
  • CCA clear channel assessment
  • the base station may send a synchronization signal block to the user terminal, and the synchronization signal block may carry a synchronization signal.
  • the base station can send a synchronization signal block to a user terminal when certain conditions are met, and the synchronization signal is carried by the synchronization signal block.
  • the base station sets a synchronization signal transmission period, and the base station sends a synchronization signal block to the user terminal at a timing of the synchronization signal transmission period.
  • the position of the synchronization signal block is the theoretical transmission position of the synchronization signal block.
  • the base station may not be able to complete the transmission of the synchronization signal block. Therefore, the base station can send the synchronization signal block at other locations. The actual sending position of the signal block.
  • the actual transmission position of the synchronization signal block may be different from the theoretical transmission position of the synchronization signal block.
  • the base station may first obtain the actual transmission position of the synchronization signal block and the theoretical transmission position of the synchronization signal block, and obtain the position offset between the actual transmission position and the theoretical transmission position. information.
  • the position offset information between the theoretical transmission position and the actual transmission position may be: the number of synchronization signal blocks whose theoretical transmission position is offset from the actual transmission position.
  • FIG. 2 a schematic diagram of a position shift of a synchronization signal block in an embodiment of the present invention is shown.
  • the theoretical transmission position of the first synchronization signal block is position 21
  • the theoretical transmission position of the second synchronization signal block is position 22
  • the position 21 and the position 22 are within the same time slot 1.
  • Position 21 includes symbols 2, 3, 4, and 5, and position 22 includes symbols 8, 9, 10, and 11.
  • the first synchronization signal block fails to be transmitted at position 21, so the first synchronization signal block can be transmitted at position 22. That is, the first synchronization signal block occupies the theoretical transmission position of the second synchronization signal block. Therefore, the actual transmission position of the second synchronization signal block can be extended to the theoretical transmission position of the third synchronization signal block in the next time slot. And so on.
  • the position offset information is: the number of synchronization signal blocks whose theoretical transmission position is offset from the actual transmission position is 1.
  • the position offset information between the theoretical sending position and the actual sending position may also be: the number of time slots in which the theoretical sending position is offset from the actual sending position.
  • FIG. 3 a schematic diagram of a position shift of another synchronization signal block in an embodiment of the present invention is shown.
  • the theoretical transmission position of the first synchronization signal block is position 31, and the theoretical transmission position of the second synchronization signal block is position 32. Since the base station cannot successfully send the first synchronization signal block and the second synchronization signal block in time slot 1, the first synchronization signal block can be sent at position 33 in time slot 2, and the second synchronization signal block can be sent in time slot 2.
  • Sent on location 34 Position 33 is the theoretical transmission position of the third synchronization signal block, and position 34 is the theoretical transmission position of the fourth synchronization signal block.
  • the theoretical transmission position of the third synchronization signal block is occupied by the first synchronization signal block and the theoretical transmission position of the fourth synchronization signal block is occupied by the second synchronization signal block, the actual transmission position of the third synchronization signal block can be Extending to the next time slot, the theoretical sending position of the fourth synchronization signal block can also be extended to the next time slot.
  • the position offset information is: the number of time slots in which the theoretical transmission position is offset relative to the actual transmission position is 1.
  • Step S102 Send the synchronization signal block to a user terminal at the actual sending position.
  • the base station may send the synchronization signal block to the user terminal at the actual sending position of the synchronization signal block.
  • the synchronization signal block may carry position offset information.
  • the user terminal After receiving the synchronization signal block issued by the base station, the user terminal can obtain the position offset information from it.
  • the user terminal may determine the theoretical transmission position of the synchronization signal block according to the position offset information and the actual transmission position of the synchronization signal block, and perform corresponding cell synchronization operations.
  • the base station may demodulate an initial sequence of a reference signal (Demodulation Reference Signal, DMRS) through a physical broadcast channel (Physical Broadcast Channel, PBCH), and indicate position offset information to a user terminal.
  • DMRS Demodulation Reference Signal
  • PBCH Physical Broadcast Channel
  • the base station before the base station sends the synchronization signal block to the user terminal, for each synchronization signal block, the base station can obtain position offset information between the actual transmission position and the theoretical transmission position of the synchronization signal block.
  • the corresponding sequence offset information is indicated to the user through the initial sequence of PBCH and DMRS in the synchronization signal block.
  • the corresponding position offset information is 0.
  • the actual transmission position of the synchronization signal block is different from the theoretical transmission position, the actual transmission position is later than the time period of the theoretical transmission position. Therefore, after acquiring the position offset information, when the user terminal calculates the theoretical transmission position based on the actual transmission position, the user terminal can move the actual transmission position forward by the offset corresponding to the position offset information.
  • the offset corresponding to the position offset information carried is one synchronization signal block.
  • the user terminal can know that the theoretical sending position of the first synchronization signal block is: the position corresponding to a synchronization signal block before the actual sending position.
  • the user terminal by indicating the position offset information to the user in the synchronization signal block, the user terminal can know the theoretical sending position of the synchronization signal block, so that the user terminal can avoid the actual signal synchronization block.
  • An embodiment of the present invention further provides a method for acquiring a position of a synchronization signal block. Referring to FIG. 4, detailed description is provided below through specific steps.
  • Step S401 Receive a synchronization signal block issued by a base station.
  • the base station may send a synchronization signal block to the user terminal, so that the user terminal performs a corresponding cell synchronization operation according to the received synchronization signal block.
  • the base station when the base station sends the synchronization signal block to the user terminal, the base station may select a position to send the synchronization signal block, and the selected position may be simply referred to as the actual transmission position of the synchronization signal block.
  • the synchronization signal block issued by the base station carries position offset information between the actual transmission position and the theoretical transmission position of the synchronization signal block.
  • the base station may indicate the position offset information to the user terminal through the initial sequence of PBCH and DMRS.
  • Step S402 Obtain position offset information between a theoretical transmission position and an actual transmission position of the synchronization signal block from the synchronization signal block.
  • the user terminal after receiving the synchronization signal block issued by the base station, the user terminal can obtain the position offset information therefrom.
  • the user terminal may analyze the received synchronization signal block, and obtain position offset information from the initial sequence of PBCH and DMRS in the analyzed synchronization signal block.
  • Step S403 Determine a theoretical transmission position of the synchronization signal block and perform synchronization according to the position offset information and the actual transmission position.
  • the user terminal may determine the theoretical sending position of the synchronization signal block according to the position offset information and the actual sending position of the synchronization signal block, and perform corresponding cell synchronization operations.
  • the position offset information acquired by the user terminal is offset by one synchronization signal block. Therefore, the user terminal can know that the theoretical transmission position of the synchronization signal block is: the position of the previous synchronization signal block of the actual transmission position.
  • a base station 50 including: a first obtaining unit 51 and a sending unit 52, where:
  • a first acquiring unit 51 configured to acquire position offset information between an actual sending position of the synchronization signal block and the theoretical sending position
  • a sending unit 52 configured to send the synchronization signal block to a user terminal at the actual sending position, where the synchronization signal block carries the position offset information; so that the user terminal can And the actual sending position, determining the theoretical sending position for synchronization.
  • the position offset information may be indicated by an initial sequence of PBCH and DMRS in the synchronization signal block.
  • the position offset information may be: the number of synchronization signal blocks whose theoretical transmission positions are offset relative to the actual transmission positions.
  • the position offset information may be: the number of time slots in which the theoretical transmission position is offset relative to the actual transmission position.
  • an embodiment of the present invention further provides a user terminal 60, including: a receiving unit 61, a second obtaining unit 62, and a determining unit 63, where:
  • a receiving unit 61 configured to receive a synchronization signal block issued by a base station
  • a second acquiring unit 62 configured to acquire position offset information between a theoretical transmission position and an actual transmission position of the synchronization signal block from the synchronization signal block;
  • a determining unit 63 is configured to determine a theoretical sending position of the synchronization signal block and perform synchronization according to the position offset information and the actual sending position.
  • the second obtaining unit 62 may be configured to obtain the position offset information from an initial sequence indication of a PBCH and DMRS in the synchronization signal block.
  • the position offset information is: the number of synchronization signal blocks whose theoretical transmission position is offset relative to the actual transmission position.
  • the position offset information is: the number of time slots in which the theoretical transmission position is offset relative to the actual transmission position.
  • An embodiment of the present invention further provides a computer-readable storage medium having computer instructions stored thereon.
  • the computer instruction executes the steps of the method for indicating a synchronization signal block location provided by any one of the foregoing embodiments of the present invention.
  • An embodiment of the present invention further provides another computer-readable storage medium having computer instructions stored thereon.
  • the steps of the method for acquiring a synchronization signal block location provided by any one of the foregoing embodiments of the present invention are executed.
  • An embodiment of the present invention further provides another base station, including a memory and a processor.
  • the memory stores computer instructions that can run on the processor, and the processor executes the foregoing of the present invention when the processor runs the computer instructions. Steps of the method for indicating the position of a synchronization signal block provided by any embodiment.
  • An embodiment of the present invention further provides another user terminal, including a memory and a processor.
  • the memory stores computer instructions executable on the processor, and the processor executes the present invention when the processor runs the computer instructions. Steps of the method for acquiring a position of a synchronization signal block provided by any of the foregoing embodiments.
  • the program may be stored in a computer-readable storage medium.
  • the storage medium may include: ROM, RAM, disk or optical disc, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种同步信号块位置的指示及获取方法、基站、终端、介质,所述指示方法包括:获取同步信号块的实际发送位置与所述理论发送位置之间的位置偏移信息;在所述实际发送位置上向用户终端发送所述同步信号块,所述同步信号块中携带有所述位置偏移信息;使得所述用户终端根据所述位置偏移信息以及所述实际发送位置,确定所述理论发送位置以进行同步。采用上述方案,用户终端可以避免因同步信号块的实际发送位置与理论发送位置不同对小区同步产生的影响。

Description

同步信号块位置的指示及获取方法、基站、终端、介质
本申请要求于2018年08月08日提交中国专利局、申请号为201810897194.8、发明名称为“同步信号块位置的指示及获取方法、基站、终端、介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及无线通信领域,尤其涉及一种同步信号块的指示及获取方法、基站、终端、介质。
背景技术
第三代合作伙伴项目(the 3rd Generation Partnership Project,3GPP)标准组织将研究在非授权频谱上如何部署新空口(New Radio,NR)网络,从而达到公平有效地利用非授权频谱,提高NR***的数据传输速率。NR对非授权频谱的使用包括:1)非授权频谱的NR小区做主小区;2)用户设备(User Equipment,UE)通过长期演进(Long Term Evolution,LTE)接入非授权频谱的NR小区;3)UE通过NR小区接入非授权频谱的NR小区。上述的方案2)和方案3)中,UE、演进型基站(evolved Node B,gNB)可能同时工作在授权频谱和非授权频谱上。因此,方案2)和方案3)又称为NR-U(new RAT unlicense)技术。
辅助授权接入(Licensed Assisted Accessing,LAA)可以采用先听后说(Listen-Before-Talk,LBT)过程实现非授权频谱中不同运营商LAA及其他***的共存。LBT过程为:在非授权频谱中节点在传 输数据前先通过空闲信道检测(Clear Channel Assessment,CCA)判断当前信道是否可用。
在现有技术中,基站采用固定时间窗口传输同步信号,存在因LBT失败而导致传输机会丢失的情况。当传输机会丢失时,基站可以等到下一个同步信号的发送时刻传输同步信号,但是需要等待较长的一段时间。为降低等待时长,基站可以进行多次CCA检测,在任一次CCA检测成功后,即可传输同步信号。但是,上述方案会造成同步信号的实际发送位置与理论发送位置不符,对UE进行的小区同步造成影响。
发明内容
本发明实施例解决的是UE因SSB的实际发送位置与理论位置不符而导致UE的小区同步受到影响的技术问题。
为解决上述技术问题,本发明实施例提供一种同步信号块位置的指示方法,包括:获取同步信号块的实际发送位置与所述理论发送位置之间的位置偏移信息;在所述实际发送位置上向用户终端发送所述同步信号块,所述同步信号块中携带有所述位置偏移信息;使得所述用户终端根据所述位置偏移信息以及所述实际发送位置,确定所述理论发送位置以进行同步。
可选的,所述位置偏移信息由所述同步信号块中的PBCH DMRS的初始序列指示。
可选的,所述位置偏移信息为:所述理论发送位置相对于所述实际发送位置偏移的同步信号块的个数。
可选的,所述位置偏移信息为:所述理论发送位置相对于所述实际发送位置偏移的时隙的个数。
本发明实施例还提供了一种同步信号块位置的获取方法,包括:接收基站下发的同步信号块;从所述同步信号块中,获取所述同步信 号块的理论发送位置与实际发送位置之间的位置偏移信息;根据所述位置偏移信息以及所述实际发送位置,确定所述同步信号块的理论发送位置并进行同步。
可选的,所述从所述同步信号块中获取所述同步信号块的理论发送位置与实际发送位置之间的位置偏移信息,包括:从所述同步信号块中的PBCH DMRS的初始序列指示,获取所述位置偏移信息。
可选的,所述位置偏移信息为:所述理论发送位置相对于所述实际发送位置偏移的同步信号块的个数。
可选的,所述位置偏移信息为:所述理论发送位置相对于所述实际发送位置偏移的时隙的个数。
本发明实施例还提供了一种基站,包括:第一获取单元,用于获取同步信号块的实际发送位置与所述理论发送位置之间的位置偏移信息;发送单元,用于在所述实际发送位置上向用户终端发送所述同步信号块,所述同步信号块中携带有所述位置偏移信息;使得所述用户终端根据所述位置偏移信息以及所述实际发送位置,确定所述理论发送位置以进行同步。
可选的,所述位置偏移信息由所述同步信号块中的PBCH DMRS的初始序列指示。
可选的,所述位置偏移信息为:所述理论发送位置相对于所述实际发送位置偏移的同步信号块的个数。
可选的,所述位置偏移信息为:所述理论发送位置相对于所述实际发送位置偏移的时隙的个数。
本发明实施例还提供了一种用户终端,包括:接收单元,用于接收基站下发的同步信号块;第二获取单元,用于从所述同步信号块中,获取所述同步信号块的理论发送位置与实际发送位置之间的位置偏移信息;确定单元,用于根据所述位置偏移信息以及所述实际发送位置,确定所述同步信号块的理论发送位置并进行同步。
可选的,所述第二获取单元,用于从所述同步信号块中的PBCH DMRS的初始序列指示,获取所述位置偏移信息。
可选的,所述位置偏移信息为:所述理论发送位置相对于所述实际发送位置偏移的同步信号块的个数。
可选的,所述位置偏移信息为:所述理论发送位置相对于所述实际发送位置偏移的时隙的个数。
本发明实施例还提供了一种计算机可读存储介质,其上存储有计算机指令,所述计算机指令运行时执行上述任一种所述的同步信号块位置的指示方法的步骤。
本发明实施例还提供了另一种计算机可读存储介质,其上存储有计算机指令,所述计算机指令运行时执行上述任一种所述的同步信号块位置的获取方法的步骤。
本发明实施例还提供了一种基站,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机指令,所述处理器运行所述计算机指令时执行上述任一种所述的同步信号块位置的指示方法的步骤。
本发明实施例还提供了一种用户终端,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机指令,所述处理器运行所述计算机指令时执行上述任一种所述的同步信号块位置的获取方法的步骤。
与现有技术相比,本发明实施例的技术方案具有以下有益效果:
当判定同步信号块的实际发送位置与理论发送位置不同时,在向用户终端发送的同步信号块中,向用户终端指示位置偏移信息。用户终端可以根据位置偏移信息以及同步信号块的实际发送位置,确定同步信号块的理论发送位置,并进行相应的同步操作。通过在同步信号块中向用户指示位置偏移信息,可以使得用户终端获知同步信号块的理论发送位置,从而使得用户终端可以避免因同步信号块的实际发送 位置与理论发送位置不同产生的影响。
附图说明
图1是本发明实施例中的一种同步信号块位置的指示方法的流程图;
图2是本发明实施例中的一种同步信号块的位置偏移的示意图;
图3是本发明实施例中的另一种同步信号块的位置偏移的示意图;
图4是本发明实施例中的一种同步信号块位置的获取方法的流程图;
图5是本发明实施例中的一种基站的结构示意图;
图6是本发明实施例中的一种用户终端的结构示意图。
具体实施方式
在现有技术中,基站采用固定时间窗口传输同步信号,存在因LBT失败而导致传输机会丢失的情况。当传输机会丢失时,基站可以等到下一个同步信号的发送时刻传输同步信号,但是需要等待较长的一段时间。为降低等待时长,基站可以进行多次CCA检测,在任一次CCA检测成功后,即可传输同步信号。但是,上述方案会造成同步信号的实际发送位置与理论发送位置不符,对UE进行的小区同步造成影响。
在本发明实施例中,通过在同步信号块中向用户指示位置偏移信息,可以使得用户终端获知同步信号块的理论发送位置,从而使得用户终端可以避免因同步信号块的实际发送位置与理论发送位置不同产生的影响。
为使本发明的上述目的、特征和有益效果能够更为明显易懂,下 面结合附图对本发明的具体实施例做详细的说明。
本发明实施例提供了一种同步信号块位置的指示方法,参照图1,以下通过具体步骤进行详细说明。
步骤S101,获取同步信号块的实际发送位置与理论发送位置之间的位置偏移信息。
在具体实施中,基站可以进行空闲信道评估(CCA)检测。当通过CCA检测时,可以判定当前信道可用。在判定当前信道可用之后,基站可以向用户终端下发同步信号块,同步信号块可以承载有同步信号。
在实际应用中可知,在满足一定条件时基站可以向用户终端下发同步信号块,同步信号由同步信号块承载。例如,基站设置有同步信号发送周期,基站以同步信号发送周期定时向用户终端下发同步信号块。具体的基站向用户终端下发同步信号块的原理及流程可以参照现有技术,此处不做赘述。
在本发明实施例中,基站以同步信号发送周期定时向用户终端下发同步信号块时,同步信号块的位置为同步信号块的理论发送位置。当未通过CCA检测时,虽然处于同步信号发送周期,但是基站可能无法完成同步信号块的发送,因此,基站可以在其他位置发送同步信号块,此时,基站发送同步信号块的位置简称为同步信号块的实际发送位置。
换而言之,同步信号块的实际发送位置与同步信号块的理论发送位置可能并不相同。
在具体实施中,基站在向用户终端发送同步信号块之前,可以先获取同步信号块的实际发送位置以及同步信号块的理论发送位置,并获取实际发送位置与理论发送位置之间的位置偏移信息。
在本发明实施例中,理论发送位置与实际发送位置之间的位置偏移信息可以为:理论发送位置相对于实际发送位置偏移的同步信号块 的个数。
参照图2,给出了本发明实施例中的一种同步信号块的位置偏移的示意图。图2中,第一同步信号块的理论发送位置为位置21,第二同步信号块的理论发送位置为位置22,且位置21与位置22处于均时隙1内。位置21包括符号2、3、4、5,位置22包括符号8、9、10、11。
由于当前信道不可用,第一同步信号块在位置21上发送失败,因此,第一同步信号块可以在位置22上发送。也就是说,第一同步信号块占用了第二同步信号块的理论发送位置,因此,第二同步信号块的实际发送位置可以顺延到下一个时隙中的第三同步信号块的理论发送位置,以此类推。
针对图2中的应用场景,位置偏移信息为:理论发送位置相对于实际发送位置偏移的同步信号块的个数为1。
在本发明实施例中,理论发送位置与实际发送位置之间的位置偏移信息也可以为:理论发送位置相对于实际发送位置偏移的时隙个数。
参照图3,给出了本发明实施例中的另一种同步信号块的位置偏移的示意图。图3中,第一同步信号块的理论发送位置为位置31,第二同步信号块的理论发送位置为位置32。由于在时隙1基站未能够成功发送第一同步信号块以及第二同步信号块,因此,第一同步信号块可以在时隙2的位置33上发送,第二同步信号块可以在时隙2的位置34上发送。位置33为第三同步信号块的理论发送位置,位置34为第四同步信号块的理论发送位置。
相应地,由于第三同步信号块的理论发送位置被第一同步信号块占用,第四同步信号块的理论发送位置被第二同步信号块占用,因此,第三同步信号块的实际发送位置可以顺延至下一时隙,第四同步信号块的理论发送位置同样可以顺延至下一个时隙。
针对图3中的应用场景,位置偏移信息为:理论发送位置相对于实际发送位置偏移的时隙的个数为1。
步骤S102,在所述实际发送位置上向用户终端发送所述同步信号块。
在具体实施中,基站可以在同步信号块的实际发送位置上,向用户终端发送同步信号块。在同步信号块中,可以携带有位置偏移信息。用户终端在接收到基站下发的同步信号块之后,即可从中获取位置偏移信息。用户终端可以根据位置偏移信息以及同步信号块的实际发送位置,确定同步信号块的理论发送位置,并进行相应的小区同步操作。
在本发明实施例中,基站可以通过物理广播信道(Physical Broadcast Channel,PBCH)解调参考信号(Demodulation Reference Signal,DMRS)的初始序列,向用户终端指示位置偏移信息。
在本发明实施例中,基站在向用户终端下发同步信号块之前,针对每一个同步信号块,基站均可以获取该同步信号块的实际发送位置与理论发送位置之间的位置偏移信息,并通过该同步信号块中的PBCH DMRS的初始序列向用户指示相应的位置偏移信息。
需要说明的是当该同步信号块的实际发送位置与理论发送位置相同时,其对应的位置偏移信息为0。此外,通常情况下,当同步信号块的实际发送位置与理论发送位置不同时,实际发送位置要晚于理论发送位置的时间段。因此,用户终端在获取到位置偏移信息后,在根据实际发送位置计算理论发送位置时,可以将实际发送位置前移位置偏移信息对应的偏移量。
例如,在第一同步信号块中,携带的位置偏移信息对应的偏移量为1个同步信号块。用户终端可以获知,第一同步信号块的理论发送位置为:实际发送位置之前的一个同步信号块对应的位置。
由此可见,在本发明实施例中,通过在同步信号块中向用户指示位置偏移信息,可以使得用户终端获知同步信号块的理论发送位置, 从而使得用户终端可以避免因同步信号块的实际发送位置与理论发送位置不同产生的影响。
本发明实施例还提供了一种同步信号块位置的获取方法,参照图4,以下通过具体步骤进行详细说明。
步骤S401,接收基站下发的同步信号块。
在具体实施中,基站可以向用户终端下发同步信号块,以使得用户终端根据接收到的同步信号块进行相应的小区同步操作。
在具体实施中,基站在向用户终端下发同步信号块时,可以选择发送同步信号块的位置,所选定的位置可以简称为同步信号块的实际发送位置。基站下发的同步信号块中,携带有同步信号块的实际发送位置与理论发送位置之间的位置偏移信息。
在本发明实施例中,基站可以通过PBCH DMRS的初始序列,向用户终端指示位置偏移信息。
步骤S402,从所述同步信号块中,获取所述同步信号块的理论发送位置与实际发送位置之间的位置偏移信息。
在具体实施中,用户终端在接收到基站下发的同步信号块之后,即可从中获取位置偏移信息。
在本发明实施例中,用户终端可以对接收到的同步信号块进行解析,从解析的同步信号块中的PBCH DMRS的初始序列中,获知位置偏移信息。
步骤S403,根据所述位置偏移信息以及所述实际发送位置,确定所述同步信号块的理论发送位置并进行同步。
在具体实施中,用户终端可以根据位置偏移信息以及同步信号块的实际发送位置,确定同步信号块的理论发送位置,并进行相应的小区同步操作。
例如,用户终端获取到的位置偏移信息为偏移1个同步信号块。 因此,用户终端可以获知同步信号块的理论发送位置为:实际发送位置的前一个同步信号块的位置。
在具体实施中,步骤S401~步骤S403的具体流程及原理可以参照步骤S101~步骤S102,此处不做赘述。
参照图5,给出了本发明实施例中的一种基站50,包括:第一获取单元51以及发送单元52,其中:
第一获取单元51,用于获取同步信号块的实际发送位置与所述理论发送位置之间的位置偏移信息;
发送单元52,用于在所述实际发送位置上向用户终端发送所述同步信号块,所述同步信号块中携带有所述位置偏移信息;使得所述用户终端根据所述位置偏移信息以及所述实际发送位置,确定所述理论发送位置以进行同步。
在具体实施中,所述位置偏移信息可以由所述同步信号块中的PBCH DMRS的初始序列指示。
在具体实施中,所述位置偏移信息可以为:所述理论发送位置相对于所述实际发送位置偏移的同步信号块的个数。
在具体实施中,所述位置偏移信息可以为:所述理论发送位置相对于所述实际发送位置偏移的时隙的个数。
参照图6,本发明实施例还提供了一种用户终端60,包括:接收单元61、第二获取单元62以及确定单元63,其中:
接收单元61,用于接收基站下发的同步信号块;
第二获取单元62,用于从所述同步信号块中,获取所述同步信号块的理论发送位置与实际发送位置之间的位置偏移信息;
确定单元63,用于根据所述位置偏移信息以及所述实际发送位置,确定所述同步信号块的理论发送位置并进行同步。
在具体实施中,所述第二获取单元62,可以用于从所述同步信号块中的PBCH DMRS的初始序列指示,获取所述位置偏移信息。
在具体实施中,所述位置偏移信息为:所述理论发送位置相对于所述实际发送位置偏移的同步信号块的个数。
在具体实施中,所述位置偏移信息为:所述理论发送位置相对于所述实际发送位置偏移的时隙的个数。
本发明实施例还提供了一种计算机可读存储介质,其上存储有计算机指令,所述计算机指令运行时执行本发明上述任一实施例提供的同步信号块位置的指示方法的步骤。
本发明实施例还提供了另一种计算机可读存储介质,其上存储有计算机指令,所述计算机指令运行时执行本发明上述任一实施例提供的同步信号块位置的获取方法的步骤。
本发明实施例还提供了另一种基站,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机指令,所述处理器运行所述计算机指令时执行本发明上述任一实施例提供的同步信号块位置的指示方法的步骤。
本发明实施例还提供了另一种用户终端,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机指令,所述处理器运行所述计算机指令时执行本发明上述任一实施例提供的同步信号块位置的获取方法的步骤。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指示相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:ROM、RAM、磁盘或光盘等。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (19)

  1. 一种同步信号块位置的指示方法,其特征在于,包括:
    获取同步信号块的实际发送位置与理论发送位置之间的位置偏移信息;
    在所述实际发送位置上向用户终端发送所述同步信号块,所述同步信号块中携带有所述位置偏移信息;使得所述用户终端根据所述位置偏移信息以及所述实际发送位置,确定所述理论发送位置以进行同步。
  2. 如权利要求1所述的同步信号块位置的指示方法,其特征在于,所述位置偏移信息由所述同步信号块中的PBCH DMRS的初始序列指示。
  3. 如权利要求1所述的同步信号块位置的指示方法,其特征在于,所述位置偏移信息为:所述理论发送位置相对于所述实际发送位置偏移的同步信号块的个数。
  4. 如权利要求1所述的同步信号块位置的指示方法,其特征在于,所述位置偏移信息为:所述理论发送位置相对于所述实际发送位置偏移的时隙的个数。
  5. 一种同步信号块位置的获取方法,其特征在于,包括:
    接收基站下发的同步信号块;
    从所述同步信号块中,获取所述同步信号块的理论发送位置与实际发送位置之间的位置偏移信息;
    根据所述位置偏移信息以及所述实际发送位置,确定所述同步信号块的理论发送位置并进行同步。
  6. 如权利要求5所述的同步信号块位置的获取方法,其特征在于,所述从所述同步信号块中获取所述同步信号块的理论发送位置与实际发送位置之间的位置偏移信息,包括:
    从所述同步信号块中的PBCH DMRS的初始序列指示,获取所述位置偏移信息。
  7. 如权利要求5所述的同步信号块位置的获取方法,其特征在于,所述位置偏移信息为:所述理论发送位置相对于所述实际发送位置偏移的同步信号块的个数。
  8. 如权利要求5所述的同步信号块位置的获取方法,其特征在于,所述位置偏移信息为:所述理论发送位置相对于所述实际发送位置偏移的时隙的个数。
  9. 一种基站,其特征在于,包括:
    第一获取单元,用于获取同步信号块的实际发送位置与理论发送位置之间的位置偏移信息;
    发送单元,用于在所述实际发送位置上向用户终端发送所述同步信号块,所述同步信号块中携带有所述位置偏移信息;使得所述用户终端根据所述位置偏移信息以及所述实际发送位置,确定所述理论发送位置以进行同步。
  10. 如权利要求9所述的基站,其特征在于,所述位置偏移信息由所述同步信号块中的PBCH DMRS的初始序列指示。
  11. 如权利要求9所述的基站,其特征在于,所述位置偏移信息为:所述理论发送位置相对于所述实际发送位置偏移的同步信号块的个数。
  12. 如权利要求9所述的基站,其特征在于,所述位置偏移信息为:所述理论发送位置相对于所述实际发送位置偏移的时隙的个数。
  13. 一种用户终端,其特征在于,包括:
    接收单元,用于接收基站下发的同步信号块;
    第二获取单元,用于从所述同步信号块中,获取所述同步信号块的理论发送位置与实际发送位置之间的位置偏移信息; 确定单元,用于根据所述位置偏移信息以及所述实际发送位置,确定所述同步信号块的理论发送位置并进行同步。
  14. 如权利要求13所述的用户终端,其特征在于,所述第二获取单元,用于从所述同步信号块中的PBCH DMRS的初始序列指示,获取所述位置偏移信息。
  15. 如权利要求13所述的用户终端,其特征在于,所述位置偏移信息为:所述理论发送位置相对于所述实际发送位置偏移的同步信号块的个数。
  16. 如权利要求13所述的用户终端,其特征在于,所述位置偏移信息为:所述理论发送位置相对于所述实际发送位置偏移的时隙的个数。
  17. 一种计算机可读存储介质,其上存储有计算机指令,其特征在于,所述计算机指令运行时执行权利要求1~4任一项所述的方法的步骤或权利要求5~8任一项所述的方法的步骤。
  18. 一种基站,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机指令,其特征在于,所述处理器运行所述计算机指令时执行权利要求1~4任一项所述的同步信号块位置的指示方法的步骤。
  19. 一种用户终端,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机指令,其特征在于,所述处理器运行所述计算机指令时执行权利要求5~8任一项所述的同步信号块位置的获取方法的步骤。
PCT/CN2019/096780 2018-08-08 2019-07-19 同步信号块位置的指示及获取方法、基站、终端、介质 WO2020029772A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19848733.2A EP3836652A4 (en) 2018-08-08 2019-07-19 METHOD FOR INDICATING AND ACQUIRING THE POSITION OF A SYNCHRONIZATION SIGNAL BLOCK, BASE STATION, TERMINAL AND SUPPORT
US17/265,881 US20210185626A1 (en) 2018-08-08 2019-07-19 Method for indicating position of synchronization signal block, method for acquiring position of synchronization signal block, base station, terminal and medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810897194.8 2018-08-08
CN201810897194.8A CN110831143B (zh) 2018-08-08 2018-08-08 同步信号块位置的指示及获取方法、基站、终端、介质

Publications (1)

Publication Number Publication Date
WO2020029772A1 true WO2020029772A1 (zh) 2020-02-13

Family

ID=69415374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/096780 WO2020029772A1 (zh) 2018-08-08 2019-07-19 同步信号块位置的指示及获取方法、基站、终端、介质

Country Status (4)

Country Link
US (1) US20210185626A1 (zh)
EP (1) EP3836652A4 (zh)
CN (1) CN110831143B (zh)
WO (1) WO2020029772A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112511331A (zh) * 2020-07-28 2021-03-16 中兴通讯股份有限公司 Oam信息块定位方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102404840A (zh) * 2010-09-13 2012-04-04 株式会社Ntt都科摩 无线***中的节点及其时间和频率同步方法
US20180035416A1 (en) * 2016-05-20 2018-02-01 Lg Electronics Inc. Method and apparatus for handling dc subcarrier in nr carrier in wireless communication system
CN108235435A (zh) * 2016-12-15 2018-06-29 华为技术有限公司 一种资源指示方法及装置
WO2018133132A1 (zh) * 2017-01-20 2018-07-26 华为技术有限公司 同步方法及设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105991211B (zh) * 2015-01-28 2020-01-21 ***通信集团公司 非授权频段下的参考信号发送方法、接收方法及装置
CN106686604A (zh) * 2015-11-06 2017-05-17 中兴通讯股份有限公司 一种信号处理方法及基站
JP7018059B2 (ja) * 2016-12-07 2022-02-09 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおけるnrに対する制御チャンネルを構成するための方法及び装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102404840A (zh) * 2010-09-13 2012-04-04 株式会社Ntt都科摩 无线***中的节点及其时间和频率同步方法
US20180035416A1 (en) * 2016-05-20 2018-02-01 Lg Electronics Inc. Method and apparatus for handling dc subcarrier in nr carrier in wireless communication system
CN108235435A (zh) * 2016-12-15 2018-06-29 华为技术有限公司 一种资源指示方法及装置
WO2018133132A1 (zh) * 2017-01-20 2018-07-26 华为技术有限公司 同步方法及设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Synchronization Signal Sequence Design Consideration", 3GPP TSG-RAN WG1 NR ADHOC R1-1700787, 20 January 2017 (2017-01-20), XP051208308 *
See also references of EP3836652A4 *

Also Published As

Publication number Publication date
CN110831143A (zh) 2020-02-21
US20210185626A1 (en) 2021-06-17
EP3836652A1 (en) 2021-06-16
EP3836652A4 (en) 2022-04-27
CN110831143B (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
CN106664586B (zh) 用户装置、基站以及时间差信息通知方法
US11178561B2 (en) Method for radio link monitoring and corresponding user equipment
RU2638030C1 (ru) Способ и устройство для синхронизации связи усройство-устройство
EP3096481B1 (en) Signal transmission method and apparatus
EP3216289B1 (en) Transmission of discovery reference signals on unlicensed carrier in a wireless network
TWI434578B (zh) 用於不同無線電存取技術之間的共存的設備和方法
WO2016070704A1 (zh) 一种在非授权频段上的数据传输方法及装置
WO2019157905A1 (zh) 参考信号的发送及接收方法、基站、终端、可读介质
US20240236882A1 (en) Method and system for determination of synchronization signal (ss) block mapping pattern in a wireless network
AU2020400880B2 (en) Methods providing information messages including RACH reports and related wireless devices
US20150382173A1 (en) Method and Apparatus for Detecting D2D Discovery Sequences, Method and Apparatus for Receiving D2D Data
CN112425248B (zh) Nr未许可频谱中的rlm的增强型rs传输
JP2023026511A (ja) 信号の送信方法、受信方法、送信装置、受信装置及び通信システム
US11997519B2 (en) Method and apparatus for receiving and transmitting configuration information and communication system
WO2021066703A1 (en) Methods providing rach reports and related wireless devices and radio access network nodes
WO2020029772A1 (zh) 同步信号块位置的指示及获取方法、基站、终端、介质
WO2017156711A1 (zh) 信号发送的方法和基站
WO2021230788A1 (en) Methods of handling random access reports and related devices and nodes
WO2019157907A1 (zh) 参考信号的发送及接收方法、基站、终端、存储介质及***
CN107113275A (zh) 一种数据传输方法、装置和***
CN115428483B (zh) 一种随机接入方法及终端设备
WO2016180352A1 (zh) 用户设备、基站及相关方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19848733

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019848733

Country of ref document: EP

Effective date: 20210309