WO2020029233A1 - 上报信道状态信息的方法和装置 - Google Patents

上报信道状态信息的方法和装置 Download PDF

Info

Publication number
WO2020029233A1
WO2020029233A1 PCT/CN2018/099907 CN2018099907W WO2020029233A1 WO 2020029233 A1 WO2020029233 A1 WO 2020029233A1 CN 2018099907 W CN2018099907 W CN 2018099907W WO 2020029233 A1 WO2020029233 A1 WO 2020029233A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
resource
resources
channel state
state information
Prior art date
Application number
PCT/CN2018/099907
Other languages
English (en)
French (fr)
Inventor
李雪茹
张瑞齐
刘鹍鹏
刘显达
周永行
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2018/099907 priority Critical patent/WO2020029233A1/zh
Priority to CN201880095876.5A priority patent/CN112470419B/zh
Priority to EP18929752.6A priority patent/EP3832933B1/en
Publication of WO2020029233A1 publication Critical patent/WO2020029233A1/zh
Priority to US17/171,627 priority patent/US11888563B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI

Definitions

  • the present application relates to the field of communications, and in particular, to a method and an apparatus for reporting channel state information in the field of communications.
  • the terminal equipment moves from the center of the coverage area of a base station to the edge area of the base station due to the movement.
  • the edge area is located within the coverage area of multiple base stations. Therefore, other signal transmissions will cause strong interference to the terminal device, making the data transmission performance of the terminal device very poor.
  • LTE long term evolution
  • NR new radio
  • multi-TRP multi-station coordinated transmission
  • the multi-station joint transmission includes coherent joint transmission (CJT) or non-coherent joint transmission (NCJT).
  • CJT coherent joint transmission
  • NCJT non-coherent joint transmission
  • CJT requires dynamic information exchange between multiple base stations, and data scheduling decisions can be made dynamically based on the information (such as CSI) of each base station, which requires high interaction delay between base stations; NCJT does not require The dynamic exchange of information between base stations requires lower interaction delay and is more suitable for network deployment.
  • the terminal device can measure and report the CSI under each mechanism according to the channel state information reference signal (CSI-RS) sent by each of the multiple base stations, and then The base station makes data scheduling decisions; or, the terminal device can measure CSI under multiple transmission mechanisms according to the CSI-RS sent by the base station, and recommend a transmission mechanism to the base station as reference information for subsequent data scheduling decisions.
  • CSI-RS channel state information reference signal
  • each base station individually decides on the transmission of CSI-RS, the triggering of CSI reporting, and the scheduling of data, which will cause the CSI measured by the terminal device for each serving base station at a certain time to not accurately reflect the channel conditions during subsequent data scheduling, especially It is the interference situation experienced by the data sent by each base station, which causes the data demodulation performance of the above multi-TRP transmission mechanism to be severely reduced. Therefore, how to avoid the dynamic interaction of information and improve the accuracy of CSI measurement results has become an urgent technical problem.
  • the present application provides a method and a device for reporting channel state information, which can avoid dynamic interaction of information and at the same time help to improve the accuracy of CSI measurement results.
  • a method for reporting channel state information including: a terminal device receives M downlink control information, and the first downlink control information in the M downlink control information indicates a first channel state information configuration;
  • the first channel state information configuration is associated with a first channel state information interference measurement CSI-IM resource group, the first CSI-IM resource group includes N 1 CSI-IM resources, M and N 1 are positive integers, and N 1 is greater than 1;
  • the terminal device measures a target CSI-IM resource and reports channel state information, and the target CSI-IM resource is determined by the terminal device from the N 1 CSI-IM resources according to M, the The number of target CSI-IM resources is less than N 1 .
  • a terminal device may receive downlink control information from multiple network devices (specifically, it may be a serving base station), and is used to trigger the terminal device to report CSI.
  • the embodiment of the present application measures CSI based on a pre-scheduling method.
  • pre-scheduling means that the serving base station makes a semi-static agreement, that is, if each serving base station wants to schedule data for the terminal device at time t + k, the serving base station sends downlink control information at time t, triggering Interrelated CSI report (CSI report). That is, there is a certain correlation between the CSI reports triggered by each serving base station.
  • the CSI report triggered by the downlink control information sent by each serving base station is associated with the CSI-RS resource and the CSI-IM resource group of the serving base station.
  • the DCI of each base station will only trigger the CSI and its own CSI-RS and CSI-IM resources associated with the CSI, and there is no need to trigger the CSI-RS resources of other base stations (that is, there is no need to make decisions for other base stations, or to know other Base station decisions). In this way, the serving base station needs to know each other's scheduling strategy and CSI measurement decision, and avoids the delay caused by the interactive information.
  • the first DCI indicates a first CSI configuration
  • the first CSI configuration is associated with at least two CSI-IM resources, and two types of CSI exist in the at least two CSI-IM resources.
  • -IM resources These two types of CSI-IM resources correspond to different transmission mechanisms, that is, to measure interference information under different transmission mechanisms. Therefore, the terminal device can determine whether the future data transmission mechanism is multi-site joint transmission or single-site transmission according to the number of received DCIs (ie, M), and then select a target CSI-IM resource from the two types of CSI-IM resources. Obtain interference information by measuring target CSI-IM resources. Further, the terminal device can measure CSI-RS resources and perform channel measurement.
  • a terminal device determines a transmission mechanism used for future data transmission according to the number of received downlink control information, and selects a target CSI-IM from at least two CSI-IM resources. Resources perform interference measurement and report channel state information, which can avoid dynamic interaction of information, and at the same time, it helps to improve the accuracy of CSI measurement results, thereby improving system performance.
  • the second CSI-IM resource group when M ⁇ 2, among the M downlink control information, there is second downlink control information indicating a second channel state information configuration, and the second The channel state information configuration is associated with a second CSI-IM resource group, the second CSI-IM resource group includes N 2 CSI-IM resources, the first channel state information configuration and the second channel state information configuration It has an association relationship, and N 2 is a positive integer.
  • the terminal device receives at least two downlink control information sent from at least two network devices, and the CSI configurations indicated by the at least two downlink control information are related to each other, it means that there is at least two network device needs Schedule the terminal device for data transmission at the same time.
  • the first DCI indicates the first CSI configuration
  • the second DCI indicates the second CSI configuration
  • the first CSI configuration is associated with N 1 CSI-IM resources
  • the second CSI configuration is associated with N 2 CSI-IM resources.
  • the first CSI configuration has an association relationship with the second CSI configuration.
  • association relationship specifically means that both the first CSI configuration and the second CSI configuration can be used for multi-TRP transmission. This can be achieved in multiple ways, which is not limited in the embodiments of the present application.
  • the first channel state information configuration is the same as the second channel state information configuration.
  • the content of the first CSI configuration and the second CSI configuration may be completely the same. It should be understood that the first CSI configuration is the same as the second CSI configuration, which may mean that the resources associated with the first CSI configuration and the second CSI configuration are completely the same, or it may mean that the second CSI configuration is the first CSI configuration.
  • the first CSI configuration is also associated with N 2 CSI-IM resources, and the N 2 CSI-IM resources include the first type CSI-IM resources and / or second-type CSI-IM resources, the first type of CSI-IM resources are used to measure interference information under a multi-station joint transmission mechanism, and the second type of CSI-IM resources are used to measure single-site transmission Interference information under the mechanism, N 2 is a positive integer.
  • the content of the first CSI configuration and the second CSI configuration may also be different.
  • the first CSI configuration and the second CSI configuration can be configured with different reporting content, for example, the first CSI configuration reports a rank indication (RI), a type I (Type I) precoding matrix indicator (precoding matrix indicator), PMI) and at least one of channel quality indicator (CQI), and the second CSI configuration reports at least one of RI, TypeII, PMI, and CQI; for another example, the PMI in the first CSI configuration is based on 16 ports
  • the codebook and the PMI in the second CSI configuration are based on a 32-port codebook, which is not limited in this embodiment of the present application.
  • the parameters of the two CSI configurations are not exactly the same, which can be more flexible and more suitable for different situations such as antenna structures and processing capabilities of different base stations in the actual system.
  • the network device may indicate the association relationship between the first CSI configuration and the second CSI configuration by using the first indication information and / or the fourth indication information.
  • the first indication information and / or the fourth indication information may be carried in radio resource control (RRC) signaling, or may be carried in DCI, which is not limited in this embodiment of the present application.
  • RRC radio resource control
  • the first channel state information configuration carries first indication information, or the first downlink control information carries the first indication information, and the The first indication information is used to indicate that the first channel state information configuration is associated with the second channel state information configuration.
  • the first indication information may indicate that the first channel state information configuration is associated with the second channel state information configuration by indicating an index of the second channel state information configuration.
  • the second channel state information configuration carries fourth indication information, or the second downlink control information carries the fourth indication information, and the first Four indication information is used to indicate that the second channel state information configuration is associated with the first channel state information configuration.
  • the fourth indication information may indicate that the second channel state information configuration is associated with the first channel state information configuration by indicating an index of the first channel state information configuration.
  • the first channel state information configuration and the second channel state information configuration are configured for a same transmission mechanism set, and the transmission mechanism set includes multi-station association Transmission mechanism and single station transmission mechanism.
  • the network device that sends the first DCI may send second instruction information, and the terminal device receives the second instruction information, where the second instruction information indicates that the first channel state is configured for a multi-station joint transmission mechanism or a single station.
  • Transmission selection mechanism; the network device sending the second DCI may send fifth indication information, the terminal device receives the fifth indication information, the fifth indication information indicates that the second channel state is configured for a multi-station joint transmission mechanism or a single Station transmission selection mechanism.
  • the network device may further indicate the association relationship between the first CSI configuration and the second CSI configuration by using the second indication information and / or the fifth indication information.
  • the second indication information and / or the fifth indication information may be carried in the RRC signaling or in the DCI, which is not limited in the embodiment of the present application.
  • the terminal device may consider that the CSI configured and measured for the channel state information will be used in a multi-TRP transmission scheme.
  • the terminal device can The value of M determines the future data transmission scheme, thereby selecting the target CSI-IM resource and measuring accurate CSI.
  • the N 1 CSI-IM resources include a first type CSI-IM resource and a second type CSI-IM resource, and the first type CSI-IM resource
  • the resource is used to measure interference information under a multi-station joint transmission mechanism
  • the second type of CSI-IM resource is used to measure interference information under a single-station transmission mechanism.
  • the terminal device may determine the first type of CSI-IM resource as the target CSI-IM resource; if the terminal device determines according to M, In the future, a single-station transmission mechanism will be used to transmit data, so the terminal device can determine the second type of CSI-IM resource as the target CSI-IM resource.
  • the above-mentioned single-station transmission mechanism may be a DPS mechanism, and the above-mentioned multi-site joint transmission mechanism may be an NCJT mechanism.
  • the j-th CSI-IM resource of the N 1 CSI-IM resources is the first type CSI-IM resource or the second type CSI-IM resources are predefined;
  • the method further includes:
  • third indication information is used to indicate that a j-th CSI-IM resource of the N 1 CSI-IM resources is the first-type CSI-IM resource or the Type II CSI-IM resources;
  • the first type CSI-IM resource and the second type CSI-IM resource among the N 1 CSI-IM resources may be predefined or determined according to some predefined rule.
  • a CSI-IM resource with an odd index is a first type of CSI-IM resource
  • a CSI-IM resource with an even index is a second type of CSI-IM resource.
  • the resource indexes are arranged in ascending order.
  • the first p CSI-IM resources are the first type CSI-IM resources
  • the last q CSI-IM resources are the second type CSI-IM resources.
  • the first p CSI-IM resources are the second type of CSI-IM resources
  • the last q CSI-IM resources are the first type of CSI-IM resources. Both p and q are positive integers less than N 1 .
  • the first type of CSI-IM resources and the second type of CSI-IM resources among the N 1 CSI-IM resources may also be configured by the network device to the terminal device through the third instruction information.
  • the j-th CSI-IM resource in the resource is indicated by 1 bit, 0 indicates that the resource is a first-type CSI-IM resource, 1 indicates that the resource is a second-type CSI-IM resource, and j is greater than or equal to 1 and An integer less than or equal to N 1 .
  • an indication is used for the j-th CSI-IM resource. If the indication is configured, it indicates that the resource is a first-type CSI-IM resource. If the indication is not configured, it indicates that the resource is the first Type II CSI-IM resources, j is an integer greater than or equal to 1 and less than or equal to N 1 .
  • this embodiment of the present application does not limit this.
  • the first CSI-IM resource exists, and the first CSI-IM resource and the N 2 CSI-IM resource when at least one CSI-IM resources occupy the same frequency resource, and the N 1 in the CSI-IM resource, there is at least a second CSI-IM resource, the second CSI- IM resources and all CSI-IM resources in the N 2 CSI-IM resources occupy different time-frequency resources.
  • the N 1 CSI-IM resources and the N 2 CSI-IM resources include at least one first CSI-IM resource occupying the same time-frequency resource, which is also referred to herein as the “same CSI-IM resource”, and N 1 Each CSI-IM resource and N 2 CSI-IM resources also include at least one second CSI-IM resource occupying different time-frequency resources, which is also referred to herein as "different CSI-IM resources”.
  • a time-frequency resource may be a resource element (RE), which is determined by an orthogonal frequency division multiplexing (OFDM) symbol and a subcarrier.
  • RE resource element
  • OFDM orthogonal frequency division multiplexing
  • the first CSI-IM resource is the first type of CSI-IM resource
  • the second CSI-IM resource is the second type of CSI -IM resources.
  • the same CSI-IM resources are the first type of CSI-IM resources, which are used to measure the interference information under the multi-station joint transmission mechanism.
  • the different CSI-IM resources are the second type of CSI-IM resources. , Used to measure interference information under a single station transmission mechanism.
  • the target CSI-IM resource is the second type of CSI-IM resource.
  • the terminal device may determine that a single station transmission mechanism is adopted for future data transmission, and determine that the target CSI-IM resource is the above-mentioned second type of CSI-IM resource, that is, the above-mentioned Different CSI-IM resources.
  • the downlink control information triggers a CSI report, and the CSI report is measured for a multi-TRP transmission mechanism.
  • the terminal device measures interference information on the determined target CSI-IM resource, and determines the channel state information according to the obtained interference information, and reports the channel state information.
  • the channel state information is described.
  • the target CSI-IM resource is the first type of CSI-IM resource.
  • the terminal device may determine that the data transmission mechanism at time t + k is multi-station joint transmission, and determine the first type of CSI-IM resource as the target CSI. -IM resources.
  • the target CSI-IM resource is the first type CSI-IM resource
  • the terminal device is in the target CSI-IM resource.
  • the channel state information and report the channel state information.
  • the target CSI-IM resource is the first-type CSI-IM resource or the second-type CSI-IM resource.
  • the terminal device may determine a set of data transmission mechanisms at time t + k.
  • the transmission mechanism set includes: a single base station transmission and multiple transmissions of at least two base stations. Station joint transmission.
  • the terminal device may measure CSI for all or part of the transmission mechanisms, determine a target transmission mechanism by comparing the CSI of different transmission mechanisms, and report the CSI under the transmission mechanism. There are other ways to determine the target transmission mechanism, which is not limited here.
  • the terminal device may also report an indication information to indicate the transmission mechanism corresponding to the reported CSI, or equivalently, to indicate the interference hypothesis based on the reported CSI.
  • the corresponding target CSI-IM resource may be a first type CSI-IM resource or a second type CSI-IM resource, which depends on the target transmission mechanism determined by the terminal device.
  • the terminal device when M ⁇ 2 and the target CSI-IM resource is the first type of CSI-IM resource, the terminal device is in the target CSI-IM resource and the M number of Measure interference information on all or part of the CSI-RS resources indicated by the downlink control information except the first downlink control information in the downlink control information, and determine the channel state information according to the obtained interference information, and Reporting said channel state information; and / or
  • the terminal device measures interference information on the target CSI-IM resource, and according to the obtained interference information, Determining the channel state information, and reporting the channel state information.
  • the first channel state information configuration is further associated with K channel state information reference signals CSI-RS resources, and among the K CSI-RS resources , There is at least one CSI-RS resource associated with N 1 ′ CSI-IM resources among the N 1 CSI-IM resources, K is a positive integer, and 1 ⁇ N 1 ′ ⁇ N 1 .
  • the first CSI configuration is also associated with K CSI-RS resources, and the K CSI-RS resources are used for the terminal device to measure channel information.
  • a CSI-RS resource is associated with at least two CSI-IM resources, which means that when the CSI-RS resource is used to measure channel information, among the CSI-IM resources associated with it, the terminal device measures at least one Target CSI-IM resources to obtain corresponding interference information.
  • the channel information and interference information are used to determine the reported CSI, and may specifically be used to determine the CQI in the CSI.
  • the target CSI-IM resource may be determined according to the foregoing M.
  • the first CSI-IM resource group occupies X subbands, and the target CSI-IM resource on an xth subband of the X subbands Is determined by the terminal device according to the number of CSI-IM resource groups occupying the xth subband in the CSI-IM resource group indicated by the M downlink control information, X is a positive integer, and x ⁇ ⁇ 1,2,..., X ⁇ .
  • the subbands occupied by the CSI-IM resources sent by the two network devices may be different. Therefore, even if the number of DCIs received by the terminal device is greater than or equal to 2, the terminal device still needs to determine the transmission mechanism according to the number of CSI-IM resource groups existing on each subband. Only on the subbands occupied by the two CSI-IM resource groups indicated by the DCI, the data transmission mechanism may be multi-station joint transmission. On the subband occupied by only one CSI-IM resource group, the data transmission mechanism Still a single station transmission.
  • the method for reporting channel state information in the embodiment of the present application can determine the target CSI-IM resources on each subband for different subbands, and determine the transmission mechanism used for data transmission in the future with finer granularity, so that the CSI The measurement results are more accurate.
  • a method for reporting channel state information which includes: a network device determines a first channel state information configuration, the first channel state information configuration and K channel state information reference signals CSI-RS resources and N 1 Channel state information interference measurement CSI-IM resources are associated, and among the K CSI-RS resources, there are at least one CSI-RS resource and N 1 ′ CSI-IM of the N 1 CSI-IM resources IM resources are associated, K and N 1 are positive integers, 1 ⁇ N 1 ′ ⁇ N 1 ; the network device sends the first channel state information configuration to a terminal device.
  • the first channel state information configuration is further associated with N 2 CSI-IM resources
  • the N 2 CSI-IM resources include a first type of CSI -An IM resource and / or a second type of CSI-IM resource
  • the first type of CSI-IM resource is used to measure interference information under a multi-station joint transmission mechanism
  • the second type of CSI-IM resource is used to measure a single station Interference information under the transmission mechanism
  • N 2 is a positive integer.
  • the first channel state information configuration includes first indication information
  • the method further includes: sending, by the network device, first indication information
  • the first indication information is used to indicate that the first channel state information configuration is associated with a second channel state information configuration, the second channel state information is associated with N 2 CSI-IM resources, and the N
  • the two CSI-IM resources include a first type of CSI-IM resource and a second type of CSI-IM resource, and the first type of CSI-IM resource is used to measure interference information under a multi-station joint transmission mechanism, and the second type CSI-IM-like resources are used to measure interference information under a single station transmission mechanism, and N 2 is a positive integer.
  • the method further includes: the network device sends second indication information, the second indication information indicates that the first channel state is configured for multiple stations Joint transmission mechanism or single station transmission selection mechanism.
  • the N 1 CSI-IM resources include a first type CSI-IM resource and a second type CSI-IM resource, and the first type CSI-IM resource
  • the resource is used to measure interference information under a multi-station joint transmission mechanism
  • the second type of CSI-IM resource is used to measure interference information under a single-station transmission mechanism.
  • the j-th CSI-IM resource of the N 1 CSI-IM resources is the first type CSI-IM resource or the second type CSI-IM resources are predefined;
  • the method further includes: the network device sends third indication information, where the third indication information is used to indicate that a j-th CSI-IM resource of the N 1 CSI-IM resources is the first-type CSI -An IM resource or the second type of CSI-IM resource; wherein j ⁇ ⁇ 1, ..., N 1 ⁇ .
  • the method further includes: the network device sends first downlink control information, where the first downlink control information indicates at least one of the following: the first One channel state information configuration, the at least one CSI-RS resource, and the N 1 CSI-IM resources.
  • the first indication information does not indicate the N 2 CIS-IM resources.
  • At least one first CSI-IM resource exists, and the first CSI-IM resource and the N 2 CSI-IM resource when at least one CSI-IM resources occupy the same frequency resource, and the N 1 in the CSI-IM resource, at least one second
  • the second CSI-IM resources and all CSI-IM resources in the N 2 CSI-IM resources occupy different time-frequency resources.
  • the first CSI-IM resource is the first type CSI-IM resource
  • the second CSI-IM resource is the second type CSI -IM resources.
  • the resource element (RE) occupied by the first type of CSI-IM resource is not used to send a downlink shared channel.
  • the network device sends the first downlink control indicating the first channel state information configuration to the terminal device on a first time unit Information, on the second time unit indicated by the first downlink control information, the resource element (RE) occupied by the second type of CSI-IM resource is not used to send a downlink shared channel.
  • the resource element (RE) occupied by the second type of CSI-IM resource is not used to send a downlink shared channel.
  • an apparatus for reporting channel state information is provided, and is configured to execute the method in the first aspect or any possible implementation manner of the first aspect.
  • the apparatus includes a unit for performing the foregoing first aspect or the method in any possible implementation manner of the first aspect.
  • another apparatus for reporting channel state information for performing the method in the second aspect or any possible implementation manner of the second aspect.
  • the apparatus includes a unit for performing the method in the foregoing second aspect or any one of the possible implementation manners of the second aspect.
  • the apparatus includes a transceiver, a memory, and a processor.
  • the transceiver, the memory, and the processor communicate with each other through an internal connection path.
  • the memory is used to store instructions.
  • the processor is used to execute the instructions stored in the memory to control the receiver to receive signals and to control the transmitter to send signals. And when the processor executes the instructions stored in the memory, the processor is caused to execute the method in the first aspect or any possible implementation manner of the first aspect.
  • the apparatus includes a transceiver, a memory, and a processor.
  • the transceiver, the memory, and the processor communicate with each other through an internal connection path.
  • the memory is used to store instructions.
  • the processor is used to execute the instructions stored in the memory to control the receiver to receive signals and to control the transmitter to send signals. And when the processor executes the instructions stored in the memory, the processor is caused to execute the method in the second aspect or any one of the possible implementation manners of the second aspect.
  • a system for reporting channel state information includes the device in the third aspect or any possible implementation manner of the third aspect, and any of the fourth aspect or the fourth aspect. Means in an implementation; or
  • the system includes the apparatus in the fifth aspect or any one of the possible implementations of the fifth aspect, and the apparatus in the sixth aspect or any one of the possible implementations of the sixth aspect.
  • a computer program product includes computer program code that, when the computer program code is executed by a computer, causes the computer to execute the methods in the foregoing aspects.
  • a computer-readable medium for storing a computer program, the computer program including instructions for performing the methods in the above aspects.
  • a chip including a processor, configured to call and execute instructions stored in the memory from a memory, so that a communication device installed with the chip executes the methods in the above aspects.
  • another chip including: an input interface, an output interface, a processor, and a memory.
  • the input interface, the output interface, the processor, and the memory are connected through an internal connection path.
  • the processor is configured to execute code in the memory, and when the code is executed, the processor is configured to execute the methods in the foregoing aspects.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present application.
  • FIG. 2 shows a schematic flowchart of a method for reporting channel state information according to an embodiment of the present application.
  • FIG. 3 shows a schematic flowchart of another method for reporting channel state information according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram showing an association relationship between a channel state information configuration and a resource according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram illustrating an association relationship between another channel state information configuration and a resource according to an embodiment of the present application.
  • FIG. 6 shows a schematic block diagram of an apparatus for reporting channel state information according to an embodiment of the present application.
  • FIG. 7 shows a schematic block diagram of another apparatus for reporting channel state information according to an embodiment of the present application.
  • FIG. 8 shows a schematic block diagram of another apparatus for reporting channel state information according to an embodiment of the present application.
  • FIG. 9 shows a schematic block diagram of another apparatus for reporting channel state information according to an embodiment of the present application.
  • GSM global mobile communication
  • CDMA code division multiple access
  • WCDMA broadband code Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD time division duplex
  • UMTS universal mobile communication system
  • WiMAX wireless local area network
  • WiMAX future fifth generation
  • 5G 5th generation
  • NR new radio
  • the technical solutions of the embodiments of the present application can also be applied to various communication systems based on non-orthogonal multiple access technologies, such as a sparse code multiple access (SCMA) system.
  • SCMA sparse code multiple access
  • SCMA is in The communication field may also be called other names;
  • the technical solutions in the embodiments of the present application may be applied to a multi-carrier transmission system using non-orthogonal multiple access technology, for example, orthogonality using non-orthogonal multiple access technology
  • OFDM Orthogonal frequency division multiplexing
  • FBMC filter bank multi-carrier
  • GFDM generalized frequency division multiplexing
  • GFDM filtered orthogonal frequency division multiplexing
  • F-OFDM F-OFDM
  • a terminal device may communicate with one or more core networks via a radio access network (RAN).
  • the terminal device may be referred to as an access terminal or a user equipment (user equipment). equipment, UE), subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or user device.
  • the access terminal can be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital processing (PDA), and wireless communication.
  • PLMN public land mobile network
  • a network device may be used to communicate with a terminal device.
  • the network device may be a base station (BTS) in a GSM system or a CDMA system, or a base station in a WCDMA system ( node (B, NB), or an evolutionary base station (eNB or eNodeB) in the LTE system, or the network device may be a relay station, an access point, an in-vehicle device, a wearable device, or a future 5G network Network-side equipment or network equipment in a future evolved PLMN network.
  • B base station
  • eNB evolved base station
  • the embodiments of the present application can be applied to LTE systems and subsequent evolved systems such as 5G, or other wireless communication systems using various wireless access technologies, such as code division multiple access, frequency division multiple access, time division multiple access, and orthogonal Systems with access technologies such as frequency division multiple access and single carrier frequency division multiple access are particularly suitable for scenarios that require channel information feedback and / or the application of secondary precoding technology, such as wireless networks using Massive MIMO technology, and distributed antennas. Technology for wireless networks, etc.
  • multiple-input (multiple-output, MIMO) technology refers to the use of multiple transmitting antennas and receiving antennas at the transmitting device and receiving device, respectively, so that signals pass through multiple transmitting and receiving devices.
  • Antennas transmit and receive, which improves communication quality. It can make full use of space resources, realize multiple transmissions and multiple receptions through multiple antennas, and can increase the channel capacity of the system multiple times without increasing spectrum resources and antenna transmit power.
  • MIMO can be divided into single-user multiple-input multiple-output (single-user MIMO (SU-MIMO) and multi-user multiple-input multiple-output (MU-MIMO).
  • SU-MIMO single-user MIMO
  • MU-MIMO multi-user multiple-input multiple-output
  • Massive MIMO is based on the principle of multi-user beamforming. Hundreds of antennas are arranged on the transmitting device, and their respective beams are modulated to dozens of target receivers. Through spatial signal isolation, dozens of signals are transmitted simultaneously on the same frequency resource. Therefore, Massive MIMO technology can make full use of the spatial freedom brought by large-scale antenna configuration and improve spectral efficiency.
  • FIG. 1 is a schematic diagram of a communication system used in an embodiment of the present application.
  • the communication system 100 includes a network device 102, and the network device 102 may include multiple antenna groups.
  • Each antenna group may include one or more antennas, for example, one antenna group may include antennas 104 and 106, another antenna group may include antennas 108 and 110, and additional groups may include antennas 112 and 114. 2 antennas are shown in FIG. 1 for each antenna group, however, more or fewer antennas may be used for each group.
  • the network device 102 may additionally include a transmitter chain and a receiver chain. Those of ordinary skill in the art may understand that each of them may include multiple components related to signal transmission and reception, such as a processor, a modulator, a multiplexer, and a decoder. Tuner, demultiplexer, or antenna.
  • the network device 102 may communicate with multiple terminal devices, for example, the network device 102 may communicate with the terminal device 116 and the terminal device 122. However, it is understood that the network device 102 may communicate with any number of terminal devices similar to the terminal devices 116 or 122.
  • the terminal devices 116 and 122 may be, for example, cellular phones, smartphones, laptops, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, and / or any other suitable for communicating on the wireless communication system 100 device.
  • the terminal device 116 communicates with the antennas 112 and 114, where the antennas 112 and 114 send information to the terminal device 116 through the forward link 118 and receive information from the terminal device 116 through the reverse link 120.
  • the terminal device 122 communicates with the antennas 104 and 106, where the antennas 104 and 106 send information to the terminal device 122 through the forward link 124 and receive information from the terminal device 122 through the reverse link 126.
  • forward link 118 may utilize a different frequency band from that used by reverse link 120
  • forward link 124 may utilize a different frequency band from that used by reverse link 126 .
  • the forward link 118 and the reverse link 120 may use a common frequency band
  • the forward link 124 and the reverse link 126 may use a common frequency band. frequency band.
  • Each set of antennas and / or areas designed for communication is referred to as a sector of the network device 102.
  • the antenna group may be designed to communicate with terminal devices in a sector covered by the network device 102.
  • the transmitting antennas of the network device 102 can use beamforming to improve the signal-to-noise ratio of the forward links 118 and 124.
  • the Mobile devices experience less interference.
  • the network device 102, the terminal device 116, or the terminal device 122 may be a wireless communication transmitting apparatus and / or a wireless communication receiving apparatus.
  • the wireless communication transmitting device may encode the data for transmission.
  • the wireless communication transmitting device may acquire a certain number of data bits to be transmitted to the wireless communication receiving device through a channel.
  • the wireless communication transmitting device may generate, receive from other communication devices, or save in a memory, etc., to be transmitted through the channel A certain number of data bits to a wireless communication receiving device.
  • Such data bits may be contained in a transport block or multiple transport blocks of data, which may be segmented to generate multiple code blocks.
  • the communication system 100 may be a public land mobile network, a PLMN network, a device-to-device (D2D) network, a machine-to-machine (M2M) network, or another network.
  • FIG. 1 is only an example for easy understanding. Simplified schematic diagram, the network can also include other network equipment, not shown in Figure 1.
  • the terminal equipment moves from the center of the coverage area of a base station to the edge area of the base station due to the movement.
  • the edge area is located within the coverage area of multiple base stations. Therefore, other signal transmissions will cause strong interference to the terminal device, making the data transmission performance of the terminal device very poor.
  • LTE long term evolution
  • NR new radio
  • multi-TRP multi-station coordinated transmission
  • the current multi-TRP transmission mechanism is divided into three types: single-station transmission, coherent transmission (JT) and non-coherent joint transmission (NCJT).
  • DPS dynamic transmission point selection
  • CSI channel state information
  • the network equipment or terminal equipment dynamically uses the multiple base stations.
  • a certain base station is selected to provide services for the terminal device, that is, to transmit data with the terminal device.
  • each serving base station After the information (such as CSI) of each serving base station is obtained, all serving base stations decide to use an optimal precoding matrix with the The terminal device performs data transmission. If the delay of the above interaction process is large, the performance gain brought by using this transmission mechanism may not be enough to offset the performance loss caused by the increase of the interaction delay.
  • Non-coherent transmission is more suitable for practical situations, that is, there is a certain interaction delay between base stations.
  • each serving base station independently determines the precoding matrix of the data based on the CSI to the terminal device, rather than performing joint precoding.
  • each base station transmits different data streams to the terminal equipment.
  • the advantage of using this transmission mechanism is that the base stations do not need to dynamically exchange information and avoid interaction delays.
  • inter-stream interference there may be interference between the data layers, which is referred to as "inter-stream interference" in this application.
  • each base station needs to determine a modulation coding strategy (MCS) according to the SINR of this layer of data when transmitting its own layer of data.
  • MCS modulation coding strategy
  • the base station determines the MCS according to the channel quality indicator (CQI) measured and reported by the terminal device. Therefore, whether the CQI reported by the terminal device can accurately reflect the SINR of the actual data transmission on the demodulation performance of the data is critical.
  • CQI channel quality indicator
  • a terminal device can receive a channel state information reference signal (CSI-RS) sent by a base station, measure a channel on a CSI-RS resource, and measure a channel state information interference measurement (CSI-IM). ) Interference is measured on the resources, and the CQI is calculated and reported to the base station.
  • CSI-RS channel state information reference signal
  • CSI-IM channel state information interference measurement
  • the CSI-RS resource may be a non-zero power (NZP) reference signal resource
  • the CSI-IM resource may be a zero-power (ZP) reference signal resource.
  • the base station may determine the MCS according to the CQI and instruct the terminal device for data demodulation.
  • this article only discusses the multi-TRP transmission network using single station transmission or NCJT. At this time, it is assumed that each serving base station makes independent CSI measurement and data scheduling decisions.
  • the central base station controls all n base stations.
  • the central base station has data information and CSI of all base stations.
  • the central base station can decide which of the n base stations to transmit data for the terminal device, or the n base stations provide services to the terminal device at the same time, that is, select DPS mechanism or NCJT mechanism.
  • the terminal device needs to report the CSI under each mechanism according to the channel state information reference signal (CSI-RS) sent by each base station, and then the central base station makes a CSI measurement decision and a data scheduling decision.
  • CSI-RS channel state information reference signal
  • n base stations are specifically a base station 1 and a base station 2.
  • the central base station can configure three CSI reports for terminal equipment, which are:
  • CSI reports 1 the corresponding transmission mechanism is single station transmission of base station 1.
  • the terminal device measures the channel information from the base station 1 to the terminal device on the CSI-RS resources of the base station 1, and measures the interference caused by the base station 2 and other non-serving base stations on the transmission of the base station 1 on the CSI-IM resources of the base station 1, thereby The CQI is obtained when only the base station 1 serves the terminal device. It should be understood that the base station 1 does not send any signals on the above CSI-IM resources, so for the base station 1, the CSI-IM resource corresponds to a zero-power reference signal, and the base station 2 can send signals (for example, physical Downlink shared channel (physical downlink shared channel (PDSCH)).
  • PDSCH physical downlink shared channel
  • CSI reports 2 the corresponding transmission mechanism is single station transmission of base station 2.
  • the terminal device measures the channel information from the base station 2 to the terminal device on the CSI-RS resources of the base station 2, and measures the interference caused by the base station 1 and other non-serving base stations on the transmission of the base station 2 on the CSI-IM resources of the base station 2
  • the CQI is obtained when only the base station 2 serves the terminal device. It should be understood that on the above CSI-IM resources, the base station 2 does not send any signals, so for the base station 2, the CSI-IM resources correspond to a zero-power reference signal, and the base station 1 can send signals (for example, PDSCH for other terminal devices) ).
  • the terminal device needs to measure the inter-stream interference between the two base stations, and the interference caused by other non-serving base stations to the current transmission.
  • Inter-stream interference is measured on the CSI-RS resources used by each base station to measure the channel, and interference caused by non-serving base stations is measured on the same CSI-IM resources of the two base stations.
  • the base station 1 sends CSI-RS 1 at the time-frequency position of the CSI-RS 1, and the terminal device measures the channel h 1 from the base station 1 to the terminal device based on the CSI-RS 1 .
  • h 1 is the channel gain.
  • h 1 will cause interference, therefore, on the CSI-RS 1 may also measure the interference power to the base station 1 to the base station 2 the data flow caused by I 1.
  • the base station 2 sends CSI-RS2 at the time-frequency position of the CSI-RS 2.
  • the terminal device can measure the channel h 2 from the base station 2 to the terminal device based on the CSI-RS 2.
  • the terminal device can measure, on the CSI-IM resource, the interference power I 0 caused by the transmission of other non-serving base stations to the data streams of base station 1 and base station 2.
  • the terminal device can calculate the SINR of the data stream of the base station 1 as SINR
  • SINR Calculate the SINR of the data stream of base station 2 as SINR
  • the terminal device reports CQI 1 and CQI 2 to the base station according to SINR 1 and SINR 2. It should be understood that the foregoing formula is merely an exemplary description for ease of understanding, and the SINR may also be calculated by using other expressions, which is not limited in the embodiments of the present application.
  • the central base station may determine which base station or all base stations should be used to transmit data for the terminal device according to the above three CSIs fed back by the terminal device.
  • the above method assumes that a central base station can make CSI measurement decisions and data scheduling decisions for all serving base stations.
  • CSI report 3 it is assumed that base station 1 and base station 2 will obey the instructions of the central base station, and send CSI-RS 1 and CSI-RS 2 at the same time, so that the terminal device can perform interference measurement.
  • the base station 1 and the base station 2 will necessarily transmit different data streams for the terminal device at the same time.
  • the above method still requires the central base station to grasp the CSI information of each serving base station and coordinate the serving base station to provide terminal equipment Services require a certain scheduling delay and cannot avoid dynamic interaction of information, which is contrary to the original intention of reducing delay and avoiding dynamic interaction of information.
  • each serving base station does not perform information interaction and decides the transmission of CSI-RS, the measurement of CSI, and the scheduling of data
  • the information measured by the terminal device for each serving base station will be inaccurate.
  • the data demodulation performance of the TRP transmission mechanism is severely degraded.
  • the base station 1 decides to perform data scheduling immediately and allows the terminal device to report CSI at this time, the base station 1 does not know whether the future base station 2 will also perform data scheduling, and it does not know whether the base station 2 will send data at this time.
  • CSI-RS 2 2.
  • the terminal device only measures the channel h 1 on the CSI-RS 1 resource and measures the interference on the CSI-IM resource. Since both base stations do not send any signals on the CSI-IM resource, the interference measured by the terminal equipment is only the interference I 0 caused by other non-serving base stations. If the base station 2 also schedules the data when the base station 1 schedules the data, the MCS of the data of the base station 1 is inaccurate because the inter-stream interference I 2 caused by the base station 2 to the data flow of the base station 1 is not considered.
  • FIG. 2 shows a schematic flowchart of a method 200 for reporting channel state information according to an embodiment of the present application.
  • the method 200 can be applied to the communication system 100 shown in FIG. 1, but the embodiment of the present application is not limited thereto.
  • the M network devices respectively send downlink control information to the terminal device. Accordingly, the terminal device receives M downlink control information, and the first downlink control information in the M downlink control information indicates the configuration of the first channel state information.
  • the first channel state information configuration is associated with a first channel state information interference measurement CSI-IM resource group, the first CSI-IM resource group includes N 1 CSI-IM resources, and M and N 1 are positive integers , N 1 is greater than 1;
  • the terminal device measures a target CSI-IM resource and reports channel state information.
  • the target CSI-IM resource is determined by the terminal device from the N 1 CSI-IM resources according to M.
  • the target CSI -The number of IM resources is less than N 1 .
  • a terminal device may receive downlink control information from multiple network devices (specifically, it may be a serving base station), and is used to trigger the terminal device to report CSI.
  • the embodiment of the present application measures CSI based on a pre-scheduling method.
  • pre-scheduling means that the serving base station makes a semi-static agreement, that is, if each serving base station wants to schedule data for the terminal device at time t + k, the serving base station sends downlink control information at time t, triggering Interrelated CSI report (CSI report). That is, there is a certain correlation between the CSI reports triggered by each serving base station.
  • a CSI report triggered by downlink control information sent by a serving base station is associated with the CSI-RS resource of the serving base station and a CSI-IM resource group.
  • the DCI of each base station only triggers its own CSI-RS resources and CSI-IM resources associated with the CSI, and does not need to trigger the CSI-RS resources of other base stations (that is, it is not necessary to make decisions for other base stations, or to know the decisions of other base stations) .
  • the serving base station needs to know each other's scheduling strategy and CSI measurement decision, and avoids the delay caused by the interactive information.
  • the associated CSI report triggered by each downlink control information may be the same CSI report, or may be an associated CSI report in some way.
  • the association relationship can be used for the terminal device to judge that the M pieces of downlink control information are related, that is, it can be used for the terminal device to select a target CSI-IM resource according to the value of M.
  • the "pre-scheduling" mechanism does not enforce constraints on the behavior of the base station itself, that is, it does not force the base station to trigger CSI, send CSI-RS, and schedule data in the above manner.
  • the base station triggers CSI and sends CIS-RS in this way, which can make the measurement of CSI more accurate.
  • the first DCI indicates a first CSI configuration
  • the first CSI configuration is associated with a first CSI-IM resource group
  • the first CSI-IM resource group includes N 1 (greater than 2) CSI-IM resources, and includes two types of CSI-IM resources: first type CSI-IM resources and second type CSI-IM resources.
  • the two types of CSI-IM resources correspond to different transmission mechanisms, that is, to measure interference information under different transmission mechanisms. Therefore, the terminal device can determine whether the future data transmission mechanism is multi-site joint transmission or single-site transmission according to the number of received DCIs (ie, M), and then select a target CSI-IM resource from the two types of CSI-IM resources. Obtain interference information by measuring target CSI-IM resources. Further, the terminal device can measure CSI-RS resources and perform channel measurement.
  • a terminal device determines a transmission mechanism used for future data transmission according to the number of received downlink control information, and selects a target CSI-IM from at least two CSI-IM resources. Resources perform interference measurement and report channel state information, which can avoid dynamic interaction of information, and at the same time, it helps to improve the accuracy of CSI measurement results, thereby improving system performance.
  • first CSI configuration is associated with the first CSI-IM resource group means that when the first CSI configuration corresponds to the first CSI-IM resource group, when a terminal device receives a DCI indicating the first CSI configuration, that is, A corresponding first CSI-IM resource group may be determined.
  • the interference information is measured to determine the CSI usage.
  • the first CSI configuration is associated with the first CSI-IM resource group may also be referred to as “the first CSI configuration corresponds to the first CSI-IM resource group", or “the first CSI configuration is associated with the first CSI-IM resource group” Correspondence ", which is not limited in the embodiment of the present application.
  • the association between the CSI configuration and the CSI-IM resource group can be configured by the network device in the CSI configuration through high-level signaling (for example, RRC signaling), or it can be configured by the network device through dynamic signaling (for example, multiple access Multiple access control (MAC) control elements (CE) or DCI) provide dynamic indication, which is not limited in the embodiments of the present application.
  • high-level signaling for example, RRC signaling
  • dynamic signaling for example, multiple access Multiple access control (MAC) control elements (CE) or DCI
  • the above CSI-IM resources can be divided into periodic CSI-IM and aperiodic CSI-IM.
  • the CSI-IM resource is triggered by the network device through dynamic signaling (for example, MAC CE or DCI).
  • dynamic signaling for example, MAC CE or DCI.
  • the CSI-IM resource is a periodic CSI-IM resource, after the CSI-IM resource is configured by high-level signaling, no triggering of dynamic signaling is required. Dynamic signaling can only trigger CSI reporting, and the terminal device can confirm the associated CSI-IM resources according to the configuration of the CSI reporting, and directly perform interference measurement on the CSI-IM resources during the period.
  • a network device may also send dynamic signaling for triggering.
  • the N 1 CSI-IM resources include a first type CSI-IM resource and a second type CSI-IM resource, and the first type CSI-IM resource is used to measure multi-site joint transmission Interference information under the mechanism, the second type of CSI-IM resource is used to measure the interference information under the single-station transmission mechanism.
  • the terminal device may determine the first type of CSI-IM resource as the target CSI-IM resource; if the terminal device determines according to M, In the future, a single-station transmission mechanism will be used to transmit data, so the terminal device can determine the second type of CSI-IM resource as the target CSI-IM resource.
  • the above-mentioned single-station transmission mechanism may be a DPS mechanism, and the above-mentioned multi-site joint transmission mechanism may be an NCJT mechanism.
  • DCI 1 DCI
  • DCI 1 DCI 1
  • the terminal device determines that only base station 1 schedules data for itself at time t + k
  • the terminal device determines that future data transmission uses a single station transmission mechanism, determines the CSI-RS resource measurement channel from CSI configuration 1 indicated by DCI1, and determines the target CSI-
  • the IM resource measures the interference, obtains the CSI under the single station transmission, and
  • the specific base station from which the above-mentioned DCI 1 comes from may not be visible to the terminal device.
  • the terminal device only needs to determine the triggered CSI configuration and the CSI-RS resources and CSI-IM resources associated with the CSI configuration according to DCI1, so as to measure channel information and interference information on the corresponding time-frequency resources and determine The CSI is sufficient, and it is not necessary to know which base station the DCI 1 comes from.
  • the terminal device determines that the future data transmission uses the NCJT mechanism, then the terminal device Determine the CSI-RS resources associated with CSI configuration 1 indicated by DCI 1 and measure the channel information of base station 1, determine the CSI-RS resources associated with CSI configuration 2 indicated by DCI 2 and measure the channel of base station 2 Information, and select a target CSI-IM resource from the CSI-IM resource group associated with CSI configuration 1 and / or the CSI-IM resource group associated with CSI configuration 2 to measure interference caused by other non-serving base stations.
  • the terminal device can measure the inter-stream interference caused by the transmission of the base station 1 to the base station 2 on the CSI-RS resources associated with the CSI configuration 1, and measure the transmission caused by the base station 2 to the base station 1 on the CSI-RS resources associated with the CSI configuration 2.
  • Inter-stream interference According to the channel information and interference information, the terminal device obtains CSI1 and CSI2 and reports them to the base station.
  • the terminal device may report CSI 1 and CSI 2 to the base station 1 and the base station 2 at the same time, or may report CSI 1 to the base station 1 and report CSI 2 to the base station 2, which is not limited in this embodiment of the present application.
  • the j-th CSI-IM resource in the N 1 CSI-IM resources is the first-type CSI-IM resource or the second-type CSI-IM resource is predefined.
  • the method further includes:
  • third indication information is used to indicate that a j-th CSI-IM resource of the N 1 CSI-IM resources is the first-type CSI-IM resource or the Type II CSI-IM resources;
  • the first type CSI-IM resource and the second type CSI-IM resource among the N 1 CSI-IM resources may be predefined or determined according to some predefined rule.
  • a CSI-IM resource with an odd index of resources is a first type of CSI-IM resource
  • a CSI-IM resource with an even index of resources is a second type of CSI-IM resource.
  • the resource indexes are arranged in ascending order.
  • the first p CSI-IM resources are the first type CSI-IM resources
  • the last q CSI-IM resources are the second type CSI-IM resources.
  • the first p CSI-IM resources are the second type of CSI-IM resources
  • the last q CSI-IM resources are the first type of CSI-IM resources. Both p and q are positive integers less than N 1 .
  • the first type of CSI-IM resources and the second type of CSI-IM resources among the N 1 CSI-IM resources may also be configured by the network device to the terminal device through the third instruction information.
  • the j-th CSI-IM resource in the resource is indicated by 1 bit, 0 indicates that the resource is a first-type CSI-IM resource, 1 indicates that the resource is a second-type CSI-IM resource, and j is greater than or equal to 1 and An integer less than or equal to N 1 .
  • an indication is used for the j-th CSI-IM resource. If the indication is configured, it indicates that the resource is a first-type CSI-IM resource. If the indication is not configured, it indicates that the resource is the first Type II CSI-IM resources, j is an integer greater than or equal to 1 and less than or equal to N 1 .
  • this embodiment of the present application does not limit this.
  • the first channel state information configuration is further associated with K channel state information reference signal CSI-RS resources.
  • K CSI-RS resources at least one CSI-RS resource exists.
  • the CSI-IM the N 1 N 1 of the resources "a resource associated CSI-IM, K is a positive integer, 1 ⁇ N 1 ' ⁇ N 1 .
  • the first CSI configuration is also associated with K CSI-RS resources, and the K CSI-RS resources are used for the terminal device to measure channel information.
  • a CSI-RS resource is associated with at least two CSI-IM resources, which means that when the CSI-RS resource is used to measure channel information, among the CSI-IM resources associated with it, the terminal device measures at least one Target CSI-IM resources to determine the corresponding interference information.
  • the channel information and interference information are used to determine the reported CSI, and may specifically be used to determine the CQI in the CSI.
  • the target CSI-IM resource may be determined according to the foregoing M.
  • the CSI configuration can be determined by the network device and sent to the terminal device. Taking the above-mentioned first CSI configuration as an example, the first CSI configuration may be configured by the network device that sends the first downlink control information to the terminal device, or may be sent to the terminal device by other network devices. The specific process is shown in Figure 3. Show.
  • the network device determines a first channel state information configuration, where the first channel state information configuration is associated with K channel state information reference signals CSI-RS resources and N 1 channel state information interference measurement CSI-IM resources, and Among the K CSI-RS resources, there is at least one CSI-RS resource associated with N 1 ′ CSI-IM resources among the N 1 CSI-IM resources, K and N 1 are positive integers, 1 ⁇ N 1 ′ ⁇ N 1 ;
  • the network device sends the first channel state information configuration to a terminal device, and accordingly, the terminal device receives the first channel state information configuration.
  • the configuration method of other CSI configurations (for example, the second CSI configuration) is the same as the configuration method of the first CSI configuration, and details are not described herein again.
  • the second CSI-IM resource group when M ⁇ 2, among the M downlink control information, there is a second downlink control information indicating a second channel state information configuration, and the second channel state information configuration and the second CSI -An IM resource group is associated, the second CSI-IM resource group includes N 2 CSI-IM resources, the first channel state information configuration and the second channel state information configuration have an association relationship, and N 2 is positive Integer.
  • the terminal device receives at least two downlink control information sent from at least two network devices, and the CSI configurations indicated by the at least two downlink control information are related to each other, it means that there is at least two network device needs Schedule the terminal device for data transmission at the same time.
  • the first DCI indicates the first CSI configuration
  • the second DCI indicates the second CSI configuration
  • the first CSI configuration is associated with N 1 CSI-IM resources
  • the second CSI configuration is associated with N 2 CSI-IM resources.
  • the first CSI configuration has an association relationship with the second CSI configuration.
  • association relationship specifically means that both the first CSI configuration and the second CSI configuration can be used for multi-TRP transmission. This can be achieved in multiple ways, which is not limited in the embodiments of the present application.
  • the first channel state information configuration is the same as the second channel state information configuration.
  • the content of the first CSI configuration and the second CSI configuration may be completely the same. It should be understood that the first CSI configuration is the same as the second CSI configuration, which may mean that the resources associated with the first CSI configuration and the second CSI configuration are completely the same, or it may mean that the second CSI configuration is the first CSI configuration.
  • the first CSI configuration is also associated with N 2 CSI-IM resources, and the N 2 CSI-IM resources include the first type CSI-IM resources and / or second-type CSI-IM resources, the first type of CSI-IM resources are used to measure interference information under a multi-station joint transmission mechanism, and the second type of CSI-IM resources are used to measure single-site transmission Interference information under the mechanism, N 2 is a positive integer.
  • the content of the first CSI configuration and the second CSI configuration may also be different.
  • the first CSI configuration and the second CSI configuration can be configured with different reporting content, for example, the first CSI configuration reports a rank indication (RI), a type I (Type I) precoding matrix indicator (precoding matrix indicator), PMI) and at least one of channel quality indicator (CQI), and the second CSI configuration reports at least one of RI, TypeII, PMI, and CQI; for another example, the PMI in the first CSI configuration is based on 16 ports
  • the codebook and the PMI in the second CSI configuration are based on a 32-port codebook, which is not limited in this embodiment of the present application.
  • the parameters of the two CSI configurations are not exactly the same, which can be more flexible and more suitable for different situations such as antenna structures and processing capabilities of different base stations in the actual system.
  • the network device may indicate the association relationship between the first CSI configuration and the second CSI configuration by using the first indication information and / or the fourth indication information.
  • the first indication information and / or the fourth indication information may be carried in radio resource control (RRC) signaling, or may be carried in DCI, which is not limited in this embodiment of the present application.
  • RRC radio resource control
  • the first channel state information configuration carries first indication information, or the first downlink control information carries the first indication information, and the first indication information is used to indicate all
  • the first channel state information configuration is associated with the second channel state information configuration.
  • the first indication information may indicate that the first channel state information configuration is associated with the second channel state information configuration by indicating an index of the second channel state information configuration.
  • the second channel state information configuration carries fourth indication information, or the second downlink control information carries the fourth indication information, and the fourth indication information is used to indicate the The second channel state information configuration is associated with the first channel state information configuration.
  • the fourth indication information may indicate that the second channel state information configuration is associated with the first channel state information configuration by indicating an index of the first channel state information configuration.
  • the first CSI configuration and / or the second CSI configuration include a field (that is, the above-mentioned first indication information and / or fourth indication information), which respectively indicate identifiers (such as IDs) of each other.
  • the terminal device may determine whether the first CSI configuration and the second CSI configuration have an association relationship according to whether the first CSI configuration and the second CSI configuration include the foregoing fields. If the first CSI configuration and the second CSI configuration have an associated relationship, the terminal device can perform NCJT or single-site transmission measurement. In this case, the foregoing first indication information and / or fourth indication information may be sent to the terminal device through RRC signaling.
  • the first DCI and / or the second DCI include a field (that is, the first indication information and / or the fourth indication information), which respectively indicate a second CSI configuration and / or a first
  • the terminal device may determine whether the first CSI configuration and the second CSI configuration have an association relationship according to whether the first DCI and the second DCI include the foregoing fields. If the first CSI configuration and the second CSI configuration have an associated relationship, the terminal device can perform NCJT or single-site transmission measurement. In this case, the first indication information and / or the fourth indication information are sent to the terminal device through DCI.
  • the first channel state information configuration and the second channel state information configuration are configured for the same transmission mechanism set, and the transmission mechanism set includes a multi-station joint transmission mechanism and a single-station transmission mechanism.
  • the network device that sends the first DCI may send second instruction information, and the terminal device receives the second instruction information, where the second instruction information indicates that the first channel state is configured for a multi-station joint transmission mechanism or a single station. Transmission mechanism; the network device sending the second DCI may send fifth indication information, the terminal device receives the fifth indication information, the fifth indication information indicates that the second channel state is configured for a multi-station joint transmission mechanism or a single station Transmission mechanism.
  • the network device may further indicate the association relationship between the first CSI configuration and the second CSI configuration by using the second indication information and / or the fifth indication information.
  • the second indication information and / or the fifth indication information may be carried in RRC signaling or DCI, which is not limited in the embodiment of the present application.
  • each of the first CSI configuration and the second CSI configuration includes a field (that is, the above-mentioned second indication information and fifth indication information), indicating that the CSI configuration is used for multi-TRP transmission (multi-station Joint transmission mechanism or single station transmission mechanism).
  • the terminal device may determine whether the first CSI configuration and the second CSI configuration have an association relationship according to whether the first CSI configuration and the second CSI configuration include the foregoing fields. If both the first CSI configuration and the second CSI configuration triggered by the first DCI and the second DCI include this field, and this field indicates that it is used for multi-TRP transmission, the terminal device can perform NCJT or single station transmission measurement. .
  • the foregoing second indication information and / or fifth indication information may be sent to the terminal device through RRC signaling.
  • the network device may specifically make the above field take a specific value (for example, 0 or 1) to indicate a multi-TRP transmission mode.
  • the first DCI and the second DCI each include a field (that is, the foregoing second indication information and the fifth indication information), indicating that the CSI configuration indicated by the DCI is used for multi-TRP transmission.
  • the terminal device may determine whether the first CSI configuration and the second CSI configuration have an association relationship according to whether the first DCI and the second DCI include the foregoing fields. If both the first DCI and the second DCI include this field, and this field indicates that it is used for multi-TRP transmission, it means that the first CSI configuration and the second CSI configuration are associated and used for multi-TRP transmission, the terminal device then Can perform NCJT or single station transmission measurement.
  • the above-mentioned second indication information and / or fifth indication information may be sent to the terminal device through DCI signaling.
  • the network device may specifically make the above field take a specific value (for example, 0 or 1) to indicate a multi-TRP transmission mode.
  • the first downlink control information indicates at least one of the following: the first channel state information configuration, the at least one CSI-RS resource, and the N 1 CSI-IM resources; and The first indication information does not indicate the N 2 CIS-IM resources.
  • At least one first CSI-IM resource exists in the N 1 CSI-IM resources, and the first CSI-IM resource and the N 2 CSI-IM resources At least one CSI-IM resource occupies the same time-frequency resource, and among the N 1 CSI-IM resources, at least one second CSI-IM resource exists, and the second CSI-IM resource and the N 2 All CSI-IM resources in the CSI-IM resources occupy different time-frequency resources.
  • the N 1 CSI-IM resources and the N 2 CSI-IM resources include at least one first CSI-IM resource occupying the same time-frequency resource, which is also referred to herein as the “same CSI-IM resource”, and N 1 Each CSI-IM resource and N 2 CSI-IM resources also include at least one second CSI-IM resource occupying different time-frequency resources, which is also referred to herein as "different CSI-IM resources”.
  • a time-frequency resource may be a resource element (RE), which is determined by an orthogonal frequency division multiplexing (OFDM) symbol and a subcarrier.
  • RE resource element
  • OFDM orthogonal frequency division multiplexing
  • the first CSI-IM resource is the first type CSI-IM resource
  • the second CSI-IM resource is the second type CSI-IM resource
  • the same CSI-IM resources are the first type of CSI-IM resources, which are used to measure the interference information under the multi-station joint transmission mechanism.
  • the different CSI-IM resources are the second type of CSI-IM resources. , Used to measure interference information under a single station transmission mechanism.
  • the resource element (RE) occupied by the first type of CSI-IM resource is not used to send a downlink shared channel.
  • the network device sends the first downlink control information indicating the configuration of the first channel state information to the terminal device at a first time unit
  • the resource element (RE) occupied by the second type of CSI-IM resource is not used to send a downlink shared channel.
  • all network equipment for example, a serving base station
  • all network equipment serving the terminal device performs rate matching of downlink data on its own first-type CSI-IM resource, that is, the downlink shared channel is not sent on the RE occupied by the resource.
  • the network device will be at its own second type of CSI- Rate matching is performed on the IM resource, that is, the RE shared by the resource does not send a downlink shared channel.
  • the multiple serving base stations since the first type of CSI-IM resources are the same CSI-IM resources as described above, the multiple serving base stations all perform rate matching on the first type of CSI-IM resources.
  • CSI-IM-like resources can be used for terminal equipment to measure interference caused by other non-serving base stations. Since the second type of CSI-IM resources are the above-mentioned different CSI-IM resources, only a specific serving base station will perform rate matching on the second type of CSI-IM resources, then the second type of CSI-IM resources can be used.
  • the terminal device measures interference caused by other non-serving base stations and other serving base stations other than the specific serving base station.
  • the target CSI-IM resource is the second-type CSI-IM resource.
  • the terminal device may determine that a single station transmission mechanism is adopted for future data transmission, and determine that the target CSI-IM resource is the above-mentioned second type of CSI-IM resource, that is, the above-mentioned Different CSI-IM resources.
  • the downlink control information triggers a CSI report, and the CSI report is measured for a multi-TRP transmission mechanism.
  • the terminal device measures interference information on the determined target CSI-IM resource, and determines the channel state information according to the obtained interference information, and reports the channel state information.
  • the channel state information is described.
  • the interference information obtained above includes interference caused by other non-serving base stations.
  • the downlink control information has a certain missed detection probability
  • the base station 1 and the base station 2 respectively send DCI 1 and DCI 2
  • the same CSI report is triggered.
  • the time t + k is an NCJT transmission.
  • the terminal device fails to detect DCI 2 and only detects DCI 1, the terminal device will consider that a single station transmission mechanism is needed.
  • the terminal device measures interference on the second type of CSI-IM resources, and the obtained interference information includes interference caused by other non-serving base stations and base station 2, which is helpful to improve the accuracy of CSI reporting and thereby improve subsequent Data transmission performance.
  • the target CSI-IM resource is the first type CSI-IM resource
  • the target CSI-IM resource is the first-type CSI-IM resource or the second-type CSI-IM resource.
  • the terminal device may determine that the data transmission mechanism at time t + k is NCJT, and determine the first type of CSI-IM resource as the target CSI-IM resource.
  • the terminal device may also determine a set of transmission mechanisms.
  • the set of transmission mechanisms includes: a single station transmission corresponding to each base station and an NCJT.
  • the terminal device may measure the CSI for one or more of the transmission mechanisms, determine a target transmission mechanism, and report the CSI under the transmission mechanism.
  • the terminal device may also report an indication information to the network device to indicate the target transmission mechanism corresponding to the reported CSI.
  • the corresponding target CSI-IM resource may be a first type CSI-IM resource or a second type CSI-IM resource, which depends on the target transmission mechanism determined by the terminal device.
  • the target CSI-IM resource is the first type of CSI-IM resource
  • the terminal device uses the target CSI-IM resource and the M downlinks
  • the interference information is measured on all or part of the CSI-RS resources indicated by the downlink control information other than the first downlink control information in the control information, and the channel state information is determined and reported according to the obtained interference information.
  • the interference information measured by the terminal device on the target CSI-IM resource is interference caused by other non-serving base stations.
  • the terminal device uses all or The interference information measured on some CSI-RS resources is inter-stream interference caused by other serving base stations.
  • the terminal device when M ⁇ 2 and the target CSI-IM resource is the first-type CSI-IM resource, the terminal device is in the target CSI-IM resource and the M Measuring the interference information on all or part of the CSI-RS resources indicated by the downlink control information except the first downlink control information among the three downlink control information, and determining the channel state information according to the obtained interference information, And report the channel state information; and / or
  • the terminal device measures interference information on the target CSI-IM resource, and according to the obtained interference information, Determining the channel state information, and reporting the channel state information.
  • the first CSI-IM resource group occupies X subbands, and the target CSI-IM resource on the xth subband in the X subbands is the terminal device according to the The number of CSI-IM resource groups occupying the xth subband in the CSI-IM resource group indicated by the M downlink control information is determined, X is a positive integer, and x ⁇ ⁇ 1,2, ..., X ⁇ .
  • the subbands occupied by the CSI-IM resources sent by the two network devices may be different. Therefore, even if the number of DCIs received by the terminal device is greater than or equal to 2, the terminal device still needs to determine the transmission mechanism according to the number of CSI-IM resource groups existing on each subband. If there are two or more DCI-triggered CSI-IM resource groups on a subband, the data transmission mechanism on the subband is NCJT. If there is only one DCI-triggered CSI-IM resource group on a word band, the data transmission mechanism on the subband is a single station transmission.
  • M 2
  • two pieces of downlink control information respectively indicate two CSI-IM resource groups, where the first CSI-IM resource group occupies subband 1 and subband 2 and the second CSI-IM resource group occupies subband 2 and subband Band 3, since the number of CSI-IM resource groups occupying subband 1 is 1, the transmission mechanism corresponding to subband 1 is single-site transmission, and the corresponding target CSI-IM resource is the second type of CSI-IM resource. Similarly, the transmission mechanism corresponding to subband 3 is single-station transmission, and the corresponding target CSI-IM resource is the second type of CSI-IM resource. Since the number of CSI-IM resource groups on subband 2 is 2, the corresponding transmission mechanism of subband 2 is NCJT, and the corresponding target CSI-IM resource is the first type of CSI-IM resource.
  • the method for reporting channel state information in the embodiments of the present application can determine the target CSI-IM resources on each subband for different subbands, and determine the transmission mechanism used for data transmission in the future with a finer granularity, so that the CSI The measurement results are more accurate.
  • the base station 1 may uniformly send radio resource control (RRC) signaling for the terminal device, and configure all relevant information reported by the CSI.
  • the base station 1 and the base station 2 may respectively send RRC signaling for the terminal device, and respectively configure the related information reported by the CSI.
  • RRC radio resource control
  • the following uses the base station 1 to configure all CSI reporting related information as an example for description.
  • the terminal device can receive RRC signaling from the base station 1, and the RRC signaling is configured with a CSI report for multi-TRP transmission.
  • the CSI configuration includes:
  • the content reported by the CSI for example, one or more of RI, PMI, and CQI;
  • Frequency domain granularity of CSI reporting for example, broadband reporting and subband reporting
  • the indication information of each NZP CSI-RS resource configuration can determine an NZP CSI-RS resource configuration.
  • the n NZP CSI-RS resource configurations correspond to n serving base stations, respectively. In this embodiment, they are called NZP CSI-RS resource configuration 1 (corresponding to base station 1) and NZP CSI-RS resource configuration 2 (corresponding to base station 2). ).
  • the indication information of a CSI-IM resource configuration may determine a CSI-IM resource configuration, and the CSI-IM resource configuration may indicate the following information: L CSI-IM resource configuration parameters, and L> 1.
  • L CSI-IM resource configuration parameters L CSI-IM resource configuration parameters
  • L> 1 L CSI-IM resource configuration parameters
  • one CSI-IM resource is associated with one NZP CSI-RS resource configuration among the n NZP CSI-RS resource configurations.
  • there are m 1 CSI-IM resources which occupy the same time-frequency resources. This m 1 CSI-IM resource is referred to as "the same CSI-IM resource", and m 1 is an integer greater than 1.
  • association of CSI-IM resources with NZP CSI-RS resource configuration means that when the terminal device calculates CQI, if (i.e., all or part of) NZP CSI of the NZP CSI-RS resource is selected -RS resource measures channel information, then it selects (all or part of) CSI-IM resources associated with it to measure interference information, and then obtains CQI based on the channel information and interference information (and / or other information).
  • L CSI-IM resources there are L 1 CSI-IM resources as the first type of CSI-IM resources, which are used to measure the interference assumptions based on the first type of interference hypothesis (for example, the interference hypothesis corresponding to the multi-station joint transmission mechanism). ) Interference information; there are L 2 CSI-IM resources as the second type of CSI-IM resources, which are used to measure interference information based on the second type of interference hypothesis (for example, the interference hypothesis corresponding to a single station transmission mechanism). L ⁇ L 1 + L 2 .
  • the aforementioned "same CSI-IM resources" belong to the first type of CSI-IM resources.
  • whether a CSI-IM resource is a first-type CSI-IM resource or a second-type CSI-IM resource may be indicated in the above CSI-IM resource configuration.
  • a special field is used to indicate the CSI-IM resource.
  • the type of IM resource is a special field.
  • association relationship between the CSI-IM resource configuration and the NZP CSI-RS resource configuration may be configured in multiple ways, which is not limited in the embodiment of the present application.
  • the foregoing association relationship may be configured by the base station through RRC signaling, that is, such association information is indicated in a CSI configuration, or such association information is indicated in a CSI-IM resource configuration.
  • the above-mentioned association relationship may also be dynamically established by the base station through DCI.
  • the terminal device receives the above CSI configuration, it does not know which CSI-IM resource configuration configuration is associated with which NZP CSI-RS resource configuration among the n CSI-IM resource configurations until the terminal device receives a trigger After the DCI of the CSI, the terminal device can dynamically establish an association relationship according to the DCI.
  • m n.
  • L 2 CSI-IM resources
  • one CSI-IM resource is used to measure all interference information under a single station transmission, which is the second type of CSI-IM resource
  • the other CSI-IM resource is used to measure dual base station association.
  • the interference information caused by the transmission of other non-serving base stations is the first type of CSI-IM resource.
  • CSI-IM 1 and CSI-IM 3 occupy different time-frequency resources. That is the above-mentioned second type of CSI-IM resource.
  • the base station can configure CSI-IM0 and CSI-IM2 as a CSI-IM resource, have a CSI-IM ID, and can also configure CSI-IM0 and CSI-IM2 as two CSI-IM
  • the resources each have different CSI-IM IDs and / or other parameters, but occupy the same time-frequency resources, which is not limited in this embodiment of the present application.
  • the terminal device receives the DCI sent by the base station 1 and / or the base station 2. It should be understood that the DCI will indicate the same CSI configuration described above. According to the aforementioned "pre-scheduling" mechanism, if a certain base station sends DCI at time t, it means that the base station is ready to schedule data at time t + k. If the base station does not prepare scheduling data, it does not send the DCI indicating the CSI configuration to the terminal device at time t.
  • the terminal device After receiving the DCI sent by the base station 1 and / or base station 2, the terminal device can directly determine the transmission scheme according to the number of DCIs, that is, single station transmission (transmit with base station 1 or transmission with base station 2) or NCJT (with base station 1) Joint transmission with base station 2), or a transmission scheme can be recommended to the base station based on the measured CSI. If only one base station decides to schedule data, the terminal device determines that the possible transmission mechanism is only a single station transmission, and the terminal device can only target the transmission mechanism Measure CSI. If both base stations want to schedule data, the terminal device can determine the transmission mechanism including: base station 1 transmission, base station 2 transmission, and NCJT. The terminal device can measure the CSI of the two base stations and determine whether one base station service is good or two. The service of each base station is good, that is, whether the single-site transmission is good or NCJT is good. The following describes the possible implementations in detail.
  • the terminal device determines a target CSI-IM resource according to the number of received DCIs, and is used to calculate a CQI.
  • the embodiments of the present application can be divided into the following three cases:
  • the terminal device only receives the DCI sent by the base station 1.
  • the terminal device receives only the DCI 1 sent by the base station 1, and a certain field (such as CSI request field) of the DCI 1 indicates the CSI configuration, which indicates that the base station 1 triggers the terminal device to report the CSI.
  • This field also indicates from the two NZP CSI-RS resource configurations associated with the CSI the ID of a NPZ CSI-RS configuration and the ID of a CSI-IM configuration used for reporting the CSI, for example, CSI-RS resource 1 Configuration and No. 1 CSI-IM resource configuration.
  • the terminal device can measure the NZP CSI-RS resource (NZP CSI-RS 1) in the NZP No. 1 CSI-RS resource configuration triggered by DCI 1 as the target CSI-RS resource to measure the channel. Through the measured channel information and interference information, the terminal device can determine and report the CQI.
  • base station 1 when base station 1 sends DCI 1 to trigger the above CSI report, and triggers NZP No. 1 CSI RS resource configuration and No. 1 CSI-IM resource configuration, base station 1 will send corresponding NZP CSI- RS, and do rate matching on CSI-IM 0 and CSI-IM 1 included in the CSI-IM resource configuration No. 1, that is, do not send any data to any terminal device on the RE of these two resources, the purpose is to make the The terminal device can accurately measure interference caused by data and / or reference signals sent by other base stations on the resource.
  • the terminal device can measure Interference caused by base stations other than base station 1. Therefore, when the terminal device receives only DCI 1, it will select CSI-IM1 as the target CSI-IM resource to measure interference information. Therefore, the terminal device can predict the interference hypothesis of future data by the number of DCIs, thereby dynamically selecting the target CSI-IM resource from the associated CSI-IM resource configuration, which can accurately obtain the corresponding interference information and calculate accurately. CQI. Further, the terminal device may report the CQI to the base station 1.
  • the terminal device only receives the DCI 2 sent by the base station 2.
  • the terminal device only receives the DCI 2 sent by the base station 2.
  • a certain field (such as CSI request field) of the DCI 2 indicates the CSI configuration, which indicates that the base station 2 triggers the terminal device to report the CSI.
  • This field also indicates from the two NZP CSI-RS resource configurations associated with the CSI an ID for reporting an NPZ CSI-RS resource configuration used by the CSI and an ID for the CSI-IM resource configuration, for example, CSI-2 RS resource configuration and No. 2 CSI-IM resource configuration.
  • the terminal device can measure the NZP CSI-RS resource (NZP CSI-RS 2) in the NZP 2 CSI-RS resource configuration triggered by DCI 2 as the target CSI-RS resource to measure the channel.
  • NZP CSI-RS 2 the NZP 2 CSI-RS resource configuration triggered by DCI 2
  • the terminal device can calculate the CQI when the base station 2 schedules data for itself and report it to the base station.
  • base station 2 when base station 2 sends DCI 2 to trigger the above CSI report, and triggers NZP 2 CSI RS resource configuration and CSI-IM resource configuration 2, base station 2 will send corresponding NZP CSI- RS, and do rate matching on the CSI-IM 2 and CSI-IM 3 included in the CSI-IM resource configuration No. 2, that is, do not send any data on the RE of these two resources like any terminal device, the purpose is to let the terminal The device can measure interference caused by data and / or reference signals sent by other base stations on the resource.
  • the terminal device can measure Interference caused by base stations other than base station 3. Therefore, when the terminal device receives only DCI 2, it will select CSI-IM3 as the target CSI-IM resource to measure interference information. Therefore, the terminal device can predict the interference hypothesis of the future data by the number of DCIs, thereby dynamically selecting the target CSI-IM resource from the associated CSI-IM resource configuration, and can accurately obtain the corresponding interference information and calculate the accurate CQI. Further, the terminal device may report the CQI to the base station 2.
  • the terminal device receives DCI 1 of base station 1 and DCI 2 of base station 2.
  • the terminal device receives DCI 1 of base station 1 and DCI 2 of base station 2, and both DCI 1 and DCI 2 indicate the above-mentioned CSI configuration.
  • the above-mentioned DCI 1 also indicates the NZP No. 1 CSI-RS resource configuration and the No. 1 CSI-IM resource configuration
  • DCI 2 indicates the No. 2 NZP CSIRS resource configuration and No. 2 CSI-IM resource configuration.
  • the terminal device receives two DCIs, which means that at time t + k, the base station 1 and the base station 2 will schedule data for the terminal device at the same time, but different data streams are scheduled. Therefore, the terminal device needs to separately measure CSI for different data streams.
  • the terminal device When the terminal device measures CSI for base station 1, it can perform channel measurement on the NZP CSI-RS resource included in the NZP No. 1 CSI-RS resource configuration. Its interference information includes two parts: the flow between base station 2 and base station 1. Interference, and interference from other base stations except base station 1 and base station 2 to base station 1. Among them, the first type of interference can be measured on the NZP CSI-RS resource (NZP CSI-RS 2) included in the NZP CSI-RS resource configuration No. 2. The second type of interference needs to exclude base station 1 and base station 2. It is measured on the same CSI-IM resource (ie, the first type of CSI-IM resource), that is, CSI-IM. Through such a measurement, the terminal device can obtain the CQI of the data stream of the base station 1. Therefore, this measurement method corresponds to the target CSI-IM resource being CSI-IM0 (that is, CSI-IM2).
  • the interference information includes two parts: the flow between base station 1 and base station 2. Interference, and interference from other base stations except base station 1 and base station 2 to base station 2. Among them, the first type of interference can be measured on the NZP CSI-RS resource (NZP CSI-RS 1) included in the NZP CSI-RS resource configuration.
  • the second type of interference needs to exclude base station 1 and base station 2. Measured on the same CSI-IM resource (that is, the first type of CSI-IM resource), that is, CSI-IM 2 (that is, CSI-IM 0). Through such a measurement, the terminal device can obtain the CQI 2 of the data stream of the base station 2. Therefore, the target CSI-IM resource corresponding to this measurement method is CSI-IM2.
  • base station 1 will perform rate matching on CSI-IM 0 and CSI-IM 1 included in the CSI-IM resource configuration No. 1, and base station 2 will perform CSI 2 with base station 2 -IM resource configuration includes rate matching on CSI-IM2 and CSI-IM3. Because on CSI-IM0 and CSI-IM2, base station 1 and base station 2 do rate matching, the terminal device can obtain interference from other non-serving base stations on the CSI-IM resource. In addition, the terminal device measures inter-stream interference on the corresponding NZP CSI-RS resources, and the terminal device can obtain accurate SINR information on each data stream.
  • the complete interference information is jointly measured from the NZP CSI-RS resource and the target CSI-IM resource.
  • the interference caused by other non-serving base stations is measured on the target CSI-IM resources, and the inter-stream interference between the serving base stations can be measured on the NZP CSI-RS resources corresponding to each base station.
  • the terminal device can predict the interference hypothesis of the future data by the number of DCIs, thereby dynamically selecting the target CSI-IM resource (CSI-IM0 or CSI-IM2) from the associated CSI-IM resource configuration. Obtain the corresponding interference information accurately and calculate the accurate CQI. Further, the terminal device may report CQI1 to the base station 1, and report CQI2 to the base station 2.
  • a NZP CIS-RS resource is associated with multiple CSI-IM resources by combining a "pre-scheduling" mechanism, and different CSI-IM resources in the multiple CSI-IM resources are used.
  • Interference measurement under different interference assumptions enables terminal devices to dynamically select target CSI-IM resources according to the number of DCIs, thereby obtaining accurate interference information, which not only avoids dynamic interaction of information, but also improves the accuracy of measurement results Sex.
  • the terminal device may determine a transmission mechanism set according to the number of received DCIs, and select a target transmission mechanism from the transmission mechanism set, and determine a target NZP CSI-RS resource and a target CSI-IM resource for the target transmission mechanism for Calculate CQI.
  • the terminal device only receives the DCI sent by the base station 1.
  • a certain field (such as CSI request field) of the DCI 1 indicates the above CSI configuration, and this field also receives the 2 NZP CSI-RS resources associated with the CSI.
  • the configuration indicates an NPZ CSI-RS configuration ID and a CSI-IM configuration ID used for reporting the CSI, for example, CSI-RS resource configuration No. 1 and CSI-IM resource configuration No. 1.
  • the above-mentioned set of transmission mechanisms includes only a single base station transmission. Then the terminal device determines that the target transmission mechanism is a single base station transmission.
  • the target CSI-IM resource is CSI-IM1 in the CSI-IM configuration No. 1.
  • the terminal device may not need to know which base station the DCI 1 came from, and only needs to perform CSI measurement according to the CSI configuration triggered by the DCI 1 and the associated CSI-RS configuration and CSI-IM configuration.
  • the terminal device only receives the DCI 2 sent by the base station 2.
  • a certain field (such as CSI request field) of the DCI 2 indicates the above CSI configuration, and this field also receives the 2 NZP CSI-RS resources associated with the CSI
  • the configuration indicates an ID of an NPZ CSI-RS resource configuration and an ID of a CSI-IM resource configuration used for reporting the CSI, for example, a CSI-RS resource configuration No. 2 and a CSI-IM resource configuration No. 2.
  • the above-mentioned set of transmission mechanisms includes only a single base station transmission. Then the terminal device determines that the target transmission mechanism is a single base station transmission.
  • the target CSI-IM resource is CSI-IM 3 in the CSI-IM configuration No. 2.
  • the terminal device does not need to know which base station the DCI 2 comes from, and only needs to perform CSI measurement according to the CSI configuration triggered by the DCI 2 and the associated CSI-RS configuration and CSI-IM configuration.
  • the terminal device receives DCI 1 of base station 1 and DCI 2 of base station 2.
  • the terminal device may determine that the above-mentioned transmission mechanism set includes: single base station transmission of base station 1, single base station transmission of base station 2, and NCJT. Then, the terminal device may measure CSI for one or more of the transmission mechanisms respectively, and the specific measurement method is the same as that in the first embodiment, and details are not described herein again.
  • the terminal device can select corresponding NZP CSI-RS resources and target CSI-IM resources for measurement, and obtain corresponding CSI. The terminal device determines a target transmission mechanism and reports the CSI under the target transmission mechanism.
  • the terminal device may also report an indication information to indicate the target transmission mechanism. It should be understood that the terminal device can determine the target transmission mechanism in multiple ways, which is not limited in this embodiment. For example, the terminal device may calculate the sum according to the CQI, and select a transmission mechanism with the largest sum to recommend.
  • the target CSI-IM resource will change according to the change of the target transmission mechanism recommended by the terminal device.
  • the target CSI-IM resource can be the first type of CSI-IM resource, or it can be It is the second type of CSI-IM resource.
  • a NZP CIS-RS resource is associated with multiple CSI-IM resources by combining a "pre-scheduling" mechanism, and different CSI-IM resources in the multiple CSI-IM resources are used.
  • the interference measurement under different interference assumptions enables the terminal device to determine the transmission mechanism that can be used according to the number of DCIs, and selects the target transmission mechanism to recommend to the base station to obtain accurate interference information. Not only can it avoid dynamic information interaction, Moreover, the accuracy of the measurement results is improved, which is beneficial to obtain better transmission performance.
  • the base station 1 and the base station 2 can respectively send RRC signaling for the terminal device, and respectively configure related information reported by the CSI as an example.
  • the terminal device may receive the first RRC signaling from the base station 1, and the first RRC signaling is configured with a first CSI configuration for multi-TRP transmission.
  • the first CSI configuration includes:
  • the content reported by the first CSI for example, one or more of RI, PMI, and CQI;
  • the frequency domain granularity reported by the first CSI for example, a broadband report and a subband report;
  • the indication information of each NZP CSI-RS resource configuration may determine an NZP CSI-RS resource configuration.
  • the NZP CSI-RS resource configuration associated with the first CSI configuration may be referred to as a CSI-RS resource configuration No. 1.
  • the associated K 1 NZP CSI-RS resources are NZP CSI-RS 1.
  • the indication information may indicate m 1 CSI-IM resource configuration indication information.
  • the indication information of each CSI-IM resource configuration may determine a CSI-IM resource configuration, and the CSI-IM resource configuration may indicate the following information: L 1 CSI-IM resource configuration parameter, and L 1 > 2.
  • each CSI-IM resource configuration is associated with one of the NZP CSI-RS resource configurations of the n 1 NZP CSI-RS resource configurations described above.
  • m 1 n 1 .
  • Instructions for indicating that the first CSI configuration is associated with the second CSI configuration For example, the indication information indicates an index of the second CSI configuration.
  • the terminal device may receive a second RRC signaling from the base station 2, and the second RRC signaling is configured with a second CSI configuration for multi-TRP transmission.
  • the second CSI configuration includes:
  • the content reported by the second CSI for example, one or more of RI, PMI, and CQI;
  • the frequency domain granularity of the second CSI report for example, a broadband report and a subband report
  • the indication information of each NZP CSI-RS resource configuration may determine an NZP CSI-RS resource configuration.
  • K 2 associated NZP CSI-RS resources are indicated.
  • the NZP CSI-RS resource configuration associated with the second CSI configuration may be referred to as a CSI-RS resource configuration No. 2.
  • the K 2 NZP CSI-RS resources associated with it are NZP CSI-RS 2.
  • the indication information may indicate m 2 CSI-IM resource configuration indication information.
  • the indication information of each CSI-IM resource configuration may determine a CSI-IM resource configuration, and the CSI-IM resource configuration may indicate the following information: L 2 CSI-IM resource configuration parameters, and L 2 > 2.
  • each CSI-IM resource configuration is associated with one of the n 2 NZP CSI-RS resource configurations described above.
  • m 2 n 2 .
  • Instructions for indicating that the second CSI configuration is associated with the first CSI configuration For example, the indication information indicates an index of the first CSI configuration.
  • one CSI-IM resource is used to measure all interference information under a single station transmission, which is the second type of CSI-IM.
  • IM resource and another CSI-IM resource is used to measure the interference information caused by the transmission of other non-serving base stations except these two base stations, which is the first type of CSI-IM resource.
  • L 2 2 CSI-IM resources
  • one CSI-IM resource is the above-mentioned second type CSI-IM resource and the other CSI-IM resource It is the first type of CSI-IM resource.
  • L 2 2 CSI-IM resources included in the CSI-IM resource configuration No. 2
  • the CSI-IM resources are CSI-IM 2 and CSI-IM 3.
  • CSI-IM 0 and CSI-IM 2 occupy the same time-frequency resources, which are the above-mentioned “same CSI-IM resources", that is, the aforementioned first type of CSI-IM resources, and CSI-IM 1 and CSI-IM 3 occupy Different time-frequency resources are the above-mentioned second type of CSI-IM resources.
  • base station 1 and base station 2 can configure CSI-IM0 and CSI-IM2 as a CSI-IM resource, have a CSI-IM ID, and can also configure CSI-IM0 and CSI-IM2 as two
  • Each CSI-IM resource has different CSI-IM ID and or other parameters, but occupies the same time-frequency resource, which is not limited in this embodiment of the present application.
  • the terminal device receives the DCI sent by the base station 1 and / or the base station 2.
  • the DCI 1 sent by the base station 1 indicates the first CSI configuration
  • the DCI 2 sent by the base station 2 indicates the second CSI configuration.
  • pre-scheduling if a certain base station sends DCI at time t, it means that the base station is ready to schedule data at time t + k. If the base station does not prepare scheduling data, it does not send the DCI indicating the CSI configuration to the terminal device at time t.
  • the terminal device After receiving the DCI sent by the base station 1 and / or base station 2, the terminal device can directly determine the transmission scheme according to the number of DCIs, that is, single station transmission (transmit with base station 1 or transmission with base station 2) or NCJT (with base station 1) Joint transmission with base station 2), or a transmission scheme can be recommended to the base station based on the measured CSI. If only one base station decides to schedule data, the terminal device determines that the possible transmission mechanism is only a single station transmission, and the terminal device can only target the transmission mechanism Measure CSI. If both base stations want to schedule data, the terminal device can determine the transmission mechanism including: base station 1 transmission, base station 2 transmission, and NCJT. The terminal device can measure the CSI of the two base stations and determine whether one base station service is good or two. The service of each base station is good, that is, whether the single-site transmission is good or NCJT is good.
  • the terminal device determines a target CSI-IM resource for calculating the CQI according to the number of DCIs received. If the terminal device receives multiple DCIs, there is an association relationship between multiple CSI configurations indicated by the multiple DCIs.
  • the embodiments of the present application can be divided into the following three cases:
  • the terminal device only receives the DCI sent by the base station 1.
  • the terminal device only receives the DCI 1 sent by the base station 1, and a certain field (for example, CSI request field) of the DCI 1 indicates the first CSI configuration, which indicates that the base station 1 triggers the terminal device to report the CSI.
  • This field also indicates the ID of the NZP CSI-RS resource configuration used for the CSI and the ID of the CSI-IM resource configuration from the NZP CSI-RS resource configuration associated with the CSI, for example, No. 1 CSI-RS resource Configuration and No. 1 CSI-IM resource configuration.
  • the terminal device may perform CSI measurement and reporting according to the method corresponding to the scenario in Embodiment 1 or Embodiment 2, and details are not described herein again.
  • the terminal device only receives the DCI 2 sent by the base station 2.
  • the terminal device only receives the DCI 2 sent by the base station 2.
  • a certain field (for example, CSI request field) of the DCI 2 indicates the second CSI configuration, which indicates that the base station 2 triggers the terminal device to report the CSI.
  • This field also indicates from the CSI-associated NZP CSI-RS resource configuration the ID for reporting an NPZ CSI-RS resource configuration used by the CSI and the ID of the CSI-IM resource configuration, for example, CSI-RS resource 2 Configuration and No. 2 CSI-IM resource configuration.
  • the terminal device may perform CSI measurement and reporting according to the method corresponding to the scenario in Embodiment 1 or Embodiment 2, and details are not described herein again.
  • the terminal device receives DCI 1 of base station 1 and DCI 2 of base station 2.
  • the terminal device receives the DCI 1 of the base station 1 and the DCI 2 of the base station 2, and the DCI 1 and the DCI 2 respectively indicate the above-mentioned first CSI configuration and second CSI configuration.
  • the above-mentioned DCI 1 also indicates the NZP No. 1 CSI-RS resource configuration and the No. 1 CSI-IM resource configuration
  • DCI 2 indicates the No. 2 NZP CSIRS resource configuration and No. 2 CSI-IM resource configuration.
  • the terminal device receives two DCIs and determines that at time t + k, the base station 1 and the base station 2 will schedule data for the terminal device at the same time, but they schedule different data. flow. Therefore, the terminal device needs to separately measure CSI for different data streams. In this case, the terminal device may perform CSI measurement and reporting according to the method corresponding to the scenario in Embodiment 1 or Embodiment 2 above, and details are not described herein again.
  • the “DCI received by the terminal device” mentioned in the embodiments of the present application only counts DCI used to indicate multi-TRP transmission.
  • the terminal device may also receive DCI with other purposes. This is not limited in the embodiments of the present application.
  • a NZP CIS-RS resource is associated with multiple CSI-IM resources by combining a "pre-scheduling" mechanism, and different CSI-IM resources in the multiple CSI-IM resources are used.
  • Interference measurement under different interference assumptions enables terminal devices to dynamically select target CSI-IM resources according to the number of DCIs, thereby obtaining accurate interference information, which not only avoids dynamic interaction of information, but also improves the accuracy of measurement results Sex.
  • the method for reporting channel state information according to the embodiment of the present application is described in detail above with reference to FIG. 1 to FIG. 5.
  • the apparatus for reporting channel state information according to the embodiment of the present application will be described in detail below with reference to FIGS. 6 to 9.
  • FIG. 6 shows an apparatus 600 for reporting channel state information provided by an embodiment of the present application.
  • the apparatus 600 may be a terminal device in the foregoing embodiment, or may be a chip in the terminal device.
  • the device 600 includes:
  • the transceiver unit 610 is configured to receive M downlink control information, where the first downlink control information in the M downlink control information indicates a first channel state information configuration, and the first channel state information configuration and the first channel state information
  • the interference measurement CSI-IM resource group is associated.
  • the first CSI-IM resource group includes N 1 CSI-IM resources, M and N 1 are positive integers, and N 1 is greater than 1.
  • a processing unit 620 is configured to measure a target CSI-IM resource and report channel state information through the transceiver unit, where the target CSI-IM resource is determined by the terminal device from the N 1 CSI-IM resources according to M The number of the target CSI-IM resources is less than N 1 .
  • the apparatus for reporting channel state information in the embodiment of the present application determines the transmission mechanism used for future data transmission by the terminal device according to the number of received downlink control information, and selects a target CSI-IM from at least two CSI-IM resources. Resources perform interference measurement and report channel state information, which can avoid dynamic interaction of information, and at the same time, it helps to improve the accuracy of CSI measurement results, thereby improving system performance.
  • the second CSI-IM resource group includes N 2 CSI-IM resources, the first channel state information configuration and the second channel state information configuration have an association relationship, and N 2 is a positive integer.
  • the first channel state information configuration is the same as the second channel state information configuration.
  • the first channel state information configuration is configured for the same transmission mechanism set as the second channel state information configuration, and the transmission mechanism set includes a multi-station joint transmission mechanism and a single-station transmission mechanism; or
  • the first channel state information configuration carries first indication information, or the first downlink control information carries the first indication information, and the first indication information is used to indicate that the first channel state information configuration and The second channel state information configuration is associated.
  • the N 1 CSI-IM resources include a first type CSI-IM resource and a second type CSI-IM resource, and the first type CSI-IM resource is used to measure interference under a multi-station joint transmission mechanism.
  • the second type of CSI-IM resource is used to measure interference information under a single station transmission mechanism.
  • the j-th CSI-IM resource of the N 1 CSI-IM resources is the first-type CSI-IM resource or the second-type CSI-IM resource is predefined;
  • the transceiver unit 610 is further configured to receive third indication information, where the third indication information is used to indicate that a j-th CSI-IM resource of the N 1 CSI-IM resources is the first type CSI- IM resource or the second type of CSI-IM resource; where j ⁇ ⁇ 1, ..., N 1 ⁇ .
  • the target CSI-IM resource is the second type of CSI-IM resource.
  • the target CSI-IM resource is the first-type CSI-IM resource
  • the target CSI-IM resource is the first-type CSI-IM resource or the second-type CSI-IM resource.
  • the first channel state information configuration is further associated with K channel state information reference signal CSI-RS resources, and among the K CSI-RS resources, at least one CSI-RS resource and the N a CSI-IM resource N 1 'one resource associated CSI-IM, K is a positive integer, 1 ⁇ N 1' ⁇ N 1 .
  • the first CSI-IM resource group occupies X subbands
  • the target CSI-IM resource on the xth subband in the X subbands is the terminal device according to the M downlink control
  • the number of CSI-IM resource groups occupying the xth subband in the CSI-IM resource group indicated by the information is determined, X is a positive integer, and x ⁇ ⁇ 1,2, ..., X ⁇ .
  • the apparatus 600 is embodied in the form of a functional unit.
  • the term "unit" herein may refer to an application-specific integrated circuit (ASIC), an electronic circuit, a processor (such as a shared processor, a proprietary processor, or a group of processors) for executing one or more software or firmware programs. Processors, etc.) and memory, merge logic, and / or other suitable components that support the functions described.
  • ASIC application-specific integrated circuit
  • processor such as a shared processor, a proprietary processor, or a group of processors
  • memory merge logic, and / or other suitable components that support the functions described.
  • the apparatus 600 may specifically be a terminal device in the foregoing embodiment, and the apparatus 600 may be configured to execute various processes and / or steps corresponding to the terminal device in the foregoing method embodiment, To avoid repetition, we will not repeat them here.
  • FIG. 7 shows another apparatus 700 for reporting channel state information according to an embodiment of the present application.
  • the apparatus 700 may be a network device in the foregoing embodiment, or may be a chip in a network device.
  • the apparatus 700 includes:
  • a processing unit 710 configured to determine a first channel state information configuration, where the first channel state information configuration is associated with K channel state information reference signals CSI-RS resources and N 1 channel state information interference measurement CSI-IM resources, And among the K CSI-RS resources, there is at least one CSI-RS resource associated with N 1 ′ CSI-IM resources among the N 1 CSI-IM resources, and K and N 1 are positive integers, 1 ⁇ N 1 ′ ⁇ N 1 ;
  • the transceiver unit 720 is configured to send the first channel state information configuration to a terminal device.
  • the first channel state information configuration is further associated with N 2 CSI-IM resources
  • the N 2 CSI-IM resources include a first type CSI-IM resource and / or a second type CSI-IM resource Resource
  • the first type of CSI-IM resource is used to measure interference information under a multi-station joint transmission mechanism
  • the second type of CSI-IM resource is used to measure interference information under a single-site transmission mechanism
  • N 2 is a positive integer .
  • the first channel state information configuration includes first indication information
  • the transceiver unit 720 is further configured to: send the first indication information
  • the first indication information is used to indicate that the first channel state information configuration is associated with a second channel state information configuration, the second channel state information is associated with N 2 CSI-IM resources, and the N
  • the two CSI-IM resources include a first type of CSI-IM resource and a second type of CSI-IM resource, and the first type of CSI-IM resource is used to measure interference information under a multi-station joint transmission mechanism, and the second type CSI-IM-like resources are used to measure interference information under a single station transmission mechanism, and N 2 is a positive integer.
  • the transceiver unit 720 is further configured to send second indication information, where the second indication information indicates that the first channel state is configured for a multi-station joint transmission mechanism or a single-station transmission mechanism.
  • the N 1 CSI-IM resources include a first type CSI-IM resource and a second type CSI-IM resource, and the first type CSI-IM resource is used to measure interference under a multi-station joint transmission mechanism.
  • the second type of CSI-IM resource is used to measure interference information under a single station transmission mechanism.
  • the j-th CSI-IM resource of the N 1 CSI-IM resources is the first-type CSI-IM resource or the second-type CSI-IM resource is predefined;
  • the transceiver unit 720 is further configured to send third indication information, where the third indication information is used to indicate that a j-th CSI-IM resource among the N 1 CSI-IM resources is the first type CSI- IM resource or the second type of CSI-IM resource; where j ⁇ ⁇ 1, ..., N 1 ⁇ .
  • the apparatus 700 here is embodied in the form of a functional unit.
  • the term "unit” herein may refer to an application-specific integrated circuit (ASIC), an electronic circuit, a processor (such as a shared processor, a proprietary processor, or a group of processors) for executing one or more software or firmware programs. Processors, etc.) and memory, merge logic, and / or other suitable components that support the functions described.
  • ASIC application-specific integrated circuit
  • processor such as a shared processor, a proprietary processor, or a group of processors
  • memory merge logic, and / or other suitable components that support the functions described.
  • the apparatus 700 may be specifically a network device in the foregoing embodiment, and the apparatus 700 may be configured to execute various processes and / or steps corresponding to the network device in the foregoing method embodiment, To avoid repetition, we will not repeat them here.
  • the apparatus 600 and the apparatus 700 of each of the foregoing solutions have a function of implementing corresponding steps performed by the terminal device and the network device in the foregoing method; the functions may be implemented by hardware, or may be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions; for example, the transmitting unit may be replaced by a transmitter, the receiving unit may be replaced by a receiver, and other units, such as a determining unit, may be replaced by a processor and executed separately. Sending and receiving operations and related processing operations in various method embodiments.
  • the device in FIG. 6 and FIG. 7 may also be a chip or a chip system, for example, a system on chip (SoC).
  • the receiving unit and the transmitting unit may be the transceiver circuit of the chip, which is not limited herein.
  • FIG. 8 shows another apparatus 800 for reporting channel state information provided by an embodiment of the present application.
  • the device 800 includes a processor 810, a transceiver 820, and a memory 830.
  • the processor 810, the transceiver 820, and the memory 830 communicate with each other through an internal connection path.
  • the memory 830 is used to store instructions.
  • the processor 810 is used to execute the instructions stored in the memory 830 to control the transceiver 820 to send signals and / Or receive a signal.
  • the processor 810 is configured to receive M downlink control information through the transceiver 820.
  • the first downlink control information in the M downlink control information indicates a first channel state information configuration, and the first channel state information
  • the configuration is associated with a first channel state information interference measurement CSI-IM resource group, where the first CSI-IM resource group includes N 1 CSI-IM resources, M and N 1 are positive integers, and N 1 is greater than 1; the measurement target CSI-IM resources, and report channel state information through the transceiver 820, the target CSI-IM resources are determined by the terminal device from the N 1 CSI-IM resources according to M, and the target CSI-IM resources The number of resources is less than N 1 .
  • the apparatus 800 may be specifically a terminal device in the foregoing embodiment, and may be used to execute various steps and / or processes corresponding to the terminal device in the foregoing method embodiment.
  • the memory 830 may include a read-only memory and a random access memory, and provide instructions and data to the processor. A portion of the memory may also include non-volatile random access memory.
  • the memory may also store information about the type of device.
  • the processor 810 may be configured to execute an instruction stored in a memory, and when the processor 810 executes an instruction stored in a memory, the processor 810 is configured to execute each step of the foregoing method embodiment corresponding to the terminal device and / Or process.
  • FIG. 9 shows another apparatus 900 for reporting channel state information according to an embodiment of the present application.
  • the device 900 includes a processor 910, a transceiver 920, and a memory 930.
  • the processor 910, the transceiver 920, and the memory 930 communicate with each other through an internal connection path.
  • the memory 930 is used to store instructions.
  • the processor 910 is used to execute the instructions stored in the memory 930 to control the transceiver 920 to send signals and / Or receive a signal.
  • the processor 910 is configured to determine a first channel state information configuration, which is related to K channel state information reference signals CSI-RS resources and N 1 channel state information interference measurement CSI-IM resources And among the K CSI-RS resources, there is at least one CSI-RS resource associated with N 1 ′ CSI-IM resources among the N 1 CSI-IM resources, and K and N 1 are positive An integer, 1 ⁇ N 1 ′ ⁇ N 1 ; sending the first channel state information configuration to the terminal device through the transceiver 920.
  • the apparatus 900 may be specifically a network device in the foregoing embodiment, and may be used to execute various steps and / or processes corresponding to the network device in the foregoing method embodiment.
  • the memory 930 may include a read-only memory and a random access memory, and provide instructions and data to the processor. A portion of the memory may also include non-volatile random access memory. For example, the memory may also store information about the type of device.
  • the processor 910 may be configured to execute an instruction stored in a memory, and when the processor 910 executes an instruction stored in a memory, the processor 910 is configured to execute each step of the foregoing method embodiment corresponding to the network device and / Or process.
  • the processor of the above device may be a central processing unit (CPU), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and application-specific integrated circuits. (ASIC), field programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • each step of the above method may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly implemented by a hardware processor, or may be performed by a combination of hardware and software units in the processor.
  • the software unit may be located in a mature storage medium such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in a memory, and the processor executes instructions in the memory and completes the steps of the foregoing method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions in the embodiments of the present application.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above integrated unit may be implemented in the form of hardware or in the form of software functional unit.
  • the integrated unit When the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of this application is essentially a part that contributes to the existing technology, or all or part of the technical solution may be embodied in the form of a software product, which is stored in a storage medium
  • Included are instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in the embodiments of the present application.
  • the aforementioned storage media include: U disks, mobile hard disks, read-only memories (ROMs), random access memories (RAMs), magnetic disks or compact discs and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种上报信道状态信息的方法和装置,该方法包括:终端设备接收M个下行控制信息,该M个下行控制信息中的第一下行控制信息指示第一信道状态信息配置,该第一信道状态信息配置与第一信道状态信息干扰测量CSI-IM资源组相关联,该第一CSI-IM资源组包括N1个CSI-IM资源,M和N1为正整数,N1大于1;该终端设备测量目标CSI-IM资源,上报信道状态信息,该目标CSI-IM资源是该终端设备根据M从该N1个CSI-IM资源中确定的,该目标CSI-IM资源的个数小于N1。本申请实施例的上报信道状态信息的方法和装置,能够避免信息的动态交互,同时有利于提高信道状态信息的测量结果的准确性。本实施例提供的方法可以应用于通信***,例如V2X,LTE-V,V2V,车联网,MTC,loT,LTE-M,M2M,物联网等。

Description

上报信道状态信息的方法和装置 技术领域
本申请涉及通信领域,特别涉及通信领域中的上报信道状态信息的方法和装置。
背景技术
终端设备由于移动,会从一个基站的覆盖区域中心移动到该基站的边缘区域。该边缘区域位于多个基站的覆盖区域之内,因此,其他的信号传输会对该终端设备造成很强的干扰,使该终端设备的数据传输性能变得很差。为了提高边缘终端设备的数据传输性能,长期演进(long term evolution,LTE)和新无线(new radio,NR)引入了多站协同传输(multi-TRP)机制。在该机制下,多个基站可以同时为上述终端设备提供服务,则其它基站原本造成的干扰可以变为有用信号,从而提高边缘终端设备的性能。
当前的multi-TRP传输机制中,根据各个基站到终端设备的信道状态信息(channel state information,CSI),可以动态地选择是由该多个基站中的某一个基站为该终端设备传输数据,还是由该多个基站同时为该终端设备传输数据。其中,前者称为单站传输或动态传输点选择(dynamic transmission point selection,DPS),后者称为多站联合传输(joint transmission,JT)。具体地,多站联合传输又包括相干联合传输(coherent joint transmission,CJT)或非相干传输(non-coherent joint transmission,NCJT)。在一个网络中,采用CJT还是NCJT,取决于各个基站之间的交互信息时延的大小。其中,CJT要求多个基站之间进行动态的信息交互,可以根据各个基站的信息(例如CSI)动态地做出数据调度决策,对各个基站之间的交互时延要求较高;而NCJT不需要各个基站之间动态交互信息,对交互时延的要求较低,更适合网络部署。为了决定采用DPS还是JT中的哪种机制,终端设备可以根据上述多个基站中各个基站发送的信道状态信息参考信号(CSI reference signal,CSI-RS)测量并上报每种机制下的CSI,再由基站进行数据调度决策;或者,终端设备可以根据基站发送的CSI-RS测量多种传输机制下的CSI,并推荐一种传输机制给基站,作为后续数据调度决策的参考信息。
但是,各个基站各自决策CSI-RS的发送、CSI上报的触发和数据的调度,就会导致终端设备在某个时刻针对各个服务基站测量出的CSI不能准确反映后续数据调度时的信道状况,尤其是各个基站发送的数据经历的干扰情况,从而导致上述multi-TRP传输机制的数据解调性能严重下降。因此,如何避免信息的动态交互,同时提高CSI的测量结果的准确性已成为一项亟待解决的技术问题。
发明内容
本申请提供一种上报信道状态信息的方法和装置,能够避免信息的动态交互,同时有利于提高CSI的测量结果的准确性。
第一方面,提供了一种上报信道状态信息的方法,包括:终端设备接收M个下行控 制信息,所述M个下行控制信息中的第一下行控制信息指示第一信道状态信息配置,所述第一信道状态信息配置与第一信道状态信息干扰测量CSI-IM资源组相关联,所述第一CSI-IM资源组包括N 1个CSI-IM资源,M和N 1为正整数,N 1大于1;所述终端设备测量目标CSI-IM资源,上报信道状态信息,所述目标CSI-IM资源是所述终端设备根据M从所述N 1个CSI-IM资源中确定的,所述目标CSI-IM资源的个数小于N 1
具体地,在multi-TRP传输网络中,终端设备可以接收到来自多个网络设备(具体可以为服务基站)的下行控制信息,用于触发终端设备上报CSI。为了避免信息的动态交互,本申请实施例基于预调度的方式测量CSI。所谓“预调度”指的是服务基站半静态地做好约定,即每一个服务基站,如果要在t+k时刻对终端设备进行数据调度,则在t时刻该服务基站发送下行控制信息,触发相互关联的CSI上报(CSI report)。即各个服务基站触发的CSI上报之间具有一定的关联关系。每个服务基站发送的下行控制信息所触发的CSI上报关联(associated with)了该服务基站的CSI-RS资源和CSI-IM资源组。每一个基站的DCI只会触发该CSI和与该CSI关联的自身的CSI-RS资源和CSI-IM资源,无需触发其他基站的CSI-RS资源(即无需替其他基站决策,或者说,知道其他基站的决策)。这样就避免了服务基站需要知道彼此的调度策略和CSI测量决策,避免了交互信息带来的时延。
在本申请实施例中,第一DCI会指示第一CSI配置(CSI configuration),该第一CSI配置与至少两个CSI-IM资源相关联,该至少两个CSI-IM资源中存在两类CSI-IM资源,这两类CSI-IM资源分别对应不同的传输机制,即用于测量不同传输机制下的干扰信息。因此,该终端设备可以根据接收到的DCI的数量(即M),确定未来的数据传输机制是多站联合传输还是单站传输,进而从上述两类CSI-IM资源中选择目标CSI-IM资源,通过测量目标CSI-IM资源,获得干扰信息。进一步地,该终端设备可以测量CSI-RS资源,进行信道测量。
本申请实施例的上报信道状态信息的方法,通过终端设备根据接收到的下行控制信息的个数,确定未来数据传输所采用的传输机制,从至少两个CSI-IM资源中选择目标CSI-IM资源进行干扰测量,上报信道状态信息,能够避免信息的动态交互,同时有利于提高CSI的测量结果的准确性,从而提高***性能。
结合第一方面,在第一方面的某些实现方式中,当M≥2时,在所述M个下行控制信息中,存在第二下行控制信息指示第二信道状态信息配置,所述第二信道状态信息配置与第二CSI-IM资源组相关联,所述第二CSI-IM资源组包括N 2个CSI-IM资源,所述第一信道状态信息配置和所述第二信道状态信息配置具有关联关系,N 2为正整数。
具体地,若终端设备接收到来自至少两个网络设备发送的至少两个下行控制信息,并且该至少两个下行控制信息所指示的CSI配置是相互关联的,则说明存在至少两个网络设备需要在同一时刻调度该终端设备进行数据传输。其中,上述第一DCI指示第一CSI配置,第二DCI指示第二CSI配置,第一CSI配置与N 1个CSI-IM资源相关联,第二CSI配置与N 2个CSI-IM资源相关联,且第一CSI配置与第二CSI配置具有关联关系。
应理解,上述关联关系具体指第一CSI配置和第二CSI配置都可以用于multi-TRP传输。这可以通过多种方式实现,本申请实施例对此不作限定。
结合第一方面,在第一方面的某些实现方式中,所述第一信道状态信息配置与所述第 二信道状态信息配置相同。
具体地,第一CSI配置和第二CSI配置的内容可以完全相同。应理解,第一CSI配置与第二CSI配置相同,可以指第一CSI配置与第二CSI配置所关联的资源完全相同,也可以指第二CSI配置就是第一CSI配置。若第二CSI配置为第一CSI配置,则在一种可能的实现方式中,该第一CSI配置还与N 2个CSI-IM资源相关联,该N 2个CSI-IM资源包括第一类CSI-IM资源和/或第二类CSI-IM资源,该第一类CSI-IM资源用于测量多站联合传输机制下的干扰信息,该第二类CSI-IM资源用于测量单站传输机制下的干扰信息,N 2为正整数。
应理解,第一CSI配置和第二CSI配置的内容也可以不相同。这样,第一CSI配置和第二CSI配置可以分别配置不同的上报内容,例如,第一CSI配置上报秩指示(rank indication,RI)、类型I(Type I)预编码矩阵指示(precoding matrix indicator,PMI)以及信道质量指示(channel quality indicator,CQI)中的至少一个,第二CSI配置上报RI、Type II PMI以及CQI中的至少一个;又例如,第一CSI配置中的PMI是基于16端口的码本,第二CSI配置中的PMI是基于32端口的码本,本申请实施例对此不作限定。两个CSI配置的各项参数不完全相同,可以更加灵活,更适用于实际***中不同基站的天线结构、处理能力等不同的情况。
在第一CSI配置和第二CSI配置不相同的情况下,网络设备可以通过第一指示信息和/或第四指示信息指示第一CSI配置与第二CSI配置之间的关联关系。该第一指示信息和/或第四指示信息可以携带在无线资源控制(radio resource control,RRC)信令中,也可以携带在DCI中,本申请实施例对此不作限定。
结合第一方面,在第一方面的某些实现方式中,所述第一信道状态信息配置携带第一指示信息,或,所述第一下行控制信息携带所述第一指示信息,所述第一指示信息用于指示所述第一信道状态信息配置与所述第二信道状态信息配置相关联。
具体地,所述第一指示信息可以通过指示所述第二信道状态信息配置的索引,来指示所述第一信道状态信息配置与所述第二信道状态信息配置相关联。
结合第一方面,在第一方面的某些实现方式中,所述第二信道状态信息配置携带第四指示信息,或,所述第二下行控制信息携带所述第四指示信息,所述第四指示信息用于指示所述第二信道状态信息配置所述第一信道状态信息配置相关联。
具体地,所述第四指示信息可以通过指示所述第一信道状态信息配置的索引,来指示所述第二信道状态信息配置与所述第一信道状态信息配置相关联。
结合第一方面,在第一方面的某些实现方式中,所述第一信道状态信息配置与所述第二信道状态信息配置用于相同的传输机制集合,所述传输机制集合包括多站联合传输机制和单站传输机制。
具体地,发送第一DCI的网络设备可以发送第二指示信息,该终端设备接收该第二指示信息,该第二指示信息指示所述第一信道状态配置用于多站联合传输机制或单站传输选择机制;发送第二DCI的网络设备可以发送第五指示信息,该终端设备接收该第五指示信息,该第五指示信息指示所述第二信道状态配置用于多站联合传输机制或单站传输选择机制。在本申请实施例中,网络设备还可以通过第二指示信息和/或第五指示信息指示第一CSI配置与第二CSI配置之间的关联关系。该第二指示信息和/或第五指示信息可以携带在 RRC信令中,也可以携带在DCI中,本申请实施例对此不作限定。
以信道状态信息配置中包含第二指示信息为例,该第二指示信息取某个特定的取值时,终端设备可以认为针对该信道状态信息配置测量的CSI将用于multi-TRP传输方案。在一种可能的实现方式中,终端设备收到M个DCI,并且该M个DCI中的每个DCI触发的CSI上报都携带用于multi-TRP传输方案的指示信息时,终端设备即可根据M的取值判断未来数据的传输方案,从而选择目标CSI-IM资源,测量准确的CSI。
结合第一方面,在第一方面的某些实现方式中,所述N 1个CSI-IM资源包括第一类CSI-IM资源和第二类CSI-IM资源,所述第一类CSI-IM资源用于测量多站联合传输机制下的干扰信息,所述第二类CSI-IM资源用于测量单站传输机制下的干扰信息。
具体地,若终端设备根据M,确定未来将采用多站联合传输机制传输数据,则该终端设备可以将第一类CSI-IM资源确定为目标CSI-IM资源;若该终端设备根据M,确定未来将采用单站传输机制传输数据,则该终端设备可以将第二类CSI-IM资源确定为目标CSI-IM资源。上述单站传输机制可以为DPS机制,上述多站联合传输机制可以为NCJT机制。
结合第一方面,在第一方面的某些实现方式中,所述N 1个CSI-IM资源中的第j个CSI-IM资源为所述第一类CSI-IM资源或所述第二类CSI-IM资源为预定义的;或
所述方法还包括:
所述终端设备接收第三指示信息,所述第三指示信息用于指示所述N 1个CSI-IM资源中的第j个CSI-IM资源为所述第一类CSI-IM资源或所述第二类CSI-IM资源;
其中,j∈{1,...,N 1}。
具体地,上述N 1个CSI-IM资源中的第一类CSI-IM资源和第二类CSI-IM资源可以是预定义的,或按照某种预定义的规则确定的。例如,资源索引是奇数的CSI-IM资源为第一类CSI-IM资源,资源索引为偶数的CSI-IM资源为第二类CSI-IM资源。又例如,按照资源索引由小到大的顺序排列,靠前的p个CSI-IM资源为第一类CSI-IM资源,靠后的q个CSI-IM资源为第二类CSI-IM资源。再例如,按照资源索引由小到大的顺序排列,靠前的p个CSI-IM资源为第二类CSI-IM资源,靠后的q个CSI-IM资源为第一类CSI-IM资源,p和q均为小于N 1的正整数。
上述N 1个CSI-IM资源中的第一类CSI-IM资源和第二类CSI-IM资源也可以是网络设备通过第三指示信息配置给终端设备的,例如,对于N 1个CSI-IM资源中的第j个CSI-IM资源,采用1比特进行指示,0表示该资源为第一类CSI-IM资源,1表示该资源为第二类CSI-IM资源,j是大于或等于1并且小于或等于N 1的整数。又例如,对于第j个CSI-IM资源,采用一个指示信息,若配置了该指示信息,则表示该资源为第一类CSI-IM资源,若未配置该指示信息,则表示该资源为第二类CSI-IM资源,j是大于或等于1并且小于或等于N 1的整数。但本申请实施例对此不作限定。
结合第一方面,在第一方面的某些实现方式中,在所述N 1个CSI-IM资源中,至少存在一个第一CSI-IM资源,所述第一CSI-IM资源与所述N 2个CSI-IM资源中的至少一个CSI-IM资源占用相同的时频资源,且在所述N 1个CSI-IM资源中,至少存在一个第二CSI-IM资源,所述第二CSI-IM资源与所述N 2个CSI-IM资源中的所有CSI-IM资源占用不同的时频资源。
具体地,N 1个CSI-IM资源和N 2个CSI-IM资源中包括占用相同时频资源的至少一个第一CSI-IM资源,本文又称为“相同的CSI-IM资源”,N 1个CSI-IM资源和N 2个CSI-IM资源中还包括占用不同时频资源的至少一个第二CSI-IM资源,本文又称为“不同的CSI-IM资源”。
应理解,一个时频资源可以是一个资源元素(resource element,RE),由一个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号和一个子载波确定。
结合第一方面,在第一方面的某些实现方式中,所述第一CSI-IM资源为所述第一类CSI-IM资源,所述第二CSI-IM资源为所述第二类CSI-IM资源。
换句话说,上述相同的CSI-IM资源即为第一类CSI-IM资源,用于测量多站联合传输机制下的干扰信息,上述不同的CSI-IM资源即为第二类CSI-IM资源,用于测量单站传输机制下的干扰信息。
结合第一方面,在第一方面的某些实现方式中,当M=1时,所述目标CSI-IM资源为所述第二类CSI-IM资源。
具体地,当终端设备只收到一个下行控制信息时,该终端设备可以确定未来的数据传输采用单站传输机制,并确定目标CSI-IM资源为上述第二类CSI-IM资源,即为上述不同的CSI-IM资源。可选地,该下行控制信息触发了一个CSI上报,该CSI上报是针对multi-TRP传输机制进行测量的。
在一种可能的实现方式,当M=1时,所述终端设备在所确定的目标CSI-IM资源上测量干扰信息,并根据所获得的干扰信息,确定所述信道状态信息,并上报所述信道状态信息。
结合第一方面,在第一方面的某些实现方式中,当M≥2时,所述目标CSI-IM资源为所述第一类CSI-IM资源。
具体地,当终端设备在t时刻收到至少两个下行控制信息时,该终端设备可以确定t+k时刻的数据传输机制为多站联合传输,将第一类CSI-IM资源确定为目标CSI-IM资源。
结合第一方面,在第一方面的某些实现方式中,当M≥2时,所述目标CSI-IM资源为所述第一类CSI-IM资源,所述终端设备在所述目标CSI-IM资源以及所述M个下行控制信息中除所述第一下行控制信息之外的下行控制信息所指示的全部或部分CSI-RS资源上测量干扰信息,并根据所获得的干扰信息,确定所述信道状态信息,并上报所述信道状态信息。
结合第一方面,在第一方面的某些实现方式中,当M≥2时,所述目标CSI-IM资源为所述第一类CSI-IM资源或所述第二类CSI-IM资源。
具体地,当终端设备在t时刻收到至少两个下行控制信息时,该终端设备可以确定t+k时刻数据的传输机制集合,该传输机制集合包括:单基站传输以及至少两个基站的多站联合传输。可选地,该终端设备可以分别针对其中的全部或部分传输机制测量CSI,通过比较不同传输机制的CSI,确定一个目标传输机制,并上报该传输机制下的CSI。确定目标传输机制也可以有其他方式,在此不限定。可选地,终端设备还可以上报一个指示信息来指示本次上报的CSI所对应的传输机制,或者等效的,指示本次上报的CSI所基于的干扰假设。此时,对应的目标CSI-IM资源可以为第一类CSI-IM资源,也可以为第二类CSI-IM资源,这取决于终端设备所确定的目标传输机制。
在一种可能的实现方式,当M≥2,且所述目标CSI-IM资源为所述第一类CSI-IM资源时,所述终端设备在所述目标CSI-IM资源以及所述M个下行控制信息中除所述第一下行控制信息之外的下行控制信息所指示的全部或部分CSI-RS资源上测量干扰信息,并根据所获得的干扰信息,确定所述信道状态信息,并上报所述信道状态信息;和/或
当M≥2,且所述目标CSI-IM资源为所述第二类CSI-IM资源时,所述终端设备在所述目标CSI-IM资源上测量干扰信息,并根据所获得的干扰信息,确定所述信道状态信息,并上报所述信道状态信息。
结合第一方面,在第一方面的某些实现方式中,所述第一信道状态信息配置还与K个信道状态信息参考信号CSI-RS资源相关联,在所述K个CSI-RS资源中,至少存在一个CSI-RS资源与所述N 1个CSI-IM资源中的N 1′个CSI-IM资源相关联,K为正整数,1<N 1′≤N 1
具体地,上述第一CSI配置还与K个CSI-RS资源相关联,该K个CSI-RS资源是用于终端设备测量信道信息的。其中,存在一个CSI-RS资源与至少两个CSI-IM资源相关联。
应理解,一个CSI-RS资源与至少两个CSI-IM资源关联,指的是当该CSI-RS资源用于测量信道信息时,与之关联的CSI-IM资源中,终端设备会测量至少一个目标CSI-IM资源来获取相应的干扰信息。所述信道信息和干扰信息用于确定上报的CSI,具体可以用于确定CSI中的CQI。所述目标CSI-IM资源可以是根据上述M来确定的。
结合第一方面,在第一方面的某些实现方式中,所述第一CSI-IM资源组占用X个子带,所述X个子带中的第x个子带上的所述目标CSI-IM资源是所述终端设备根据所述M个下行控制信息所指示的CSI-IM资源组中占用了所述第x个子带的CSI-IM资源组的个数确定的,X为正整数,x∈{1,2,…,X}。
具体地,两个网络设备发送的CSI-IM资源占用的子带可能不同。因此,即使终端设备收到的DCI的个数大于或等于2,终端设备仍需要根据每个子带上存在的CSI-IM资源组的个数来确定传输机制。只有在两个DCI指示的CSI-IM资源组均占用的子带上,数据的传输机制才可能是多站联合传输,在仅有一个CSI-IM资源组占用的子带上,数据的传输机制仍然是单站传输。
本申请实施例的上报信道状态信息的方法,能够针对不同的子带,确定各子带上的目标CSI-IM资源,以更细的粒度确定未来进行数据传输所采用的传输机制,使得CSI的测量结果更加准确。
第二方面,提供了一种上报信道状态信息的方法,包括:网络设备确定第一信道状态信息配置,所述第一信道状态信息配置与K个信道状态信息参考信号CSI-RS资源和N 1个信道状态信息干扰测量CSI-IM资源相关联,且在所述K个CSI-RS资源中,存在至少一个CSI-RS资源与所述N 1个CSI-IM资源中的N 1′个CSI-IM资源相关联,K和N 1为正整数,1<N 1′≤N 1;所述网络设备向终端设备发送所述第一信道状态信息配置。
结合第二方面,在第二方面的某些实现方式中,所述第一信道状态信息配置还与N 2个CSI-IM资源相关联,所述N 2个CSI-IM资源包括第一类CSI-IM资源和/或第二类CSI-IM资源,所述第一类CSI-IM资源用于测量多站联合传输机制下的干扰信息,所述第二类CSI-IM资源用于测量单站传输机制下的干扰信息,N 2为正整数。
结合第二方面,在第二方面的某些实现方式中,所述第一信道状态信息配置包括第一 指示信息;或
所述方法还包括:所述网络设备发送第一指示信息;
其中,所述第一指示信息用于指示所述第一信道状态信息配置与第二信道状态信息配置相关联,所述第二信道状态信息与N 2个CSI-IM资源相关联,所述N 2个CSI-IM资源包括第一类CSI-IM资源和或第二类CSI-IM资源,所述第一类CSI-IM资源用于测量多站联合传输机制下的干扰信息,所述第二类CSI-IM资源用于测量单站传输机制下的干扰信息,N 2为正整数。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:所述网络设备发送第二指示信息,所述第二指示信息指示所述第一信道状态配置用于多站联合传输机制或单站传输选择机制。
结合第二方面,在第二方面的某些实现方式中,所述N 1个CSI-IM资源包括第一类CSI-IM资源和第二类CSI-IM资源,所述第一类CSI-IM资源用于测量多站联合传输机制下的干扰信息,所述第二类CSI-IM资源用于测量单站传输机制下的干扰信息。
结合第二方面,在第二方面的某些实现方式中,所述N 1个CSI-IM资源中的第j个CSI-IM资源为所述第一类CSI-IM资源或所述第二类CSI-IM资源为预定义的;或
所述方法还包括:所述网络设备发送第三指示信息,所述第三指示信息用于指示所述N 1个CSI-IM资源中的第j个CSI-IM资源为所述第一类CSI-IM资源或所述第二类CSI-IM资源;其中,j∈{1,...,N 1}。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:所述网络设备发送第一下行控制信息,所述第一下行控制信息指示下列至少一个:所述第一信道状态信息配置、所述至少一个CSI-RS资源和所述N 1个CSI-IM资源。可选地,所述第一指示信息不指示所述N 2个CIS-IM资源。
结合第二方面,在第二方面的某些实现方式中,在所述N 1个CSI-IM资源中,至少存在一个第一CSI-IM资源,所述第一CSI-IM资源与所述N 2个CSI-IM资源中的至少一个CSI-IM资源占用相同的时频资源,且在所述N 1个CSI-IM资源中,至少存在一个第二
CSI-IM资源,所述第二CSI-IM资源与所述N 2个CSI-IM资源中的所有CSI-IM资源占用不同的时频资源。
结合第二方面,在第二方面的某些实现方式中,所述第一CSI-IM资源为所述第一类CSI-IM资源,所述第二CSI-IM资源为所述第二类CSI-IM资源。
结合第二方面,在第二方面的某些实现方式中,所述第一类CSI-IM资源占用的资源元素(RE)不用于发送下行共享信道。
结合第二方面,在第二方面的某些实现方式中,若所述网络设备在第一时间单元上向所述终端设备发送指示所述第一信道状态信息配置的所述第一下行控制信息,则在所述第一下行控制信息指示的第二时间单元上,所述第二类CSI-IM资源占用的资源元素(RE)不用于发送下行共享信道。
第三方面,提供了一种上报信道状态信息的装置,用于执行第一方面或第一方面任意可能的实现方式中的方法。具体地,该装置包括用于执行上述第一方面或第一方面的任一种可能的实现方式中的方法的单元。
第四方面,提供了另一种上报信道状态信息的装置,用于执行第二方面或第二方面任 意可能的实现方式中的方法。具体地,该装置包括用于执行上述第二方面或第二方面的任一种可能的实现方式中的方法的单元。
第五方面,提供了另一种上报信道状态信息的装置,该装置包括:收发器、存储器和处理器。其中,该收发器、该存储器和该处理器通过内部连接通路互相通信,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,以控制接收器接收信号,并控制发送器发送信号,并且当该处理器执行该存储器存储的指令时,使得该处理器执行第一方面或第一方面的任一种可能的实现方式中的方法。
第六方面,提供了另一种上报信道状态信息的装置,该装置包括:收发器、存储器和处理器。其中,该收发器、该存储器和该处理器通过内部连接通路互相通信,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,以控制接收器接收信号,并控制发送器发送信号,并且当该处理器执行该存储器存储的指令时,使得该处理器执行第二方面或第二方面的任一种可能的实现方式中的方法。
第七方面,提供了一种上报信道状态信息的***,该***包括上述第三方面或第三方面的任一种可能实现方式中的装置以及第四方面或第四方面中的任一种可能实现方式中的装置;或者
该***包括上述第五方面或第五方面的任一种可能实现方式中的装置以及第六方面或第六方面中的任一种可能实现方式中的装置。
第八方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被计算机运行时,使得所述计算机执行上述各方面中的方法。
第九方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行上述各方面中的方法的指令。
第十方面,提供了一种芯片,包括处理器,用于从存储器中调用并运行所述存储器中存储的指令,使得安装有所述芯片的通信设备执行上述各方面中的方法。
第十一方面,提供另一种芯片,包括:输入接口、输出接口、处理器和存储器,所述输入接口、输出接口、所述处理器以及所述存储器之间通过内部连接通路相连,所述处理器用于执行所述存储器中的代码,当所述代码被执行时,所述处理器用于执行上述各方面中的方法。
附图说明
图1示出了本申请实施例的通信***的示意图。
图2示出了根据本申请实施例的上报信道状态信息的方法的示意性流程图。
图3示出了根据本申请实施例的另一上报信道状态信息的方法的示意性流程图。
图4示出了根据本申请实施例的信道状态信息配置与资源之间的关联关系的示意图。
图5示出了根据本申请实施例的另一信道状态信息配置与资源之间的关联关系的示意图。
图6示出了根据本申请实施例的上报信道状态信息的装置的示意性框图。
图7示出了根据本申请实施例的另一上报信道状态信息的装置的示意性框图。
图8示出了根据本申请实施例的另一上报信道状态信息的装置的示意性框图。
图9示出了根据本申请实施例的另一上报信道状态信息的装置的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
应理解,本申请实施例的技术方案可以应用于各种通信***,例如:全球移动通信(global system of mobile communication,GSM)***、码分多址(code division multiple access,CDMA)***、宽带码分多址(wideband code division multiple access,WCDMA)***、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)***、LTE频分双工(frequency division duplex,FDD)***、LTE时分双工(time division duplex,TDD)、通用移动通信***(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信***、未来的第五代(5th generation,5G)***或新无线(new radio,NR)等。
还应理解,本申请实施例的技术方案还可以应用于各种基于非正交多址接入技术的通信***,例如稀疏码多址接入(sparse code multiple access,SCMA)***,当然SCMA在通信领域也可以被称为其他名称;进一步地,本申请实施例的技术方案可以应用于采用非正交多址接入技术的多载波传输***,例如采用非正交多址接入技术正交频分复用(orthogonal frequency division multiplexing,OFDM)、滤波器组多载波(filter bank multi-carrier,FBMC)、通用频分复用(generalized frequency division multiplexing,GFDM)、滤波正交频分复用(filtered-OFDM,F-OFDM)***等。
还应理解,在本申请实施例中,终端设备可以经无线接入网(radio access network,RAN)与一个或多个核心网进行通信,该终端设备可称为接入终端、用户设备(user equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的终端设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的终端设备等。
还应理解,在本申请实施例中,网络设备可用于与终端设备通信,该网络设备可以是GSM***或CDMA***中的基站(base transceiver station,BTS),也可以是WCDMA***中的基站(node B,NB),还可以是LTE***中的演进型基站(evolutional node B,eNB或eNode B),或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备、未来5G网络中的网络侧设备或者未来演进的PLMN网络中的网络设备等。
本申请实施例可以适用于LTE***以及后续的演进***如5G等,或其他采用各种无线接入技术的无线通信***,如采用码分多址,频分多址,时分多址,正交频分多址,单载波频分多址等接入技术的***,尤其适用于需要信道信息反馈和/或应用二级预编码技术的场景,例如应用Massive MIMO技术的无线网络、应用分布式天线技术的无线网络等。
应理解,多输入输出(multiple-input multiple-output,MIMO)技术是指在发送端设备和接收端设备分别使用多个发射天线和接收天线,使信号通过发送端设备与接收端设备的 多个天线传送和接收,从而改善通信质量。它能充分利用空间资源,通过多个天线实现多发多收,在不增加频谱资源和天线发射功率的情况下,可以成倍地提高***信道容量。
MIMO可以分为单用户多输入多输出(single-user MIMO,SU-MIMO)和多用户多输入多输出(multi-user MIMO,MU-MIMO)。Massive MIMO基于多用户波束成形的原理,在发送端设备布置几百根天线,对几十个目标接收机调制各自的波束,通过空间信号隔离,在同一频率资源上同时传输几十条信号。因此,Massive MIMO技术能够充分利用大规模天线配置带来的空间自由度,提升频谱效率。
图1是本申请实施例所用的通信***的示意图。如图1所示,该通信***100包括网络设备102,网络设备102可包括多个天线组。每个天线组可以包括一个或多个天线,例如,一个天线组可包括天线104和106,另一个天线组可包括天线108和110,附加组可包括天线112和114。图1中对于每个天线组示出了2个天线,然而可以对于每个组使用更多或更少的天线。网络设备102可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件,例如处理器、调制器、复用器、解调器、解复用器或天线等。
网络设备102可以与多个终端设备通信,例如,网络设备102可以与终端设备116和终端设备122通信。然而,可以理解,网络设备102可以与类似于终端设备116或122的任意数目的终端设备通信。终端设备116和122可以是例如蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位***、PDA和/或用于在无线通信***100上通信的任意其它适合设备。
如图1所示,终端设备116与天线112和114通信,其中天线112和114通过前向链路118向终端设备116发送信息,并通过反向链路120从终端设备116接收信息。此外,终端设备122与天线104和106通信,其中天线104和106通过前向链路124向终端设备122发送信息,并通过反向链路126从终端设备122接收信息。
例如,在频分双工FDD***中,例如,前向链路118可利用与反向链路120所使用的不同频带,前向链路124可利用与反向链路126所使用的不同频带。
再例如,在时分双工TDD***和全双工(full duplex)***中,前向链路118和反向链路120可使用共同频带,前向链路124和反向链路126可使用共同频带。
被设计用于通信的每组天线和/或区域称为网络设备102的扇区。例如,可将天线组设计为与网络设备102覆盖区域的扇区中的终端设备通信。在网络设备102通过前向链路118和124分别与终端设备116和122进行通信的过程中,网络设备102的发射天线可利用波束成形来改善前向链路118和124的信噪比。此外,与网络设备通过单个天线向它所有的终端设备发送信号的方式相比,在网络设备102利用波束成形向相关覆盖区域中随机分散的终端设备116和122发送信号时,相邻小区中的移动设备会受到较少的干扰。
在给定时间,网络设备102、终端设备116或终端设备122可以是无线通信发送装置和/或无线通信接收装置。当发送数据时,无线通信发送装置可对数据进行编码以用于传输。具体地,无线通信发送装置可获取要通过信道发送至无线通信接收装置的一定数目的数据比特,例如,无线通信发送装置可生成、从其它通信装置接收、或在存储器中保存等要通过信道发送至无线通信接收装置的一定数目的数据比特。这种数据比特可包含在数据的传输块或多个传输块中,传输块可被分段以产生多个码块。
此外,该通信***100可以是公共陆地移动网络PLMN网络或者设备对设备(device to device,D2D)网络或者机器对机器(machine to machine,M2M)网络或者其他网络,图1仅为便于理解而示例的简化示意图,网络中还可以包括其他网络设备,图1中未予以画出。
为便于理解,下面先介绍本申请实施例的场景以及所涉及的相关术语。
终端设备由于移动,会从一个基站的覆盖区域中心移动到该基站的边缘区域。该边缘区域位于多个基站的覆盖区域之内,因此,其他的信号传输会对该终端设备造成很强的干扰,使该终端设备的数据传输性能变得很差。为了提高边缘终端设备的数据传输性能,长期演进(long term evolution,LTE)和新无线(new radio,NR)引入了多站协同传输(multi-TRP)机制。在该机制下,多个基站可以同时为上述终端设备提供服务,则其它基站原本造成的干扰可以变为有用信号,从而提高边缘终端设备的性能。
当前的multi-TRP传输机制分为三种:单站传输、相干传输(joint transmission,JT)以及非相干传输(non-coherent joint transmission,NCJT)。
1、单站传输
单站传输又称为动态传输点选择(dynamic transmission point selection,DPS),根据各个基站到终端设备的信道状态信息(channel state information,CSI),由网络设备或终端设备动态地从该多个基站中选某一个基站为该终端设备提供服务,即与该终端设备传输数据。
2、相干传输JT
多个基站之间彼此知道所有的数据信息和它们与终端设备之间的CSI,因此,这多个基站就像是分布式的多个天线阵列,可以一起对要传输的同一层数据做预编码,等效于一个大基站。相干传输可以将多个基站之间的干扰全部变成有用信号,避免彼此之间的干扰,可以显著提升数据传输性能。但是,相干传输要求多个基站之间进行动态的信息交互,动态的信息交互就是在每次数据调度之前基站和终端设备都要交互所有信息,以毫秒(ms)的时间量级频繁地交互信息。换句话说,每个基站在真正进行数据传输之前需要等待若干毫秒,等到把每个服务基站的信息(例如CSI)都拿到之后,所有服务基站一起决定使用一个最优的预编码矩阵与该终端设备进行数据传输。若上述交互过程的时延较大,则采用这种传输机制带来的性能增益可能不足以抵消交互时延增大带来的性能损失。
3、非相干传输NCJT
非相干传输更适用于实际情况,即基站之间有一定的交互时延。为了避免交互时延带来的不利影响,在非相干传输机制中,各个服务基站独立基于各自到终端设备的CSI决定数据的预编码矩阵,而不做联合预编码。并且,每个基站对终端设备传输不同的数据流。采用这种传输机制的好处在于,基站之间不需要动态交互信息,避免了交互时延。但是,由于各自传输不同的数据层,并且预编码矩阵各自独立选取,因此,各个数据层之间可能存在干扰,本申请称为“流间干扰”。
流间干扰的存在会影响不同层的数据的信干噪比(signal to interference plus noise ratio,SINR),从而影响到这一层数据的解调。为了保证一定的解调正确性,每个基站在传输自身的这一层数据时,需要根据这一层数据的SINR来确定一个调制编码策略(modulation coding strategy,MCS)。基站根据终端设备测量并上报的信道质量指示 (channel quality indicator,CQI)来确定MCS,因此,终端设备上报的CQI能否正确的反映实际数据传输时的SINR对数据的解调性能非常关键。一般来说,终端设备可以通过接收基站发送的信道状态信息参考信号(CSI reference signal,CSI-RS),在CSI-RS资源上测量信道,在信道状态信息干扰测量(CSI interferemce measurement,CSI-IM)资源上测量干扰,从而计算CQI上报给基站。应理解,本申请将用于测量信道的参考信号资源称为CSI-RS资源,将用于测量干扰的参考信号资源称为CSI-IM资源,但上述资源也可以用其他名称,例如IM资源,本申请实施例对此不做限定。此外,上述CSI-RS资源可以为非零功率(non zero power,NZP)参考信号资源,CSI-IM资源可以为零功率(zero power,ZP)参考信号资源。进一步地,基站可以根据CQI确定MCS,并指示给终端设备,用于数据解调。
为了降低时延,避免信息的动态交互,本文仅针对采用单站传输或NCJT的multi-TRP传输网络进行讨论,此时,假设各个服务基站较为独立地进行CSI测量和数据调度决策。
在一种理想的multi-TRP传输机制中,假设有一个中心基站控制着所有n个基站。该中心基站有所有基站的数据信息和CSI等,该中心基站可以决定由该n个基站中的哪个基站为该终端设备传输数据,或者由该n个基站同时为该终端设备提供服务,即选择DPS机制或者NCJT机制。为了决定采用哪种机制,终端设备需要根据各个基站发送的信道状态信息参考信号(CSI reference signal,CSI-RS)上报每种机制下的CSI,再由中心基站进行CSI测量决策和数据调度决策。
以n=2为例,上述n个基站具体为基站1和基站2。中心基站可以为终端设备配置3个CSI上报,分别为:
1、CSI上报1,对应的传输机制为基站1的单站传输
终端设备在基站1的CSI-RS资源上测量基站1到该终端设备的信道信息,在基站1的CSI-IM资源上测量基站2和其它非服务基站对该基站1的传输造成的干扰,从而获得只有基站1为该终端设备服务时的CQI。应理解,在上述CSI-IM资源上,基站1不发送任何信号,所以对于基站1,该CSI-IM资源对应的是零功率参考信号,基站2可以发送信号(例如,针对其他终端设备的物理下行共享信道(physical downlink shared channel,PDSCH))。
2、CSI上报2,对应的传输机制为基站2的单站传输
终端设备在基站2的CSI-RS资源上测量基站2到该终端设备的信道信息,在基站2的CSI-IM资源上测量基站1和其它非服务基站对该基站2的传输造成的干扰,从而获得只有基站2为该终端设备服务时的CQI。应理解,在上述CSI-IM资源上,基站2不发送任何信号,所以对于基站2,该CSI-IM资源对应的是零功率参考信号,基站1可以发送信号(例如,针对其他终端设备的PDSCH)。
3、CSI上报3,对应的传输机制为NCJT
在这种传输机制下,终端设备需要测量两个基站彼此的流间干扰,以及其它非服务基站对当前传输所造成的干扰。流间干扰在每个基站用于测量信道的CSI-RS资源上测量,非服务基站造成的干扰在两个基站的相同的CSI-IM资源上测量。
具体地,基站1在CSI-RS 1的时频位置上发送CSI-RS 1,该终端设备基于CSI-RS 1测量基站1到该终端设备的信道h 1。对于基站1传输的数据流而言,h 1是信道增益。但是 对于基站2传输的数据流而言,h 1会带来干扰,因此,在CSI-RS 1上还可以测量到基站1对基站2的数据流造成的干扰功率I 1。同理,基站2在CSI-RS 2的时频位置上发送CSI-RS2,该终端设备可以基于CSI-RS 2测量基站2到该终端设备的信道h 2,同时也可以得到基站2对基站1传输的数据流造成的干扰功率I 2。此外,两个基站会在相同的时频位置配置CSI-IM资源,这两个基站均不会在该CSI-IM资源上发送任何信号。该终端设备可以在该CSI-IM资源上测到其他非服务基站的传输对基站1和基站2的数据流造成的干扰功率I 0
基于上述测量结果,终端设备可以计算基站1的数据流的SINR为SINR
Figure PCTCN2018099907-appb-000001
计算基站2的数据流的SINR为SINR
Figure PCTCN2018099907-appb-000002
该终端设备根据SINR 1和SINR 2上报CQI 1和CQI 2给基站。应理解,上述公式仅仅是为了便于理解所作的示例性说明,SINR还可以通过其他表达式来计算,本申请实施例对此不作限定。
中心基站可以根据终端设备反馈的上述3个CSI,确定应该采用哪个基站或者全部基站为该终端设备传输数据。
但是,上述方法假设了一个中心基站可以为所有服务基站做CSI测量决策和数据调度决策。例如,在上面的CSI上报3中,假设了基站1和基站2会服从中心基站的指示,同时发送CSI-RS 1和CSI-RS 2,以便终端设备进行干扰测量。这也假设了,若后续数据传输采用NCJT传输机制,则基站1和基站2必然会同时为终端设备传输不同的数据流。由于CSI-RS的发送(尤其是非周期CSI-RS的发送)是动态决定的,数据的调度也是动态决策,上述方法仍然需要中心基站掌握各个服务基站的CSI信息,并协调服务基站为终端设备提供服务,需要一定的调度时延,无法避免信息的动态交互,这与降低时延,避免信息的动态交互的初衷相违背。
若考虑实际场景,即各个服务基站不进行信息交互,各自决策CSI-RS的发送、CSI的测量和数据的调度,则终端设备针对各个服务基站测量出的信息就会不准确,从而导致上述multi-TRP传输机制的数据解调性能严重下降。具体地,当基站1决定马上要做数据调度并让终端设备此时上报CSI的时候,该基站1并不知道未来基站2是否也要做数据调度,也不知道基站2是否会在此时发送CSI-RS 2。若按照上述CSI上报3的方式测量CQI1,则该终端设备仅在CSI-RS 1资源上测量信道h 1,在上述CSI-IM资源上测量干扰。由于两个基站均在该CSI-IM资源上不发送任何信号,因此该终端设备测量到的干扰只有其它非服务基站造成的干扰I 0。若在基站1调度数据的时候,基站2也调度了数据,则基站1的数据的MCS就不准确了,因为没有考虑基站2对基站1的数据流造成的流间干扰I 2
因此,如何避免信息的动态交互,同时提高测量结果的准确性已成为一项亟待解决的技术问题。为了解决上述问题,本申请实施例提出了一种新的上报信道状态信息的方法。
图2示出了本申请实施例的上报信道状态信息的方法200的示意性流程图。该方法200可以应用于图1所示的通信***100,但本申请实施例不限于此。
S210,M个网络设备分别向终端设备发送下行控制信息,则对应地,该终端设备接收M个下行控制信息,该M个下行控制信息中的第一下行控制信息指示第一信道状态信息配置,所述第一信道状态信息配置与第一信道状态信息干扰测量CSI-IM资源组相关联,所述第一CSI-IM资源组包括N 1个CSI-IM资源,M和N 1为正整数,N 1大于1;
S220,所述终端设备测量目标CSI-IM资源,上报信道状态信息,所述目标CSI-IM资源是所述终端设备根据M从所述N 1个CSI-IM资源中确定的,所述目标CSI-IM资源的个数小于N 1
具体地,在multi-TRP传输网络中,终端设备可以接收到来自多个网络设备(具体可以为服务基站)的下行控制信息,用于触发终端设备上报CSI。为了避免信息的动态交互,本申请实施例基于预调度的方式测量CSI。所谓“预调度”指的是服务基站半静态地做好约定,即每一个服务基站,如果要在t+k时刻对终端设备进行数据调度,则在t时刻该服务基站发送下行控制信息,触发相互关联的CSI上报(CSI report)。即各个服务基站触发的CSI上报之间具有一定的关联关系。某个服务基站发送的下行控制信息所触发的CSI上报关联(associated with)了该服务基站的CSI-RS资源和一个CSI-IM资源组。每一个基站的DCI只会触发该CSI关联的自身的CSI-RS资源和CSI-IM资源,无需触发其他基站的CSI-RS资源(即无需替其他基站决策,或者说,知道其他基站的决策)。这样就避免了服务基站需要知道彼此的调度策略和CSI测量决策,避免了交互信息带来的时延。具体地,各个下行控制信息触发的相互关联的CSI上报可以是同一个CSI上报,也可以是通过某种方式进行了关联的CSI上报。该关联关系可以用于终端设备判断上述M个下行控制信息是关联的,即可以用于该终端设备根据该M的取值来选择目标CSI-IM资源。本发明中,“预调度”机制不对基站本身的行为进行强制约束,即不强制约束基站按照上述方式来触发CSI、发送CSI-RS和调度数据。但是,基站按照该方式触发CSI、发送CIS-RS,可以让CSI的测量更为准确。
在本申请实施例中,第一DCI会指示第一CSI配置(CSI configuration),该第一CSI配置与第一CSI-IM资源组相关联,该第一CSI-IM资源组包括N 1(大于2)个CSI-IM资源,并且包括两类CSI-IM资源:第一类CSI-IM资源和第二类CSI-IM资源。这两类CSI-IM资源对应不同的传输机制,即用于测量不同传输机制下的干扰信息。因此,该终端设备可以根据接收到的DCI的数量(即M),确定未来的数据传输机制是多站联合传输还是单站传输,进而从上述两类CSI-IM资源中选择目标CSI-IM资源,通过测量目标CSI-IM资源,获得干扰信息。进一步地,该终端设备可以测量CSI-RS资源,进行信道测量。
本申请实施例的上报信道状态信息的方法,通过终端设备根据接收到的下行控制信息的个数,确定未来数据传输所采用的传输机制,从至少两个CSI-IM资源中选择目标CSI-IM资源进行干扰测量,上报信道状态信息,能够避免信息的动态交互,同时有利于提高CSI的测量结果的准确性,从而提高***性能。
应理解,上述“第一CSI配置与第一CSI-IM资源组相关联”是指第一CSI配置对应第一CSI-IM资源组,终端设备通过接收指示该第一CSI配置的DCI时,即可确定对应的第一CSI-IM资源组。换句话说,一个与CSI配置相关联的CSI IM资源组是用于获取该CSI配置的CSI参数时,测量干扰信息从而确定CSI使用的。“第一CSI配置与第一CSI-IM资源组相关联”还可以称为“第一CSI配置对应第一CSI-IM资源组”,或“第一CSI配置与第一CSI-IM资源组相对应”,本申请实施例对此不作限定。
CSI配置与CSI-IM资源组之间的关联关系可以由网络设备通过高层信令(例如,RRC信令)在CSI配置中进行配置,也可以由网络设备通过动态信令(例如,多址接入控制(multiple access control,MAC)控制元素(control elements,CE)或DCI)进行动态指 示,本申请实施例对此也不作限定。
还应理解,上述CSI-IM资源可以分为周期CSI-IM和非周期CSI-IM。可选地,若上述CSI-IM资源为非周期CSI-IM,该CSI-IM资源由网络设备通过动态信令(例如,MAC CE或DCI)进行触发。可选地,若上述CSI-IM资源为周期CSI-IM资源,则该CSI-IM资源由高层信令配置后,无需动态信令的触发。动态信令可以只触发CSI上报,终端设备根据CSI上报的配置即可确认关联的CSI-IM资源,并直接在该周期CSI-IM资源上进行干扰测量。可选地,若上述CSI-IM资源为周期CSI-IM资源,则该CSI-IM资源由高层信令配置后,还可以由网络设备发送动态信令进行触发。
作为一个可选的实施例,所述N 1个CSI-IM资源包括第一类CSI-IM资源和第二类CSI-IM资源,所述第一类CSI-IM资源用于测量多站联合传输机制下的干扰信息,所述第二类CSI-IM资源用于测量单站传输机制下的干扰信息。
具体地,若终端设备根据M,确定未来将采用多站联合传输机制传输数据,则该终端设备可以将第一类CSI-IM资源确定为目标CSI-IM资源;若该终端设备根据M,确定未来将采用单站传输机制传输数据,则该终端设备可以将第二类CSI-IM资源确定为目标CSI-IM资源。上述单站传输机制可以为DPS机制,上述多站联合传输机制可以为NCJT机制。
在一种可能的实现方式中,以终端设备有基站1和基站2两个服务基站,即n=2为例:1、若终端设备收到了1个DCI(DCI 1),来自于基站1,则终端设备确定t+k时刻只有基站1为自己调度数据,则该终端设备确定未来数据传输采用单站传输机制,从DCI1指示的CSI配置1中确定CSI-RS资源测量信道,确定目标CSI-IM资源测量干扰,获得单站传输下的CSI,上报给基站1。
可选地,上述DCI 1具体来自于哪个基站,对终端设备可以是不可见的。换句话说,终端设备仅需要根据DCI 1确定触发的CSI配置,以及与该CSI配置关联的CSI-RS资源和CSI-IM资源,从而在相应的时频资源上测量信道信息和干扰信息,确定CSI即可,并不需要知道该DCI 1来自于哪个基站。
2、若终端设备收到了2个DCI(DCI 1和DCI 2),并且这2个DCI触发了相同的或者相互关联的CSI配置,则该终端设备确定未来数据传输采用NCJT机制,则该终端设备从DCI 1指示的CSI配置1中确定与之关联的CSI-RS资源,测量基站1的信道信息,在DCI 2指示的CSI配置2中确定与之关联的CSI-RS资源,测量基站2的信道信息,并在CSI配置1关联的CSI-IM资源组和/或CSI配置2关联的CSI-IM资源组中选择目标CSI-IM资源,测量其他非服务基站造成的干扰。此外,终端设备可以在CSI配置1关联的CSI-RS资源上测量基站1对基站2的传输造成的流间干扰,在CSI配置2关联的CSI-RS资源上测量基站2对基站1的传输造成的流间干扰。根据信道信息和干扰信息,终端设备获得CSI 1和CSI 2,并上报给基站。可选地,终端设备可以将CSI 1和CSI 2同时上报给基站1和基站2,也可以将CSI 1上报给基站1,将CSI 2上报给基站2,本申请实施例对此不作限定。
作为一个可选的实施例,所述N 1个CSI-IM资源中的第j个CSI-IM资源为所述第一类CSI-IM资源或所述第二类CSI-IM资源为预定义的;或
所述方法还包括:
所述终端设备接收第三指示信息,所述第三指示信息用于指示所述N 1个CSI-IM资源中的第j个CSI-IM资源为所述第一类CSI-IM资源或所述第二类CSI-IM资源;
其中,j∈{1,...,N 1}。
具体地,上述N 1个CSI-IM资源中的第一类CSI-IM资源和第二类CSI-IM资源可以是预定义的,或按照某种预定义的规则确定的。例如,资源索引为奇数的CSI-IM资源为第一类CSI-IM资源,资源索引为偶数的CSI-IM资源为第二类CSI-IM资源。又例如,按照资源索引由小到大的顺序排列,靠前的p个CSI-IM资源为第一类CSI-IM资源,靠后的q个CSI-IM资源为第二类CSI-IM资源。再例如,按照资源索引由小到大的顺序排列,靠前的p个CSI-IM资源为第二类CSI-IM资源,靠后的q个CSI-IM资源为第一类CSI-IM资源,p和q均为小于N 1的正整数。
上述N 1个CSI-IM资源中的第一类CSI-IM资源和第二类CSI-IM资源也可以是网络设备通过第三指示信息配置给终端设备的,例如,对于N 1个CSI-IM资源中的第j个CSI-IM资源,采用1比特进行指示,0表示该资源为第一类CSI-IM资源,1表示该资源为第二类CSI-IM资源,j是大于或等于1并且小于或等于N 1的整数。又例如,对于第j个CSI-IM资源,采用一个指示信息,若配置了该指示信息,则表示该资源为第一类CSI-IM资源,若未配置该指示信息,则表示该资源为第二类CSI-IM资源,j是大于或等于1并且小于或等于N 1的整数。但本申请实施例对此不作限定。
作为一个可选的实施例,所述第一信道状态信息配置还与K个信道状态信息参考信号CSI-RS资源相关联,在所述K个CSI-RS资源中,至少存在一个CSI-RS资源与所述N 1个CSI-IM资源中的N 1′个CSI-IM资源相关联,K为正整数,1<N 1′≤N 1
具体地,上述第一CSI配置还与K个CSI-RS资源相关联,该K个CSI-RS资源是用于终端设备测量信道信息的。其中,存在一个CSI-RS资源与至少两个CSI-IM资源相关联。
应理解,一个CSI-RS资源与至少两个CSI-IM资源关联,指的是当该CSI-RS资源用于测量信道信息时,与之关联的CSI-IM资源中,终端设备会测量至少一个目标CSI-IM资源来确定相应的干扰信息。所述信道信息和干扰信息用于确定上报的CSI,具体可以用于确定CSI中的CQI。所述目标CSI-IM资源可以是根据上述M来确定的。
关于CSI配置,可以由网络设备确定并发送给终端设备。以上述第一CSI配置为例,该第一CSI配置可以由发送第一下行控制信息的网络设备配置给该终端设备,也可以由其他网络设备发送给该终端设备,具体流程如图3所示。
S310,网络设备确定第一信道状态信息配置,所述第一信道状态信息配置与K个信道状态信息参考信号CSI-RS资源和N 1个信道状态信息干扰测量CSI-IM资源相关联,且在所述K个CSI-RS资源中,存在至少一个CSI-RS资源与所述N 1个CSI-IM资源中的N 1′个CSI-IM资源相关联,K和N 1为正整数,1<N 1′≤N 1
S320,所述网络设备向终端设备发送所述第一信道状态信息配置,则对应地,该终端设备接收该第一信道状态信息配置。
应理解,其他CSI配置(例如第二CSI配置)的配置方法与第一CSI配置的配置方法相同,此处不再赘述。
作为一个可选的实施例,当M≥2时,在所述M个下行控制信息中,存在第二下行控制信息指示第二信道状态信息配置,所述第二信道状态信息配置与第二CSI-IM资源组相 关联,所述第二CSI-IM资源组包括N 2个CSI-IM资源,所述第一信道状态信息配置和所述第二信道状态信息配置具有关联关系,N 2为正整数。
具体地,若终端设备接收到来自至少两个网络设备发送的至少两个下行控制信息,并且该至少两个下行控制信息所指示的CSI配置是相互关联的,则说明存在至少两个网络设备需要在同一时刻调度该终端设备进行数据传输。其中,上述第一DCI指示第一CSI配置,第二DCI指示第二CSI配置,第一CSI配置与N 1个CSI-IM资源相关联,第二CSI配置与N 2个CSI-IM资源相关联,且第一CSI配置与第二CSI配置具有关联关系。
应理解,上述关联关系具体指第一CSI配置和第二CSI配置都可以用于multi-TRP传输。这可以通过多种方式实现,本申请实施例对此不作限定。
作为一个可选的实施例,所述第一信道状态信息配置与所述第二信道状态信息配置相同。
具体地,第一CSI配置和第二CSI配置的内容可以完全相同。应理解,第一CSI配置与第二CSI配置相同,可以指第一CSI配置与第二CSI配置所关联的资源完全相同,也可以指第二CSI配置就是第一CSI配置。若第二CSI配置为第一CSI配置,则在一种可能的实现方式中,该第一CSI配置还与N 2个CSI-IM资源相关联,该N 2个CSI-IM资源包括第一类CSI-IM资源和/或第二类CSI-IM资源,该第一类CSI-IM资源用于测量多站联合传输机制下的干扰信息,该第二类CSI-IM资源用于测量单站传输机制下的干扰信息,N 2为正整数。
应理解,第一CSI配置和第二CSI配置的内容也可以不相同。这样,第一CSI配置和第二CSI配置可以分别配置不同的上报内容,例如,第一CSI配置上报秩指示(rank indication,RI)、类型I(Type I)预编码矩阵指示(precoding matrix indicator,PMI)以及信道质量指示(channel quality indicator,CQI)中的至少一个,第二CSI配置上报RI、Type II PMI以及CQI中的至少一个;又例如,第一CSI配置中的PMI是基于16端口的码本,第二CSI配置中的PMI是基于32端口的码本,本申请实施例对此不作限定。两个CSI配置的各项参数不完全相同,可以更加灵活,更适用于实际***中不同基站的天线结构、处理能力等不同的情况。
在第一CSI配置和第二CSI配置不相同的情况下,网络设备可以通过第一指示信息和/或第四指示信息指示第一CSI配置与第二CSI配置之间的关联关系。该第一指示信息和/或第四指示信息可以携带在无线资源控制(radio resource control,RRC)信令中,也可以携带在DCI中,本申请实施例对此不作限定。
作为一个可选的实施例,所述第一信道状态信息配置携带第一指示信息,或,所述第一下行控制信息携带所述第一指示信息,所述第一指示信息用于指示所述第一信道状态信息配置与所述第二信道状态信息配置相关联。
具体地,所述第一指示信息可以通过指示所述第二信道状态信息配置的索引,来指示所述第一信道状态信息配置与所述第二信道状态信息配置相关联。
作为一个可选的实施例,所述第二信道状态信息配置携带第四指示信息,或,所述第二下行控制信息携带所述第四指示信息,所述第四指示信息用于指示所述第二信道状态信息配置所述第一信道状态信息配置相关联。
具体地,所述第四指示信息可以通过指示所述第一信道状态信息配置的索引,来指示 所述第二信道状态信息配置与所述第一信道状态信息配置相关联。
在一种可能的实现方式中,第一CSI配置和/或第二CSI配置中包括一个字段(即上述第一指示信息和/或第四指示信息),分别指示彼此的标识(例如ID)。终端设备可以根据第一CSI配置和第二CSI配置中是否包括上述字段,来判断第一CSI配置和第二CSI配置是否具有关联关系。若第一CSI配置和第二CSI配置具有关联关系,该终端设备就可以进行NCJT或单站传输的测量。在这种情况下,上述第一指示信息和/或第四指示信息可以通过RRC信令发送给终端设备。
在另一种可能的实现方式中,上述第一DCI和/或第二DCI中包括一个字段(即上述第一指示信息和/或第四指示信息),分别指示第二CSI配置和/或第一CSI配置的标识(例如ID),终端设备可以根据第一DCI和第二DCI中是否包括上述字段,来判断第一CSI配置和第二CSI配置是否具有关联关系。若第一CSI配置和第二CSI配置具有关联关系,该终端设备就可以进行NCJT或单站传输的测量。在这种情况下,上述第一指示信息和/或第四指示信息是通过DCI发送给终端设备的。
作为一个可选的实施例,所述第一信道状态信息配置与所述第二信道状态信息配置用于相同的传输机制集合,所述传输机制集合包括多站联合传输机制和单站传输机制。
具体地,发送第一DCI的网络设备可以发送第二指示信息,该终端设备接收该第二指示信息,该第二指示信息指示所述第一信道状态配置用于多站联合传输机制或单站传输机制;发送第二DCI的网络设备可以发送第五指示信息,该终端设备接收该第五指示信息,该第五指示信息指示所述第二信道状态配置用于多站联合传输机制或单站传输机制。
在本申请实施例中,网络设备还可以通过第二指示信息和/或第五指示信息指示第一CSI配置与第二CSI配置之间的关联关系。该第二指示信息和/或第五指示信息可以携带在RRC信令中,也可以携带在DCI中,本申请实施例对此不作限定。
在一种可能的实现方式中,第一CSI配置和第二CSI配置中分别包括一个字段(即上述第二指示信息和第五指示信息),指示该CSI配置用于multi-TRP传输(多站联合传输机制或单站传输机制)。终端设备可以根据第一CSI配置和第二CSI配置中是否包括上述字段,来判断第一CSI配置和第二CSI配置是否具有关联关系。若第一DCI和第二DCI触发的第一CSI配置和第二CSI配置中均包含该字段,并且该字段均指示用于multi-TRP传输,该终端设备就可以进行NCJT或单站传输的测量。在这种情况下,上述第二指示信息和/或第五指示信息可以通过RRC信令发送给终端设备。网络设备具体可以令上述字段取某个特定的取值(例如,0或1)来指示multi-TRP传输的方式。
在另一种可能的实现方式中,第一DCI和第二DCI中分别包括一个字段(即上述第二指示信息和第五指示信息),指示该DCI所指示的CSI配置用于multi-TRP传输(多站联合传输机制或单站传输机制)。终端设备可以根据第一DCI和第二DCI中是否包括上述字段,来判断第一CSI配置和第二CSI配置是否具有关联关系。若第一DCI和第二DCI均包含该字段,并且该字段均指示用于multi-TRP传输,说明第一CSI配置和第二CSI配置具有关联关系且用于multi-TRP传输,该终端设备就可以进行NCJT或单站传输的测量。在这种情况下,上述第二指示信息和/或第五指示信息可以通过DCI信令发送给终端设备。网络设备具体可以令上述字段取某个特定的取值(例如,0或1)来指示multi-TRP传输的方式。
作为一个可选的实施例,所述第一下行控制信息指示下列至少一个:所述第一信道状态信息配置、所述至少一个CSI-RS资源和所述N 1个CSI-IM资源;并且所述第一指示信息不指示所述N 2个CIS-IM资源。
作为一个可选的实施例,在所述N 1个CSI-IM资源中,至少存在一个第一CSI-IM资源,所述第一CSI-IM资源与所述N 2个CSI-IM资源中的至少一个CSI-IM资源占用相同的时频资源,且在所述N 1个CSI-IM资源中,至少存在一个第二CSI-IM资源,所述第二CSI-IM资源与所述N 2个CSI-IM资源中的所有CSI-IM资源占用不同的时频资源。
具体地,N 1个CSI-IM资源和N 2个CSI-IM资源中包括占用相同时频资源的至少一个第一CSI-IM资源,本文又称为“相同的CSI-IM资源”,N 1个CSI-IM资源和N 2个CSI-IM资源中还包括占用不同时频资源的至少一个第二CSI-IM资源,本文又称为“不同的CSI-IM资源”。
应理解,一个时频资源可以是一个资源元素(resource element,RE),由一个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号和一个子载波确定。
作为一个可选的实施例,所述第一CSI-IM资源为所述第一类CSI-IM资源,所述第二CSI-IM资源为所述第二类CSI-IM资源。
换句话说,上述相同的CSI-IM资源即为第一类CSI-IM资源,用于测量多站联合传输机制下的干扰信息,上述不同的CSI-IM资源即为第二类CSI-IM资源,用于测量单站传输机制下的干扰信息。
作为一个可选的实施例,所述第一类CSI-IM资源占用的资源元素(RE)不用于发送下行共享信道。
作为一个可选的实施例,若所述网络设备在第一时间单元上向所述终端设备发送指示所述第一信道状态信息配置的所述第一下行控制信息,则在所述第一下行控制信息指示的第二时间单元上,所述第二类CSI-IM资源占用的资源元素(RE)不用于发送下行共享信道。
具体地,所有为该终端设备服务的网络设备(例如服务基站)会在自身的第一类CSI-IM资源上做下行数据的速率匹配,即在该资源占用的RE上不发送下行共享信道。在某个时刻t,若某个网络设备向终端设备发送下行控制信息触发上述用于测量multi-TRP的CSI配置,则该网络设备会在时刻t+k上,在自身的第二类CSI-IM资源上做速率匹配,即该资源占用的RE上不发送下行共享信道。
以存在多个服务基站为例,由于第一类CSI-IM资源为上述相同的CSI-IM资源,上述多个服务基站均在第一类CSI-IM资源上进行了速率匹配,那么该第一类CSI-IM资源就可以用于终端设备测量其他非服务基站所造成的干扰。由于第二类CSI-IM资源为上述不同的CSI-IM资源,只有一个特定的服务基站会在该第二类CSI-IM资源上进行速率匹配,那么该第二类CSI-IM资源就可以用于终端设备测量其他非服务基站以及除该特定的服务基站之外的其他服务基站所造成的干扰。
作为一个可选的实施例,当M=1时,所述目标CSI-IM资源为所述第二类CSI-IM资源。
具体地,当终端设备只收到一个下行控制信息时,该终端设备可以确定未来的数据传输采用单站传输机制,并确定目标CSI-IM资源为上述第二类CSI-IM资源,即为上述不同 的CSI-IM资源。可选地,该下行控制信息触发了一个CSI上报,该CSI上报是针对multi-TRP传输机制进行测量的。
在一种可能的实现方式,当M=1时,所述终端设备在所确定的目标CSI-IM资源上测量干扰信息,并根据所获得的干扰信息,确定所述信道状态信息,并上报所述信道状态信息。上述所获得的干扰信息包括其他非服务基站所造成的干扰。
由于下行控制信息存在一定的漏检概率,假如基站1和基站2分别发送了DCI 1和DCI 2,触发同一个CSI上报。这代表着t+k时刻是NCJT传输。但是,终端设备漏检了DCI 2,只检测到DCI 1,则该终端设备会认为需要采用单站传输机制。此时,该终端设备会在第二类CSI-IM资源上测量干扰,所获得的干扰信息包括其他非服务基站和基站2所造成的干扰,有利于提高CSI上报的准确性,从而提高后续的数据传输性能。
作为一个可选的实施例,当M≥2时,所述目标CSI-IM资源为所述第一类CSI-IM资源;或
当M≥2时,所述目标CSI-IM资源为所述第一类CSI-IM资源或所述第二类CSI-IM资源。
具体地,当终端设备在t时刻收到至少两个下行控制信息时,该终端设备可以确定t+k时刻的数据传输机制为NCJT,将第一类CSI-IM资源确定为目标CSI-IM资源,该终端设备也可以确定传输机制集合,该传输机制集合包括:对应于每个基站的单站传输以及NCJT。该终端设备可以分别针对其中的一种或多种传输机制测量CSI,确定一个目标传输机制,上报该传输机制下的CSI。可选地,终端设备还可以向网络设备上报一个指示信息来指示本次上报的CSI所对应的目标传输机制。此时,对应的目标CSI-IM资源可以为第一类CSI-IM资源,也可以为第二类CSI-IM资源,这取决于终端设备所确定的目标传输机制。
在一种可能的实现方式,当M≥2时,所述目标CSI-IM资源为所述第一类CSI-IM资源,所述终端设备在所述目标CSI-IM资源以及所述M个下行控制信息中除所述第一下行控制信息之外的下行控制信息所指示的全部或部分CSI-RS资源上测量干扰信息,并根据所获得的干扰信息,确定所述信道状态信息,并上报所述信道状态信息。此时,终端设备在目标CSI-IM资源上测量获得的干扰信息为其他非服务基站所造成的干扰,终端设备在除所述第一下行控制信息之外的下行控制信息所指示的全部或部分CSI-RS资源上测量的干扰信息为其他服务基站所造成的流间干扰。
在另一种可能的实现方式,当M≥2,且所述目标CSI-IM资源为所述第一类CSI-IM资源时,所述终端设备在所述目标CSI-IM资源以及所述M个下行控制信息中除所述第一下行控制信息之外的下行控制信息所指示的全部或部分CSI-RS资源上测量干扰信息,并根据所获得的干扰信息,确定所述信道状态信息,并上报所述信道状态信息;和/或
当M≥2,且所述目标CSI-IM资源为所述第二类CSI-IM资源时,所述终端设备在所述目标CSI-IM资源上测量干扰信息,并根据所获得的干扰信息,确定所述信道状态信息,并上报所述信道状态信息。
作为一个可选的实施例,所述第一CSI-IM资源组占用X个子带,所述X个子带中的第x个子带上的所述目标CSI-IM资源是所述终端设备根据所述M个下行控制信息所指示的CSI-IM资源组中占用了所述第x个子带的CSI-IM资源组的个数确定的,X为正整数, x∈{1,2,…,X}。
具体地,两个网络设备发送的CSI-IM资源占用的子带可能不同。因此,即使终端设备收到的DCI的个数大于或等于2,终端设备仍需要根据每个子带上存在的CSI-IM资源组的个数来确定传输机制。若某个子带上存在大于等于两个DCI触发的CSI-IM资源组,则该子带上的数据传输机制是NCJT。若某个字带上只有一个DCI触发的CSI-IM资源组,则该子带上的数据传输机制是单站传输。
例如,M=2,2个下行控制信息分别指示2个CSI-IM资源组,其中,第一CSI-IM资源组占用子带1和子带2,第二CSI-IM资源组占用子带2和子带3,那么由于占用了子带1的CSI-IM资源组的个数为1,子带1对应的传输机制为单站传输,对应的目标CSI-IM资源为第二类CSI-IM资源。同理,子带3对应的传输机制为单站传输,对应的目标CSI-IM资源为第二类CSI-IM资源。而由于子带2上的CSI-IM资源组的个数为2,子带2对应的传输机制为NCJT,对应的目标CSI-IM资源为第一类CSI-IM资源。
本申请实施例的上报信道状态信息的方法,能够针对不同的子带,确定各个子带上的目标CSI-IM资源,以更细的粒度确定未来进行数据传输所采用的传输机制,使得CSI的测量结果更加准确。
为便于理解,下面结合具体实施例对本申请进行详细说明。
令n=2表示可以为终端设备做multi-TRP服务的基站的个数,具体包括基站1和基站2。可选地,基站1可以为该终端设备统一发送无线资源控制(radio resource control,RRC)信令,配置所有CSI上报的相关信息。可选地,基站1和基站2可以分别为终端设备发送RRC信令,分别配置各自的CSI上报的相关信息。
下面,以基站1配置所有CSI上报相关信息为例进行说明。
首先,终端设备可以接收来自基站1的RRC信令,该RRC信令配置了一个针对multi-TRP传输的CSI上报。该CSI配置包括:
1、CSI上报的内容,例如,RI、PMI、CQI中的一个或多个;
2、CSI上报的频域粒度,例如,宽带上报、子带上报;
3、计算CQI时用于测量信道的n个NZP CSI-RS资源配置的指示信息。其中,每个NZP CSI-RS资源配置的指示信息可以确定一个NZP CSI-RS资源配置。n个NZP CSI-RS资源配置分别对应n个服务基站,在本实施例中,分别称为1号NZP CSI-RS资源配置(对应基站1)和2号NZP CSI-RS资源配置(对应基站2)。一个NZP CSI-RS资源配置中,指示关联的K个NZP CSI-RS资源。例如,K=1。
4、计算CQI时用于测量干扰的m个CSI-IM资源配置的指示信息。其中,一个CSI-IM资源配置的指示信息可以确定一个CSI-IM资源配置,该CSI-IM资源配置可以指示如下信息:L个CSI-IM资源的配置参数,并且L>1。其中,L个CSI-IM资源中,一个CSI-IM资源与上述n个NZP CSI-RS资源配置中的一个NZP CSI-RS资源配置关联。并且,存在m 1个CSI-IM资源,它们占用相同时频资源,本文称这m 1个CSI-IM资源为“相同的CSI-IM资源”,m 1为大于1的整数。
应理解,上述“CSI-IM资源与NZP CSI-RS资源配置关联”的意思是:当终端设备计算CQI的时候,如果选择了第i个NZP CSI-RS资源中的(全部或部分)NZP CSI-RS资源测量信道信息,则会选择与它关联的(全部或部分)CSI-IM资源测量干扰信息,再根 据信道信息和干扰信息(和/或其他信息)获得CQI。
在上述的L个CSI-IM资源中,有L 1个CSI-IM资源为第一类CSI-IM资源,用于测量基于第一类干扰假设下(例如,多站联合传输机制对应的干扰假设)的干扰信息;有L 2个CSI-IM资源为第二类CSI-IM资源,用于测量基于第二类干扰假设下(例如,单站传输机制对应的干扰假设)的干扰信息,因此,L≥L 1+L 2。上述“相同的CSI-IM资源”属于第一类CSI-IM资源。
可选地,一个CSI-IM资源是第一类CSI-IM资源还是第二类CSI-IM资源,可以在上述CSI-IM资源配置中就指示出来,例如,采用专门的字段来指示该CSI-IM资源的类型。
应理解,上述CSI-IM资源配置与NZP CSI-RS资源配置之间的关联关系可以通过多种方式配置,本申请实施例对此不作限定。
可选地,上述关联关系可以是基站通过RRC信令配置的,即CSI配置中指示了这种关联信息,或者CSI-IM资源配置中指示了这种关联信息。
可选地,上述关联关系也可以是基站通过DCI动态建立的。此时,当终端设备收到上述CSI配置时,并不知道n个CSI-IM资源配置中,哪个CSI-IM资源配置配置与哪个NZP CSI-RS资源配置相关联,直到该终端设备收到触发该CSI的DCI之后,该终端设备可以根据该DCI动态建立关联关系。
可选地,m=n。例如,当n=2,K=1时,m=2,L=2。在L=2个CSI-IM资源中,一个CSI-IM资源用于测量单站传输下所有的干扰信息,即为第二类CSI-IM资源,另外一个CSI-IM资源用于测量双基站联合传输下,除了这两个基站之外,其他非服务基站的传输所造成的干扰信息,即为第一类CSI-IM资源。如图4所示,在本实施例中,将与上述CSI配置所配置的m=2个CSI-IM资源配置分别称为1号CSI-IM资源配置(包括L=2个CSI-IM资源,分别为CSI-IM 0和CSI-IM 1)、2号CSI-IM资源配置(包括L=2个CSI-IM资源,分别为CSI-IM 2和CSI-IM 3),其中,CSI-IM 0和CSI-IM 2占用相同的时频资源,为上述“相同的CSI-IM资源”,即为上述第一类CSI-IM资源,CSI-IM 1和CSI-IM 3占用不同的时频资源,即为上述第二类CSI-IM资源。
可选地,基站可以把CSI-IM 0和CSI-IM 2配置为一个CSI-IM资源,拥有一个CSI-IM ID,也可以把CSI-IM 0和CSI-IM 2配置为两个CSI-IM资源,各自有不同的CSI-IM ID和/或其它参数,但是占用相同的时频资源,本申请实施例对此不作限定。
在时刻t,终端设备接收基站1和/或基站2发送的DCI,应理解,该DCI会指示上述同一个CSI配置。按照前面说的“预调度”机制,如果某个基站在t时刻发送了DCI,则意味着该基站准备在t+k时刻调度数据。如果该基站不准备调度数据,则在t时刻不会发送指示上述CSI配置的DCI给该终端设备。
终端设备在收到基站1和/或基站2发送的DCI后,可以直接根据DCI的个数确定传输方案,即单站传输(与基站1传输,或者与基站2传输)或NCJT(与基站1和基站2联合传输),也可以根据测量的CSI向基站推荐传输方案,如果只有一个基站决定调度数据,则该终端设备判断可能的传输机制只有单站传输,该终端设备可以只针对该传输机制测量CSI。如果两个基站都想调度数据,则该终端设备可以确定传输机制包括:基站1传输、基站2传输、NCJT,该终端设备可以测量两个基站的CSI,并判断到底是一个基站服务好还是两个基站服务好,也即判断单站传输好还是NCJT好。下面分别针对上述可能的 实现方式进行详细说明。
实施例一
该终端设备根据接收到的DCI的个数,确定目标CSI-IM资源,用于计算CQI。本申请实施例可以分为如下三种情况:
1、终端设备仅收到基站1发送的DCI 1
具体地,终端设备仅收到基站1发送的DCI 1,该DCI 1的某个字段(如CSI request field)指示了上述CSI配置,表示基站1触发终端设备上报上述CSI。该字段还从该CSI关联的2个NZP CSI-RS资源配置中指示用于上报该CSI所使用的一个NPZ CSI-RS配置的ID和CSI-IM配置的ID,例如,1号CSI-RS资源配置和1号CSI-IM资源配置。
终端设备仅收到基站1发送的DCI 1,意味着t+k时刻只有基站1准备为自己调度数据。因此,该终端设备可以按照单基站传输机制进行测量,上报CSI,此时,需要该终端设备测量除基站1之外的所有基站对自己造成的干扰。由于1号CSI-IM配置的L=2个CSI-IM资源中,CSI-IM 1为第二类CSI-IM资源,用于测量单基站传输,因此,该终端设备可以选择CSI-IM 1作为目标CSI-IM资源来测量需要的干扰。
此外,该终端设备可以测量DCI 1触发的1号NZP CSI-RS资源配置中的NZP CSI-RS资源(NZP CSI-RS 1)作为目标CSI-RS资源来测量信道。通过测量的信道信息和干扰信息,该终端设备可以确定并上报CQI。
从基站1的角度而言,当基站1发送DCI 1来触发上述CSI上报,并触发了1号NZP CSI RS资源配置和1号CSI-IM资源配置时,基站1就会发送相应的NZP CSI-RS,并且在1号CSI-IM资源配置所包括的CSI-IM 0和CSI-IM 1上做速率匹配,即不在这两个资源的RE上向任何终端设备发送任何数据,其目的在于让该终端设备能够在该资源上准确测量到其他基站发送数据和/或参考信号所带来的干扰。
由于在CSI-IM 1资源上,除了基站1之外的其他基站(包括基站2和其他非服务基站)都不一定做速率匹配,因此,在CSI-IM 1资源上,该终端设备可以测量到除基站1之外的其他基站对自己造成的干扰。因此,当终端设备仅收到DCI 1时,就会选择CSI-IM1作为目标CSI-IM资源测量干扰信息。所以,该终端设备可以通过DCI的个数,预判未来数据的干扰假设,从而动态地从关联的CSI-IM资源配置中选择目标CSI-IM资源,可以准确的获得相应的干扰信息,计算准确的CQI。进一步地,该终端设备可以上报CQI给基站1。
2、终端设备仅收到基站2发送的DCI 2
具体地,终端设备仅收到基站2发送的DCI 2,该DCI 2的某个字段(如CSI request field)指示了上述CSI配置,表示基站2触发终端设备上报上述CSI。该字段还从该CSI关联的2个NZP CSI-RS资源配置中指示用于上报该CSI所使用的一个NPZ CSI-RS资源配置的ID和CSI-IM资源配置的ID,例如,2号CSI-RS资源配置和2号CSI-IM资源配置。
终端设备仅收到基站2发送的DCI 2,意味着t+k时刻只有基站2准备为自己调度数据。因此,该终端设备可以按照单基站传输机制进行测量,上报CSI,此时,需要该终端设备测量除基站2之外的所有基站对自己造成的干扰。由于2号CSI-IM配置的L=2个CSI-IM资源中,CSI-IM 3为第二类CSI-IM资源,用于测量单基站传输,因此,该终端设 备可以选择CSI-IM 3作为目标CSI-IM资源来测量需要的干扰。
此外,该终端设备可以测量DCI 2触发的2号NZP CSI-RS资源配置中的NZP CSI-RS资源(NZP CSI-RS 2)作为目标CSI-RS资源来测量信道。通过测量的信道信息和干扰信息,该终端设备可以计算出基站2为自己调度数据时的CQI,上报给基站。
从基站2的角度而言,当基站2发送DCI 2来触发上述CSI上报,并触发了2号NZP CSI RS资源配置和2号CSI-IM资源配置时,基站2就会发送相应的NZP CSI-RS,并且在2号CSI-IM资源配置包括的CSI-IM 2和CSI-IM 3上做速率匹配,即不在这两个资源的RE上像任何终端设备发送任何数据,其目的在于让该终端设备能够在该资源上测量到其他基站发送数据和/或参考信号所带来的干扰。
由于在CSI-IM 3资源上,除了基站2之外的其他基站(包括基站1和其他非服务基站)都不一定做速率匹配,因此,在CSI-IM 3资源上,该终端设备可以测量到除基站3之外的其他基站对自己造成的干扰。因此,当终端设备仅收到DCI 2时,就会选择CSI-IM3作为目标CSI-IM资源测量干扰信息。所以,终端设备可以通过DCI的个数,预判未来数据的干扰假设,从而动态地从关联的CSI-IM资源配置中选择目标CSI-IM资源,可以准确的获得相应的干扰信息,计算准确的CQI。进一步地,该终端设备可以上报CQI给基站2。
3、终端设备收到基站1的DCI 1和基站2的DCI 2
具体地,终端设备收到基站1的DCI 1和基站2的DCI 2,并且DCI 1和DCI 2都指示了上述CSI配置。此外,上述DCI 1还指示了1号NZP CSI-RS资源配置和1号CSI-IM资源配置,DCI 2还指示了2号NZP CSIRS资源配置和2号CSI-IM资源配置。
终端设备收到两个DCI,意味着t+k时刻基站1和基站2会同时为该终端设备调度数据,但是调度的是不同的数据流。因此,该终端设备需要为不同的数据流分别测量CSI。
1)终端设备在为基站1测量CSI时,可以在1号NZP CSI-RS资源配置包括的NZP CSI-RS资源上进行信道测量,其干扰信息包括两部分:基站2对基站1造成的流间干扰,以及除了基站1和基站2之外的其他基站对基站1造成的干扰。其中,第一种干扰可以在2号NZP CSI-RS资源配置所包括的NZP CSI-RS资源(NZP CSI-RS 2)上测量,第二种干扰需要排除基站1和基站2,因此,需要在相同的CSI-IM资源(即第一类CSI-IM资源),即CSI-IM 0上测量。通过这样的测量,该终端设备可以获得基站1的数据流的CQI 1。因此,这种测量方式对应目标CSI-IM资源为CSI-IM 0(也即CSI-IM 2)。
2)终端设备在为基站2测量CSI时,可以在2号NZP CSI-RS资源配置包括的NZP CSI-RS资源上进行信道测量,其干扰信息包括两部分:基站1对基站2造成的流间干扰,以及除了基站1和基站2之外的其他基站对基站2造成的干扰。其中,第一种干扰可以在1号NZP CSI-RS资源配置所包括的NZP CSI-RS资源(NZP CSI-RS 1)上测量,第二种干扰需要排除基站1和基站2,因此,需要在相同的CSI-IM资源(即第一类CSI-IM资源),即CSI-IM 2(也即CSI-IM 0)上测量。通过这样的测量,该终端设备可以获得基站2的数据流的CQI 2。因此,这种测量方式对应的目标CSI-IM资源为CSI-IM 2。
从基站1和基站2的角度而言,基站1会在1号CSI-IM资源配置包括的CSI-IM 0和CSI-IM 1上做速率匹配,基站2会在和基站2会在2号CSI-IM资源配置包括的CSI-IM 2和CSI-IM 3上做速率匹配。由于在CSI-IM 0、CSI-IM 2上,基站1和基站2均做速率匹 配,因此,该终端设备可以在该CSI-IM资源上获得其他非服务基站的干扰。此外,该终端设备分别在对应的NZP CSI-RS资源上测量流间干扰,该终端设备就可以获得每一个数据流上准确的SINR信息。
应理解,在这种情况下,完整的干扰信息是从NZP CSI-RS资源和目标CSI-IM资源上共同测量到的。目标CSI-IM资源上测量到的是其它非服务基站造成的干扰,服务基站之间造成的流间干扰可以在各个基站对应的NZP CSI-RS资源上测量得到。
所以,终端设备可以通过DCI的个数,预判未来数据的干扰假设,从而动态地从关联的CSI-IM资源配置中选择目标CSI-IM资源(CSI-IM 0或CSI-IM 2),可以准确地获得相应的干扰信息,计算准确的CQI。进一步地,该终端设备可以上报CQI 1给基站1,上报CQI 2给基站2。
本申请实施例的上报信道状态信息的方法,通过结合“预调度”机制,配置一个NZP CIS-RS资源关联多个CSI-IM资源,该多个CSI-IM资源中的不同CSI-IM资源用于不同的干扰假设下的干扰测量,使得终端设备可以根据DCI的个数动态地选择目标CSI-IM资源,从而获得准确的干扰信息,不仅能够避免信息的动态交互,而且提高了测量结果的准确性。
实施例二
终端设备可以根据接收到的DCI的个数,确定传输机制集合,并从该传输机制集合中选择目标传输机制,针对该目标传输机制决定目标NZP CSI-RS资源和目标CSI-IM资源,用于计算CQI。
1、终端设备仅收到基站1发送的DCI 1
具体的,若终端设备仅收到基站1发送的DCI 1,该DCI 1的某个字段(如CSI request field)指示了上述CSI配置,该字段还从该CSI关联的2个NZP CSI-RS资源配置中指示用于上报该CSI所使用的一个NPZ CSI-RS配置的ID和CSI-IM配置的ID,例如,1号CSI-RS资源配置和1号CSI-IM资源配置。在这种情况下,上述传输机制集合仅包括单基站传输。则该终端设备确定目标传输机制为单基站传输。此时,同实施例一,目标CSI-IM资源为1号CSI-IM配置中的CSI-IM 1。可选地,终端设备可以无需知道DCI 1来自于哪个基站,仅需要根据该DCI 1触发的CSI配置和关联的CSI-RS配置、CSI-IM配置进行CSI测量。
2、终端设备仅收到基站2发送的DCI 2
具体地,若终端设备仅收到基站2发送的DCI 2,该DCI 2的某个字段(如CSI request field)指示了上述CSI配置,该字段还从该CSI关联的2个NZP CSI-RS资源配置中指示用于上报该CSI所使用的一个NPZ CSI-RS资源配置的ID和CSI-IM资源配置的ID,例如,2号CSI-RS资源配置和2号CSI-IM资源配置。在这种情况下,上述传输机制集合仅包括单基站传输。则该终端设备确定目标传输机制为单基站传输。此时,同实施例一,目标CSI-IM资源为2号CSI-IM配置中的CSI-IM 3。可选地,终端设备可以无需知道DCI 2来自于哪个基站,仅需要根据该DCI 2触发的CSI配置和关联的CSI-RS配置、CSI-IM配置进行CSI测量。
3、终端设备收到基站1的DCI 1和基站2的DCI 2
具体地,若终端设备收到基站1的DCI 1和基站2的DCI 2,则该终端设备可以确定上述传输机制集合包括:基站1的单基站传输、基站2的单基站传输以及NCJT。则该终 端设备可以分别针对其中的一种或多种传输机制测量CSI,具体的测量方式与实施例一相同,此处不再赘述。在针对某一种传输机制测量CSI的时候,该终端设备都可以选择对应的NZP CSI-RS资源和目标CSI-IM资源进行测量,获得对应的CSI。该终端设备确定一个目标传输机制,并上报该目标传输机制下的CSI。可选地,终端设备还可以上报一个指示信息来指示该目标传输机制。应理解,终端设备可以通过多种方式确定目标传输机制,本实施例对此不作限制。例如,该终端设备可以根据CQI计算和速率,并选择和速率最大的一种传输机制来推荐。
此时,目标CSI-IM资源会根据终端设备推荐的目标传输机制的变化而变化,换句话说,在这种情况下,该目标CSI-IM资源可以是第一类CSI-IM资源,也可以是第二类CSI-IM资源。
本申请实施例的上报信道状态信息的方法,通过结合“预调度”机制,配置一个NZP CIS-RS资源关联多个CSI-IM资源,该多个CSI-IM资源中的不同CSI-IM资源用于不同的干扰假设下的干扰测量,使得终端设备可以根据DCI的个数确定可以采用的传输机制,从中选择目标传输机制推荐给基站,从而获得准确的干扰信息,不仅能够避免信息的动态交互,而且提高了测量结果的准确性,有利于获得更好的传输性能。
下面,以基站1和基站2可以分别为终端设备发送RRC信令,分别配置各自的CSI上报的相关信息为例进行说明。
终端设备可以接收来自基站1的第一RRC信令,该第一RRC信令配置了一个针对multi-TRP传输的第一CSI配置。该第一CSI配置包括:
1、第一CSI上报的索引;
2、第一CSI上报的内容,例如,RI、PMI、CQI中的一个或多个;
3、第一CSI上报的频域粒度,例如,宽带上报、子带上报;
4、计算CQI时用于测量信道的n 1个NZP CSI-RS资源配置的指示信息。其中,每个NZP CSI-RS资源配置的指示信息可以确定一个NZP CSI-RS资源配置。一个NZP CSI-RS资源配置中,指示关联的K 1个NZP CSI-RS资源。例如,K 1=1,n 1=1。如图5所示,第一CSI配置所关联的NZP CSI-RS资源配置可以被称为1号CSI-RS资源配置,其所关联的K 1个NZP CSI-RS资源为NZP CSI-RS 1。
5、计算CQI时用于测量干扰的第一CSI-IM资源组的指示信息。具体地,该指示信息可以指示m 1个CSI-IM资源配置指示信息。其中,每个CSI-IM资源配置的指示信息可以确定一个CSI-IM资源配置,该CSI-IM资源配置可以指示如下信息:L 1个CSI-IM资源的配置参数,并且L 1>2。其中,m 1个CSI-IM资源配置中,每个CSI-IM资源配置与上述n 1个NZP CSI-RS资源配置中的一个NZP CSI-RS资源配置关联。可选的,m 1=n 1
6、用于指示第一CSI配置与第二CSI配置关联的指示信息。例如,该指示信息指示第二CSI配置的索引。
终端设备可以接收来自基站2的第二RRC信令,该第二RRC信令配置了一个针对multi-TRP传输的第二CSI配置。该第二CSI配置包括:
1、第二CSI上报的索引;
2、第二CSI上报的内容,例如,RI、PMI、CQI中的一个或多个;
3、第二CSI上报的频域粒度,例如,宽带上报、子带上报;
4、计算CQI时用于测量信道的n 2个NZP CSI-RS资源配置的指示信息。其中,每个NZP CSI-RS资源配置的指示信息可以确定一个NZP CSI-RS资源配置。一个NZP CSI-RS资源配置中,指示关联的K 2个NZP CSI-RS资源。例如,K 2=1,n 2=1。如图5所示,第二CSI配置所关联的NZP CSI-RS资源配置可以被称为2号CSI-RS资源配置,其所关联的K 2个NZP CSI-RS资源为NZP CSI-RS 2。
5、计算CQI时用于测量干扰的第二CSI-IM资源组的指示信息。具体地,该指示信息可以指示m 2个CSI-IM资源配置指示信息。其中,每个CSI-IM资源配置的指示信息可以确定一个CSI-IM资源配置,该CSI-IM资源配置可以指示如下信息:L 2个CSI-IM资源的配置参数,并且L 2>2。其中,m 2个CSI-IM资源配置中,每个CSI-IM资源配置与上述n 2个NZP CSI-RS资源配置中的一个NZP CSI-RS资源配置关联。可选的,m 2=n 2
6、用于指示第二CSI配置与第一CSI配置关联的指示信息。例如,该指示信息指示第一CSI配置的索引。
在一种可能的实现方式中,n 1=n 2=1,K 1=K 2=1时,m 1=m 2=1,L 1=L 2=2。在第一CSI配置关联的1号CSI-IM资源配置包括L 1=2个CSI-IM资源中,一个CSI-IM资源用于测量单站传输下所有的干扰信息,即为第二类CSI-IM资源,另外一个CSI-IM资源用于测量双基站联合传输下,除了这两个基站之外,其他非服务基站的传输所造成的干扰信息,即为第一类CSI-IM资源。同理,在第二CSI配置关联的2号CSI-IM资源配置包括L 2=2个CSI-IM资源中,一个CSI-IM资源为上述第二类CSI-IM资源,另外一个CSI-IM资源为上述第一类CSI-IM资源。如图5所示,1号CSI-IM资源配置包括的L 1=2个CSI-IM资源分别为CSI-IM 0和CSI-IM 1,2号CSI-IM资源配置包括的L 2=2个CSI-IM资资源分别为CSI-IM 2和CSI-IM 3。其中,CSI-IM 0和CSI-IM 2占用相同的时频资源,为上述“相同的CSI-IM资源”,即为上述第一类CSI-IM资源,CSI-IM 1和CSI-IM 3占用不同的时频资源,即为上述第二类CSI-IM资源。
可选地,基站1和基站2可以把CSI-IM 0和CSI-IM 2配置为一个CSI-IM资源,拥有一个CSI-IM ID,也可以把CSI-IM 0和CSI-IM 2配置为两个CSI-IM资源,各自有不同的CSI-IM ID和或其它参数,但是占用相同的时频资源,本申请实施例对此不作限定。
在时刻t,终端设备接收基站1和/或基站2发送的DCI,应理解,基站1发送的DCI1会指示上述第一CSI配置,基站2发送的DCI 2会指示上述第二CSI配置。按照前面说的“预调度”机制,如果某个基站在t时刻发送了DCI,则意味着该基站准备在t+k时刻调度数据。如果该基站不准备调度数据,则在t时刻不会发送指示上述CSI配置的DCI给该终端设备。
终端设备在收到基站1和/或基站2发送的DCI后,可以直接根据DCI的个数确定传输方案,即单站传输(与基站1传输,或者与基站2传输)或NCJT(与基站1和基站2联合传输),也可以根据测量的CSI向基站推荐传输方案,如果只有一个基站决定调度数据,则该终端设备判断可能的传输机制只有单站传输,该终端设备可以只针对该传输机制测量CSI。如果两个基站都想调度数据,则该终端设备可以确定传输机制包括:基站1传输、基站2传输、NCJT,该终端设备可以测量两个基站的CSI,并判断到底是一个基站服务好还是两个基站服务好,也即判断单站传输好还是NCJT好。
应理解,该终端设备根据接收到的DCI的个数,确定目标CSI-IM资源,用于计算 CQI。若该终端设备接收到多个DCI,该多个DCI所指示的多个CSI配置之间是具有关联关系的。本申请实施例可以分为如下三种情况:
1、终端设备仅收到基站1发送的DCI 1
具体地,终端设备仅收到基站1发送的DCI 1,该DCI 1的某个字段(例如CSI request field)指示了上述第一CSI配置,表示基站1触发终端设备上报上述CSI。该字段还从该CSI关联的NZP CSI-RS资源配置中指示用于上报该CSI所使用的一个NZP CSI-RS资源配置的ID和CSI-IM资源配置的ID,例如,1号CSI-RS资源配置和1号CSI-IM资源配置。该终端设备可以按照上述实施例一或实施例二中与该场景对应的方法进行CSI的测量上报,此处不再赘述。
2、终端设备仅收到基站2发送的DCI 2
具体地,终端设备仅收到基站2发送的DCI 2,该DCI 2的某个字段(例如CSI request field)指示了上述第二CSI配置,表示基站2触发终端设备上报上述CSI。该字段还从该CSI关联的NZP CSI-RS资源配置中指示用于上报该CSI所使用的一个NPZ CSI-RS资源配置的ID和CSI-IM资源配置的ID,例如,2号CSI-RS资源配置和2号CSI-IM资源配置。该终端设备可以按照上述实施例一或实施例二中与该场景对应的方法进行CSI的测量上报,此处不再赘述。
3、终端设备收到基站1的DCI 1和基站2的DCI 2
具体地,终端设备收到基站1的DCI 1和基站2的DCI 2,并且DCI 1和DCI 2分别指示了上述第一CSI配置和第二CSI配置。此外,上述DCI 1还指示了1号NZP CSI-RS资源配置和1号CSI-IM资源配置,DCI 2还指示了2号NZP CSIRS资源配置和2号CSI-IM资源配置。
由于第一CSI配置和第二CSI配置相互关联,因此终端设备通过收到两个DCI,判定着t+k时刻基站1和基站2会同时为该终端设备调度数据,但是调度的是不同的数据流。因此,该终端设备需要为不同的数据流分别测量CSI。在这种情况下,该终端设备可以按照上述实施例一或实施例二中与该场景对应的方法进行CSI的测量上报,此处不再赘述。
应理解,本申请实施例所提及的“终端设备收到的DCI”,仅统计的是用于指示multi-TRP传输的DCI,在实际应用中,终端设备还可能收到具有其他用途的DCI,本申请实施例对此不作限定。
本申请实施例的上报信道状态信息的方法,通过结合“预调度”机制,配置一个NZP CIS-RS资源关联多个CSI-IM资源,该多个CSI-IM资源中的不同CSI-IM资源用于不同的干扰假设下的干扰测量,使得终端设备可以根据DCI的个数动态地选择目标CSI-IM资源,从而获得准确的干扰信息,不仅能够避免信息的动态交互,而且提高了测量结果的准确性。
应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文中结合图1至图5,详细描述了根据本申请实施例的上报信道状态信息的方法,下面将结合图6至图9,详细描述根据本申请实施例的上报信道状态信息的装置。
图6示出了本申请实施例提供的上报信道状态信息的装置600,该装置600可以是前述实施例中的终端设备,也可以为终端设备中的芯片。该装置600包括:
收发单元610,用于接收M个下行控制信息,所述M个下行控制信息中的第一下行 控制信息指示第一信道状态信息配置,所述第一信道状态信息配置与第一信道状态信息干扰测量CSI-IM资源组相关联,所述第一CSI-IM资源组包括N 1个CSI-IM资源,M和N 1为正整数,N 1大于1;
处理单元620,用于测量目标CSI-IM资源,并通过所述收发单元上报信道状态信息,所述目标CSI-IM资源是所述终端设备根据M从所述N 1个CSI-IM资源中确定的,所述目标CSI-IM资源的个数小于N 1
本申请实施例的上报信道状态信息的装置,通过终端设备根据接收到的下行控制信息的个数,确定未来数据传输所采用的传输机制,从至少两个CSI-IM资源中选择目标CSI-IM资源进行干扰测量,上报信道状态信息,能够避免信息的动态交互,同时有利于提高CSI的测量结果的准确性,从而提高***性能。
可选地,当M≥2时,在所述M个下行控制信息中,存在第二下行控制信息指示第二信道状态信息配置,所述第二信道状态信息配置与第二CSI-IM资源组相关联,所述第二CSI-IM资源组包括N 2个CSI-IM资源,所述第一信道状态信息配置和所述第二信道状态信息配置具有关联关系,N 2为正整数。
可选地,所述第一信道状态信息配置与所述第二信道状态信息配置相同;或
所述第一信道状态信息配置与所述第二信道状态信息配置用于相同的传输机制集合,所述传输机制集合包括多站联合传输机制和单站传输机制;或
所述第一信道状态信息配置携带第一指示信息,或,所述第一下行控制信息携带所述第一指示信息,所述第一指示信息用于指示所述第一信道状态信息配置与所述第二信道状态信息配置相关联。
可选地,所述N 1个CSI-IM资源包括第一类CSI-IM资源和第二类CSI-IM资源,所述第一类CSI-IM资源用于测量多站联合传输机制下的干扰信息,所述第二类CSI-IM资源用于测量单站传输机制下的干扰信息。
可选地,所述N 1个CSI-IM资源中的第j个CSI-IM资源为所述第一类CSI-IM资源或所述第二类CSI-IM资源为预定义的;或
所述收发单元610还用于:接收第三指示信息,所述第三指示信息用于指示所述N 1个CSI-IM资源中的第j个CSI-IM资源为所述第一类CSI-IM资源或所述第二类CSI-IM资源;其中,j∈{1,...,N 1}。
可选地,当M=1时,所述目标CSI-IM资源为所述第二类CSI-IM资源。
可选地,当M≥2时,所述目标CSI-IM资源为所述第一类CSI-IM资源;或
当M≥2时,所述目标CSI-IM资源为所述第一类CSI-IM资源或所述第二类CSI-IM资源。
可选地,所述第一信道状态信息配置还与K个信道状态信息参考信号CSI-RS资源相关联,在所述K个CSI-RS资源中,至少存在一个CSI-RS资源与所述N 1个CSI-IM资源中的N 1′个CSI-IM资源相关联,K为正整数,1<N 1′≤N 1
可选地,所述第一CSI-IM资源组占用X个子带,所述X个子带中的第x个子带上的所述目标CSI-IM资源是所述终端设备根据所述M个下行控制信息所指示的CSI-IM资源组中占用了所述第x个子带的CSI-IM资源组的个数确定的,X为正整数,x∈{1,2,…,X}。
应理解,这里的装置600以功能单元的形式体现。这里的术语“单元”可以指应用特 有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置600可以具体为上述实施例中的终端设备,装置600可以用于执行上述方法实施例中与终端设备对应的各个流程和/或步骤,为避免重复,在此不再赘述。
图7示出了本申请实施例提供的另一上报信道状态信息的装置700,该装置700可以是前述实施例中的网络设备,也可以为网络设备中的芯片。该装置700包括:
处理单元710,用于确定第一信道状态信息配置,所述第一信道状态信息配置与K个信道状态信息参考信号CSI-RS资源和N 1个信道状态信息干扰测量CSI-IM资源相关联,且在所述K个CSI-RS资源中,存在至少一个CSI-RS资源与所述N 1个CSI-IM资源中的N 1′个CSI-IM资源相关联,K和N 1为正整数,1<N 1′≤N 1
收发单元720,用于向终端设备发送所述第一信道状态信息配置。
可选地,所述第一信道状态信息配置还与N 2个CSI-IM资源相关联,所述N 2个CSI-IM资源包括第一类CSI-IM资源和/或第二类CSI-IM资源,所述第一类CSI-IM资源用于测量多站联合传输机制下的干扰信息,所述第二类CSI-IM资源用于测量单站传输机制下的干扰信息,N 2为正整数。
可选地,所述第一信道状态信息配置包括第一指示信息;或
所述收发单元720还用于:发送所述第一指示信息;
其中,所述第一指示信息用于指示所述第一信道状态信息配置与第二信道状态信息配置相关联,所述第二信道状态信息与N 2个CSI-IM资源相关联,所述N 2个CSI-IM资源包括第一类CSI-IM资源和或第二类CSI-IM资源,所述第一类CSI-IM资源用于测量多站联合传输机制下的干扰信息,所述第二类CSI-IM资源用于测量单站传输机制下的干扰信息,N 2为正整数。
可选地,所述收发单元720还用于:发送第二指示信息,所述第二指示信息指示所述第一信道状态配置用于多站联合传输机制或单站传输机制。
可选地,所述N 1个CSI-IM资源包括第一类CSI-IM资源和第二类CSI-IM资源,所述第一类CSI-IM资源用于测量多站联合传输机制下的干扰信息,所述第二类CSI-IM资源用于测量单站传输机制下的干扰信息。
可选地,所述N 1个CSI-IM资源中的第j个CSI-IM资源为所述第一类CSI-IM资源或所述第二类CSI-IM资源为预定义的;或
所述收发单元720还用于:发送第三指示信息,所述第三指示信息用于指示所述N 1个CSI-IM资源中的第j个CSI-IM资源为所述第一类CSI-IM资源或所述第二类CSI-IM资源;其中,j∈{1,...,N 1}。
应理解,这里的装置700以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置700可以具体为上述实施例中的网络设备,装置700可以用于执行上述方法实施例中与网络设备对应的各个流程和/或步骤,为避免重复,在此不再赘述。
上述各个方案的装置600和装置700具有实现上述方法中终端设备和网络设备执行的相应步骤的功能;所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块;例如发送单元可以由发射机替代,接收单元可以由接收机替代,其它单元,如确定单元等可以由处理器替代,分别执行各个方法实施例中的收发操作以及相关的处理操作。
在本申请的实施例,图6和图7中的装置也可以是芯片或者芯片***,例如:片上***(system on chip,SoC)。对应的,接收单元和发送单元可以是该芯片的收发电路,在此不做限定。
图8示出了本申请实施例提供的另一上报信道状态信息的装置800。该装置800包括处理器810、收发器820和存储器830。其中,处理器810、收发器820和存储器830通过内部连接通路互相通信,该存储器830用于存储指令,该处理器810用于执行该存储器830存储的指令,以控制该收发器820发送信号和/或接收信号。
其中,该处理器810用于通过该收发器820接收M个下行控制信息,所述M个下行控制信息中的第一下行控制信息指示第一信道状态信息配置,所述第一信道状态信息配置与第一信道状态信息干扰测量CSI-IM资源组相关联,所述第一CSI-IM资源组包括N 1个CSI-IM资源,M和N 1为正整数,N 1大于1;测量目标CSI-IM资源,并通过该收发器820上报信道状态信息,所述目标CSI-IM资源是所述终端设备根据M从所述N 1个CSI-IM资源中确定的,所述目标CSI-IM资源的个数小于N 1
应理解,装置800可以具体为上述实施例中的终端设备,并且可以用于执行上述方法实施例中与终端设备对应的各个步骤和/或流程。可选地,该存储器830可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。该处理器810可以用于执行存储器中存储的指令,并且当该处理器810执行存储器中存储的指令时,该处理器810用于执行上述与该终端设备对应的方法实施例的各个步骤和/或流程。
图9示出了本申请实施例提供的另一上报信道状态信息的装置900。该装置900包括处理器910、收发器920和存储器930。其中,处理器910、收发器920和存储器930通过内部连接通路互相通信,该存储器930用于存储指令,该处理器910用于执行该存储器930存储的指令,以控制该收发器920发送信号和/或接收信号。
其中,该处理器910用于确定第一信道状态信息配置,所述第一信道状态信息配置与K个信道状态信息参考信号CSI-RS资源和N 1个信道状态信息干扰测量CSI-IM资源相关联,且在所述K个CSI-RS资源中,存在至少一个CSI-RS资源与所述N 1个CSI-IM资源中的N 1′个CSI-IM资源相关联,K和N 1为正整数,1<N 1′≤N 1;通过该收发器920向终端设备发送所述第一信道状态信息配置。
应理解,装置900可以具体为上述实施例中的网络设备,并且可以用于执行上述方法实施例中网络设备对应的各个步骤和/或流程。可选地,该存储器930可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。该处理器910可以用于执行存储器中存储的指令,并且当该处理器910执行存储器中存储的指令时,该处理器910用于执行上述与该网络设备对应的方法实施例的各个步骤和/或流程。
应理解,在本申请实施例中,上述装置的处理器可以是中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件单元组合执行完成。软件单元可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器执行存储器中的指令,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本领域普通技术人员可以意识到,结合本文中所公开的实施例中描述的各方法步骤和单元,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各实施例的步骤及组成。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域普通技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备 (可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (49)

  1. 一种上报信道状态信息的方法,其特征在于,包括:
    终端设备接收M个下行控制信息,所述M个下行控制信息中的第一下行控制信息指示第一信道状态信息配置,所述第一信道状态信息配置与第一信道状态信息干扰测量CSI-IM资源组相关联,所述第一CSI-IM资源组包括N 1个CSI-IM资源,M和N 1为正整数,N 1大于1;
    所述终端设备测量目标CSI-IM资源,上报信道状态信息,所述目标CSI-IM资源是所述终端设备根据M从所述N 1个CSI-IM资源中确定的,所述目标CSI-IM资源的个数小于N 1
  2. 根据权利要求1所述的方法,其特征在于,当M≥2时,在所述M个下行控制信息中,存在第二下行控制信息指示第二信道状态信息配置,所述第二信道状态信息配置与第二CSI-IM资源组相关联,所述第二CSI-IM资源组包括N 2个CSI-IM资源,所述第一信道状态信息配置和所述第二信道状态信息配置具有关联关系,N 2为正整数。
  3. 根据权利要求2所述的方法,其特征在于,所述第一信道状态信息配置与所述第二信道状态信息配置相同;或
    所述第一信道状态信息配置与所述第二信道状态信息配置用于相同的传输机制集合,所述传输机制集合包括多站联合传输机制和单站传输机制;或
    所述第一信道状态信息配置携带第一指示信息,或,所述第一下行控制信息携带所述第一指示信息,所述第一指示信息用于指示所述第一信道状态信息配置与所述第二信道状态信息配置相关联。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述N 1个CSI-IM资源包括第一类CSI-IM资源和第二类CSI-IM资源,所述第一类CSI-IM资源用于测量多站联合传输机制下的干扰信息,所述第二类CSI-IM资源用于测量单站传输机制下的干扰信息。
  5. 根据权利要求4所述的方法,其特征在于,所述N 1个CSI-IM资源中的第j个CSI-IM资源为所述第一类CSI-IM资源或所述第二类CSI-IM资源为预定义的;或
    所述方法还包括:
    所述终端设备接收第三指示信息,所述第三指示信息用于指示所述N 1个CSI-IM资源中的第j个CSI-IM资源为所述第一类CSI-IM资源或所述第二类CSI-IM资源;
    其中,j∈{1,...,N 1}。
  6. 根据权利要求4或5所述的方法,其特征在于,当M=1时,所述目标CSI-IM资源为所述第二类CSI-IM资源。
  7. 根据权利要求4至6中任一项所述的方法,其特征在于,当M≥2时,所述目标CSI-IM资源为所述第一类CSI-IM资源;或
    当M≥2时,所述目标CSI-IM资源为所述第一类CSI-IM资源或所述第二类CSI-IM资源。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述第一信道状态信息配置还与K个信道状态信息参考信号CSI-RS资源相关联,在所述K个CSI-RS资源中, 至少存在一个CSI-RS资源与所述N 1个CSI-IM资源中的N′ 1个CSI-IM资源相关联,K为正整数,1<N′ 1≤N 1
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述第一CSI-IM资源组占用X个子带,所述X个子带中的第x个子带上的所述目标CSI-IM资源是所述终端设备根据所述M个下行控制信息所指示的CSI-IM资源组中占用了所述第x个子带的CSI-IM资源组的个数确定的,X为正整数,x∈{1,2,…,X}。
  10. 一种上报信道状态信息的方法,其特征在于,包括:
    网络设备确定第一信道状态信息配置,所述第一信道状态信息配置与K个信道状态信息参考信号CSI-RS资源和N 1个信道状态信息干扰测量CSI-IM资源相关联,且在所述K个CSI-RS资源中,存在至少一个CSI-RS资源与所述N 1个CSI-IM资源中的N′ 1个CSI-IM资源相关联,K和N 1为正整数,1<N′ 1≤N 1
    所述网络设备向终端设备发送所述第一信道状态信息配置。
  11. 根据权利要求10所述的方法,其特征在于,所述第一信道状态信息配置还与N 2个CSI-IM资源相关联,所述N 2个CSI-IM资源包括第一类CSI-IM资源和/或第二类CSI-IM资源,所述第一类CSI-IM资源用于测量多站联合传输机制下的干扰信息,所述第二类CSI-IM资源用于测量单站传输机制下的干扰信息,N 2为正整数。
  12. 根据权利要求10所述的方法,其特征在于,所述第一信道状态信息配置包括第一指示信息;或
    所述方法还包括:
    所述网络设备发送所述第一指示信息;
    其中,所述第一指示信息用于指示所述第一信道状态信息配置与第二信道状态信息配置相关联,所述第二信道状态信息与N 2个CSI-IM资源相关联,所述N 2个CSI-IM资源包括第一类CSI-IM资源和或第二类CSI-IM资源,所述第一类CSI-IM资源用于测量多站联合传输机制下的干扰信息,所述第二类CSI-IM资源用于测量单站传输机制下的干扰信息,N 2为正整数。
  13. 根据权利要求10至12中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备发送第二指示信息,所述第二指示信息指示所述第一信道状态配置用于多站联合传输机制或单站传输机制。
  14. 根据权利要求10至13中任一项所述的方法,其特征在于,所述N 1个CSI-IM资源包括第一类CSI-IM资源和第二类CSI-IM资源,所述第一类CSI-IM资源用于测量多站联合传输机制下的干扰信息,所述第二类CSI-IM资源用于测量单站传输机制下的干扰信息。
  15. 根据权利要求14所述的方法,其特征在于,所述N 1个CSI-IM资源中的第j个CSI-IM资源为所述第一类CSI-IM资源或所述第二类CSI-IM资源为预定义的;或
    所述方法还包括:
    所述网络设备发送第三指示信息,所述第三指示信息用于指示所述N 1个CSI-IM资源中的第j个CSI-IM资源为所述第一类CSI-IM资源或所述第二类CSI-IM资源;
    其中,j∈{1,...,N 1}。
  16. 一种上报信道状态信息的装置,其特征在于,包括:
    收发单元,用于接收M个下行控制信息,所述M个下行控制信息中的第一下行控制信息指示第一信道状态信息配置,所述第一信道状态信息配置与第一信道状态信息干扰测量CSI-IM资源组相关联,所述第一CSI-IM资源组包括N 1个CSI-IM资源,M和N 1为正整数,N 1大于1;
    处理单元,用于测量目标CSI-IM资源,并通过所述收发单元上报信道状态信息,所述目标CSI-IM资源是所述终端设备根据M从所述N 1个CSI-IM资源中确定的,所述目标CSI-IM资源的个数小于N 1
  17. 根据权利要求16所述的装置,其特征在于,当M≥2时,在所述M个下行控制信息中,存在第二下行控制信息指示第二信道状态信息配置,所述第二信道状态信息配置与第二CSI-IM资源组相关联,所述第二CSI-IM资源组包括N 2个CSI-IM资源,所述第一信道状态信息配置和所述第二信道状态信息配置具有关联关系,N 2为正整数。
  18. 根据权利要求17所述的装置,其特征在于,所述第一信道状态信息配置与所述第二信道状态信息配置相同;或
    所述第一信道状态信息配置与所述第二信道状态信息配置用于相同的传输机制集合,所述传输机制集合包括多站联合传输机制和单站传输机制;或
    所述第一信道状态信息配置携带第一指示信息,或,所述第一下行控制信息携带所述第一指示信息,所述第一指示信息用于指示所述第一信道状态信息配置与所述第二信道状态信息配置相关联。
  19. 根据权利要求16至18任一项所述的装置,其特征在于,所述N 1个CSI-IM资源包括第一类CSI-IM资源和第二类CSI-IM资源,所述第一类CSI-IM资源用于测量多站联合传输机制下的干扰信息,所述第二类CSI-IM资源用于测量单站传输机制下的干扰信息。
  20. 根据权利要求19所述的装置,其特征在于,所述N 1个CSI-IM资源中的第j个CSI-IM资源为所述第一类CSI-IM资源或所述第二类CSI-IM资源为预定义的;或
    所述收发单元还用于:
    接收第三指示信息,所述第三指示信息用于指示所述N 1个CSI-IM资源中的第j个CSI-IM资源为所述第一类CSI-IM资源或所述第二类CSI-IM资源;
    其中,j∈{1,...,N 1}。
  21. 根据权利要求19或20所述的装置,其特征在于,当M=1时,所述目标CSI-IM资源为所述第二类CSI-IM资源。
  22. 根据权利要求19至21中任一项所述的装置,其特征在于,当M≥2时,所述目标CSI-IM资源为所述第一类CSI-IM资源;或
    当M≥2时,所述目标CSI-IM资源为所述第一类CSI-IM资源或所述第二类CSI-IM资源。
  23. 根据权利要求16至22中任一项所述的装置,其特征在于,所述第一信道状态信息配置还与K个信道状态信息参考信号CSI-RS资源相关联,在所述K个CSI-RS资源中,至少存在一个CSI-RS资源与所述N 1个CSI-IM资源中的N′ 1个CSI-IM资源相关联,K为正整数,1<N′ 1≤N 1
  24. 根据权利要求16至23中任一项所述的装置,其特征在于,所述第一CSI-IM资源组占用X个子带,所述X个子带中的第x个子带上的所述目标CSI-IM资源是所述终端 设备根据所述M个下行控制信息所指示的CSI-IM资源组中占用了所述第x个子带的CSI-IM资源组的个数确定的,X为正整数,x∈{1,2,…,X}。
  25. 一种上报信道状态信息的装置,其特征在于,包括:
    处理单元,用于确定第一信道状态信息配置,所述第一信道状态信息配置与K个信道状态信息参考信号CSI-RS资源和N 1个信道状态信息干扰测量CSI-IM资源相关联,且在所述K个CSI-RS资源中,存在至少一个CSI-RS资源与所述N 1个CSI-IM资源中的N′ 1个CSI-IM资源相关联,K和N 1为正整数,1<N′ 1≤N 1
    收发单元,用于向终端设备发送所述第一信道状态信息配置。
  26. 根据权利要求25所述的装置,其特征在于,所述第一信道状态信息配置还与N 2个CSI-IM资源相关联,所述N 2个CSI-IM资源包括第一类CSI-IM资源和/或第二类CSI-IM资源,所述第一类CSI-IM资源用于测量多站联合传输机制下的干扰信息,所述第二类CSI-IM资源用于测量单站传输机制下的干扰信息,N 2为正整数。
  27. 根据权利要求25所述的装置,其特征在于,所述第一信道状态信息配置包括第一指示信息;或
    所述收发单元还用于:
    发送所述第一指示信息;
    其中,所述第一指示信息用于指示所述第一信道状态信息配置与第二信道状态信息配置相关联,所述第二信道状态信息与N 2个CSI-IM资源相关联,所述N 2个CSI-IM资源包括第一类CSI-IM资源和或第二类CSI-IM资源,所述第一类CSI-IM资源用于测量多站联合传输机制下的干扰信息,所述第二类CSI-IM资源用于测量单站传输机制下的干扰信息,N 2为正整数。
  28. 根据权利要求25至27中任一项所述的装置,其特征在于,所述收发单元还用于:
    发送第二指示信息,所述第二指示信息指示所述第一信道状态配置用于多站联合传输机制或单站传输机制。
  29. 根据权利要求25至28中任一项所述的装置,其特征在于,所述N 1个CSI-IM资源包括第一类CSI-IM资源和第二类CSI-IM资源,所述第一类CSI-IM资源用于测量多站联合传输机制下的干扰信息,所述第二类CSI-IM资源用于测量单站传输机制下的干扰信息。
  30. 根据权利要求29所述的装置,其特征在于,所述N 1个CSI-IM资源中的第j个CSI-IM资源为所述第一类CSI-IM资源或所述第二类CSI-IM资源为预定义的;或
    所述收发单元还用于:
    发送第三指示信息,所述第三指示信息用于指示所述N 1个CSI-IM资源中的第j个CSI-IM资源为所述第一类CSI-IM资源或所述第二类CSI-IM资源;
    其中,j∈{1,...,N 1}。
  31. 一种上报信道状态信息的装置,其特征在于,包括:
    收发器,用于接收M个下行控制信息,所述M个下行控制信息中的第一下行控制信息指示第一信道状态信息配置,所述第一信道状态信息配置与第一信道状态信息干扰测量CSI-IM资源组相关联,所述第一CSI-IM资源组包括N 1个CSI-IM资源,M和N 1为正整数,N 1大于1;
    处理器,用于测量目标CSI-IM资源,并通过所述收发器上报信道状态信息,所述目标CSI-IM资源是所述终端设备根据M从所述N 1个CSI-IM资源中确定的,所述目标CSI-IM资源的个数小于N 1
  32. 根据权利要求31所述的装置,其特征在于,当M≥2时,在所述M个下行控制信息中,存在第二下行控制信息指示第二信道状态信息配置,所述第二信道状态信息配置与第二CSI-IM资源组相关联,所述第二CSI-IM资源组包括N 2个CSI-IM资源,所述第一信道状态信息配置和所述第二信道状态信息配置具有关联关系,N 2为正整数。
  33. 根据权利要求32所述的装置,其特征在于,所述第一信道状态信息配置与所述第二信道状态信息配置相同;或
    所述第一信道状态信息配置与所述第二信道状态信息配置用于相同的传输机制集合,所述传输机制集合包括多站联合传输机制和单站传输机制;或
    所述第一信道状态信息配置携带第一指示信息,或,所述第一下行控制信息携带所述第一指示信息,所述第一指示信息用于指示所述第一信道状态信息配置与所述第二信道状态信息配置相关联。
  34. 根据权利要求31至33任一项所述的装置,其特征在于,所述N 1个CSI-IM资源包括第一类CSI-IM资源和第二类CSI-IM资源,所述第一类CSI-IM资源用于测量多站联合传输机制下的干扰信息,所述第二类CSI-IM资源用于测量单站传输机制下的干扰信息。
  35. 根据权利要求34所述的装置,其特征在于,所述N 1个CSI-IM资源中的第j个CSI-IM资源为所述第一类CSI-IM资源或所述第二类CSI-IM资源为预定义的;或
    所述收发器还用于:
    接收第三指示信息,所述第三指示信息用于指示所述N 1个CSI-IM资源中的第j个CSI-IM资源为所述第一类CSI-IM资源或所述第二类CSI-IM资源;
    其中,j∈{1,...,N 1}。
  36. 根据权利要求34或35所述的装置,其特征在于,当M=1时,所述目标CSI-IM资源为所述第二类CSI-IM资源。
  37. 根据权利要求34至36中任一项所述的装置,其特征在于,当M≥2时,所述目标CSI-IM资源为所述第一类CSI-IM资源;或
    当M≥2时,所述目标CSI-IM资源为所述第一类CSI-IM资源或所述第二类CSI-IM资源。
  38. 根据权利要求31至37中任一项所述的装置,其特征在于,所述第一信道状态信息配置还与K个信道状态信息参考信号CSI-RS资源相关联,在所述K个CSI-RS资源中,至少存在一个CSI-RS资源与所述N 1个CSI-IM资源中的N′ 1个CSI-IM资源相关联,K为正整数,1<N′ 1≤N 1
  39. 根据权利要求31至38中任一项所述的装置,其特征在于,所述第一CSI-IM资源组占用X个子带,所述X个子带中的第x个子带上的所述目标CSI-IM资源是所述终端设备根据所述M个下行控制信息所指示的CSI-IM资源组中占用了所述第x个子带的CSI-IM资源组的个数确定的,X为正整数,x∈{1,2,…,X}。
  40. 一种上报信道状态信息的装置,其特征在于,包括:
    处理器,用于确定第一信道状态信息配置,所述第一信道状态信息配置与K个信道状 态信息参考信号CSI-RS资源和N 1个信道状态信息干扰测量CSI-IM资源相关联,且在所述K个CSI-RS资源中,存在至少一个CSI-RS资源与所述N 1个CSI-IM资源中的N′ 1个CSI-IM资源相关联,K和N 1为正整数,1<N′ 1≤N 1
    收发器,用于向终端设备发送所述第一信道状态信息配置。
  41. 根据权利要求40所述的装置,其特征在于,所述第一信道状态信息配置还与N 2个CSI-IM资源相关联,所述N 2个CSI-IM资源包括第一类CSI-IM资源和/或第二类CSI-IM资源,所述第一类CSI-IM资源用于测量多站联合传输机制下的干扰信息,所述第二类CSI-IM资源用于测量单站传输机制下的干扰信息,N 2为正整数。
  42. 根据权利要求40所述的装置,其特征在于,所述第一信道状态信息配置包括第一指示信息;或
    所述收发器还用于:
    发送第一指示信息;
    其中,所述第一指示信息用于指示所述第一信道状态信息配置与第二信道状态信息配置相关联,所述第二信道状态信息与N 2个CSI-IM资源相关联,所述N 2个CSI-IM资源包括第一类CSI-IM资源和或第二类CSI-IM资源,所述第一类CSI-IM资源用于测量多站联合传输机制下的干扰信息,所述第二类CSI-IM资源用于测量单站传输机制下的干扰信息,N 2为正整数。
  43. 根据权利要求40至42中任一项所述的装置,其特征在于,所述装置还包括:
    所述网络设备发送第二指示信息,所述第二指示信息指示所述第一信道状态配置用于多站联合传输机制或单站传输机制。
  44. 根据权利要求40至43中任一项所述的装置,其特征在于,所述N 1个CSI-IM资源包括第一类CSI-IM资源和第二类CSI-IM资源,所述第一类CSI-IM资源用于测量多站联合传输机制下的干扰信息,所述第二类CSI-IM资源用于测量单站传输机制下的干扰信息。
  45. 根据权利要求44所述的装置,其特征在于,所述N 1个CSI-IM资源中的第j个CSI-IM资源为所述第一类CSI-IM资源或所述第二类CSI-IM资源为预定义的;或
    所述收发器还用于:
    发送第三指示信息,所述第三指示信息用于指示所述N 1个CSI-IM资源中的第j个CSI-IM资源为所述第一类CSI-IM资源或所述第二类CSI-IM资源;
    其中,j∈{1,...,N 1}。
  46. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行所述存储器中存储的指令,使得安装有所述芯片的通信设备执行如权利要求1至15中任一项所述的方法。
  47. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,当所述计算机程序被计算机执行时,使得所述计算机实现如权利要求1至15中任一项所述的方法。
  48. 一种计算机程序产品,所述计算机程序产品中包含指令,其特征在于,当所述指令在计算机上运行时,使得计算机实现如权利要求1至15中任一项所述的方法。
  49. 一种上报信道状态信息的***,其特征在于,包括:权利要求16至24中任一项 所述的装置和权利要求25至30中任一项所述的装置;或权利要求31至39中任一项所述的装置和权利要求40至45中任一项所述的装置。
PCT/CN2018/099907 2018-08-10 2018-08-10 上报信道状态信息的方法和装置 WO2020029233A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2018/099907 WO2020029233A1 (zh) 2018-08-10 2018-08-10 上报信道状态信息的方法和装置
CN201880095876.5A CN112470419B (zh) 2018-08-10 2018-08-10 上报信道状态信息的方法和装置
EP18929752.6A EP3832933B1 (en) 2018-08-10 2018-08-10 Channel state information reporting method and apparatus
US17/171,627 US11888563B2 (en) 2018-08-10 2021-02-09 Channel state information reporting method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/099907 WO2020029233A1 (zh) 2018-08-10 2018-08-10 上报信道状态信息的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/171,627 Continuation US11888563B2 (en) 2018-08-10 2021-02-09 Channel state information reporting method and apparatus

Publications (1)

Publication Number Publication Date
WO2020029233A1 true WO2020029233A1 (zh) 2020-02-13

Family

ID=69413341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/099907 WO2020029233A1 (zh) 2018-08-10 2018-08-10 上报信道状态信息的方法和装置

Country Status (4)

Country Link
US (1) US11888563B2 (zh)
EP (1) EP3832933B1 (zh)
CN (1) CN112470419B (zh)
WO (1) WO2020029233A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200064977A (ko) * 2017-10-13 2020-06-08 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 데이터 전송 방법, 단말 기기 및 네트워크 기기
US11689267B2 (en) * 2019-05-03 2023-06-27 Mediatek Inc. Aperiodic CSI triggering in scenarios with multiple PDCCHs
US11356162B2 (en) * 2019-05-24 2022-06-07 Mediatek Inc. CSI reporting for multiple transmission points
US11337095B2 (en) * 2020-01-03 2022-05-17 Qualcomm Incorporated Forward-looking channel state information prediction and reporting
CN117083903A (zh) * 2021-03-31 2023-11-17 高通股份有限公司 在传输假设之间的资源共享
WO2023206516A1 (en) * 2022-04-29 2023-11-02 Qualcomm Incorporated Uplink control information for coherent joint transmission channel state information with transmission reception point selection
WO2024031515A1 (en) * 2022-08-11 2024-02-15 Lenovo (Beijing) Limited Methods and apparatuses for transmitting csi feedback message
US20240223241A1 (en) * 2022-12-16 2024-07-04 Samsung Electronics Co., Ltd. Calibration for multi-trp coherent joint transmissions

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105052061A (zh) * 2013-03-13 2015-11-11 三星电子株式会社 用于自适应配置的时分双工通信***的信道状态信息
WO2017135737A1 (ko) * 2016-02-03 2017-08-10 삼성전자 주식회사 이동 통신 시스템에서 기준 신호 설정 및 채널 정보 생성을 위한 방법 및 장치
CN107231825A (zh) * 2015-01-30 2017-10-03 摩托罗拉移动有限责任公司 用信号发送用于lte操作的非周期性信道状态指示参考信号的方法和装置
CN107431574A (zh) * 2015-01-30 2017-12-01 摩托罗拉移动有限责任公司 用信号发送用于lte操作的非周期信道状态指示参考信号的方法和设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101645496B1 (ko) * 2012-09-16 2016-08-05 엘지전자 주식회사 협력적 송신을 지원하는 무선 통신 시스템에서 데이터를 수신하는 방법 및 장치
KR102208125B1 (ko) 2016-06-23 2021-01-27 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 보고를 위한 방법 및 이를 위한 장치
CN109690969A (zh) * 2016-07-29 2019-04-26 Lg电子株式会社 在无线通信***中由终端报告信道状态信息的方法以及支持该方法的装置
WO2018127181A1 (zh) * 2017-01-06 2018-07-12 华为技术有限公司 一种信号传输方法和装置
CN112753194B (zh) * 2018-08-08 2024-05-07 交互数字专利控股公司 无线发射/接收单元和在其中实施的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105052061A (zh) * 2013-03-13 2015-11-11 三星电子株式会社 用于自适应配置的时分双工通信***的信道状态信息
CN107231825A (zh) * 2015-01-30 2017-10-03 摩托罗拉移动有限责任公司 用信号发送用于lte操作的非周期性信道状态指示参考信号的方法和装置
CN107431574A (zh) * 2015-01-30 2017-12-01 摩托罗拉移动有限责任公司 用信号发送用于lte操作的非周期信道状态指示参考信号的方法和设备
WO2017135737A1 (ko) * 2016-02-03 2017-08-10 삼성전자 주식회사 이동 통신 시스템에서 기준 신호 설정 및 채널 정보 생성을 위한 방법 및 장치

Also Published As

Publication number Publication date
EP3832933A1 (en) 2021-06-09
US20210167829A1 (en) 2021-06-03
EP3832933B1 (en) 2023-09-27
US11888563B2 (en) 2024-01-30
CN112470419B (zh) 2022-09-23
CN112470419A (zh) 2021-03-09
EP3832933A4 (en) 2021-07-28

Similar Documents

Publication Publication Date Title
EP3637838B1 (en) Communication method and communication apparatus
US20200244320A1 (en) Communications method and device
US10498416B2 (en) System and method for downlink channel sounding in wireless communications systems
WO2020029233A1 (zh) 上报信道状态信息的方法和装置
US20220239360A1 (en) Csi omission rules for enhanced type ii csi reporting
EP3598676B1 (en) Method for transmitting data, terminal device, and network device
JP7018132B2 (ja) データ伝送方法、端末装置、及びネットワーク装置
US11088738B2 (en) Communication method and network device
US9450662B2 (en) Evolved node-B, user equipment, and methods for channel quality indicator (CQI) feedback
US20230208492A1 (en) Method and apparatus for reporting and receiving csi, and terminal device and network device
WO2019137445A1 (zh) 信道状态信息的测量方法和装置
US11290906B2 (en) Channel measurement method
US10419097B2 (en) CSI receiving method and access network device
EP3490171A1 (en) Measurement method and apparatus
US11742904B2 (en) Method and apparatus for multi-user multi-antenna transmission
JP7216813B2 (ja) チャネル状態情報を決定するための方法および装置
WO2023168180A1 (en) Transmission of sidelink beam reporting
CN117042179A (zh) Csi上报的方法、终端、网络设备、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18929752

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018929752

Country of ref document: EP

Effective date: 20210303