WO2020029182A1 - 用于传输参考信号的方法及设备 - Google Patents

用于传输参考信号的方法及设备 Download PDF

Info

Publication number
WO2020029182A1
WO2020029182A1 PCT/CN2018/099668 CN2018099668W WO2020029182A1 WO 2020029182 A1 WO2020029182 A1 WO 2020029182A1 CN 2018099668 W CN2018099668 W CN 2018099668W WO 2020029182 A1 WO2020029182 A1 WO 2020029182A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
time
user terminal
frequency resources
group
Prior art date
Application number
PCT/CN2018/099668
Other languages
English (en)
French (fr)
Inventor
刘文佳
王闰昕
侯晓林
王新
Original Assignee
株式会社Ntt都科摩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ntt都科摩 filed Critical 株式会社Ntt都科摩
Priority to US17/266,800 priority Critical patent/US11811508B2/en
Priority to PCT/CN2018/099668 priority patent/WO2020029182A1/zh
Priority to CN201880096428.7A priority patent/CN112534749B/zh
Publication of WO2020029182A1 publication Critical patent/WO2020029182A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/121Wireless traffic scheduling for groups of terminals or users

Definitions

  • the present disclosure relates to the field of mobile communications, and more particularly, to a method and device for transmitting a reference signal.
  • MTC Machine Type Communication
  • the user terminal sends an uplink reference signal, such as a demodulation reference signal (Demodulation Reference Signal, DMRS), to the base station to perform channel estimation according to the uplink reference signal to detect and demodulate information sent by the user terminal.
  • DMRS Demodulation Reference Signal
  • the reference signal port is limited, there are cases where multiple user terminals send uplink reference signals to the base station on one reference signal port. In this case, the uplink reference signals sent by multiple user terminals collide, causing the base station to fail to estimate the channel of each user terminal based on the received reference signals.
  • a method for transmitting a reference signal performed by a user terminal includes: selecting a reference signal port for each group of time-frequency resources from the candidate reference signal ports; and sending a reference signal using a reference signal port corresponding to each group of time-frequency resources.
  • a user terminal is provided, and time-frequency resources for the user terminal are divided into multiple groups of time-frequency resources.
  • the user terminal includes a selection unit configured to select a reference signal port for each group of time-frequency resources from the candidate reference signal ports, and a transmission unit configured to use a reference signal port corresponding to each group of time-frequency resources. Send a reference signal.
  • a method for receiving a reference signal performed by a base station includes: detecting, on a plurality of sets of time-frequency resources for a first user terminal, first type reference signals sent by the first user terminal using a reference signal port corresponding to each set of time-frequency resources, where The time-frequency resource of the first user terminal is divided into the plurality of groups of time-frequency resources; it is determined that, among the plurality of detected first-type reference signals, no collision occurs with the first-type reference signal sent by the second user terminal A first type of reference signal; and estimating a channel condition of the first user terminal according to the determined first type of reference signal.
  • a base station includes a detection unit configured to detect, on a plurality of sets of time-frequency resources for the first user terminal, a first type sent by the first user terminal using a reference signal port corresponding to each set of time-frequency resources.
  • a reference signal wherein the time-frequency resource for the first user terminal is divided into the plurality of groups of time-frequency resources; and a determining unit is configured to determine that, among the plurality of detected first-type reference signals, the A first type reference signal in which the first type reference signals sent by the two user terminals collide; and an estimation unit configured to estimate a channel condition of the first user terminal according to the determined first type reference signal.
  • FIG. 1 is a schematic diagram of a wireless communication system in which embodiments of the present disclosure can be applied;
  • FIG. 2 is a flowchart of a method for transmitting a reference signal performed by a user terminal in a communication system according to an embodiment of the present disclosure
  • FIG. 3 is a flowchart of a method for a user terminal to select a reference signal port for each group of time-frequency resources according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a reference signal port selected by a user terminal for each group of time-frequency resources according to an embodiment of the present disclosure
  • FIG. 5 is another schematic diagram of a reference signal port selected by a user terminal for each group of time-frequency resources according to an embodiment of the present disclosure
  • FIG. 6 is another schematic diagram of a reference signal port selected by a user terminal for each group of time-frequency resources according to an embodiment of the present disclosure
  • FIG. 7A is a schematic diagram of a reference signal power parameter selected by a user terminal in the prior art
  • FIG. 7B is a schematic diagram of a reference signal power parameter selected by a user terminal for each group of time-frequency resources according to an embodiment of the present disclosure
  • FIG. 8 is a flowchart of a method for transmitting a reference signal performed by a user terminal in a communication system according to another embodiment of the present disclosure
  • 9A is a schematic diagram of reference signal power parameters selected by different user terminals in the prior art.
  • 9B is a schematic diagram of reference signal power parameters selected by different user terminals according to another embodiment of the present disclosure.
  • FIG. 10 is a flowchart of a method for receiving a reference signal performed by a base station in a communication system according to an embodiment of the present disclosure
  • FIG. 11 is a flowchart of a method for receiving a reference signal performed by a base station in a communication system according to another embodiment of the present disclosure
  • FIG. 12 is a schematic structural diagram of a user terminal that executes the method shown in FIG. 2 according to an embodiment of the present disclosure
  • FIG. 13 is a schematic structural diagram of a user terminal that executes the method shown in FIG. 8 according to another embodiment of the present disclosure
  • FIG. 14 is a schematic structural diagram of a base station that performs the method shown in FIG. 10 according to an embodiment of the present disclosure
  • FIG. 15 is a schematic structural diagram of a base station that performs the method shown in FIG. 11 according to another embodiment of the present disclosure
  • FIG. 16 is a schematic diagram of a hardware structure of a user terminal or a base station according to an embodiment of the present disclosure.
  • the same reference numerals denote the same elements throughout. It should be understood that the embodiments described herein are merely illustrative and should not be construed as limiting the scope of the disclosure.
  • the user terminals described herein may include various types of user terminals (User Equipment, UE), such as mobile terminals (also referred to as mobile stations) or fixed terminals. However, for convenience, it is sometimes interchangeable in the following Use UE and mobile station.
  • UE User Equipment
  • the base station may be a fixed station, a NodeB, an eNodeB (eNB), an access point, an access point, a reception point, a femto cell, a small cell, and the like, which are not limited herein.
  • eNB eNodeB
  • the base station may be a fixed station, a NodeB, an eNodeB (eNB), an access point, an access point, a reception point, a femto cell, a small cell, and the like, which are not limited herein.
  • the wireless communication system may be a 5G system, or any other type of wireless communication system, such as an LTE system or an LTE-A system.
  • LTE system Long Term Evolution
  • LTE-A system Long Term Evolution-A-A system
  • the wireless communication system 100 may include a first user terminal 110, a second user terminal 120, and a base station (BS) 130.
  • the base station 130 is a serving base station of the first user terminal 110 and the second user terminal 120.
  • the reference signal port is limited, and for the first type of reference signal, only one first type of reference signal is configured on the time-frequency resource for a specific user terminal, that is, in a transmission block (Transmission Block, The TB) layer is configured with a first type reference signal.
  • the "first type reference signal” may be any uplink reference signal used for channel estimation between a user terminal and a base station, for example, a demodulation reference signal (Demodulation Reference Signal (DMRS), sounding reference signal (Sounding Reference Signal (SRS), etc.
  • DMRS Demodulation Reference Signal
  • SRS Sounding Reference Signal
  • an embodiment of the present disclosure is described taking the “first type reference signal” as a DMRS as an example. Therefore, in the uplink license-free situation, the first user terminal 110 and the second user terminal 120 may randomly select a reference signal port from a limited number of reference signal ports to send DMRS.
  • the two DMRSs collide, resulting in the base station 130 being unable to distinguish the first user terminal 110 and the second user terminal 120 according to the received DMRS.
  • the received DMRS estimates channel conditions of the first user terminal 110 and the second user terminal 120. It should be recognized that although one base station and two user terminals are shown in FIG. 1, this is only schematic, and the wireless communication system may further include more or fewer base stations, and / or more or Fewer user terminals. In order to reduce the probability of collision between reference signals of different user terminals, the technical solution of the present disclosure is proposed.
  • multiple first type of reference signals may be configured on time-frequency resources for a specific user terminal. In this way, without expanding the reference signal port, the possibility of the first type of reference signal configurable by each user terminal can be increased, and the probability of collision between reference signals of different user terminals can be reduced.
  • the time-frequency resource for the user terminal may include a physical resource block (Physical Resource Block, PRB) and a reference signal symbol.
  • PRB Physical Resource Block
  • time-frequency resources for a specific user terminal can be divided into multiple groups of time-frequency resources in the frequency domain and / or time domain, and a first type of reference signal is configured on each group of time-frequency resources, that is, The first type of reference signal is configured at the PRB and / or symbol level, so as to implement the configuration of multiple first type reference signals on the time-frequency resources used for the user terminal.
  • FIG. 2 is a flowchart of a method 200 for transmitting a reference signal performed by a user terminal in a communication system according to an embodiment of the present disclosure.
  • the user terminal selects a reference signal port for each group of time-frequency resources from the candidate reference signal ports.
  • the time-frequency resources for a user terminal may be divided into multiple groups of time-frequency resources.
  • the time-frequency resources used for the user terminal may be divided into M groups of time-frequency resources, and the M groups of time-frequency resources may be expressed as S 1 , S 2 ,..., S M , where M is a positive integer.
  • the user terminal may divide the time-frequency resources used for the user terminal into multiple groups of time-frequency resources according to the time-frequency resource division parameters.
  • the time-frequency resource partition parameter may be a time-frequency resource granularity for selecting a reference signal port, which may be represented by N, where N is a positive integer.
  • the time-frequency resource granularity used for each group of time-frequency resources can be set separately.
  • the granularity of time-frequency resources used for each group of time-frequency resources can be expressed as N 1 ,..., N m ,..., N M , where 1 ⁇ m ⁇ M and is a positive integer.
  • N 1 ,..., N m ,..., N M may be the same or different.
  • the time-frequency resources used for the user terminal can be divided into multiple groups of time-frequency resources according to the following formula (1):
  • L is the number of time-frequency resources used for the user terminal and is a positive integer.
  • the user terminal may divide the time-frequency resources used for the user terminal into multiple groups of time-frequency resources in the frequency domain and / or time domain according to the time-frequency resource division parameters.
  • the user terminal may divide the time-frequency resources used for the user terminal into multiple groups of time-frequency resources in the frequency domain according to the time-frequency resource division parameters.
  • the time-frequency resource partition parameter may be a PRB granularity used to select a reference signal port, that is, the user terminal may divide the PRB for the user terminal into multiple groups of PRBs according to the time-frequency resource partition parameter.
  • L in the above formula (1) may be the number of PRBs used for the user terminal, that is, L PRBs used for the user terminal are divided into M groups of PRBs.
  • the user terminal may divide the time-frequency resources used for the user terminal into multiple groups of time-frequency resources in the time domain according to the time-frequency resource division parameters.
  • the time-frequency resource division parameter may be a symbol granularity used to select a reference signal port, that is, the user terminal may divide the reference signal symbols used for the user terminal into multiple groups of reference signals according to the time-frequency resource division parameter.
  • the reference signal symbol may be an Orthogonal Frequency Division Multiplexing (OFDM) symbol for transmitting a reference signal.
  • OFDM Orthogonal Frequency Division Multiplexing
  • L in the above formula (1) may be the number of reference signal symbols used for the user terminal, that is, L reference signal symbols used for the user terminal are divided into M groups of reference signal symbols.
  • L reference signal symbols may correspond to L OFDM symbols.
  • L reference signal symbols may correspond to more than L OFDM symbols.
  • the L reference signal symbols may correspond to 2L OFDM symbols.
  • the user terminal may further divide the time-frequency resources used for the user terminal into multiple groups of time-frequency resources in the frequency domain and the time domain according to the time-frequency resource division parameters.
  • L 1 PRB and L 2 reference signal symbols for a user terminal may be divided into M groups, and the number of PRB or reference signal symbols included in each group may be the same or different, where L 1 and L 2 Both are positive integers.
  • S 3 ⁇ 3 ⁇
  • S 4 ⁇ 4 ⁇
  • S 5 ⁇ 5 ⁇
  • S 6 ⁇ 6 ⁇ .
  • Each group includes two PRBs.
  • Each group includes two and four PRBs.
  • the time-frequency resource division parameter may be received by a user terminal from a base station.
  • the base station can set time-frequency resource division parameters for the user terminal, and through radio resource control (Radio Resource Control (RRC) signaling), downlink control information (DCI)), or media access control (Media Access Control (MAC) Control Element (Control Element, CE) and the like notify the user terminal of the set time-frequency resource division parameter.
  • RRC Radio Resource Control
  • DCI Downlink Control Information
  • MAC Media Access Control
  • CE Media Access Control
  • the user terminal may divide the time-frequency resources used for the user terminal into multiple groups of time-frequency resources according to the received time-frequency resource division parameters.
  • the time-frequency resource division parameter may also be preset by a user terminal without receiving from a base station.
  • the user terminal presets time-frequency resource division parameters according to channel conditions or service conditions, and divides the time-frequency resources used for the user terminal into multiple groups of time-frequency resources according to the preset time-frequency resource division parameters.
  • the value of the time-frequency resource partition parameter may also be dynamically changed. For example, when the number of user terminals in the communication system is large, the value of the time-frequency resource partition parameter can be reduced; when the number of user terminals in the communication system is small, the value of the time-frequency resource partition parameter can be increased Big.
  • the candidate reference signal port may constitute one or more candidate reference signal port sets.
  • each candidate reference signal port set may include at least a reference signal port corresponding to a first sub-type reference signal of a first type of reference signal.
  • the first sub-type reference signal and the second sub-type reference signal are both first-type reference signals, but the first sub-type reference signal and the second sub-type reference signal have different patterns, sequences, or ports.
  • the first sub-type reference signal and the second sub-type reference signal may be DMRS type 1 and DMRS type 2 already specified by the 3GPP standard specification (TS 38.212 v15.2.0), and the DMRS type 1 and DMRS type 2 correspond to different
  • the number of ports for example, there are four reference signal ports corresponding to DMRS type 1, and six reference signal ports corresponding to DMRS type 2.
  • each candidate reference signal port set may include only reference signal ports corresponding to one sub-type reference signal, for example, only reference signal ports corresponding to DMRS type 1 or only include DMRS type 2 phase signals. Corresponding reference signal port.
  • each candidate reference signal port set may include reference signal ports corresponding to multiple sub-type reference signals, for example, including both a reference signal port corresponding to DMRS type 1 and a reference corresponding to DMRS type 2 Signal port.
  • the present disclosure is not limited thereto.
  • the sub-types of the first type of reference signals mentioned in the present disclosure may be less than or more than two types.
  • the subtypes of the first type of reference signals mentioned in this disclosure may include DMRS Type 1 and DMRS Type 2 already specified by the 3GPP standard specification, or may not include DMRS Type 1 and DMRS Type 2 already specified by the 3GPP standard specification. Includes other subclasses of DMRS.
  • the multiple candidate reference signal port sets may correspond to multiple sets of time-frequency resources.
  • the candidate reference signal ports may constitute M candidate reference signal port sets. It is denoted as D 1 , D 2 ,..., D M , and the D 1 , D 2 ,..., D M correspond to S 1 , S 2 ,..., S M, respectively.
  • the user terminal may individually select a reference signal port for each group of time-frequency resources from each candidate reference signal port set.
  • the user terminal may select a reference signal port for the first group of time-frequency resources (that is, S 1 ) from the set D 1 , and select a reference for the second group of time-frequency resources (that is, S 2 ) from the set D 2 Signal ports,... And select a reference signal port for the Mth group of time-frequency resources (ie, SM ) from the set D M.
  • the user terminal may select a reference signal port for each group of time-frequency resources from the candidate reference signal port set.
  • some or all of the candidate reference signal ports may constitute a candidate reference signal port set.
  • the following describes how the user terminal selects a reference signal port for each group of time-frequency resources in this case with reference to FIG. 3.
  • 3 is a flowchart of a method 300 for a user terminal to select a reference signal port for each group of time-frequency resources according to an embodiment of the present disclosure.
  • the user terminal may select a reference signal port for the first group of time-frequency resources from the first candidate reference signal port set.
  • the first candidate reference signal port set may be a candidate reference signal port set formed by the candidate reference signal ports, and may be represented by D 0 .
  • the user terminal may determine, according to the selected reference signal port and reference signal port offset parameter for the first group of time-frequency resources, from the first candidate reference signal port set for use in multiple groups of time-frequency Reference signal port for other groups of time-frequency resources in the resource.
  • the reference signal port offset parameter may be received by the user terminal from the base station.
  • the base station may set a reference signal port offset parameter for the user terminal, and notify the user terminal of the set reference signal port offset parameter through RRC signaling, DCI, or MAC CE.
  • the user terminal may determine reference signal ports for other groups of time-frequency resources in the multiple groups of time-frequency resources according to the received reference signal port offset parameters and the reference signal ports for the first group of time-frequency resources.
  • the reference signal port offset parameter may also be preset by the user terminal without receiving from the base station.
  • the user terminal presets the reference signal port offset parameter according to the channel status or service status, and determines the multi-group based on the preset reference signal port offset parameter and the reference signal port for the first group of time-frequency resources. Reference signal port for other groups of time-frequency resources in the time-frequency resource.
  • the reference signal port offset parameter may be a set of candidate reference signal port offset values, for example, may be represented by H, which may have s elements, that is, have s candidate references Signal port offset value, where s is a positive integer.
  • the user terminal may determine one or more reference signal port offset values according to the reference signal port offset parameter, and then according to the determined reference signal port offset values and the reference signal port of the first group of time-frequency resources , Determining, from the first candidate reference signal port set, reference signal ports for other sets of time-frequency resources in the plurality of sets of time-frequency resources.
  • the user terminal may determine a reference signal port offset value according to the reference signal port offset parameter, and then from the first candidate reference signal port according to the one reference signal port offset value and the reference signal port of the first group of time-frequency resources
  • the set determines the reference signal ports for other groups of time-frequency resources among the plurality of groups of time-frequency resources in order.
  • the user terminal may select a reference signal port offset value from the set H, and then offset the reference signal port offset value of the first group of time-frequency resources by the selected reference signal port offset value to determine the reference of the second group of time-frequency resources.
  • Signal port and then offset the reference signal port of the second group of time-frequency resources by the selected reference signal port offset value to determine the reference signal port of the third group of time-frequency resources, and repeat the offset operation until all groups are determined Reference signal port for time-frequency resources.
  • step S301 the user terminal selects port 3 from the set D 0 as a reference signal port of the first group of time-frequency resources. Then, in step S302, the user terminal selects the reference signal port offset value 2 from the set H, and determines that port 5 is the reference signal port of the second group of time-frequency resources according to the port 3 and the reference signal port offset value 2, and Port 7 is a reference signal port of the third group of time-frequency resources.
  • the user terminal may determine multiple reference signal port offset values according to the reference signal port offset parameter, and then, from the first candidate, according to the multiple reference signal port offset values and the reference signal port of the first group of time-frequency resources,
  • the reference signal port sets respectively determine reference signal ports for other groups of time-frequency resources in the plurality of groups of time-frequency resources.
  • the user terminal may select multiple reference signal port offset values from the set H, which are the first reference signal port offset value, the second reference signal port offset value, etc., and then change the value of the first set of time-frequency resources.
  • the reference signal port is offset from the first reference signal port offset value to determine a reference signal port for the second group of time-frequency resources, and then the reference signal port for the second group of time-frequency resources is offset from the second reference signal port offset value to determine
  • the reference signal ports of the third group of time-frequency resources are repeatedly offset until the reference signal ports of all groups of time-frequency resources are determined.
  • step S301 the user terminal selects port 3 from the set D 0 as a reference signal port of the first group of time-frequency resources. Then, in step S302, the user terminal selects the first reference signal port offset value 2 and the second reference signal port offset value 3 from the set H, and determines according to the port 3 and the first reference signal port offset value 2.
  • Port 5 is the reference signal port of the second group of time-frequency resources, and port 8 is determined as the reference signal port of the third group of time-frequency resources according to the port 5 and the second reference signal port offset value 3.
  • the user terminal may randomly select a reference signal port for each group of time-frequency resources from the candidate reference signal ports.
  • the reference signal ports used for each group of time-frequency resources may be completely different, or may be partially the same.
  • the user terminal may select a reference signal port for each group of time-frequency resources in a first table, and the first table may include candidate reference signal ports and candidate reference signals. Correspondence between ports and multiple groups of time-frequency resources.
  • the first table may be a table defined in advance by the user terminal and stored in advance inside the user terminal.
  • the first table may also be a table sent by the base station to the user terminal and stored by the user terminal.
  • the first table may also be a table that is stored in the user terminal in advance by the manufacturer before the user terminal leaves the factory.
  • FIG. 4 is a schematic diagram of a reference signal port selected by a user terminal for each group of time-frequency resources according to an embodiment of the present disclosure.
  • the user terminal divides the two PRBs into two groups, each group includes one PRB, and the first and second groups of PRBs are respectively
  • the reference signal ports are selected, namely port 0 and port 2.
  • the selection of the reference signal port by the user terminal may be performed for the PRB (ie, the RB level), rather than for the TB (ie, the TB level).
  • 5 is another schematic diagram of a reference signal port selected by a user terminal for each group of time-frequency resources according to an embodiment of the present disclosure.
  • the user terminal divides the two reference signal symbols into two groups, each group including one reference signal symbol, and One set of reference signal symbols (that is, the fourth OFDM symbol) and the second set of reference signal symbols (that is, the 11th OFDM symbol) respectively select reference signal ports, namely, port 0 and port 2.
  • selection of a reference signal port by a user terminal may be performed for a symbol (that is, a symbol level), rather than for a TB (that is, a TB level).
  • the user terminal divides the 2 PRBs and 2 reference signal symbols into 4 groups, each group includes 1 PRB and 1 reference signal symbol, and is the first group of PRB and reference signal symbols (that is, the first PRB And 4th OFDM symbol), the second set of PRB and reference signal symbols (i.e., the second PRB and 4th OFDM symbol), the third set of PRB and reference signal symbols (i.e., the first PRB and the first 11 OFDM symbols), the fourth set of PRBs, and the reference signal symbols (ie, the second PRB and the 11th OFDM symbols) select the reference signal ports, namely, port 0, port 2, port 3, and port 1, respectively.
  • selection of a reference signal port by a user terminal may be performed for PRB / symbol (ie, RB / symbol level), rather than for TB (ie, TB level).
  • the method 200 may further include: the user terminal determines a reference signal power parameter for each group of time-frequency resources.
  • the reference signal power parameter may be a power boosting parameter for transmitting the reference signal.
  • a user terminal may receive one or more reference signal power parameters from a base station.
  • the base station may set one or more reference signal power parameters for the user terminal, and notify the user terminal of the set reference signal power parameters through RRC signaling, DCI or MAC CE.
  • the user terminal may determine a reference signal power parameter for each group of time-frequency resources by receiving RRC signaling, DCI, MAC, CE, and the like from the base station.
  • the user terminal may set a reference signal power parameter for each group of time-frequency resources in advance without receiving from the base station.
  • the user terminal may select a reference signal power parameter for each group of time-frequency resources from a predefined candidate reference signal power parameter set.
  • the candidate reference signal power parameter set may be represented as P, which may have p elements, such as ⁇ a 1 , a 2 , ..., a p ⁇ , where p is a positive integer.
  • the user terminal may select a reference signal power parameter for each group of time-frequency resources from the candidate reference signal power parameter set.
  • the user terminal may select a reference signal power parameter for the first group of time-frequency resources from the candidate reference signal power parameter set, and then determine the reference signal power parameter and the reference signal power offset value for the first group of time-frequency resources.
  • the reference signal power offset value may be an element in a set of candidate reference signal power offset values, and the set may be represented by H ′, which may have s ′ elements, that is, has s ′ candidate reference signal power offsets. Value, where s' is a positive integer.
  • the set H 'mentioned here may be the same as or different from the set H described above.
  • An example of reference signal power parameters for time-frequency resources For example, the user terminal selects a 1 from the set P as a reference signal power parameter of the first group of time-frequency resources. Then, the user terminal selects a reference signal power offset value 3 from the set H ′, and determines that a 4 is a reference signal power parameter of the second group of time-frequency resources and a 7 is according to a 1 and the reference signal power offset value 3. The reference signal power parameter of the third group of time-frequency resources.
  • the user terminal may randomly select a reference signal power parameter for each group of time-frequency resources from a candidate reference signal power parameter set.
  • the reference signal power parameters for each group of time-frequency resources may be completely different, or may be partially the same.
  • the user terminal may select a reference signal power parameter for each group of time-frequency resources in a second table
  • the second table may include candidate reference signal power parameters and candidate reference signal power parameters and Correspondence between multiple groups of time-frequency resources.
  • the second table may be a table defined in advance by the user terminal and stored in advance inside the user terminal.
  • the second table may also be a table sent by the base station to the user terminal and stored by the user terminal.
  • the second table may also be a table that is stored in the user terminal in advance by the manufacturer before the user terminal leaves the factory.
  • FIG. 7B is a schematic diagram of a reference signal power parameter selected by a user terminal for each group of time-frequency resources according to an embodiment of the present disclosure.
  • the user terminal divides the 2 PRBs and 2 reference signal symbols into 4 groups, each group includes 1 PRB and 1 reference signal symbol, and is the first group of PRB and reference signal symbols (that is, the first PRB And 4th OFDM symbol), the second set of PRB and reference signal symbols (i.e., the second PRB and 4th OFDM symbol), the third set of PRB and reference signal symbols (i.e., the first PRB and the first 11 OFDM symbols), the fourth set of PRBs and reference signal symbols (ie, the second PRB and the 11th OFDM symbol) have selected the reference signal power parameters, namely a 1 , a 2 ,
  • the user terminal sends a reference signal using a reference signal port corresponding to each group of time-frequency resources.
  • the user terminal may use the reference signal port corresponding to each group of time-frequency resources and transmit the reference signal with the transmission power indicated by the reference signal power parameter corresponding to each group of time-frequency resources.
  • the reference signal mentioned here may be a first type of reference signal, such as DMRS.
  • the user terminal may use the transmit power indicated by port 0 and the reference signal power parameter a 1 to send the first set of PRB and reference signal symbols (that is, the first PRB and the fourth OFDM DMRS corresponding to the symbol, using the transmit power indicated by port 2 and reference signal power parameter a 2 to send corresponding to the second set of PRB and reference signal symbols (that is, the second PRB and the fourth OFDM symbol) DMRS using the transmit power indicated by port 3 and the reference signal power parameter a 1 to send the DMRS corresponding to the third set of PRB and reference signal symbols (ie, the first PRB and the 11th OFDM symbol), and using The transmit power indicated by port 1, reference signal power parameter a 2 sends a DMRS corresponding to the fourth set of PRB and reference signal symbols (ie, the second PRB and the eleventh OFDM symbol).
  • a probability of collision between reference signals of different user terminals in a communication system may be determined.
  • the following formula (2) can be used to determine the collision probability:
  • D original may be the number of candidate reference signal ports in the prior art
  • K is the number of user terminals in the communication system.
  • the above formula (2) can be transformed into the following formula (3):
  • the present disclosure extends D original in the prior art to Thereby reducing the collision probability Pr.
  • the possibility of configurable uplink reference signals for each user terminal can be increased without expanding the reference signal port, and collisions between reference signals of different user terminals can be reduced The probability.
  • the time-frequency resources for the user terminal are divided into multiple groups, and the reference signal is sent using the reference signal port corresponding to each group of time-frequency resources, so as to reduce the occurrence between the reference signals of different user terminals.
  • the probability of a collision is not limited thereto.
  • the time-frequency resources for user terminals may not be divided into multiple groups, but the probability of collisions between reference signals of different user terminals may be reduced by adjusting the transmission power of the reference signals.
  • FIG. 8 is a flowchart of a method 800 for transmitting a reference signal performed by a user terminal in a communication system according to another embodiment of the present disclosure. Since the method 800 is the same as some of the details of the method 200 described above with reference to FIG. 2, a detailed description of the same content is omitted here for simplicity.
  • step S801 the user terminal determines a reference signal power parameter for transmitting a reference signal. Then, in step S802, the user terminal sends a reference signal according to the transmission power indicated by the reference signal power parameter.
  • a user terminal may receive a reference signal power parameter from a base station.
  • the base station may set a reference signal power parameter for the user terminal, and notify the user terminal of the set reference signal power parameter through RRC signaling, DCI, or MAC CE.
  • the user terminal may determine the reference signal power parameter used to send the reference signal by receiving RRC signaling, DCI, MAC, CE, etc. from the base station.
  • a user terminal may set a reference signal power parameter for transmitting a reference signal in advance without receiving from a base station.
  • the user terminal may select a reference signal power parameter for sending a reference signal from a predefined candidate reference signal power parameter set.
  • the candidate reference signal power parameter set may be represented as P, which may have p elements, such as ⁇ a 1 , a 2 , ..., a p ⁇ , where p is a positive integer.
  • the user terminal may select a reference signal power parameter for sending a reference signal from the candidate reference signal power parameter set.
  • FIG. 9A is a schematic diagram of reference signal power parameters selected by different user terminals in the prior art.
  • 9A the first user terminal and second user terminal use port 0 and a reference signal power parameters a 1 transmits a reference signal, which may result in a collision between the reference signal.
  • FIG. 9B is a schematic diagram of reference signal power parameters selected by different user terminals according to another embodiment of the present disclosure. As shown in FIG. 9B, although the first user terminal and the second user terminal both use port 0 to send the reference signal, the reference signal power parameter a 1 used by the first user terminal and the reference signal power parameter a used by the second user terminal 2 . In this way, the first user terminal and the second user terminal can send the reference signals with different transmission powers to reduce the probability of collision between the two reference signals.
  • different user terminals can use different transmit powers to send a reference signal, so that the base station can detect a parameter signal of each user terminal from a plurality of received parameter signals, thereby The probability of collision between reference signals of different user terminals is reduced.
  • FIG. 10 is a flowchart of a method 1000 for receiving a reference signal performed by a base station in a communication system according to an embodiment of the present disclosure. Since the method 1000 is the same as some details of the method 200 described above with reference to FIG. 2, a detailed description of the same content is omitted here for simplicity.
  • the base station separately detects, on the multiple sets of time-frequency resources used for the first user terminal, the first user terminal using the reference signal port corresponding to each set of time-frequency resources.
  • a type of reference signal wherein the time-frequency resources used for the first user terminal are divided into the plurality of groups of time-frequency resources.
  • the time-frequency resource for the user terminal may include a physical resource block (Physical Resource Block, PRB) and a reference signal symbol.
  • PRB Physical Resource Block
  • time-frequency resources used for user terminals can be divided into multiple groups of time-frequency resources in the frequency domain and / or time domain, and a first type of reference signal is configured on each group of time-frequency resources, thereby achieving A plurality of first-type reference signals are configured on the time-frequency resources used for the user terminal.
  • the time-frequency resources used for the user terminal may be divided into multiple groups of time-frequency resources according to the time-frequency resource division parameters.
  • the time-frequency resource partition parameter may be a time-frequency resource granularity for selecting a reference signal port, which may be represented by N, where N is a positive integer.
  • the time-frequency resource granularity used for each group of time-frequency resources can be set separately.
  • the granularity of time-frequency resources used for each group of time-frequency resources can be expressed as N 1 ,..., N m ,..., N M , where 1 ⁇ m ⁇ M and is a positive integer.
  • N 1 ,..., N m ,..., N M may be the same or different.
  • the time-frequency resources used for the user terminal can be divided into multiple groups of time-frequency resources according to the above formula (1).
  • the time-frequency resources for the user terminal may be divided into multiple groups of time-frequency resources in the frequency domain and / or time domain according to the time-frequency resource division parameters.
  • the time-frequency resources used for the user terminal may be divided into multiple groups of time-frequency resources in the frequency domain according to the time-frequency resource division parameters.
  • the time-frequency resource partition parameter may be a PRB granularity used to select a reference signal port, that is, the user terminal may divide the PRB for the user terminal into multiple groups of PRBs according to the time-frequency resource partition parameter.
  • L in the above formula (1) may be the number of PRBs used for the user terminal, that is, L PRBs used for the user terminal are divided into M groups of PRBs.
  • the time-frequency resources used for the user terminal may be divided into multiple groups of time-frequency resources in the time domain according to the time-frequency resource division parameters.
  • the time-frequency resource division parameter may be a symbol granularity used to select a reference signal port, that is, the user terminal may divide the reference signal symbols used for the user terminal into multiple groups of reference signals according to the time-frequency resource division parameter.
  • the reference signal symbol may be an Orthogonal Frequency Division Multiplexing (OFDM) symbol for transmitting a reference signal.
  • OFDM Orthogonal Frequency Division Multiplexing
  • L in the above formula (1) may be the number of reference signal symbols used for the user terminal, that is, L reference signal symbols used for the user terminal are divided into M groups of reference signal symbols.
  • time-frequency resources used for the user terminal may also be divided into multiple groups of time-frequency resources in the frequency domain and the time domain according to the time-frequency resource division parameters.
  • L 1 PRB and L 2 reference signal symbols for a user terminal may be divided into M groups, and the number of PRB or reference signal symbols included in each group may be the same or different, where L 1 and L 2 Both are positive integers.
  • the base station may send the time-frequency resource division parameter to the user terminal.
  • the base station can set time-frequency resource division parameters for the user terminal, and through radio resource control (Radio Resource Control (RRC) signaling), downlink control information (Downlink Control Information (DCI)), or media access control (Media Access Control (MAC) Control Element (Control Element, CE) etc. notifies the user terminal of the set time-frequency resource division parameters.
  • RRC Radio Resource Control
  • DCI Downlink Control Information
  • MAC Media Access Control
  • Control Element Control Element
  • the value of the time-frequency resource partition parameter may also be dynamically changed. For example, when the number of user terminals in the communication system is large, the base station can reduce the value of the time-frequency resource partition parameter; when the number of user terminals in the communication system is small, the base station can increase the value of the time-frequency resource partition parameter .
  • the base station may determine the identity of the first user terminal. For example, the base station may determine the identity of the first user terminal by using a preamble or other uplink reference signals sent by the user terminal.
  • the base station may determine the identity of the first user terminal. For example, the base station may first detect, on a first set of time-frequency resources for the first user terminal, the DMRS sent by the first user terminal using a reference signal port corresponding to the first set of time-frequency resources; then, use the detected Detecting the DMRS corresponding to the first group of time-frequency resources on a second group of time-frequency resources for the first user terminal to detect the DMRS sent by the first user terminal using a reference signal port corresponding to the second group of time-frequency resources; By analogy, until the base station detects the DMRS sent by the first user terminal using the reference signal port corresponding to each group of time-frequency resources on all groups of time-frequency resources for the first user terminal, so as to determine the identity of the first user terminal.
  • the base station determines a first type reference signal among the plurality of detected first type reference signals that does not collide with the first type reference signal sent by the second user terminal.
  • the user terminals served by the base station at the same time may include the first user terminal and the second user terminal.
  • the base station may determine whether the multiple DMRSs sent by the first user terminal and the one or more DMRSs sent by the second user terminal are A DMRS collision occurs, so as to determine a DMRS that has not collided with a DMRS sent by a second user terminal, among a plurality of DMRSs sent by a first user terminal.
  • the user terminal served by the base station in the above example includes two user terminals, the present disclosure is not limited thereto. According to another example of the present disclosure, the number of user terminals served simultaneously by the base station may be more than two. In this case, in step S1002, the base station may determine the first type of reference signals that have not collided with the first type of reference signals sent by other user terminals among the plurality of detected first type of reference signals.
  • the base station estimates a channel condition of the first user terminal according to the determined first type reference signal. For example, the base station may estimate the channel status of one or more sets of time-frequency resources corresponding to the determined first type reference signal according to the determined first type reference signal, and inferred to be used for the user terminal according to the determined channel condition. Channel conditions of other groups of time-frequency resources.
  • the possibility of a configurable uplink reference signal for each user terminal can be increased without expanding the reference signal port, and the collision between reference signals of different user terminals can be reduced. Probability, and even when a collision occurs between some of the reference signals of different user terminals, the base station can still estimate the channel condition of each user terminal by using the reference signal without collision.
  • FIG. 11 is a flowchart of a method 1100 for receiving a reference signal performed by a base station in a communication system according to another embodiment of the present disclosure. Since the method 1100 is the same as some details of the method 800 described above with reference to FIG. 8, a detailed description of the same content is omitted here for simplicity.
  • the base station detects a reference signal of each user terminal from signals from one or more user terminals, where the reference signal of each user terminal is used by each user terminal to send a reference according to The signal is sent with reference to the signal power parameters.
  • the base station may send the reference signal power parameter to the user terminal.
  • the base station may set a reference signal power parameter for the user terminal, and notify the user terminal of the set reference signal power parameter through RRC signaling, DCI or MAC CE.
  • the user terminal may determine a reference signal power parameter for transmitting the reference signal by receiving RRC signaling, DCI, MAC, CE, etc. from the base station, and transmit the reference signal using the transmission power indicated by the determined reference signal power parameter.
  • the base station may detect the reference signal of each user terminal from signals from one or more user terminals by means of serial interference deletion. For example, the base station may detect a reference signal sent by a user terminal using the maximum transmission power from signals from one or more user terminals, and then detect a reference signal sent by a user terminal using the next-largest transmission power, and so on, until detection A reference signal sent by a user terminal using the minimum transmit power.
  • the base station estimates the channel status of each user terminal according to the detected reference signal. For example, the base station may estimate the channel conditions corresponding to the time-frequency resources for each user terminal based on the detected reference signals.
  • different user terminals can use different transmit powers to send reference signals, so that the base station can detect the parameter signal of each user terminal from the received multiple parameter signals, thereby reducing The probability of collision between the reference signals of different user terminals is determined.
  • FIG. 12 is a schematic structural diagram of a user terminal 1200 according to an embodiment of the present disclosure. Since the function of the user terminal 1200 is the same as the details of the method described above with reference to FIG. 2, a detailed description of the same content is omitted here for simplicity.
  • the user terminal 1200 includes: a selection unit 1210 configured to select a reference signal port for each group of time-frequency resources from candidate reference signal ports; and a transmission unit 1220 configured to use the The reference signal port corresponding to the frequency resource sends a reference signal.
  • the user terminal 1200 may include other components, however, since these components are not related to the content of the embodiments of the present disclosure, their illustration and description are omitted here.
  • the time-frequency resources for a user terminal may be divided into multiple groups of time-frequency resources.
  • the time-frequency resources used for the user terminal may be divided into M groups of time-frequency resources, and the M groups of time-frequency resources may be expressed as S 1 , S 2 ,..., S M , where M is a positive integer.
  • the selection unit 1210 may divide the time-frequency resources used for the user terminal into multiple groups of time-frequency resources according to the time-frequency resource division parameters.
  • the time-frequency resource partition parameter may be a time-frequency resource granularity for selecting a reference signal port, which may be represented by N, where N is a positive integer.
  • the time-frequency resource granularity used for each group of time-frequency resources can be set separately.
  • the granularity of time-frequency resources used for each group of time-frequency resources can be expressed as N 1 ,..., N m ,..., N M , where 1 ⁇ m ⁇ M and is a positive integer.
  • N 1 ,..., N m ,..., N M may be the same or different.
  • the time-frequency resources used for the user terminal can be divided into multiple groups of time-frequency resources according to the above formula (1).
  • the selecting unit 1210 may divide the time-frequency resources used for the user terminal into multiple groups of time-frequency resources in the frequency domain and / or the time domain according to the time-frequency resource division parameters.
  • the user terminal may divide the time-frequency resources used for the user terminal into multiple groups of time-frequency resources in the frequency domain according to the time-frequency resource division parameters.
  • the time-frequency resource partition parameter may be a PRB granularity used to select a reference signal port, that is, the user terminal may divide the PRB for the user terminal into multiple groups of PRBs according to the time-frequency resource partition parameter.
  • L in the above formula (1) may be the number of PRBs used for the user terminal, that is, L PRBs used for the user terminal are divided into M groups of PRBs.
  • the selection unit 1210 may divide the time-frequency resources used for the user terminal into multiple groups of time-frequency resources in the time domain according to the time-frequency resource division parameters.
  • the time-frequency resource division parameter may be a symbol granularity used to select a reference signal port, that is, the user terminal may divide the reference signal symbols used for the user terminal into multiple groups of reference signals according to the time-frequency resource division parameter.
  • the reference signal symbol may be an Orthogonal Frequency Division Multiplexing (OFDM) symbol for transmitting a reference signal.
  • OFDM Orthogonal Frequency Division Multiplexing
  • L in the above formula (1) may be the number of reference signal symbols used for the user terminal, that is, L reference signal symbols used for the user terminal are divided into M groups of reference signal symbols.
  • L reference signal symbols may correspond to L OFDM symbols.
  • L reference signal symbols may correspond to more than L OFDM symbols.
  • the L reference signal symbols may correspond to 2L OFDM symbols.
  • the selection unit 1210 may further divide the time-frequency resources used for the user terminal into multiple groups of time-frequency resources in the frequency domain and the time domain according to the time-frequency resource division parameters. For example, L 1 PRB and L 2 reference signal symbols for a user terminal may be divided into M groups, and the number of PRB or reference signal symbols included in each group may be the same or different, where L 1 and L 2 Both are positive integers.
  • the user terminal 1200 may further include a receiving unit (not shown in the figure) configured to receive time-frequency resource division parameters from a base station.
  • the base station can set time-frequency resource division parameters for the user terminal, and through radio resource control (Radio Resource Control (RRC) signaling), downlink control information (Downlink Control Information (DCI)), or media access control (Media Access Control (MAC) Control Element (Control Element, CE) and the like notify the user terminal of the set time-frequency resource division parameter.
  • RRC Radio Resource Control
  • DCI Downlink Control Information
  • MAC Media Access Control
  • the user terminal may divide the time-frequency resources used for the user terminal into multiple groups of time-frequency resources according to the received time-frequency resource division parameters.
  • the time-frequency resource division parameter may also be preset by a user terminal without receiving from a base station.
  • a user terminal presets time-frequency resource division parameters according to channel conditions or service conditions, and divides time-frequency resources used for the user terminal into multiple groups of time-frequency resources according to preset time-frequency resource division parameters.
  • the candidate reference signal port may constitute one or more candidate reference signal port sets.
  • each candidate reference signal port set may include at least a reference signal port corresponding to a first sub-type reference signal of a first type of reference signal.
  • the first sub-type reference signal and the second sub-type reference signal are both first-type reference signals, but the first sub-type reference signal and the second sub-type reference signal have different patterns, sequences, or ports.
  • the multiple candidate reference signal port sets may correspond to multiple sets of time-frequency resources.
  • the candidate reference signal ports may constitute M candidate reference signal port sets. It is denoted as D 1 , D 2 ,..., D M , and the D 1 , D 2 ,..., D M correspond to S 1 , S 2 ,..., S M, respectively.
  • the selection unit 1210 may individually select a reference signal port for each group of time-frequency resources from each candidate reference signal port set.
  • the selecting unit 1210 may select a reference signal port for each group of time-frequency resources from the one candidate reference signal port set. For example, some or all of the candidate reference signal ports may constitute a candidate reference signal port set.
  • the selection unit 1210 may select a reference signal port for the first group of time-frequency resources from the first candidate reference signal port set.
  • the first candidate reference signal port set may be a candidate reference signal port set formed by the candidate reference signal ports, and may be represented by D 0 .
  • the selecting unit 1210 may determine, based on the selected reference signal port and reference signal port offset parameter for the first group of time-frequency resources, from the first candidate reference signal port set, the other signals in the plurality of groups of time-frequency resources.
  • Reference signal port for group time-frequency resources may be determined, based on the selected reference signal port and reference signal port offset parameter for the first group of time-frequency resources, from the first candidate reference signal port set, the other signals in the plurality of groups of time-frequency resources.
  • the receiving unit of the user terminal may be further configured to receive the reference signal port offset parameter from the base station.
  • the base station may set a reference signal port offset parameter for the user terminal, and notify the user terminal of the set reference signal port offset parameter through RRC signaling, DCI, or MAC CE.
  • the user terminal may determine reference signal ports for other groups of time-frequency resources in the plurality of groups of time-frequency resources according to the received reference signal port offset parameters and the reference signal ports for the first group of time-frequency resources.
  • the reference signal port offset parameter may also be preset by the user terminal without receiving from the base station.
  • the user terminal presets the reference signal port offset parameter according to the channel status or service status, and determines the multi-group based on the preset reference signal port offset parameter and the reference signal port for the first group of time-frequency resources Reference signal port for other groups of time-frequency resources in the time-frequency resource.
  • the selection unit 1210 may randomly select a reference signal port for each group of time-frequency resources from the candidate reference signal ports.
  • the reference signal ports used for each group of time-frequency resources may be completely different, or may be partially the same.
  • the selection unit 1210 may select a reference signal port for each group of time-frequency resources in a first table.
  • the first table may include candidate reference signal ports and candidate reference signal ports and multiple groups. Correspondence between time-frequency resources.
  • the first table may be a table defined in advance by the user terminal and stored in advance inside the user terminal.
  • the first table may also be a table sent by the base station to the user terminal and stored by the user terminal.
  • the first table may also be a table that is stored in the user terminal in advance by the manufacturer before the user terminal leaves the factory.
  • the user terminal 1200 may further include a determining unit (not shown in the figure) configured to determine a reference signal power parameter for each group of time-frequency resources.
  • the reference signal power parameter may be a power boosting parameter for transmitting the reference signal.
  • a receiving unit of a user terminal may receive one or more reference signal power parameters from a base station.
  • the base station may set one or more reference signal power parameters for the user terminal, and notify the user terminal of the set reference signal power parameters through RRC signaling, DCI or MAC CE.
  • the user terminal may determine a reference signal power parameter for each group of time-frequency resources by receiving RRC signaling, DCI, MAC, CE, and the like from the base station.
  • the user terminal may set a reference signal power parameter for each group of time-frequency resources in advance without receiving from the base station.
  • the user terminal may select a reference signal power parameter for each group of time-frequency resources from a predefined candidate reference signal power parameter set.
  • the candidate reference signal power parameter set may be represented as P, which may have p elements, such as ⁇ a 1 , a 2 , ..., a p ⁇ , where p is a positive integer.
  • the user terminal may select a reference signal power parameter for each group of time-frequency resources from the candidate reference signal power parameter set.
  • the sending unit 1220 may use the reference signal port corresponding to each group of time-frequency resources to transmit the reference signal at the transmission power indicated by the reference signal power parameter corresponding to each group of time-frequency resources.
  • the reference signal mentioned here may be a first type of reference signal, such as DMRS.
  • the possibility of configurable uplink reference signals for each user terminal can be increased without expanding the reference signal port, and the probability of collision between reference signals of different user terminals can be reduced.
  • FIG. 13 is a schematic structural diagram of a user terminal 1300 according to another embodiment of the present disclosure. Since the function of the user terminal 1300 is the same as the details of the method described above with reference to FIG. 8, a detailed description of the same content is omitted here for simplicity.
  • the user terminal 1300 includes: a determining unit 1310 configured to determine a reference signal power parameter for transmitting a reference signal; and a sending unit 1320 configured to transmit according to the transmission power indicated by the reference signal power parameter Reference signal.
  • the user terminal 1300 may include other components. However, since these components are not related to the content of the embodiment of the present disclosure, the illustration and description thereof are omitted here.
  • the user terminal 1300 may further include a receiving unit (not shown in the figure) configured to receive a reference signal power parameter from a base station.
  • the base station may set a reference signal power parameter for the user terminal, and notify the user terminal of the set reference signal power parameter through RRC signaling, DCI, or MAC CE.
  • the user terminal may determine the reference signal power parameter used to send the reference signal by receiving RRC signaling, DCI, MAC, CE, etc. from the base station.
  • a user terminal may set a reference signal power parameter for transmitting a reference signal in advance without receiving from a base station.
  • the user terminal may select a reference signal power parameter for sending a reference signal from a predefined candidate reference signal power parameter set.
  • the candidate reference signal power parameter set may be represented as P, which may have p elements, such as ⁇ a 1 , a 2 , ..., a p ⁇ , where p is a positive integer.
  • the user terminal may select a reference signal power parameter for sending a reference signal from the candidate reference signal power parameter set.
  • different user terminals can use different transmit powers to send reference signals, so that the base station can detect parameter signals of each user terminal from the received multiple parameter signals, thereby reducing different users. Probability of collision between terminal reference signals.
  • FIG. 14 is a schematic structural diagram of a base station 1400 according to an embodiment of the present disclosure. Since the function of the base station 1400 is the same as the details of the method described above with reference to FIG. 10, a detailed description of the same content is omitted here for simplicity.
  • the base station 1400 includes a detection unit 1410 configured to detect, on multiple sets of time-frequency resources used for the first user terminal, that the first user terminal uses a reference corresponding to each set of time-frequency resources.
  • a first type of reference signal sent by a signal port wherein the time-frequency resource used for the first user terminal is divided into the plurality of groups of time-frequency resources; and a determining unit 1420 is configured to determine a plurality of detected first types A first type of reference signal that does not collide with a first type of reference signal sent by the second user terminal; and an estimation unit 1430 configured to estimate the first user based on the determined first type of reference signal
  • the channel status of the terminal may include other components. However, since these components are not related to the content of the embodiments of the present disclosure, the illustration and description thereof are omitted here.
  • the time-frequency resource for the user terminal may include a physical resource block (Physical Resource Block, PRB) and a reference signal symbol.
  • PRB Physical Resource Block
  • time-frequency resources used for user terminals can be divided into multiple groups of time-frequency resources in the frequency domain and / or time domain, and a first type of reference signal is configured on each group of time-frequency resources, thereby achieving A plurality of first-type reference signals are configured on the time-frequency resources used for the user terminal.
  • the time-frequency resources used for the user terminal may be divided into multiple groups of time-frequency resources according to the time-frequency resource division parameters.
  • the time-frequency resource partition parameter may be a time-frequency resource granularity for selecting a reference signal port, which may be represented by N, where N is a positive integer.
  • the time-frequency resource granularity used for each group of time-frequency resources can be set separately.
  • the granularity of time-frequency resources used for each group of time-frequency resources can be expressed as N 1 ,..., N m ,..., N M , where 1 ⁇ m ⁇ M and is a positive integer.
  • N 1 ,..., N m ,..., N M may be the same or different.
  • the time-frequency resources used for the user terminal can be divided into multiple groups of time-frequency resources according to the above formula (1).
  • the time-frequency resources for the user terminal may be divided into multiple groups of time-frequency resources in the frequency domain and / or time domain according to the time-frequency resource division parameters.
  • the time-frequency resources used for the user terminal may be divided into multiple groups of time-frequency resources in the frequency domain according to the time-frequency resource division parameters.
  • the time-frequency resource partition parameter may be the PRB granularity used to select the reference signal port, that is, the user terminal may divide the PRB for the user terminal into multiple groups of PRBs according to the time-frequency resource partition parameter.
  • L in the above formula (1) may be the number of PRBs used for the user terminal, that is, L PRBs used for the user terminal are divided into M groups of PRBs.
  • the time-frequency resources used for the user terminal may be divided into multiple groups of time-frequency resources in the time domain according to the time-frequency resource division parameters.
  • the time-frequency resource division parameter may be a symbol granularity used to select a reference signal port, that is, the user terminal may divide the reference signal symbols used for the user terminal into multiple groups of reference signals according to the time-frequency resource division parameter.
  • the reference signal symbol may be an Orthogonal Frequency Division Multiplexing (OFDM) symbol for transmitting a reference signal.
  • OFDM Orthogonal Frequency Division Multiplexing
  • L in the above formula (1) may be the number of reference signal symbols used for the user terminal, that is, L reference signal symbols used for the user terminal are divided into M groups of reference signal symbols.
  • time-frequency resources used for the user terminal may also be divided into multiple groups of time-frequency resources in the frequency domain and the time domain according to the time-frequency resource division parameters.
  • L 1 PRB and L 2 reference signal symbols for a user terminal may be divided into M groups, and the number of PRB or reference signal symbols included in each group may be the same or different, where L 1 and L 2 Both are positive integers.
  • the base station 1400 may further include a sending unit (not shown in the figure) configured to send the time-frequency resource division parameter to the user terminal.
  • the base station can set time-frequency resource division parameters for the user terminal, and through radio resource control (Radio Resource Control (RRC) signaling), downlink control information (Downlink Control Information (DCI)), or media access control (Media Access Control (MAC) Control Element (Control Element, CE) and the like notify the user terminal of the set time-frequency resource division parameter.
  • RRC Radio Resource Control
  • DCI Downlink Control Information
  • MAC Media Access Control
  • the user terminal may divide the time-frequency resources used for the user terminal into multiple groups of time-frequency resources according to the received time-frequency resource division parameters.
  • the value of the time-frequency resource partition parameter may also be dynamically changed. For example, when the number of user terminals in the communication system is large, the base station can reduce the value of the time-frequency resource partition parameter; when the number of user terminals in the communication system is small, the base station can increase the value of the time-frequency resource partition parameter .
  • the determination unit 1420 may be further configured to determine an identity of the first user terminal.
  • the base station may determine the identity of the first user terminal by using a preamble or other uplink reference signals sent by the user terminal.
  • the determination unit 1420 may be further configured as an identification of the first user terminal.
  • the base station may first detect, on a first set of time-frequency resources for the first user terminal, the DMRS sent by the first user terminal using a reference signal port corresponding to the first set of time-frequency resources; then, use the detected Detecting the DMRS corresponding to the first group of time-frequency resources on a second group of time-frequency resources for the first user terminal to detect the DMRS sent by the first user terminal using a reference signal port corresponding to the second group of time-frequency resources; By analogy, until the base station detects the DMRS sent by the first user terminal using the reference signal port corresponding to each group of time-frequency resources on all groups of time-frequency resources for the first user terminal, so as to determine the identity of the first user terminal.
  • a user terminal served simultaneously by a base station may include a first user terminal and a second user terminal, and the determining unit 1420 may determine whether multiple DMRSs sent by the first user terminal are sent by the second user terminal. One or more DMRSs collide, so as to determine a DMRS that has not collided with the DMRS sent by the second user terminal among the plurality of DMRSs sent by the first user terminal.
  • the user terminal served by the base station in the above example includes two user terminals, the present disclosure is not limited thereto. According to another example of the present disclosure, the number of user terminals served simultaneously by the base station may be more than two. In this case, the determining unit 1420 may determine a first type reference signal among the plurality of detected first type reference signals that does not collide with a first type reference signal sent by another user terminal.
  • the estimation unit 1430 may estimate a channel condition of one or more groups of time-frequency resources corresponding to the determined first type reference signal according to the determined first type reference signal, and according to the determined The determined channel conditions presume channel conditions of other groups of time-frequency resources for the user terminal.
  • the possibility of configurable uplink reference signals for each user terminal can be increased without expanding the reference signal port, and the probability of collision between reference signals of different user terminals can be reduced.
  • the base station can still estimate the channel conditions of each user terminal by using reference signals that do not collide.
  • FIG. 15 is a schematic structural diagram of a base station 1500 according to another embodiment of the present disclosure. Since the function of the base station 1500 is the same as the details of the method described above with reference to FIG. 11, a detailed description of the same content is omitted here for simplicity.
  • the base station 1500 includes a detection unit 1510 configured to detect a reference signal of each user terminal from signals from one or more user terminals, where the reference signal of each user terminal is each user terminal. Transmitted according to a reference signal power parameter for transmitting a reference signal; and an estimation unit 1520 configured to estimate a channel condition of each user terminal based on the detected reference signal.
  • the base station 1500 may include other components. However, since these components are not related to the content of the embodiments of the present disclosure, the illustration and description thereof are omitted here.
  • the base station 1500 may further include a sending unit (not shown in the figure) configured to send a reference signal power parameter to the user terminal.
  • the base station may set a reference signal power parameter for the user terminal, and notify the user terminal of the set reference signal power parameter through RRC signaling, DCI or MAC CE.
  • the user terminal may determine a reference signal power parameter for transmitting the reference signal by receiving RRC signaling, DCI, MAC, CE, etc. from the base station, and transmit the reference signal using the transmission power indicated by the determined reference signal power parameter.
  • the base station may detect the reference signal of each user terminal from signals from one or more user terminals by means of serial interference deletion. For example, the base station may detect a reference signal sent by a user terminal using the maximum transmission power from signals from one or more user terminals, and then detect a reference signal sent by a user terminal using the next-largest transmission power, and so on, until detection A reference signal sent by a user terminal using the minimum transmit power.
  • different user terminals can use different transmit powers to send reference signals, so that the base station can detect the parameter signal of each user terminal from the received multiple parameter signals, thereby reducing The probability of collision between the reference signals of different user terminals is determined.
  • each functional block may be implemented by one device that is physically and / or logically combined, and two or more devices that are physically and / or logically separated may be directly and / or indirectly (for example, (Wired and / or wireless) connection to achieve by the above multiple devices.
  • FIG. 16 is a schematic diagram of a hardware structure of a device 1600 (base station or user terminal) according to an embodiment of the present disclosure.
  • the above-mentioned device 1600 may be configured as a computer device that physically includes a processor 1610, a memory 1620, a memory 1630, a communication device 1640, an input device 1650, an output device 1660, a bus 1670, and the like.
  • the hardware structure of the user terminal and the base station may include one or more devices shown in the figure, or may not include some devices.
  • processor 1610 For example, only one processor 1610 is shown, but multiple processors may be used. In addition, processing may be performed by one processor, or processing may be performed by more than one processor simultaneously, sequentially, or by other methods. In addition, the processor 1610 may be installed by more than one chip.
  • the functions of the device 1600 are realized, for example, by reading predetermined software (programs) into hardware such as the processor 1610 and the memory 1620, so that the processor 1610 performs calculations and controls communication performed by the communication device 1640. And control the reading and / or writing of data in the memory 1620 and the memory 1630.
  • predetermined software programs
  • the processor 1610 performs calculations and controls communication performed by the communication device 1640.
  • the processor 1610 controls, for example, the entire computer by operating an operating system.
  • the processor 1610 may be composed of a central processing unit (CPU, Central Processing Unit) including an interface with a peripheral device, a control device, a computing device, a register, and the like.
  • CPU Central Processing Unit
  • the above-mentioned determination unit, adjustment unit, and the like may be implemented by the processor 1610.
  • the processor 1610 reads a program (program code), software modules, data, and the like from the memory 1630 and / or the communication device 1640 to the memory 1620, and executes various processes according to them.
  • a program program code
  • the program a program that causes a computer to execute at least a part of the operations described in the above embodiments can be adopted.
  • the determination unit of the user terminal 500 may be implemented by a control program stored in the memory 1620 and operated by the processor 1610, and may also be implemented similarly for other functional blocks.
  • the memory 1620 is a computer-readable recording medium, for example, a read-only memory (ROM, Read Only Memory), a programmable read-only memory (EPROM, Erasable Programmable ROM), an electrically programmable read-only memory (EEPROM, Electrically EPROM), It is constituted by at least one of a random access memory (RAM, Random Access Memory) and other appropriate storage media.
  • the memory 1620 may also be referred to as a register, a cache, a main memory (main storage device), and the like.
  • the memory 1620 may store an executable program (program code), a software module, and the like for implementing the method according to an embodiment of the present disclosure.
  • the memory 1630 is a computer-readable recording medium, and may be, for example, a flexible disk, a floppy disk, a magneto-optical disk (for example, a CD-ROM (Compact Disc ROM), etc.), Digital versatile disc, Blu-ray (registered trademark) disc), removable disk, hard drive, smart card, flash memory device (e.g., card, stick, key driver), magnetic stripe, database , Server, or other appropriate storage medium.
  • the memory 1630 may also be referred to as an auxiliary storage device.
  • the communication device 1640 is hardware (transmitting / receiving device) for performing communication between computers through a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, and the like.
  • the communication device 1640 may include, for example, Frequency Division Duplex (FDD) and / or Time Division Duplex (TDD), and may include a high-frequency switch, a duplexer, a filter, a frequency synthesizer, and the like.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the above-mentioned transmitting unit, receiving unit, etc. may be implemented by the communication device 1640.
  • the input device 1650 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts input from the outside.
  • the output device 1660 is an output device (for example, a display, a speaker, a light emitting diode (LED), etc.) that performs output to the outside.
  • the input device 1650 and the output device 1660 may be an integrated structure (for example, a touch panel).
  • the devices such as the processor 1610 and the memory 1620 are connected via a bus 1670 for communicating information.
  • the bus 1670 may be composed of a single bus, or may be composed of different buses between devices.
  • base stations and user terminals can include microprocessors, digital signal processors (DSPs), application specific integrated circuits (ASICs), programmable logic devices (PLDs, Programmable Logic Devices), Hardware such as a programming gate array (FPGA, Field Programmable Gate Array) can be used to implement part or all of each functional block.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • PLDs programmable logic devices
  • Hardware such as a programming gate array (FPGA, Field Programmable Gate Array) can be used to implement part or all of each functional block.
  • the processor 1610 may be installed by at least one of these pieces of hardware.
  • the channel and / or symbol may also be a signal (signaling).
  • signals can also be messages.
  • the reference signal may also be referred to as RS (Reference Signal), and may also be referred to as a pilot (Pilot), a pilot signal, etc. according to the applicable standard.
  • a component carrier CC, Component Carrier
  • CC Component Carrier
  • the information, parameters, and the like described in this specification may be expressed in absolute values, may be expressed in relative values to a predetermined value, or may be expressed in corresponding other information.
  • radio resources may be indicated by a prescribed index.
  • formulas and the like using these parameters may be different from those explicitly disclosed in the present specification.
  • the information, signals, etc. described in this specification can be represented using any of a variety of different technologies.
  • data, commands, instructions, information, signals, bits, symbols, chips, etc. that may be mentioned in all the above descriptions can be passed by voltage, current, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any To represent.
  • information, signals, etc. may be output from the upper layer to the lower layer, and / or from the lower layer to the upper layer.
  • Information, signals, etc. can be input or output via multiple network nodes.
  • Information or signals input or output can be stored in a specific place (for example, memory), or can be managed through a management table. Information or signals input or output can be overwritten, updated or supplemented. The output information, signals, etc. can be deleted. The input information, signals, etc. can be sent to other devices.
  • the notification of information is not limited to the methods / embodiments described in this specification, and may be performed by other methods.
  • the notification of information may be through physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (for example, radio resource control (RRC, Radio Resource Control) signaling, broadcast information (Master Information Block (MIB, Master Information Block), System Information Block (SIB, System Information Block), etc.), Media Access Control (MAC, Medium Access Control) signaling ), Other signals, or a combination thereof.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • physical layer signaling may also be referred to as L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), and the like.
  • the RRC signaling may also be called an RRC message, for example, it may be an RRC Connection Setup (RRC) Connection Setup message, an RRC Connection Reconfiguration message, and the like.
  • the MAC signaling may be notified by, for example, a MAC control unit (MAC CE (Control Element)).
  • notification of prescribed information is not limited to being performed explicitly, and may be performed implicitly (for example, by not performing notification of the prescribed information or by notification of other information).
  • the judgment can be performed by a value (0 or 1) represented by 1 bit, or by a true or false value (boolean value) represented by true or false, or by a numerical comparison ( (For example, comparison with a predetermined value).
  • software is called software, firmware, middleware, microcode, hardware description language, or other names, it should be broadly interpreted as referring to commands, command sets, codes, code segments, program codes, programs, subprograms Programs, software modules, applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, steps, functions, etc.
  • software, commands, information, etc. may be transmitted or received via a transmission medium.
  • a transmission medium For example, when using wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL, Digital Subscriber Line), etc.) and / or wireless technology (infrared, microwave, etc.) to send from a website, server, or other remote resource
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL, Digital Subscriber Line), etc.
  • wireless technology infrared, microwave, etc.
  • system and "network” used in this specification are used interchangeably.
  • BS Base Station
  • eNB Wireless Base Station
  • gNB gNodeB
  • Cell Cell Group
  • Carrier Carrier
  • Component Carrier Such terms are used interchangeably.
  • the base station is sometimes referred to by terms such as fixed station, NodeB, eNodeB (eNB), access point, access point, sending point, receiving point, femto cell, and small cell.
  • a base station can accommodate one or more (eg, three) cells (also called sectors). When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, and each smaller area can also pass through the base station subsystem (for example, a small base station for indoor use (radio remote head (RRH, Remote Radio Head))) to provide communication services.
  • RRH radio remote head
  • the term "cell” or “sector” refers to a part or the whole of the coverage area of a base station and / or a base station subsystem that performs communication services in the coverage.
  • Mobile stations are also sometimes used by those skilled in the art as user stations, mobile units, user units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile user stations, access terminals, mobile terminals, wireless Terminal, remote terminal, handset, user agent, mobile client, client, or some other appropriate term.
  • the wireless base station in this specification may be replaced with a user terminal.
  • a user terminal For example, for a configuration in which communication between a wireless base station and a user terminal is replaced with communication between a plurality of user terminals (D2D, Device-to-Device), each aspect / embodiment of the present disclosure may be applied.
  • the functions of the first communication device or the second communication device in the device 1600 may be regarded as the functions of the user terminal.
  • the words "up” and “down” can also be replaced with "side”.
  • the uplink channel may be replaced with a side channel.
  • the user terminal in this specification may be replaced with a radio base station.
  • the functions provided by the user terminal may be regarded as functions provided by the first communication device or the second communication device.
  • a specific operation performed by a base station may be performed by an upper node of the base station in some cases.
  • various actions performed for communication with the terminal can pass through the base station or one or more networks other than the base station.
  • a node for example, a mobility management entity (MME, Mobility Management Entity), a serving gateway (S-GW, Serving-Gateway, etc., but not limited to this)
  • MME mobility management entity
  • S-GW serving gateway
  • Serving-Gateway Serving-Gateway
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • LTE-B LTE-Beyond
  • Super 3G mobile communication system SUPER 3G
  • IMT-Advanced 4G mobile communication system (4G, 4th mobile communication system
  • 5G mobile communication system 5G mobile communication system (5G, 5th generation mobile communication system)
  • Future Radio Access Future Radio Access
  • New Radio Access Technology New-RAT, Radio Access Technology
  • New Radio NR, New Radio
  • NX New Radio Access
  • New Radio Access New Radio Access
  • Future Generation Radio Access Future Generation Radio Access
  • GSM registered trademark
  • GSM Global Mobile Communication System
  • CDMA3000 Code Division Multiple Access 3000
  • UMB Ultra Mobile Broadband
  • IEEE 920.11 Wi-Fi (registered trademark)
  • IEEE 920.16 WiMAX (registered trademark)
  • IEEE 920.20 Ultra Wide Band (UWB, Ultra-WideBand)
  • Bluetooth Bluetooth
  • any reference to units using the names "first”, “second”, etc. in this specification does not comprehensively limit the number or order of these units. These names can be used in this specification as a convenient method to distinguish two or more units. Therefore, the reference of the first unit and the second unit does not mean that only two units can be used or that the first unit must precede the second unit in several forms.
  • determining used in this specification may include various actions. For example, regarding “determination”, calculation, calculation, processing, deriving, investigating, and looking up (e.g., tables, databases, or other Searching in the data structure), confirming (ascertaining), etc. are considered to be “judging (determining)”. In addition, as for “determination”, it is also possible to receive (e.g., receive information), transmit (e.g., send information), input (input), output (output), accessing (e.g., Accessing data in memory) and so on are regarded as “judgment (determination)”. In addition, regarding “determination (determination)”, “resolving”, “selecting”, “choosing”, “establishing”, “comparing”, etc. may be regarded as “determination (determining)”. That is, regarding “determination (determination)", several actions can be regarded as “determination (determination)”.
  • connection refers to any direct or indirect connection or combination between two or more units. This includes the case where there are one or more intermediate units between two units that are “connected” or “combined” with each other.
  • the combination or connection between the units may be physical, logical, or a combination of the two.
  • "connect” can also be replaced with "access”.
  • two units can be considered as using one or more wires, cables, and / or printed electrical connections, and as several non-limiting and non-exhaustive examples, by using a radio frequency region , Microwave energy, and / or electromagnetic energy of wavelengths in both the visible and invisible light regions are “connected” or “combined” with each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种用于传输参考信号的方法及设备,其中用于发送参考信号的方法由用户终端执行,用于所述用户终端的时频资源被划分为多组时频资源,该方法包括:从候选参考信号端口中选择用于每组时频资源的参考信号端口;以及使用与每组时频资源相对应的参考信号端口发送参考信号。

Description

用于传输参考信号的方法及设备 技术领域
本公开涉及移动通信领域,并且更具体地涉及一种用于传输参考信号的方法及设备。
背景技术
为了减小信令开销,已经提出了在机器型通信(Machine Type Communication,MTC)***中采用免授权的上行链路来进行信息传输。在这种传输方式下,用户终端不需要基站的授权就可以向基站发送信息。因此,多个用户终端可能同时向基站发送信息。
在MTC***中,用户终端向基站发送上行参考信号,例如解调参考信号(Demodulation Reference Signal,DMRS),以使得基站根据上行参考信号进行信道估计从而对用户终端发送的信息进行检测解调。然而,由于参考信号端口是有限的,因此,存在多个用户终端在一个参考信号端口上向基站发送上行参考信号的情形。在这种情形下,多个用户终端发送的上行参考信号发生了碰撞,导致基站无法根据接收到的参考信号对每个用户终端的信道进行估计。
为了减少上行参考信号之间的碰撞,已经提出了对参考信号端口进行扩展的方法。然而,扩展后的参考信号端口仍然是有限的,因此,仍然会存在上行参考信号之间的碰撞。
发明内容
根据本公开的一个方面,提供了一种由用户终端执行的用于发送参考信号的方法,用于所述用户终端的时频资源被划分为多组时频资源。该方法包括:从候选参考信号端口中选择用于每组时频资源的参考信号端口;以及使用与每组时频资源相对应的参考信号端口发送参考信号。
根据本公开的另一方面,提供了一种用户终端,用于所述用户终端的时频资源被划分为多组时频资源。该用户终端包括:选择单元,被配置为从候选参考信号端口中选择用于每组时频资源的参考信号端口;以及发送单元,被配置为使用与每组时频资源相对应的参考信号端口发送参考信号。
根据本公开的另一方面,提供了一种由基站执行的用于接收参考信号的方法。该方法包括:在用于第一用户终端的多组时频资源上分别检测所述第一用户终端使用与每组时频资源相对应的参考信号端口发送的第一类型参考信号,其中用于所述第一用户终端的时频资源被划分为所述多组时频资源;确定所检测的多个第一类型参考信号中的、未与第二用户终端发送的第一类型参考信号发生碰撞的第一类型参考信号;以及根据所确定的第一类型参考信号估计所述第一用户终端的信道状况。
根据本公开的另一方面,提供了一种基站。该基站包括:检测单元,被配置为在用于第一用户终端的多组时频资源上分别检测所述第一用户终端使用与每组时频资源相对应的参考信号端口发送的第一类型参考信号,其中用于所述第一用户终端的时频资源被划分为所述多组时频资源;确定单元,被配置为确定所检测的多个第一类型参考信号中的、未与第二用户终端发送的第一类型参考信号发生碰撞的第一类型参考信号;以及估计单元,被配置为根据所确定的第一类型参考信号估计所述第一用户终端的信道状况。
附图说明
通过结合附图对本公开实施例进行更详细的描述,本公开的上述以及其它目的、特征和优势将变得更加明显。附图用来提供对本公开实施例的进一步理解,并且构成说明书的一部分,与本公开实施例一起用于解释本公开,并不构成对本公开的限制。在附图中,相同的参考标号通常代表相同部件或步骤。
图1是可以在其中应用本公开实施例的无线通信***的示意图;
图2是根据本公开的一个实施例的由通信***中的用户终端执行的用于发送参考信号的方法的流程图;
图3是根据本公开的一个实施例的用户终端选择用于每组时频资源的参考信号端口的方法的流程图;
图4是根据本公开的一个实施例的用户终端所选择的用于每组时频资源的参考信号端口的示意图;
图5是根据本公开的一个实施例的用户终端所选择的用于每组时频资源的参考信号端口的另一示意图;
图6是根据本公开的一个实施例的用户终端所选择的用于每组时频资 源的参考信号端口的另一示意图;
图7A是现有技术中的用户终端所选择的参考信号功率参数的示意图;
图7B是根据本公开的一个实施例的用户终端所选择的用于每组时频资源的参考信号功率参数的示意图;
图8是根据本公开的另一实施例的由通信***中的用户终端执行的用于发送参考信号的方法的流程图;
图9A是现有技术中的不同用户终端所选择的参考信号功率参数的示意图;
图9B是根据本公开的另一实施例的不同用户终端所选择的参考信号功率参数的示意图;
图10是根据本公开的一个实施例的由通信***中的基站执行的用于接收参考信号的方法的流程图;
图11是根据本公开的另一实施例的由通信***中的基站执行的用于接收参考信号的方法的流程图;
图12是根据本公开的一个实施例的执行图2所示的方法的用户终端的结构示意图;
图13是根据本公开的另一实施例的执行图8所示的方法的用户终端的结构示意图;
图14是根据本公开的一个实施例的执行图10所示的方法的基站的结构示意图;
图15是根据本公开的另一实施例的执行图11所示的方法的基站的结构示意图;
图16是根据本公开的实施例的所涉及的用户终端或基站的硬件结构的示意图。
具体实施方式
为了使得本公开的目的、技术方案和优点更为明显,下面将参照附图详细描述根据本公开的示例实施例。在附图中,相同的参考标号自始至终表示相同的元件。应当理解:这里描述的实施例仅仅是说明性的,而不应被解释为限制本公开的范围。此外,这里所述的用户终端可以包括各种类型的用户终端(User Equipment,UE),例如移动终端(或称为移动台)或者固定终端, 然而,为方便起见,在下文中有时候可互换地使用UE和移动台。此外,基站可以为固定台(fixed station)、NodeB、eNodeB(eNB)、接入点(access point)、发送点、接收点、毫微微小区、小小区等,在此不做限定。
首先,参照图1来描述可以在其中应用本公开实施例的无线通信***的示意图。该无线通信***可以是5G***,也可以是任何其他类型的无线通信***,比如LTE***或LTE-A***等。在下文中,以5G***为例来描述本公开的实施例,但应当认识到,以下描述也可以适用于其他类型的无线通信***。
如图1所示,无线通信***100可以包括第一用户终端110、第二用户终端120以及基站(BS)130,该基站130是第一用户终端110和第二用户终端120的服务基站。在无线通信***100中,参考信号端口是有限的,并且对于第一类型参考信号,在用于特定用户终端的时频资源上只配置一个第一类型参考信号,即在传输块(Transmission Block,TB)层面配置一个第一类型参考信号。在本公开中,“第一类型参考信号”可以是用于用户终端与基站之间的信道估计的任何上行参考信号,例如,解调参考信号(Demodulation Reference Signal,DMRS)、探测参考信号(Sounding Reference Signal,SRS)等。在下面的示例中,以“第一类型参考信号”是DMRS为例来描述本公开的实施例。因此,在上行链路免授权的情形下,第一用户终端110和第二用户终端120可以从有限的参考信号端口中随机选择参考信号端口来发送DMRS,当第一用户终端110和第二用户终端120选择了相同的参考信号端口来发送DMRS时,二者的DMRS发生了碰撞,导致基站130无法根据接收到的DMRS区分第一用户终端110和第二用户终端120,从而导致基站130无法根据接收到的DMRS估计第一用户终端110和第二用户终端120的信道状况。需要认识到,尽管在图1中示出了一个基站和两个用户终端,但这只是示意性的,该无线通信***还可以包括更多个或更少个基站,和/或更多个或更少个用户终端。为了降低不同用户终端的参考信号之间发生碰撞的概率,提出了本公开的技术方案。
在本公开中,对于第一类型参考信号,可以在用于特定用户终端的时频资源上配置多个第一类型参考信号。通过这种方式,不需要对参考信号端口进行扩展,就可以增加每个用户终端可配置的第一类型参考信号的可能性,降低了不同用户终端的参考信号之间发生碰撞的概率。
根据本公开的一个示例,用于用户终端的时频资源可以包括物理资源块(Physical Resource Block,PRB)和参考信号码元。在本公开中,可以在频域和/或时域上将用于特定用户终端的时频资源划分为多组时频资源,并在每组时频资源上配置一个第一类型参考信号,即在PRB和/或码元层面配置第一类型参考信号,从而实现在用于用户终端的时频资源上配置多个第一类型参考信号。
以下,参照图2来描述根据本公开实施例的由通信***中的用户终端执行的用于发送参考信号的方法。图2是根据本公开的一个实施例的由通信***中的用户终端执行的用于发送参考信号的方法200的流程图。
如图2所示,在步骤S201中,用户终端从候选参考信号端口中选择用于每组时频资源的参考信号端口。在本公开中,用于用户终端的时频资源可以被划分为多组时频资源。例如,用于用户终端的时频资源可以被划分为M组时频资源,该M组时频资源可以表示为S 1、S 2、……、S M,其中M为正整数。
根据本公开的一个示例,用户终端可以根据时频资源划分参数将用于该用户终端的时频资源划分为多组时频资源。例如,时频资源划分参数可以是用于选择参考信号端口的时频资源粒度(granularity),可以用N表示,其中N为正整数。对于用于用户终端的多组时频资源,可以分别设置用于每组时频资源的时频资源粒度。例如,用于每组时频资源的时频资源粒度可以表示为N 1、……、N m、……、N M,其中1≤m≤M且为正整数。在本公开中,N 1、……、N m、……、N M可以相同或不同。此外,可以根据下面的公式(1)将用于用户终端的时频资源划分为多组时频资源:
Figure PCTCN2018099668-appb-000001
其中,L为用于用户终端的时频资源的数量且为正整数。
在该示例中,用户终端可以根据时频资源划分参数在频域和/或时域上将用于该用户终端的时频资源划分为多组时频资源。例如,用户终端可以根据时频资源划分参数在频域上将用于该用户终端的时频资源划分为多组时频资源。在这种情形下,时频资源划分参数可以是用于选择参考信号端口的PRB粒度,即用户终端可以根据时频资源划分参数将用于用户终端的PRB划分为多组PRB。上述公式(1)中的L可以是用于用户终端的PRB的数量,即将用于用户终端的L个PRB划分为M组PRB。
又例如,用户终端可以根据时频资源划分参数在时域上将用于该用户终端的时频资源划分为多组时频资源。在这种情形下,时频资源划分参数可以是用于选择参考信号端口的码元粒度,即用户终端可以根据时频资源划分参数将用于用户终端的参考信号码元划分为多组参考信号码元。参考信号码元可以是用于发送参考信号的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)码元。上述公式(1)中的L可以是用于用户终端的参考信号码元的数量,即将用于用户终端的L个参考信号码元划分为M组参考信号码元。此外,在单码元DMRS的***中,L个参考信号码元可以对应L个OFDM码元。在多码元DMRS的***中,L个参考信号码元可以对应多于L个的OFDM码元。例如,在双码元DMRS***中,L个参考信号码元可以对应2L个OFDM码元。
应该理解,用户终端还可以根据时频资源划分参数在频域和时域上将用于该用户终端的时频资源划分为多组时频资源。例如,用于用户终端的L 1个PRB和L 2个参考信号码元可以被划分为M组,每组所包括的PRB或参考信号码元的数量可以相同或不同,其中L 1和L 2均为正整数。
下面以N 1、……、N m、……、N M相同为例描述在频域上划分用户终端的时频资源的一个示例。例如,用于用户终端的PRB的数量为6(即L=6)且该6个PRB的编号依次为1-6,在时频资源划分参数为1(即N 1=N 2=……=N M=1)时,可以将该6个PRB划分为6组(即M=6),分别为S 1、S 2、S 3、S 4、S 5、S 6。每组只包括一个PRB,例如S 1={1}、S 2={2}、S 3={3}、S 4={4}、S 5={5}、S 6={6}。
又例如,用于用户终端的PRB的数量为6(即L=6)且该6个PRB的编号依次为1-6,在时频资源划分参数为2(即N 1=N 2=……=N M=2)时,可以将该6个PRB划分为3组(即M=3),分别为S 1、S 2、S 3。每组包括两个PRB。每组所包括的两个PRB可以是连续的,例如S 1={1,2}、S 2={3,4}、S 3={5,6}。可替换地,每组所包括的两个PRB可以是不连续的,例如S 1={1,4}、S 2={2,5}、S 3={3,6}。
下面以N 1、……、N m、……、N M不同为例描述在频域上划分用户终端的时频资源的一个示例。例如,用于用户终端的PRB的数量为6(即L=6)且该6个PRB的编号依次为1-6,在时频资源划分参数为2和4(即N 1=2,N 2=4)时,可以将该6个PRB划分为2组(即M=2),分别为S 1、S 2。每组 包括两个和四个PRB。每组所包括的PRB可以是连续的,例如S 1={1,2}、S 2={3,4,5,6}。可替换地,每组所包括的PRB可以是不连续的,例如S 1={1,4}、S 2={2,3,5,6}。
下面以N 1、……、N m、……、N M相同为例描述在时域上划分用户终端的时频资源的一个示例。例如,在单码元DMRS的情形下,用于用户终端的参考信号码元为2个(即L=2)且码元位置分别为l 1=4(第4个OFDM码元)和l 2=11(第11个OFDM码元),在时频资源划分参数为1(即N 1=N 2=……=N M=1)时,可以将该2个参考信号码元划分为2组(即M=2),分别为S 1、S 2,例如S 1={4}、S 2={11}。又例如,在多码元(例如双码元)DMRS的情形下,用于用户终端的参考信号码元为2个(即L=2)且码元位置分别为l 1=4及5(第4、5个OFDM码元)和l 2=11及12(第11、12个OFDM码元),在时频资源划分参数为1(即N 1=N 2=……=N M=1)时,可以将该2个参考信号码元划分为2组(即M=2),分别为S 1、S 2,例如S 1={4,5}、S 2={11,12}。
下面以N 1、……、N m、……、N M相同为例描述在频域和时域上划分用户终端的时频资源的一个示例。例如,在单码元DMRS的情形下,用于用户终端的PRB的数量为2(即L 1=2)且该2个PRB的编号依次为1-2,用于用户终端的参考信号码元为2个(即L 2=2)且码元位置分别为l 1=4(第4个OFDM码元)和l 2=11(第11个OFDM码元),在时频资源划分参数为1(即N 1=N 2=……=N M=1)时,可以将该2个PRB和2个参考信号码元划分为2组(即M=2),分别为S 1、S 2。例如,每组可以包括一个PRB和两个参考信号码元,比如S 1={(1,4),(1,11)}、S 2={(2,4),(2,11)}。又例如,每个组可以包括两个PRB和一个参考信号码元,例如,S 1={(1,4),(2,4)}、S 2={(1,11),(2,11)}。又例如,第一组可以包括两个PRB和两个参考信号码元而第二组可以包括一个PRB和一个参考信号码元,例如,S 1={(1,4),(1,11),(2,4)}、S 2={(2,11)}。
此外,根据本公开的一个示例,时频资源划分参数可以是用户终端从基站接收的。例如,基站可以为用户终端设置时频资源划分参数,并且通过无线资源控制(Radio Resource Control,RRC)信令、下行链路控制信息(Downlink Control Information,DCI)或媒体接入控制(Media Access Control,MAC)控制元素(Control Element,CE)等将所设置的时频资源划分参数通 知给用户终端。相应地,用户终端可以根据接收到的时频资源划分参数将用于该用户终端的时频资源划分为多组时频资源。
根据本公开的另一示例,时频资源划分参数还可以是用户终端预先设置的,而不需要从基站接收。例如,用户终端根据信道状况或业务状况等预先设置时频资源划分参数,并且根据预先设置的时频资源划分参数将用于该用户终端的时频资源划分为多组时频资源。
此外,根据本公开的一个示例,时频资源划分参数的取值可以是固定的,例如,N=1或2。可替换地,时频资源划分参数的取值还可以是动态变化的。例如,当通信***中的用户终端的数量较多时,时频资源划分参数的取值可以被减小;当通信***中的用户终端的数量较小时,时频资源划分参数的取值可以被增大。例如,当通信***中的用户终端的数量超过阈值时,时频资源划分参数的取值可以被设置为1,即N=1;当通信***中的用户终端的数量较小时,时频资源划分参数的取值可以被设置为2,即N=2。
此外,根据本公开的一个示例,候选参考信号端口可以构成一个或多个候选参考信号端口集合。例如,每个候选参考信号端口集合可以至少包括与第一类型参考信号的第一子类参考信号相对应的参考信号端口。在本公开中,第一子类参考信号与第二子类参考信号均为第一类型参考信号,但是第一子类参考信号与第二子类参考信号具有不同的样式、序列或端口等。例如,第一子类参考信号与第二子类参考信号可以分别为3GPP标准规范(TS 38.212 v15.2.0)已经规定的DMRS类型1和DMRS类型2,该DMRS类型1和DMRS类型2对应不同的端口数量,例如与DMRS类型1相对应的参考信号端口为四个,与DMRS类型2相对应的参考信号端口为六个。
在本公开中,每个候选参考信号端口集合可以仅包括与一个子类参考信号相对应的参考信号端口,例如仅包括与DMRS类型1相对应的参考信号端口,或者仅包括与DMRS类型2相对应的参考信号端口。可替换地,每个候选参考信号端口集合可以包括与多个子类参考信号相对应的参考信号端口,例如既包括与DMRS类型1相对应的参考信号端口,又包括与DMRS类型2相对应的参考信号端口。
需要认识到,虽然上面的示例中只描述了两个子类DMRS,然而本公开不限于此。本公开所提到的第一类型参考信号的子类可以是少于或多于两类。此外,本公开所提到的第一类型参考信号的子类可以包括3GPP标准规范已 经规定的DMRS类型1和DMRS类型2,也可以不包括3GPP标准规范已经规定的DMRS类型1和DMRS类型2而包括其他子类的DMRS。
在示例中,在候选参考信号端口构成多个候选参考信号端口集合的情形下,该多个候选参考信号端口集合可以与多组时频资源相对应。具体地,当用户终端的时频资源被划分为M组时频资源(即S 1、S 2、……、S M)时,候选参考信号端口可以构成M个候选参考信号端口集合,比如可以表示为D 1、D 2、……、D M,并且该D 1、D 2、……、D M分别与S 1、S 2、……、S M相对应。在该示例中,用户终端可以分别从每个候选参考信号端口集合中选择用于每组时频资源的参考信号端口。例如,用户终端可以从集合D 1中选择用于第一组时频资源(即S 1)的参考信号端口,从集合D 2中选择用于第二组时频资源(即S 2)的参考信号端口,……以及从集合D M中选择用于第M组时频资源(即S M)的参考信号端口。
在该示例中,在候选参考信号端口构成一个候选参考信号端口集合的情形下,用户终端可以从该一个候选参考信号端口集合选择用于每组时频资源的参考信号端口。例如,候选参考信号端口中的部分或全部端口可以构成一个候选参考信号端口集合。下面将结合图3来描述这种情形下用户终端如何选择用于每组时频资源的参考信号端口。图3是根据本公开的一个实施例的用户终端选择用于每组时频资源的参考信号端口的方法300的流程图。
如图3所示,在步骤S301中,用户终端可以从第一候选参考信号端口集合中选择用于第一组时频资源的参考信号端口。例如,第一候选参考信号端口集合可以是候选参考信号端口所构成的一个候选参考信号端口集合,可以用D 0表示。第一候选参考信号端口集合可以具有k个元素,即具有k个候选的参考信号端口,可以表示为D 0={0,1,2,……,i,……,(k-1)},其中1≤i≤k且i和k均为正整数。
然后,在步骤S302中,用户终端可以根据所选择的用于第一组时频资源的参考信号端口和参考信号端口偏移参数,从该第一候选参考信号端口集合确定用于多组时频资源中的其他组时频资源的参考信号端口。
根据本公开的一个示例,参考信号端口偏移参数可以是用户终端从基站接收的。例如,基站可以为用户终端设置参考信号端口偏移参数,并且通过RRC信令、DCI或MAC CE等将所设置的参考信号端口偏移参数通知给用户终端。相应地,用户终端可以根据接收到的参考信号端口偏移参数和用于 第一组时频资源的参考信号端口来确定用于多组时频资源中的其他组时频资源的参考信号端口。
根据本公开的另一示例,参考信号端口偏移参数还可以是用户终端预先设置的,而不需要从基站接收。例如,用户终端根据信道状况或业务状况等预先设置参考信号端口偏移参数,并且根据预先设置的参考信号端口偏移参数和用于第一组时频资源的参考信号端口来确定用于多组时频资源中的其他组时频资源的参考信号端口。
此外,根据本公开的另一示例,参考信号端口偏移参数可以是候选的参考信号端口偏移值的集合,例如,可以用H表示,其可以具有s个元素,即具有s个候选的参考信号端口偏移值,其中s为正整数。在这种情形下,用户终端可以根据参考信号端口偏移参数确定一个或多个参考信号端口偏移值,然后根据所确定的参考信号端口偏移值和第一组时频资源的参考信号端口,从第一候选参考信号端口集合确定用于多组时频资源中的其他组时频资源的参考信号端口。
例如,用户终端可以根据参考信号端口偏移参数确定一个参考信号端口偏移值,然后根据该一个参考信号端口偏移值和第一组时频资源的参考信号端口,从第一候选参考信号端口集合依次确定用于多组时频资源中的其他组时频资源的参考信号端口。比如,用户终端可以从集合H选择一个参考信号端口偏移值,然后将第一组时频资源的参考信号端口偏移所选择的参考信号端口偏移值以确定第二组时频资源的参考信号端口,然后将第二组时频资源的参考信号端口偏移所选择的参考信号端口偏移值以确定第三组时频资源的参考信号端口,重复偏移的操作,直到确定了所有组时频资源的参考信号端口。
下面以D 0={0,1,2,3,4,5,6,7,8,9}、H={0,1,2,3}、M=3为例来描述确定每组时频资源的参考信号端口的一个示例。例如,在步骤S301中,用户终端从集合D 0选择端口3作为第一组时频资源的参考信号端口。然后,在步骤S302中,用户终端从集合H选择了参考信号端口偏移值2,并且根据端口3和参考信号端口偏移值2确定了端口5为第二组时频资源的参考信号端口以及端口7为第三组时频资源的参考信号端口。
又例如,用户终端可以根据参考信号端口偏移参数确定多个参考信号端口偏移值,然后根据该多个参考信号端口偏移值和第一组时频资源的参考信 号端口,从第一候选参考信号端口集合分别确定用于多组时频资源中的其他组时频资源的参考信号端口。比如,用户终端可以从集合H选择多个参考信号端口偏移值,分别为第一参考信号端口偏移值、第二参考信号端口偏移值、…等,然后将第一组时频资源的参考信号端口偏移第一参考信号端口偏移值以确定第二组时频资源的参考信号端口,然后将第二组时频资源的参考信号端口偏移第二参考信号端口偏移值以确定第三组时频资源的参考信号端口,重复偏移的操作,直到确定了所有组时频资源的参考信号端口。
下面以D 0={0,1,2,3,4,5,6,7,8,9}、H={0,1,2,3}、M=3为例来描述确定每组时频资源的参考信号端口的另一示例。例如,在步骤S301中,用户终端从集合D 0选择端口3作为第一组时频资源的参考信号端口。然后,在步骤S302中,用户终端从集合H选择了第一参考信号端口偏移值2和第二参考信号端口偏移值3,并且根据端口3和第一参考信号端口偏移值2确定了端口5为第二组时频资源的参考信号端口,以及根据端口5和第二参考信号端口偏移值3确定了端口8为第三组时频资源的参考信号端口。
此外,根据本公开的一个示例,在步骤S201中,用户终端可以从候选参考信号端口中随机选择用于每组时频资源的参考信号端口。例如,用于每组时频资源的参考信号端口可以完全不同,或者可以部分相同。
此外,根据本公开的另一示例,在步骤S201中,用户终端可以在第一表格中选择用于每组时频资源的参考信号端口,该第一表格可以包括候选参考信号端口以及候选参考信号端口与多组时频资源的对应关系。在该示例中,第一表格可以是用户终端预先定义的,并且预先存储在用户终端内部的表格。可替换地,第一表格还可以是基站发送给用户终端的,并且由用户终端存储的表格。可替换地,第一表格还可以是在用户终端出厂之前由厂商预先存储在用户终端内部的表格。
下面结合图4来描述用户终端所选择的参考信号端口的示意图。图4是根据本公开的一个实施例的用户终端所选择的用于每组时频资源的参考信号端口的示意图。如图4所示,假设用于用户终端的PRB的数量L=2,用户终端将这2个PRB分为两组,每组包括1个PRB,并为第一组PRB和第二组PRB分别选择了参考信号端口,即端口0和端口2。通过图4可知,本公开中,用户终端选择参考信号端口可以是针对PRB而进行的(即RB层面),而不是针对TB而进行的(即TB层面)。
下面结合图5来描述用户终端所选择的参考信号端口的另一示意图。图5是根据本公开的一个实施例的用户终端所选择的用于每组时频资源的参考信号端口的另一示意图。如图5所示,假设用于用户终端的参考信号码元的数量L=2,用户终端将这2个参考信号码元分为两组,每组包括1个参考信号码元,并为第一组参考信号码元(即第4个OFDM码元)和第二组参考信号码元(即第11个OFDM码元)分别选择了参考信号端口,即端口0和端口2。通过图5可知,本公开中,用户终端选择参考信号端口可以是针对码元而进行的(即码元层面),而不是针对TB而进行的(即TB层面)。
下面结合图6来描述用户终端所选择的参考信号端口的另一示意图。图6是根据本公开的一个实施例的用户终端所选择的用于每组时频资源的参考信号端口的另一示意图。如图6所示,假设用于用户终端的PRB的数量L=2、用于用户终端的参考信号码元的数量L=2(即第4个OFDM码元和第11个OFDM码元),用户终端将这2个PRB和2个参考信号码元分为4组,每组包括1个PRB和1个参考信号码元,并为第一组PRB和参考信号码元(即第1个PRB和第4个OFDM码元)、第二组PRB和参考信号码元(即第2个PRB和第4个OFDM码元)、第三组PRB和参考信号码元(即第1个PRB和第11个OFDM码元)、第四组PRB和参考信号码元(即第2个PRB和第11个OFDM码元)分别选择了参考信号端口,即端口0、端口2、端口3和端口1。通过图6可知,本公开中,用户终端选择参考信号端口可以是针对PRB/码元而进行的(即RB/码元层面),而不是针对TB而进行的(即TB层面)。
然后,方法200还可以包括:用户终端确定用于每组时频资源的参考信号功率参数。例如,参考信号功率参数可以是用于发送参考信号的功率提高参数(power boosting parameter)。
根据本公开的一个示例,用户终端可以从基站接收一个或多个参考信号功率参数。比如,基站可以为用户终端设置一个或多个参考信号功率参数,并且通过RRC信令、DCI或MAC CE等将所设置的参考信号功率参数通知给用户终端。相应地,用户终端可以通过从基站接收RRC信令、DCI或MAC CE等确定用于每组时频资源的参考信号功率参数。
根据本公开的另一示例,用户终端可以预先设置用于每组时频资源的参考信号功率参数,而不需要从基站接收。例如,用户终端可以从预先定义的 候选参考信号功率参数集合中选择用于每组时频资源的参考信号功率参数。该候选参考信号功率参数集合可以表示为P,其可以具有p个元素,例如{a 1,a 2,……,a p},其中p为正整数。用户终端可以从该候选参考信号功率参数集合选择用于每组时频资源的参考信号功率参数。
例如,用户终端可以从该候选参考信号功率参数集合选择用于第一组时频资源的参考信号功率参数,然后根据第一组时频资源的参考信号功率参数和参考信号功率偏移值确定用于多组时频资源中的其他组时频资源的参考信号功率参数。参考信号功率偏移值可以是候选的参考信号功率偏移值的集合中的元素,该集合可以用H’表示,其可以具有s’个元素,即具有s’个候选的参考信号功率偏移值,其中s’为正整数。这里所提及的集合H’可以与上文中的集合H相同,也可以不同。
下面以P={a 1,a 2,a 3,a 4,a 5,a 6,a 7}、H’={0,1,2,3}、M=3为例来描述确定每组时频资源的参考信号功率参数的一个示例。例如,用户终端从集合P选择a 1作为第一组时频资源的参考信号功率参数。然后,用户终端从集合H’选择了参考信号功率偏移值3,并且根据a 1和参考信号功率偏移值3确定了a 4为第二组时频资源的参考信号功率参数以及a 7为第三组时频资源的参考信号功率参数。
又例如,用户终端可以从候选参考信号功率参数集合中随机选择用于每组时频资源的参考信号功率参数。例如,用于每组时频资源的参考信号功率参数可以完全不同,或者可以部分相同。
此外,根据本公开的另一示例,用户终端可以在第二表格中选择用于每组时频资源的参考信号功率参数,该第二表格可以包括候选参考信号功率参数以及候选参考信号功率参数与多组时频资源的对应关系。在该示例中,第二表格可以是用户终端预先定义的,并且预先存储在用户终端内部的表格。可替换地,第二表格还可以是基站发送给用户终端的,并且由用户终端存储的表格。可替换地,第二表格还可以是在用户终端出厂之前由厂商预先存储在用户终端内部的表格。
下面结合图7A和图7B来描述用户终端所选择的参考信号功率参数的示意图。图7A是现有技术中的用户终端所选择的参考信号功率参数的示意图。如图7A所示,假设用于用户终端的PRB的数量L=2、用于用户终端的参考信号码元的数量L=2(即第4个OFDM码元和第11个OFDM码元), 用户终端没有对这2个PRB和2个参考信号码元分组,而是为该2个PRB和2个参考信号码元选择了共同的参考信号功率参数,即a 1。图7B是根据本公开的一个实施例的用户终端所选择的用于每组时频资源的参考信号功率参数的示意图。如图7B所示,假设用于用户终端的PRB的数量L=2、用于用户终端的参考信号码元的数量L=2(即第4个OFDM码元和第11个OFDM码元),用户终端将这2个PRB和2个参考信号码元分为4组,每组包括1个PRB和1个参考信号码元,并为第一组PRB和参考信号码元(即第1个PRB和第4个OFDM码元)、第二组PRB和参考信号码元(即第2个PRB和第4个OFDM码元)、第三组PRB和参考信号码元(即第1个PRB和第11个OFDM码元)、第四组PRB和参考信号码元(即第2个PRB和第11个OFDM码元)分别选择了参考信号功率参数,即a 1、a 2、a 1和a 2。通过这种方式,发送侧可以用不同的发送功率区分不同的参考信号,相应地接收侧可以从接收到的多个参数信号中检测每个参数信号。
然后,在步骤S202中,用户终端使用与每组时频资源相对应的参考信号端口发送参考信号。例如,用户终端可以使用与每组时频资源相对应的参考信号端口、以与每组时频资源相对应的参考信号功率参数所指示的发送功率,发送参考信号。这里所提到的参考信号可以是第一类型参考信号,例如DMRS。
例如,在上述图7B的示例中,用户终端可以使用端口0、参考信号功率参数a 1所指示的发射功率发送与第一组PRB和参考信号码元(即第1个PRB和第4个OFDM码元)相对应的DMRS,使用端口2、参考信号功率参数a 2所指示的发射功率发送与第二组PRB和参考信号码元(即第2个PRB和第4个OFDM码元)相对应的DMRS,使用端口3、参考信号功率参数a 1所指示的发射功率发送与第三组PRB和参考信号码元(即第1个PRB和第11个OFDM码元)相对应的DMRS,以及使用端口1、参考信号功率参数a 2所指示的发射功率发送与第四组PRB和参考信号码元(即第2个PRB和第11个OFDM码元)相对应的DMRS。
此外,根据本公开的一个示例,通信***中的不同用户终端的参考信号之间发生碰撞的概率可以被确定。例如,在现有技术中,可以采用下面的公式(2)来确定该碰撞概率:
Figure PCTCN2018099668-appb-000002
其中,D original可以是现有技术中的候选参考信号端口的数量,K是通信***中的用户终端的数量。在本公开中,上述公式(2)可以变形为下面的公式(3):
Figure PCTCN2018099668-appb-000003
其中,
Figure PCTCN2018099668-appb-000004
即用于第S i组时频资源的候选参考信号端口集合D i中的元素的数量;
Figure PCTCN2018099668-appb-000005
是指从D个参考信号端口中选择K个参考信号端口的情形的数量,其中K为正整数。从上述公式(2)和(3)可知,本公开将现有技术中的D original扩展为
Figure PCTCN2018099668-appb-000006
从而降低了碰撞概率Pr。
通过本实施例的由用户终端执行的方法,不需要对参考信号端口进行扩展,就可以增加每个用户终端可配置的上行参考信号的可能性,降低了不同用户终端的参考信号之间发生碰撞的概率。
在上面的实施例中,用于用户终端的时频资源被划分为多组,并且使用与每组时频资源相对应的参考信号端口发送参考信号,以降低不同用户终端的参考信号之间发生碰撞的概率。然而本公开不限于此。根据本公开的另一实施例,用于用户终端的时频资源可以不被划分为多组,而是通过调整参考信号的发送功率来降低不同用户终端的参考信号之间发生碰撞的概率。
以下,参照图8来描述根据本公开另一实施例的由通信***中的用户终端执行的用于发送参考信号的方法。图8是根据本公开的另一实施例的由通信***中的用户终端执行的用于发送参考信号的方法800的流程图。由于方法800与在上文中参照图2描述的方法200的部分细节相同,因此在这里为了简单起见,省略对相同内容的详细描述。
如图8所示,在步骤S801中,用户终端确定用于发送参考信号的参考信号功率参数。然后,在步骤S802中,用户终端根据所述参考信号功率参数指示的发送功率发送参考信号。
根据本公开的一个示例,用户终端可以从基站接收参考信号功率参数。比如,基站可以为用户终端设置参考信号功率参数,并且通过RRC信令、DCI或MAC CE等将所设置的参考信号功率参数通知给用户终端。相应地,用户终端可以通过从基站接收RRC信令、DCI或MAC CE等确定用于发送参考信号的参考信号功率参数。
根据本公开的另一示例,用户终端可以预先设置用于发送参考信号的参 考信号功率参数,而不需要从基站接收。例如,用户终端可以从预先定义的候选参考信号功率参数集合中选择用于发送参考信号的参考信号功率参数。该候选参考信号功率参数集合可以表示为P,其可以具有p个元素,例如{a 1,a 2,……,a p},其中p为正整数。用户终端可以从该候选参考信号功率参数集合选择用于发送参考信号的参考信号功率参数。
下面结合图9A和图9B来描述不同用户终端所选择的参考信号功率参数的示意图。图9A是现有技术中的不同用户终端所选择的参考信号功率参数的示意图。如图9A所示,第一用户终端和第二用户终端均使用端口0和参考信号功率参数a 1来发送参考信号,这会导致参考信号之间的碰撞。图9B是根据本公开的另一实施例的不同用户终端所选择的参考信号功率参数的示意图。如图9B所示,虽然第一用户终端和第二用户终端均使用端口0来发送参考信号,但第一用户终端使用的参考信号功率参数a 1且第二用户终端使用的参考信号功率参数a 2。通过这种方式,第一用户终端和第二用户终端可以用不同的发送功率来发送参考信号,以降低二者的参考信号碰撞的概率。
通过本实施例的由用户终端执行的方法,不同的用户终端可以使用不同的发送功率来发送参考信号,使得基站可以从接收到的多个参数信号中检测出每个用户终端的参数信号,从而降低了不同用户终端的参考信号之间发生碰撞的概率。
下面,参照图10描述与方法200相对应的由通信***中的基站执行的用于接收参考信号的方法。图10是根据本公开的一个实施例的由通信***中的基站执行的用于接收参考信号的方法1000的流程图。由于方法1000与在上文中参照图2描述的方法200的部分细节相同,因此在这里为了简单起见,省略对相同内容的详细描述。如图10所示,在步骤S1001中,基站在用于第一用户终端的多组时频资源上分别检测所述第一用户终端使用与每组时频资源相对应的参考信号端口发送的第一类型参考信号,其中用于所述第一用户终端的时频资源被划分为所述多组时频资源。
根据本公开的一个示例,用于用户终端的时频资源可以包括物理资源块(Physical Resource Block,PRB)和参考信号码元。在本公开中,可以在频域和/或时域上将用于用户终端的时频资源划分为多组时频资源,并在每组时频资源上配置一个第一类型参考信号,从而实现在用于用户终端的时频资源 上配置多个第一类型参考信号。
根据本公开的一个示例,可以根据时频资源划分参数,用于该用户终端的时频资源被划分为多组时频资源。例如,时频资源划分参数可以是用于选择参考信号端口的时频资源粒度(granularity),可以用N表示,其中N为正整数。对于用于用户终端的多组时频资源,可以分别设置用于每组时频资源的时频资源粒度。例如,用于每组时频资源的时频资源粒度可以表示为N 1、……、N m、……、N M,其中1≤m≤M且为正整数。在本公开中,N 1、……、N m、……、N M可以相同或不同。此外,可以根据上面的公式(1)将用于用户终端的时频资源划分为多组时频资源。
在该示例中,可以根据时频资源划分参数,用于该用户终端的时频资源在频域和/或时域上被划分为多组时频资源。例如,可以根据时频资源划分参数在频域上将用于该用户终端的时频资源划分为多组时频资源。在这种情形下,时频资源划分参数可以是用于选择参考信号端口的PRB粒度,即用户终端可以根据时频资源划分参数将用于用户终端的PRB划分为多组PRB。上述公式(1)中的L可以是用于用户终端的PRB的数量,即将用于用户终端的L个PRB划分为M组PRB。
又例如,可以根据时频资源划分参数在时域上将用于该用户终端的时频资源划分为多组时频资源。在这种情形下,时频资源划分参数可以是用于选择参考信号端口的码元粒度,即用户终端可以根据时频资源划分参数将用于用户终端的参考信号码元划分为多组参考信号码元。参考信号码元可以是用于发送参考信号的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)码元。上述公式(1)中的L可以是用于用户终端的参考信号码元的数量,即将用于用户终端的L个参考信号码元划分为M组参考信号码元。
应该理解,还可以根据时频资源划分参数,用于该用户终端的时频资源在频域和时域上被划分为多组时频资源。例如,用于用户终端的L 1个PRB和L 2个参考信号码元可以被划分为M组,每组所包括的PRB或参考信号码元的数量可以相同或不同,其中L 1和L 2均为正整数。
此外,根据本公开的一个示例,基站可以向用户终端发送时频资源划分参数。例如,基站可以为用户终端设置时频资源划分参数,并且通过无线资源控制(Radio Resource Control,RRC)信令、下行链路控制信息(Downlink Control Information,DCI)或媒体接入控制(Media Access Control,MAC) 控制元素(Control Element,CE)等将所设置的时频资源划分参数通知给用户终端。相应地,用户终端可以根据接收到的时频资源划分参数将用于该用户终端的时频资源划分为多组时频资源。
此外,根据本公开的一个示例,时频资源划分参数的取值可以是固定的,例如,N=1或2。可替换地,时频资源划分参数的取值还可以是动态变化的。例如,当通信***中的用户终端的数量较多时,基站可以减小时频资源划分参数的取值;当通信***中的用户终端的数量较小时,基站可以增大时频资源划分参数的取值。例如,当通信***中的用户终端的数量超过阈值时,时频资源划分参数的取值可以被设置为1,即N=1;当通信***中的用户终端的数量较小时,时频资源划分参数的取值可以被设置为2,即N=2。
此外,根据本公开的一个示例,在步骤S1001之前,基站可以确定第一用户终端的标识。例如,基站可以通过用户终端发送的前导码(preamble)或其他上行参考信号确定第一用户终端的标识。
此外,根据本公开的另一示例,在步骤S1001中,基站可以确定第一用户终端的标识。例如,基站可以首先在用于第一用户终端的第一组时频资源上检测第一用户终端使用与第一组时频资源相对应的参考信号端口发送的DMRS;然后,使用所检测到的与第一组时频资源相对应的DMRS,在用于第一用户终端的第二组时频资源上检测第一用户终端使用与第二组时频资源相对应的参考信号端口发送的DMRS;依次类推,直至基站在用于第一用户终端的所有组时频资源上检测第一用户终端使用与每组时频资源相对应的参考信号端口发送的DMRS,以便确定第一用户终端的标识。
然后,在步骤S1002中,基站确定所检测的多个第一类型参考信号中的、未与第二用户终端发送的第一类型参考信号发生碰撞的第一类型参考信号。例如,基站同时服务的用户终端可以包括第一用户终端和第二用户终端,则在步骤S1002中,基站可以判断第一用户终端发送的多个DMRS是否与第二用户终端发送的一个或多个DMRS发生碰撞,从而确定第一用户终端发送的多个DMRS中的、未与第二用户终端发送的DMRS发生碰撞的DMRS。
应该理解,虽然上述示例中基站同时服务的用户终端包括两个用户终端,然而本公开不限于此。根据本公开的另一示例,基站同时服务的用户终端的数量可以多于两个。在这种情形下,在步骤S1002中,基站可以确定所检测的多个第一类型参考信号中的、未与其他用户终端发送的第一类型参考信号 发生碰撞的第一类型参考信号。
然后,在步骤S1003中,基站根据所确定的第一类型参考信号估计所述第一用户终端的信道状况。例如,基站可以根据所确定的第一类型参考信号估计与所确定的第一类型参考信号相对应的一组或多组时频资源的信道状况,以及根据所确定的信道状况推测用于用户终端的其他组时频资源的信道状况。
通过本实施例的由基站执行的方法,不需要对参考信号端口进行扩展,就可以增加每个用户终端可配置的上行参考信号的可能性,降低了不同用户终端的参考信号之间发生碰撞的概率,而且即使当不同用户终端的部分参考信号之间发生了碰撞,基站仍可以通过没有发生碰撞的参考信号来估计每个用户终端的信道状况。
下面,参照图11描述与方法800相对应的由通信***中的基站执行的用于接收参考信号的方法。图11是根据本公开的另一实施例的由通信***中的基站执行的用于接收参考信号的方法1100的流程图。由于方法1100与在上文中参照图8描述的方法800的部分细节相同,因此在这里为了简单起见,省略对相同内容的详细描述。如图11所示,在步骤S1101中,基站从来自一个或多个用户终端的信号中,检测各个用户终端的参考信号,其中所述各个用户终端的参考信号是各个用户终端根据用于发送参考信号的参考信号功率参数而发送的。
根据本公开的一个示例,基站可以向用户终端发送参考信号功率参数。例如,基站可以为用户终端设置参考信号功率参数,并且通过RRC信令、DCI或MAC CE等将所设置的参考信号功率参数通知给用户终端。相应地,用户终端可以通过从基站接收RRC信令、DCI或MAC CE等确定用于发送参考信号的参考信号功率参数,以及使用所确定的参考信号功率参数所指示的发送功率发送参考信号。
在该示例中,由于各个用户终端可能使用不同的发送功率发送参考信号,因此,基站可以通过串行干扰删除的方式从来自一个或多个用户终端的信号中检测各个用户终端的参考信号。例如,基站可以从来自一个或多个用户终端的信号中检测使用最大发送功率的用户终端所发送的参考信号,然后检测使用次大发送功率的用户终端所发送的参考信号,依次类推,直至检测使用 最小发送功率的用户终端所发送的参考信号。
然后,在步骤S1102中,基站根据所检测的参考信号估计各个用户终端的信道状况。例如,基站可以根据所检测的参考信号估计与用于各个用户终端的时频资源相对应的信道状况。
通过本实施例的由基站执行的方法,不同的用户终端可以使用不同的发送功率来发送参考信号,使得基站可以从接收到的多个参数信号中检测出每个用户终端的参数信号,从而降低了不同用户终端的参考信号之间发生碰撞的概率。
下面,参照图12来描述根据本公开一个实施例的执行方法200的用户终端。图12是根据本公开的一个实施例的用户终端1200的结构示意图。由于用户终端1200的功能与在上文中参照图2描述的方法的细节相同,因此在这里为了简单起见,省略对相同内容的详细描述。如图12所示,用户终端1200包括:选择单元1210,被配置为从候选参考信号端口中选择用于每组时频资源的参考信号端口;以及发送单元1220,被配置为使用与每组时频资源相对应的参考信号端口发送参考信号。除了这两个单元以外,用户终端1200还可以包括其他部件,然而,由于这些部件与本公开实施例的内容无关,因此在这里省略其图示和描述。
在本公开中,用于用户终端的时频资源可以被划分为多组时频资源。例如,用于用户终端的时频资源可以被划分为M组时频资源,该M组时频资源可以表示为S 1、S 2、……、S M,其中M为正整数。
根据本公开的一个示例,选择单元1210可以根据时频资源划分参数将用于该用户终端的时频资源划分为多组时频资源。例如,时频资源划分参数可以是用于选择参考信号端口的时频资源粒度(granularity),可以用N表示,其中N为正整数。对于用于用户终端的多组时频资源,可以分别设置用于每组时频资源的时频资源粒度。例如,用于每组时频资源的时频资源粒度可以表示为N 1、……、N m、……、N M,其中1≤m≤M且为正整数。在本公开中,N 1、……、N m、……、N M可以相同或不同。此外,可以根据上面的公式(1)将用于用户终端的时频资源划分为多组时频资源。
在该示例中,选择单元1210可以根据时频资源划分参数在频域和/或时域上将用于该用户终端的时频资源划分为多组时频资源。例如,用户终端可 以根据时频资源划分参数在频域上将用于该用户终端的时频资源划分为多组时频资源。在这种情形下,时频资源划分参数可以是用于选择参考信号端口的PRB粒度,即用户终端可以根据时频资源划分参数将用于用户终端的PRB划分为多组PRB。上述公式(1)中的L可以是用于用户终端的PRB的数量,即将用于用户终端的L个PRB划分为M组PRB。
又例如,选择单元1210可以根据时频资源划分参数在时域上将用于该用户终端的时频资源划分为多组时频资源。在这种情形下,时频资源划分参数可以是用于选择参考信号端口的码元粒度,即用户终端可以根据时频资源划分参数将用于用户终端的参考信号码元划分为多组参考信号码元。参考信号码元可以是用于发送参考信号的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)码元。上述公式(1)中的L可以是用于用户终端的参考信号码元的数量,即将用于用户终端的L个参考信号码元划分为M组参考信号码元。此外,在单码元DMRS的***中,L个参考信号码元可以对应L个OFDM码元。在多码元DMRS的***中,L个参考信号码元可以对应多于L个的OFDM码元。例如,在双码元DMRS***中,L个参考信号码元可以对应2L个OFDM码元。
应该理解,选择单元1210还可以根据时频资源划分参数在频域和时域上将用于该用户终端的时频资源划分为多组时频资源。例如,用于用户终端的L 1个PRB和L 2个参考信号码元可以被划分为M组,每组所包括的PRB或参考信号码元的数量可以相同或不同,其中L 1和L 2均为正整数。
此外,根据本公开的一个示例,用户终端1200还可以包括接收单元(图中未示出),被配置为从基站接收时频资源划分参数。例如,基站可以为用户终端设置时频资源划分参数,并且通过无线资源控制(Radio Resource Control,RRC)信令、下行链路控制信息(Downlink Control Information,DCI)或媒体接入控制(Media Access Control,MAC)控制元素(Control Element,CE)等将所设置的时频资源划分参数通知给用户终端。相应地,用户终端可以根据接收到的时频资源划分参数将用于该用户终端的时频资源划分为多组时频资源。
根据本公开的另一示例,时频资源划分参数还可以是用户终端预先设置的,而不需要从基站接收。例如,用户终端根据信道状况或业务状况等预先设置时频资源划分参数,并且根据预先设置的时频资源划分参数将用于该用 户终端的时频资源划分为多组时频资源。
此外,根据本公开的一个示例,候选参考信号端口可以构成一个或多个候选参考信号端口集合。例如,每个候选参考信号端口集合可以至少包括与第一类型参考信号的第一子类参考信号相对应的参考信号端口。在本公开中,第一子类参考信号与第二子类参考信号均为第一类型参考信号,但是第一子类参考信号与第二子类参考信号具有不同的样式、序列或端口等。
在示例中,在候选参考信号端口构成多个候选参考信号端口集合的情形下,该多个候选参考信号端口集合可以与多组时频资源相对应。具体地,当用户终端的时频资源被划分为M组时频资源(即S 1、S 2、……、S M)时,候选参考信号端口可以构成M个候选参考信号端口集合,比如可以表示为D 1、D 2、……、D M,并且该D 1、D 2、……、D M分别与S 1、S 2、……、S M相对应。在该示例中,选择单元1210可以分别从每个候选参考信号端口集合中选择用于每组时频资源的参考信号端口。
在该示例中,在候选参考信号端口构成一个候选参考信号端口集合的情形下,选择单元1210可以从该一个候选参考信号端口集合选择用于每组时频资源的参考信号端口。例如,候选参考信号端口中的部分或全部端口可以构成一个候选参考信号端口集合。
例如,选择单元1210可以从第一候选参考信号端口集合中选择用于第一组时频资源的参考信号端口。例如,第一候选参考信号端口集合可以是候选参考信号端口所构成的一个候选参考信号端口集合,可以用D 0表示。第一候选参考信号端口集合可以具有k个元素,即具有k个候选的参考信号端口,可以表示为D 0={0,1,2,……,i,……,(k-1)},其中1≤i≤k且i和k均为正整数。
然后,选择单元1210可以根据所选择的用于第一组时频资源的参考信号端口和参考信号端口偏移参数,从该第一候选参考信号端口集合确定用于多组时频资源中的其他组时频资源的参考信号端口。
在该示例中,用户终端的接收单元还可以被配置为从基站接收参考信号端口偏移参数。例如,基站可以为用户终端设置参考信号端口偏移参数,并且通过RRC信令、DCI或MAC CE等将所设置的参考信号端口偏移参数通知给用户终端。相应地,用户终端可以根据接收到的参考信号端口偏移参数和用于第一组时频资源的参考信号端口来确定用于多组时频资源中的其他 组时频资源的参考信号端口。
根据本公开的另一示例,参考信号端口偏移参数还可以是用户终端预先设置的,而不需要从基站接收。例如,用户终端根据信道状况或业务状况等预先设置参考信号端口偏移参数,并且根据预先设置的参考信号端口偏移参数和用于第一组时频资源的参考信号端口来确定用于多组时频资源中的其他组时频资源的参考信号端口。
此外,根据本公开的一个示例,选择单元1210可以从候选参考信号端口中随机选择用于每组时频资源的参考信号端口。例如,用于每组时频资源的参考信号端口可以完全不同,或者可以部分相同。
此外,根据本公开的另一示例,选择单元1210可以在第一表格中选择用于每组时频资源的参考信号端口,该第一表格可以包括候选参考信号端口以及候选参考信号端口与多组时频资源的对应关系。在该示例中,第一表格可以是用户终端预先定义的,并且预先存储在用户终端内部的表格。可替换地,第一表格还可以是基站发送给用户终端的,并且由用户终端存储的表格。可替换地,第一表格还可以是在用户终端出厂之前由厂商预先存储在用户终端内部的表格。
此外,用户终端1200还可以包括确定单元(图中未示出),被配置为确定用于每组时频资源的参考信号功率参数。例如,参考信号功率参数可以是用于发送参考信号的功率提高参数(power boosting parameter)。
根据本公开的一个示例,用户终端的接收单元可以从基站接收一个或多个参考信号功率参数。比如,基站可以为用户终端设置一个或多个参考信号功率参数,并且通过RRC信令、DCI或MAC CE等将所设置的参考信号功率参数通知给用户终端。相应地,用户终端可以通过从基站接收RRC信令、DCI或MAC CE等确定用于每组时频资源的参考信号功率参数。
根据本公开的另一示例,用户终端可以预先设置用于每组时频资源的参考信号功率参数,而不需要从基站接收。例如,用户终端可以从预先定义的候选参考信号功率参数集合中选择用于每组时频资源的参考信号功率参数。该候选参考信号功率参数集合可以表示为P,其可以具有p个元素,例如{a 1,a 2,……,a p},其中p为正整数。用户终端可以从该候选参考信号功率参数集合选择用于每组时频资源的参考信号功率参数。
此外,根据本公开的一个示例,发送单元1220可以使用与每组时频资 源相对应的参考信号端口、以与每组时频资源相对应的参考信号功率参数所指示的发送功率,发送参考信号。这里所提到的参考信号可以是第一类型参考信号,例如DMRS。
通过本实施例的用户终端,不需要对参考信号端口进行扩展,就可以增加每个用户终端可配置的上行参考信号的可能性,降低了不同用户终端的参考信号之间发生碰撞的概率。
下面,参照图13来描述根据本公开一个实施例的执行方法800的用户终端。图13是根据本公开的另一实施例的用户终端1300的结构示意图。由于用户终端1300的功能与在上文中参照图8描述的方法的细节相同,因此在这里为了简单起见,省略对相同内容的详细描述。如图13所示,用户终端1300包括:确定单元1310,被配置为确定用于发送参考信号的参考信号功率参数;以及发送单元1320,被配置为根据所述参考信号功率参数指示的发送功率发送参考信号。除了这两个单元以外,用户终端1300还可以包括其他部件,然而,由于这些部件与本公开实施例的内容无关,因此在这里省略其图示和描述。
根据本公开的一个示例,用户终端1300还可以包括接收单元(图中未示出),被配置为从基站接收参考信号功率参数。比如,基站可以为用户终端设置参考信号功率参数,并且通过RRC信令、DCI或MAC CE等将所设置的参考信号功率参数通知给用户终端。相应地,用户终端可以通过从基站接收RRC信令、DCI或MAC CE等确定用于发送参考信号的参考信号功率参数。
根据本公开的另一示例,用户终端可以预先设置用于发送参考信号的参考信号功率参数,而不需要从基站接收。例如,用户终端可以从预先定义的候选参考信号功率参数集合中选择用于发送参考信号的参考信号功率参数。该候选参考信号功率参数集合可以表示为P,其可以具有p个元素,例如{a 1,a 2,……,a p},其中p为正整数。用户终端可以从该候选参考信号功率参数集合选择用于发送参考信号的参考信号功率参数。
通过本实施例的用户终端,不同的用户终端可以使用不同的发送功率来发送参考信号,使得基站可以从接收到的多个参数信号中检测出每个用户终端的参数信号,从而降低了不同用户终端的参考信号之间发生碰撞的概率。
下面,参照图14来描述根据本公开一个实施例的执行方法1000的基站。图14是根据本公开的一个实施例的基站1400的结构示意图。由于基站1400的功能与在上文中参照图10描述的方法的细节相同,因此在这里为了简单起见,省略对相同内容的详细描述。如图14所示,基站1400包括:检测单元1410,被配置为在用于第一用户终端的多组时频资源上分别检测所述第一用户终端使用与每组时频资源相对应的参考信号端口发送的第一类型参考信号,其中用于所述第一用户终端的时频资源被划分为所述多组时频资源;确定单元1420,被配置为确定所检测的多个第一类型参考信号中的、未与第二用户终端发送的第一类型参考信号发生碰撞的第一类型参考信号;以及估计单元1430,被配置为根据所确定的第一类型参考信号估计所述第一用户终端的信道状况。除了这三个单元以外,基站1400还可以包括其他部件,然而,由于这些部件与本公开实施例的内容无关,因此在这里省略其图示和描述。
根据本公开的一个示例,用于用户终端的时频资源可以包括物理资源块(Physical Resource Block,PRB)和参考信号码元。在本公开中,可以在频域和/或时域上将用于用户终端的时频资源划分为多组时频资源,并在每组时频资源上配置一个第一类型参考信号,从而实现在用于用户终端的时频资源上配置多个第一类型参考信号。
根据本公开的一个示例,可以根据时频资源划分参数,用于该用户终端的时频资源被划分为多组时频资源。例如,时频资源划分参数可以是用于选择参考信号端口的时频资源粒度(granularity),可以用N表示,其中N为正整数。对于用于用户终端的多组时频资源,可以分别设置用于每组时频资源的时频资源粒度。例如,用于每组时频资源的时频资源粒度可以表示为N 1、……、N m、……、N M,其中1≤m≤M且为正整数。在本公开中,N 1、……、N m、……、N M可以相同或不同。此外,可以根据上面的公式(1)将用于用户终端的时频资源划分为多组时频资源。
在该示例中,可以根据时频资源划分参数,用于该用户终端的时频资源在频域和/或时域上被划分为多组时频资源。例如,可以根据时频资源划分参数在频域上将用于该用户终端的时频资源划分为多组时频资源。在这种情形下,时频资源划分参数可以是用于选择参考信号端口的PRB粒度,即用户 终端可以根据时频资源划分参数将用于用户终端的PRB划分为多组PRB。上述公式(1)中的L可以是用于用户终端的PRB的数量,即将用于用户终端的L个PRB划分为M组PRB。
又例如,可以根据时频资源划分参数在时域上将用于该用户终端的时频资源划分为多组时频资源。在这种情形下,时频资源划分参数可以是用于选择参考信号端口的码元粒度,即用户终端可以根据时频资源划分参数将用于用户终端的参考信号码元划分为多组参考信号码元。参考信号码元可以是用于发送参考信号的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)码元。上述公式(1)中的L可以是用于用户终端的参考信号码元的数量,即将用于用户终端的L个参考信号码元划分为M组参考信号码元。
应该理解,还可以根据时频资源划分参数,用于该用户终端的时频资源在频域和时域上被划分为多组时频资源。例如,用于用户终端的L 1个PRB和L 2个参考信号码元可以被划分为M组,每组所包括的PRB或参考信号码元的数量可以相同或不同,其中L 1和L 2均为正整数。
此外,根据本公开的一个示例,基站1400还可以包括发送单元(图中未示出),被配置为向用户终端发送时频资源划分参数。例如,基站可以为用户终端设置时频资源划分参数,并且通过无线资源控制(Radio Resource Control,RRC)信令、下行链路控制信息(Downlink Control Information,DCI)或媒体接入控制(Media Access Control,MAC)控制元素(Control Element,CE)等将所设置的时频资源划分参数通知给用户终端。相应地,用户终端可以根据接收到的时频资源划分参数将用于该用户终端的时频资源划分为多组时频资源。
此外,根据本公开的一个示例,时频资源划分参数的取值可以是固定的,例如,N=1或2。可替换地,时频资源划分参数的取值还可以是动态变化的。例如,当通信***中的用户终端的数量较多时,基站可以减小时频资源划分参数的取值;当通信***中的用户终端的数量较小时,基站可以增大时频资源划分参数的取值。例如,当通信***中的用户终端的数量超过阈值时,时频资源划分参数的取值可以被设置为1,即N=1;当通信***中的用户终端的数量较小时,时频资源划分参数的取值可以被设置为2,即N=2。
此外,根据本公开的一个示例,确定单元1420还可以被配置为确定第一用户终端的标识。例如,基站可以通过用户终端发送的前导码(preamble) 或其他上行参考信号确定第一用户终端的标识。
此外,根据本公开的另一示例,确定单元1420还可以被配置为第一用户终端的标识。例如,基站可以首先在用于第一用户终端的第一组时频资源上检测第一用户终端使用与第一组时频资源相对应的参考信号端口发送的DMRS;然后,使用所检测到的与第一组时频资源相对应的DMRS,在用于第一用户终端的第二组时频资源上检测第一用户终端使用与第二组时频资源相对应的参考信号端口发送的DMRS;依次类推,直至基站在用于第一用户终端的所有组时频资源上检测第一用户终端使用与每组时频资源相对应的参考信号端口发送的DMRS,以便确定第一用户终端的标识。
此外,根据本公开的一个示例,基站同时服务的用户终端可以包括第一用户终端和第二用户终端,则确定单元1420可以判断第一用户终端发送的多个DMRS是否与第二用户终端发送的一个或多个DMRS发生碰撞,从而确定第一用户终端发送的多个DMRS中的、未与第二用户终端发送的DMRS发生碰撞的DMRS。
应该理解,虽然上述示例中基站同时服务的用户终端包括两个用户终端,然而本公开不限于此。根据本公开的另一示例,基站同时服务的用户终端的数量可以多于两个。在这种情形下,确定单元1420可以确定所检测的多个第一类型参考信号中的、未与其他用户终端发送的第一类型参考信号发生碰撞的第一类型参考信号。
此外,根据本公开的一个示例,估计单元1430可以根据所确定的第一类型参考信号估计与所确定的第一类型参考信号相对应的一组或多组时频资源的信道状况,以及根据所确定的信道状况推测用于用户终端的其他组时频资源的信道状况。
通过本实施例的基站,不需要对参考信号端口进行扩展,就可以增加每个用户终端可配置的上行参考信号的可能性,降低了不同用户终端的参考信号之间发生碰撞的概率,而且即使当不同用户终端的部分参考信号之间发生了碰撞,基站仍可以通过没有发生碰撞的参考信号来估计每个用户终端的信道状况。
下面,参照图15来描述根据本公开一个实施例的执行方法1100的基站。图15是根据本公开的另一实施例的基站1500的结构示意图。由于基站 1500的功能与在上文中参照图11描述的方法的细节相同,因此在这里为了简单起见,省略对相同内容的详细描述。如图15所示,基站1500包括:检测单元1510,被配置为从来自一个或多个用户终端的信号中,检测各个用户终端的参考信号,其中所述各个用户终端的参考信号是各个用户终端根据用于发送参考信号的参考信号功率参数而发送的;以及估计单元1520,被配置为根据所检测的参考信号估计各个用户终端的信道状况。除了这两个单元以外,基站1500还可以包括其他部件,然而,由于这些部件与本公开实施例的内容无关,因此在这里省略其图示和描述。
根据本公开的一个示例,基站1500还可以包括发送单元(图中未示出),被配置为向用户终端发送参考信号功率参数。例如,基站可以为用户终端设置参考信号功率参数,并且通过RRC信令、DCI或MAC CE等将所设置的参考信号功率参数通知给用户终端。相应地,用户终端可以通过从基站接收RRC信令、DCI或MAC CE等确定用于发送参考信号的参考信号功率参数,以及使用所确定的参考信号功率参数所指示的发送功率发送参考信号。
在该示例中,由于各个用户终端可能使用不同的发送功率发送参考信号,因此,基站可以通过串行干扰删除的方式从来自一个或多个用户终端的信号中检测各个用户终端的参考信号。例如,基站可以从来自一个或多个用户终端的信号中检测使用最大发送功率的用户终端所发送的参考信号,然后检测使用次大发送功率的用户终端所发送的参考信号,依次类推,直至检测使用最小发送功率的用户终端所发送的参考信号。
通过本实施例的由基站执行的方法,不同的用户终端可以使用不同的发送功率来发送参考信号,使得基站可以从接收到的多个参数信号中检测出每个用户终端的参数信号,从而降低了不同用户终端的参考信号之间发生碰撞的概率。
<硬件结构>
另外,上述实施方式的说明中使用的框图示出了以功能为单位的块。这些功能块(结构单元)通过硬件和/或软件的任意组合来实现。此外,各功能块的实现手段并不特别限定。即,各功能块可以通过在物理上和/或逻辑上相结合的一个装置来实现,也可以将在物理上和/或逻辑上相分离的两个以上装 置直接地和/或间接地(例如通过有线和/或无线)连接从而通过上述多个装置来实现。
例如,本公开的一个实施例的设备(比如第一通信设备、第二通信设备或飞行用户终端等)可以作为执行本公开的无线通信方法的处理的计算机来发挥功能。图16是根据本公开的实施例的所涉及的设备1600(基站或用户终端)的硬件结构的示意图。上述的设备1600(基站或用户终端)可以作为在物理上包括处理器1610、内存1620、存储器1630、通信装置1640、输入装置1650、输出装置1660、总线1670等的计算机装置来构成。
另外,在以下的说明中,“装置”这样的文字也可替换为电路、设备、单元等。用户终端和基站的硬件结构可以包括一个或多个图中所示的各装置,也可以不包括部分装置。
例如,处理器1610仅图示出一个,但也可以为多个处理器。此外,可以通过一个处理器来执行处理,也可以通过一个以上的处理器同时、依次、或采用其它方法来执行处理。另外,处理器1610可以通过一个以上的芯片来安装。
设备1600的各功能例如通过如下方式实现:通过将规定的软件(程序)读入到处理器1610、内存1620等硬件上,从而使处理器1610进行运算,对由通信装置1640进行的通信进行控制,并对内存1620和存储器1630中的数据的读出和/或写入进行控制。
处理器1610例如使操作***进行工作从而对计算机整体进行控制。处理器1610可以由包括与周边装置的接口、控制装置、运算装置、寄存器等的中央处理器(CPU,Central Processing Unit)构成。例如,上述的确定单元、调整单元等可以通过处理器1610实现。
此外,处理器1610将程序(程序代码)、软件模块、数据等从存储器1630和/或通信装置1640读出到内存1620,并根据它们执行各种处理。作为程序,可以采用使计算机执行在上述实施方式中说明的动作中的至少一部分的程序。例如,用户终端500的确定单元可以通过保存在内存1620中并通过处理器1610来工作的控制程序来实现,对于其它功能块,也可以同样地来实现。
内存1620是计算机可读取记录介质,例如可以由只读存储器(ROM,Read Only Memory)、可编程只读存储器(EPROM,Erasable Programmable  ROM)、电可编程只读存储器(EEPROM,Electrically EPROM)、随机存取存储器(RAM,Random Access Memory)、其它适当的存储介质中的至少一个来构成。内存1620也可以称为寄存器、高速缓存、主存储器(主存储装置)等。内存1620可以保存用于实施本公开的一实施方式所涉及的方法的可执行程序(程序代码)、软件模块等。
存储器1630是计算机可读取记录介质,例如可以由软磁盘(flexible disk)、软(注册商标)盘(floppy disk)、磁光盘(例如,只读光盘(CD-ROM(Compact Disc ROM)等)、数字通用光盘、蓝光(Blu-ray,注册商标)光盘)、可移动磁盘、硬盘驱动器、智能卡、闪存设备(例如,卡、棒(stick)、密钥驱动器(key driver))、磁条、数据库、服务器、其它适当的存储介质中的至少一个来构成。存储器1630也可以称为辅助存储装置。
通信装置1640是用于通过有线和/或无线网络进行计算机间的通信的硬件(发送接收设备),例如也称为网络设备、网络控制器、网卡、通信模块等。通信装置1640为了实现例如频分双工(FDD,Frequency Division Duplex)和/或时分双工(TDD,Time Division Duplex),可以包括高频开关、双工器、滤波器、频率合成器等。例如,上述的发送单元、接收单元等可以通过通信装置1640来实现。
输入装置1650是接受来自外部的输入的输入设备(例如,键盘、鼠标、麦克风、开关、按钮、传感器等)。输出装置1660是实施向外部的输出的输出设备(例如,显示器、扬声器、发光二极管(LED,Light Emitting Diode)灯等)。另外,输入装置1650和输出装置1660也可以为一体的结构(例如触控面板)。
此外,处理器1610、内存1620等各装置通过用于对信息进行通信的总线1670连接。总线1670可以由单一的总线构成,也可以由装置间不同的总线构成。
此外,基站和用户终端可以包括微处理器、数字信号处理器(DSP,Digital Signal Processor)、专用集成电路(ASIC,Application Specific Integrated Circuit)、可编程逻辑器件(PLD,Programmable Logic Device)、现场可编程门阵列(FPGA,Field Programmable Gate Array)等硬件,可以通过该硬件来实现各功能块的部分或全部。例如,处理器1610可以通过这些硬件中的至少一个来安装。
(变形例)
另外,关于本说明书中说明的用语和/或对本说明书进行理解所需的用语,可以与具有相同或类似含义的用语进行互换。例如,信道和/或符号也可以为信号(信令)。此外,信号也可以为消息。参考信号也可以简称为RS(Reference Signal),根据所适用的标准,也可以称为导频(Pilot)、导频信号等。此外,分量载波(CC,Component Carrier)也可以称为小区、频率载波、载波频率等。
此外,本说明书中说明的信息、参数等可以用绝对值来表示,也可以用与规定值的相对值来表示,还可以用对应的其它信息来表示。例如,无线资源可以通过规定的索引来指示。进一步地,使用这些参数的公式等也可以与本说明书中明确公开的不同。
在本说明书中用于参数等的名称在任何方面都并非限定性的。例如,各种各样的信道(物理上行链路控制信道(PUCCH,Physical Uplink Control Channel)、物理下行链路控制信道(PDCCH,Physical Downlink Control Channel)等)和信息单元可以通过任何适当的名称来识别,因此为这些各种各样的信道和信息单元所分配的各种各样的名称在任何方面都并非限定性的。
本说明书中说明的信息、信号等可以使用各种各样不同技术中的任意一种来表示。例如,在上述的全部说明中可能提及的数据、命令、指令、信息、信号、比特、符号、芯片等可以通过电压、电流、电磁波、磁场或磁性粒子、光场或光子、或者它们的任意组合来表示。
此外,信息、信号等可以从上层向下层、和/或从下层向上层输出。信息、信号等可以经由多个网络节点进行输入或输出。
输入或输出的信息、信号等可以保存在特定的场所(例如内存),也可以通过管理表进行管理。输入或输出的信息、信号等可以被覆盖、更新或补充。输出的信息、信号等可以被删除。输入的信息、信号等可以被发往其它装置。
信息的通知并不限于本说明书中说明的方式/实施方式,也可以通过其它方法进行。例如,信息的通知可以通过物理层信令(例如,下行链路控制信息(DCI,Downlink Control Information)、上行链路控制信息(UCI,Uplink Control Information))、上层信令(例如,无线资源控制(RRC,Radio Resource  Control)信令、广播信息(主信息块(MIB,Master Information Block)、***信息块(SIB,System Information Block)等)、媒体存取控制(MAC,Medium Access Control)信令)、其它信号或者它们的组合来实施。
另外,物理层信令也可以称为L1/L2(第1层/第2层)控制信息(L1/L2控制信号)、L1控制信息(L1控制信号)等。此外,RRC信令也可以称为RRC消息,例如可以为RRC连接建立(RRC Connection Setup)消息、RRC连接重配置(RRC Connection Reconfiguration)消息等。此外,MAC信令例如可以通过MAC控制单元(MAC CE(Control Element))来通知。
此外,规定信息的通知(例如,“为X”的通知)并不限于显式地进行,也可以隐式地(例如,通过不进行该规定信息的通知,或者通过其它信息的通知)进行。
关于判定,可以通过由1比特表示的值(0或1)来进行,也可以通过由真(true)或假(false)表示的真假值(布尔值)来进行,还可以通过数值的比较(例如与规定值的比较)来进行。
软件无论被称为软件、固件、中间件、微代码、硬件描述语言,还是以其它名称来称呼,都应宽泛地解释为是指命令、命令集、代码、代码段、程序代码、程序、子程序、软件模块、应用程序、软件应用程序、软件包、例程、子例程、对象、可执行文件、执行线程、步骤、功能等。
此外,软件、命令、信息等可以经由传输介质被发送或接收。例如,当使用有线技术(同轴电缆、光缆、双绞线、数字用户线路(DSL,Digital Subscriber Line)等)和/或无线技术(红外线、微波等)从网站、服务器、或其它远程资源发送软件时,这些有线技术和/或无线技术包括在传输介质的定义内。
本说明书中使用的“***”和“网络”这样的用语可以互换使用。
在本说明书中,“基站(BS,Base Station)”、“无线基站”、“eNB”、“gNB”、“小区”、“扇区”、“小区组”、“载波”以及“分量载波”这样的用语可以互换使用。基站有时也以固定台(fixed station)、NodeB、eNodeB(eNB)、接入点(access point)、发送点、接收点、毫微微小区、小小区等用语来称呼。
基站可以容纳一个或多个(例如三个)小区(也称为扇区)。当基站容纳多个小区时,基站的整个覆盖区域可以划分为多个更小的区域,每个更小的区域也可以通过基站子***(例如,室内用小型基站(射频拉远头(RRH, Remote Radio Head)))来提供通信服务。“小区”或“扇区”这样的用语是指在该覆盖中进行通信服务的基站和/或基站子***的覆盖区域的一部分或整体。
在本说明书中,“移动台(MS,Mobile Station)”、“用户终端(user terminal)”、“用户装置(UE,User Equipment)”以及“终端”这样的用语可以互换使用。移动台有时也被本领域技术人员以用户台、移动单元、用户单元、无线单元、远程单元、移动设备、无线设备、无线通信设备、远程设备、移动用户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或者若干其它适当的用语来称呼。
此外,本说明书中的无线基站也可以用用户终端来替换。例如,对于将无线基站和用户终端间的通信替换为多个用户终端间(D2D,Device-to-Device)的通信的结构,也可以应用本公开的各方式/实施方式。此时,可以将上述的设备1600中的第一通信设备或第二通信设备所具有的功能当作用户终端所具有的功能。此外,“上行”和“下行”等文字也可以替换为“侧”。例如,上行信道也可以替换为侧信道。
同样,本说明书中的用户终端也可以用无线基站来替换。此时,可以将上述的用户终端所具有的功能当作第一通信设备或第二通信设备所具有的功能。
在本说明书中,设为通过基站进行的特定动作根据情况有时也通过其上级节点(upper node)来进行。显然,在具有基站的由一个或多个网络节点(network nodes)构成的网络中,为了与终端间的通信而进行的各种各样的动作可以通过基站、除基站之外的一个以上的网络节点(可以考虑例如移动管理实体(MME,Mobility Management Entity)、服务网关(S-GW,Serving-Gateway)等,但不限于此)、或者它们的组合来进行。
本说明书中说明的各方式/实施方式可以单独使用,也可以组合使用,还可以在执行过程中进行切换来使用。此外,本说明书中说明的各方式/实施方式的处理步骤、序列、流程图等只要没有矛盾,就可以更换顺序。例如,关于本说明书中说明的方法,以示例性的顺序给出了各种各样的步骤单元,而并不限定于给出的特定顺序。
本说明书中说明的各方式/实施方式可以应用于利用长期演进(LTE,Long Term Evolution)、高级长期演进(LTE-A,LTE-Advanced)、超越长 期演进(LTE-B,LTE-Beyond)、超级第3代移动通信***(SUPER 3G)、高级国际移动通信(IMT-Advanced)、第4代移动通信***(4G,4th generation mobile communication system)、第5代移动通信***(5G,5th generation mobile communication system)、未来无线接入(FRA,Future Radio Access)、新无线接入技术(New-RAT,Radio Access Technology)、新无线(NR,New Radio)、新无线接入(NX,New radio access)、新一代无线接入(FX,Future generation radio access)、全球移动通信***(GSM(注册商标),Global System for Mobile communications)、码分多址接入3000(CDMA3000)、超级移动宽带(UMB,Ultra Mobile Broadband)、IEEE 920.11(Wi-Fi(注册商标))、IEEE 920.16(WiMAX(注册商标))、IEEE 920.20、超宽带(UWB,Ultra-WideBand)、蓝牙(Bluetooth(注册商标))、其它适当的无线通信方法的***和/或基于它们而扩展的下一代***。
本说明书中使用的“根据”这样的记载,只要未在其它段落中明确记载,则并不意味着“仅根据”。换言之,“根据”这样的记载是指“仅根据”和“至少根据”这两者。
本说明书中使用的对使用“第一”、“第二”等名称的单元的任何参照,均非全面限定这些单元的数量或顺序。这些名称可以作为区别两个以上单元的便利方法而在本说明书中使用。因此,第一单元和第二单元的参照并不意味着仅可采用两个单元或者第一单元必须以若干形式占先于第二单元。
本说明书中使用的“判断(确定)(determining)”这样的用语有时包含多种多样的动作。例如,关于“判断(确定)”,可以将计算(calculating)、推算(computing)、处理(processing)、推导(deriving)、调查(investigating)、搜索(looking up)(例如表、数据库、或其它数据结构中的搜索)、确认(ascertaining)等视为是进行“判断(确定)”。此外,关于“判断(确定)”,也可以将接收(receiving)(例如接收信息)、发送(transmitting)(例如发送信息)、输入(input)、输出(output)、存取(accessing)(例如存取内存中的数据)等视为是进行“判断(确定)”。此外,关于“判断(确定)”,还可以将解决(resolving)、选择(selecting)、选定(choosing)、建立(establishing)、比较(comparing)等视为是进行“判断(确定)”。也就是说,关于“判断(确定)”,可以将若干动作视为是进行“判断(确定)”。
本说明书中使用的“连接的(connected)”、“结合的(coupled)”这样的用语或者它们的任何变形是指两个或两个以上单元间的直接的或间接的任何连接或结合,可以包括以下情况:在相互“连接”或“结合”的两个单元间,存在一个或一个以上的中间单元。单元间的结合或连接可以是物理上的,也可以是逻辑上的,或者还可以是两者的组合。例如,“连接”也可以替换为“接入”。在本说明书中使用时,可以认为两个单元是通过使用一个或一个以上的电线、线缆、和/或印刷电气连接,以及作为若干非限定性且非穷尽性的示例,通过使用具有射频区域、微波区域、和/或光(可见光及不可见光这两者)区域的波长的电磁能等,被相互“连接”或“结合”。
在本说明书或权利要求书中使用“包括(including)”、“包含(comprising)”、以及它们的变形时,这些用语与用语“具备”同样是开放式的。进一步地,在本说明书或权利要求书中使用的用语“或(or)”并非是异或。
以上对本公开进行了详细说明,但对于本领域技术人员而言,显然,本公开并非限定于本说明书中说明的实施方式。本公开在不脱离由权利要求书的记载所确定的本公开的宗旨和范围的前提下,可以作为修改和变更方式来实施。因此,本说明书的记载是以示例说明为目的,对本公开而言并非具有任何限制性的意义。

Claims (12)

  1. 一种用于发送参考信号的方法,由用户终端执行,用于所述用户终端的时频资源被划分为多组时频资源,所述方法包括:
    从候选参考信号端口中选择用于每组时频资源的参考信号端口;以及
    使用与每组时频资源相对应的参考信号端口发送参考信号。
  2. 如权利要求1所述的方法,其中所述用于所述用户终端的时频资源被划分为多组时频资源包括:
    根据时频资源划分参数,用于所述用户终端的物理资源块被划分为多组物理资源块。
  3. 如权利要求1或2所述的方法,其中所述用于所述用户终端的时频资源被划分为多组时频资源包括:
    根据时频资源划分参数,用于所述用户终端的参考信号码元被划分为多组参考信号码元。
  4. 如权利要求1至2任一项所述的方法,其中所述候选参考信号端口构成一个或多个候选参考信号端口集合。
  5. 如权利要求4所述的方法,其中当所述候选参考信号端口构成多个候选参考信号端口集合时,
    所述多个候选参考信号端口集合与所述多组时频资源相对应,
    所述从候选参考信号端口中选择用于每组时频资源的参考信号端口包括:
    分别从每个候选参考信号端口集合中选择用于每组时频资源的参考信号端口。
  6. 如权利要求4所述的方法,其中所述从候选参考信号端口中选择用于每组时频资源的参考信号端口包括:
    从第一候选参考信号端口集合中选择用于第一组时频资源的参考信号端口;
    根据所选择的用于第一组时频资源的参考信号端口和参考信号端口偏移参数,从所述第一候选参考信号端口集合确定用于所述多组时频资源中的其他组时频资源的参考信号端口。
  7. 如权利要求4所述的方法,其中所述一个或多个候选参考信号端口 集合中的每个候选参考信号端口集合至少包括与所述参考信号的第一子类参考信号相对应的参考信号端口。
  8. 如权利要求1所述的方法,
    还包括:
    确定用于每组时频资源的参考信号功率参数;
    其中所述使用与每组时频资源相对应的参考信号端口发送参考信号包括:
    使用与每组时频资源相对应的参考信号端口、以与每组时频资源相对应的参考信号功率参数所指示的发送功率,发送参考信号。
  9. 一种用于接收参考信号的方法,由基站执行,所述方法包括:
    在用于第一用户终端的多组时频资源上分别检测所述第一用户终端使用与每组时频资源相对应的参考信号端口发送的第一类型参考信号,其中用于所述第一用户终端的时频资源被划分为所述多组时频资源;
    确定所检测的多个第一类型参考信号中的、未与第二用户终端发送的第一类型参考信号发生碰撞的第一类型参考信号;以及
    根据所确定的第一类型参考信号估计所述第一用户终端的信道状况。
  10. 一种用户终端,用于所述用户终端的时频资源被划分为多组时频资源,所述用户终端包括:
    选择单元,被配置为从候选参考信号端口中选择用于每组时频资源的参考信号端口;以及
    发送单元,被配置为使用与每组时频资源相对应的参考信号端口发送参考信号。
  11. 如权利要求10所述的用户终端,还包括:
    确定单元,被配置为确定用于每组时频资源的参考信号功率参数;
    其中所述发送单元还被配置为使用与每组时频资源相对应的参考信号端口、以与每组时频资源相对应的参考信号功率参数所指示的发送功率,发送参考信号。
  12. 一种基站,包括:
    检测单元,被配置为在用于第一用户终端的多组时频资源上分别检测所述第一用户终端使用与每组时频资源相对应的参考信号端口发送的第一类型参考信号,其中用于所述第一用户终端的时频资源被划分为所述多组时频 资源;
    确定单元,被配置为确定所检测的多个第一类型参考信号中的、未与第二用户终端发送的第一类型参考信号发生碰撞的第一类型参考信号;以及
    估计单元,被配置为根据所确定的第一类型参考信号估计所述第一用户终端的信道状况。
PCT/CN2018/099668 2018-08-09 2018-08-09 用于传输参考信号的方法及设备 WO2020029182A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/266,800 US11811508B2 (en) 2018-08-09 2018-08-09 Method and device for transmitting reference signals
PCT/CN2018/099668 WO2020029182A1 (zh) 2018-08-09 2018-08-09 用于传输参考信号的方法及设备
CN201880096428.7A CN112534749B (zh) 2018-08-09 2018-08-09 用于传输参考信号的方法及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/099668 WO2020029182A1 (zh) 2018-08-09 2018-08-09 用于传输参考信号的方法及设备

Publications (1)

Publication Number Publication Date
WO2020029182A1 true WO2020029182A1 (zh) 2020-02-13

Family

ID=69413724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/099668 WO2020029182A1 (zh) 2018-08-09 2018-08-09 用于传输参考信号的方法及设备

Country Status (3)

Country Link
US (1) US11811508B2 (zh)
CN (1) CN112534749B (zh)
WO (1) WO2020029182A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022198640A1 (zh) * 2021-03-26 2022-09-29 华为技术有限公司 资源映射方法以及通信装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101541085A (zh) * 2009-04-27 2009-09-23 中兴通讯股份有限公司 一种测量参考信号的发送及使用方法
US20160165545A1 (en) * 2013-07-12 2016-06-09 Sharp Kabushiki Kaisha Terminal device, method, and integrated circuit
CN107046431A (zh) * 2016-02-05 2017-08-15 中兴通讯股份有限公司 信息的传输、接收方法及装置
CN108322245A (zh) * 2017-01-17 2018-07-24 ***通信有限公司研究院 信道状态参考信号发送方法、装置及接收方法、移动终端

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8842620B2 (en) * 2010-08-24 2014-09-23 Alcatel Lucent Method for accommodating overlapping reference signal patterns
WO2014113546A1 (en) * 2013-01-16 2014-07-24 Interdigital Patent Holdings, Inc. Improved uplink spectrum efficiency
US10965509B2 (en) * 2015-06-18 2021-03-30 Lg Electronics Inc. Method for setting reference signal for V2V communication in wireless communication system and device for same
EP3340715A4 (en) * 2015-09-24 2018-08-22 Huawei Technologies Co., Ltd. Downlink control signaling transmission method and device
CN108282300A (zh) * 2017-01-06 2018-07-13 中兴通讯股份有限公司 一种参考信号的传输方法及装置
SG11201912174QA (en) * 2017-07-31 2020-01-30 Guangdong Oppo Mobile Telecommunications Corp Ltd Data transmission method and terminal device
CN109474398B (zh) * 2017-09-08 2020-12-04 电信科学技术研究院有限公司 一种参考信号的传输方法、装置、基站及终端
US11737084B2 (en) * 2018-07-30 2023-08-22 Qualcomm Incorporated Demodulation reference signal port hopping for grant-free physical uplink shared channel communication

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101541085A (zh) * 2009-04-27 2009-09-23 中兴通讯股份有限公司 一种测量参考信号的发送及使用方法
US20160165545A1 (en) * 2013-07-12 2016-06-09 Sharp Kabushiki Kaisha Terminal device, method, and integrated circuit
CN107046431A (zh) * 2016-02-05 2017-08-15 中兴通讯股份有限公司 信息的传输、接收方法及装置
CN108322245A (zh) * 2017-01-17 2018-07-24 ***通信有限公司研究院 信道状态参考信号发送方法、装置及接收方法、移动终端

Also Published As

Publication number Publication date
CN112534749B (zh) 2024-05-24
US11811508B2 (en) 2023-11-07
US20210297202A1 (en) 2021-09-23
CN112534749A (zh) 2021-03-19

Similar Documents

Publication Publication Date Title
WO2017195653A1 (ja) 無線通信装置及び無線通信方法
WO2018128039A1 (ja) ユーザ装置及び基地局
WO2018128064A1 (ja) ユーザ装置、基地局及びランダムアクセス方法
WO2018142978A1 (ja) 基地局及び同期信号送信方法
WO2018203411A1 (ja) ユーザ装置、基地局及びランダムアクセス方法
CN111557117B (zh) 用户装置以及前导码发送方法
WO2019062539A1 (zh) Sps的激活确定方法以及用户设备
WO2018083863A1 (ja) ユーザ装置
WO2018084126A1 (ja) ユーザ装置及び基地局
US11469926B2 (en) Method for transmitting signals and corresponding terminals, and base stations
JPWO2019003324A1 (ja) ユーザ装置、基地局及びランダムアクセス制御方法
WO2019064604A1 (ja) 基地局及びユーザ装置
WO2019064603A1 (ja) ユーザ装置及び基地局装置
WO2020029182A1 (zh) 用于传输参考信号的方法及设备
US20210360728A1 (en) Terminal, radio communication system, and communication method
WO2019146574A1 (ja) ユーザ装置及びプリアンブル送信方法
WO2020014843A1 (zh) 通信方法及相应的用户终端、基站
WO2019140557A9 (zh) 无线通信方法、用户设备和基站
US12022346B2 (en) Terminal with interrupt time during handover
US11234257B2 (en) User equipment, base station, and uplink transmission timing control method
US20220393844A1 (en) Terminal and communication method
WO2020170404A1 (ja) ユーザ装置
US20230284181A1 (en) Terminal and communication method
US20240090054A1 (en) Terminal and communication method
WO2019180849A1 (ja) 基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18929079

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18929079

Country of ref document: EP

Kind code of ref document: A1