WO2020029088A1 - 一种资源分配指示方法及装置、基站及终端 - Google Patents

一种资源分配指示方法及装置、基站及终端 Download PDF

Info

Publication number
WO2020029088A1
WO2020029088A1 PCT/CN2018/099231 CN2018099231W WO2020029088A1 WO 2020029088 A1 WO2020029088 A1 WO 2020029088A1 CN 2018099231 W CN2018099231 W CN 2018099231W WO 2020029088 A1 WO2020029088 A1 WO 2020029088A1
Authority
WO
WIPO (PCT)
Prior art keywords
allocation
prb
base station
resource allocation
narrowband
Prior art date
Application number
PCT/CN2018/099231
Other languages
English (en)
French (fr)
Inventor
牟勤
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2018/099231 priority Critical patent/WO2020029088A1/zh
Priority to CN202111314738.1A priority patent/CN113891478A/zh
Priority to CN201880001272.XA priority patent/CN109196936B/zh
Publication of WO2020029088A1 publication Critical patent/WO2020029088A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/20Negotiating bandwidth
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a method and device for indicating resource allocation, a base station, and a terminal.
  • the MTC terminal may be specified to perform signaling or data processing only in a narrow band (that is, a subband in the system broadband). Therefore, the MTC terminal may be called a narrowband terminal.
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • MTC Machine Type Communication
  • the base station may send resource indication information (such as control information DCI) to the narrowband terminal through a control channel, so as to schedule the narrowband terminal to perform data transmission in the current narrowband.
  • resource indication information such as control information DCI
  • the entire system bandwidth can be divided into multiple narrowbands.
  • the base station may first allocate one narrowband among a plurality of narrowbands, and then further allocate a physical resource block (PRB) in the allocated narrowband.
  • PRB physical resource block
  • a PRB resource allocation indication field needs to be generated at the base station side and sent to the narrowband terminal through DCI.
  • the narrowband bandwidth that can be supported is getting larger and larger. Therefore, the number of supported PRBs is also increasing, that is, the number of bits required for the PRB resource allocation indicator field is also increasing. This requires more resources for DCI.
  • the present disclosure provides a method and device for indicating resource allocation, a base station, and a terminal.
  • a resource allocation indication method is provided.
  • the method is applied to a base station based on machine type communication MTC, and includes: limiting an allocation amount of a physical resource block PRB in a narrow band allocated by the base station to a terminal and / Or the allocation position; determining the number of bits occupied by the PRB resource allocation indication domain in the downlink control information DCI according to the allocation amount and / or the allocation position; based on the number of bits, establishing the PRB resource allocation indication domain and the narrowband Mapping relationship between PRB allocation amount and allocation position.
  • the limiting the allocation amount of the physical resource block PRB in the narrowband allocated by the base station to the terminal includes: setting the allocation amount of the PRB in the narrowband allowed by the base station to the terminal to be at least one preset value.
  • the preset value is greater than or equal to a first threshold.
  • the restricting the allocation position of the physical resource block PRB in the narrow band allocated by the base station to the terminal includes: setting the allocation position of the PRB in the narrow band allowed by the base station to the terminal starting from a fixed position in the narrow band. Multiple consecutive positions of the starting position.
  • the limiting the allocation position of the physical resource block PRB in the narrowband allocated by the base station to the terminal includes: setting the allocation position of the PRB in the narrowband allowed by the base station to the terminal to be multiple non-continuous fixed in the narrowband. position.
  • determining the number of bits occupied by the PRB resource allocation indicator domain in the downlink control information DCI according to the allocated amount and / or the allocated position includes: according to the allocated amount and / or The allocation position determines the number of different combinations of the allocation amount and the allocation position; and calculates the number of bits required by the PRB resource allocation indicator field in the downlink control information (DCI) according to the number.
  • the method further includes: determining Before limiting the PRB allocation amount and / or allocation position, the number of original bits occupied by the PRB resource allocation indication domain in DCI; determining that the number of bits occupied by the PRB resource allocation indication domain in DCI relative to The number of bits compressed by the original number of bits; using the compressed number of bits to indicate resource indication information for the MTC physical downlink control channel MPDCCH to continuously schedule multiple data blocks.
  • the resource indication information includes at least one of the following: the number of the data blocks, and indication information about whether the data blocks are new data.
  • the method further includes: determining, by the base station according to the mapping relationship and the amount of resources required by the terminal, a PRB resource allocation indication field corresponding to the PRB in the narrowband allocated to the terminal.
  • the method further includes: generating resource indication information of the MTC physical downlink control channel MPDCCH to continuously schedule multiple data blocks.
  • the method further includes: sending a DCI including the PRB resource allocation indication domain and the resource indication information to the terminal.
  • a resource allocation indication method including: a terminal receiving a DCI including a PRB resource allocation indication field; and using the mapping relationship established by the resource allocation indication method to the PRB resource allocation indication field Analyze to determine the PRB allocation amount and allocation position in the narrowband allocated by the base station.
  • a base station is provided.
  • the base station is used for machine type communication MTC, and includes: an allocation data processing module for limiting a physical resource block PRB allocation amount and And / or allocation position; a bit number determination module, configured to determine the number of bits occupied by the PRB resource allocation indicator domain in the downlink control information DCI according to the allocation amount and / or the allocation position; and a mapping relationship establishment module, based on The number of bits establishes a mapping relationship between the PRB resource allocation indicator field and the PRB allocation amount and allocation position in the narrowband.
  • the limiting the allocation amount of the physical resource block PRB in the narrowband allocated by the base station to the terminal includes: setting the allocation amount of the PRB in the narrowband allowed by the base station to the terminal to be at least one preset value.
  • the preset value is greater than or equal to a first threshold.
  • the restricting the allocation position of the physical resource block PRB in the narrow band allocated by the base station to the terminal includes: setting the allocation position of the PRB in the narrow band allowed by the base station to the terminal starting from a fixed position in the narrow band. Multiple consecutive positions of the starting position.
  • the limiting the allocation position of the physical resource block PRB in the narrowband allocated by the base station to the terminal includes: setting the allocation position of the PRB in the narrowband allowed by the base station to the terminal to be multiple non-continuous fixed in the narrowband. position.
  • determining the number of bits occupied by the PRB resource allocation indicator domain in the downlink control information DCI according to the allocated amount and / or the allocated position includes: according to the allocated amount and / or The allocation position determines the number of different combinations of the allocation amount and the allocation position; and calculates the number of bits required by the PRB resource allocation indicator field in the downlink control information (DCI) according to the number.
  • the base station further includes: an original bit number determining module, configured to determine, before limiting an allocation amount and / or an allocation position of the PRB, that the PRB resource allocation indication domain is identified in the DCI.
  • the number of occupied original bits a compressed bit determination module configured to determine the number of bits occupied by the PRB resource allocation indicator domain in the DCI relative to the number of compressed bits of the original bits; a compressed bit use module for utilizing The number of compressed bits indicates resource indication information of the MTC physical downlink control channel MPDCCH that continuously schedules multiple data blocks.
  • the resource indication information includes at least one of the following: the number of the data blocks, and indication information about whether the data blocks are new data.
  • the base station further includes: an indication domain generation module, configured to determine a PRB resource allocation corresponding to a PRB in a narrowband allocated to the terminal according to the mapping relationship and an amount of resources required by the terminal. Indication domain.
  • the base station further includes: a resource indication information generating module, configured to generate resource indication information for the MTC physical downlink control channel MPDCCH to continuously schedule multiple data blocks.
  • the base station further includes: an information sending module, configured to send a DCI including the PRB resource allocation indication field and the resource indication information to the terminal.
  • a terminal including: a DCI receiving module for receiving a DCI including a PRB resource allocation indication field; a data analysis module for utilizing a mapping relationship established by the above resource allocation indication method
  • the PRB resource allocation indication field is analyzed to determine the PRB allocation amount and allocation position in the narrowband allocated by the base station.
  • a resource allocation instruction device including: a processor; a memory for storing processor-executable instructions; wherein the processor is configured to: The allocation amount and / or allocation position of the physical resource block PRB in the narrowband; determining the number of bits occupied by the PRB resource allocation indicator domain in the downlink control information DCI according to the allocation amount and / or the allocation position; based on the number of bits , Establishing a mapping relationship between the PRB resource allocation indicator field and the PRB allocation amount and allocation position in the narrowband.
  • a resource allocation instruction device including: a processor; a memory for storing processor-executable instructions; wherein the processor is configured to: receive a PRB resource allocation instruction DCI of the domain; using the mapping relationship established by the above resource allocation indication method to parse the PRB resource allocation indication domain to determine the amount and location of PRB allocation in the narrowband allocated by the base station.
  • a non-transitory computer-readable storage medium is provided, and when an instruction in the storage medium is executed by a processor, the processor is enabled to execute the foregoing method.
  • the technical solution provided by the embodiments of the present disclosure may include the following beneficial effects:
  • the provided resource allocation indication method can compress the PRB resource allocation indication by limiting the allocation amount and / or allocation position of the physical resource block PRB in the narrowband allocated by the base station to the terminal.
  • Fig. 1 is a flow chart showing a method for instructing resource allocation according to an exemplary embodiment.
  • Fig. 2 is a flow chart showing a method for instructing resource allocation according to an exemplary embodiment.
  • Fig. 3 is a flow chart showing a method for instructing resource allocation according to an exemplary embodiment.
  • Fig. 4 is a block diagram of a base station according to an exemplary embodiment.
  • Fig. 5 is a flow chart showing a method for instructing resource allocation according to an exemplary embodiment.
  • Fig. 6 is a block diagram of a base station according to an exemplary embodiment.
  • Fig. 7 is a block diagram of a device according to an exemplary embodiment.
  • Fig. 8 is a block diagram showing a device according to an exemplary embodiment.
  • the working bandwidth of the narrowband terminal is 1.4MHz.
  • one narrowband contains 6 PRBs, that is, the MTC can support the communication of 6 PRBs.
  • the PRB resource allocation indication domain requires 5 bits of resources. Table 1 is the mapping relationship between the 5-bit PRB resource allocation indicator field and the specific resource allocation mode.
  • the working bandwidth of narrowband terminals can also break through the current 1.4MHz, such as 3MHz, 5MHz, or even 10MHz, 20MHz.
  • a narrowband may include 25 PRBs, and for a bandwidth of 20MHz, a narrowband may include 100 PRBs.
  • the PRB resource allocation indicator field requires more bits. For DCI, Relatively large resource overhead.
  • the inventors studied the design method of the existing PRB resource allocation indication field, and proposed a new design scheme of the PRB resource allocation indication field.
  • This scheme can limit the amount of PRB allocation and And / or allocation position, compressing the number of bits occupied by the PRB resource allocation indication domain in the DCI. Further, the number of compressed bits can be shifted for other uses.
  • FIG. 1 is a method flowchart of an embodiment of a resource allocation indication method provided by the present disclosure.
  • the present application provides method operation steps as shown in the following embodiments or the accompanying drawings, more or less operation steps may be included in the method based on conventional or no creative labor.
  • the execution order of these steps is not limited to the execution order provided by the embodiments of the present disclosure.
  • FIG. 1 A specific embodiment of a resource allocation indication method provided in this application is shown in FIG. 1.
  • the method is applied to a base station based on machine type communication MTC, and may include:
  • step 101 an allocation amount and / or an allocation position of a physical resource block PRB in a narrowband allocated by a base station to a terminal is restricted.
  • step 103 the number of bits occupied by the PRB resource allocation indication domain in the downlink control information DCI is determined according to the allocation amount and / or the allocation position.
  • step 105 based on the number of bits, a mapping relationship between the PRB resource allocation indicator field and the PRB allocation amount and allocation position in the narrowband is established.
  • the resource allocation indication may be applied to a base station, and at the base station side, it is possible to limit the amount and / or location of PRB allocation in the narrow band allocated to the terminal.
  • the manner of limiting the amount of PRB allocation may include: setting the amount of PRB allocation in the narrowband that the base station allows to allocate to the terminal to at least one preset value. That is, the PRB allocation granularity allocated by the base station to the terminal may be allowed to be one or more preset allocation granularities. For example, for the case where the narrowband includes 6PRB, the granularity of PRB allocation can be 1, 3, and 6, that is, the number of PRBs allocated to the terminal by the base station each time is 1 or 3 or 6.
  • the number of PRBs allocated to the terminal by the base station is often large each time, so it can be set as The preset value is greater than or equal to the first threshold.
  • the preset value may be set to be greater than or equal to 4, that is, the number of PRBs allocated to the terminal by the base station each time is 4 or 5 or 6.
  • the allocation position of the physical resource block PRB in the narrow band allocated to the terminal by the base station may also be restricted.
  • the manner of restricting the PRB allocation position may include: setting a PRB allocation position in a narrowband that allows the base station to allocate to the terminal as a plurality of consecutive positions starting from a fixed position in the narrowband.
  • the numbers of the 6 PRBs are sequentially set to 1-6.
  • a narrowband PRB in the narrowband that the base station can allocate to the terminal can be set
  • the allocation position is one or more of 4 consecutive positions starting from the PRB of number 3.
  • the possible allocation positions include (3), (3,4), (3,4, 5), (3,4,5,6).
  • the manner of restricting the PRB allocation position may further include: setting a PRB allocation position in a narrowband that allows the base station to allocate to the terminal as a plurality of non-contiguous fixed positions in the narrowband.
  • the numbers of the 6 PRBs are sequentially set to 1-6.
  • a narrowband PRB in the narrowband that the base station can allocate to the terminal can be set
  • the allocation position is one or more of (1,2,4,6).
  • the allocation position can also limit the allocation amount and allocation position of the PRB at the same time.
  • the allocation position of PRBs can be restricted to the starting position of PRB number 3, and the allocation number is 3 or 4.
  • the restriction method for the PRB allocation amount and allocation position is not limited to the above examples.
  • the number of bits occupied by the PRB resource allocation indication domain in the downlink control information DCI according to the allocation amount and / or the allocation position may include the following: step:
  • step 201 according to the allocated amount and / or the allocated position, determine the number of different combination modes of the allocated amount and the allocated position;
  • step 203 the number of bits required for the PRB resource allocation indicator field in the downlink control information (DCI) is calculated according to the number.
  • the number of different combinations of allocation amount and allocation position may be determined according to the allocation amount and / or the allocation position.
  • the numbers of the 6 PRBs are sequentially set to 1-6. If the allocation granularity of the PRBs can be set to 4 and 6, a total of four different combinations can be obtained.
  • possible assignments can include (1,2,3,4), (2,3,4,5), (3,4,5,6), (1,2,3,4, 5,6).
  • a 2-bit PRB resource allocation indication field can be used to indicate the allocation of PRBs within a narrow band.
  • each PRB allocation amount is set to correspond to one allocation position, six different combination modes can be generated. Therefore, a 3-bit PRB resource allocation indication field can be used to indicate a narrow-band PRB allocation mode.
  • mapping relations may represent a one-to-one correspondence between a PRB resource allocation indicator field and a PRB allocation amount and allocation position in a narrowband.
  • the numbers of the 6 PRBs are sequentially set to 1-6, and if the PRB allocation granularity can be set to 4 and 6, a total of four different combinations can be obtained
  • the possible allocation methods can include (1,2,3,4), (2,3,4,5), (3,4,5,6), (1, 2,3,4,5,6), and set a one-to-one correspondence between the PRB resource allocation indication field, the PRB allocation amount, and the allocation position with different values.
  • Table 2 Mapping relationship between PRB resource allocation indication domain, PRB allocation amount, and allocation position
  • the numbers of 6 PRBs are set in sequence from 1-6, and each PRB allocation amount can be set to correspond to one allocation position, and then 6 different combinations can be generated
  • Table 3 a one-to-one correspondence between PRB resource allocation indication fields, PRB allocation amounts, and allocation positions can be set.
  • the numbers of the 6 PRBs are set to 1-6 in order, and the possible PRB allocation amount can be set to 3,4,5,6, and for each PRB allocation
  • the amount can also limit the allocation position, you can generate 4 different combinations, as shown in Table 4, you can set a different one-to-one correspondence between the PRB resource allocation indicator field and the PRB allocation amount and allocation position.
  • Table 4 Mapping relationship between PRB resource allocation indication domain, PRB allocation amount, and allocation position
  • the PRB resource allocation indication field may be used to indicate the position and number of PRB resources allocated by the base station to the terminal in a narrow band.
  • the positions and numbers of PRBs may be jointly encoded and generated.
  • the PRB resource allocation indication field may also be generated by other encoding methods, which is not limited in the present disclosure.
  • the mapping manner of the PRB resource allocation indication field, the PRB allocation amount, and the allocation position for different data is not limited to the above Table 2 -An example of Table 4.
  • the PRB corresponding to the PRB resource allocation indication field 00 may be an allocation method with a PRB starting position of 4 and an allocation amount of 3
  • the PRB corresponding to the PRB resource allocation indication field 11 may be An allocation manner in which the PRB start position is 1 and the allocation amount is 6.
  • the present disclosure does not limit the mapping manner of the PRB resource allocation indication field and the PRB allocation amount and allocation position.
  • the number of bits occupied by the PRB resource allocation indication domain in the downlink control information DCI may be compressed.
  • the compressed bit number may be used for other purposes.
  • the downlink control information DCI is determined. After the number of bits occupied, the method may further include the following steps:
  • step 301 before the allocation amount and / or allocation position of the PRB is limited, the number of original bits occupied by the PRB resource allocation indication domain in the DCI is determined.
  • step 303 it is determined that the number of bits occupied by the PRB resource allocation indication domain in the DCI is relative to the number of bits compressed by the original number of bits.
  • the compressed bit number is used to indicate resource indication information of the MTC physical downlink control channel MPDCCH for continuously scheduling multiple data blocks.
  • the number of original bits occupied by the PRB resource allocation indication domain in the DCI may be determined before the PRB allocation amount and / or allocation position is limited. For example, for the bandwidth of 6 PRBs, the number of original bits occupied by the PRB resource allocation indication domain in the DCI is 5 bits.
  • a part of the number of bits occupied by the PRB resource allocation indication domain in the DCI may be compressed (ie, reduced). For example, for the mapping relationship table shown in Table 2, if the PRB resource allocation indicator field requires 2 bits, the space of 3 bits is compressed. For the mapping relationship table shown in Table 3, where the PRB resource allocation indicator field requires 3 bits, then the compression 2 Bit space.
  • the compressed bit number may be used to indicate resource indication information for the MTC physical downlink control channel MPDCCH to continuously schedule multiple data blocks. Similar to traditional LTE scheduling, one MPDCCH in MTC schedules one MTC physical downlink shared channel MPDSCH, and MTC terminals need to receive and blindly detect MPDCCH before receiving or sending data. When the MTC terminal sends or receives a large data packet, it needs to be divided into multiple schedules to complete. In most cases, because the channel conditions are similar, the scheduling content of the MPDCCH multiple scheduling is similar. In this case, the user terminal still needs to demodulate the scheduling content of each scheduling of the MPDCCH, which consumes more power.
  • 3GPP release 16 proposes a technical method for continuously scheduling multiple uplink data blocks or downlink data blocks using MPDCCH.
  • an additional indication field needs to be introduced in the DCI.
  • the above-mentioned compressed bit number may be used to indicate resource indication information that the MPDCCH schedules multiple data blocks continuously.
  • the resource indication information may include at least one of the following: the number of the data blocks, and information indicating whether the data blocks are new data. Since the data block is divided into new data and retransmitted data, the foregoing compressed bit number can be used to indicate whether each data block is new data or retransmitted data.
  • the number of compressed bits is not limited to the resource indication information used to indicate that the MTC physical downlink control channel MPDCCH continuously schedules multiple data blocks, and can also be used in scenarios where bits in the DCI need to be occupied during the downlink communication process. This application does not limit this.
  • a PRB resource allocation indication domain corresponding to a PRB in a narrowband allocated to the terminal may also be determined according to the mapping relationship and an amount of resources required by a terminal.
  • the mapping relationship table corresponding to Table 3 is used as a rule. If it is determined that the amount of resources required by the terminal is 4 PRBs, it can be determined from Table 3 that the PRB resource allocation indication field is 010.
  • the resource indication information of the MPDCCH for continuously scheduling multiple data blocks may also be generated.
  • a DCI including the PRB resource allocation indication field and the resource indication information may also be sent to the terminal. Based on the above embodiments, it is possible to make the DCI contain richer information without increasing the DCI space.
  • the resource allocation indication method provided in this application can reduce the number of bits occupied by the PRB resource allocation indicator domain in the downlink control information DCI by limiting the allocation amount and / or allocation position of the physical resource block PRB in the narrowband allocated by the base station to the terminal.
  • FIG. 4 is a block diagram of a base station 400 according to an exemplary embodiment.
  • the base station includes an allocation data processing module 401, a bit number determination module 403, and a mapping relationship establishment module 405.
  • the allocation data processing module 401 is configured to limit an allocation amount and / or an allocation position of a physical resource block PRB in a narrowband allocated by a base station to a terminal;
  • the bit number determining module 403 is configured to determine the number of bits occupied by the PRB resource allocation indicator domain in the downlink control information DCI according to the allocated amount and / or the allocated position;
  • the trans-mapping relationship establishing module 405 is configured to establish a mapping relationship between the PRB resource allocation indicator field and the PRB allocation amount and allocation position in the narrowband based on the number of bits.
  • the limiting the allocation amount of the physical resource block PRB in the narrowband allocated by the base station to the terminal may include:
  • the allocation amount of the PRBs in the narrowband that the base station is allowed to allocate to the terminal is set to at least one preset value.
  • the preset value may be greater than or equal to a first threshold.
  • the allocation position of the physical resource block PRB in the narrowband that the restricted base station allocates to the terminal may include:
  • the allocation position of the physical resource block PRB in the narrowband that the restricted base station allocates to the terminal may include:
  • the PRB allocation position in the narrowband that allows the base station to allocate to the terminal is set as multiple non-contiguous fixed positions in the narrowband.
  • the determining the number of bits occupied by the PRB resource allocation indicator domain in the downlink control information DCI according to the allocation amount and / or the allocation position may include:
  • the number of bits required for the PRB resource allocation indication field in the downlink control information (DCI) is calculated according to the number.
  • the base station may further include:
  • An original bit number determining module configured to determine the original number of bits occupied by the PRB resource allocation indication domain in the DCI before limiting the PRB allocation amount and / or allocation position;
  • a compressed bit determination module configured to determine the number of bits occupied by the PRB resource allocation indication domain in the DCI relative to the number of bits compressed by the original number of bits;
  • the compressed bit use module is configured to use the compressed bit number to represent resource indication information of the MTC physical downlink control channel MPDCCH for continuously scheduling multiple data blocks.
  • the resource indication information may include at least one of the following: the number of the data blocks, and indication information of whether the data blocks are new data.
  • the base station may further include:
  • An indication domain generation module is configured to determine a PRB resource allocation indication domain corresponding to a PRB in a narrowband allocated to the terminal according to the mapping relationship and an amount of resources required by the terminal.
  • the base station may further include:
  • the resource indication information generating module is configured to generate resource indication information for the MTC physical downlink control channel MPDCCH to continuously schedule multiple data blocks.
  • the base station may further include:
  • An information sending module is configured to send a DCI including the PRB resource allocation indication domain and the resource indication information to the terminal.
  • the terminal may include a terminal device capable of accessing a communication network based on a network protocol.
  • a terminal device capable of accessing a communication network based on a network protocol.
  • it may include a mobile smart phone, a computer (including a laptop computer, a desktop computer), a tablet electronic device, a personal digital assistant (PDA), or a smart wearable device.
  • Fig. 5 is a flow chart showing a method for indicating resource allocation according to an exemplary embodiment. As shown in Fig. 5, the method includes:
  • step 501 the terminal receives a DCI including a PRB resource allocation indication field
  • step 503 the mapping relationship established by the resource allocation indication method according to any one of the foregoing embodiments is used to analyze the PRB resource allocation indication field to determine the allocation amount and allocation position of the PRB in the narrowband allocated by the base station.
  • the user terminal may use the mapping relationship described in any of the above embodiments to analyze the received PRB resource allocation indication field, thereby determining the allocation amount and allocation position of the PRB in the narrowband allocated by the base station.
  • the mapping relationship between the PRB resource allocation indication field, the PRB allocation amount, and the allocation position shown in Table 3 can be used to determine the allocation in the narrowband.
  • the resource amount is 3 PRBs, and the resource position is (4,5,6).
  • FIG. 6 is a block diagram of a terminal according to an exemplary embodiment.
  • the apparatus may include a DCI receiving module 601 and a data analysis module 603.
  • the DCI receiving module 601 is configured to receive a DCI including a PRB resource allocation indication field
  • the data analysis module 603 is configured to analyze the PRB resource allocation indication field by using the mapping relationship established by the resource allocation indication method described above, to determine the allocation amount and allocation position of the PRB in the narrowband allocated by the base station.
  • Fig. 7 is a block diagram of a device 700 for resource allocation indication according to an exemplary embodiment.
  • the apparatus 700 may be a mobile phone, a computer, a digital broadcasting terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, and the like.
  • the device 700 may include one or more of the following components: a processing component 702, a memory 704, a power component 706, a multimedia component 708, an audio component 710, an input / output (I / O) interface 712, a sensor component 714, And communication component 716.
  • the processing component 702 generally controls overall operations of the device 700, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 702 may include one or more processors 720 to execute instructions to complete all or part of the steps of the method described above.
  • the processing component 702 may include one or more modules to facilitate the interaction between the processing component 702 and other components.
  • the processing component 702 may include a multimedia module to facilitate the interaction between the multimedia component 708 and the processing component 702.
  • the memory 704 is configured to store various types of data to support operation at the device 700. Examples of such data include instructions for any application or method for operating on the device 700, contact data, phone book data, messages, pictures, videos, and the like.
  • the memory 704 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), Programming read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM Programming read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • the power supply assembly 706 provides power to various components of the apparatus 700.
  • the power component 706 may include a power management system, one or more power sources, and other components associated with generating, managing, and distributing power for the device 700.
  • the multimedia component 708 includes a screen that provides an output interface between the device 700 and a user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive an input signal from a user.
  • the touch panel includes one or more touch sensors to sense touch, swipe, and gestures on the touch panel. The touch sensor may not only sense a boundary of a touch or slide action, but also detect duration and pressure related to the touch or slide operation.
  • the multimedia component 708 includes a front camera and / or a rear camera. When the device 700 is in an operation mode, such as a shooting mode or a video mode, the front camera and / or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 710 is configured to output and / or input audio signals.
  • the audio component 710 includes a microphone (MIC) that is configured to receive an external audio signal when the device 700 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode.
  • the received audio signal may be further stored in the memory 704 or transmitted via the communication component 716.
  • the audio component 710 further includes a speaker for outputting an audio signal.
  • the I / O interface 712 provides an interface between the processing component 702 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to: a home button, a volume button, a start button, and a lock button.
  • the sensor component 714 includes one or more sensors for providing status assessment of various aspects of the device 700.
  • the sensor component 714 can detect the on / off state of the device 700 and the relative positioning of the components.
  • the component is the display and keypad of the device 700.
  • the sensor component 714 can also detect the change in the position of the device 700 or a component of the device 700 , The presence or absence of the user's contact with the device 700, the orientation or acceleration / deceleration of the device 700, and the temperature change of the device 700.
  • the sensor component 714 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • the sensor component 714 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 714 may further include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 716 is configured to facilitate wired or wireless communication between the apparatus 700 and other devices.
  • the device 700 may access a wireless network based on a communication standard, such as WiFi, 2G, or 3G, or a combination thereof.
  • the communication component 716 receives a broadcast signal or broadcast-related information from an external broadcast management system via a broadcast channel.
  • the communication component 716 further includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra wideband (UWB) technology, Bluetooth (BT) technology, and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra wideband
  • Bluetooth Bluetooth
  • the apparatus 700 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor, or other electronic component is implemented to perform the above method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor, or other electronic component is implemented to perform the above method.
  • a non-transitory computer-readable storage medium including instructions may be executed by the processor 720 of the device 700 to complete the foregoing method.
  • the non-transitory computer-readable storage medium may be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, an optical data storage device, and the like.
  • Fig. 8 is a block diagram of a device 800 for indicating resource allocation according to an exemplary embodiment.
  • the device 800 may be provided as a server.
  • the apparatus 800 includes a processing component 822, which further includes one or more processors, and a memory resource represented by a memory 832, for storing instructions executable by the processing component 822, such as an application program.
  • the application program stored in the memory 832 may include one or more modules each corresponding to a set of instructions.
  • the processing component 822 is configured to execute instructions to perform the method described in any one of the above embodiments.
  • the device 800 may also include a power component 826 configured to perform power management of the device 800, a wired or wireless network interface 850 configured to connect the device 800 to a network, and an input / output (I / O) interface 858.
  • the device 800 can operate based on an operating system stored in the memory 832, such as Windows ServerTM, Mac OSXTM, UnixTM, LinuxTM, FreeBSDTM, or the like.
  • a non-transitory computer-readable storage medium including instructions may be executed by the processing component 822 of the device 800 to complete the above method.
  • the non-transitory computer-readable storage medium may be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, an optical data storage device, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开是关于一种资源分配指示方法及装置、基站及终端。所述方法应用于基于机器类型通信MTC的基站,包括:限制基站分配给终端的窄带中物理资源块PRB的分配量和/或分配位置;根据所述分配量和/或所述分配位置确定PRB资源分配指示域在下行控制信息DCI中所占用的比特数;基于所述比特数,建立所述PRB资源分配指示域与窄带中PRB的分配量、分配位置之间的映射关系。利用本公开通过的实施例方法,可以压缩PRB资源分配指示域在下行控制信息DCI中所占用的空间。

Description

一种资源分配指示方法及装置、基站及终端 技术领域
本公开涉及通信技术领域,尤其涉及一种资源分配指示方法及装置、基站及终端。
背景技术
在无线通信***如长期演进(Long Term Evolution,LTE)***和先进的长期演进(Long Term Evolution Advanced,LTE-A)***中,支持终端数量较多的机器型通信(Machine Type Communications,MTC)应用时,为降低MTC终端的成本,可以规定所述MTC终端只能在窄带(即***宽带中的一个子带)内进行信令或数据处理,因此所述MTC终端可以称之为窄带终端。
相关技术中,基站可以通过控制信道向窄带终端发送资源指示信息(如下行控制信息DCI),用以调度所述窄带终端在当前窄带内进行数据传输。在LTE***中,为了支持MTC窄带通信方式,可以将整个***带宽划分为多个窄带。基站在为MTC终端分配带宽的过程中,可以首先分配多个窄带中的一个窄带,随后在所分配的窄带中进一步分配物理资源块(Physical Resource Block,PRB)。基于此,在相关技术中,为了使得窄带终端能够确定出PRB在窄带中的位置以及PRB的数量,需要在基站端生成PRB资源分配指示域,并通过DCI发送至窄带终端。在相关技术中,为了表达PRB在窄带中的位置信息以及数量信息所有可能的组合方式,通常需要在DCI中分配较多的比特数用于表达PRB资源分配指示域。但是,随着窄带终端性能的提升,可以支持的窄带带宽越来越大,因此,支持的PRB数量也越来越多,也就是说,PRB资源分配指示域需要的比特数也越来越多,这对DCI来说,需要消耗更多的资源。
因此,相关技术中亟需一种高效的PRB资源分配指示方式,从而降低PRB资源分配指示域在DCI中的消耗。
发明内容
为克服相关技术中存在的问题,本公开提供一种资源分配指示方法及装置、基站及终端。
根据本公开实施例的第一方面,提供一种资源分配指示方法,所述方法应用于基于机器类型通信MTC的基站,包括:限制基站分配给终端的窄带中物理资源块PRB的分配量和/或分配位置;根据所述分配量和/或所述分配位置确定PRB资源分配指示域在下行控制信息DCI中所占用的比特数;基于所述比特数,建立所述PRB资源分配指示域与窄带中PRB的分配量、分配位置之间的映射关系。
在一种可能的实现方式中,所述限制基站分配给终端的窄带中物理资源块PRB的分配量包括:设置允许基站分配给终端的窄带中PRB的分配量为至少一种预设值。
在一种可能的实现方式中,所述预设值大于等于第一阈值。
在一种可能的实现方式中,所述限制基站分配给终端的窄带中物理资源块PRB的分配位置包括:设置允许基站分配给终端的窄带中PRB的分配位置为以窄带中的固定位置为起始位置的连续多个位置。
在一种可能的实现方式中,所述限制基站分配给终端的窄带中物理资源块PRB的分配位置包括:设置允许基站分配给终端的窄带中PRB的分配位置为窄带中多个非连续的固定位置。
在一种可能的实现方式中,所述根据所述分配量和/或所述分配位置确定PRB资源分配指示域在下行控制信息DCI中所占用的比特数包括:根据所述分配量和/或所述分配位置,确定分配量和分配位置不同的组合方式的数量;根据所述数量计算PRB资源分配指示域在下行控制信息(DCI)中所需要的比特数。
在一种可能的实现方式中,在所述根据所述分配量和/或所述分配位置确定PRB资源分配指示域在下行控制信息DCI中所占用的比特数之后,所述方法还包括:确定在限制所述PRB的分配量和/或分配位置之前,所述PRB资源分配指示域在DCI中所占用的原比特数;确定所述PRB资源分配指示域在DCI中所占用的比特数相对于所述原比特数所压缩的比特数;利用所述压缩的比特数表示MTC物理下行控制信道MPDCCH连续调度多个数据块的资源指示信息。
在一种可能的实现方式中,所述资源指示信息包括下述中的至少一种:所述数据块的数量、所述数据块是否为新数据的指示信息。
在一种可能的实现方式中,还包括:基站根据所述映射关系以及终端所需的资源量,确定分配给所述终端的窄带中PRB对应的PRB资源分配指示域。
在一种可能的实现方式中,还包括:生成MTC物理下行控制信道MPDCCH连续调度多个数据块的资源指示信息。
在一种可能的实现方式中,还包括:将包含所述PRB资源分配指示域和所述资源指示信息的DCI发送至所述终端。
根据本公开实施例的第二方面,提供一种资源分配指示方法,包括:终端接收包含PRB资源分配指示域的DCI;利用上述资源分配指示方法所建立的映射关系对所述PRB资源分配指示域进行解析,确定基站所分配的窄带中PRB的分配量和分配位置。
根据本公开实施例的第三方面,提供一种基站,所述基站用于机器类型通信MTC,包括:分配数据处理模块,用于限制基站分配给终端的窄带中物理资源块PRB的分配量和/或分配位置;比特数确定模块,用于根据所述分配量和/或所述分配位置确定PRB资源分配指示域在下行控制信息DCI中所占用的比特数;映射关系建立模块,用于基于所述比特数,建立所述PRB资源分配指示域与窄带中PRB的分配量、分配位置之间的映射关系。
在一种可能的实现方式中,所述限制基站分配给终端的窄带中物理资源块PRB的分配量包括:设置允许基站分配给终端的窄带中PRB的分配量为至少一种预设值。
在一种可能的实现方式中,所述预设值大于等于第一阈值。
在一种可能的实现方式中,所述限制基站分配给终端的窄带中物理资源块PRB的分配位置包括:设置允许基站分配给终端的窄带中PRB的分配位置为以窄带中的固定位置为起始位置的连续多个位置。
在一种可能的实现方式中,所述限制基站分配给终端的窄带中物理资源块PRB的分配位置包括:设置允许基站分配给终端的窄带中PRB的分配位置为窄带中多个非连续的固定位置。
在一种可能的实现方式中,所述根据所述分配量和/或所述分配位置确定PRB资源分配指示域在下行控制信息DCI中所占用的比特数包括:根据所述分配量和/或所述分配位置,确定分配量和分配位置不同的组合方式的数量;根据所述数量计算PRB资源分配指示域在下行控制信息(DCI)中所需要的比特数。
在一种可能的实现方式中,所述基站还包括:原比特数确定模块,用于确定在限制所述PRB的分配量和/或分配位置之前,所述PRB资源分配指示域在DCI中所占用的原比特数;压缩比特确定模块,用于确定所述PRB资源分配指示域在DCI中所占用的比特数相对于所述原比特数所压缩的比特数;压缩比特使用模块,用于利用所述压缩的比特数表示MTC物理下行控制信道MPDCCH连续调度多个数据块的资源指示信息。
在一种可能的实现方式中,所述资源指示信息包括下述中的至少一种:所述数据块的数量、所述数据块是否为新数据的指示信息。
在一种可能的实现方式中,所述基站还包括:指示域生成模块,用于根据所述映射关系以及终端所需的资源量,确定分配给所述终端的窄带中PRB对应的PRB资源分配指示域。
在一种可能的实现方式中,所述基站还包括:资源指示信息生成模块,用于生成MTC物理下行控制信道MPDCCH连续调度多个数据块的资源指示信息。
在一种可能的实现方式中,所述基站还包括:信息发送模块,用于将包含所述PRB资源分配指示域和所述资源指示信息的DCI发送至所述终端。
根据本公开实施例的第四方面,提供一种终端,包括:DCI接收模块,用于接收包含PRB资源分配指示域的DCI;数据解析模块,用于利用上述资源分配指示方法所建立的映射关系对所述PRB资源分配指示域进行解析,确定基站所分配的窄带中PRB的分配量和分配位置。
根据本公开实施例的第五方面,提供一种资源分配指示装置,包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器被配置为:限制基站分配给终端的窄带中物理资源块PRB的分配量和/或分配位置;根据所述分配量和/或所述分配位置确定PRB资源分配指示域在下行控制信息DCI中所占用的比特数;基于所述比特数,建立所述PRB资源分配指示域与窄带中PRB的分配量、分配位置之间的映射关系。
根据本公开实施例的第六方面,提供一种资源分配指示装置,包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器被配置为:接收包含PRB资源分配指 示域的DCI;利用上述资源分配指示方法所建立的映射关系对所述PRB资源分配指示域进行解析,确定基站所分配的窄带中PRB的分配量和分配位置。
根据本公开实施例的第七方面,提供一种非临时性计算机可读存储介质,当所述存储介质中的指令由处理器执行时,使得处理器能够执行上述方法。
本公开的实施例提供的技术方案可以包括以下有益效果:提供的资源分配指示方法,可以通过限制基站分配给终端的窄带中物理资源块PRB的分配量和/或分配位置,压缩PRB资源分配指示域在下行控制信息DCI中所占用的空间。通过本公开通过的技术方案,不仅可以优化MTC中资源分配的方式,还可以将压缩的空间利用在下行通信中其他需要空间的场景下,实现在不增加DCI占用空间的前提下,使得DCI中包含更加丰富的信息。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是根据一示例性实施例示出的一种资源分配指示方法的流程图。
图2是根据一示例性实施例示出的一种资源分配指示方法的流程图。
图3是根据一示例性实施例示出的一种资源分配指示方法的流程图。
图4是根据一示例性实施例示出的一种基站的框图。
图5是根据一示例性实施例示出的一种资源分配指示方法的流程图。
图6是根据一示例性实施例示出的一种基站的框图。
图7是根据一示例性实施例示出的一种装置的框图。
图8是根据一示例性实施例示出的一种装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
为了方便本领域技术人员理解本申请实施例提供的技术方案,下面先对技术方案实现的技术环境进行说明。
目前,在LTE***中,由于通信传输速率的限制,窄带终端的工作带宽为1.4MHz,在1.4MHz的带宽中,一个窄带中包含6个PRB,即MTC能够支持6个PRB的通信。在一个示例中,对于6个PRB的带宽,在MTC覆盖增强模式A(Coverage Enhancement Mode A)中,PRB资源分配指示域需要5bit的资源。表1是5bit的PRB资源分配指示域与具体资源分配方式的映射关系。
表1 PRB资源分配指示域与分配方式的关系映射表
Figure PCTCN2018099231-appb-000001
如上所述,随着MTC终端性能的提升,例如突破现有的通信传输速率,那么,窄带终端的工作带宽也可以突破现在的1.4MHz,如提升至3MHz、5MHz,甚至提升至10MHz、20MHz,对于5MHz的带宽,一个窄带中可以包括25个PRB,对于20MHz的带宽,一个窄带中则可以包括100个PRB,基于此,PRB资源分配指示域则需要更多的比特数,对于DCI来说是比较大的资源开销。
基于类似于上文描述的实际技术需求,发明人研究了已有的PRB资源分配指示域的设计方式,提出了新的PRB资源分配指示域的设计方案,该方案能够通过限制PRB的分配量和/或分配位置,压缩PRB资源分配指示域在DCI中所占用的比特数。进一步地,还可以将压缩的比特数移作他用。
下面结合附图对本申请所述的资源分配指示方法进行详细的说明。图1是本公开提供的资源分配指示方法的一种实施例的方法流程图。虽然本申请提供了如下述实施例或附图所示的方法操作步骤,但基于常规或者无需创造性的劳动在所述方法中可以包括更多或者更少的操作步骤。在逻辑性上不存在必要因果关系的步骤中,这些步骤的执行顺序不限于 本公开实施例提供的执行顺序。
具体的本申请提供的资源分配指示方法的一种实施例如图1所示,所述方法应用于基于机器类型通信MTC的基站,可以包括:
步骤101中:限制基站分配给终端的窄带中物理资源块PRB的分配量和/或分配位置。
步骤103中:根据所述分配量和/或所述分配位置确定PRB资源分配指示域在下行控制信息DCI中所占用的比特数。
步骤105中:基于所述比特数,建立所述PRB资源分配指示域与窄带中PRB的分配量、分配位置之间的映射关系。
本实施例中,所述资源分配指示可以应用于基站,在基站端,可以限制分配给终端的窄带中PRB的分配量和/或分配位置。在一个实施例中,限制PRB分配量的方式可以包括:设置允许基站分配给终端的窄带中PRB的分配量为至少一种预设值。也就是说,可以允许基站分配给终端的PRB分配粒度为一种或者多种预设的分配粒度。例如,对于窄带中包括6PRB的情况而言,PRB的分配粒度可以为1、3和6,即每次基站分配给终端的PRB数量为1或者3或者6。在本公开的一个实施例中,基于很多应用场景中针对大数据块的传输,如多数据块TB调度的场景中,每次基站分配给终端的PRB数量往往较多,因此,可以设置所述预设值大于等于第一阈值。在一个示例中,对于窄带中包括6PRB的情况而言,可以设置所述预设值大于等于4,即每次基站分配给终端的PRB数量为4或者5或者6。通过限制PRB分配量的方式,可以减少基站给终端分配PRB的方式,进而降低生成PRB资源分配指示域所需的比特数。
在本公开的实施例中,还可以限制基站分配给终端的窄带中物理资源块PRB的分配位置。在一个实施例中,限制PRB分配位置的方式可以包括:设置允许基站分配给终端的窄带中PRB的分配位置为以窄带中的固定位置为起始位置的连续多个位置。在一个示例中,对于窄带中包括6PRB的情况而言,依次设置6个PRB的编号为1-6,那么,在本实施例提供的技术方案中,可以设置允许基站分配给终端的窄带中PRB的分配位置为以编号3的PRB为起始位置的连续4个位置中的一个或者多个,在该示例中,可能的分配位置包括(3)、(3,4)、(3,4,5)、(3,4,5,6)。在另一个实施例中,所述限制PRB分配位置的方式还可以包括:设置允许基站分配给终端的窄带中PRB的分配位置为窄带中多个非连续的固定位置。在一个示例中,对于窄带中包括6PRB的情况而言,依次设置6个PRB的编号为1-6,那么,在本实施例提供的技术方案中,可以设置允许基站分配给终端的窄带中PRB的分配位置为(1,2,4,6)中的一个或者多个。
需要说明的是,由于限制PRB的分配量和现实PRB的分配位置是“和/或”的关系,因此,在本公开的技术方案中,可以只限制PRB的分配量,也可以只限制PRB的分配位置,也可以同时限制PRB的分配量和分配位置。在同时限制PRB的分配量和分配位置的方式中,例如,可以限制PRB的分配位置为以编号3的PRB为起始位置,分配数量为3或者4。当然,对于PRB分配量和分配位置的限制方式不限于上述举例,所属领域技术人员在本申请技术精髓的启示下,还可能做出其它变更,但只要其实现的功能和效果与本 申请相同或相似,均应涵盖于本申请保护范围内。
在本公开的一个实施例中,如图2所示,所述根据所述分配量和/或所述分配位置确定PRB资源分配指示域在下行控制信息DCI中所占用的比特数可以包括下述步骤:
步骤201中:根据所述分配量和/或所述分配位置,确定分配量和分配位置不同的组合方式的数量;
步骤203中:根据所述数量计算PRB资源分配指示域在下行控制信息(DCI)中所需要的比特数。
本实施例中,在确定限制后的PRB分配量和分配位置之后,可以根据所述分配量和/或所述分配位置,确定分配量和分配位置不同的组合方式的数量。在一个示例中,对于窄带中包括6PRB的情况而言,依次设置6个PRB的编号为1-6,若设置PRB的分配粒度可以为4和6,则一共可以获取四种不同的组合方式,在该示例中,可能的分配方式可以包括(1,2,3,4)、(2,3,4,5)、(3,4,5,6)、(1,2,3,4,5,6)。基于上述四种不同的组合方式,可以利用2比特的PRB资源分配指示域指示窄带内PRB的分配方式。在另一个示例中,若设置每种PRB分配量对应于一种分配位置,则可以生成6种不同的组合方式,因此,可以利用3比特的PRB资源分配指示域指示窄带内PRB的分配方式。
本实施例中,在确定出所述PRB资源分配指示域所需要的比特数之后,可以基于所述比特数,建立所述PRB资源分配指示域与窄带中PRB的分配量、分配位置之间的映射关系。所述映射关系可以表示PRB资源分配指示域与窄带中PRB的分配量、分配位置之间的一一对应关系。下面提供几个示例具体说明建立所述映射关系的方式。在一个示例中,对于窄带中包括6PRB的情况而言,依次设置6个PRB的编号为1-6,若设置PRB的分配粒度可以为4和6,则一共可以获取四种不同的组合方式,在该示例中,如表2所示,可能的分配方式可以包括(1,2,3,4)、(2,3,4,5)、(3,4,5,6)、(1,2,3,4,5,6),并设置不同数值的PRB资源分配指示域与PRB分配量、分配位置之间的一一对应关系。
表2 PRB资源分配指示域与PRB分配量、分配位置之间的映射关系表
Figure PCTCN2018099231-appb-000002
在另一个示例中,对于窄带中包括6PRB的情况而言,依次设置6个PRB的编号为1-6,可以设置每种PRB分配量对应于一种分配位置,则可以生成6种不同的组合方式,具体如表3所示,可以设置不同数值的PRB资源分配指示域与PRB分配量、分配位置之间的一一对应关系。
表3 PRB资源分配指示域与PRB分配量、分配位置之间的映射关系表
Figure PCTCN2018099231-appb-000003
在另一个示例中,对于窄带中包括6PRB的情况而言,依次设置6个PRB的编号为1-6,可以设置可能的PRB分配量为3,4,5,6,同时对于每种PRB分配量还可以限制分配位置,则可以生成4种不同的组合方式,具体如表4所示,可以设置不同数值的PRB资源分配指示域与PRB分配量、分配位置之间的一一对应关系。
表4 PRB资源分配指示域与PRB分配量、分配位置之间的映射关系表
Figure PCTCN2018099231-appb-000004
需要说明的是,所述PRB资源分配指示域可以用于表示基站分配给终端的PRB资源在窄带中的位置及数量。在生成所述PRB资源分配指示域的过程中,可以对PRB的位置以及数量进行联合编码生成。但是,在本公开的其他实施例中,还可以采用其他编码方式生成所述PRB资源分配指示域,本公开对此不做限制。在上述建立所述PRB资源分配指示域与PRB分配量、分配位置之间的映射关系的过程中,对于不同数据的PRB资源分配指示域与PRB分配量和分配位置的映射方式不限于上述表2-表4的举例,例如在表4中,PRB资源分配指示域00对应的PRB可以为PRB起始位置为4,分配量为3的分配方式,而PRB资源分配指示域11对应的PRB可以为PRB起始位置为1,分配量为6的分配方式,本公开对PRB资源分配指示域与PRB分配量和分配位置的映射方式不做限制。
在本公开的实施例中,在对PRB的分配量和/或分配位置进行限制之后,可以压缩PRB资源分配指示域在下行控制信息DCI中所占用的比特数。在一个实施例中,可以将压缩的比特数移作他用,如图3所示,在所述根据所述分配量和/或所述分配位置确定PRB资源分配指示域在下行控制信息DCI中所占用的比特数之后,所述方法还可以包括以下步骤:
步骤301中:确定在限制所述PRB的分配量和/或分配位置之前,所述PRB资源分 配指示域在DCI中所占用的原比特数。
步骤303中:确定所述PRB资源分配指示域在DCI中所占用的比特数相对于所述原比特数所压缩的比特数。
步骤305中:利用所述压缩的比特数表示MTC物理下行控制信道MPDCCH连续调度多个数据块的资源指示信息。
本实施例中,可以确定在限制所述PRB的分配量和/或分配位置之前,所述PRB资源分配指示域在DCI中所占用的原比特数。例如,对于6个PRB的带宽,PRB资源分配指示域在DCI中所占用的原比特数为5bit。在对PRB的分配量和/或分配位置进行限制之后,可以压缩(即减少)PRB资源分配指示域在DCI中所占用的一部分比特数。例如,对于表2所示的映射关系表,PRB资源分配指示域需要2比特,则压缩3比特的空间,对于表3所示的映射关系表,PRB资源分配指示域需要3比特,则压缩2比特的空间。
在本公开的一个实施例中,可以将压缩的比特数用于表示MTC物理下行控制信道MPDCCH连续调度多个数据块的资源指示信息。与传统LTE的调度类似,MTC中一个MPDCCH调度一个MTC物理下行共享信道MPDSCH,MTC终端在接收或者发送数据前需要接收和盲检MPDCCH。当MTC终端发送或者接收一个较大的数据包时,需要分成多次调度才能完成。而在大多数情况下,由于信道状况相似,MPDCCH多次调度的调度内容也是相似的,在此情况下,用户终端仍然需要解调MPDCCH每次调度的调度内容,消耗较多的功率。基于此,为了降低用户终端消耗的功率,3GPP release 16提出利用MPDCCH连续调度多个上行数据块或者下行数据块的技术方式。为了支持多数据块的调度方式,需要在DCI中引入额外的指示域。在本实施例中,可以将上述压缩的比特数用于表示MPDCCH连续调度多个数据块的资源指示信息。所述资源指示信息可以包括下述中的至少一种:所述数据块的数量、所述数据块是否为新数据的指示信息。由于所述数据块有新数据和重传数据之分,可以利用上述压缩的比特数指示出各个数据块为新数据还是重传数据。
需要说明的是,所述压缩的比特数不限于上述用于表示MTC物理下行控制信道MPDCCH连续调度多个数据块的资源指示信息,还可以用于下行通信过程中需要占用DCI中比特位的场景,本申请对此不做限制。
在本公开的一个实施例中,在确定所述映射关系之后,还可以根据所述映射关系以及终端所需的资源量,确定分配给所述终端的窄带中PRB对应的PRB资源分配指示域。在一个示例中,以表3对应的映射关系表为规则,若确定终端所需的资源量为4个PRB,则从表3可以确定PRB资源分配指示域为010。在另一个实施例中,还可以生成MPDCCH连续调度多个数据块的资源指示信息。在一个实施例中,还可以将包含所述PRB资源分配指示域和所述资源指示信息的DCI发送至所述终端。基于以上实施例,可以实现在不增加DCI空间的前提下,使得DCI包含更加丰富的信息。
本申请提供的资源分配指示方法,可以通过限制基站分配给终端的窄带中物理资源块PRB的分配量和/或分配位置,压缩PRB资源分配指示域在下行控制信息DCI中所占用 的比特数。通过本公开通过的技术方案,不仅可以优化MTC中资源分配的方式,还可以将压缩的空间利用在下行通信中其他需要空间的场景下,实现在不增加DCI占用空间的前提下,使得DCI中包含更加丰富的信息。
本公开另一方面还提供一种基站,图4是根据一示例性实施例示出的基站400的框图。参照图4,该基站包括分配数据处理模块401,比特数确定模块403和映射关系建立模块405。
该分配数据处理模块401被配置为用于限制基站分配给终端的窄带中物理资源块PRB的分配量和/或分配位置;
该比特数确定模块403被配置为用于根据所述分配量和/或所述分配位置确定PRB资源分配指示域在下行控制信息DCI中所占用的比特数;
该转映射关系建立模块405被配置为用于基于所述比特数,建立所述PRB资源分配指示域与窄带中PRB的分配量、分配位置之间的映射关系。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
可选的,在本公开的一个实施例中,所述限制基站分配给终端的窄带中物理资源块PRB的分配量可以包括:
设置允许基站分配给终端的窄带中PRB的分配量为至少一种预设值。
可选的,在本公开的一个实施例中,所述预设值可以大于等于第一阈值。
可选的,在本公开的一个实施例中,所述限制基站分配给终端的窄带中物理资源块PRB的分配位置可以包括:
设置允许基站分配给终端的窄带中PRB的分配位置为以窄带中的固定位置为起始位置的连续多个位置。
可选的,在本公开的一个实施例中,所述限制基站分配给终端的窄带中物理资源块PRB的分配位置可以包括:
设置允许基站分配给终端的窄带中PRB的分配位置为窄带中多个非连续的固定位置。
可选的,在本公开的一个实施例中,所述根据所述分配量和/或所述分配位置确定PRB资源分配指示域在下行控制信息DCI中所占用的比特数可以包括:
根据所述分配量和/或所述分配位置,确定分配量和分配位置不同的组合方式的数量;
根据所述数量计算PRB资源分配指示域在下行控制信息(DCI)中所需要的比特数。
可选的,在本公开的一个实施例中,所述基站还可以包括:
原比特数确定模块,用于确定在限制所述PRB的分配量和/或分配位置之前,所述PRB资源分配指示域在DCI中所占用的原比特数;
压缩比特确定模块,用于确定所述PRB资源分配指示域在DCI中所占用的比特数相对于所述原比特数所压缩的比特数;
压缩比特使用模块,用于利用所述压缩的比特数表示MTC物理下行控制信道MPDCCH连续调度多个数据块的资源指示信息。
可选的,在本公开的一个实施例中,所述资源指示信息可以包括下述中的至少一种:所述数据块的数量、所述数据块是否为新数据的指示信息。
可选的,在本公开的一个实施例中,所述基站还可以包括:
指示域生成模块,用于根据所述映射关系以及终端所需的资源量,确定分配给所述终端的窄带中PRB对应的PRB资源分配指示域。
可选的,在本公开的一个实施例中,所述基站还可以包括:
资源指示信息生成模块,用于生成MTC物理下行控制信道MPDCCH连续调度多个数据块的资源指示信息。
可选的,在本公开的一个实施例中,所述基站还可以包括:
信息发送模块,用于将包含所述PRB资源分配指示域和所述资源指示信息的DCI发送至所述终端。
本公开另一方面还基于用户终端提供一种资源分配指示方法,所述终端可以包括能够基于网络协议接入通信网络的终端设备。例如可以包括移动智能电话、计算机(包括笔记本电脑,台式电脑)、平板电子设备、个人数字助理(PDA)或者智能可穿戴设备等。图5是根据一示例性实施例示出的一种资源分配指示方法的流程图,如图5所示,所述方法包括:
步骤501中:终端接收包含PRB资源分配指示域的DCI;
步骤503中:利用上述任一实施例所述资源分配指示方法所建立的映射关系对所述PRB资源分配指示域进行解析,确定基站所分配的窄带中PRB的分配量和分配位置。
本实施例中,在用户终端,可以利用上述任一实施例所述的映射关系对接收到的PRB资源分配指示域进行解析,从而确定基站所分配的窄带中PRB的分配量和分配位置。在一个示例中,若用户终端接收到PRB资源分配指示域的数值为011,利用表3所示的PRB资源分配指示域与PRB分配量、分配位置之间的映射关系表,可以确定窄带中分配的资源量为3个PRB,资源位置为(4,5,6)。
本公开另一方面还提供一种终端,图6是根据一示例性实施例示出的终端的框图。参照图6,该装置可以包括DCI接收模块601和数据解析模块603。
该DCI接收模块601被配置为用于接收包含PRB资源分配指示域的DCI;
该数据解析模块603被配置为用于利用上述的资源分配指示方法所建立的映射关系对所述PRB资源分配指示域进行解析,确定基站所分配的窄带中PRB的分配量和分配位置。
图7是根据一示例性实施例示出的一种用于资源分配指示的装置700的框图。例如, 装置700可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图7,装置700可以包括以下一个或多个组件:处理组件702,存储器704,电源组件706,多媒体组件708,音频组件710,输入/输出(I/O)的接口712,传感器组件714,以及通信组件716。
处理组件702通常控制装置700的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件702可以包括一个或多个处理器720来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件702可以包括一个或多个模块,便于处理组件702和其他组件之间的交互。例如,处理组件702可以包括多媒体模块,以方便多媒体组件708和处理组件702之间的交互。
存储器704被配置为存储各种类型的数据以支持在装置700的操作。这些数据的示例包括用于在装置700上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器704可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件706为装置700的各种组件提供电力。电源组件706可以包括电源管理***,一个或多个电源,及其他与为装置700生成、管理和分配电力相关联的组件。
多媒体组件708包括在所述装置700和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件708包括一个前置摄像头和/或后置摄像头。当装置700处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜***或具有焦距和光学变焦能力。
音频组件710被配置为输出和/或输入音频信号。例如,音频组件710包括一个麦克风(MIC),当装置700处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器704或经由通信组件716发送。在一些实施例中,音频组件710还包括一个扬声器,用于输出音频信号。
I/O接口712为处理组件702和***接口模块之间提供接口,上述***接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件714包括一个或多个传感器,用于为装置700提供各个方面的状态评估。例如,传感器组件714可以检测到装置700的打开/关闭状态,组件的相对定位,例如所 述组件为装置700的显示器和小键盘,传感器组件714还可以检测装置700或装置700一个组件的位置改变,用户与装置700接触的存在或不存在,装置700方位或加速/减速和装置700的温度变化。传感器组件714可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件714还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件714还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件716被配置为便于装置700和其他设备之间有线或无线方式的通信。装置700可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件716经由广播信道接收来自外部广播管理***的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件716还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置700可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器704,上述指令可由装置700的处理器720执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
图8是根据一示例性实施例示出的一种用于资源分配指示的装置800的框图。例如,装置800可以被提供为一服务器。参照图8,装置800包括处理组件822,其进一步包括一个或多个处理器,以及由存储器832所代表的存储器资源,用于存储可由处理组件822的执行的指令,例如应用程序。存储器832中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件822被配置为执行指令,以执行上述任一实施例所述的方法。
装置800还可以包括一个电源组件826被配置为执行装置800的电源管理,一个有线或无线网络接口850被配置为将装置800连接到网络,和一个输入输出(I/O)接口858。装置800可以操作基于存储在存储器832的操作***,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器832,上述指令可由装置800的处理组件822执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (28)

  1. 一种资源分配指示方法,其特征在于,所述方法应用于基于机器类型通信MTC的基站,包括:
    限制基站分配给终端的窄带中物理资源块PRB的分配量和/或分配位置;
    根据所述分配量和/或所述分配位置确定PRB资源分配指示域在下行控制信息DCI中所占用的比特数;
    基于所述比特数,建立所述PRB资源分配指示域与窄带中PRB的分配量、分配位置之间的映射关系。
  2. 根据权利要求1所述的资源分配指示方法,其特征在于,所述限制基站分配给终端的窄带中物理资源块PRB的分配量包括:
    设置允许基站分配给终端的窄带中PRB的分配量为至少一种预设值。
  3. 根据权利要求2所述的资源分配指示方法,其特征在于,所述预设值大于等于第一阈值。
  4. 根据权利要求1所述的资源分配指示方法,其特征在于,所述限制基站分配给终端的窄带中物理资源块PRB的分配位置包括:
    设置允许基站分配给终端的窄带中PRB的分配位置为以窄带中的固定位置为起始位置的连续多个位置。
  5. 根据权利要求1所述的资源分配指示方法,其特征在于,所述限制基站分配给终端的窄带中物理资源块PRB的分配位置包括:
    设置允许基站分配给终端的窄带中PRB的分配位置为窄带中多个非连续的固定位置。
  6. 根据权利要求1所述的资源分配指示方法,其特征在于,所述根据所述分配量和/或所述分配位置确定PRB资源分配指示域在下行控制信息DCI中所占用的比特数包括:
    根据所述分配量和/或所述分配位置,确定分配量和分配位置不同的组合方式的数量;
    根据所述数量计算PRB资源分配指示域在下行控制信息(DCI)中所需要的比特数。
  7. 根据权利要求1所述的资源分配指示方法,其特征在于,在所述根据所述分配量和/或所述分配位置确定PRB资源分配指示域在下行控制信息DCI中所占用的比特数之后,所述方法还包括:
    确定在限制所述PRB的分配量和/或分配位置之前,所述PRB资源分配指示域在DCI 中所占用的原比特数;
    确定所述PRB资源分配指示域在DCI中所占用的比特数相对于所述原比特数所压缩的比特数;
    利用所述压缩的比特数表示MTC物理下行控制信道MPDCCH连续调度多个数据块的资源指示信息。
  8. 根据权利要求7所述的资源分配指示方法,其特征在于,所述资源指示信息包括下述中的至少一种:所述数据块的数量、所述数据块是否为新数据的指示信息。
  9. 根据要求1-8中任意一项所述的资源分配指示方法,其特征在于,还包括:
    基站根据所述映射关系以及终端所需的资源量,确定分配给所述终端的窄带中PRB对应的PRB资源分配指示域。
  10. 根据权利要求9所述的资源分配指示方法,其特征在于,还包括:
    生成MTC物理下行控制信道MPDCCH连续调度多个数据块的资源指示信息。
  11. 根据权利要求10所述的资源分配指示方法,其特征在于,还包括:
    将包含所述PRB资源分配指示域和所述资源指示信息的DCI发送至所述终端。
  12. 一种资源分配指示方法,其特征在于,包括:
    终端接收包含PRB资源分配指示域的DCI;
    利用权利要求1-11中任意一项所述资源分配指示方法所建立的映射关系对所述PRB资源分配指示域进行解析,确定基站所分配的窄带中PRB的分配量和分配位置。
  13. 一种基站,其特征在于,所述基站用于机器类型通信MTC,包括:
    分配数据处理模块,用于限制基站分配给终端的窄带中物理资源块PRB的分配量和/或分配位置;
    比特数确定模块,用于根据所述分配量和/或所述分配位置确定PRB资源分配指示域在下行控制信息DCI中所占用的比特数;
    映射关系建立模块,用于基于所述比特数,建立所述PRB资源分配指示域与窄带中PRB的分配量、分配位置之间的映射关系。
  14. 根据权利要求13所述的基站,其特征在于,所述限制基站分配给终端的窄带中物理资源块PRB的分配量包括:
    设置允许基站分配给终端的窄带中PRB的分配量为至少一种预设值。
  15. 根据权利要求14所述的基站,其特征在于,所述预设值大于等于第一阈值。
  16. 根据权利要求13所述的基站,其特征在于,所述限制基站分配给终端的窄带中物理资源块PRB的分配位置包括:
    设置允许基站分配给终端的窄带中PRB的分配位置为以窄带中的固定位置为起始位置的连续多个位置。
  17. 根据权利要求13所述的基站,其特征在于,所述限制基站分配给终端的窄带中物理资源块PRB的分配位置包括:
    设置允许基站分配给终端的窄带中PRB的分配位置为窄带中多个非连续的固定位置。
  18. 根据权利要求13所述的基站,其特征在于,所述根据所述分配量和/或所述分配位置确定PRB资源分配指示域在下行控制信息DCI中所占用的比特数包括:
    根据所述分配量和/或所述分配位置,确定分配量和分配位置不同的组合方式的数量;
    根据所述数量计算PRB资源分配指示域在下行控制信息(DCI)中所需要的比特数。
  19. 根据权利要求13所述的基站,其特征在于,所述基站还包括:
    原比特数确定模块,用于确定在限制所述PRB的分配量和/或分配位置之前,所述PRB资源分配指示域在DCI中所占用的原比特数;
    压缩比特确定模块,用于确定所述PRB资源分配指示域在DCI中所占用的比特数相对于所述原比特数所压缩的比特数;
    压缩比特使用模块,用于利用所述压缩的比特数表示MTC物理下行控制信道MPDCCH连续调度多个数据块的资源指示信息。
  20. 根据权利要求19所述的基站,其特征在于,所述资源指示信息包括下述中的至少一种:所述数据块的数量、所述数据块是否为新数据的指示信息。
  21. 根据要求13-20中任意一项所述的基站,其特征在于,所述基站还包括:
    指示域生成模块,用于根据所述映射关系以及终端所需的资源量,确定分配给所述终端的窄带中PRB对应的PRB资源分配指示域。
  22. 根据权利要求21所述的基站,其特征在于,所述基站还包括:
    资源指示信息生成模块,用于生成MTC物理下行控制信道MPDCCH连续调度多个数据块的资源指示信息。
  23. 根据权利要求22所述的基站,其特征在于,所述基站还包括:
    信息发送模块,用于将包含所述PRB资源分配指示域和所述资源指示信息的DCI发 送至所述终端。
  24. 一种终端,其特征在于,包括:
    DCI接收模块,用于接收包含PRB资源分配指示域的DCI;
    数据解析模块,用于利用权利要求1-11中任意一项所述资源分配指示方法所建立的映射关系对所述PRB资源分配指示域进行解析,确定基站所分配的窄带中PRB的分配量和分配位置。
  25. 一种资源分配指示装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    限制基站分配给终端的窄带中物理资源块PRB的分配量和/或分配位置;
    根据所述分配量和/或所述分配位置确定PRB资源分配指示域在下行控制信息DCI中所占用的比特数;
    基于所述比特数,建立所述PRB资源分配指示域与窄带中PRB的分配量、分配位置之间的映射关系。
  26. 一种资源分配指示装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    接收包含PRB资源分配指示域的DCI;
    利用权利要求1-11中任意一项所述资源分配指示方法所建立的映射关系对所述PRB资源分配指示域进行解析,确定基站所分配的窄带中PRB的分配量和分配位置。
  27. 一种非临时性计算机可读存储介质,当所述存储介质中的指令由处理器执行时,使得处理器能够执行权利要求1-11任意一项所述的方法。
  28. 一种非临时性计算机可读存储介质,当所述存储介质中的指令由处理器执行时,使得处理器能够执行权利要求12所述的方法。
PCT/CN2018/099231 2018-08-07 2018-08-07 一种资源分配指示方法及装置、基站及终端 WO2020029088A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2018/099231 WO2020029088A1 (zh) 2018-08-07 2018-08-07 一种资源分配指示方法及装置、基站及终端
CN202111314738.1A CN113891478A (zh) 2018-08-07 2018-08-07 一种资源分配指示方法及装置、基站及终端
CN201880001272.XA CN109196936B (zh) 2018-08-07 2018-08-07 一种资源分配指示方法及装置、基站及终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/099231 WO2020029088A1 (zh) 2018-08-07 2018-08-07 一种资源分配指示方法及装置、基站及终端

Publications (1)

Publication Number Publication Date
WO2020029088A1 true WO2020029088A1 (zh) 2020-02-13

Family

ID=64938160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/099231 WO2020029088A1 (zh) 2018-08-07 2018-08-07 一种资源分配指示方法及装置、基站及终端

Country Status (2)

Country Link
CN (2) CN113891478A (zh)
WO (1) WO2020029088A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3968555A4 (en) * 2019-05-09 2022-05-18 Beijing Xiaomi Mobile Software Co., Ltd. METHOD AND APPARATUS FOR TRANSMITTING DOWNLINK CONTROL INFORMATION AND READABLE STORAGE MEDIA
CN113780699B (zh) * 2020-06-17 2024-07-19 北京沃东天骏信息技术有限公司 资源分配方法、资源分配装置和电子设备
CN114978442A (zh) * 2021-02-19 2022-08-30 华为技术有限公司 一种资源映射方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102056299A (zh) * 2009-10-28 2011-05-11 北京三星通信技术研究有限公司 一种传输下行控制信令的方法和装置
CN103327615A (zh) * 2012-03-20 2013-09-25 华为技术有限公司 资源分配指示方法、资源分配方法及设备
CN106162889A (zh) * 2015-04-10 2016-11-23 中兴通讯股份有限公司 一种实现资源分配的方法和装置
WO2017209478A1 (en) * 2016-05-30 2017-12-07 Samsung Electronics Co., Ltd. Resource scheduling method and apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101605356B (zh) * 2008-06-12 2011-11-02 电信科学技术研究院 一种指示资源的方法、装置及***

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102056299A (zh) * 2009-10-28 2011-05-11 北京三星通信技术研究有限公司 一种传输下行控制信令的方法和装置
CN103327615A (zh) * 2012-03-20 2013-09-25 华为技术有限公司 资源分配指示方法、资源分配方法及设备
CN106162889A (zh) * 2015-04-10 2016-11-23 中兴通讯股份有限公司 一种实现资源分配的方法和装置
WO2017209478A1 (en) * 2016-05-30 2017-12-07 Samsung Electronics Co., Ltd. Resource scheduling method and apparatus

Also Published As

Publication number Publication date
CN109196936B (zh) 2021-12-07
CN109196936A (zh) 2019-01-11
CN113891478A (zh) 2022-01-04

Similar Documents

Publication Publication Date Title
US20210058948A1 (en) Uplink transmission method and apparatus
WO2019169634A1 (zh) 信息传输方法、装置、***及存储介质
WO2020014844A1 (zh) 信道监测方法、装置、***及存储介质
WO2019191948A1 (zh) 下行控制信息格式大小的确定方法及装置
CN107223358B (zh) 一种业务复用传输方法、装置及计算机可读存储介质
US11395309B2 (en) Method and device for allocating uplink resource and terminal
WO2020034072A1 (zh) 上行调度请求的发送方法、装置、设备及存储介质
WO2020143707A1 (zh) 一种上行传输资源选择方法、终端和存储介质
WO2018195910A1 (zh) 一种分配调度请求sr资源的方法和装置
WO2020029088A1 (zh) 一种资源分配指示方法及装置、基站及终端
WO2023240646A1 (zh) 小区确定、下行控制信息发送方法和装置
US11991719B2 (en) Method and device for allocating uplink resource, and terminal
WO2023240647A1 (zh) 调度确定、下行控制信息发送方法和装置
WO2018195720A1 (zh) 确定调制编码方式的方法及装置
WO2020019258A1 (zh) 下行控制信息发送方法、接收方法、装置及存储介质
US11910383B2 (en) Data transmission method, device, equipment, system and storage medium
WO2019205022A1 (zh) 信息指示、解读方法及装置、基站和用户设备
WO2019191878A1 (zh) 数据传输方法、装置、***及存储介质
CN109156025B (zh) 上行资源获取方法、装置及计算机可读存储介质
WO2024000541A1 (zh) 资源确定、多载波调度方法及装置、存储介质
WO2023123123A1 (zh) 一种频域资源确定方法、装置及存储介质
WO2023077446A1 (zh) 一种物理上行控制信道资源确定方法、装置及存储介质
WO2023279262A1 (zh) 一种消息配置方法、消息配置装置及存储介质
WO2022110028A1 (zh) 上行控制信息传输方法、装置及存储介质
WO2023097699A1 (zh) 一种srs触发方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18929157

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18929157

Country of ref document: EP

Kind code of ref document: A1