WO2020027273A1 - Load detector for actuator - Google Patents

Load detector for actuator Download PDF

Info

Publication number
WO2020027273A1
WO2020027273A1 PCT/JP2019/030261 JP2019030261W WO2020027273A1 WO 2020027273 A1 WO2020027273 A1 WO 2020027273A1 JP 2019030261 W JP2019030261 W JP 2019030261W WO 2020027273 A1 WO2020027273 A1 WO 2020027273A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
axis direction
work
strain gauge
motor
Prior art date
Application number
PCT/JP2019/030261
Other languages
French (fr)
Japanese (ja)
Inventor
林 茂樹
克也 福島
正志 石井
弘樹 丹羽
鈴木 明
和人 大賀
翔悟 和久田
聡史 原
智史 水野
Original Assignee
Thk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thk株式会社 filed Critical Thk株式会社
Publication of WO2020027273A1 publication Critical patent/WO2020027273A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/06Gripping heads and other end effectors with vacuum or magnetic holding means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes

Definitions

  • the present invention relates to a load detector for an actuator.
  • the work can be sucked to the shaft and the work can be picked up.
  • the work may vigorously collide with the shaft and be damaged, or the work may not be sucked.
  • the load pressing the work is too large, the work may be damaged. Therefore, it is desired to press the shaft against the work with an appropriate load.
  • the speed of the shaft is high when the shaft contacts the work, the work may be damaged by the collision of the shaft with the work. Therefore, it is desired to reduce the impact.
  • a suction member is provided at the tip of a shaft main body via a buffer member such as a spring (for example, see Patent Document 1). That is, when the suction member comes into contact with the work, the spring is contracted to reduce the impact. Thereafter, when the shaft further moves toward the work, the work is pressed with a load corresponding to the spring constant.
  • a buffer member such as a spring
  • the appropriate load may differ depending on the work.However, when the cushioning member as described above is provided, the load applied to the work is determined by the spring constant, so it is difficult to change the load applied to the work according to the work. there were. When adjusting the load applied to the work in such a configuration, for example, it is necessary to replace the buffer member. Further, in the case where the buffer member as described above is provided, the load applied to the work tends to vary, so that it is difficult to use the work for a work that requires a high-precision load adjustment. Here, if the load applied to the shaft and the work can be detected, the shaft can be controlled according to the detected load.
  • the present invention has been made in view of the various circumstances as described above, and an object of the present invention is to detect a load applied to a shaft and a work.
  • One aspect of the present invention is a linear motor having a shaft, a support portion rotatably supporting the shaft, and a stator and a mover, wherein the linear motor has a position relative to the stator.
  • a linear motor that moves the support section and the shaft in the direction of the central axis of the shaft by moving the mover in parallel with the central axis of the shaft;
  • a connection member that is at least a part of a member that connects the first and second portions, and a load detector that detects a force applied to the shaft in an actuator including: a strainer that is provided on the connection member and detects a strain of the connection member. It is a load detector provided with a gauge.
  • the load applied to the shaft and the work can be detected.
  • FIG. 2 is an external view of an actuator according to the embodiment.
  • FIG. 1 is a schematic configuration diagram illustrating an internal structure of an actuator according to an embodiment. It is sectional drawing which showed schematic structure of the shaft housing which concerns on embodiment, and the front-end
  • the support and the shaft are moved in the moving direction of the mover by the linear motor. Since the moving direction of the mover of the linear motor is parallel to the central axis direction of the shaft, the shaft moves in the central axis direction by driving the linear motor.
  • the linear motor is, for example, a linear motor.
  • the support portion is, for example, a rotation motor for rotating a shaft, or a bearing provided between a stator of the rotation motor and an output shaft of the rotation motor.
  • the mover of the linear motion motor is connected to the support via a connecting member. Note that a plurality of connection members may exist.
  • the mover of the linear motion motor and the connection member may be integrated, or the support portion and the connection member may be integrated.
  • the support portion rotatably supports the shaft regardless of the driving of the linear motor. Therefore, it is possible to individually move the shaft in the central axis direction and rotate the shaft around the central axis by the linear motion motor. When picking up the work, the linear motion motor moves the shaft until the shaft contacts the work.
  • connection member has a first member and a second member that are provided to be shifted in a direction of the central axis of the shaft, and the strain gauge is provided in each of the first member and the second member.
  • the shafts may be provided on surfaces parallel to each other in the same direction and orthogonal to the central axis of the shaft.
  • when the linear motor operates, heat is generated. Also, other devices provided in the actuator may generate heat. Due to such heat, the linear motion motor, the support portion, and the connection member may thermally expand. In this case, even if no load is applied to the shaft from the workpiece, distortion may occur in the first member and the second member. For example, if there is a temperature difference between a member to which one end of the first member and the second member is connected and a member to which the other end is connected, a difference may occur in the amount of expansion. In the following, a member to which one end of the first member and the second member is connected is described as a member having a large amount of expansion due to heat (a high expansion member), and a member to which the other end is connected is heat.
  • one of the strain gauge provided on the first member and the strain gauge provided on the second member has an output corresponding to the strain in the contracting direction and the other has an output corresponding to the strain in the extending direction. do.
  • the output of one strain gauge and the output of the other strain gauge are positive or negative.
  • the absolute amount is almost the same. Therefore, by connecting the outputs of the two strain gauges in parallel, the effects of thermal expansion are canceled each other, so that it is not necessary to separately perform correction according to the temperature. That is, it is possible to simply and accurately detect only the load applied to the shaft and the work.
  • the strain gauge provided on the first member and the strain gauge provided on the second member may be incorporated in different Wheatstone bridge circuits, respectively, and outputs of both Wheatstone bridge circuits may be connected in parallel. .
  • the effect of heat on the outputs of both strain gauges is canceled out, and the final output is an output corresponding to the load generated between the shaft and the work.
  • the support portion is a rotary motor having a stator and a rotor, and the rotor connected to the shaft rotates with respect to the stator of the rotary motor, thereby rotating the shaft.
  • a rotation motor that rotates around the central axis of the shaft, wherein the first member and the second member are two arms that connect the mover of the linear motion motor and the stator of the rotation motor.
  • the supporting portion may be a bearing provided between the stator of the rotary motor and the output shaft of the rotary motor.
  • the connecting member is a member (for example, a stator of the rotary motor) in contact with the bearing. It may be
  • FIG. 1 is an external view of an actuator 1 according to the present embodiment.
  • the actuator 1 has a housing 2 having a substantially rectangular parallelepiped outer shape, and a lid 200 is attached to the housing 2.
  • FIG. 2 is a schematic configuration diagram illustrating an internal structure of the actuator 1 according to the present embodiment.
  • a part of the shaft 10 is housed inside the housing 2.
  • the tip 10A side of the shaft 10 is formed to be hollow.
  • a material of the shaft 10 and the housing 2 for example, a metal (for example, aluminum) can be used, but a resin or the like can also be used.
  • an XYZ rectangular coordinate system is set, and the position of each member will be described with reference to the XYZ rectangular coordinate system.
  • the long side direction of the largest surface of the housing 2 and the direction of the central axis 100 of the shaft 10 are defined as the Z-axis direction
  • the short side direction of the largest surface of the housing 2 is defined as the X-axis direction
  • the direction perpendicular to the direction is defined as a Y-axis direction.
  • the Z-axis direction is also the vertical direction.
  • the upper side in the Z-axis direction in FIG. 2 is referred to as the upper side of the actuator 1, and the lower side in the Z-axis direction in FIG.
  • the right side in the X-axis direction in FIG. 2 is the right side of the actuator 1, and the left side in the X-axis direction in FIG.
  • the housing 2 is the near side of the actuator 1, and the far side in the Y-axis direction in FIG.
  • the housing 2 has a dimension in the Z-axis direction longer than a dimension in the X-axis direction, and a dimension in the X-axis direction is longer than a dimension in the Y-axis direction.
  • the housing 2 has an opening at a position corresponding to one surface (a surface on the near side in FIG. 2) orthogonal to the Y-axis direction, and this opening is closed by a lid 200.
  • the lid 200 is fixed to the housing 2 by, for example, screws.
  • a rotation motor 20 for rotating the shaft 10 around its central axis 100, and the shaft 10 in a direction along the central axis 100 (that is, the Z-axis direction) relative to the housing 2.
  • the linear motion motor 30 to be moved and the air control mechanism 60 are accommodated.
  • a shaft housing 50 into which the shaft 10 is inserted is attached to a lower end surface 202 of the housing 2 in the Z-axis direction.
  • the housing 2 has a recess 202B formed so as to be recessed from the lower end surface 202 toward the inside of the housing 2, and a part of the shaft housing 50 is inserted into the recess 202B.
  • a through-hole 2A is formed at the upper end of the concave portion 202B in the Z-axis direction in the Z-axis direction, and the shaft 10 is inserted through the through-hole 2A and the shaft housing 50.
  • a lower end portion 10A of the shaft 10 on the lower side in the Z-axis direction projects from the shaft housing 50 to the outside.
  • the shaft 10 is provided at the center of the housing 2 in the X-axis direction and the center of the housing 2 in the Y-axis direction. That is, the shaft 10 is provided such that the center axis of the housing 2 extending in the Z-axis direction through the center in the X-axis direction and the center in the Y-axis direction and the center axis 100 of the shaft 10 overlap.
  • the shaft 10 is linearly moved in the Z-axis direction by a linear motor 30 and is rotated around a central axis 100 by a rotary motor 20.
  • a base end 10B side of the shaft 10 opposite to the front end 10A (the upper end in the Z-axis direction) is housed in the housing 2 and connected to the output shaft 21 of the rotary motor 20.
  • the rotary motor 20 rotatably supports the shaft 10.
  • the center axis of the output shaft 21 of the rotary motor 20 matches the center axis 100 of the shaft 10.
  • the rotary motor 20 includes, in addition to the output shaft 21, a stator 22, a rotor 23 that rotates inside the stator 22, and a rotary encoder 24 that detects a rotation angle of the output shaft 21.
  • the output shaft 21 and the shaft 10 also rotate in conjunction with the stator 22.
  • the linear motor 30 has a stator 31 fixed to the housing 2 and a mover 32 that moves in the Z-axis direction relative to the stator 31.
  • the linear motor 30 is, for example, a linear motor.
  • the stator 31 is provided with a plurality of coils 31A
  • the mover 32 is provided with a plurality of permanent magnets 32A.
  • the coils 31A are arranged at a predetermined pitch in the Z-axis direction, and a plurality of coils 31A of the U, V, and W phases are provided as a set.
  • a moving magnetic field that moves linearly is generated by passing a three-phase armature current through the U, V, and W phase coils 31A, and the mover 32 is moved linearly with respect to the stator 31.
  • Move to The linear motor 30 is provided with a linear encoder 38 for detecting the relative position of the mover 32 with respect to the stator 31.
  • a permanent magnet may be provided on the stator 31 and a plurality of coils may be provided on the mover 32.
  • the mover 32 of the linear motor 30 and the stator 22 of the rotary motor 20 are connected via a linear table 33.
  • the translation table 33 is movable with the movement of the mover 32 of the translation motor 30.
  • the translation table 33 is guided by the translation guide device 34 in the Z-axis direction.
  • the linear motion guide device 34 has a rail 34A fixed to the housing 2 and a slider block 34B assembled to the rail 34A.
  • the rail 34A extends in the Z-axis direction, and the slider block 34B is configured to be movable in the Z-axis direction along the rail 34A.
  • the linear motion table 33 is fixed to the slider block 34B, and is movable in the Z-axis direction together with the slider block 34B.
  • the translation table 33 is connected to the mover 32 of the translation motor 30 via two connection arms 35.
  • the two connecting arms 35 connect both ends of the mover 32 in the Z-axis direction and both ends of the linear motion table 33 in the Z-axis direction.
  • the linear motion table 33 is connected to the stator 22 of the rotary motor 20 via two connection arms 36 on the center side of both ends.
  • the upper connecting arm 36 in the Z-axis direction is referred to as a first arm 36A
  • the lower connecting arm 36 in the Z-axis direction is referred to as a second arm 36B.
  • the connecting arm 36 has a square cross section.
  • a strain gauge 37 is fixed to a surface of each connecting arm 36 facing upward in the Z-axis direction.
  • the strain gauge 37 fixed to the first arm 36A is called a first strain gauge 37A
  • the strain gauge 37 fixed to the second arm 36B is called a second strain gauge 37B.
  • strain gauges 37 When the first strain gauge 37A and the second strain gauge 37B are not distinguished, they are simply referred to as strain gauges 37.
  • the two strain gauges 37 of the present embodiment are respectively provided on the surfaces of the connection arms 36 that face upward in the Z-axis direction. Instead, the two strain gauges 37 face downward of the connection arms 36 in the Z-axis direction. Each may be provided on the surface.
  • the air control mechanism 60 is a mechanism for generating a positive pressure or a negative pressure at the tip 10A of the shaft 10. That is, the air control mechanism 60 generates a negative pressure at the distal end portion 10A of the shaft 10 by sucking the air in the shaft 10 when the work W is picked up. Thereby, the work W is sucked to the tip portion 10A of the shaft 10. Further, by sending air into the shaft 10, a positive pressure is generated at the distal end 10 ⁇ / b> A of the shaft 10. Thereby, the work W is easily detached from the tip portion 10A of the shaft 10.
  • the air control mechanism 60 includes a positive pressure passage 61A (see a dashed line) through which positive-pressure air flows, a negative pressure passage 61B (see a two-dot chain line) through which negative-pressure air flows, and positive-pressure air and air. And a shared passage 61C (see broken line) shared by the negative pressure air.
  • One end of the positive pressure passage 61A is connected to a positive pressure connector 62A provided on the upper end surface 201 in the Z-axis direction of the housing 2, and the other end of the positive pressure passage 61A is connected to a positive pressure solenoid valve (hereinafter, a positive pressure solenoid valve). 63A).
  • the positive pressure solenoid valve 63A is opened and closed by a controller 7 described later.
  • the positive pressure connector 62A passes through the upper end surface 201 of the housing 2 in the Z-axis direction, and a tube connected to a pump or the like that discharges air is connected to the positive pressure connector 62A from the outside.
  • One end of the negative pressure passage 61B is connected to a negative pressure connector 62B provided on the upper end surface 201 in the Z-axis direction of the housing 2, and the other end of the negative pressure passage 61B is connected to a negative pressure solenoid valve (hereinafter, a negative pressure solenoid valve). 63B).
  • the negative pressure solenoid valve 63B is opened and closed by a controller 7 described later.
  • the one end of the negative pressure passage 61B is constituted by a tube 620, and the other end is constituted by a hole formed in the block 600.
  • the negative pressure connector 62B penetrates through the upper end surface 201 of the housing 2 in the Z-axis direction, and a tube connected to a pump or the like that sucks air is connected to the negative pressure connector 62B from outside.
  • the common passage 61C is constituted by a hole formed in the block 600.
  • One end of the common passage 61C branches into two and is connected to the positive pressure solenoid valve 63A and the negative pressure solenoid valve 63B.
  • the other end of the common passage 61C is an air which is a through hole formed in the housing 2. It is connected to the flow passage 202A.
  • the air flow passage 202A communicates with the shaft housing 50.
  • opening the negative pressure electromagnetic valve 63B and closing the positive pressure electromagnetic valve 63A the negative pressure passage 61B and the common passage 61C communicate with each other, so that a negative pressure is generated in the common passage 61C. Then, air is sucked from the inside of the shaft housing 50 through the air flow passage 202A.
  • the positive pressure passage 61A and the common passage 61C communicate with each other, so that a positive pressure is generated in the common passage 61C. Then, air is supplied into the shaft housing 50 via the air flow passage 202A.
  • the common passage 61C is provided with a pressure sensor 64 for detecting the pressure of the air in the common passage 61C and a flow sensor 65 for detecting the flow rate of the air in the common passage 61C.
  • a part of the positive pressure passage 61A and the negative pressure passage 61B is formed by a tube, and the other part is formed by a hole formed in the block 600.
  • All the passages can be constituted by tubes, or all the passages can be constituted by holes formed in the block 600.
  • All of the common passages can be constituted by tubes, or can be constituted by using tubes in combination.
  • the material of the tube 610 and the tube 620 may be a material having flexibility such as resin, or may be a material having no flexibility such as metal.
  • an atmospheric pressure may be supplied.
  • a connector serving as an air inlet for cooling the rotary motor 20 and a connector (hereinafter, referred to as an inlet connector 91A) serving as an outlet for air from the housing 2 are provided on the upper end surface 201 of the housing 2 in the Z-axis direction.
  • this is referred to as an outlet connector 91B).
  • the inlet connector 91A and the outlet connector 91B pass through the upper end surface 201 of the housing 2 so that air can flow therethrough.
  • a tube connected to a pump or the like that discharges air is connected to the inlet connector 91A from the outside of the housing 2, and a tube that discharges air flowing out of the housing 2 is connected to the outlet connector 91B from the outside of the housing 2.
  • a metal pipe (hereinafter, referred to as a cooling pipe 92) through which air for cooling the rotary motor 20 flows is provided inside the housing 2, and one end of the cooling pipe 92 is connected to the inlet connector 91A. It is connected.
  • the cooling pipe 92 extends from the inlet connector 91 ⁇ / b> A in the Z-axis direction to a position near the lower end surface 202 of the housing 2, is curved near the lower end surface 202, and is formed so that the other end faces the rotary motor 20.
  • the cooling pipe 92 penetrates through the inside of the stator 31 so as to remove heat from the coil 31A of the linear motor 30.
  • the coil 31A is arranged around the cooling pipe 92 so as to remove more heat from the coil 31A provided on the stator 31.
  • a connector 41 including an electric wire for supplying electric power and a signal line is connected to the upper end surface 201 of the housing 2 in the Z-axis direction.
  • the housing 2 is provided with a controller 7. Electric wires and signal lines drawn into the housing 2 from the connector 41 are connected to the controller 7.
  • the controller 7 includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and an EPROM (Erasable Programmable ROM), which are interconnected by a bus.
  • the EPROM stores various programs, various tables, and the like.
  • the CPU loads the program stored in the EPROM into the work area of the RAM and executes the program.
  • the rotation motor 20, the direct drive motor 30, the positive pressure solenoid valve 63A, the negative pressure solenoid valve 63B, and the like are controlled. You. As a result, the CPU realizes a function that meets a predetermined purpose. Further, output signals of the pressure sensor 64, the flow sensor 65, the strain gauge 37, the rotary encoder 24, and the linear encoder 38 are input to the controller 7.
  • FIG. 3 is a cross-sectional view showing a schematic configuration of the shaft housing 50 and the tip 10A of the shaft 10.
  • the shaft housing 50 has a housing body 51, two rings 52, a filter 53, and a filter stopper 54.
  • the housing body 51 has a through hole 51A through which the shaft 10 is inserted.
  • the through-hole 51A penetrates the housing body 51 in the Z-axis direction, and an upper end of the through-hole 51A in the Z-axis direction communicates with a through-hole 2A formed in the housing 2.
  • the diameter of the through hole 51A is larger than the outer diameter of the shaft 10. Therefore, a gap is provided between the inner surface of the through hole 51A and the outer surface of the shaft 10.
  • Both ends of the through hole 51A are provided with enlarged diameter portions 51B in which the diameter of the hole is enlarged. Rings 52 are fitted into the two enlarged diameter portions 51B, respectively.
  • the ring 52 is formed in a cylindrical shape, and the inner diameter of the ring 52 is slightly larger than the outer diameter of the shaft 10. Therefore, the shaft 10 can move inside the ring 52 in the Z-axis direction. Therefore, a gap is also formed between the inner surface of the ring 52 and the outer surface of the shaft 10. Therefore, the shaft 10 can move inside the ring 52 in the Z-axis direction, and the shaft 10 can rotate around the central axis 100 inside the ring 52.
  • the gap formed between the inner surface of the ring 52 and the outer surface of the shaft 10 is smaller than the gap formed between the inner surface of the through hole 51A excluding the enlarged diameter portion 51B and the outer surface of the shaft 10.
  • the upper ring 52 in the Z-axis direction is referred to as a first ring 52A
  • the lower ring 52 in the Z-axis direction is referred to as a second ring 52B.
  • the first ring 52A and the second ring 52B are not distinguished, they are simply referred to as the ring 52.
  • the material of the ring 52 for example, metal or resin can be used.
  • an overhang portion 511 is formed which extends in both the left and right directions in the X-axis direction.
  • the overhang portion 511 has a mounting surface 511A that is a surface parallel to the lower end surface 202 of the housing 2 and that comes into contact with the lower end surface 202 when the shaft housing 50 is mounted on the lower end surface 202 of the housing 2. Have been.
  • the mounting surface 511A is a surface orthogonal to the central axis 100.
  • a part 512 of the shaft housing 50 which is above the attachment surface 511 ⁇ / b> A in the Z-axis direction, fits into the concave portion 202 ⁇ / b> B formed in the housing 2. Is formed.
  • a gap is provided between the inner surface of the through hole 51A and the outer surface of the shaft 10.
  • an inner space that is a space surrounded by the inner surface of the through hole 51A, the outer surface of the shaft 10, the lower end surface of the first ring 52A, and the upper end surface of the second ring 52B. 500 are formed.
  • a control passage 501 is formed, which communicates with an opening of an air flow passage 202A formed in the lower end surface 202 of the housing 2 and the internal space 500 to serve as an air passage.
  • the control passage 501 is a space in which the first passage 501A extending in the X-axis direction, the second passage 501B extending in the Z-axis direction, the first passage 501A and the second passage 501B are connected, and in which the filter 53 is arranged. It has a certain filter section 501C. One end of the first passage 501A is connected to the internal space 500, and the other end is connected to the filter unit 501C. One end of the second passage 501B is open to the mounting surface 511A, and is positioned so as to be connected to the opening of the air flow passage 202A.
  • the filter unit 501C is provided with a filter 53 formed in a cylindrical shape.
  • the filter portion 501C is formed so as to be a cylindrical space extending in the X-axis direction so that the center axis of the first passage 501A coincides with the center axis.
  • the inner diameter of the filter portion 501C is substantially equal to the outer diameter of the filter 53.
  • the filter 53 is inserted into the filter unit 501C in the X-axis direction. After the filter 53 is inserted into the filter unit 501C, the filter stopper 54 closes the end of the filter unit 501C that has become the insertion port of the filter 53.
  • the other end of the second passage 501B is connected to the filter section 501C from the outer peripheral surface side of the filter 53.
  • the other end of the first passage 501A communicates with the center of the filter 53. Therefore, the air flowing between the first passage 501A and the second passage 501B passes through the filter 53. Therefore, for example, even when foreign matter is sucked into the internal space 500 together with air when a negative pressure is generated at the distal end portion 10A, the foreign matter is collected by the filter 53.
  • a groove 501D is formed at one end of the second passage 501B so as to hold the sealant.
  • two bolt holes 51G through which the bolts are inserted when the shaft housing 50 is fixed to the housing 2 using bolts are formed.
  • the bolt hole 51G penetrates the projecting portion 511 in the Z-axis direction and opens on the mounting surface 511A.
  • a hollow portion 11 is formed on the tip 10A side of the shaft 10 so that the shaft 10 becomes hollow.
  • One end of the hollow part 11 is open at the tip part 10A.
  • a communication hole 12 that connects the internal space 500 and the hollow portion 11 in the X-axis direction is formed.
  • the communication hole 12 is formed such that the internal space 500 and the hollow portion 11 communicate with each other over the entire range of the stroke when the shaft 10 is moved in the Z-axis direction by the linear motor 30. Therefore, the distal end portion 10A of the shaft 10 and the air control mechanism 60 communicate with each other through the hollow portion 11, the communication hole 12, the internal space 500, the control passage 501, and the air flow passage 202A.
  • the communication hole 12 may be formed in the Y-axis direction in addition to the X-axis direction.
  • the communication hole 12 is always in the internal space regardless of the position of the shaft 10 in the Z-axis direction. 500 and the hollow portion 11 are communicated. Further, when the rotation motor 20 is driven to rotate the shaft 10 around the central axis 100, the communication hole 12 is always in contact with the internal space 500 regardless of the rotation angle of the shaft 10 around the central axis 100. The hollow portion 11 is communicated. Therefore, regardless of the state of the shaft 10, the communication between the hollow portion 11 and the internal space 500 is maintained, so that the hollow portion 11 always communicates with the air control mechanism 60.
  • this gap is smaller than the gap forming the internal space 500 (that is, the gap formed between the inner surface of the through hole 51A and the outer surface of the shaft 10). Therefore, by closing the positive pressure solenoid valve 63A and opening the negative pressure solenoid valve 63B in the air control mechanism 60, even if air is sucked from the interior space 500, the air gap between the inner surface of the ring 52 and the outer surface of the shaft 10 is maintained. The flow rate of the air flowing through the gap can be suppressed. Thereby, a negative pressure capable of picking up the work W can be generated at the distal end portion 10A of the shaft 10.
  • the pick and place of the work W using the actuator 1 will be described.
  • the pick and place is performed by the controller 7 executing a predetermined program.
  • the positive pressure solenoid valve 63A and the negative pressure solenoid valve 63B are both closed until the shaft 10 comes into contact with the work W.
  • the pressure at the distal end 10A of the shaft 10 becomes the atmospheric pressure.
  • the shaft 10 is moved downward in the Z-axis direction by the linear motor 30.
  • the linear motor 30 is stopped.
  • the shaft 10 in a state where the work W is attracted to the distal end portion 10A is moved downward by the linear motor 30 in the Z-axis direction.
  • the movement of the shaft 10 is stopped by stopping the linear motor 30.
  • closing the negative pressure electromagnetic valve 63B and opening the positive pressure electromagnetic valve 63A a positive pressure is generated at the tip 10A of the shaft 10.
  • the distal end portion 10A of the shaft 10 is separated from the workpiece W by moving the shaft 10 upward in the Z-axis direction by the linear motor 30.
  • the strain gauge 37 when the work W is picked up, the fact that the tip 10A of the shaft 10 has come into contact with the work W is detected using the strain gauge 37.
  • this method will be described.
  • the work W is grounded when the work W is placed.
  • the tip 10A of the shaft 10 contacts the work W and the tip 10A pushes the work W, a load is generated between the shaft 10 and the work W. That is, the shaft 10 receives a force from the work W due to a reaction when the shaft 10 applies a force to the work W.
  • the force that the shaft 10 receives from the work W acts in a direction that generates strain on the connecting arm 36. That is, at this time, the connection arm 36 is distorted. This strain is detected by the strain gauge 37.
  • the strain detected by the strain gauge 37 has a correlation with the force that the shaft 10 receives from the workpiece W. For this reason, based on the detection value of the strain gauge 37, the force that the shaft 10 receives from the work W, that is, the load generated between the shaft 10 and the work W can be detected.
  • the relationship between the detected value of the strain gauge and the load can be obtained in advance by experiment, simulation, or the like.
  • the tip 10A of the shaft 10 May be determined, or when the detected load is equal to or more than a predetermined load in consideration of the influence of an error or the like, it may be determined that the distal end portion 10A of the shaft 10 has contacted the workpiece W.
  • the predetermined load is a threshold value at which it is determined that the shaft 10 has contacted the workpiece W.
  • the predetermined load may be set as a load that can more reliably pick up the work W while suppressing damage to the work W. Further, the predetermined load can be changed according to the type of the work W.
  • the change in the resistance value due to the strain of the strain gauge 37 is extremely small, it is extracted as a voltage change using a Wheatstone bridge circuit.
  • the output of the bridge circuit related to the first strain gauge 37A and the output of the bridge circuit related to the second strain gauge 37B are connected in parallel. As described above, by connecting the outputs of both bridge circuits in parallel, a voltage change that eliminates the influence of temperature as described below is obtained.
  • the loads detected by the first strain gauge 37A and the second strain gauge 37B are substantially the same.
  • the temperature of the linear motor 30 is higher than the temperature of the rotary motor 20.
  • the amount of expansion of the translation table 33 in the Z-axis direction is larger than the amount of expansion of the rotary motor 20 in the Z-axis direction.
  • the first arm 36A and the second arm 36B are not parallel, and the distance between the first arm 36A and the second arm 36B is larger on the side of the linear motor 30 than on the side of the rotary motor 20.
  • the first strain gauge 37A contracts and the second strain gauge 37B expands.
  • the output of the first strain gauge 37A apparently indicates the occurrence of a load
  • the output of the second strain gauge 37B apparently indicates the occurrence of a negative load.
  • the force generated by the difference between the amount of expansion of the translation table 33 in the Z-axis direction and the amount of expansion of the rotary motor 20 in the Z-axis direction is equally applied to the first arm 36A and the second arm 36B in the opposite direction.
  • the output of the first strain gauge 37A and the output of the second strain gauge 37B have the same absolute value and different signs. Therefore, by connecting the outputs of both strain gauges in parallel, the outputs due to the influence of temperature can be canceled each other, so that it is not necessary to separately perform correction according to temperature. Therefore, it is possible to easily and accurately detect the load. In this way, by connecting the outputs of both bridge circuits in parallel, it is possible to obtain a voltage change that eliminates the influence of temperature, and this voltage change corresponds to the load generated between the shaft 10 and the work W. Value.
  • two strain gauges 37 are provided, but only one of the first strain gauge 37A and the second strain gauge 37B may be provided instead.
  • the detected value of the strain gauge is corrected according to the temperature using a known technique. Even when one strain gauge 37 is provided, the output of the strain gauge 37 is a value corresponding to the load generated between the shaft 10 and the workpiece W. It is possible to detect a load generated between the workpiece 10 and the work W.
  • the strain gauge 37 on the connecting arm 36, it is possible to detect that the shaft 10 is in contact with the workpiece W.
  • a spring or a highly flexible member for example, rubber
  • the force applied to the work W without lowering the speed of the shaft 10 can be adjusted more precisely.
  • the work W can be picked up more reliably. For example, when picking up the work W, the work W can be more reliably picked up by generating a negative pressure in the hollow portion 11 in a state where the work W is pressed against the distal end portion 10A of the shaft 10. When the work W is sucked, the work W can be prevented from violently colliding with the shaft 10 and being damaged. On the other hand, if the load pressing the work W is too large, the work W may be damaged. Therefore, by applying an appropriate load to the work W while detecting the load applied to the work W, it is possible to more reliably pick up the work W while suppressing damage to the work W.
  • the entire shaft 10 may have a hollow structure and a rotary joint may be provided at the base end portion of the shaft 10. Positive pressure and negative pressure can be supplied through this rotary joint.
  • a larger torque is required to move the shaft 10 in the Z-axis direction or rotate around the central axis 100, so that it is necessary to employ a motor having a larger torque.
  • a negative pressure can be generated in the hollow portion 11 of the shaft 10 without using a rotary joint. Then, it is not necessary to select a rotary motor having a large torque in order to move the rotary joint. There is no need to increase the frequency of maintenance.
  • the shaft 10 When the positive pressure and the negative pressure are supplied via the rotary joint, the shaft 10 receives a force from a tube or the like connected to the rotary joint, and this force is included in the output of the strain gauge 37. Therefore, it may be difficult to accurately detect the load applied to the work W.
  • the shaft housing 50 As in the actuator 1 according to the present embodiment, it is not necessary to use a rotary joint, so that the accuracy of the load detected by the strain gauge 37 can be reduced. Can be more enhanced.
  • the actuator 1 is formed so that a plurality of actuators 1 can be stacked in the Y-axis direction.
  • the plurality of actuators 1 can be stacked even when adjacent actuators 1 are rotated by 180 degrees around the Z axis. Since the shaft 10 is provided at the center in the X-axis direction and the center in the Y-axis direction of the housing 2, the position of the shaft 10 does not change even if the actuator 1 is rotated 180 degrees around the Z axis.
  • the connecting arm 36 is provided with the strain gauge 37.
  • any member that generates a strain in accordance with the load may be used.
  • Another member may be provided with the strain gauge 37.
  • FIGS. 4 and 5 are diagrams showing a schematic configuration in the case where strain gauges 37 are provided on two bearings 25 supporting the output shaft 21 of the rotary motor 20, respectively.
  • FIG. 4 is a diagram around the bearing 25A provided on the upper side in the Z-axis direction
  • FIG. 5 is a diagram around the bearing 25B provided on the lower side in the Z-axis direction.
  • the bearings 25 are provided on the output shaft 21 above (see FIG. 4) and below (see FIG. 5) the rotor 23 in the Z-axis direction, respectively.
  • the bearing 25 ⁇ / b> A has an inner peripheral surface fitted on the outer peripheral surface of the output shaft 21, and an outer peripheral surface fitted on an inner peripheral surface of a fixing portion 220 ⁇ / b> A formed on the stator 22.
  • the fixing portion 220A has an upper protruding portion 221A protruding toward the center shaft 100 side so as to be in contact with an upper side of the bearing 25A in the Z-axis direction.
  • a first strain gauge 37A is provided on an upper surface of the upper protrusion 221A in the Z-axis direction.
  • the bearing 25 ⁇ / b> B has an inner peripheral surface fitted on the outer peripheral surface of the output shaft 21, and an outer peripheral surface fitted on an inner peripheral surface of a fixing portion 220 ⁇ / b> B formed on the stator 22.
  • the fixing portion 220B has a lower protruding portion 221B protruding toward the central shaft 100 so as to contact the upper side of the bearing 25B in the Z-axis direction.
  • a second strain gauge 37B is provided on the upper surface of the lower protrusion 221B in the Z-axis direction.
  • the first strain gauge 37A and the second strain gauge 37B are provided on surfaces parallel to each other in the same direction and orthogonal to the central axis 100 of the shaft 10.
  • the load generated between the shaft 10 and the work W causes distortion in the upper protrusion 221A and the lower protrusion 221B. Since this strain is correlated with the load generated between the shaft 10 and the work W, the strain gauge 37 detects the strain to detect the load generated between the shaft 10 and the work W. be able to.
  • the first strain gauge 37A and the second strain gauge 37B detect strains in opposite directions under the influence of temperature.
  • the upper protruding portion 221A and the lower protruding portion 221B are turned in opposite directions. The same amount of force is applied.
  • the output of the first strain gauge 37A and the output of the second strain gauge 37B have the same absolute value and different positive and negative. Therefore, by connecting the outputs of both strain gauges in parallel, the outputs due to the influence of temperature can be canceled each other, so that it is not necessary to separately perform correction according to temperature. Therefore, the load applied to the shaft 10 and the work W can be easily and accurately detected.
  • connection arm 36 is provided with the strain gauge 37.
  • connection arm 35 may be provided with the strain gauge 37. That is, in each of the two connecting arms 35, a strain gauge 37 can be provided on a surface facing upward in the Z-axis direction. In each of the two connecting arms 35, a strain gauge 37 may be provided on a surface facing downward in the Z-axis direction. A strain corresponding to the magnitude of the load generated between the shaft 10 and the work W is also generated on the surface of the connection arm 36 facing upward or downward in the Z-axis direction. Therefore, the load can be detected by detecting the strain.
  • the two connecting arms 35 are also displaced in the Z-axis direction, and their respective central axes are parallel to each other, and their respective central axes are orthogonal to the central axis 100 of the shaft 10. Therefore, as described in the first embodiment, even when a strain occurs in the connection arm 35 due to thermal expansion, the influence of the strain due to thermal expansion can be reduced by connecting the outputs of the two strain gauges in parallel. Can be countered. Therefore, the load applied to the shaft 10 and the work W can be easily and accurately detected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Linear Motors (AREA)

Abstract

The present invention detects a load applied to a shaft and a work piece. A load detector for detecting a force applied to a shaft in an actuator provided with the shaft, a support part for rotatably supporting the shaft, a linear motor for causing the shaft to move in the direction of a center axis, and a connecting member which is at least a portion of a member for connecting the support part and a movable element of the linear motor, wherein the load detector comprises a strain gauge for detecting strain in the connecting member, the strain gauge being provided to the connecting member.

Description

アクチュエータの荷重検出器Actuator load detector
 本発明は、アクチュエータの荷重検出器に関する。 The present invention relates to a load detector for an actuator.
 中空のシャフトをワークに押し付けた状態でシャフト内を負圧にすることで、ワークをシャフトに吸い付けて、ワークをピックアップすることができる。ここで、ワークをシャフトに吸い付けるときに、ワークとシャフトとの間に隙間があると、ワークがシャフトに勢いよく衝突してワークが破損する虞や、ワークを吸い付けることができない虞がある。一方、ワークを押し付ける荷重が大きすぎると、ワークが破損する虞がある。したがって、シャフトをワークに適切な荷重で押し付けることが望まれている。また、シャフトがワークに接する際にシャフトの速度が高いと、シャフトがワークに衝突することによりワークが破損する虞があるため、この衝撃を緩和することが望まれている。従来では、シャフト本体の先端にばね等の緩衝部材を介して吸着部材を設けている(例えば、特許文献1参照。)。すなわち、吸着部材がワークに接した際に、ばねが縮むことで衝撃を緩和している。その後、さらにシャフトがワークに向かって移動したときには、ばね定数に応じた荷重でワークを押し付けている。 負 By making the inside of the shaft a negative pressure while pressing the hollow shaft against the work, the work can be sucked to the shaft and the work can be picked up. Here, if there is a gap between the work and the shaft when the work is sucked to the shaft, the work may vigorously collide with the shaft and be damaged, or the work may not be sucked. . On the other hand, if the load pressing the work is too large, the work may be damaged. Therefore, it is desired to press the shaft against the work with an appropriate load. In addition, if the speed of the shaft is high when the shaft contacts the work, the work may be damaged by the collision of the shaft with the work. Therefore, it is desired to reduce the impact. Conventionally, a suction member is provided at the tip of a shaft main body via a buffer member such as a spring (for example, see Patent Document 1). That is, when the suction member comes into contact with the work, the spring is contracted to reduce the impact. Thereafter, when the shaft further moves toward the work, the work is pressed with a load corresponding to the spring constant.
特開2009-164347号公報JP 2009-164347 A
 ワークによって適切な荷重が異なる場合があるが、上記のような緩衝部材を設ける場合には、ワークに加わる荷重はばね定数によって決まるため、ワークに加わる荷重をワークに応じて変更することは困難であった。このような構成でワークに加わる荷重を調整する場合には、例えば緩衝部材を交換する必要があった。また、上記のような緩衝部材を設ける場合には、ワークに加わる荷重にばらつきが生じやすいため、高い精度で荷重を調整する必要のあるワークに用いることは困難であった。ここで、シャフト及びワークに加わる荷重を検出することができれば、検出した荷重に応じてシャフトを制御することができる。 The appropriate load may differ depending on the work.However, when the cushioning member as described above is provided, the load applied to the work is determined by the spring constant, so it is difficult to change the load applied to the work according to the work. there were. When adjusting the load applied to the work in such a configuration, for example, it is necessary to replace the buffer member. Further, in the case where the buffer member as described above is provided, the load applied to the work tends to vary, so that it is difficult to use the work for a work that requires a high-precision load adjustment. Here, if the load applied to the shaft and the work can be detected, the shaft can be controlled according to the detected load.
 本発明は、上記したような種々の実情を鑑みてなされたものであり、その目的は、シャフト及びワークに加わる荷重を検出することにある。 The present invention has been made in view of the various circumstances as described above, and an object of the present invention is to detect a load applied to a shaft and a work.
 本発明の態様の一つは、シャフトと、前記シャフトを回転可能に支持する支持部と、固定子及び可動子を有する直動モータであって、前記直動モータの前記固定子に対して前記可動子が前記シャフトの中心軸と平行に移動することにより、前記支持部及び前記シャフトを前記シャフトの前記中心軸の方向に移動させる直動モータと、前記直動モータの前記可動子と前記支持部とを接続する部材の少なくとも一部である接続部材と、を備えるアクチュエータにおいて前記シャフトにかかる力を検出する荷重検出器であって、前記接続部材に設けられ前記接続部材のひずみを検出するひずみゲージを備える、荷重検出器である。 One aspect of the present invention is a linear motor having a shaft, a support portion rotatably supporting the shaft, and a stator and a mover, wherein the linear motor has a position relative to the stator. A linear motor that moves the support section and the shaft in the direction of the central axis of the shaft by moving the mover in parallel with the central axis of the shaft; A connection member that is at least a part of a member that connects the first and second portions, and a load detector that detects a force applied to the shaft in an actuator including: a strainer that is provided on the connection member and detects a strain of the connection member. It is a load detector provided with a gauge.
 本発明によれば、シャフト及びワークに加わる荷重を検出することができる。 According to the present invention, the load applied to the shaft and the work can be detected.
実施形態に係るアクチュエータの外観図である。FIG. 2 is an external view of an actuator according to the embodiment. 実施形態に係るアクチュエータの内部構造を示した概略構成図である。FIG. 1 is a schematic configuration diagram illustrating an internal structure of an actuator according to an embodiment. 実施形態に係るシャフトハウジングとシャフトの先端部との概略構成を示した断面図である。It is sectional drawing which showed schematic structure of the shaft housing which concerns on embodiment, and the front-end | tip part of a shaft. 実施形態に係る回転モータの出力軸を支持する軸受にひずみゲージを設けた場合の概略構成を示す図である。It is a figure showing the schematic structure at the time of providing a strain gauge in the bearing which supports the output shaft of the rotation motor concerning an embodiment. 実施形態に係る回転モータの出力軸を支持する軸受にひずみゲージを設けた場合の概略構成を示す図である。It is a figure showing the schematic structure at the time of providing a strain gauge in the bearing which supports the output shaft of the rotation motor concerning an embodiment.
 本発明の態様の一つである荷重検出器では、直動モータによって、支持部及びシャフトが可動子の移動方向に移動する。直動モータの可動子の移動方向は、シャフトの中心軸方向と平行であるため、直動モータの駆動により、シャフトが中心軸方向に移動する。直動モータは例えばリニアモータである。また、支持部は例えば、シャフトを回転させる回転モータや、該回転モータの固定子と該回転モータの出力軸との間に設けられるベアリングである。直動モータの可動子は、支持部に接続部材を介して接続されている。なお、接続部材は複数存在していてもよい。また、直動モータの可動子と接続部材とが一体になっていてもよく、また、支持部と接続部材とが一体になっていてもよい。支持部は、直動モータの駆動に関わらずシャフトを回転可能に支持している。したがって、直動モータによってシャフトを中心軸方向に移動することと、シャフトを中心軸回りに回転することと、を個別に行うことができる。ワークをピックアップするときには、シャフトがワークに接するまで直動モータがシャフトを移動させる。 In the load detector which is one aspect of the present invention, the support and the shaft are moved in the moving direction of the mover by the linear motor. Since the moving direction of the mover of the linear motor is parallel to the central axis direction of the shaft, the shaft moves in the central axis direction by driving the linear motor. The linear motor is, for example, a linear motor. The support portion is, for example, a rotation motor for rotating a shaft, or a bearing provided between a stator of the rotation motor and an output shaft of the rotation motor. The mover of the linear motion motor is connected to the support via a connecting member. Note that a plurality of connection members may exist. In addition, the mover of the linear motion motor and the connection member may be integrated, or the support portion and the connection member may be integrated. The support portion rotatably supports the shaft regardless of the driving of the linear motor. Therefore, it is possible to individually move the shaft in the central axis direction and rotate the shaft around the central axis by the linear motion motor. When picking up the work, the linear motion motor moves the shaft until the shaft contacts the work.
 直動モータの駆動によりシャフトがワークに接すると、シャフトとワークとの間に荷重が発生する。このため、接続部材の一端側(直動モータ側)には、シャフトをワークに向かわせる方向の力が作用し、接続部材の他端側(支持部側)には、シャフトをワークから離す方向に向かわせる力が作用するため、接続部材にひずみが生じる。このひずみは、シャフトとワークとの間に発生する荷重と相関関係がある。したがって、このひずみをひずみゲージで検出することにより、シャフト及びワークに加わる荷重を検出することができる。 す る と When the shaft comes into contact with the work by driving the linear motor, a load is generated between the shaft and the work. For this reason, a force in a direction for moving the shaft toward the work is applied to one end side (the linear motor side) of the connection member, and a direction in which the shaft is separated from the work is applied to the other end side (the support portion side) of the connection member. As a result, the connecting member is distorted. This strain has a correlation with the load generated between the shaft and the work. Therefore, the load applied to the shaft and the work can be detected by detecting the strain with the strain gauge.
 また、前記接続部材は、前記シャフトの前記中心軸の方向にずらして設けられる第一部材及び第二部材を有し、前記ひずみゲージは、前記第一部材及び前記第二部材に夫々に設けられる同じ方向を向く互いに平行な面であって前記シャフトの前記中心軸と直交する面に夫々設けられていてもよい。 In addition, the connection member has a first member and a second member that are provided to be shifted in a direction of the central axis of the shaft, and the strain gauge is provided in each of the first member and the second member. The shafts may be provided on surfaces parallel to each other in the same direction and orthogonal to the central axis of the shaft.
 ここで、直動モータが作動すると熱を発生する。また、アクチュエータに備わる他の装置が熱を発生することもある。これらの熱により、直動モータ、支持部、及び接続部材が熱膨張することがある。この場合には、ワークからシャフトに荷重が加わっていなくとも、第一部材及び第二部材にひずみが生じ得る。例えば、第一部材及び第二部材の一端側が接続されている部材と、他端側が接続されている部材とで温度差があると、膨張量に差が生じる場合がある。なお、以下では例示的に、第一部材及び第二部材の一端側が接続されている部材を熱による膨張量が大きな部材(高膨張部材)として説明し、他端側が接続されている部材を熱による膨張量が小さな部材(低膨張部材)として説明する。このように第一部材及び第二部材が高膨張部材及び低膨張部材に接続されている場合には、第一部材と第二部材との距離が低膨張部材側よりも高膨張部材側で大きくなり得る。そして、高膨張部材側では、第一部材と第二部材とを引き離す方向に、第一部材と第二部材とに夫々逆方向の力がかかる。そのため、第一部材及び第二部材に夫々に設けられる同じ方向を向く互いに平行な面であってシャフトの中心軸と直交する面のうちの、一方の面には縮む方向のひずみが発生し、他方の面には伸びる方向のひずみが発生する。そのため、第一部材に設けられているひずみゲージと、第二部材に設けられているひずみゲージとでは、一方が縮む方向のひずみに対応する出力をし、他方が伸びる方向のひずみに対応する出力をする。このときに、第一部材と第二部材とには、夫々に逆方向の同じ大きさの力がかかっているため、一方のひずみゲージの出力と、他方のひずみゲージの出力とは、正負は異なるがその絶対量は略同じになる。そのため、両ひずみゲージの出力を並列に接続することにより、熱膨張の影響を互いに打ち消し合うため、別途温度に応じた補正を行う必要がなくなる。すなわち、簡易且つ高精度にシャフト及びワークに加わる荷重のみを検出することができる。 熱 Here, when the linear motor operates, heat is generated. Also, other devices provided in the actuator may generate heat. Due to such heat, the linear motion motor, the support portion, and the connection member may thermally expand. In this case, even if no load is applied to the shaft from the workpiece, distortion may occur in the first member and the second member. For example, if there is a temperature difference between a member to which one end of the first member and the second member is connected and a member to which the other end is connected, a difference may occur in the amount of expansion. In the following, a member to which one end of the first member and the second member is connected is described as a member having a large amount of expansion due to heat (a high expansion member), and a member to which the other end is connected is heat. The description will be made assuming that a member (low-expansion member) having a small amount of expansion due to is used. When the first member and the second member are thus connected to the high expansion member and the low expansion member, the distance between the first member and the second member is larger on the high expansion member side than on the low expansion member side. Can be. Then, on the high expansion member side, forces in opposite directions are applied to the first member and the second member, respectively, in a direction of separating the first member and the second member. For this reason, a strain in a contracting direction is generated on one of the surfaces parallel to each other in the same direction provided on the first member and the second member and orthogonal to the center axis of the shaft, On the other surface, a strain occurs in the direction of extension. Therefore, one of the strain gauge provided on the first member and the strain gauge provided on the second member has an output corresponding to the strain in the contracting direction and the other has an output corresponding to the strain in the extending direction. do. At this time, since the same force in the opposite direction is applied to the first member and the second member, respectively, the output of one strain gauge and the output of the other strain gauge are positive or negative. Although different, the absolute amount is almost the same. Therefore, by connecting the outputs of the two strain gauges in parallel, the effects of thermal expansion are canceled each other, so that it is not necessary to separately perform correction according to the temperature. That is, it is possible to simply and accurately detect only the load applied to the shaft and the work.
 例えば、前記第一部材に設けられるひずみゲージと、前記第二部材に設けられるひずみゲージとは、夫々が異なるホイートストンブリッジ回路に組み込まれ、両ホイートストンブリッジ回路の出力が並列に接続されていてもよい。このように回路を形成することにより、両ひずみゲージの出力における熱の影響の分を打ち消し合うため、最終的な出力は、シャフトとワークとの間に発生する荷重に応じた出力となる。 For example, the strain gauge provided on the first member and the strain gauge provided on the second member may be incorporated in different Wheatstone bridge circuits, respectively, and outputs of both Wheatstone bridge circuits may be connected in parallel. . By forming the circuit in this manner, the effect of heat on the outputs of both strain gauges is canceled out, and the final output is an output corresponding to the load generated between the shaft and the work.
 なお、前記支持部が、固定子及び回転子を有する回転モータであって、前記回転モータの前記固定子に対して、前記シャフトに接続される前記回転子が回転することにより、前記シャフトを前記シャフトの前記中心軸の回りに回転させる回転モータであり、前記第一部材及び前記第二部材は、前記直動モータの前記可動子と前記回転モータの前記固定子とを接続する2つのアームであって、前記2つのアームの夫々の中心軸が前記シャフトの前記中心軸の方向と直交し、且つ、前記2つのアームの前記中心軸が互いに平行になる2つのアームであってもよい。このようなアームによれば、直動モータと回転モータとの間にある程度の距離が生じるため、夫々の熱の影響や磁界の影響を受け難くすることができる。なお、支持部が、回転モータの固定子と回転モータの出力軸との間に設けられるベアリングであってもよく、その場合、接続部材が、そのベアリングに接する部材(例えば回転モータの固定子)であってもよい。 Note that the support portion is a rotary motor having a stator and a rotor, and the rotor connected to the shaft rotates with respect to the stator of the rotary motor, thereby rotating the shaft. A rotation motor that rotates around the central axis of the shaft, wherein the first member and the second member are two arms that connect the mover of the linear motion motor and the stator of the rotation motor. There may be two arms in which the respective central axes of the two arms are orthogonal to the direction of the central axis of the shaft, and the central axes of the two arms are parallel to each other. According to such an arm, since a certain distance is generated between the linear motion motor and the rotary motor, it is possible to make the arm less susceptible to the effects of heat and magnetic fields. The supporting portion may be a bearing provided between the stator of the rotary motor and the output shaft of the rotary motor. In this case, the connecting member is a member (for example, a stator of the rotary motor) in contact with the bearing. It may be.
 以下に図面を参照して、本発明を実施するための形態を説明する。ただし、この実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。 Hereinafter, an embodiment for carrying out the present invention will be described with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention only to them unless otherwise specified.
<第1実施形態>
 図1は、本実施形態に係るアクチュエータ1の外観図である。アクチュエータ1は外形が略直方体のハウジング2を有しており、ハウジング2には、蓋200が取り付けられている。図2は、本実施形態に係るアクチュエータ1の内部構造を示した概略構成図である。ハウジング2の内部に、シャフト10の一部を収容している。このシャフト10の先端部10A側は、中空となるよう形成されている。シャフト10及びハウジング2の材料には、例えば金属(例えばアルミニウム)を用いることができるが、樹脂等を用いることもできる。なお、以下の説明においては、XYZ直交座標系を設定し、このXYZ直交座標系を参照しつつ各部材の位置について説明する。ハウジング2の最も大きな面の長辺方向であってシャフト10の中心軸100の方向をZ軸方向とし、ハウジング2の最も大きな面の短辺方向をX軸方向とし、ハウジング2の最も大きな面と直交する方向をY軸方向とする。Z軸方向は鉛直方向でもある。なお、以下では、図2におけるZ軸方向の上側をアクチュエータ1の上側とし、図2におけるZ軸方向の下側をアクチュエータ1の下側とする。また、図2におけるX軸方向の右側をアクチュエータ1の右側とし、図2におけるX軸方向の左側をアクチュエータ1の左側とする。また、図2におけるY軸方向の手前側をアクチュエータ1の手前側とし、図2におけるY軸方向の奥側をアクチュエータ1の奥側とする。ハウジング2は、Z軸方向の寸法がX軸方向の寸法よりも長く、X軸方向の寸法がY軸方向の寸法よりも長い。ハウジング2は、Y軸方向と直交する一つの面(図2における手前側の面)に相当する箇所が開口しており、この開口を蓋200によって閉塞している。蓋200は、例えばネジによってハウジング2に固定される。
<First embodiment>
FIG. 1 is an external view of an actuator 1 according to the present embodiment. The actuator 1 has a housing 2 having a substantially rectangular parallelepiped outer shape, and a lid 200 is attached to the housing 2. FIG. 2 is a schematic configuration diagram illustrating an internal structure of the actuator 1 according to the present embodiment. A part of the shaft 10 is housed inside the housing 2. The tip 10A side of the shaft 10 is formed to be hollow. As a material of the shaft 10 and the housing 2, for example, a metal (for example, aluminum) can be used, but a resin or the like can also be used. In the following description, an XYZ rectangular coordinate system is set, and the position of each member will be described with reference to the XYZ rectangular coordinate system. The long side direction of the largest surface of the housing 2 and the direction of the central axis 100 of the shaft 10 are defined as the Z-axis direction, the short side direction of the largest surface of the housing 2 is defined as the X-axis direction. The direction perpendicular to the direction is defined as a Y-axis direction. The Z-axis direction is also the vertical direction. In the description below, the upper side in the Z-axis direction in FIG. 2 is referred to as the upper side of the actuator 1, and the lower side in the Z-axis direction in FIG. The right side in the X-axis direction in FIG. 2 is the right side of the actuator 1, and the left side in the X-axis direction in FIG. The near side in the Y-axis direction in FIG. 2 is the near side of the actuator 1, and the far side in the Y-axis direction in FIG. The housing 2 has a dimension in the Z-axis direction longer than a dimension in the X-axis direction, and a dimension in the X-axis direction is longer than a dimension in the Y-axis direction. The housing 2 has an opening at a position corresponding to one surface (a surface on the near side in FIG. 2) orthogonal to the Y-axis direction, and this opening is closed by a lid 200. The lid 200 is fixed to the housing 2 by, for example, screws.
 ハウジング2内には、シャフト10をその中心軸100回りに回転させる回転モータ20と、シャフト10をその中心軸100に沿った方向(すなわち、Z軸方向)にハウジング2に対して相対的に直動させる直動モータ30と、エア制御機構60とが収容されている。また、ハウジング2のZ軸方向の下端面202には、シャフト10が挿通されたシャフトハウジング50が取り付けられている。ハウジング2には、下端面202からハウジング2の内部に向かって凹むように凹部202Bが形成されており、この凹部202Bにシャフトハウジング50の一部が挿入される。この凹部202BのZ軸方向の上端部には、Z軸方向に貫通孔2Aが形成されており、この貫通孔2A及びシャフトハウジング50をシャフト10が挿通される。シャフト10のZ軸方向の下側の先端部10Aは、シャフトハウジング50から外部へ突出している。シャフト10は、ハウジング2のX軸方向の中心且つY軸方向の中心に設けられている。つまり、ハウジング2における、X軸方向の中心およびY軸方向の中心を通ってZ軸方向に延びる中心軸と、シャフト10の中心軸100とが重なるように、シャフト10が設けられている。シャフト10は、直動モータ30によってZ軸方向に直動すると共に、回転モータ20によって中心軸100の回りを回転する。 Inside the housing 2, a rotation motor 20 for rotating the shaft 10 around its central axis 100, and the shaft 10 in a direction along the central axis 100 (that is, the Z-axis direction) relative to the housing 2. The linear motion motor 30 to be moved and the air control mechanism 60 are accommodated. A shaft housing 50 into which the shaft 10 is inserted is attached to a lower end surface 202 of the housing 2 in the Z-axis direction. The housing 2 has a recess 202B formed so as to be recessed from the lower end surface 202 toward the inside of the housing 2, and a part of the shaft housing 50 is inserted into the recess 202B. A through-hole 2A is formed at the upper end of the concave portion 202B in the Z-axis direction in the Z-axis direction, and the shaft 10 is inserted through the through-hole 2A and the shaft housing 50. A lower end portion 10A of the shaft 10 on the lower side in the Z-axis direction projects from the shaft housing 50 to the outside. The shaft 10 is provided at the center of the housing 2 in the X-axis direction and the center of the housing 2 in the Y-axis direction. That is, the shaft 10 is provided such that the center axis of the housing 2 extending in the Z-axis direction through the center in the X-axis direction and the center in the Y-axis direction and the center axis 100 of the shaft 10 overlap. The shaft 10 is linearly moved in the Z-axis direction by a linear motor 30 and is rotated around a central axis 100 by a rotary motor 20.
 シャフト10の先端部10Aと逆側の端部(Z軸方向の上側の端部)である基端部10B側は、ハウジング2内に収容されており、回転モータ20の出力軸21に接続されている。この回転モータ20は、シャフト10を回転可能に支持している。回転モータ20の出力軸21の中心軸は、シャフト10の中心軸100と一致する。回転モータ20は、出力軸21の他に、固定子22と、固定子22の内部で回転する回転子23と、出力軸21の回転角度を検出するロータリエンコーダ24とを有する。回転子23が固定子22に対して回転することにより、出力軸21及びシャフト10も固定子22に対して連動して回転する。 A base end 10B side of the shaft 10 opposite to the front end 10A (the upper end in the Z-axis direction) is housed in the housing 2 and connected to the output shaft 21 of the rotary motor 20. ing. The rotary motor 20 rotatably supports the shaft 10. The center axis of the output shaft 21 of the rotary motor 20 matches the center axis 100 of the shaft 10. The rotary motor 20 includes, in addition to the output shaft 21, a stator 22, a rotor 23 that rotates inside the stator 22, and a rotary encoder 24 that detects a rotation angle of the output shaft 21. When the rotor 23 rotates with respect to the stator 22, the output shaft 21 and the shaft 10 also rotate in conjunction with the stator 22.
 直動モータ30は、ハウジング2に固定された固定子31、固定子31に対して相対的にZ軸方向に移動する可動子32を有する。直動モータ30は、例えばリニアモータである。固定子31には複数のコイル31Aが設けられ、可動子32には複数の永久磁石32Aが設けられている。コイル31Aは、Z軸方向に所定ピッチで配置され、且つ、U,V,W相の3つのコイル31Aを一組として複数設けられている。本実施形態では、これらU,V,W相のコイル31Aに三相電機子電流を流すことによって直動的に移動する移動磁界を発生させ、固定子31に対して可動子32を直動的に移動させる。直動モータ30には固定子31に対する可動子32の相対位置を検出するリニアエンコーダ38が設けられている。なお、上記構成に代えて、固定子31に永久磁石を設け、可動子32に複数のコイルを設けることもできる。 The linear motor 30 has a stator 31 fixed to the housing 2 and a mover 32 that moves in the Z-axis direction relative to the stator 31. The linear motor 30 is, for example, a linear motor. The stator 31 is provided with a plurality of coils 31A, and the mover 32 is provided with a plurality of permanent magnets 32A. The coils 31A are arranged at a predetermined pitch in the Z-axis direction, and a plurality of coils 31A of the U, V, and W phases are provided as a set. In the present embodiment, a moving magnetic field that moves linearly is generated by passing a three-phase armature current through the U, V, and W phase coils 31A, and the mover 32 is moved linearly with respect to the stator 31. Move to The linear motor 30 is provided with a linear encoder 38 for detecting the relative position of the mover 32 with respect to the stator 31. Instead of the above configuration, a permanent magnet may be provided on the stator 31 and a plurality of coils may be provided on the mover 32.
 直動モータ30の可動子32と回転モータ20の固定子22とは、直動テーブル33を介して連結されている。直動テーブル33は、直動モータ30の可動子32の移動に伴って移動可能である。直動テーブル33の移動は、直動案内装置34によってZ軸方向に案内されている。直動案内装置34は、ハウジング2に固定されたレール34Aと、レール34Aに組み付けられたスライダブロック34Bとを有する。レール34Aは、Z軸方向に延びており、スライダブロック34Bは、レール34Aに沿ってZ軸方向に移動可能に構成されている。 可 動 The mover 32 of the linear motor 30 and the stator 22 of the rotary motor 20 are connected via a linear table 33. The translation table 33 is movable with the movement of the mover 32 of the translation motor 30. The translation table 33 is guided by the translation guide device 34 in the Z-axis direction. The linear motion guide device 34 has a rail 34A fixed to the housing 2 and a slider block 34B assembled to the rail 34A. The rail 34A extends in the Z-axis direction, and the slider block 34B is configured to be movable in the Z-axis direction along the rail 34A.
 直動テーブル33は、スライダブロック34Bに固定されており、スライダブロック34Bと共にZ軸方向に移動可能である。直動テーブル33は、直動モータ30の可動子32と2つの連結アーム35を介して連結されている。2つの連結アーム35は、可動子32のZ軸方向の両端部と、直動テーブル33のZ軸方向の両端部とを連結している。また、直動テーブル33は、両端部よりも中央側において、2つの連結アーム36を介して回転モータ20の固定子22と連結されている。なお、Z軸方向上側の連結アーム36を第一アーム36Aといい、Z軸方向下側の連結アーム36を第二アーム36Bという。また、第一アーム36Aと第二アーム36Bとを区別しない場合には、単に連結アーム36という。直動テーブル33と回転モータ20の固定子22とが、該連結アーム36を介して回転モータ20の固定子22と連結されているために、直動テーブル33の移動に伴って回転モータ20の固定子22も移動する。また、連結アーム36は、断面が四角である。各連結アーム36におけるZ軸方向の上側を向く面には、ひずみゲージ37が固定されている。なお、第一アーム36Aに固定されるひずみゲージ37を第一ひずみゲージ37Aといい、第二アーム36Bに固定されるひずみゲージ37を第二ひずみゲージ37Bという。第一ひずみゲージ37Aと第二ひずみゲージ37Bとを区別しない場合には、単にひずみゲージ37という。なお、本実施形態の2つのひずみゲージ37は、連結アーム36のZ軸方向の上側を向く面に夫々設けられているが、これに代えて、連結アーム36のZ軸方向の下側を向く面に夫々設けられていてもよい。 The linear motion table 33 is fixed to the slider block 34B, and is movable in the Z-axis direction together with the slider block 34B. The translation table 33 is connected to the mover 32 of the translation motor 30 via two connection arms 35. The two connecting arms 35 connect both ends of the mover 32 in the Z-axis direction and both ends of the linear motion table 33 in the Z-axis direction. Further, the linear motion table 33 is connected to the stator 22 of the rotary motor 20 via two connection arms 36 on the center side of both ends. The upper connecting arm 36 in the Z-axis direction is referred to as a first arm 36A, and the lower connecting arm 36 in the Z-axis direction is referred to as a second arm 36B. When the first arm 36A and the second arm 36B are not distinguished, they are simply referred to as the connecting arm 36. Since the linear motion table 33 and the stator 22 of the rotary motor 20 are connected to the stator 22 of the rotary motor 20 via the connection arm 36, the rotation of the rotary motor 20 The stator 22 also moves. The connecting arm 36 has a square cross section. A strain gauge 37 is fixed to a surface of each connecting arm 36 facing upward in the Z-axis direction. The strain gauge 37 fixed to the first arm 36A is called a first strain gauge 37A, and the strain gauge 37 fixed to the second arm 36B is called a second strain gauge 37B. When the first strain gauge 37A and the second strain gauge 37B are not distinguished, they are simply referred to as strain gauges 37. Note that the two strain gauges 37 of the present embodiment are respectively provided on the surfaces of the connection arms 36 that face upward in the Z-axis direction. Instead, the two strain gauges 37 face downward of the connection arms 36 in the Z-axis direction. Each may be provided on the surface.
 エア制御機構60は、シャフト10の先端部10Aに正圧や負圧を発生させるための機構である。すなわち、エア制御機構60は、ワークWのピックアップ時において、シャフト10内の空気を吸引することで、該シャフト10の先端部10Aに負圧を発生させる。これによってワークWがシャフト10の先端部10Aに吸い付けられる。また、シャフト10内に空気を送り込むことで、該シャフト10の先端部10Aに正圧を発生させる。これによりシャフト10の先端部10AからワークWを容易に脱離させる。 The air control mechanism 60 is a mechanism for generating a positive pressure or a negative pressure at the tip 10A of the shaft 10. That is, the air control mechanism 60 generates a negative pressure at the distal end portion 10A of the shaft 10 by sucking the air in the shaft 10 when the work W is picked up. Thereby, the work W is sucked to the tip portion 10A of the shaft 10. Further, by sending air into the shaft 10, a positive pressure is generated at the distal end 10 </ b> A of the shaft 10. Thereby, the work W is easily detached from the tip portion 10A of the shaft 10.
 エア制御機構60は、正圧の空気が流通する正圧通路61A(一点鎖線参照。)と、負圧の空気が流通する負圧通路61B(二点鎖線参照。)と、正圧の空気及び負圧の空気で共用される共用通路61C(破線参照。)とを有する。正圧通路61Aの一端は、ハウジング2のZ軸方向の上端面201に設けられた正圧用コネクタ62Aに接続され、正圧通路61Aの他端は正圧用の電磁弁(以下、正圧電磁弁63Aという。)に接続されている。正圧電磁弁63Aは、後述するコントローラ7によって開閉される。なお、正圧通路61Aの一端側の部分はチューブ610によって構成され、他端側の部分はブロック600に開けられた穴により構成されている。正圧用コネクタ62Aは、ハウジング2のZ軸方向の上端面201を貫通しており、正圧用コネクタ62Aにはエアを吐出するポンプ等に繋がるチューブが外部から接続される。 The air control mechanism 60 includes a positive pressure passage 61A (see a dashed line) through which positive-pressure air flows, a negative pressure passage 61B (see a two-dot chain line) through which negative-pressure air flows, and positive-pressure air and air. And a shared passage 61C (see broken line) shared by the negative pressure air. One end of the positive pressure passage 61A is connected to a positive pressure connector 62A provided on the upper end surface 201 in the Z-axis direction of the housing 2, and the other end of the positive pressure passage 61A is connected to a positive pressure solenoid valve (hereinafter, a positive pressure solenoid valve). 63A). The positive pressure solenoid valve 63A is opened and closed by a controller 7 described later. Note that a portion on one end side of the positive pressure passage 61 </ b> A is configured by the tube 610, and a portion on the other end side is configured by a hole formed in the block 600. The positive pressure connector 62A passes through the upper end surface 201 of the housing 2 in the Z-axis direction, and a tube connected to a pump or the like that discharges air is connected to the positive pressure connector 62A from the outside.
 負圧通路61Bの一端は、ハウジング2のZ軸方向の上端面201に設けられた負圧用コネクタ62Bに接続され、負圧通路61Bの他端は負圧用の電磁弁(以下、負圧電磁弁63Bという。)に接続されている。負圧電磁弁63Bは、後述するコントローラ7によって開閉される。なお、負圧通路61Bの一端側の部分はチューブ620によって構成され、他端側の部分はブロック600に開けられた穴により構成されている。負圧用コネクタ62Bは、ハウジング2のZ軸方向の上端面201を貫通しており、負圧用コネクタ62Bにはエアを吸引するポンプ等に繋がるチューブが外部から接続される。 One end of the negative pressure passage 61B is connected to a negative pressure connector 62B provided on the upper end surface 201 in the Z-axis direction of the housing 2, and the other end of the negative pressure passage 61B is connected to a negative pressure solenoid valve (hereinafter, a negative pressure solenoid valve). 63B). The negative pressure solenoid valve 63B is opened and closed by a controller 7 described later. The one end of the negative pressure passage 61B is constituted by a tube 620, and the other end is constituted by a hole formed in the block 600. The negative pressure connector 62B penetrates through the upper end surface 201 of the housing 2 in the Z-axis direction, and a tube connected to a pump or the like that sucks air is connected to the negative pressure connector 62B from outside.
 共用通路61Cはブロック600に開けられた穴により構成されている。共用通路61Cの一端は、2つに分岐して正圧電磁弁63A及び負圧電磁弁63Bに接続されており、共用通路61Cの他端は、ハウジング2に形成されている貫通孔であるエア流通路202Aに接続されている。エア流通路202Aは、シャフトハウジング50に通じている。負圧電磁弁63Bを開き且つ正圧電磁弁63Aを閉じることにより、負圧通路61Bと共用通路61Cとが連通されるため、共用通路61C内に負圧が発生する。そうすると、エア流通路202Aを介してシャフトハウジング50内から空気が吸引される。一方、正圧電磁弁63Aを開き且つ負圧電磁弁63Bを閉じることにより、正圧通路61Aと共用通路61Cとが連通されるため、共用通路61C内に正圧が発生する。そうすると、エア流通路202Aを介してシャフトハウジング50内に空気が供給される。共用通路61Cには、共用通路61C内の空気の圧力を検出する圧力センサ64及び共用通路61C内の空気の流量を検出する流量センサ65が設けられている。 The common passage 61C is constituted by a hole formed in the block 600. One end of the common passage 61C branches into two and is connected to the positive pressure solenoid valve 63A and the negative pressure solenoid valve 63B. The other end of the common passage 61C is an air which is a through hole formed in the housing 2. It is connected to the flow passage 202A. The air flow passage 202A communicates with the shaft housing 50. By opening the negative pressure electromagnetic valve 63B and closing the positive pressure electromagnetic valve 63A, the negative pressure passage 61B and the common passage 61C communicate with each other, so that a negative pressure is generated in the common passage 61C. Then, air is sucked from the inside of the shaft housing 50 through the air flow passage 202A. On the other hand, by opening the positive pressure solenoid valve 63A and closing the negative pressure solenoid valve 63B, the positive pressure passage 61A and the common passage 61C communicate with each other, so that a positive pressure is generated in the common passage 61C. Then, air is supplied into the shaft housing 50 via the air flow passage 202A. The common passage 61C is provided with a pressure sensor 64 for detecting the pressure of the air in the common passage 61C and a flow sensor 65 for detecting the flow rate of the air in the common passage 61C.
 なお、図2に示したアクチュエータ1では、正圧通路61A及び負圧通路61Bの一部がチューブで構成され、他部がブロック600に開けられた穴により構成されているが、これに限らず、全ての通路をチューブで構成することもできるし、全ての通路をブロック600に開けられた穴により構成することもできる。共用通路61Cについても同様で、全てチューブで構成することもできるし、チューブを併用して構成することもできる。なお、チューブ610及びチューブ620の材料は、樹脂等の柔軟性を有する材料であってもよく、金属等の柔軟性を有さない材料であってもよい。また、正圧通路61Aを用いてシャフトハウジング50に正圧を供給する代わりに、大気圧を供給してもよい。 In the actuator 1 shown in FIG. 2, a part of the positive pressure passage 61A and the negative pressure passage 61B is formed by a tube, and the other part is formed by a hole formed in the block 600. However, the present invention is not limited to this. , All the passages can be constituted by tubes, or all the passages can be constituted by holes formed in the block 600. The same applies to the common passage 61C. All of the common passages can be constituted by tubes, or can be constituted by using tubes in combination. In addition, the material of the tube 610 and the tube 620 may be a material having flexibility such as resin, or may be a material having no flexibility such as metal. Further, instead of supplying a positive pressure to the shaft housing 50 using the positive pressure passage 61A, an atmospheric pressure may be supplied.
 また、ハウジング2のZ軸方向の上端面201には、回転モータ20を冷却するための空気の入口となるコネクタ(以下、入口コネクタ91Aという。)およびハウジング2からの空気の出口となるコネクタ(以下、出口コネクタ91Bという。)が設けられている。入口コネクタ91A及び出口コネクタ91Bは、夫々空気が流通可能なようにハウジング2の上端面201を貫通している。入口コネクタ91Aにはエアを吐出するポンプ等に繋がるチューブがハウジング2の外部から接続され、出口コネクタ91Bにはハウジング2から流出するエアを排出するチューブがハウジング2の外部から接続される。ハウジング2の内部には、回転モータ20を冷却するための空気が流通する金属製のパイプ(以下、冷却パイプ92という。)が設けられており、この冷却パイプ92の一端は、入口コネクタ91Aに接続されている。冷却パイプ92は、入口コネクタ91AからZ軸方向にハウジング2の下端面202付近まで延び、該下端面202付近において湾曲して他端側が回転モータ20に向くように形成されている。このように、Z軸方向の下側からハウジング2内に空気を供給することにより、効率的な冷却が可能となる。また、冷却パイプ92は、直動モータ30のコイル31Aから熱を奪うように、該固定子31の内部を貫通している。固定子31に設けられているコイル31Aからより多くの熱を奪うように、冷却パイプ92の周りにコイル31Aが配置されている。 A connector (hereinafter, referred to as an inlet connector 91A) serving as an air inlet for cooling the rotary motor 20 and a connector (hereinafter, referred to as an inlet connector 91A) serving as an outlet for air from the housing 2 are provided on the upper end surface 201 of the housing 2 in the Z-axis direction. Hereinafter, this is referred to as an outlet connector 91B). The inlet connector 91A and the outlet connector 91B pass through the upper end surface 201 of the housing 2 so that air can flow therethrough. A tube connected to a pump or the like that discharges air is connected to the inlet connector 91A from the outside of the housing 2, and a tube that discharges air flowing out of the housing 2 is connected to the outlet connector 91B from the outside of the housing 2. A metal pipe (hereinafter, referred to as a cooling pipe 92) through which air for cooling the rotary motor 20 flows is provided inside the housing 2, and one end of the cooling pipe 92 is connected to the inlet connector 91A. It is connected. The cooling pipe 92 extends from the inlet connector 91 </ b> A in the Z-axis direction to a position near the lower end surface 202 of the housing 2, is curved near the lower end surface 202, and is formed so that the other end faces the rotary motor 20. By supplying air into the housing 2 from the lower side in the Z-axis direction, efficient cooling is possible. Further, the cooling pipe 92 penetrates through the inside of the stator 31 so as to remove heat from the coil 31A of the linear motor 30. The coil 31A is arranged around the cooling pipe 92 so as to remove more heat from the coil 31A provided on the stator 31.
 ハウジング2のZ軸方向の上端面201には、電力を供給する電線や信号線を含んだコネクタ41が接続されている。また、ハウジング2には、コントローラ7が設けられている。コネクタ41からハウジング2内に引き込まれる電線や信号線は、コントローラ7に接続されている。コントローラ7には、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)が備わり、これらはバスにより相互に接続される。EPROMには、各種プログラム、各種テーブル等が格納される。EPROMに格納されたプログラムをCPUがRAMの作業領域にロードして実行し、このプログラムの実行を通じて、回転モータ20、直動モータ30、正圧電磁弁63A、負圧電磁弁63B等が制御される。これにより、所定の目的に合致した機能をCPUが実現する。また、圧力センサ64、流量センサ65、ひずみゲージ37、ロータリエンコーダ24、リニアエンコーダ38の出力信号がコントローラ7に入力される。 コ ネ ク タ A connector 41 including an electric wire for supplying electric power and a signal line is connected to the upper end surface 201 of the housing 2 in the Z-axis direction. The housing 2 is provided with a controller 7. Electric wires and signal lines drawn into the housing 2 from the connector 41 are connected to the controller 7. The controller 7 includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and an EPROM (Erasable Programmable ROM), which are interconnected by a bus. The EPROM stores various programs, various tables, and the like. The CPU loads the program stored in the EPROM into the work area of the RAM and executes the program. Through the execution of the program, the rotation motor 20, the direct drive motor 30, the positive pressure solenoid valve 63A, the negative pressure solenoid valve 63B, and the like are controlled. You. As a result, the CPU realizes a function that meets a predetermined purpose. Further, output signals of the pressure sensor 64, the flow sensor 65, the strain gauge 37, the rotary encoder 24, and the linear encoder 38 are input to the controller 7.
 図3は、シャフトハウジング50とシャフト10の先端部10Aとの概略構成を示した断面図である。シャフトハウジング50は、ハウジング本体51と、2つのリング52と、フィルタ53と、フィルタ止め54とを有する。ハウジング本体51には、シャフト10が挿通される貫通孔51Aが形成されている。貫通孔51Aは、Z軸方向にハウジング本体51を貫通しており、該貫通孔51AのZ軸方向の上端は、ハウジング2に形成された貫通孔2Aに通じている。貫通孔51Aの直径はシャフト10の外径よりも大きい。そのため、貫通孔51Aの内面とシャフト10の外面とには隙間が設けられている。貫通孔51Aの両端部には、孔の直径が拡大された拡径部51Bが設けられている。2つの拡径部51Bには、夫々リング52が嵌め込まれている。リング52は筒状に形成されており、リング52の内径はシャフト10の外径よりも若干大きい。したがって、シャフト10がリング52の内部をZ軸方向に移動可能である。そのため、リング52の内面とシャフト10の外面との間にも隙間が形成される。したがって、シャフト10がリング52の内部をZ軸方向に移動可能であり、且つ、シャフト10がリング52の内部を中心軸100回りに回転可能である。ただし、拡径部51Bを除く貫通孔51Aの内面とシャフト10の外面との間に形成される隙間よりも、リング52の内面とシャフト10の外面との間に形成される隙間の方が小さい。なお、Z軸方向上側のリング52を第一リング52Aといい、Z軸方向下側のリング52を第二リング52Bという。第一リング52Aと第二リング52Bとを区別しない場合には、単にリング52という。リング52の材料には、例えば金属または樹脂を用いることができる。 FIG. 3 is a cross-sectional view showing a schematic configuration of the shaft housing 50 and the tip 10A of the shaft 10. As shown in FIG. The shaft housing 50 has a housing body 51, two rings 52, a filter 53, and a filter stopper 54. The housing body 51 has a through hole 51A through which the shaft 10 is inserted. The through-hole 51A penetrates the housing body 51 in the Z-axis direction, and an upper end of the through-hole 51A in the Z-axis direction communicates with a through-hole 2A formed in the housing 2. The diameter of the through hole 51A is larger than the outer diameter of the shaft 10. Therefore, a gap is provided between the inner surface of the through hole 51A and the outer surface of the shaft 10. Both ends of the through hole 51A are provided with enlarged diameter portions 51B in which the diameter of the hole is enlarged. Rings 52 are fitted into the two enlarged diameter portions 51B, respectively. The ring 52 is formed in a cylindrical shape, and the inner diameter of the ring 52 is slightly larger than the outer diameter of the shaft 10. Therefore, the shaft 10 can move inside the ring 52 in the Z-axis direction. Therefore, a gap is also formed between the inner surface of the ring 52 and the outer surface of the shaft 10. Therefore, the shaft 10 can move inside the ring 52 in the Z-axis direction, and the shaft 10 can rotate around the central axis 100 inside the ring 52. However, the gap formed between the inner surface of the ring 52 and the outer surface of the shaft 10 is smaller than the gap formed between the inner surface of the through hole 51A excluding the enlarged diameter portion 51B and the outer surface of the shaft 10. . The upper ring 52 in the Z-axis direction is referred to as a first ring 52A, and the lower ring 52 in the Z-axis direction is referred to as a second ring 52B. When the first ring 52A and the second ring 52B are not distinguished, they are simply referred to as the ring 52. As the material of the ring 52, for example, metal or resin can be used.
 ハウジング本体51のZ軸方向の中央部には、X軸方向の左右両方向に張り出した張出部511が形成されている。張出部511には、ハウジング2の下端面202と平行な面であって、シャフトハウジング50をハウジング2の下端面202へ取り付けるときに、該下端面202と接する面である取付面511Aが形成されている。取付面511Aは、中心軸100と直交する面である。また、ハウジング2にシャフトハウジング50を取り付けたときに、シャフトハウジング50の一部であって取付面511AよりもZ軸方向の上側の部分512は、ハウジング2に形成された凹部202Bに嵌るように形成されている。 張 At the center of the housing body 51 in the Z-axis direction, an overhang portion 511 is formed which extends in both the left and right directions in the X-axis direction. The overhang portion 511 has a mounting surface 511A that is a surface parallel to the lower end surface 202 of the housing 2 and that comes into contact with the lower end surface 202 when the shaft housing 50 is mounted on the lower end surface 202 of the housing 2. Have been. The mounting surface 511A is a surface orthogonal to the central axis 100. When the shaft housing 50 is attached to the housing 2, a part 512 of the shaft housing 50, which is above the attachment surface 511 </ b> A in the Z-axis direction, fits into the concave portion 202 </ b> B formed in the housing 2. Is formed.
 上記のとおり、貫通孔51Aの内面とシャフト10の外面とには隙間が設けられている。その結果、ハウジング本体51の内部には、貫通孔51Aの内面と、シャフト10の外面と、第一リング52Aの下端面と、第二リング52Bの上端面とによって囲まれた空間である内部空間500が形成されている。また、シャフトハウジング50には、ハウジング2の下端面202に形成されるエア流通路202Aの開口部と、内部空間500とを連通して空気の通路となる制御通路501が形成されている。制御通路501は、X軸方向に延びる第一通路501A、Z軸方向に延びる第二通路501B、第一通路501A及び第二通路501Bが接続される空間であってフィルタ53が配置される空間であるフィルタ部501Cを有する。第一通路501Aの一端は内部空間500に接続され、他端はフィルタ部501Cに接続されている。第二通路501Bの一端は、取付面511Aに開口しており、エア流通路202Aの開口部に接続されるように位置が合わされている。 As described above, a gap is provided between the inner surface of the through hole 51A and the outer surface of the shaft 10. As a result, inside the housing body 51, an inner space that is a space surrounded by the inner surface of the through hole 51A, the outer surface of the shaft 10, the lower end surface of the first ring 52A, and the upper end surface of the second ring 52B. 500 are formed. In the shaft housing 50, a control passage 501 is formed, which communicates with an opening of an air flow passage 202A formed in the lower end surface 202 of the housing 2 and the internal space 500 to serve as an air passage. The control passage 501 is a space in which the first passage 501A extending in the X-axis direction, the second passage 501B extending in the Z-axis direction, the first passage 501A and the second passage 501B are connected, and in which the filter 53 is arranged. It has a certain filter section 501C. One end of the first passage 501A is connected to the internal space 500, and the other end is connected to the filter unit 501C. One end of the second passage 501B is open to the mounting surface 511A, and is positioned so as to be connected to the opening of the air flow passage 202A.
 また、第二通路501Bの他端はフィルタ部501Cに接続される。フィルタ部501Cには、円筒状に形成されたフィルタ53が設けられている。フィルタ部501Cは、第一通路501Aと中心軸が一致するようにX軸方向に延びた円柱形状の空間となるように形成されている。フィルタ部501Cの内径とフィルタ53の外径とは略等しい。フィルタ53は、X軸方向にフィルタ部501Cへ挿入される。フィルタ部501Cにフィルタ53が挿入された後に、フィルタ止め54によってフィルタ53の挿入口となったフィルタ部501Cの端部が閉塞される。第二通路501Bの他端は、フィルタ53の外周面側からフィルタ部501Cに接続されている。また、第一通路501Aの他端はフィルタ53の中心側と通じている。そのため、第一通路501Aと第二通路501Bとの間を流通する空気は、フィルタ53を通過する。したがって、例えば、先端部10Aに負圧を発生させたときに、内部空間500に空気と一緒に異物を吸い込んだとしても、この異物はフィルタ53によって捕集される。第二通路501Bの一端には、シール剤を保持するように溝501Dが形成されている。 他 端 The other end of the second passage 501B is connected to the filter 501C. The filter unit 501C is provided with a filter 53 formed in a cylindrical shape. The filter portion 501C is formed so as to be a cylindrical space extending in the X-axis direction so that the center axis of the first passage 501A coincides with the center axis. The inner diameter of the filter portion 501C is substantially equal to the outer diameter of the filter 53. The filter 53 is inserted into the filter unit 501C in the X-axis direction. After the filter 53 is inserted into the filter unit 501C, the filter stopper 54 closes the end of the filter unit 501C that has become the insertion port of the filter 53. The other end of the second passage 501B is connected to the filter section 501C from the outer peripheral surface side of the filter 53. The other end of the first passage 501A communicates with the center of the filter 53. Therefore, the air flowing between the first passage 501A and the second passage 501B passes through the filter 53. Therefore, for example, even when foreign matter is sucked into the internal space 500 together with air when a negative pressure is generated at the distal end portion 10A, the foreign matter is collected by the filter 53. A groove 501D is formed at one end of the second passage 501B so as to hold the sealant.
 張出部511のX軸方向の両端部付近には、該シャフトハウジング50をハウジング2にボルトを用いて固定するときに、該ボルトを挿通させるボルト孔51Gが2つ形成されている。ボルト孔51Gは、Z軸方向に張出部511を貫通して取付面511Aに開口している。 In the vicinity of both ends in the X-axis direction of the protruding portion 511, two bolt holes 51G through which the bolts are inserted when the shaft housing 50 is fixed to the housing 2 using bolts are formed. The bolt hole 51G penetrates the projecting portion 511 in the Z-axis direction and opens on the mounting surface 511A.
 シャフト10の先端部10A側には、シャフト10が中空となるように中空部11が形成されている。中空部11の一端は、先端部10Aで開口している。また、中空部11の他端には、内部空間500と中空部11とをX軸方向に連通する連通孔12が形成されている。直動モータ30によってシャフト10がZ軸方向に移動したときのストロークの全範囲において、内部空間500と中空部11とが連通するように連通孔12が形成されている。したがって、シャフト10の先端部10Aと、エア制御機構60とは、中空部11、連通孔12、内部空間500、制御通路501、エア流通路202Aを介して連通している。なお、連通孔12は、X軸方向に加えてY軸方向にも形成されていてもよい。 中空 A hollow portion 11 is formed on the tip 10A side of the shaft 10 so that the shaft 10 becomes hollow. One end of the hollow part 11 is open at the tip part 10A. At the other end of the hollow portion 11, a communication hole 12 that connects the internal space 500 and the hollow portion 11 in the X-axis direction is formed. The communication hole 12 is formed such that the internal space 500 and the hollow portion 11 communicate with each other over the entire range of the stroke when the shaft 10 is moved in the Z-axis direction by the linear motor 30. Therefore, the distal end portion 10A of the shaft 10 and the air control mechanism 60 communicate with each other through the hollow portion 11, the communication hole 12, the internal space 500, the control passage 501, and the air flow passage 202A. The communication hole 12 may be formed in the Y-axis direction in addition to the X-axis direction.
 このような構成によれば、直動モータ30を駆動してシャフト10をZ軸方向に移動させたときに、シャフト10がZ軸方向のどの位置にあっても、連通孔12は常に内部空間500と中空部11とを連通する。また、回転モータ20を駆動してシャフト10を中心軸100回りに回転させたときに、シャフト10の回転角度が中心軸100回りのどの角度であっても、連通孔12は常に内部空間500と中空部11とを連通する。したがって、シャフト10がどのような状態であっても、中空部11と内部空間500との連通状態が維持されるため、中空部11は常にエア制御機構60に通じていることになる。そのため、シャフト10の位置にかかわらず、エア制御機構60において正圧電磁弁63Aを閉じ、負圧電磁弁63Bを開くと、エア流通路202A、制御通路501、内部空間500、および連通孔12を介して、中空部11内の空気が吸引されることになる。その結果、中空部11に負圧を発生させることができる。すなわち、シャフト10の先端部10Aに負圧を発生させることができるので、シャフト10の先端部10AにワークWを吸い付けることができる。なお、上述したように、リング52の内面とシャフト10の外面との間にも隙間が形成されている。しかしながら、この隙間は、内部空間500を形成する隙間(すなわち、貫通孔51Aの内面とシャフト10の外面との間に形成される隙間)よりも小さい。そのため、エア制御機構60において正圧電磁弁63Aを閉じ、負圧電磁弁63Bを開くことで、内部空間500内から空気が吸引されても、リング52の内面とシャフト10の外面との間の隙間を流通する空気の流量を抑制することができる。これにより、ワークWをピックアップできるような負圧をシャフト10の先端部10Aに発生させることができる。一方、シャフト10の位置にかかわらず、エア制御機構60において正圧電磁弁63Aを開き、負圧電磁弁63Bを閉じると、中空部11に正圧を発生させることができる。すなわち、シャフト10の先端部10Aに正圧を発生させることができるので、シャフト10の先端部10AからワークWを速やかに脱離させることができる。 According to such a configuration, when the linear motor 30 is driven to move the shaft 10 in the Z-axis direction, the communication hole 12 is always in the internal space regardless of the position of the shaft 10 in the Z-axis direction. 500 and the hollow portion 11 are communicated. Further, when the rotation motor 20 is driven to rotate the shaft 10 around the central axis 100, the communication hole 12 is always in contact with the internal space 500 regardless of the rotation angle of the shaft 10 around the central axis 100. The hollow portion 11 is communicated. Therefore, regardless of the state of the shaft 10, the communication between the hollow portion 11 and the internal space 500 is maintained, so that the hollow portion 11 always communicates with the air control mechanism 60. Therefore, regardless of the position of the shaft 10, when the positive pressure solenoid valve 63A is closed and the negative pressure solenoid valve 63B is opened in the air control mechanism 60, the air flow passage 202A, the control passage 501, the internal space 500, and the communication hole 12 are closed. Through this, the air in the hollow portion 11 is sucked. As a result, a negative pressure can be generated in the hollow portion 11. That is, since a negative pressure can be generated at the tip 10A of the shaft 10, the workpiece W can be sucked to the tip 10A of the shaft 10. As described above, a gap is also formed between the inner surface of the ring 52 and the outer surface of the shaft 10. However, this gap is smaller than the gap forming the internal space 500 (that is, the gap formed between the inner surface of the through hole 51A and the outer surface of the shaft 10). Therefore, by closing the positive pressure solenoid valve 63A and opening the negative pressure solenoid valve 63B in the air control mechanism 60, even if air is sucked from the interior space 500, the air gap between the inner surface of the ring 52 and the outer surface of the shaft 10 is maintained. The flow rate of the air flowing through the gap can be suppressed. Thereby, a negative pressure capable of picking up the work W can be generated at the distal end portion 10A of the shaft 10. On the other hand, regardless of the position of the shaft 10, when the positive pressure electromagnetic valve 63A is opened and the negative pressure electromagnetic valve 63B is closed in the air control mechanism 60, a positive pressure can be generated in the hollow portion 11. That is, since a positive pressure can be generated at the tip 10A of the shaft 10, the workpiece W can be quickly detached from the tip 10A of the shaft 10.
 (ピックアンドプレイス動作)
 アクチュエータ1を用いたワークWのピックアンドプレイスについて説明する。ピックアンドプレイスは、コントローラ7が所定のプログラムを実行することにより行われる。ワークWのピックアップ時において、シャフト10がワークWに接触するまでは、正圧電磁弁63A及び負圧電磁弁63Bは共に閉じた状態とする。この場合、シャフト10の先端部10Aの圧力は大気圧となる。そして、直動モータ30によりシャフト10をZ軸方向下側に移動させる。シャフト10がワークWに接触すると、直動モータ30を停止させる。直動モータ30を停止後に負圧電磁弁63Bを開くことにより、シャフト10の先端部10Aに負圧を発生させ、ワークWをシャフト10の先端部10Aに吸い付ける。その後、直動モータ30によりシャフト10をZ軸方向上側に移動させる。このときに、必要に応じて、回転モータ20によりシャフト10を回転させる。このようにして、ワークWをピックアップすることができる。
(Pick and place operation)
The pick and place of the work W using the actuator 1 will be described. The pick and place is performed by the controller 7 executing a predetermined program. At the time of picking up the work W, the positive pressure solenoid valve 63A and the negative pressure solenoid valve 63B are both closed until the shaft 10 comes into contact with the work W. In this case, the pressure at the distal end 10A of the shaft 10 becomes the atmospheric pressure. Then, the shaft 10 is moved downward in the Z-axis direction by the linear motor 30. When the shaft 10 comes into contact with the workpiece W, the linear motor 30 is stopped. By opening the negative pressure solenoid valve 63B after stopping the linear motor 30, a negative pressure is generated at the distal end 10A of the shaft 10, and the work W is sucked to the distal end 10A of the shaft 10. Thereafter, the shaft 10 is moved upward in the Z-axis direction by the linear motor 30. At this time, the shaft 10 is rotated by the rotation motor 20 as necessary. Thus, the work W can be picked up.
 次に、ワークWのプレイス時には、ワークWが先端部10Aに吸い付いている状態のシャフト10を直動モータ30によりZ軸方向の下側に移動させる。ワークWが接地すると、直動モータ30を停止させることで、シャフト10の移動を停止させる。さらに、負圧電磁弁63Bを閉じ且つ正圧電磁弁63Aを開くことにより、シャフト10の先端部10Aに正圧を発生させる。その後、直動モータ30によりシャフト10をZ軸方向の上側に移動させることにより、シャフト10の先端部10AがワークWから離れる。 Next, at the time of placing the work W, the shaft 10 in a state where the work W is attracted to the distal end portion 10A is moved downward by the linear motor 30 in the Z-axis direction. When the work W comes into contact with the ground, the movement of the shaft 10 is stopped by stopping the linear motor 30. Further, by closing the negative pressure electromagnetic valve 63B and opening the positive pressure electromagnetic valve 63A, a positive pressure is generated at the tip 10A of the shaft 10. Thereafter, the distal end portion 10A of the shaft 10 is separated from the workpiece W by moving the shaft 10 upward in the Z-axis direction by the linear motor 30.
 ここで、ワークWのピックアップ時において、シャフト10の先端部10AがワークWに接触したことをひずみゲージ37を用いて検出する。以下では、この方法について説明する。なお、ワークWのプレイス時においてワークWが接地したことも同様にして検出することができる。シャフト10の先端部10AがワークWに接触して先端部10AがワークWを押すと、シャフト10とワークWとの間に荷重が発生する。すなわち、シャフト10がワークWに力を加えたときの反作用によって、シャフト10がワークWから力を受ける。このシャフト10がワークWから受ける力は、連結アーム36に対してひずみを発生させる方向に作用する。すなわち、このときに連結アーム36にひずみが生じる。このひずみは、ひずみゲージ37によって検出される。そして、ひずみゲージ37が検出するひずみは、シャフト10がワークWから受ける力と相関関係にある。このため、ひずみゲージ37の検出値に基づいて、ワークWからシャフト10が受ける力、すなわち、シャフト10とワークWとの間に発生した荷重を検出することができる。ひずみゲージの検出値と荷重との関係は予め実験またはシミュレーション等により求めることができる。 Here, when the work W is picked up, the fact that the tip 10A of the shaft 10 has come into contact with the work W is detected using the strain gauge 37. Hereinafter, this method will be described. In addition, it can be similarly detected that the work W is grounded when the work W is placed. When the tip 10A of the shaft 10 contacts the work W and the tip 10A pushes the work W, a load is generated between the shaft 10 and the work W. That is, the shaft 10 receives a force from the work W due to a reaction when the shaft 10 applies a force to the work W. The force that the shaft 10 receives from the work W acts in a direction that generates strain on the connecting arm 36. That is, at this time, the connection arm 36 is distorted. This strain is detected by the strain gauge 37. The strain detected by the strain gauge 37 has a correlation with the force that the shaft 10 receives from the workpiece W. For this reason, based on the detection value of the strain gauge 37, the force that the shaft 10 receives from the work W, that is, the load generated between the shaft 10 and the work W can be detected. The relationship between the detected value of the strain gauge and the load can be obtained in advance by experiment, simulation, or the like.
 このように、ひずみゲージ37の検出値に基づいてシャフト10とワークWとの間に発生した荷重を検出することができるため、例えば、荷重が発生した時点でシャフト10の先端部10AがワークWに接触したと判断してもよいし、誤差等の影響を考慮して、検出された荷重が所定荷重以上の場合に、シャフト10の先端部10AがワークWに接触したと判断してもよい。なお、所定荷重は、シャフト10がワークWに接触したと判定される閾値である。また、所定荷重をワークWの破損を抑制しつつワークWをより確実にピックアップすることが可能な荷重として設定してもよい。また、所定荷重は、ワークWの種類に応じて変更することもできる。 As described above, since the load generated between the shaft 10 and the work W can be detected based on the detection value of the strain gauge 37, for example, when the load is generated, the tip 10A of the shaft 10 May be determined, or when the detected load is equal to or more than a predetermined load in consideration of the influence of an error or the like, it may be determined that the distal end portion 10A of the shaft 10 has contacted the workpiece W. . The predetermined load is a threshold value at which it is determined that the shaft 10 has contacted the workpiece W. Alternatively, the predetermined load may be set as a load that can more reliably pick up the work W while suppressing damage to the work W. Further, the predetermined load can be changed according to the type of the work W.
 ここで、ひずみゲージ37のひずみによる抵抗値変化は極めて微少であるため、ホイートストンブリッジ回路を利用して、電圧変化として取り出している。アクチュエータ1では、第一ひずみゲージ37Aに係るブリッジ回路の出力と、第二ひずみゲージ37Bに係るブリッジ回路の出力とを並列に接続している。このように、両ブリッジ回路の出力を並列に接続することにより、以下のような温度の影響を取り除いた電圧変化を得ている。 Here, since the change in the resistance value due to the strain of the strain gauge 37 is extremely small, it is extracted as a voltage change using a Wheatstone bridge circuit. In the actuator 1, the output of the bridge circuit related to the first strain gauge 37A and the output of the bridge circuit related to the second strain gauge 37B are connected in parallel. As described above, by connecting the outputs of both bridge circuits in parallel, a voltage change that eliminates the influence of temperature as described below is obtained.
 ここで、温度の影響による連結アーム36のひずみがないと仮定した場合には、第一ひずみゲージ37Aと第二ひずみゲージ37Bとの夫々で検出される荷重は略同じになる。しかし、例えば、直動モータ30の作動頻度が高く、且つ、回転モータ20の作動頻度が低い場合には、直動モータ30側の温度が回転モータ20側の温度よりも高くなるため、第一アーム36Aと第二アーム36Bとの間では、直動テーブル33のZ軸方向の膨張量が、回転モータ20のZ軸方向の膨張量よりも大きくなる。これにより、第一アーム36Aと第二アーム36Bとが平行でなくなり、回転モータ20側よりも直動モータ30側の方が、第一アーム36Aと第二アーム36Bとの距離が大きくなる。このときには、第一ひずみゲージ37Aは縮み、第二ひずみゲージ37Bは伸びる。この場合、第一ひずみゲージ37Aの出力は、見かけ上、荷重の発生を示し、第二ひずみゲージ37Bの出力は、見かけ上、負の荷重の発生を示す。このときには、第一アーム36A及び第二アーム36Bに、直動テーブル33のZ軸方向の膨張量と回転モータ20のZ軸方向の膨張量との差によって生じる力が逆方向に等しくかかっているため、第一ひずみゲージ37Aの出力と、第二ひずみゲージ37Bの出力とは、絶対値が等しく正負が異なっている。そのため、両ひずみゲージの出力を並列に接続することにより、温度の影響による出力を互いに打ち消すことができるため、別途温度に応じた補正を行う必要がない。そのため、簡易且つ高精度に荷重を検出することができる。このように、両ブリッジ回路の出力を並列に接続することにより、温度の影響を取り除いた電圧変化を得ることができ、この電圧変化はシャフト10とワークWとの間に発生する荷重に応じた値になる。 Here, assuming that there is no distortion of the connecting arm 36 due to the influence of temperature, the loads detected by the first strain gauge 37A and the second strain gauge 37B are substantially the same. However, for example, when the operation frequency of the linear motor 30 is high and the operation frequency of the rotary motor 20 is low, the temperature of the linear motor 30 is higher than the temperature of the rotary motor 20. Between the arm 36A and the second arm 36B, the amount of expansion of the translation table 33 in the Z-axis direction is larger than the amount of expansion of the rotary motor 20 in the Z-axis direction. As a result, the first arm 36A and the second arm 36B are not parallel, and the distance between the first arm 36A and the second arm 36B is larger on the side of the linear motor 30 than on the side of the rotary motor 20. At this time, the first strain gauge 37A contracts and the second strain gauge 37B expands. In this case, the output of the first strain gauge 37A apparently indicates the occurrence of a load, and the output of the second strain gauge 37B apparently indicates the occurrence of a negative load. At this time, the force generated by the difference between the amount of expansion of the translation table 33 in the Z-axis direction and the amount of expansion of the rotary motor 20 in the Z-axis direction is equally applied to the first arm 36A and the second arm 36B in the opposite direction. Therefore, the output of the first strain gauge 37A and the output of the second strain gauge 37B have the same absolute value and different signs. Therefore, by connecting the outputs of both strain gauges in parallel, the outputs due to the influence of temperature can be canceled each other, so that it is not necessary to separately perform correction according to temperature. Therefore, it is possible to easily and accurately detect the load. In this way, by connecting the outputs of both bridge circuits in parallel, it is possible to obtain a voltage change that eliminates the influence of temperature, and this voltage change corresponds to the load generated between the shaft 10 and the work W. Value.
 なお、本実施形態においては、ひずみゲージ37を2つ設けているが、これに代えて、第一ひずみゲージ37Aまたは第二ひずみゲージ37Bの何れか一方のみを設けていてもよい。この場合、ひずみゲージの検出値を周知の技術を用いて温度に応じて補正する。ひずみゲージ37を1つ設けた場合であっても、ひずみゲージ37の出力はシャフト10とワークWとの間に発生する荷重に応じた値になるため、ひずみゲージ37の出力に基づいて、シャフト10とワークWとの間に発生する荷重を検出することができる。 In the present embodiment, two strain gauges 37 are provided, but only one of the first strain gauge 37A and the second strain gauge 37B may be provided instead. In this case, the detected value of the strain gauge is corrected according to the temperature using a known technique. Even when one strain gauge 37 is provided, the output of the strain gauge 37 is a value corresponding to the load generated between the shaft 10 and the workpiece W. It is possible to detect a load generated between the workpiece 10 and the work W.
 このように、連結アーム36にひずみゲージ37を設けることにより、ワークWにシャフト10が接したことを検出することができる。ここで、従来では、ワークWにかかる力を検出することが困難であった。そのため、シャフト10の先端部10Aに、衝撃を吸収するばね又は柔軟性の高い部材(例えばゴム)を取り付けていた。この場合、ワークWにかかる力を精密に調整することが困難であった。また、シャフト10がワークWに当接したときの衝撃を低減するため、シャフト10をワークWに近付ける速度を低下させることもあった。この場合、タクトタイムが長くなってしまう。一方、本実施形態に係るアクチュエータ1によれば、ワークWにシャフト10が接したことをひずみゲージ37により正確に検出することができるため、シャフト10の速度を低下させずにワークWにかかる力をより精密に調整することができる。 As described above, by providing the strain gauge 37 on the connecting arm 36, it is possible to detect that the shaft 10 is in contact with the workpiece W. Here, conventionally, it has been difficult to detect the force applied to the work W. Therefore, a spring or a highly flexible member (for example, rubber) that absorbs an impact is attached to the distal end portion 10A of the shaft 10. In this case, it was difficult to precisely adjust the force applied to the work W. Further, in order to reduce the impact when the shaft 10 comes into contact with the workpiece W, the speed at which the shaft 10 approaches the workpiece W may be reduced. In this case, the tact time becomes long. On the other hand, according to the actuator 1 according to the present embodiment, since the contact of the shaft 10 with the work W can be accurately detected by the strain gauge 37, the force applied to the work W without lowering the speed of the shaft 10 Can be adjusted more precisely.
 また、ワークWに適切な力をかけることが可能となるため、ワークWのピックアップをより確実に実行することができる。例えば、ワークWをピックアップするときには、シャフト10の先端部10AにワークWを押し付けた状態で中空部11に負圧を発生させることにより、ワークWをより確実にピックアップすることが可能となると共に、ワークWを吸引したときにワークWが勢いよくシャフト10に衝突して破損することを抑制できる。一方、ワークWを押し付ける荷重が大きすぎると、ワークWが破損する虞がある。したがって、ワークWにかかる荷重を検出しつつワークWに適切な荷重をかけることにより、ワークWの破損を抑制しつつ、より確実なワークWのピックアップが可能となる。また、プレイス時においても、ワークWに適切な荷重をかけることが求められる場合もある。例えば、ワークWを他の部材に接着剤を用いて接着する場合には、接着の特性に応じた荷重をかける必要がある。このときにも、ワークWにかかる荷重を適切に制御することにより、より確実な接着が可能となる。 (4) Since an appropriate force can be applied to the work W, the work W can be picked up more reliably. For example, when picking up the work W, the work W can be more reliably picked up by generating a negative pressure in the hollow portion 11 in a state where the work W is pressed against the distal end portion 10A of the shaft 10. When the work W is sucked, the work W can be prevented from violently colliding with the shaft 10 and being damaged. On the other hand, if the load pressing the work W is too large, the work W may be damaged. Therefore, by applying an appropriate load to the work W while detecting the load applied to the work W, it is possible to more reliably pick up the work W while suppressing damage to the work W. Further, even during the place, it may be required to apply an appropriate load to the work W. For example, when bonding the workpiece W to another member using an adhesive, it is necessary to apply a load according to the bonding characteristics. Also at this time, by appropriately controlling the load applied to the work W, more reliable bonding can be performed.
 また、従来では、シャフト10の先端部10Aに負圧を発生させるために、シャフト10全体を中空構造とし、シャフト10の基端部にロータリジョイントを設けることがあった。このロータリジョイントを介して正圧及び負圧を供給することが可能である。しかし、ロータリジョイントをシャフト10に接続すると、シャフト10をZ軸方向に移動または中心軸100の回りに回転させるためにより大きなトルクが必要となるため、トルクがより大きなモータを採用する必要があった。また、可動部が多くなることにより、メンテナンスの頻度を高くする必要があった。 Conventionally, in order to generate a negative pressure at the distal end portion 10A of the shaft 10, the entire shaft 10 may have a hollow structure and a rotary joint may be provided at the base end portion of the shaft 10. Positive pressure and negative pressure can be supplied through this rotary joint. However, when the rotary joint is connected to the shaft 10, a larger torque is required to move the shaft 10 in the Z-axis direction or rotate around the central axis 100, so that it is necessary to employ a motor having a larger torque. . In addition, as the number of movable parts increases, it is necessary to increase the frequency of maintenance.
 一方、本実施形態に係るアクチュエータ1によれば、ロータリジョイントを使用せずとも、シャフト10の中空部11に負圧を発生させることができる。そうすると、ロータリジョイントを動かすために、トルクが大きい回転モータを選択しなくてもよくなる。メンテナンスの頻度を高くする必要もなくなる。 On the other hand, according to the actuator 1 according to the present embodiment, a negative pressure can be generated in the hollow portion 11 of the shaft 10 without using a rotary joint. Then, it is not necessary to select a rotary motor having a large torque in order to move the rotary joint. There is no need to increase the frequency of maintenance.
 また、ロータリジョイントを介して正圧及び負圧を供給する場合には、ロータリジョイントに接続されるチューブ等からシャフト10が力を受けるため、この力がひずみゲージ37の出力に含まれてしまう。そのため、ワークWにかかる荷重を正確に検出することが困難となり得る。一方、本実施形態に係るアクチュエータ1のように、シャフトハウジング50を介して正圧及び負圧を供給することにより、ロータリジョイントを用いる必要がなくなるので、ひずみゲージ37により検出される荷重の精度をより高めることができる。 When the positive pressure and the negative pressure are supplied via the rotary joint, the shaft 10 receives a force from a tube or the like connected to the rotary joint, and this force is included in the output of the strain gauge 37. Therefore, it may be difficult to accurately detect the load applied to the work W. On the other hand, by supplying a positive pressure and a negative pressure via the shaft housing 50 as in the actuator 1 according to the present embodiment, it is not necessary to use a rotary joint, so that the accuracy of the load detected by the strain gauge 37 can be reduced. Can be more enhanced.
 なお、本実施形態に係るアクチュエータ1は、複数のアクチュエータ1をY軸方向に積層可能であるように形成されている。複数のアクチュエータ1は、隣り合うアクチュエータ1がZ軸回りに180度回転した状態であっても積層可能である。シャフト10は、ハウジング2のX軸方向の中心且つY軸方向の中心に設けられているため、アクチュエータ1をZ軸回りに180度回転して配置してもシャフト10の位置は変化しない。 The actuator 1 according to the present embodiment is formed so that a plurality of actuators 1 can be stacked in the Y-axis direction. The plurality of actuators 1 can be stacked even when adjacent actuators 1 are rotated by 180 degrees around the Z axis. Since the shaft 10 is provided at the center in the X-axis direction and the center in the Y-axis direction of the housing 2, the position of the shaft 10 does not change even if the actuator 1 is rotated 180 degrees around the Z axis.
<第2実施形態>
 第1実施形態においては、連結アーム36にひずみゲージ37を設けているが、シャフト10とワークWとの間に荷重が発生したときに、その荷重に応じてひずみが発生する部材であれば、他の部材にひずみゲージ37を設けることもできる。
<Second embodiment>
In the first embodiment, the connecting arm 36 is provided with the strain gauge 37. However, when a load is generated between the shaft 10 and the workpiece W, any member that generates a strain in accordance with the load may be used. Another member may be provided with the strain gauge 37.
 図4及び図5は、回転モータ20の出力軸21を支持する2つの軸受25に夫々ひずみゲージ37を設けた場合の概略構成を示す図である。図4は、Z軸方向上側に設けられる軸受25Aの周りの図であり、図5は、Z軸方向下側に設けられる軸受25Bの周りの図である。なお、両軸受を区別しない場合には、単に軸受25という。軸受25は、出力軸21において回転子23よりもZ軸方向の上側(図4参照。)と下側(図5参照。)とに夫々設けられている。 FIGS. 4 and 5 are diagrams showing a schematic configuration in the case where strain gauges 37 are provided on two bearings 25 supporting the output shaft 21 of the rotary motor 20, respectively. FIG. 4 is a diagram around the bearing 25A provided on the upper side in the Z-axis direction, and FIG. 5 is a diagram around the bearing 25B provided on the lower side in the Z-axis direction. In the case where the two bearings are not distinguished, they are simply referred to as the bearing 25. The bearings 25 are provided on the output shaft 21 above (see FIG. 4) and below (see FIG. 5) the rotor 23 in the Z-axis direction, respectively.
 まず、図4を用いて回転子23よりもZ軸方向の上側に設けられるひずみゲージ37について説明する。軸受25Aは、内周面が出力軸21の外周面に嵌め込まれており、外周面が固定子22に形成されている固定部220Aの内周面に嵌め込まれている。固定部220Aは、軸受25AのZ軸方向の上側に接するように、中心軸100側に向かって突出する上部突出部221Aを有している。上部突出部221AのZ軸方向の上側の面に第一ひずみゲージ37Aが設けられている。 First, the strain gauge 37 provided above the rotor 23 in the Z-axis direction will be described with reference to FIG. The bearing 25 </ b> A has an inner peripheral surface fitted on the outer peripheral surface of the output shaft 21, and an outer peripheral surface fitted on an inner peripheral surface of a fixing portion 220 </ b> A formed on the stator 22. The fixing portion 220A has an upper protruding portion 221A protruding toward the center shaft 100 side so as to be in contact with an upper side of the bearing 25A in the Z-axis direction. A first strain gauge 37A is provided on an upper surface of the upper protrusion 221A in the Z-axis direction.
 次に、図5を用いて回転子23よりもZ軸方向の下側に設けられるひずみゲージ37について説明する。軸受25Bは、内周面が出力軸21の外周面に嵌め込まれており、外周面が固定子22に形成されている固定部220Bの内周面に嵌め込まれている。固定部220Bは、軸受25BのZ軸方向の上側に接するように、中心軸100側に向かって突出する下部突出部221Bを有している。下部突出部221BのZ軸方向の上側の面に第二ひずみゲージ37Bが設けられている。 Next, the strain gauge 37 provided below the rotor 23 in the Z-axis direction will be described with reference to FIG. The bearing 25 </ b> B has an inner peripheral surface fitted on the outer peripheral surface of the output shaft 21, and an outer peripheral surface fitted on an inner peripheral surface of a fixing portion 220 </ b> B formed on the stator 22. The fixing portion 220B has a lower protruding portion 221B protruding toward the central shaft 100 so as to contact the upper side of the bearing 25B in the Z-axis direction. A second strain gauge 37B is provided on the upper surface of the lower protrusion 221B in the Z-axis direction.
 したがって、第一ひずみゲージ37A及び第二ひずみゲージ37Bは、同じ方向を向く互いに平行な面であってシャフト10の中心軸100と直交する面に夫々設けられている。このような構成では、シャフト10とワークWとの間に発生した荷重により、上部突出部221A及び下部突出部221Bにはひずみが生じる。このひずみは、シャフト10とワークWとの間に発生した荷重と相関関係にあるため、ひずみゲージ37により、ひずみを検出することにより、シャフト10とワークWとの間に発生した荷重を検出することができる。また、第1実施形態と同様に、第一ひずみゲージ37Aと第二ひずみゲージ37Bとは、温度の影響により逆方向のひずみを検出する。すなわち、上部突出部221Aと下部突出部221Bとの間の固定子22の膨張量と出力軸21の膨張量とに差がある場合には、上部突出部221A及び下部突出部221Bに逆方向で同じ大きさの力がかかる。このときには、第一ひずみゲージ37Aの出力と、第二ひずみゲージ37Bの出力とは、絶対値が等しく正負が異なっている。そのため、両ひずみゲージの出力を並列に接続することにより、温度の影響による出力を互いに打ち消すことができるため、別途温度に応じた補正を行う必要がない。したがって、簡易且つ高精度に、シャフト10及びワークWに加わる荷重を検出することができる。 Therefore, the first strain gauge 37A and the second strain gauge 37B are provided on surfaces parallel to each other in the same direction and orthogonal to the central axis 100 of the shaft 10. In such a configuration, the load generated between the shaft 10 and the work W causes distortion in the upper protrusion 221A and the lower protrusion 221B. Since this strain is correlated with the load generated between the shaft 10 and the work W, the strain gauge 37 detects the strain to detect the load generated between the shaft 10 and the work W. be able to. Further, similarly to the first embodiment, the first strain gauge 37A and the second strain gauge 37B detect strains in opposite directions under the influence of temperature. That is, when there is a difference between the amount of expansion of the stator 22 and the amount of expansion of the output shaft 21 between the upper protruding portion 221A and the lower protruding portion 221B, the upper protruding portion 221A and the lower protruding portion 221B are turned in opposite directions. The same amount of force is applied. At this time, the output of the first strain gauge 37A and the output of the second strain gauge 37B have the same absolute value and different positive and negative. Therefore, by connecting the outputs of both strain gauges in parallel, the outputs due to the influence of temperature can be canceled each other, so that it is not necessary to separately perform correction according to temperature. Therefore, the load applied to the shaft 10 and the work W can be easily and accurately detected.
<その他の実施形態>
 第1実施形態においては、連結アーム36にひずみゲージ37を設けているが、これに代えて、連結アーム35にひずみゲージ37を設けることもできる。すなわち、2つの連結アーム35の夫々において、Z軸方向の上側を向く面にひずみゲージ37を夫々設けることもできる。また、2つの連結アーム35の夫々において、Z軸方向の下側を向く面にひずみゲージ37を夫々設けることもできる。連結アーム36のZ軸方向の上側を向く面または下側を向く面にも、シャフト10とワークWとの間に発生する荷重の大きさに応じたひずみが発生する。したがって、このひずみを検出することにより、荷重を検出することができる。また、連結アーム35も、Z軸方向にずらして2つ配置されており、夫々の中心軸が互いに平行であり、且つ、夫々の中心軸がシャフト10の中心軸100と直交している。そのため、第1実施形態で説明したように、熱膨張によって連結アーム35にひずみが生じた場合であっても、2つのひずみゲージの出力を並列に接続することにより、熱膨張によるひずみの影響を打ち消すことができる。したがって、簡易且つ高精度に、シャフト10及びワークWに加わる荷重を検出することができる。
<Other embodiments>
In the first embodiment, the connection arm 36 is provided with the strain gauge 37. Alternatively, the connection arm 35 may be provided with the strain gauge 37. That is, in each of the two connecting arms 35, a strain gauge 37 can be provided on a surface facing upward in the Z-axis direction. In each of the two connecting arms 35, a strain gauge 37 may be provided on a surface facing downward in the Z-axis direction. A strain corresponding to the magnitude of the load generated between the shaft 10 and the work W is also generated on the surface of the connection arm 36 facing upward or downward in the Z-axis direction. Therefore, the load can be detected by detecting the strain. The two connecting arms 35 are also displaced in the Z-axis direction, and their respective central axes are parallel to each other, and their respective central axes are orthogonal to the central axis 100 of the shaft 10. Therefore, as described in the first embodiment, even when a strain occurs in the connection arm 35 due to thermal expansion, the influence of the strain due to thermal expansion can be reduced by connecting the outputs of the two strain gauges in parallel. Can be countered. Therefore, the load applied to the shaft 10 and the work W can be easily and accurately detected.
1・・・アクチュエータ、2・・・ハウジング、10・・・シャフト、10A・・・先端部、11・・・中空部、20・・・回転モータ、22・・・固定子、23・・・回転子、30・・・直動モータ、31・・・固定子、32・・・可動子、36・・・連結アーム、37・・・ひずみゲージ、50・・・シャフトハウジング、60・・・エア制御機構 DESCRIPTION OF SYMBOLS 1 ... Actuator, 2 ... Housing, 10 ... Shaft, 10A ... Tip part, 11 ... Hollow part, 20 ... Rotation motor, 22 ... Stator, 23 ... Rotor, 30 ... linear motor, 31 ... stator, 32 ... mover, 36 ... connecting arm, 37 ... strain gauge, 50 ... shaft housing, 60 ... Air control mechanism

Claims (5)

  1.   シャフトと、
     前記シャフトを回転可能に支持する支持部と、
     固定子及び可動子を有する直動モータであって、前記直動モータの前記固定子に対して前記可動子が前記シャフトの中心軸と平行に移動することにより、前記支持部及び前記シャフトを前記シャフトの前記中心軸の方向に移動させる直動モータと、
     前記直動モータの前記可動子と前記支持部とを接続する部材の少なくとも一部である接続部材と、
     を備えるアクチュエータにおいて前記シャフトにかかる力を検出する荷重検出器であって、
     前記接続部材に設けられ前記接続部材のひずみを検出するひずみゲージを備える、荷重検出器。
    Shaft and
    A support portion rotatably supporting the shaft,
    A linear motor having a stator and a movable element, wherein the movable element moves parallel to a central axis of the shaft with respect to the stator of the linear motor, thereby moving the support portion and the shaft. A linear motor that moves in the direction of the central axis of the shaft;
    A connection member that is at least a part of a member that connects the mover and the support portion of the linear motor,
    A load detector that detects a force applied to the shaft in an actuator including:
    A load detector, comprising: a strain gauge provided on the connection member to detect a strain of the connection member.
  2.   前記接続部材は、前記シャフトの前記中心軸の方向にずらして設けられる第一部材及び第二部材を有し、
     前記ひずみゲージは、前記第一部材及び前記第二部材に夫々に設けられる同じ方向を向く互いに平行な面であって前記シャフトの前記中心軸と直交する面に夫々設けられる、
     請求項1に記載の荷重検出器。
    The connection member has a first member and a second member provided to be shifted in a direction of the central axis of the shaft,
    The strain gauge is provided on the first member and the second member, respectively, are provided on surfaces parallel to each other and facing the same direction and orthogonal to the central axis of the shaft,
    The load detector according to claim 1.
  3.   前記第一部材に設けられるひずみゲージと、前記第二部材に設けられるひずみゲージとは、夫々が異なるホイートストンブリッジ回路に組み込まれ、両ホイートストンブリッジ回路の出力が並列に接続される、
     請求項2に記載の荷重検出器。
    The strain gauge provided on the first member and the strain gauge provided on the second member are each incorporated into a different Wheatstone bridge circuit, and the outputs of both Wheatstone bridge circuits are connected in parallel.
    The load detector according to claim 2.
  4.  前記支持部が、固定子及び回転子を有する回転モータであって、前記回転モータの前記固定子に対して、前記シャフトに接続される前記回転子が回転することにより、前記シャフトを前記シャフトの前記中心軸の回りに回転させる回転モータであり、
      前記第一部材及び前記第二部材は、前記直動モータの前記可動子と前記回転モータの前記固定子とを接続する2つのアームであって、前記2つのアームの夫々の中心軸が前記シャフトの前記中心軸の方向と直交し、且つ、前記2つのアームの前記中心軸が互いに平行になる2つのアームである、
     請求項2または3に記載の荷重検出器。
    The support portion is a rotary motor having a stator and a rotor, and the rotor connected to the shaft rotates with respect to the stator of the rotary motor, thereby causing the shaft to rotate. A rotation motor that rotates around the central axis,
    The first member and the second member are two arms that connect the mover of the linear motion motor and the stator of the rotary motor, and each of the two arms has a central axis of the shaft. The two arms are orthogonal to the direction of the central axis, and the central axes of the two arms are parallel to each other.
    The load detector according to claim 2.
  5.  前記支持部が、固定子及び回転子を有する回転モータであって、前記回転モータの前記固定子に対して、前記シャフトに接続される前記回転子が回転することにより、前記シャフトを前記シャフトの前記中心軸の回りに回転させる回転モータであり、
      前記接続部材は、前記直動モータの前記可動子と前記回転モータの前記固定子とを接続するアームであって、前記アームの中心軸が前記シャフトの前記中心軸の方向と直交するアームである、
     請求項1に記載の荷重検出器。
    The support portion is a rotary motor having a stator and a rotor, and the rotor connected to the shaft rotates with respect to the stator of the rotary motor, thereby causing the shaft to rotate. A rotation motor that rotates around the central axis,
    The connection member is an arm that connects the mover of the linear motion motor and the stator of the rotary motor, and the center axis of the arm is orthogonal to the direction of the center axis of the shaft. ,
    The load detector according to claim 1.
PCT/JP2019/030261 2018-08-01 2019-08-01 Load detector for actuator WO2020027273A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018144899A JP2020020678A (en) 2018-08-01 2018-08-01 Actuator load detector
JP2018-144899 2018-08-01

Publications (1)

Publication Number Publication Date
WO2020027273A1 true WO2020027273A1 (en) 2020-02-06

Family

ID=69231222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030261 WO2020027273A1 (en) 2018-08-01 2019-08-01 Load detector for actuator

Country Status (3)

Country Link
JP (1) JP2020020678A (en)
TW (1) TW202020416A (en)
WO (1) WO2020027273A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11698309B2 (en) * 2020-03-05 2023-07-11 Delta Electronics, Inc. Linear actuator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60191785A (en) * 1984-03-13 1985-09-30 富士機械製造株式会社 Suction head for electronic part
JPS6444821A (en) * 1987-08-13 1989-02-17 Yamato Scale Co Ltd Thin-type weighing machine
WO2001078482A1 (en) * 2000-04-05 2001-10-18 Siemens Production And Logistics Systems Ag Assembly device comprising a unit for measuring the insertion force
JP2010003728A (en) * 2008-06-18 2010-01-07 Juki Corp Surface mounting device
JP2010034095A (en) * 2008-07-24 2010-02-12 Juki Corp Electronic component mounter

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60191786A (en) * 1984-03-08 1985-09-30 三星精密工業株式会社 Gripper proper to industrial robot
JP3762246B2 (en) * 2001-04-04 2006-04-05 Tdk株式会社 Processing equipment
JP2018072185A (en) * 2016-10-31 2018-05-10 セイコーエプソン株式会社 Pressing device, electronic component conveyance device, electronic component inspection device, and robot

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60191785A (en) * 1984-03-13 1985-09-30 富士機械製造株式会社 Suction head for electronic part
JPS6444821A (en) * 1987-08-13 1989-02-17 Yamato Scale Co Ltd Thin-type weighing machine
WO2001078482A1 (en) * 2000-04-05 2001-10-18 Siemens Production And Logistics Systems Ag Assembly device comprising a unit for measuring the insertion force
JP2010003728A (en) * 2008-06-18 2010-01-07 Juki Corp Surface mounting device
JP2010034095A (en) * 2008-07-24 2010-02-12 Juki Corp Electronic component mounter

Also Published As

Publication number Publication date
TW202020416A (en) 2020-06-01
JP2020020678A (en) 2020-02-06

Similar Documents

Publication Publication Date Title
WO2020027274A1 (en) Actuator
WO2020027273A1 (en) Load detector for actuator
CN112868167B (en) Actuator with a spring
WO2020027270A1 (en) Actuator
WO2021010267A1 (en) Actuator
WO2020027271A1 (en) Negative pressure-generating structure and actuator
JP2020065429A (en) Actuator
WO2020080253A1 (en) Actuator unit and actuator
WO2020027272A1 (en) Actuator sensing device and actuator control system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19844726

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19844726

Country of ref document: EP

Kind code of ref document: A1