WO2020027124A1 - Electrolytic solution for electrolytic capacitor, and electrolytic capacitor - Google Patents

Electrolytic solution for electrolytic capacitor, and electrolytic capacitor Download PDF

Info

Publication number
WO2020027124A1
WO2020027124A1 PCT/JP2019/029822 JP2019029822W WO2020027124A1 WO 2020027124 A1 WO2020027124 A1 WO 2020027124A1 JP 2019029822 W JP2019029822 W JP 2019029822W WO 2020027124 A1 WO2020027124 A1 WO 2020027124A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
silane coupling
coupling agent
electrolytic capacitor
electrolytic
Prior art date
Application number
PCT/JP2019/029822
Other languages
French (fr)
Japanese (ja)
Inventor
宏一 黒田
Original Assignee
日本ケミコン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ケミコン株式会社 filed Critical 日本ケミコン株式会社
Priority to JP2020534669A priority Critical patent/JP7384161B2/en
Priority to KR1020207034982A priority patent/KR102603990B1/en
Priority to CN201980044891.1A priority patent/CN112385008B/en
Publication of WO2020027124A1 publication Critical patent/WO2020027124A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/035Liquid electrolytes, e.g. impregnating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/145Liquid electrolytic capacitors

Definitions

  • the present invention relates to an electrolytic solution for an electrolytic capacitor and an electrolytic capacitor.
  • Electrolytic capacitors are provided with a valve metal such as tantalum or aluminum as an anode foil and a cathode foil.
  • the anode foil is formed by enlarging the valve metal into a shape such as a sintered body or an etching foil, and has a dielectric oxide film layer on the enlarged surface.
  • An electrolytic solution is interposed between the anode foil and the cathode foil. The electrolytic solution comes into close contact with the uneven surface of the anode foil and functions as a true cathode.
  • the electrolyte is interposed between the dielectric oxide film layer of the anode foil and the cathode foil, and exchanges electrons between the anode foil and the cathode foil. Therefore, the electrical conductivity and the temperature characteristics of the electrolytic solution have a great influence on the electrical characteristics of the electrolytic capacitor such as impedance, dielectric loss (tan ⁇ ), and equivalent series resistance (ESR). Further, the electrolytic solution has a chemical property to repair a deteriorated portion such as deterioration or damage of the dielectric oxide film formed on the anode foil, and has an influence on a leakage current (LC) and a life characteristic of the electrolytic capacitor.
  • LC leakage current
  • an electrolytic solution having a high electric conductivity is suitable for the electrolytic capacitor.
  • the spark voltage tends to decrease, and the withstand voltage characteristics of the electrolytic capacitor may be impaired.
  • the electrolytic capacitor has a high withstand voltage so as not to cause a short circuit or fire even under severe conditions in which an abnormal voltage exceeding the rated voltage is applied to the electrolytic capacitor.
  • the inorganic oxide colloid particles are typically silica colloid particles, but zirconia, titania, aluminosilicate, aluminosilicate-coated silica and the like have been proposed in addition to silica.
  • the study of the present inventors has confirmed that when the electrolyte solution contains inorganic oxide colloid particles surface-modified with an organic substance, the dielectric oxide film is dissolved.
  • the dielectric oxide film is dissolved, various characteristics and life characteristics of the electrolytic capacitor after a long time has elapsed are affected.
  • the present invention has been proposed to solve the above-described problems, and an object of the present invention is to provide an electrolytic solution and an electrolytic capacitor for an electrolytic capacitor that improve withstand voltage and maintain the withstand voltage for a long time. Further, by suppressing the dissolution of the dielectric oxide film of the electrode foil, a change in the characteristics of the electrolytic capacitor is suppressed, and the life characteristics are improved.
  • an electrolytic solution for an electrolytic capacitor according to the present invention includes a solvent, a solute, an inorganic oxide colloid particle surface-modified with an organic substance, and a silane coupling agent or a silylating agent.
  • the silylating agent or the silane coupling agent may be represented by the following general formula (Formula 1).
  • X 1 is an alkyl group, an alkenyl group, an aryl group or an aralkyl group having 1 to 20 carbon atoms, and a part of the hydrogen is a carboxyl group, an ester group, an amide group, a cyano group, a ketone group, A hydrocarbon group (-R) which may be substituted with a formyl group, ether group, hydroxyl group, amino group, mercapto group, sulfide group, sulfoxide group, sulfone group, isocyanate group, ureide group, or epoxy group.
  • X 2 to X 4 are an acetoxy group, an alkoxy group having 1 to 5 carbon atoms or an alkyl group, and at least two of X 2 to X 4 are an alkoxy group.
  • the silylating agent or silane coupling agent represented by the general formula (Chemical Formula 1) includes 3-glycidoxypropylmethyldimethoxysilane, 3-methacryloxypropyltriethoxysilane, and 2- (3,4-epoxycyclohexyl).
  • the inorganic oxide colloid particles may be silica.
  • the addition amount of the silane coupling agent or the silylating agent to the solvent may be 0.05 to 0.40 mol / kg.
  • the amount of the silylating agent or the silane coupling agent added to 1 g of the inorganic oxide colloid particles surface-modified with the organic substance may be 0.76 ⁇ 10 ⁇ 3 mol or more.
  • the solvent may mainly contain ethylene glycol.
  • An electrolytic capacitor provided with the electrolytic solution for an electrolytic capacitor is also one embodiment of the present invention.
  • the electrolytic capacitor includes a pair of electrode foils, a part of the silylating agent or the silane coupling agent is present on the surface of the electrode foil, and is a part of the inorganic oxide colloid particles surface-modified with the organic substance. May be close to the electrode foil via the silylating agent or the silane coupling agent present on the surface of the electrode foil.
  • a colloidal state can be stably maintained for a long time, and a high withstand voltage can be maintained for a long time. Further, by suppressing the dissolution of the dielectric oxide film of the electrode foil and suppressing the hydration deterioration reaction, it is possible to suppress changes in various characteristics of the electrolytic capacitor and extend the life.
  • FIG. 4 is a graph showing a withstand voltage measurement result of a dielectric oxide film of a cathode foil. It is a graph which shows the withstand voltage measurement result of the dielectric oxide film of an anode foil. It is a SEM image of an anode foil. 5 is a graph showing a change over time of the capacitance of the electrolytic capacitor. 5 is a graph showing a change over time of the capacitance of the electrolytic capacitor.
  • the electrolytic capacitor is a passive element that stores and discharges electric charge by using a capacitance.
  • the electrolytic capacitor has a capacitor element in which an anode foil and a cathode foil face each other via a separator, and the capacitor element is impregnated with an electrolytic solution.
  • the anode foil and the cathode foil have a porous structure on the surface, and a dielectric oxide film layer is formed on at least the porous structure portion of the anode foil.
  • the electrolyte is interposed between the anode foil and the cathode foil, is in close contact with the dielectric oxide layer of the anode foil, and becomes a true cathode that transmits the electric field of the foil.
  • the separator prevents a short circuit between the anode foil and the cathode foil and holds the electrolyte.
  • the anode foil and the cathode foil are long foil bodies made of valve metal.
  • Valve metal is aluminum, tantalum, niobium, niobium oxide, titanium, hafnium, zirconium, zinc, tungsten, bismuth, antimony and the like.
  • the purity is preferably about 99.9% or more for the anode foil and about 99% or more for the cathode.
  • impurities such as silicon, iron, copper, magnesium, and zinc may be contained.
  • the anode foil and the cathode foil are sintered bodies obtained by sintering powder of valve action metal, or etched foils obtained by subjecting a stretched foil to an etching treatment.
  • the porous structure has tunnel-like pits and spongy-like pits. Consisting of pits or voids between dense powders.
  • the porous structure is typically formed by direct current etching or alternating current etching that applies direct current or alternating current in an acidic aqueous solution in which halogen ions such as hydrochloric acid are present, or vapor-deposits or sinters metal particles or the like on the core. It is formed by this. Since the cathode foil has less influence of the surface area on the capacitance of the electrolytic capacitor than the anode foil, the surface roughness due to the porous structure may be small.
  • the dielectric oxide film layer is typically an oxide film formed on the surface of the anode foil. If the anode foil is made of aluminum, it is an aluminum oxide layer obtained by oxidizing a porous structure portion. This dielectric oxide film layer is formed by a chemical conversion treatment in which a voltage is applied in an acid such as ammonium borate, ammonium phosphate, ammonium adipate or a solution in the absence of halogen ions such as an aqueous solution of these acids.
  • the cathode foil may be provided with a dielectric oxide film layer.
  • Separators include cellulose such as kraft, manila hemp, esparto, hemp, rayon and mixed papers thereof, polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate and derivatives thereof, polytetrafluoroethylene resins, and polyfluorinated resins.
  • polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate and derivatives thereof, polytetrafluoroethylene resins, and polyfluorinated resins.
  • Examples include vinylidene resin, vinylon resin, polyamide resin such as aliphatic polyamide, semi-aromatic polyamide, wholly aromatic polyamide, polyimide resin, polyethylene resin, polypropylene resin, trimethylpentene resin, polyphenylene sulfide resin, and acrylic resin. These resins can be used alone or as a mixture.
  • the electrolytic solution is a mixed solution in which a solute is dissolved in a solvent and an additive is added to the solvent.
  • the additives include at least inorganic oxide colloid particles surface-modified with an organic substance (hereinafter, referred to as organic-modified colloid particles), and a silane coupling agent or a silylating agent (hereinafter, collectively referred to as a silane coupling agent). It is added to the electrolyte.
  • silica, aluminosilicate, or silica coated with aluminosilicate is particularly preferable from the viewpoints of the silylation treatment, the stability of the colloid particles, and the effect of improving the withstand voltage.
  • Organic substances that modify the surface of the inorganic oxide colloid particles are substituted with surface hydroxyl groups of the inorganic oxide colloid particles and suppress aggregation of the inorganic oxide colloid particles.
  • a silylating agent a silane coupling agent
  • Various polymer compounds such as titanate-based coupling agents, aluminum-based coupling agents, alcohols, and latex.
  • the silylating agent or the silane coupling agent is represented by the following general formula (Formula 2).
  • X 1 is an alkyl group, an alkenyl group, an aryl group or an aralkyl group having 1 to 20 carbon atoms, and a part of the hydrogen is a carboxyl group, an ester group, an amide group, a cyano group, a ketone group, A hydrocarbon group (-R) which may be substituted with a formyl group, ether group, hydroxyl group, amino group, mercapto group, sulfide group, sulfoxide group, sulfone group, isocyanate group, ureide group, or epoxy group.
  • X 2 to X 4 are an acetoxy group, an alkoxy group having 1 to 5 carbon atoms or an alkyl group, and at least two of X 2 to X 4 are an alkoxy group.
  • X 1 examples include alkyl groups such as methyl group, ethyl group, propyl group, butyl group, decyl group and octadecyl group; alkenyl groups such as vinyl group and allyl group; phenyl group, naphthyl group and styryl group.
  • Aryl groups such as benzyl group and aralkyl group such as phenethyl group; oxy hydrocarbon group such as methoxy group, ethoxy group, propoxy group, butoxy group, vinyloxy group, phenoxy group and benzyloxy group;
  • a hydroxyl group can be mentioned.
  • examples having a substituent include acrylic groups such as 3-methacryloxypropyl group and 3-acryloxypropyl group; 3-glycidoxypropyl group and 2- (3,4-epoxycyclohexyl) ethyl group Amino groups such as 3-aminopropyl group, N-phenyl-3-aminopropyl group, N-2- (aminoethyl) -3-aminopropyl group; mercapto groups such as 3-mercaptopropyl group Groups; isocyanate groups such as 3-isocyanatopropyl group; ureido groups such as 3-ureidopropyl group.
  • X 2 to X 4 include alkoxy groups such as methoxy group, ethoxy group, propoxy group and butoxy group; alkyl groups such as methyl group, ethyl group, propyl group, butyl group, decyl group and octadecyl group.
  • alkoxy groups such as methoxy group, ethoxy group, propoxy group and butoxy group
  • alkyl groups such as methyl group, ethyl group, propyl group, butyl group, decyl group and octadecyl group.
  • An acetoxy group, and at least two of X 2 to X 4 are alkoxy groups.
  • titanate-based coupling agents include isopropyl triisostearoyl titanate, isopropyl tridodecylbenzenesulfonyl titanate, isopropyl tris (dioctyl pyrophosphate) titanate, tetraisopropyl bis (dioctyl phosphite) titanate, and tetraoctyl bis (ditridecyl phosphate).
  • Phyto) titanate tetra (2,2-diallyloxymethyl-1-butyl) bis (ditridecyl) phosphite titanate, bis (dioctylpyrophosphate) oxyacetate titanate, isopropyltrioctanoyl titanate, isopropyldimethacryloyl isostearyl titanate, Isopropyl tri (dioctyl phosphate) titanate, isopropyl tricumyl phenyl titanate Isopropyl tri (N- aminoethyl-aminoethyl) such as titanates.
  • aluminum-based coupling agent examples include aluminum ethyl acetoacetate diisopropylate, aluminum tris (ethyl acetoacetate), aluminum tris (acetylacetonate), and aluminum bis (ethyl acetoacetate) monoacetylacetonate. .
  • alcohols include methanol, ethanol, n-propanol, iso-propanol, n-butanol, amyl alcohol, 4-methyl-2-pentanol, n-heptanol, n-octanol, 2-ethylhexanol, nonanol, Examples include decanol, tridecanol, 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol, 3-methoxybutanol, 3-methyl-3-methoxybutanol, and polyvinyl alcohol.
  • silylating agents silane coupling agents, titanate coupling agents, aluminum coupling agents, alcohols, and organic substances used for surface modification such as various polymer compounds can be used alone or in combination of two or more.
  • the silane coupling agent added to the electrolytic solution together with the organic modified colloid particles is also represented by the above general formula (Formula 2).
  • the same substance or a different silane coupling agent may be used as the organic substance for modifying the surface of the inorganic oxide colloid particles and the silane coupling agent.
  • the organically modified colloidal particles and the silane coupling agent suppress gelation of the electrolytic solution and aggregation of the colloidal particles, and maintain the improved withstand voltage of the electrolytic capacitor by the addition of the organically modified colloidal particles.
  • the amount of the silane coupling agent added to 1 kg of the solvent is preferably 0.05 or more and 0.40 mol / kg or less.
  • the organically modified colloidal particles have higher dispersion stability than the inorganic oxide colloidal particles that are not surface-modified with an organic substance, and suppress gelation of the electrolytic solution. Therefore, it is possible to maintain the improved withstand voltage for a long period of time by adding the organically modified colloid particles.
  • a silane coupling agent is used together. When used in combination with the silane coupling agent, the silane coupling agent is interposed between the organically modified colloidal particles, and the effect of suppressing the aggregation of the organically modified colloidal particles can be further enhanced. Therefore, by adding both the organically modified colloidal particles and the silane coupling agent to the electrolytic solution, gelation of the electrolytic solution and aggregation of the colloidal particles are suppressed, and a high withstand voltage is maintained.
  • the organic-modified colloid particles affect the dissolution of the dielectric oxide film on the anode foil and the cathode foil. Furthermore, it has been found that if both the organic modified colloid particles and the silane coupling agent are added to the electrolytic solution, the dissolution of the dielectric oxide film on the anode foil and the cathode foil is suppressed, and the change in capacitance is suppressed. Obtained.
  • the amount of the silane coupling agent added to 1 g of the organically modified colloid particles is preferably 0.76 ⁇ 10 ⁇ 3 mol or more, and if it is 2.27 ⁇ 10 ⁇ 3 mol or more, it will jump. It is particularly preferable because it increases. Further, when the amount is 7.57 ⁇ 10 ⁇ 3 mol or more, the change in capacitance can be suppressed to about the same level as in a state where the organic modified colloid particles are not added.
  • a silane coupling agent is adsorbed on the dielectric oxide film of this electrolytic capacitor. Therefore, it is possible to maintain a certain distance between the organic modified colloid particles and the electrode foil, and it is difficult for the hydroxyl groups on the surface of the organic modified colloid particles and the water attracted thereto to approach the electrode foil, thereby suppressing hydration deterioration. Is possible.
  • the dissolution of the dielectric oxide film is suppressed by the silane coupling agent adsorbed on the electrode foil and present on the surface of the electrode foil, and the silane coupling agent adsorbed on the electrode foil is further suppressed.
  • the withstand voltage is improved by bringing the organic modified colloid particles close to the electrode foil via the agent.
  • a silane coupling agent is interposed between the organically modified colloidal particles to suppress aggregation of the organically modified colloidal particles.
  • the solvent used with the organic modified colloid particles and the silane coupling agent may be either a protic organic polar solvent or an aprotic organic polar solvent.
  • Representative examples of the protic organic polar solvent include monohydric alcohols, polyhydric alcohols, and oxyalcohol compounds.
  • Representative examples of the aprotic organic polar solvent include sulfones, amides, lactones, cyclic amides, nitriles, and oxides.
  • Examples of monohydric alcohols include ethanol, propanol, butanol, pentanol, hexanol, cyclobutanol, cyclopentanol, cyclohexanol, and benzyl alcohol.
  • Examples of polyhydric alcohols and oxyalcohol compounds include ethylene glycol, propylene glycol, glycerin, methyl cellosolve, ethyl cellosolve, methoxypropylene glycol, dimethoxypropanol, and the like.
  • sulfone type examples include dimethyl sulfone, ethyl methyl sulfone, diethyl sulfone, sulfolane, 3-methyl sulfolane, 2,4-dimethyl sulfolane and the like.
  • amide system N-methylformamide, N, N-dimethylformamide, N-ethylformamide, N, N-diethylformamide, N-methylacetamide, N, N-dimethylacetamide, N-ethylacetamide, N, N- Diethylacetamide, hexamethylphosphoric amide and the like.
  • lactones and cyclic amides include ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, N-methyl-2-pyrrolidone, ethylene carbonate, propylene carbonate, butylene carbonate, isobutylene carbonate, isobutylene carbonate, and the like.
  • examples of the nitrile include acetonitrile, 3-methoxypropionitrile, glutaronitrile and the like.
  • oxide type include dimethyl sulfoxide.
  • the solvent these may be used alone or in combination of two or more. Further, water may be contained as a solvent.
  • Examples of the solute contained in the electrolytic solution include at least one salt of an organic acid, an inorganic acid, and a composite compound of an organic acid and an inorganic acid, which are usually used in an electrolytic solution for electrolytic capacitors. These may be used alone or in combination of two or more.
  • Examples of the organic acid include phthalic acid, isophthalic acid, terephthalic acid, maleic acid, adipic acid, benzoic acid, toluic acid, enanthic acid, malonic acid, 1,6-decanedicarboxylic acid, 1,7-octanedicarboxylic acid, azelaic acid And carboxylic acids such as undecandioic acid, dodecandioic acid and tridecandioic acid, phenols and sulfonic acids.
  • Examples of the inorganic acid include boric acid, phosphoric acid, phosphorous acid, hypophosphorous acid, carbonic acid, and silicic acid.
  • Examples of the composite compound of an organic acid and an inorganic acid include borosalicylic acid, borodioxalic acid, and boroglycolic acid.
  • Examples of at least one salt of an organic acid, an inorganic acid, and a composite compound of an organic acid and an inorganic acid include ammonium salts, quaternary ammonium salts, quaternized amidinium salts, amine salts, sodium salts, and potassium salts.
  • Examples of the quaternary ammonium ion of the quaternary ammonium salt include tetramethylammonium, triethylmethylammonium, tetraethylammonium and the like.
  • Examples of the quaternized amidinium include ethyl dimethyl imidazolinium, tetramethyl imidazolinium, and the like.
  • Examples of the amine of the amine salt include a primary amine, a secondary amine, and a tertiary amine.
  • primary amines such as methylamine, ethylamine, and propylamine
  • secondary amines such as dimethylamine, diethylamine, ethylmethylamine, and dibutylamine
  • tertiary amines as trimethylamine, triethylamine, tributylamine, ethyldimethylamine, Ethyl diisopropylamine and the like.
  • ammonium salts and amine salts are preferable.
  • Ammonium salts reduce the specific resistance of the electrolytic solution, so that the ESR of the electrolytic capacitor can be reduced.
  • an amine salt is used, an effect of suppressing hydration by the amine salt is obtained, which leads to a longer life of the electrolytic capacitor.
  • secondary amines which are excellent in the balance between the withstand voltage and the specific resistance are particularly preferable.
  • additives than the organically modified colloidal particles, silylating agent or silane coupling agent may be further added to the electrolytic solution.
  • the solvent of the electrolyte was a mixture of ethylene glycol and water, the solute was ammonium azelate, and p-nitrobenzyl alcohol was added as an additive.
  • the composition of the electrolytic solution of Comparative Example 1 was as described above, but silica as inorganic colloidal particles was further added to the electrolytic solution of Comparative Example 2.
  • Organic modified silica as organic modified colloid particles was added to the electrolytes of Comparative Example 3 and Examples 1 to 7. This organically modified silica is obtained by modifying the surface of silica with 3-glycidoxypropyltrimethoxysilane.
  • silane coupling agent 3-glycidoxypropylmethyldimethoxysilane (KBM-402 manufactured by Shin-Etsu Silicone) was added as a silane coupling agent.
  • Table 1 also shows the amount of the silane coupling agent added to 1 kg of the solvent and the amount of the silane coupling agent added to 1 g of the organically modified silica.
  • the solvent is the total amount of ethylene glycol and water.
  • Table 1 also shows the specific resistance of the prepared electrolyte. The specific resistance was measured at 30 ° C.
  • each electrolytic solution was impregnated in the capacitor element, it was housed in a bottomed cylindrical outer case and sealed with a sealing rubber.
  • the anode foil is formed by expanding an aluminum foil by etching, and then forming a dielectric oxide film layer by chemical conversion. Further, the aluminum foil was enlarged by etching to produce an aluminum cathode foil.
  • An electrode lead-out means was connected to the produced anode foil and cathode foil, and the resultant was wound with a cellulose-based separator interposed therebetween to produce a capacitor element. As a result, a wound electrolytic capacitor having a capacitor element size of 10 mm in diameter and 25 mm in length was obtained.
  • a withstand voltage test was performed on the electrolytic capacitors of Comparative Examples 1 to 3 and Examples 1 to 7. Table 1 also shows the results. In the withstand voltage test, the withstand voltage was measured at 125 ° C.
  • the electrolyte solutions of Examples 1 to 7 to which the organically modified silica and the silane coupling agent were added had a long time to gelation. It has become.
  • the electrolyte solutions of Examples 1 to 4 and Example 6 in which the amount of the silane coupling agent added was suppressed to 0.40 mol / kg or less with respect to the solvent could reach gelation during 2,300 hours of observation. Did not. That is, it was confirmed that gelation was suppressed in the electrolytic solution to which the organic modified silica and the silane coupling agent were added, and in particular, the silane coupling agent was 0.40 mol / kg or less based on the total amount of the solvent. It was confirmed that gelation could be dramatically suppressed.
  • Comparative Example 4 Comparative Example 5, and Example 8 were the same as Comparative Example 1, Comparative Example 3, and Example 1, respectively, except that diethylamine azelate was used as the solute.
  • Comparative Example 6, Comparative Example 7, and Example 9 were the same as Comparative Example 1, Comparative Example 3, and Example 1, respectively, except that triethylamine azelate was used as the solute.
  • Example 1 was the smallest.
  • ammonia as the base component, it is expected that the specific resistance will be reduced, and as a result, the ESR of the electrolytic capacitor will be reduced.
  • Example 1 had the highest withstand voltage and that the withstand voltage was increased by using ammonia as the base component.
  • the withstand voltage was equivalent, but the specific resistance of Example 8 was smaller. From this, it can be seen that among amine salts, diethylamine, which is a secondary amine, has an excellent balance between withstand voltage and specific resistance.
  • Example 10 was 3-glycidoxypropyltrimethoxysilane (KBM-403 manufactured by Shin-Etsu Silicone), and Example 11 was 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (KBM-303 manufactured by Shin-Etsu Silicone).
  • KBM-403 manufactured by Shin-Etsu Silicone
  • Example 11 was 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (KBM-303 manufactured by Shin-Etsu Silicone).
  • N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane KBM-602 manufactured by Shin-Etsu Silicone was used.
  • the cathode foil of Example 3 has a higher rise voltage than the cathode foil of Comparative Example 3.
  • Comparative Example 1 which did not contain the organically modified silica and the silane coupling agent, was 0.1 Vvs.
  • a rising voltage of about Pt is shown
  • Comparative Example 3 containing only the organically modified silica has a rising voltage of -0.5 Vvs.
  • Pt is reduced to about Pt, and the dissolution of the dielectric oxide film of about 0.6 V as compared with Comparative Example 1 is observed.
  • Example 3 -0.35 Vvs. It was found that the film pressure resistance was higher than that of Pt and Comparative Example 3, and the dissolution of the dielectric oxide film was suppressed.
  • the voltage rise of the anode foil of Comparative Example 3 is slower than that of the anode foil of Example 3, and the anode foil of Example 3 has the same behavior as the anode foil of Comparative Example 1. showed that. It is considered that the reason for this is that the dielectric oxide film was dissolved in the anode foil of Comparative Example 3 containing only the organically modified silica, and the voltage rise was moderate. On the other hand, the anode foil of Example 3 in which the organically modified silica and the silane coupling agent were added suppressed dissolution of the dielectric oxide film and was the same as the anode foil of Comparative Example 1 which did not contain the organically modified silica and the silane coupling agent. It is considered that such behavior was exhibited.
  • the initial leakage currents of the electrolytic capacitors of Comparative Example 1, Comparative Example 3, and Example 3 were all equal.
  • the leakage current after the high temperature test was the largest in Comparative Example 3. This is considered to be due to the fact that the dielectric oxide film of the anode foil of Comparative Example 3 was dissolved by the high temperature test, so that the leakage current was increased.
  • the leakage current after the high temperature test in Example 3 was suppressed to about half of that in Comparative Example 3, and the dissolution of the dielectric oxide film was suppressed by using the organic modified silica and the silane coupling agent. It was confirmed that.
  • FIG. 3 shows a photograph taken in the SEM observation.
  • 3A is a photograph of Comparative Example 1
  • FIG. 3B is a photograph of Comparative Example 3
  • FIG. 3C is a photograph of Example 3.
  • the anode foil of Comparative Example 3 has many portions where etching pits are no longer visible.
  • the anode foil of Example 3 was close to the surface state of the anode foil of Comparative Example 1, and etching pits remained clearly. This result indicates that the dielectric oxide film layer of the anode foil of Comparative Example 3 was dissolved and that some substance was deposited on the dielectric oxide film.
  • the amount of silicon detected on the surface of the anode foil of Comparative Example 1 and Example 3 was very small, whereas the amount of silicon was detected on the anode foil of Comparative Example 3 in a large amount. That is, it was confirmed that when only the organic-modified silica was added to the electrolytic solution, the silicon compound was attached to the surface of the anode foil.
  • the organically modified colloidal particles have some effect on the anode foil, while the organically modified silica and the silane coupling agent are used together to suppress the effect of the organically modified silica on the dielectric oxide film of the anode foil. However, it was found that the change in the surface state of the anode foil was suppressed.
  • the initial capacitances of the electrolytic capacitors of Comparative Examples 1, 3 and Examples 1 to 7 ( After measuring Cap), the sample was left unloaded under a temperature environment of 150 ° C., and after each elapse of time, the capacitance was measured to calculate a change in the capacitance with time.
  • Table 6 and FIG. 4 show the change over time of the capacitance.
  • Table 6 is a table showing a rate of change ( ⁇ Cap (%)) with respect to the initial capacitance after each lapse of time
  • FIG. 4 is a graph in which the vertical axis represents ⁇ Cap and the horizontal axis represents time. Note that ⁇ Cap was calculated by the following equation 1.
  • Equation 1 the capacitance after the passage of time refers to the capacitance after the passage of 110 hours, after the passage of 200 hours, and after the passage of 300 hours. (Equation 1)
  • Example 2 where the addition amount of the silane coupling agent was 2.27 ⁇ 10 ⁇ 3 mol
  • Example 1 where the addition amount of the silane coupling agent was 0.76 ⁇ 10 ⁇ 3 mol per 1 g of the organically modified silica.
  • ⁇ Cap are suppressed to about 66% (calculated by the values after 300 hours in Table 5), and the suppression effect increases as the amount of addition increases.
  • the electrolytic capacitor of Example 5 in which the amount of the silane coupling agent added to 1 g of the organically modified silica was 7.57 ⁇ 10 ⁇ 3 mol, the change in capacitance was suppressed to about the same level as in Comparative Example 1. .
  • Equation 2 the capacitance after a lapse of time means the capacitance after a lapse of 110 hours, a lapse of 200 hours, and a lapse of 300 hours.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided are: an electrolytic solution that is for an electrolytic capacitor, that improves withstand voltage, that inhibits property variation of the electrolytic capacitor by enabling the effect of the improved withstand voltage to be sustained for a long duration and by inhibiting dissolution of a dielectric oxide film, and that has fine lifespan characteristics; and an electrolytic capacitor. The electrolytic solution comprises: a solute; inorganic oxide colloidal particles that are surface-modified with an organic substance; and a silane coupling agent or a silylation agent. The electrolytic capacitor is formed by impregnating a capacitor element with said electrolytic solution, has the silane coupling agent or the silylation agent adsorbed to the surface of an electrode foil, and has stably dispersed therein the inorganic oxide colloidal particles that are surface-modified with an organic substance, since the silane coupling agent or the silylation agent is interposed between the colloidal particles.

Description

電解コンデンサ用電解液及び電解コンデンサElectrolytic solution for electrolytic capacitor and electrolytic capacitor
 本発明は、電解コンデンサ用電解液及び電解コンデンサに関する。 The present invention relates to an electrolytic solution for an electrolytic capacitor and an electrolytic capacitor.
 電解コンデンサは、タンタルあるいはアルミニウム等のような弁作用金属を陽極箔及び陰極箔として備えている。陽極箔は、弁作用金属を焼結体あるいはエッチング箔等の形状にすることで拡面化され、拡面化された表面に誘電体酸化皮膜層を有する。陽極箔と陰極箔の間には電解液が介在する。電解液は、陽極箔の凹凸面に密接し、真の陰極として機能する。 Electrolytic capacitors are provided with a valve metal such as tantalum or aluminum as an anode foil and a cathode foil. The anode foil is formed by enlarging the valve metal into a shape such as a sintered body or an etching foil, and has a dielectric oxide film layer on the enlarged surface. An electrolytic solution is interposed between the anode foil and the cathode foil. The electrolytic solution comes into close contact with the uneven surface of the anode foil and functions as a true cathode.
 電解液は、陽極箔の誘電体酸化皮膜層と陰極箔との間に介在し、陽極箔と陰極箔との間で電子の授受を行う。そのため、電解液の電気伝導率及び温度特性等は、インピーダンス、誘電損失(tanδ)及び等価直列抵抗(ESR)等の電解コンデンサの電気的特性に大きな影響を及ぼす。また、電解液は、陽極箔に形成された誘電体酸化皮膜の劣化や損傷等の劣化部を修復する化成性を有し、電解コンデンサの漏れ電流(LC)や寿命特性への影響を及ぼす。 (4) The electrolyte is interposed between the dielectric oxide film layer of the anode foil and the cathode foil, and exchanges electrons between the anode foil and the cathode foil. Therefore, the electrical conductivity and the temperature characteristics of the electrolytic solution have a great influence on the electrical characteristics of the electrolytic capacitor such as impedance, dielectric loss (tan δ), and equivalent series resistance (ESR). Further, the electrolytic solution has a chemical property to repair a deteriorated portion such as deterioration or damage of the dielectric oxide film formed on the anode foil, and has an influence on a leakage current (LC) and a life characteristic of the electrolytic capacitor.
 従って、電解コンデンサには少なくとも高電気伝導率の電解液が適当であるが、電解液の電気伝導率を高めると火花電圧が低下する傾向があり、電解コンデンサの耐電圧特性が損なわれる虞がある。安全性の観点から、電解コンデンサに定格電圧を超える異常電圧が印加されるような過酷な条件下であっても、ショートや発火を起こさぬよう高い耐電圧を有することが望ましい。 Therefore, at least an electrolytic solution having a high electric conductivity is suitable for the electrolytic capacitor. However, when the electric conductivity of the electrolytic solution is increased, the spark voltage tends to decrease, and the withstand voltage characteristics of the electrolytic capacitor may be impaired. . From the viewpoint of safety, it is desirable that the electrolytic capacitor has a high withstand voltage so as not to cause a short circuit or fire even under severe conditions in which an abnormal voltage exceeding the rated voltage is applied to the electrolytic capacitor.
 そこで、高電気伝導率を維持しつつ耐圧向上を図るべく、電解液に種々の無機酸化物コロイド粒子を添加する試みがなされている(特許文献1参照)。無機酸化物コロイド粒子は、典型的にはシリカコロイド粒子であるが、シリカ以外にもジルコニア、チタニア、アルミノシリケート、アルミノシリケート被覆シリカ等も提案されている。 Therefore, attempts have been made to add various inorganic oxide colloidal particles to the electrolytic solution in order to improve the pressure resistance while maintaining high electric conductivity (see Patent Document 1). The inorganic oxide colloid particles are typically silica colloid particles, but zirconia, titania, aluminosilicate, aluminosilicate-coated silica and the like have been proposed in addition to silica.
特開平10-241999号公報JP-A-10-241999
 しかしながら無機酸化物コロイド粒子を含有した電解液では、時間の経過とともに無機酸化物コロイド粒子の沈殿や凝集が起こり、電解液のゲル化が確認された。そして、この現象に伴い耐電圧の低下が確認された。即ち、無機酸化物コロイド粒子のゲル化や沈殿を抑制して安定的にコロイド状態を保つことが耐電圧向上に対する課題となる。特に、有機物で表面修飾した無機酸化物コロイド粒子がゲル化や沈殿を起こしにくいことが確認されているが、電解液の溶媒としてエチレングリコールを選択した場合であっても、安定的なコロイド状態の更なる長時間持続が望まれている。また、本発明者らの研究により、電解液に有機物で表面修飾した無機酸化物コロイド粒子が含まれている場合、誘電体酸化皮膜が溶解されることが確認された。誘電体酸化皮膜が溶解されてしまうと、長時間経過後の電解コンデンサの諸特性や寿命特性に影響を与えてしまう。 However, in the electrolytic solution containing the inorganic oxide colloid particles, precipitation and aggregation of the inorganic oxide colloid particles occurred over time, and gelation of the electrolytic solution was confirmed. Then, a decrease in the withstand voltage was confirmed with this phenomenon. That is, it is an issue to improve the withstand voltage to suppress the gelation and precipitation of the inorganic oxide colloidal particles and to stably maintain the colloidal state. In particular, it has been confirmed that inorganic oxide colloid particles surface-modified with organic substances are unlikely to gel or precipitate, but even when ethylene glycol is selected as the solvent for the electrolyte, a stable colloidal state is obtained. There is a demand for longer duration. In addition, the study of the present inventors has confirmed that when the electrolyte solution contains inorganic oxide colloid particles surface-modified with an organic substance, the dielectric oxide film is dissolved. When the dielectric oxide film is dissolved, various characteristics and life characteristics of the electrolytic capacitor after a long time has elapsed are affected.
 本発明は、上記課題を解決するために提案されたものであり、その目的は、耐電圧を向上し、その耐電圧を長時間持続する電解コンデンサ用電解液及び電解コンデンサを提供することにある。さらに、電極箔の誘電体酸化皮膜の溶解を抑制することにより、電解コンデンサの特性変化を抑制し、寿命特性を良好とする。 The present invention has been proposed to solve the above-described problems, and an object of the present invention is to provide an electrolytic solution and an electrolytic capacitor for an electrolytic capacitor that improve withstand voltage and maintain the withstand voltage for a long time. . Further, by suppressing the dissolution of the dielectric oxide film of the electrode foil, a change in the characteristics of the electrolytic capacitor is suppressed, and the life characteristics are improved.
 上記の目的を達成するために、本発明に係る電解コンデンサ用電解液は、溶媒、溶質、有機物で表面修飾した無機酸化物コロイド粒子、及びシランカップリング剤又はシリル化剤を含むこと、を特徴とする。 In order to achieve the above object, an electrolytic solution for an electrolytic capacitor according to the present invention includes a solvent, a solute, an inorganic oxide colloid particle surface-modified with an organic substance, and a silane coupling agent or a silylating agent. And
 前記シリル化剤又は前記シランカップリング剤は、下記一般式(化1)で表されるようにしてもよい。
Figure JPOXMLDOC01-appb-C000002
[式中、Xは、炭素数が1~20のアルキル基、アルケニル基、アリール基またはアラルキル基であり、その水素の一部がカルボキシル基、エステル基、アミド基、シアノ基、ケトン基、ホルミル基、エーテル基、水酸基、アミノ基、メルカプト基、スルフィド基、スルホキシド基、スルホン基、イソシアネート基、ウレイド基、エポキシ基で置換されていてもよい炭化水素基(-R)である。X~Xはアセトキシ基、炭素数1~5のアルコキシ基又はアルキル基であって、X~Xの少なくとも2個以上はアルコキシ基である。]
The silylating agent or the silane coupling agent may be represented by the following general formula (Formula 1).
Figure JPOXMLDOC01-appb-C000002
[In the formula, X 1 is an alkyl group, an alkenyl group, an aryl group or an aralkyl group having 1 to 20 carbon atoms, and a part of the hydrogen is a carboxyl group, an ester group, an amide group, a cyano group, a ketone group, A hydrocarbon group (-R) which may be substituted with a formyl group, ether group, hydroxyl group, amino group, mercapto group, sulfide group, sulfoxide group, sulfone group, isocyanate group, ureide group, or epoxy group. X 2 to X 4 are an acetoxy group, an alkoxy group having 1 to 5 carbon atoms or an alkyl group, and at least two of X 2 to X 4 are an alkoxy group. ]
 前記一般式(化1)で表されるシリル化剤又はシランカップリング剤は、3-グリシドキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、2-(3,4-エポシキシシクロヘキシル)エチルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、ビニルトリメトキシシラン、p-スチリルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン及び3-グリシドキシプロピルメチルジエトキシシランの群から選ばれる1種以上であるようにしてもよい。 The silylating agent or silane coupling agent represented by the general formula (Chemical Formula 1) includes 3-glycidoxypropylmethyldimethoxysilane, 3-methacryloxypropyltriethoxysilane, and 2- (3,4-epoxycyclohexyl). ) Ethyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, vinyltrimethoxysilane, p-styryltrimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-isocyanatopropyltriethoxy It may be at least one selected from the group consisting of silane, 3-glycidoxypropyltrimethoxysilane and 3-glycidoxypropylmethyldiethoxysilane.
 前記無機酸化物コロイド粒子はシリカであるようにしてもよい。 The inorganic oxide colloid particles may be silica.
 前記シランカップリング剤又は前記シリル化剤の前記溶媒に対する添加量が0.05以上0.40mol/kg以下であるようにしてもよい。 添加 The addition amount of the silane coupling agent or the silylating agent to the solvent may be 0.05 to 0.40 mol / kg.
 前記有機物で表面修飾した無機酸化物コロイド粒子1gに対する前記シリル化剤又はシランカップリング剤の添加量は、0.76×10-3mol以上であるようにしてもよい。 The amount of the silylating agent or the silane coupling agent added to 1 g of the inorganic oxide colloid particles surface-modified with the organic substance may be 0.76 × 10 −3 mol or more.
 前記溶媒は、主としてエチレングリコールを含むようにしてもよい。 The solvent may mainly contain ethylene glycol.
 また、この電解コンデンサ用電解液を備える電解コンデンサも本発明の一態様である。その電解コンデンサは、一対の電極箔を備え、前記シリル化剤又は前記シランカップリング剤の一部は、前記電極箔の表面に存在し、前記有機物で表面修飾した無機酸化物コロイド粒子の一部は、前記電極箔の表面に存在する前記シリル化剤又は前記シランカップリング剤を介して前記電極箔に近接しているようにしてもよい。 電解 An electrolytic capacitor provided with the electrolytic solution for an electrolytic capacitor is also one embodiment of the present invention. The electrolytic capacitor includes a pair of electrode foils, a part of the silylating agent or the silane coupling agent is present on the surface of the electrode foil, and is a part of the inorganic oxide colloid particles surface-modified with the organic substance. May be close to the electrode foil via the silylating agent or the silane coupling agent present on the surface of the electrode foil.
 本発明によれば、長期間安定的にコロイド状を維持し、高い耐電圧を長期間維持できる。さらに、電極箔の誘電体酸化皮膜の溶解を抑制し、水和劣化反応を抑制することにより、電解コンデンサの諸特性の変化を抑制し、長寿命化を図ることができる。 According to the present invention, a colloidal state can be stably maintained for a long time, and a high withstand voltage can be maintained for a long time. Further, by suppressing the dissolution of the dielectric oxide film of the electrode foil and suppressing the hydration deterioration reaction, it is possible to suppress changes in various characteristics of the electrolytic capacitor and extend the life.
陰極箔の誘電体酸化皮膜の耐電圧測定結果を示すグラフである。4 is a graph showing a withstand voltage measurement result of a dielectric oxide film of a cathode foil. 陽極箔の誘電体酸化皮膜の耐電圧測定結果を示すグラフである。It is a graph which shows the withstand voltage measurement result of the dielectric oxide film of an anode foil. 陽極箔のSEM画像である。It is a SEM image of an anode foil. 電解コンデンサの静電容量の時間変化を示すグラフである。5 is a graph showing a change over time of the capacitance of the electrolytic capacitor. 電解コンデンサの静電容量の時間変化を示すグラフである。5 is a graph showing a change over time of the capacitance of the electrolytic capacitor.
 本発明の実施形態に係る電解液及び電解コンデンサについて説明する。電解コンデンサは、静電容量により電荷の蓄電及び放電を行う受動素子である。電解コンデンサは、陽極箔と陰極箔をセパレータを介して対向させたコンデンサ素子を有し、コンデンサ素子には電解液が含浸されている。陽極箔と陰極箔は表面に多孔質構造を有し、少なくとも陽極箔の多孔質構造部分には誘電体酸化皮膜層が形成されている。電解液は、陽極箔と陰極箔の間に介在し、陽極箔の誘電体酸化皮膜層に密接し、箔の電界を伝達する真の陰極となる。セパレータは、陽極箔と陰極箔のショートを防止し、また電解液を保持する。 電解 The electrolytic solution and the electrolytic capacitor according to the embodiment of the present invention will be described. The electrolytic capacitor is a passive element that stores and discharges electric charge by using a capacitance. The electrolytic capacitor has a capacitor element in which an anode foil and a cathode foil face each other via a separator, and the capacitor element is impregnated with an electrolytic solution. The anode foil and the cathode foil have a porous structure on the surface, and a dielectric oxide film layer is formed on at least the porous structure portion of the anode foil. The electrolyte is interposed between the anode foil and the cathode foil, is in close contact with the dielectric oxide layer of the anode foil, and becomes a true cathode that transmits the electric field of the foil. The separator prevents a short circuit between the anode foil and the cathode foil and holds the electrolyte.
 陽極箔及び陰極箔は、弁作用金属を材料とする長尺の箔体である。弁作用金属は、アルミニウム、タンタル、ニオブ、酸化ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス及びアンチモン等である。純度は、陽極箔に関して99.9%程度以上が望ましく、陰極に関して99%程度以上が望ましいが、ケイ素、鉄、銅、マグネシウム、亜鉛等の不純物が含まれていても良い。 The anode foil and the cathode foil are long foil bodies made of valve metal. Valve metal is aluminum, tantalum, niobium, niobium oxide, titanium, hafnium, zirconium, zinc, tungsten, bismuth, antimony and the like. The purity is preferably about 99.9% or more for the anode foil and about 99% or more for the cathode. However, impurities such as silicon, iron, copper, magnesium, and zinc may be contained.
 陽極箔及び陰極箔は、弁作用金属の粉体を焼結した焼結体、又は延伸された箔にエッチング処理を施したエッチング箔であり、多孔質構造は、トンネル状のピット、海綿状のピット、又は密集した粉体間の空隙により成る。多孔質構造は、典型的には、塩酸等のハロゲンイオンが存在する酸性水溶液中で直流又は交流を印加する直流エッチング又は交流エッチングにより形成され、若しくは芯部に金属粒子等を蒸着又は焼結することにより形成される。陰極箔は、陽極箔と比べて電解コンデンサの静電容量に対する表面積の影響が少ないため、多孔質構造による表面粗さは小さくともよい。 The anode foil and the cathode foil are sintered bodies obtained by sintering powder of valve action metal, or etched foils obtained by subjecting a stretched foil to an etching treatment.The porous structure has tunnel-like pits and spongy-like pits. Consisting of pits or voids between dense powders. The porous structure is typically formed by direct current etching or alternating current etching that applies direct current or alternating current in an acidic aqueous solution in which halogen ions such as hydrochloric acid are present, or vapor-deposits or sinters metal particles or the like on the core. It is formed by this. Since the cathode foil has less influence of the surface area on the capacitance of the electrolytic capacitor than the anode foil, the surface roughness due to the porous structure may be small.
 誘電体酸化皮膜層は、典型的には、陽極箔の表層に形成される酸化皮膜であり、陽極箔がアルミニウム製であれば多孔質構造部分を酸化させた酸化アルミニウム層である。この誘電体酸化皮膜層は、硼酸アンモニウム、リン酸アンモニウム、アジピン酸アンモニウム等の酸あるいはこれらの酸の水溶液等のハロゲンイオン不在の溶液中で電圧印加する化成処理により形成される。陰極箔に誘電体酸化皮膜層を設けてもよい。 The dielectric oxide film layer is typically an oxide film formed on the surface of the anode foil. If the anode foil is made of aluminum, it is an aluminum oxide layer obtained by oxidizing a porous structure portion. This dielectric oxide film layer is formed by a chemical conversion treatment in which a voltage is applied in an acid such as ammonium borate, ammonium phosphate, ammonium adipate or a solution in the absence of halogen ions such as an aqueous solution of these acids. The cathode foil may be provided with a dielectric oxide film layer.
 セパレータは、クラフト、マニラ麻、エスパルト、ヘンプ、レーヨン等のセルロースおよびこれらの混合紙、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、それらの誘導体などのポリエステル系樹脂、ポリテトラフルオロエチレン系樹脂、ポリフッ化ビニリデン系樹脂、ビニロン系樹脂、脂肪族ポリアミド,半芳香族ポリアミド,全芳香族ポリアミド等のポリアミド系樹脂、ポリイミド系樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、トリメチルペンテン樹脂、ポリフェニレンサルファイド樹脂、アクリル樹脂等が挙げられ、これらの樹脂を単独で又は混合して用いることができる。 Separators include cellulose such as kraft, manila hemp, esparto, hemp, rayon and mixed papers thereof, polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate and derivatives thereof, polytetrafluoroethylene resins, and polyfluorinated resins. Examples include vinylidene resin, vinylon resin, polyamide resin such as aliphatic polyamide, semi-aromatic polyamide, wholly aromatic polyamide, polyimide resin, polyethylene resin, polypropylene resin, trimethylpentene resin, polyphenylene sulfide resin, and acrylic resin. These resins can be used alone or as a mixture.
 電解液は、溶媒に対して溶質を溶解し、また溶媒に添加剤が添加された混合液である。添加剤としては、少なくとも、有機物で表面修飾した無機酸化物コロイド粒子(以下、有機修飾コロイド粒子と称する)、及びシランカップリング剤又はシリル化剤(以下、総称してシランカップリング剤という)が電解液に添加される。 The electrolytic solution is a mixed solution in which a solute is dissolved in a solvent and an additive is added to the solvent. Examples of the additives include at least inorganic oxide colloid particles surface-modified with an organic substance (hereinafter, referred to as organic-modified colloid particles), and a silane coupling agent or a silylating agent (hereinafter, collectively referred to as a silane coupling agent). It is added to the electrolyte.
 無機酸化物コロイド粒子としては、シリカ、アルミナ、チタニア、ジルコニア、酸化アンチモン、アルミノシリケート、シリカジルコニア、チタニアジルコニア、アルミノシリケートで被覆されたシリカ、シリカジルコニアで被覆されたシリカ等、又はこれらの混合物が挙げられる。これら無機酸化物コロイド粒子のうち、シリル化処理の容易さやコロイド粒子の安定性、耐電圧の向上効果の観点から特にシリカ、アルミノシリケート、又はアルミノシリケートで被覆されたシリカが好ましい。 As the inorganic oxide colloid particles, silica, alumina, titania, zirconia, antimony oxide, aluminosilicate, silica zirconia, titania zirconia, silica coated with aluminosilicate, silica coated with silica zirconia, or a mixture thereof. No. Among these inorganic oxide colloid particles, silica, aluminosilicate, or silica coated with aluminosilicate is particularly preferable from the viewpoints of the silylation treatment, the stability of the colloid particles, and the effect of improving the withstand voltage.
 無機酸化物コロイド粒子の表面を修飾する有機物は、無機酸化物コロイド粒子の表面水酸基と置換され、無機酸化物コロイド粒子同士の凝集を抑制するものであり、例えばシリル化剤、シランカップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤、アルコール類、ラテックスなどの各種高分子化合物等である。シリル化剤又はシランカップリング剤は、下記一般式(化2)で表される。
Figure JPOXMLDOC01-appb-C000003
[式中、Xは、炭素数が1~20のアルキル基、アルケニル基、アリール基またはアラルキル基であり、その水素の一部がカルボキシル基、エステル基、アミド基、シアノ基、ケトン基、ホルミル基、エーテル基、水酸基、アミノ基、メルカプト基、スルフィド基、スルホキシド基、スルホン基、イソシアネート基、ウレイド基、エポキシ基で置換されていてもよい炭化水素基(-R)である。X~Xはアセトキシ基、炭素数1~5のアルコキシ基又はアルキル基であって、X~Xの少なくとも2個以上はアルコキシ基である。]
Organic substances that modify the surface of the inorganic oxide colloid particles are substituted with surface hydroxyl groups of the inorganic oxide colloid particles and suppress aggregation of the inorganic oxide colloid particles.For example, a silylating agent, a silane coupling agent, Various polymer compounds such as titanate-based coupling agents, aluminum-based coupling agents, alcohols, and latex. The silylating agent or the silane coupling agent is represented by the following general formula (Formula 2).
Figure JPOXMLDOC01-appb-C000003
[In the formula, X 1 is an alkyl group, an alkenyl group, an aryl group or an aralkyl group having 1 to 20 carbon atoms, and a part of the hydrogen is a carboxyl group, an ester group, an amide group, a cyano group, a ketone group, A hydrocarbon group (-R) which may be substituted with a formyl group, ether group, hydroxyl group, amino group, mercapto group, sulfide group, sulfoxide group, sulfone group, isocyanate group, ureide group, or epoxy group. X 2 to X 4 are an acetoxy group, an alkoxy group having 1 to 5 carbon atoms or an alkyl group, and at least two of X 2 to X 4 are an alkoxy group. ]
 X1の具体例としては、メチル基、エチル基、プロピル基、ブチル基、デシル基、オクタデシル基などのアルキル基類;ビニル基、アリル基などのアルケニル基類;フェニル基、ナフチル基、スチリル基などのアリール基類;ベンジル基、フェネチル基などのアラルキル基類などの炭化水素基、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ビニルオキシ基、フェノキシ基、ベンジルオキシ基などのオキシ炭化水素基あるいは水酸基を挙げることができる。さらに、置換基を有する場合の例として、3-メタクリロキシプロピル基、3-アクリロキシプロピル基などのアクリル基類;3-グリシドキシプロピル基、2-(3,4-エポキシシクロヘキシル)エチル基などのエポキシ基類;3-アミノプロピル基、N-フェニル-3-アミノプロピル基、N-2-(アミノエチル)-3-アミノプロピル基などのアミノ基類;3-メルカプトプロピル基などのメルカプト基類;3-イソシアネートプロピル基などのイソシアネート基類;3-ウレイドプロピル基などのウレイド基などを挙げることができる。X~Xの具体例としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基などのアルコキシ基類;メチル基、エチル基、プロピル基、ブチル基、デシル基、オクタデシル基などのアルキル基類;アセトキシ基を挙げることができ、X~X4の少なくとも2個以上はアルコキシ基である。 Specific examples of X 1 include alkyl groups such as methyl group, ethyl group, propyl group, butyl group, decyl group and octadecyl group; alkenyl groups such as vinyl group and allyl group; phenyl group, naphthyl group and styryl group. Aryl groups such as benzyl group and aralkyl group such as phenethyl group; oxy hydrocarbon group such as methoxy group, ethoxy group, propoxy group, butoxy group, vinyloxy group, phenoxy group and benzyloxy group; A hydroxyl group can be mentioned. Further, examples having a substituent include acrylic groups such as 3-methacryloxypropyl group and 3-acryloxypropyl group; 3-glycidoxypropyl group and 2- (3,4-epoxycyclohexyl) ethyl group Amino groups such as 3-aminopropyl group, N-phenyl-3-aminopropyl group, N-2- (aminoethyl) -3-aminopropyl group; mercapto groups such as 3-mercaptopropyl group Groups; isocyanate groups such as 3-isocyanatopropyl group; ureido groups such as 3-ureidopropyl group. Specific examples of X 2 to X 4 include alkoxy groups such as methoxy group, ethoxy group, propoxy group and butoxy group; alkyl groups such as methyl group, ethyl group, propyl group, butyl group, decyl group and octadecyl group. An acetoxy group, and at least two of X 2 to X 4 are alkoxy groups.
 これらの組み合わせの中でもメチルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、イソブチルトリメトキシシラン、イソブチルトリエトキシシラン、デシルトリメトキシシラン、デシルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、3-ウレイドプロピルトリアルコキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、p-スチリルトリメトキシシランなどが好ましい。 Among these combinations, methyltrimethoxysilane, methyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, isobutyltrimethoxysilane, isobutyltrimethoxysilane Ethoxysilane, decyltrimethoxysilane, decyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyl Ethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, 3-ureidopropyltrialkoxysilane, 3-aminopropyltrimethoxysilane, 3 -Aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N- 2- (aminoethyl) -3-aminopropyltriethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3- Acryloxyp Pills trimethoxysilane, 3-isocyanate propyltriethoxysilane, etc. p- styryl trimethoxysilane is preferred.
 チタネート系カップリング剤の具体例としては、イソプロピルトリイソステアロイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルトリス(ジオクチルピロホスフェート)チタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジトリデシル)ホスファイトチタネート、ビス(ジオクチルピロホスフェート)オキシアセテートチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクロイルイソステアロイルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリクミルフェニルチタネート、イソプロピルトリ(N-アミノエチルアミノエチル)チタネートなどが挙げられる。 Specific examples of titanate-based coupling agents include isopropyl triisostearoyl titanate, isopropyl tridodecylbenzenesulfonyl titanate, isopropyl tris (dioctyl pyrophosphate) titanate, tetraisopropyl bis (dioctyl phosphite) titanate, and tetraoctyl bis (ditridecyl phosphate). Phyto) titanate, tetra (2,2-diallyloxymethyl-1-butyl) bis (ditridecyl) phosphite titanate, bis (dioctylpyrophosphate) oxyacetate titanate, isopropyltrioctanoyl titanate, isopropyldimethacryloyl isostearyl titanate, Isopropyl tri (dioctyl phosphate) titanate, isopropyl tricumyl phenyl titanate Isopropyl tri (N- aminoethyl-aminoethyl) such as titanates.
 アルミニウム系カップリング剤の具体例としては、アルミニウムエチルアセトアセテートジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)、アルミニウムトリス(アセチルアセトネート)、アルミニウムビス(エチルアセトアセテート)モノアセチルアセトネートなどが挙げられる。アルコールの具体例としては、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、アミルアルコール、4-メチル-2-ペンタノール、n-ヘプタノール、n-オクタノール、2-エチルヘキサノール、ノナノール、デカノール、トリデカノール、2-メトキシエタノール、2-エトキシエタノール、2-ブトキシエタノール、3-メトキシブタノール、3-メチル-3-メトキシブタノール、ポリビニルアルコールなどが挙げられる。 Specific examples of the aluminum-based coupling agent include aluminum ethyl acetoacetate diisopropylate, aluminum tris (ethyl acetoacetate), aluminum tris (acetylacetonate), and aluminum bis (ethyl acetoacetate) monoacetylacetonate. . Specific examples of alcohols include methanol, ethanol, n-propanol, iso-propanol, n-butanol, amyl alcohol, 4-methyl-2-pentanol, n-heptanol, n-octanol, 2-ethylhexanol, nonanol, Examples include decanol, tridecanol, 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol, 3-methoxybutanol, 3-methyl-3-methoxybutanol, and polyvinyl alcohol.
 これらのシリル化剤、シランカップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤、アルコール類、各種高分子化合物などの表面修飾に用いる有機物は、単独でまたは複数の組み合わせで用いることができる。 These silylating agents, silane coupling agents, titanate coupling agents, aluminum coupling agents, alcohols, and organic substances used for surface modification such as various polymer compounds can be used alone or in combination of two or more. .
 有機修飾コロイド粒子と共に電解液に添加されるシランカップリング剤も上記一般式(化2)で表される。無機酸化物コロイド粒子の表面を修飾する有機物とシランカップリング剤は同じものを用いてもよく、異なるものを用いてもよい。この有機修飾コロイド粒子とシランカップリング剤は、電解液のゲル化及びコロイド粒子の凝集を抑制し、有機修飾コロイド粒子の添加により向上した電解コンデンサの耐電圧を維持させる。シランカップリング剤の前記溶媒1kgに対する添加量は、0.05以上0.40mol/kg以下であることが好ましい。この範囲であると、電解液のゲル化やコロイド粒子の凝集は長期間抑制され、有機修飾コロイド粒子が長期間安定的に分散する。但し、シランカップリング剤の添加量が過大であると、ゲル化及び凝集は抑制できるものの、その効果は低下する。従って、0.40mol/kg以上を添加する場合には、電解コンデンサの他の諸特性とのバランスを考慮することが好ましい。 シ ラ ン The silane coupling agent added to the electrolytic solution together with the organic modified colloid particles is also represented by the above general formula (Formula 2). The same substance or a different silane coupling agent may be used as the organic substance for modifying the surface of the inorganic oxide colloid particles and the silane coupling agent. The organically modified colloidal particles and the silane coupling agent suppress gelation of the electrolytic solution and aggregation of the colloidal particles, and maintain the improved withstand voltage of the electrolytic capacitor by the addition of the organically modified colloidal particles. The amount of the silane coupling agent added to 1 kg of the solvent is preferably 0.05 or more and 0.40 mol / kg or less. Within this range, gelation of the electrolytic solution and aggregation of the colloid particles are suppressed for a long period, and the organically modified colloid particles are stably dispersed for a long period. However, if the addition amount of the silane coupling agent is excessive, gelation and aggregation can be suppressed, but the effect is reduced. Therefore, when adding 0.40 mol / kg or more, it is preferable to consider the balance with other various characteristics of the electrolytic capacitor.
 凝集抑制及び耐電圧維持の理由は、このメカニズムに限られないが、次の通り推測される。まず、有機修飾コロイド粒子は、有機物で表面修飾していない無機酸化物コロイド粒子よりも分散安定性が高く、電解液のゲル化を抑制する。そのため、有機修飾コロイド粒子の添加により向上した耐電圧を長期間維持することが可能である。さらに本願では有機修飾コロイド粒子のみならず、シランカップリング剤も併せて使用する。シランカップリング剤と併用することにより、有機修飾コロイド粒子同士の間にシランカップリング剤が介在し、有機修飾コロイド粒子の凝集抑制効果をさらに高めることができる。従って、電解液に有機修飾コロイド粒子とシランカップリング剤の両方を添加することで、電解液のゲル化及びコロイド粒子の凝集が抑制され、高い耐電圧が維持される。 The reasons for suppressing aggregation and maintaining the withstand voltage are not limited to this mechanism, but are presumed as follows. First, the organically modified colloidal particles have higher dispersion stability than the inorganic oxide colloidal particles that are not surface-modified with an organic substance, and suppress gelation of the electrolytic solution. Therefore, it is possible to maintain the improved withstand voltage for a long period of time by adding the organically modified colloid particles. Further, in the present application, not only the organic modified colloid particles but also a silane coupling agent is used together. When used in combination with the silane coupling agent, the silane coupling agent is interposed between the organically modified colloidal particles, and the effect of suppressing the aggregation of the organically modified colloidal particles can be further enhanced. Therefore, by adding both the organically modified colloidal particles and the silane coupling agent to the electrolytic solution, gelation of the electrolytic solution and aggregation of the colloidal particles are suppressed, and a high withstand voltage is maintained.
 また、発明者らの鋭意研究の結果、有機修飾コロイド粒子は陽極箔及び陰極箔の誘電体酸化皮膜の溶解に影響を与えるとの知見を得た。更に、有機修飾コロイド粒子とシランカップリング剤の両方を電解液に添加すれば、陽極箔及び陰極箔の誘電体酸化皮膜の溶解が抑制され、静電容量の変化が抑制されるとの知見を得た。静電容量の変化抑制の観点では、有機修飾コロイド粒子1gに対するシランカップリング剤の添加量は、0.76×10-3mol以上が好ましく、2.27×10-3mol以上であると飛躍的に高まり特に好ましい。更に、7.57×10-3mol以上であると、有機修飾コロイド粒子が添加されていない状態と同程度まで静電容量の変化を抑制できる。 In addition, as a result of earnest studies by the inventors, it has been found that the organic-modified colloid particles affect the dissolution of the dielectric oxide film on the anode foil and the cathode foil. Furthermore, it has been found that if both the organic modified colloid particles and the silane coupling agent are added to the electrolytic solution, the dissolution of the dielectric oxide film on the anode foil and the cathode foil is suppressed, and the change in capacitance is suppressed. Obtained. From the viewpoint of suppressing the change in the capacitance, the amount of the silane coupling agent added to 1 g of the organically modified colloid particles is preferably 0.76 × 10 −3 mol or more, and if it is 2.27 × 10 −3 mol or more, it will jump. It is particularly preferable because it increases. Further, when the amount is 7.57 × 10 −3 mol or more, the change in capacitance can be suppressed to about the same level as in a state where the organic modified colloid particles are not added.
 これも推測であり、このメカニズムに限られないが、溶解抑制及び静電容量の変化抑制の効果は次の理由によると考えられる。即ち、有機修飾コロイド粒子表面には水酸基が残存していると考えられる。有機修飾コロイド粒子表面の水酸基は、電解液中の水分を引き寄せる。従って、有機修飾コロイド粒子が電極箔の近傍に存在すると、有機修飾コロイド粒子表面の水酸基によって引き寄せられた水分が誘電体酸化皮膜に近づきやすく、誘電体酸化皮膜を溶解し、誘電体酸化皮膜を通過して弁作用金属に至り、弁作用金属を水和劣化させる。しかし、この電解コンデンサの誘電体酸化皮膜にはシランカップリング剤が吸着している。そのため、有機修飾コロイド粒子と電極箔との間に一定の距離を保つことができ、有機修飾コロイド粒子表面の水酸基やこれに引き寄せられた水分が電極箔に近づきにくく、水和劣化を抑制することが可能である。 This is also speculation and is not limited to this mechanism, but the effects of suppressing dissolution and suppressing the change in capacitance are considered to be as follows. That is, it is considered that hydroxyl groups remain on the surface of the organically modified colloid particles. Hydroxyl groups on the surface of the organically modified colloid particles attract moisture in the electrolyte. Therefore, when the organic modified colloid particles are present in the vicinity of the electrode foil, the water attracted by the hydroxyl groups on the organic modified colloid particles easily approaches the dielectric oxide film, dissolves the dielectric oxide film, and passes through the dielectric oxide film. As a result, the valve action metal is reached, and the valve action metal is hydrated and degraded. However, a silane coupling agent is adsorbed on the dielectric oxide film of this electrolytic capacitor. Therefore, it is possible to maintain a certain distance between the organic modified colloid particles and the electrode foil, and it is difficult for the hydroxyl groups on the surface of the organic modified colloid particles and the water attracted thereto to approach the electrode foil, thereby suppressing hydration deterioration. Is possible.
 上述したとおり、本願の電解コンデンサは、電極箔にシランカップリング剤が吸着して電極箔の表面に存在することにより誘電体酸化皮膜の溶解を抑制し、さらにその電極箔に吸着したシランカップリング剤を介して有機修飾コロイド粒子が電極箔に近接することにより耐電圧が向上する。また、有機修飾コロイド粒子同士の間にシランカップリング剤が介在し、有機修飾コロイド粒子の凝集を抑制する。 As described above, in the electrolytic capacitor of the present application, the dissolution of the dielectric oxide film is suppressed by the silane coupling agent adsorbed on the electrode foil and present on the surface of the electrode foil, and the silane coupling agent adsorbed on the electrode foil is further suppressed. The withstand voltage is improved by bringing the organic modified colloid particles close to the electrode foil via the agent. In addition, a silane coupling agent is interposed between the organically modified colloidal particles to suppress aggregation of the organically modified colloidal particles.
 この有機修飾コロイド粒子およびシランカップリング剤とともに使用される溶媒はプロトン性の有機極性溶媒又は非プロトン性の有機極性溶媒の何れでもよい。プロトン性の有機極性溶媒として、一価アルコール類、及び多価アルコール類、オキシアルコール化合物類などが代表として挙げられる。非プロトン性の有機極性溶媒としては、スルホン系、アミド系、ラクトン類、環状アミド系、ニトリル系、オキシド系などが代表として挙げられる。 溶媒 The solvent used with the organic modified colloid particles and the silane coupling agent may be either a protic organic polar solvent or an aprotic organic polar solvent. Representative examples of the protic organic polar solvent include monohydric alcohols, polyhydric alcohols, and oxyalcohol compounds. Representative examples of the aprotic organic polar solvent include sulfones, amides, lactones, cyclic amides, nitriles, and oxides.
 一価アルコール類としては、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、シクロブタノール、シクロペンタノール、シクロヘキサノール、ベンジルアルコール等が挙げられる。多価アルコール類およびオキシアルコール化合物類としては、エチレングリコール、プロピレングリコール、グリセリン、メチルセロソルブ、エチルセロソルブ、メトキシプロピレングリコール、ジメトキシプロパノール等が挙げられる。スルホン系としては、ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン、スルホラン、3-メチルスルホラン、2,4-ジメチルスルホラン等が挙げられる。アミド系としては、N-メチルホルムアミド、N,N-ジメチルホルムアミド、N-エチルホルムアミド、N,N-ジエチルホルムアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-エチルアセトアミド、N,N‐ジエチルアセトアミド、ヘキサメチルホスホリックアミド等が挙げられる。ラクトン類、環状アミド系としては、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、N-メチル-2-ピロリドン、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、イソブチレンカーボネート、イソブチレンカーボネート等が挙げられる。ニトリル系としては、アセトニトリル、3-メトキシプロピオニトリル、グルタロニトリル等が挙げられる。オキシド系としてはジメチルスルホキシド等が挙げられる。溶媒として、これらが単独で用いられてもよく、また2種類以上を組み合わせても良い。また、溶媒として水を含んでもよい。 Examples of monohydric alcohols include ethanol, propanol, butanol, pentanol, hexanol, cyclobutanol, cyclopentanol, cyclohexanol, and benzyl alcohol. Examples of polyhydric alcohols and oxyalcohol compounds include ethylene glycol, propylene glycol, glycerin, methyl cellosolve, ethyl cellosolve, methoxypropylene glycol, dimethoxypropanol, and the like. Examples of the sulfone type include dimethyl sulfone, ethyl methyl sulfone, diethyl sulfone, sulfolane, 3-methyl sulfolane, 2,4-dimethyl sulfolane and the like. As the amide system, N-methylformamide, N, N-dimethylformamide, N-ethylformamide, N, N-diethylformamide, N-methylacetamide, N, N-dimethylacetamide, N-ethylacetamide, N, N- Diethylacetamide, hexamethylphosphoric amide and the like. Examples of lactones and cyclic amides include γ-butyrolactone, γ-valerolactone, δ-valerolactone, N-methyl-2-pyrrolidone, ethylene carbonate, propylene carbonate, butylene carbonate, isobutylene carbonate, isobutylene carbonate, and the like. Examples of the nitrile include acetonitrile, 3-methoxypropionitrile, glutaronitrile and the like. Examples of the oxide type include dimethyl sulfoxide. As the solvent, these may be used alone or in combination of two or more. Further, water may be contained as a solvent.
 特に、エチレングリコール又はエチレングリコールを主体として他の溶媒と混合して成る溶媒を用いた場合は、この有機修飾コロイド粒子とシランカップリング剤を添加すると、ゲル化抑制及び凝集抑制の効果が非常に高く、好適な組み合わせである。 In particular, when a solvent composed mainly of ethylene glycol or a mixture of other solvents with ethylene glycol is used, the addition of the organically modified colloidal particles and a silane coupling agent significantly suppresses gelation and aggregation. High and preferred combination.
 電解液に含まれる溶質としては、通常電解コンデンサ用電解液に用いられる、有機酸、無機酸ならびに有機酸と無機酸との複合化合物の少なくとも1種の塩を挙げることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。 溶 Examples of the solute contained in the electrolytic solution include at least one salt of an organic acid, an inorganic acid, and a composite compound of an organic acid and an inorganic acid, which are usually used in an electrolytic solution for electrolytic capacitors. These may be used alone or in combination of two or more.
 有機酸としては、フタル酸、イソフタル酸、テレフタル酸、マレイン酸、アジピン酸、安息香酸、トルイル酸、エナント酸、マロン酸、1,6-デカンジカルボン酸、1,7-オクタンジカルボン酸、アゼライン酸、ウンデカン二酸、ドデカン二酸、トリデカン二酸等のカルボン酸、フェノール類、スルホン酸が挙げられる。また、無機酸としては、ホウ酸、リン酸、亜リン酸、次亜リン酸、炭酸、ケイ酸等が挙げられる。有機酸と無機酸の複合化合物としては、ボロジサリチル酸、ボロジ蓚酸、ボロジグリコール酸等が挙げられる。 Examples of the organic acid include phthalic acid, isophthalic acid, terephthalic acid, maleic acid, adipic acid, benzoic acid, toluic acid, enanthic acid, malonic acid, 1,6-decanedicarboxylic acid, 1,7-octanedicarboxylic acid, azelaic acid And carboxylic acids such as undecandioic acid, dodecandioic acid and tridecandioic acid, phenols and sulfonic acids. Examples of the inorganic acid include boric acid, phosphoric acid, phosphorous acid, hypophosphorous acid, carbonic acid, and silicic acid. Examples of the composite compound of an organic acid and an inorganic acid include borosalicylic acid, borodioxalic acid, and boroglycolic acid.
 また、有機酸、無機酸、ならびに有機酸と無機酸の複合化合物の少なくとも1種の塩として、アンモニウム塩、四級アンモニウム塩、四級化アミジニウム塩、アミン塩、ナトリウム塩、カリウム塩等が挙げられる。四級アンモニウム塩の四級アンモニウムイオンとしてはテトラメチルアンモニウム、トリエチルメチルアンモニウム、テトラエチルアンモニウム等が挙げられる。四級化アミジニウムとしては、エチルジメチルイミダゾリニウム、テトラメチルイミダゾリニウムなどが挙げられる。アミン塩のアミンとしては、一級アミン、二級アミン、三級アミンが挙げられる。一級アミンとしては、メチルアミン、エチルアミン、プロピルアミンなど、二級アミンとしては、ジメチルアミン、ジエチルアミン、エチルメチルアミン、ジブチルアミンなど、三級アミンとしては、トリメチルアミン、トリエチルアミン、トリブチルアミン、エチルジメチルアミン、エチルジイソプロピルアミン等が挙げられる。 Examples of at least one salt of an organic acid, an inorganic acid, and a composite compound of an organic acid and an inorganic acid include ammonium salts, quaternary ammonium salts, quaternized amidinium salts, amine salts, sodium salts, and potassium salts. Can be Examples of the quaternary ammonium ion of the quaternary ammonium salt include tetramethylammonium, triethylmethylammonium, tetraethylammonium and the like. Examples of the quaternized amidinium include ethyl dimethyl imidazolinium, tetramethyl imidazolinium, and the like. Examples of the amine of the amine salt include a primary amine, a secondary amine, and a tertiary amine. As primary amines, such as methylamine, ethylamine, and propylamine; as secondary amines, such as dimethylamine, diethylamine, ethylmethylamine, and dibutylamine; and as tertiary amines, as trimethylamine, triethylamine, tributylamine, ethyldimethylamine, Ethyl diisopropylamine and the like.
 特に、アンモニウム塩、アミン塩が好ましい。アンモニウム塩は、電解液の比抵抗が低くなるため、電解コンデンサの低ESR化が可能である。アミン塩を用いると、アミン塩による水和抑制効果が得られるため、電解コンデンサの長寿命化につながる。さらにアミン塩のなかでも、耐電圧と比抵抗とのバランスに優れる二級アミンが特に好ましい。 Particularly, ammonium salts and amine salts are preferable. Ammonium salts reduce the specific resistance of the electrolytic solution, so that the ESR of the electrolytic capacitor can be reduced. When an amine salt is used, an effect of suppressing hydration by the amine salt is obtained, which leads to a longer life of the electrolytic capacitor. Further, among amine salts, secondary amines which are excellent in the balance between the withstand voltage and the specific resistance are particularly preferable.
 また、電解液には他の添加剤として、有機修飾コロイド粒子、シリル化剤又はシランカップリング剤以外のものをさらに添加してもよい。例えば、ポリアルキレンポリオール、ホウ酸、ホウ酸と多糖類(マンニット、ソルビットなど)との錯化合物、ホウ酸と多価アルコール(エチレングリコール、マンニトール、ソルビトール)との錯化合物、ホウ酸エステルなどのホウ酸化合物、ニトロ化合物(o-ニトロ安息香酸、m-ニトロ安息香酸、p-ニトロ安息香酸、o-ニトロフェノール、m-ニトロフェノール、p-ニトロフェノール、m-ニトロアセトフェノン、p-ニトロベンジルアルコールなど)、リン酸、リン酸エステルなどのリン化合物が挙げられる。 Furthermore, other additives than the organically modified colloidal particles, silylating agent or silane coupling agent may be further added to the electrolytic solution. For example, polyalkylene polyols, boric acid, complex compounds of boric acid with polysaccharides (mannitol, sorbitol, etc.), complex compounds of boric acid with polyhydric alcohols (ethylene glycol, mannitol, sorbitol), borate esters, etc. Boric acid compounds, nitro compounds (o-nitrobenzoic acid, m-nitrobenzoic acid, p-nitrobenzoic acid, o-nitrophenol, m-nitrophenol, p-nitrophenol, m-nitroacetophenone, p-nitrobenzyl alcohol ), Phosphoric acid, phosphoric acid esters and the like.
 以下、実施例に基づいて本発明をさらに詳細に説明する。なお、本発明は下記実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. Note that the present invention is not limited to the following examples.
 (ゲル化の評価1)
 下記表1の通り、比較例1乃至3及び実施例1乃至7の電解液を作製した。
 (表1)
Figure JPOXMLDOC01-appb-I000004
(Evaluation of gelation 1)
As shown in Table 1 below, electrolyte solutions of Comparative Examples 1 to 3 and Examples 1 to 7 were prepared.
(Table 1)
Figure JPOXMLDOC01-appb-I000004
 電解液の溶媒はエチレングリコールと水の混合液とし、溶質はアゼライン酸アンモニウムとし、添加剤としてp-ニトロベンジルアルコールを添加した。比較例1の電解液の組成は以上の通りであるが、比較例2の電解液には、無機酸化物コロイド粒子であるシリカを更に添加した。比較例3及び実施例1乃至7の電解液には、有機修飾コロイド粒子として有機修飾シリカを添加した。この有機修飾シリカは、シリカの表面を3-グリシドキシプロピルトリメトキシシランにて修飾したものである。更に実施例1乃至7の電解液には、シランカップリング剤として3-グリシドキシプロピルメチルジメトキシシラン(信越シリコーン製 KBM-402)を添加した。各組成比は重量%で表1に示す通りである。また、溶媒1kgに対するシランカップリング剤の添加量および有機修飾シリカ1gに対するシランカップリング剤の添加量についても表1に記載した。ここで、溶媒とはエチレングリコールと水の総量である。 溶媒 The solvent of the electrolyte was a mixture of ethylene glycol and water, the solute was ammonium azelate, and p-nitrobenzyl alcohol was added as an additive. The composition of the electrolytic solution of Comparative Example 1 was as described above, but silica as inorganic colloidal particles was further added to the electrolytic solution of Comparative Example 2. Organic modified silica as organic modified colloid particles was added to the electrolytes of Comparative Example 3 and Examples 1 to 7. This organically modified silica is obtained by modifying the surface of silica with 3-glycidoxypropyltrimethoxysilane. Further, to the electrolyte solutions of Examples 1 to 7, 3-glycidoxypropylmethyldimethoxysilane (KBM-402 manufactured by Shin-Etsu Silicone) was added as a silane coupling agent. Each composition ratio is as shown in Table 1 by weight. Table 1 also shows the amount of the silane coupling agent added to 1 kg of the solvent and the amount of the silane coupling agent added to 1 g of the organically modified silica. Here, the solvent is the total amount of ethylene glycol and water.
 作製した電解液の比抵抗も表1に示す。比抵抗は30℃で測定を行った。 Table 1 also shows the specific resistance of the prepared electrolyte. The specific resistance was measured at 30 ° C.
 この比較例1乃至比較例3及び実施例1乃至7の電解液についてゲル化の状況を確認する放置試験を行った。その結果も表1に示す。放置試験では、各電解液がゲル化するまでの時間を計測した。各電解液をアンプル管に入れ、125℃で保持し、最大2300時間の間、各測定時間においてゲル化しているか目視にて確認した。電解液を収容したアンプル管を傾けても内容物に流動性がない状態をゲル化とした。表1に記載の時間は、ゲル化したことを確認した時間を記載しており、ゲル化した時間ではなく、またハイフン(-)印は2300時間経過でゲル化が観察されなかった場合に記している。 放置 A standing test was conducted to confirm the gelation of the electrolytes of Comparative Examples 1 to 3 and Examples 1 to 7. Table 1 also shows the results. In the standing test, the time until each electrolyte solution gelled was measured. Each electrolyte was placed in an ampoule tube, kept at 125 ° C., and visually checked for gelation at each measurement time for a maximum of 2300 hours. The state in which the contents did not have fluidity even when the ampoule tube containing the electrolytic solution was tilted was gelled. The time shown in Table 1 indicates the time at which gelation was confirmed, not the gelation time, and the hyphen (-) indicates that no gelation was observed after 2300 hours. ing.
 更に各電解液をコンデンサ素子に含浸させた後、有底筒状の外装ケースに収納し、封口ゴムで封止した。陽極箔は、アルミニウム箔をエッチング処理により拡面化され、次いで化成処理により誘電体酸化皮膜層が形成される。また、アルミニウム箔をエッチング処理により拡面化し、アルミニウム製の陰極箔を作製した。作製した陽極箔および陰極箔に電極引き出し手段を接続し、セルロース系セパレータを介在させて巻回することで、コンデンサ素子を作製した。これによって、コンデンサ素子寸法が径10mm及び長さ25mmの巻回型の電解コンデンサが得られた。この比較例1乃至3及び実施例1乃至7の電解コンデンサに対して耐電圧試験を行った。その結果も表1に示す。耐電圧試験では、125℃で耐圧を測定した。 Furthermore, after each electrolytic solution was impregnated in the capacitor element, it was housed in a bottomed cylindrical outer case and sealed with a sealing rubber. The anode foil is formed by expanding an aluminum foil by etching, and then forming a dielectric oxide film layer by chemical conversion. Further, the aluminum foil was enlarged by etching to produce an aluminum cathode foil. An electrode lead-out means was connected to the produced anode foil and cathode foil, and the resultant was wound with a cellulose-based separator interposed therebetween to produce a capacitor element. As a result, a wound electrolytic capacitor having a capacitor element size of 10 mm in diameter and 25 mm in length was obtained. A withstand voltage test was performed on the electrolytic capacitors of Comparative Examples 1 to 3 and Examples 1 to 7. Table 1 also shows the results. In the withstand voltage test, the withstand voltage was measured at 125 ° C.
 表1に示すように、主溶媒がエチレングリコールであると、シリカを添加した比較例2の電解液は2時間でゲル化してしまった。比較例3の電解液は、主溶媒がエチレングリコールであり、有機修飾シリカが添加されており、比較例2と比べてゲル化の時間は長くなったが、それでも250時間でゲル化してしまった。 示 す As shown in Table 1, when the main solvent was ethylene glycol, the electrolyte solution of Comparative Example 2 to which silica was added gelled in 2 hours. In the electrolyte of Comparative Example 3, the main solvent was ethylene glycol, and organically modified silica was added. The gelation time was longer than that of Comparative Example 2, but the gelation still occurred in 250 hours. .
 一方、表1に示すように、主溶媒がエチレングリコールであっても、有機修飾シリカとシランカップリング剤が添加された実施例1乃至7の電解液は、ゲル化に到る時間が長時間化した。特に、シランカップリング剤の添加量を溶媒に対して0.40mol/kg以下に抑えた実施例1乃至4及び実施例6の電解液は、2300時間の観察中、ゲル化に到ることがなかった。即ち、有機修飾シリカとシランカップリング剤が添加された電解液は、ゲル化が抑制されていることが確認され、特にシランカップリング剤が溶媒の総量に対して0.40mol/kg以下であると、ゲル化は飛躍的に抑制できることが確認された。 On the other hand, as shown in Table 1, even when the main solvent was ethylene glycol, the electrolyte solutions of Examples 1 to 7 to which the organically modified silica and the silane coupling agent were added had a long time to gelation. It has become. In particular, the electrolyte solutions of Examples 1 to 4 and Example 6 in which the amount of the silane coupling agent added was suppressed to 0.40 mol / kg or less with respect to the solvent could reach gelation during 2,300 hours of observation. Did not. That is, it was confirmed that gelation was suppressed in the electrolytic solution to which the organic modified silica and the silane coupling agent were added, and in particular, the silane coupling agent was 0.40 mol / kg or less based on the total amount of the solvent. It was confirmed that gelation could be dramatically suppressed.
 次に表1に示すように、主溶媒がエチレングリコールであっても、有機修飾シリカが添加されている場合には、電解コンデンサの耐電圧が向上することが確認された。従って、電解液に有機修飾シリカを添加することにより耐電圧が向上し、さらにシランカップリング剤を添加することで、電解液のゲル化を抑制することが確認された。 Next, as shown in Table 1, it was confirmed that even when the main solvent was ethylene glycol, the withstand voltage of the electrolytic capacitor was improved when the organically modified silica was added. Therefore, it was confirmed that the withstand voltage was improved by adding the organically modified silica to the electrolytic solution, and that the gelation of the electrolytic solution was suppressed by adding the silane coupling agent.
 (ゲル化の評価2)
 下記表2の通り、比較例4乃至7及び実施例8乃至9の電解液を作製した。表1と同様に、ゲル化の状況を確認する放置試験および125℃で測定した耐電圧の結果も示す。
(Evaluation of gelation 2)
As shown in Table 2 below, electrolyte solutions of Comparative Examples 4 to 7 and Examples 8 and 9 were produced. As in Table 1, the results of the standing test for confirming the state of gelation and the withstand voltage measured at 125 ° C are also shown.
 (表2)
Figure JPOXMLDOC01-appb-I000005
(Table 2)
Figure JPOXMLDOC01-appb-I000005
 比較例4、比較例5、実施例8は、溶質としてアゼライン酸ジエチルアミンを用いたこと以外は各々比較例1、比較例3、実施例1と同様とした。比較例6、比較例7、実施例9は、溶質としてアゼライン酸トリエチルアミンを用いたこと以外は各々比較例1、比較例3、実施例1と同様とした。 Comparative Example 4, Comparative Example 5, and Example 8 were the same as Comparative Example 1, Comparative Example 3, and Example 1, respectively, except that diethylamine azelate was used as the solute. Comparative Example 6, Comparative Example 7, and Example 9 were the same as Comparative Example 1, Comparative Example 3, and Example 1, respectively, except that triethylamine azelate was used as the solute.
 表2の結果より、溶質の塩基成分としてジエチルアミン又はトリエチルアミンを用いた場合にも、有機修飾シリカとシランカップリング剤が添加された実施例8乃至9の電解液はゲル化に到る時間が長時間化した。また、有機修飾シリカが添加されることにより、電解コンデンサの耐電圧が向上することも確認された。 From the results in Table 2, it can be seen that even when diethylamine or triethylamine was used as the base component of the solute, the electrolytic solutions of Examples 8 and 9 in which the organically modified silica and the silane coupling agent were added had a longer time to gel. It's time. It was also confirmed that the addition of the organically modified silica improved the withstand voltage of the electrolytic capacitor.
 実施例1および実施例8乃至9の比抵抗を比較すると、実施例1が最も小さいことが確認された。塩基成分としてアンモニアを用いることにより、比抵抗が小さくなり、その結果、電解コンデンサのESRが小さくなると予測される。 す る と Comparing the specific resistance of Example 1 and Examples 8 and 9, it was confirmed that Example 1 was the smallest. By using ammonia as the base component, it is expected that the specific resistance will be reduced, and as a result, the ESR of the electrolytic capacitor will be reduced.
 実施例1および実施例8乃至9の耐電圧を比較すると、実施例1が最も耐電圧が高く、塩基成分としてアンモニアを用いることにより耐電圧が高くなることが確認された。また、実施例8および実施例9は、耐電圧は同等であるが、比抵抗は実施例8のほうが小さいことが確認された。このことから、アミン塩のなかでも二級アミンであるジエチルアミンは、耐電圧と比抵抗とのバランスに優れることがわかる。 比較 Comparing the withstand voltage of Example 1 and Examples 8 and 9, it was confirmed that Example 1 had the highest withstand voltage and that the withstand voltage was increased by using ammonia as the base component. In addition, it was confirmed that in Example 8 and Example 9, the withstand voltage was equivalent, but the specific resistance of Example 8 was smaller. From this, it can be seen that among amine salts, diethylamine, which is a secondary amine, has an excellent balance between withstand voltage and specific resistance.
(ゲル化の評価3)
 下記表3の通り、実施例10乃至12の電解液を作製した。表1と同様に、ゲル化の状況を確認する放置試験および125℃で測定した耐電圧の結果も示す。
(Evaluation of gelation 3)
As shown in Table 3 below, the electrolyte solutions of Examples 10 to 12 were produced. As in Table 1, the results of the standing test for confirming the state of gelation and the withstand voltage measured at 125 ° C are also shown.
 (表3)
Figure JPOXMLDOC01-appb-I000006
(Table 3)
Figure JPOXMLDOC01-appb-I000006
 実施例10乃至12は有機修飾シリカ1gに対するシランカップリング剤の添加量を実施例2と同等とし、シランカップリング剤の種類を変更した。実施例10は3-グリシドキシプロピルトリメトキシシラン(信越シリコーン製 KBM-403)、実施例11は2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン(信越シリコーン製 KBM-303)、実施例12はN-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン(信越シリコーン製 KBM-602)を用いた。 は In Examples 10 to 12, the amount of the silane coupling agent added to 1 g of the organically modified silica was the same as in Example 2, and the type of the silane coupling agent was changed. Example 10 was 3-glycidoxypropyltrimethoxysilane (KBM-403 manufactured by Shin-Etsu Silicone), and Example 11 was 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (KBM-303 manufactured by Shin-Etsu Silicone). In Example 12, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane (KBM-602 manufactured by Shin-Etsu Silicone) was used.
 実施例10乃至実施例12より、シランカップリング剤を変更しても、耐電圧が良好であり、電解液がゲル化しなかったことが確認された。実施例2および実施例10乃至12の比抵抗と耐電圧とのバランスから考慮すると、シランカップリング剤として3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランが好ましく、特に3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシランが好ましいことが確認された。 よ り From Examples 10 to 12, it was confirmed that even when the silane coupling agent was changed, the withstand voltage was good and the electrolyte did not gel. Considering the balance between the specific resistance and the withstand voltage in Example 2 and Examples 10 to 12, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 2- ( It has been confirmed that 3,4-epoxycyclohexyl) ethyltrimethoxysilane is preferable, and 3-glycidoxypropylmethyldimethoxysilane and 3-glycidoxypropyltrimethoxysilane are particularly preferable.
 (静電容量の評価)
 まず、比較例1、比較例3及び実施例1の電解コンデンサを150℃の高温環境下で300時間の間、無負荷で放置した。これら電解コンデンサを分解し、陰極箔及び陽極箔を水で洗浄し、各々の誘電体酸化皮膜の耐電圧測定を行った。その結果を図1及び図2に示す。図1は縦軸が誘電体酸化皮膜の耐電圧(V vs.Pt)であり、図2は縦軸が誘電体酸化皮膜の耐電圧(V)であり、両図とも横軸は時間であり、図1は陰極箔の結果、図2は陽極箔の結果を示す。
(Evaluation of capacitance)
First, the electrolytic capacitors of Comparative Example 1, Comparative Example 3, and Example 1 were left in a high-temperature environment of 150 ° C. for 300 hours without load. These electrolytic capacitors were disassembled, the cathode foil and the anode foil were washed with water, and the withstand voltage of each dielectric oxide film was measured. The results are shown in FIGS. In FIG. 1, the vertical axis indicates the withstand voltage (V vs. Pt) of the dielectric oxide film, and FIG. 2 shows the vertical axis with the dielectric voltage (V) of the dielectric oxide film. FIG. 1 shows the results for the cathode foil, and FIG. 2 shows the results for the anode foil.
 図1に示すように、比較例3の陰極箔に比べて実施例3の陰極箔は立ち上がり電圧が高い。ここで、有機修飾シリカおよびシランカップリング剤を含まない比較例1は0.1Vvs.Pt程度の立ち上がり電圧を示しているが、有機修飾シリカのみを含む比較例3は立ち上がり電圧が-0.5Vvs.Pt程度まで下がり、比較例1に比べ0.6V程度の誘電体酸化皮膜の溶解が見られる。一方、実施例3は-0.35Vvs.Ptと、比較例3に比べ皮膜耐圧があり、誘電体酸化皮膜の溶解が抑制されていることがわかった。 よ う As shown in FIG. 1, the cathode foil of Example 3 has a higher rise voltage than the cathode foil of Comparative Example 3. Here, Comparative Example 1, which did not contain the organically modified silica and the silane coupling agent, was 0.1 Vvs. Although a rising voltage of about Pt is shown, Comparative Example 3 containing only the organically modified silica has a rising voltage of -0.5 Vvs. Pt is reduced to about Pt, and the dissolution of the dielectric oxide film of about 0.6 V as compared with Comparative Example 1 is observed. On the other hand, in Example 3, -0.35 Vvs. It was found that the film pressure resistance was higher than that of Pt and Comparative Example 3, and the dissolution of the dielectric oxide film was suppressed.
 また、図2に示すように、実施例3の陽極箔に比べて比較例3の陽極箔は電圧上昇が緩やかであり、実施例3の陽極箔は比較例1の陽極箔と同じような挙動を示した。この理由としては、有機修飾シリカのみを含む比較例3の陽極箔は誘電体酸化皮膜が溶解され、電圧上昇が緩やかになったと考えられる。一方、有機修飾シリカとシランカップリング剤が添加された実施例3の陽極箔は誘電体酸化皮膜の溶解が抑制され、有機修飾シリカとシランカップリング剤を含まない比較例1の陽極箔と同じような挙動を示したと考えられる。 Further, as shown in FIG. 2, the voltage rise of the anode foil of Comparative Example 3 is slower than that of the anode foil of Example 3, and the anode foil of Example 3 has the same behavior as the anode foil of Comparative Example 1. showed that. It is considered that the reason for this is that the dielectric oxide film was dissolved in the anode foil of Comparative Example 3 containing only the organically modified silica, and the voltage rise was moderate. On the other hand, the anode foil of Example 3 in which the organically modified silica and the silane coupling agent were added suppressed dissolution of the dielectric oxide film and was the same as the anode foil of Comparative Example 1 which did not contain the organically modified silica and the silane coupling agent. It is considered that such behavior was exhibited.
 誘電体酸化皮膜層の溶解を裏付けるべく、比較例1、比較例3及び実施例3の電解コンデンサの漏れ電流(LC)を測定した。漏れ電流は、電解コンデンサを作製した初期の段階と、150℃、300時間及び無負荷で放置した高温試験後に測定された。印加電圧は200Vとし、30秒後の漏れ電流値を測定した。その結果を下表4に示す。 (4) In order to confirm the dissolution of the dielectric oxide film layer, the leakage current (LC) of the electrolytic capacitors of Comparative Example 1, Comparative Example 3, and Example 3 was measured. The leakage current was measured after the initial stage of producing the electrolytic capacitor and after the high temperature test at 150 ° C. for 300 hours and left without load. The applied voltage was 200 V, and the leakage current value after 30 seconds was measured. The results are shown in Table 4 below.
 (表4)
Figure JPOXMLDOC01-appb-I000007
(Table 4)
Figure JPOXMLDOC01-appb-I000007
 表4に示すように、比較例1、比較例3及び実施例3の電解コンデンサの初期の漏れ電流は全て同等であった。しかし、高温試験後の漏れ電流は比較例3が最も大きかった。これは、高温試験により比較例3の陽極箔の誘電体酸化皮膜が溶解したために、漏れ電流が大きくなったと考えられる。一方、実施例3の高温試験後の漏れ電流は、比較例3の約半分程度に抑えられており、有機修飾シリカとシランカップリング剤を用いることで誘電体酸化皮膜の溶解が抑制されていることが確認された。 As shown in Table 4, the initial leakage currents of the electrolytic capacitors of Comparative Example 1, Comparative Example 3, and Example 3 were all equal. However, the leakage current after the high temperature test was the largest in Comparative Example 3. This is considered to be due to the fact that the dielectric oxide film of the anode foil of Comparative Example 3 was dissolved by the high temperature test, so that the leakage current was increased. On the other hand, the leakage current after the high temperature test in Example 3 was suppressed to about half of that in Comparative Example 3, and the dissolution of the dielectric oxide film was suppressed by using the organic modified silica and the silane coupling agent. It was confirmed that.
 また、比較例1、比較例3及び実施例3の電解コンデンサを150℃の高温環境下で300時間の間、無負荷で放置した。これら電解コンデンサを分解し、水で洗浄した陽極箔の表面状態を、走査型電子顕微鏡(以下SEMと称する。JSM-7800FPrime、日本電子株式会社製)により5,000倍にて観察した。そのSEM観察において撮影した写真を図3に示す。図3の(a)は比較例1の写真であり、(b)は比較例3の写真であり、(c)は実施例3の写真である。 {Circle around (2)} The electrolytic capacitors of Comparative Example 1, Comparative Example 3 and Example 3 were left in a high-temperature environment of 150 ° C. for 300 hours without load. These electrolytic capacitors were disassembled, and the surface state of the anode foil washed with water was observed at a magnification of 5,000 with a scanning electron microscope (hereinafter referred to as SEM; JSM-7800FPrim, manufactured by JEOL Ltd.). FIG. 3 shows a photograph taken in the SEM observation. 3A is a photograph of Comparative Example 1, FIG. 3B is a photograph of Comparative Example 3, and FIG. 3C is a photograph of Example 3.
 図3に示すように、比較例3の陽極箔は、エッチングピットが見えなくなった部分が多くなっている。一方、実施例3の陽極箔は、比較例1の陽極箔の表面状態に近く、エッチングピットが鮮明に残っている。この結果は、比較例3の陽極箔の誘電体酸化皮膜層の溶解や誘電体酸化皮膜へ何らかの物質が堆積したことを示している。 (3) As shown in FIG. 3, the anode foil of Comparative Example 3 has many portions where etching pits are no longer visible. On the other hand, the anode foil of Example 3 was close to the surface state of the anode foil of Comparative Example 1, and etching pits remained clearly. This result indicates that the dielectric oxide film layer of the anode foil of Comparative Example 3 was dissolved and that some substance was deposited on the dielectric oxide film.
 誘電体酸化皮膜層の溶解及び物質の堆積を更に裏付けるべく、SEM観察を行った比較例1、比較例3及び実施例3の陽極箔の表面の元素分析を行った。元素分析はエネルギー分散型X線分光器(EDS)にて行った。その結果を表5に示す。表5において各数値は、各元素の存在比率(質量%)を示す。 (4) In order to further support the dissolution of the dielectric oxide film layer and the deposition of the substance, element analysis was performed on the surfaces of the anode foils of Comparative Example 1, Comparative Example 3, and Example 3 where SEM observation was performed. Elemental analysis was performed with an energy dispersive X-ray spectrometer (EDS). Table 5 shows the results. In Table 5, each numerical value indicates an existing ratio (% by mass) of each element.
 (表5)
Figure JPOXMLDOC01-appb-I000008
(Table 5)
Figure JPOXMLDOC01-appb-I000008
 表5に示すように、比較例1及び実施例3の陽極箔表面のケイ素の検出量は微量であったに対し、比較例3の陽極箔はケイ素が多量に検出された。即ち、有機修飾シリカのみを電解液に添加すると、ケイ素化合物が陽極箔の表面に付着していることが確認された。以上により、有機修飾コロイド粒子は陽極箔に何らかの影響を及ぼすのに対し、有機修飾シリカおよびシランカップリング剤を併用することにより、陽極箔の誘電体酸化皮膜へ有機修飾シリカが影響することを抑制し、陽極箔の表面状態の変化を抑制していることが見出された。 As shown in Table 5, the amount of silicon detected on the surface of the anode foil of Comparative Example 1 and Example 3 was very small, whereas the amount of silicon was detected on the anode foil of Comparative Example 3 in a large amount. That is, it was confirmed that when only the organic-modified silica was added to the electrolytic solution, the silicon compound was attached to the surface of the anode foil. As described above, the organically modified colloidal particles have some effect on the anode foil, while the organically modified silica and the silane coupling agent are used together to suppress the effect of the organically modified silica on the dielectric oxide film of the anode foil. However, it was found that the change in the surface state of the anode foil was suppressed.
 有機修飾コロイド粒子が誘電体酸化皮膜の溶解に影響を与えることが確認されたことを踏まえ、次に、比較例1、比較例3及び実施例1乃至7の電解コンデンサの初期の静電容量(Cap)を測定後、150℃の温度環境下で無負荷放置し、各時間経過後に静電容量を測定して静電容量の時間変化を算出した。静電容量の時間変化を表6、図4に示す。表6は、初期の静電容量に対する各時間経過後の変化率(ΔCap(%))を示す表であり、図4は、各々、縦軸がΔCapで横軸が時間のグラフである。尚、ΔCapは、下記式1で算出した。式1中、時間経過後の静電容量とは、110時間経過後、200時間経過後及び300時間経過後の静電容量である。
 (式1)
Figure JPOXMLDOC01-appb-I000009
Based on the fact that the organically modified colloidal particles were confirmed to affect the dissolution of the dielectric oxide film, the initial capacitances of the electrolytic capacitors of Comparative Examples 1, 3 and Examples 1 to 7 ( After measuring Cap), the sample was left unloaded under a temperature environment of 150 ° C., and after each elapse of time, the capacitance was measured to calculate a change in the capacitance with time. Table 6 and FIG. 4 show the change over time of the capacitance. Table 6 is a table showing a rate of change (ΔCap (%)) with respect to the initial capacitance after each lapse of time, and FIG. 4 is a graph in which the vertical axis represents ΔCap and the horizontal axis represents time. Note that ΔCap was calculated by the following equation 1. In Equation 1, the capacitance after the passage of time refers to the capacitance after the passage of 110 hours, after the passage of 200 hours, and after the passage of 300 hours.
(Equation 1)
Figure JPOXMLDOC01-appb-I000009
 (表6)
Figure JPOXMLDOC01-appb-I000010
(Table 6)
Figure JPOXMLDOC01-appb-I000010
 表6、図4に示すように、有機修飾シリカのみを添加した比較例3の電解コンデンサは、有機修飾シリカ及びシランカップリング剤を添加していない比較例1の電解コンデンサと比して、静電容量の変化が大きかった。しかし、シランカップリング剤も加えた実施例1乃至7の電解コンデンサは、比較例3と比して、静電容量の変化が抑制されている。 As shown in Table 6 and FIG. 4, the electrolytic capacitor of Comparative Example 3 to which only the organically modified silica was added was more static than the electrolytic capacitor of Comparative Example 1 to which the organically modified silica and the silane coupling agent were not added. The change in capacitance was large. However, in the electrolytic capacitors of Examples 1 to 7 to which the silane coupling agent was added, the change in the capacitance was suppressed as compared with Comparative Example 3.
 また、有機修飾シリカ1gに対するシランカップリング剤の添加量が0.76×10-3molである実施例1に比べて、同添加量が2.27×10-3molである実施例2は、ΔCapが約66%程度(表5中300h後の数値により計算)に抑えられており、同添加量が大きくなるほど抑制効果は上がっている。そして、有機修飾シリカ1gに対するシランカップリング剤の添加量が7.57×10-3molである実施例5の電解コンデンサは、比較例1と同等程度まで静電容量の変化が抑えられている。 Also, in Example 2 where the addition amount of the silane coupling agent was 2.27 × 10 −3 mol, as compared with Example 1 where the addition amount of the silane coupling agent was 0.76 × 10 −3 mol per 1 g of the organically modified silica. , ΔCap are suppressed to about 66% (calculated by the values after 300 hours in Table 5), and the suppression effect increases as the amount of addition increases. In the electrolytic capacitor of Example 5 in which the amount of the silane coupling agent added to 1 g of the organically modified silica was 7.57 × 10 −3 mol, the change in capacitance was suppressed to about the same level as in Comparative Example 1. .
 これにより、有機修飾コロイド粒子とシランカップリング剤の両方を添加すると、静電容量の変化を抑制できることが確認された。有機修飾コロイド粒子1gに対するシランカップリング剤の添加量が0.76×10-3mol以上であると静電容量の変化を抑制でき、2.27×10-3mol以上であると、静電容量の変化が飛躍的に抑えられ、そして、有機修飾コロイド粒子1gに対するシランカップリング剤の添加量が7.57×10-3mol以上であると、有機修飾コロイド粒子を添加していない場合と同程度にまで静電容量の変化を抑制できることが確認された。 This confirmed that the addition of both the organic modified colloid particles and the silane coupling agent can suppress the change in capacitance. When the amount of the silane coupling agent added to 1 g of the organic modified colloid particles is 0.76 × 10 −3 mol or more, the change in capacitance can be suppressed, and when it is 2.27 × 10 −3 mol or more, the electrostatic capacity can be suppressed. When the change in capacity is drastically suppressed and the amount of the silane coupling agent added to 1 g of the organically modified colloidal particles is 7.57 × 10 −3 mol or more, the case where the organically modified colloidal particles are not added is as follows. It was confirmed that the change in capacitance could be suppressed to the same extent.
 次に、比較例4乃至7及び実施例8乃至9の電解コンデンサの初期の静電容量(Cap)を測定後、150℃の温度環境下で無負荷放置し、各時間経過後に静電容量を測定して静電容量の時間変化を算出した。静電容量の時間変化を表7、図5に示す。表7は、初期の静電容量に対する各時間経過後の変化率(ΔCap(%))を示す表であり、図5は、各々、縦軸がΔCapで横軸が時間のグラフである。尚、ΔCapは、下記式2で算出した。式2中、時間経過後の静電容量とは、110時間経過後、200時間経過後及び300時間経過後の静電容量である。
 (式2)
Figure JPOXMLDOC01-appb-I000011
Next, after measuring the initial capacitance (Cap) of the electrolytic capacitors of Comparative Examples 4 to 7 and Examples 8 and 9, the capacitors were left unloaded under a temperature environment of 150 ° C. The measurement was performed to calculate a change in capacitance with time. Table 7 and FIG. 5 show the time change of the capacitance. Table 7 is a table showing the rate of change (ΔCap (%)) with respect to the initial capacitance after each elapse of time, and FIG. 5 is a graph in which the vertical axis represents ΔCap and the horizontal axis represents time. Note that ΔCap was calculated by the following equation (2). In Equation 2, the capacitance after a lapse of time means the capacitance after a lapse of 110 hours, a lapse of 200 hours, and a lapse of 300 hours.
(Equation 2)
Figure JPOXMLDOC01-appb-I000011
 (表7)
Figure JPOXMLDOC01-appb-I000012
(Table 7)
Figure JPOXMLDOC01-appb-I000012
 表7より、溶質の塩基成分としてジエチルアミンやトリエチルアミンを用いた場合であっても、有機修飾シリカとシランカップリング剤を併用した実施例8乃至9は、実施例1と同様に静電容量の変化を抑制していることが確認された。また、実施例1および実施例8乃至9を対比すると、300時間後のΔCapの値が、実施例1は24.7%、実施例8は4.3%、実施例9は4.3%であった。この結果より、溶質としてアンモニウム塩を用いるよりも、ジエチルアミン塩やトリエチルアミン塩などのアミン塩を用いたほうが静電容量の変化率は小さく、寿命特性が良好であることがわかった。 From Table 7, it can be seen that even when diethylamine or triethylamine was used as the base component of the solute, in Examples 8 and 9 in which organically modified silica and a silane coupling agent were used in combination, the change in capacitance was similar to that in Example 1. Was suppressed. In addition, comparing Example 1 and Examples 8 to 9, the values of ΔCap after 300 hours are 24.7% for Example 1, 4.3% for Example 8, and 4.3% for Example 9. Met. From these results, it was found that the use of an amine salt such as a diethylamine salt or a triethylamine salt resulted in a smaller capacitance change rate and a better life characteristic than the use of an ammonium salt as a solute.

Claims (9)

  1.  溶媒、溶質、有機物で表面修飾した無機酸化物コロイド粒子、及びシランカップリング剤又はシリル化剤を含むこと、
     を特徴とする電解コンデンサ用電解液。
    Including a solvent, a solute, an inorganic oxide colloid particle surface-modified with an organic substance, and a silane coupling agent or a silylating agent,
    An electrolytic solution for electrolytic capacitors, characterized by the following.
  2.  前記シランカップリング剤又は前記シリル化剤は、下記一般式(化1)で表されること、
     を特徴とする請求項1記載の電解コンデンサ用電解液。
    Figure JPOXMLDOC01-appb-C000001
    [式中、Xは、炭素数が1~20のアルキル基、アルケニル基、アリール基またはアラルキル基であり、その水素の一部がカルボキシル基、エステル基、アミド基、シアノ基、ケトン基、ホルミル基、エーテル基、水酸基、アミノ基、メルカプト基、スルフィド基、スルホキシド基、スルホン基、イソシアネート基、ウレイド基、エポキシ基で置換されていてもよい炭化水素基(-R)である。X~Xはアセトキシ基、炭素数1~5のアルコキシ基又はアルキル基であって、X~Xの少なくとも2個以上はアルコキシ基である。]
    The silane coupling agent or the silylating agent is represented by the following general formula (Formula 1);
    The electrolytic solution for an electrolytic capacitor according to claim 1, wherein:
    Figure JPOXMLDOC01-appb-C000001
    [In the formula, X 1 is an alkyl group, an alkenyl group, an aryl group or an aralkyl group having 1 to 20 carbon atoms, and a part of the hydrogen is a carboxyl group, an ester group, an amide group, a cyano group, a ketone group, A hydrocarbon group (-R) which may be substituted with a formyl group, ether group, hydroxyl group, amino group, mercapto group, sulfide group, sulfoxide group, sulfone group, isocyanate group, ureide group, or epoxy group. X 2 to X 4 are an acetoxy group, an alkoxy group having 1 to 5 carbon atoms or an alkyl group, and at least two of X 2 to X 4 are an alkoxy group. ]
  3.  前記一般式(化1)で表されるシリル化剤又はシランカップリング剤は、3-グリシドキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、2-(3,4-エポシキシシクロヘキシル)エチルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、ビニルトリメトキシシラン、p-スチリルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン及び3-グリシドキシプロピルメチルジエトキシシランの群から選ばれる1種以上であること、
     を特徴とする請求項1又は2記載の電解コンデンサ用電解液。
    The silylating agent or silane coupling agent represented by the general formula (Chemical Formula 1) includes 3-glycidoxypropylmethyldimethoxysilane, 3-methacryloxypropyltriethoxysilane, and 2- (3,4-epoxycyclohexyl). ) Ethyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, vinyltrimethoxysilane, p-styryltrimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-isocyanatopropyltriethoxy At least one selected from the group consisting of silane, 3-glycidoxypropyltrimethoxysilane and 3-glycidoxypropylmethyldiethoxysilane;
    The electrolytic solution for an electrolytic capacitor according to claim 1 or 2, wherein:
  4.  前記無機酸化物コロイド粒子はシリカであること、
     を特徴とする請求項1乃至3の何れかに記載の電解コンデンサ用電解液。
    The inorganic oxide colloid particles are silica,
    The electrolytic solution for an electrolytic capacitor according to any one of claims 1 to 3, wherein
  5.  前記シランカップリング剤又は前記シリル化剤の前記溶媒に対する添加量が0.05以上0.40mol/kg以下であること、
     を特徴とする請求項1乃至4の何れかに記載の電解コンデンサ用電解液。
    The amount of the silane coupling agent or the silylating agent added to the solvent is 0.05 to 0.40 mol / kg,
    The electrolytic solution for an electrolytic capacitor according to any one of claims 1 to 4, wherein
  6.  前記有機物で表面修飾した無機酸化物コロイド粒子1gに対する前記シランカップリング剤又は前記シリル化剤の添加量は、0.76×10-3mol以上であること、
     を特徴とする請求項1乃至5の何れかに記載の電解コンデンサ用電解液。
    The amount of the silane coupling agent or the silylating agent added to 1 g of the inorganic oxide colloid particles surface-modified with the organic substance is 0.76 × 10 −3 mol or more,
    The electrolytic solution for an electrolytic capacitor according to any one of claims 1 to 5, wherein
  7.  前記溶媒は、主としてエチレングリコールを含むこと、
     を特徴とする請求項1乃至6記載の何れかに記載の電解コンデンサ用電解液。
     
    The solvent mainly contains ethylene glycol,
    The electrolytic solution for an electrolytic capacitor according to any one of claims 1 to 6, wherein:
  8.  請求項1乃至7の何れかに記載の電解コンデンサ用電解液を備えること、
     を特徴とする電解コンデンサ。
    An electrolytic solution for an electrolytic capacitor according to any one of claims 1 to 7,
    An electrolytic capacitor characterized by the following:
  9.  一対の電極箔を備え、
     前記シランカップリング剤又は前記シリル化剤の一部は、前記電極箔の表面に存在し、
     前記有機物で表面修飾した無機酸化物コロイド粒子の一部は、前記電極箔の表面に存在する前記シランカップリング剤又は前記シリル化剤を介して前記電極箔に近接していること、
     を特徴とする請求項8記載の電解コンデンサ。
    Equipped with a pair of electrode foils,
    Part of the silane coupling agent or the silylating agent is present on the surface of the electrode foil,
    Part of the inorganic oxide colloid particles surface-modified with the organic substance is close to the electrode foil via the silane coupling agent or the silylating agent present on the surface of the electrode foil,
    The electrolytic capacitor according to claim 8, wherein:
PCT/JP2019/029822 2018-08-01 2019-07-30 Electrolytic solution for electrolytic capacitor, and electrolytic capacitor WO2020027124A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020534669A JP7384161B2 (en) 2018-08-01 2019-07-30 Electrolyte for electrolytic capacitors and electrolytic capacitors
KR1020207034982A KR102603990B1 (en) 2018-08-01 2019-07-30 Electrolyte and electrolytic capacitor for electrolytic capacitors
CN201980044891.1A CN112385008B (en) 2018-08-01 2019-07-30 Electrolytic solution for electrolytic capacitor and electrolytic capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018145466 2018-08-01
JP2018-145466 2018-08-01

Publications (1)

Publication Number Publication Date
WO2020027124A1 true WO2020027124A1 (en) 2020-02-06

Family

ID=69231888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029822 WO2020027124A1 (en) 2018-08-01 2019-07-30 Electrolytic solution for electrolytic capacitor, and electrolytic capacitor

Country Status (4)

Country Link
JP (1) JP7384161B2 (en)
KR (1) KR102603990B1 (en)
CN (1) CN112385008B (en)
WO (1) WO2020027124A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113539689A (en) * 2020-04-15 2021-10-22 深圳新宙邦科技股份有限公司 Silica lactone sol, preparation method and electrolyte for aluminum electrolytic capacitor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113388870B (en) * 2021-06-11 2022-03-11 东莞天正新材料有限公司 Composite plating solution and preparation method thereof, electroplating method and plating layer formed by electroplating method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03257811A (en) * 1990-03-07 1991-11-18 Rubycon Corp Electrolyte for driving electrolytic capacitor
JP2003203827A (en) * 2003-02-12 2003-07-18 Nippon Chemicon Corp Electrolytic solution for electrolytic capacitor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3669804B2 (en) 1997-03-03 2005-07-13 日本ケミコン株式会社 Electrolytic solution for electrolytic capacitors
CN107845504B (en) * 2016-09-19 2020-07-24 深圳新宙邦科技股份有限公司 Electrolyte for aluminum electrolytic capacitor and aluminum electrolytic capacitor using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03257811A (en) * 1990-03-07 1991-11-18 Rubycon Corp Electrolyte for driving electrolytic capacitor
JP2003203827A (en) * 2003-02-12 2003-07-18 Nippon Chemicon Corp Electrolytic solution for electrolytic capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113539689A (en) * 2020-04-15 2021-10-22 深圳新宙邦科技股份有限公司 Silica lactone sol, preparation method and electrolyte for aluminum electrolytic capacitor
CN113539689B (en) * 2020-04-15 2023-04-18 深圳新宙邦科技股份有限公司 Silica lactone sol, preparation method and electrolyte for aluminum electrolytic capacitor

Also Published As

Publication number Publication date
CN112385008B (en) 2023-03-28
KR102603990B1 (en) 2023-11-17
KR20210031639A (en) 2021-03-22
TW202008404A (en) 2020-02-16
JPWO2020027124A1 (en) 2021-08-10
JP7384161B2 (en) 2023-11-21
CN112385008A (en) 2021-02-19

Similar Documents

Publication Publication Date Title
KR102655553B1 (en) Electrode body, electrolytic capacitor having electrode body, and method for manufacturing the electrode body
US20160240323A1 (en) Hybrid Capacitor with Enhanced Reliability
WO2020027124A1 (en) Electrolytic solution for electrolytic capacitor, and electrolytic capacitor
TWI762559B (en) Electrolytic solution for electrolytic capacitor, electrolytic capacitor, and method for producing electrolytic capacitor
JP2012191127A (en) Method for manufacturing electrolytic capacitor
JP2016100602A (en) Hermetically sealed capacitor for implantable medical device
JP2010050492A (en) Aluminum electrolytic capacitor
JP3669804B2 (en) Electrolytic solution for electrolytic capacitors
JP2022105154A (en) Electrolytic capacitor
JP2015050237A (en) Electrolyte capacitor, and method for manufacturing the same
JP6403006B2 (en) Electrolytic solution for electrolytic capacitor and electrolytic capacitor
TWI838391B (en) Electrolyte for electrolytic capacitor and electrolytic capacitor
CN113795899A (en) Electrode body, electrolytic capacitor provided with electrode body, and method for manufacturing electrode body
JP4128465B2 (en) Electrolytic solution for electrolytic capacitors
JP2007134524A (en) Electrolytic solution for drive of electrolytic capacitor, and electrolytic capacitor using the same
JPWO2019194092A1 (en) Electrolytic capacitor
TW201921396A (en) Solid electrolytic capacitor
JP2023097332A (en) Electrolyte for electrolytic capacitor and electrolytic capacitor
JP2011108675A (en) Electrolyte for electrolytic capacitor and the electrolytic capacitor
JP2008091371A (en) Electrolytic capacitor and its manufacturing method
JP2021163864A (en) Electrolytic capacitor and power converter
JP4983072B2 (en) Electrolytic capacitor
JP2007273926A (en) Electrolytic capacitor
JP2009267338A (en) Electrode body, and electric double layer capacitor
JP2004186239A (en) Electrolyte for driving electrolytic capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19844080

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020534669

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19844080

Country of ref document: EP

Kind code of ref document: A1