WO2020026596A1 - Braking control system - Google Patents

Braking control system Download PDF

Info

Publication number
WO2020026596A1
WO2020026596A1 PCT/JP2019/023007 JP2019023007W WO2020026596A1 WO 2020026596 A1 WO2020026596 A1 WO 2020026596A1 JP 2019023007 W JP2019023007 W JP 2019023007W WO 2020026596 A1 WO2020026596 A1 WO 2020026596A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
collision
control
detection unit
braking
Prior art date
Application number
PCT/JP2019/023007
Other languages
French (fr)
Japanese (ja)
Inventor
スーウイン インヅューラ アマラシンフ
ラクシットクリシュナ シェティ
Original Assignee
ダイムラー・アクチェンゲゼルシャフト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイムラー・アクチェンゲゼルシャフト filed Critical ダイムラー・アクチェンゲゼルシャフト
Publication of WO2020026596A1 publication Critical patent/WO2020026596A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0136Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to actual contact with an obstacle, e.g. to vehicle deformation, bumper displacement or bumper velocity relative to the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • B60T7/22Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger initiated by contact of vehicle, e.g. bumper, with an external object, e.g. another vehicle, or by means of contactless obstacle detectors mounted on the vehicle

Definitions

  • the present invention relates to a braking control system for controlling a vehicle brake.
  • Safety devices such as collision damage mitigation brakes currently installed in vehicles are configured so that automatic braking is activated in response to objects detected by sensors and cameras. Such a safety device operates when a predetermined condition is satisfied.
  • conditions applied from the viewpoint of suppressing a malfunction are limited, and even when an automatic brake is operated, an accelerator operation by a driver or the like is not performed. In some cases, override control for releasing the automatic brake is performed, so that the driver's operation is prioritized.
  • the present invention has been made in view of such a situation, and an object of the present invention is to provide a braking control system that suppresses further increase in damage after a collision accident occurs.
  • a first aspect of the present invention is an object detection unit that detects an object around a vehicle, a collision detection unit that detects a collision of the vehicle, and based on detection information of the object detection unit and the collision detection unit, A control unit that controls a braking force of the vehicle, wherein the control unit detects, after the collision detection unit detects a collision, information from the object detection unit, when a further collision is predicted.
  • a braking control system that performs control to automatically generate a braking force to avoid collision in the vehicle, and performs control to automatically generate a braking force to gradually decelerate the vehicle when a collision is not predicted.
  • the braking control system predicts the possibility of a further collision by monitoring surrounding objects by the object detection unit. Then, when there is a possibility of a re-collision, the braking control system performs control to automatically generate a braking force to avoid a collision, for example, by stopping the vehicle immediately. Performs control to gradually decelerate the vehicle.
  • the braking control system reduces the risk of a second collision occurring after the occurrence of a collision accident, and reduces the impact on the driver and other occupants when the second collision can be avoided. Can be safely decelerated, and secondary damage after a collision accident occurs can be suppressed.
  • the control unit performs a control for automatically generating a braking force on the vehicle and sets a safe mode in which a maximum speed of the vehicle is limited.
  • a braking control system that shifts to a safe mode that limits a maximum speed of the vehicle.
  • the braking control system detects the collision of the vehicle, decelerates the vehicle, and sets an upper limit on the traveling speed of the vehicle so that the vehicle speed cannot be accelerated to a speed that may cause a collision accident again. Restrict.
  • the braking control system can perform emergency evacuation to a safe place by controlling at least slowing down even if the vehicle stops in a dangerous place by control after the occurrence of a collision accident. it can.
  • the braking control system can reduce the possibility of secondary damage such as a rear-end collision caused by a following vehicle, while suppressing re-collision after the occurrence of a collision accident.
  • a fourth aspect of the present invention is the brake control system according to the second aspect of the present invention, wherein the control unit cancels the safe mode when the safety of the vehicle is confirmed by communication with the outside of the vehicle. It is.
  • the braking control system reduces the possibility of secondary damage by shifting to a safe mode in which the maximum speed of the vehicle is limited after the occurrence of a collision accident.
  • the safety of the vehicle is confirmed by the data center that manages the vehicle
  • the braking control system does not permit the safe mode to be released only by the judgment of the driver of the vehicle, so that, for example, even if a malicious driver attempts to escape after a collision, the escape can be prevented.
  • the data center can grasp the occurrence of the accident of the managed vehicle.
  • ⁇ Fifth aspect of the present invention in any one of the first to fourth aspects of the present invention described above, when the control unit performs control for generating a braking force for automatically avoiding a collision in the vehicle, This is a braking control system that performs control to issue a warning around the vehicle.
  • the braking control system After a collision accident occurs, if there is a possibility of a re-collision, the braking control system issues a warning to the surroundings while performing control to avoid the collision, and provides a warning to pedestrians and other vehicles in the vicinity. To encourage evacuation behavior, further reducing the possibility of a re-collision.
  • the control unit performs automatic deceleration control for automatically decelerating the vehicle when a collision is predicted.
  • an override control for canceling the automatic deceleration control is performed, and after the collision detection unit detects a collision, the override control is invalidated. It is a control system.
  • the brake control system performs automatic deceleration control for automatically decelerating the vehicle when it is predicted that there is a possibility of collision with the vehicle, and performs a predetermined operation such as accelerator operation by a driver during the operation of the automatic deceleration control.
  • a predetermined operation such as accelerator operation by a driver during the operation of the automatic deceleration control.
  • the automatic deceleration control is released by the override control.
  • the driver's driving operation is prioritized by a predetermined operation during the operation of the automatic deceleration control so that the automatic deceleration control can be canceled.
  • the braking control system disables the override control so that the driver performs a predetermined operation during the automatic deceleration control, for example, when the driver accidentally steps on the accelerator.
  • a predetermined operation for example, when the driver accidentally steps on the accelerator.
  • FIG. 1 is a system configuration diagram of a vehicle including a braking control system according to the present invention.
  • 4 is a flowchart of automatic braking control according to the present invention.
  • FIG. 4 is a schematic diagram schematically illustrating an example of a state in which an object detection unit of a vehicle monitors surroundings.
  • FIG. 3 is a schematic diagram schematically illustrating an example of a state in which a collision detection unit of a vehicle has detected a collision.
  • FIG. 7 is a schematic diagram schematically illustrating an example of a state in which an object detection unit predicts a re-collision after a collision detection unit detects a collision.
  • FIG. 9 is a schematic diagram schematically illustrating an example of a state in which a re-collision is not predicted in the object detection unit after the collision detection unit detects a collision.
  • FIG. 1 is a system configuration diagram of a vehicle 1 including a braking control system according to the present invention.
  • the vehicle 1 is configured as an engine truck, but may be an electric truck including an electric motor (motor) or a hybrid truck including both an internal combustion engine and an electric motor. Further, the vehicle 1 is not limited to a truck, and may be another type of vehicle such as a bus or a work vehicle.
  • the vehicle 1 includes the traveling drive system 10, the traveling operation system 20, the peripheral device 30 for automatic braking, and the vehicle ECU 40 as a “control unit”.
  • the vehicle 1 appropriately includes components (not shown) included in the conventional truck in addition to the above configuration.
  • the traveling drive system 10 includes an engine 11, a clutch 12, a transmission 13, a propeller shaft 14, a differential device 15, a drive shaft 16, a drive wheel 17, a brake device 18, and an engine ECU 19.
  • the clutch 12 is connected to the output shaft of the engine 11, and the input side of the transmission 13 is connected to the clutch 12.
  • a differential device 15 is connected to an output side of the transmission 13 via a propeller shaft 14, and left and right drive wheels 17 are connected to the differential device 15 via a drive shaft 16. Then, the driving force generated by the engine 11 is transmitted to a pair of driving wheels 17 after being shifted by the transmission 13 to cause the vehicle 1 to travel.
  • the brake device 18 generates a braking force for decelerating the vehicle 1 when the driver of the vehicle 1 performs a brake operation. Further, when automatic braking control, which will be described in detail later, is performed, the braking device 18 generates a braking force for decelerating the vehicle 1 based on control from the vehicle ECU 40 without the driver performing a braking operation. Let it.
  • the engine ECU 19 receives an accelerator operation by the driver of the vehicle 1 and a torque command value from the vehicle ECU 40, generates a driving force for the engine 11 with respect to the positive torque command value, and changes the torque to a negative torque command value. On the other hand, an engine brake is generated.
  • the traveling operation system 20 includes an accelerator pedal 21, an accelerator sensor 22, a brake pedal 23, and a brake switch 24.
  • the accelerator sensor 22 detects the operation amount of the accelerator pedal 21 and transmits the detected operation amount to the vehicle ECU 40 described later.
  • the vehicle ECU 40 calculates a required torque based on the accelerator operation amount and the like, and controls the engine 11 via the engine ECU 19, thereby controlling the vehicle 1 at an acceleration corresponding to the driver's depression operation on the accelerator pedal 21. Accelerate.
  • the brake switch 24 detects the operation amount of the brake pedal 23 and transmits the detected operation amount to the vehicle ECU 40.
  • the vehicle ECU 40 controls the brake device 18 based on the brake operation amount and the like, thereby decelerating the vehicle 1 at a negative acceleration corresponding to the driver's depression operation on the brake pedal 23.
  • the automatic braking peripheral device 30 includes an object detection unit 31, a collision detection unit 32, a warning output unit 33, and a communication unit 34.
  • the object detection unit 31 is a sensor that detects an object around the vehicle 1, and is, for example, a so-called fusion sensor including a camera and a radar in the present embodiment.
  • the object detection unit 31 is used to monitor obstacles around the vehicle 1 such as pedestrians, other vehicles, guardrails, and buildings, and particularly to detect an object that may collide in front of the vehicle 1. You.
  • the object detection unit 31 may appropriately include a sensor that monitors the rear of the vehicle 1, and may detect a following vehicle that may be hit by a collision.
  • the collision detection unit 32 is a sensor that detects a collision between the vehicle 1 and another object, and is installed on a front bumper of the vehicle 1.
  • the collision detection unit 32 can be configured by, for example, stretching a rubber tube provided with a pressure sensor around a front bumper, and measuring the internal pressure of the rubber tube deformed by the pressure received by contact with the object to thereby collide with the object. Can be detected.
  • the sensor for detecting the collision of the vehicle 1 is not limited to the mode illustrated here, and various changes can be made.
  • the warning output unit 33 is a device for notifying the vicinity of the vehicle 1 of danger by emitting a sound or light in an emergency.
  • the warning output unit 33 may be, for example, a headlight or a horn mounted on a conventional automobile. In this case, the headlight is continuously blinked or the horn is continuously sounded. It urges pedestrians and other vehicles around the vehicle 1 to perform an evacuation action.
  • the communication unit 34 is a wireless communication terminal for establishing two-way communication and communication with a data center that manages the vehicle 1 like so-called telematics. Further, the communication unit 34 may communicate with the outside of the vehicle via a roadside communication system or the like that is appropriately installed on the roadside.
  • FIG. 2 is a flowchart of the automatic braking control according to the present invention. More specifically, FIG. 2 shows the automatic braking control of the vehicle 1 executed mainly by the vehicle ECU 40, and is a control procedure executed in parallel with the driving operation by the driver during the operation of the vehicle 1.
  • the vehicle ECU 40 monitors the periphery of the vehicle 1 with a camera and a radar serving as the object detection unit 31, and determines a collision between the detected object and the vehicle based on the relative arrangement of the detected object and the vehicle speed and the like. It is determined whether there is a feared object (step S1).
  • FIG. 3 is a schematic diagram schematically illustrating an example of a state where the object detection unit 31 of the vehicle 1 monitors the surroundings.
  • the vehicle 1 detects the first pedestrian P1 as a surrounding object in the detection area Ac of the camera and the detection area Ar of the radar by the object detection unit 31.
  • the surrounding objects are not limited to pedestrians, but refer to any obstacles that can collide with the vehicle 1.
  • Vehicle ECU 40 continues to monitor the surroundings as long as no object that may cause a collision is detected (No in step S1). That is, the vehicle ECU 40 continues to give priority to the driving operation of the driver when the surrounding object is not detected, or when the possibility of collision is low even if it is detected.
  • step S2 when it is predicted that there is a possibility of collision in monitoring the vicinity of the vehicle 1 (Yes in step S1), the vehicle ECU 40 performs automatic deceleration control to reduce the collision risk (step S2). That is, even when the operation of the brake pedal 23 by the driver is not detected, the vehicle ECU 40 causes the brake device 18 to generate a braking force and automatically decelerate the vehicle 1 by executing the automatic deceleration control.
  • the vehicle ECU 40 determines whether or not the collision detection unit 32 detects a collision between the vehicle 1 and an object (Step S3).
  • the vehicle ECU 40 permits the vehicle 1 to continue running by returning to the state of step S1.
  • the vehicle ECU 40 is in a state where the automatic brake based on the automatic deceleration control has been activated in step S2.
  • the override is performed.
  • the predetermined operation may include, in addition, switch-off of the automatic deceleration control itself by the driver, operation of a steering wheel for collision avoidance, operation of a direction indicator, and the like.
  • Step S4 when the automatic braking based on the automatic deceleration control is activated, or the automatic braking based on the automatic deceleration control is released by the override control, and the collision detection unit 32 detects the collision of the vehicle 1. (Yes in Step S3), the vehicle ECU 40 disables the override control to prohibit the release of the automatic brake based on the automatic deceleration control (Step S4).
  • FIG. 4 is a schematic diagram schematically illustrating an example of a state in which the collision detection unit 32 of the vehicle 1 has detected a collision.
  • the vehicle ECU 40 assumes that the collision detection unit 32 provided in the front bumper of the vehicle 1 has detected contact with the first pedestrian P1. However, the collision detection unit 32 does not have to identify whether or not the collision target is a person.
  • step S5 if a re-collision of the vehicle 1 is predicted (Yes in step S5), the vehicle ECU 40 automatically avoids the collision by, for example, immediately stopping the vehicle 1 to avoid the re-collision. Control for generating power is performed (step S6).
  • FIG. 5 is a schematic diagram schematically illustrating an example of a state in which the object detection unit 31 predicts a re-collision after the collision detection unit 32 detects a collision. More specifically, in the state of FIG. 5, the collision detection unit 32 detects that the vehicle 1 has collided with the first pedestrian P1, and at this time, the second pedestrian P2 in front of the vehicle 1 The object detection unit 31 detects the fourth to fourth pedestrians P4 as objects for which re-collision is predicted.
  • the vehicle ECU 40 In such a state, the vehicle ECU 40 generates a relatively strong braking force on the brake device 18 and stops the vehicle 1 as soon as possible to avoid collision with an object. In addition, the vehicle ECU 40 issues a warning around the vehicle 1 via the warning output unit 33, and urges the pedestrian and other vehicles to perform an evacuation action (step S7). Thereby, the vehicle 1 can reduce the possibility of causing a collision accident again after colliding with the object. Steps S6 and S7 may be performed at the same time, or one of them may be performed first.
  • step S5 when it is expected that the possibility of re-collision of the vehicle 1 is low (No in step S5), the vehicle ECU 40 generates a relatively weak braking force on the brake device 18 and automatically controls the vehicle 1 The speed is gradually reduced (step S8). The vehicle 1 will eventually stop unless the accelerator operation by the driver is continued.
  • FIG. 6 is a schematic diagram schematically illustrating an example of a state in which a re-collision is not predicted in the object detection unit 31 after the collision detection unit 32 detects a collision. More specifically, in the state of FIG. 6, the collision detection unit 32 detects that the vehicle 1 has collided with the first pedestrian P ⁇ b> 1. No object is detected.
  • the vehicle ECU 40 can cause the vehicle 1 to slow down while suppressing rapid deceleration by generating a relatively weak braking force on the brake device 18, and can also stop the vehicle.
  • the vehicle 1 can move to a place where there is no risk of being hit by a following vehicle, and can reduce the impact force on a driver or another occupant due to so-called sudden braking.
  • the vehicle ECU 40 shifts to a safe mode in which the maximum speed of the vehicle 1 is limited (step S9).
  • the safe mode permits the vehicle 1 to move slowly after a collision, and in the present embodiment, the vehicle speed is suppressed to, for example, 5 km / h or less. Thereby, the vehicle 1 can reduce the possibility that a new collision accident will occur after the collision with the object. Further, even if the vehicle 1 is stopped in a dangerous state by the automatic brake operated in step S6 or step S8, emergency evacuation to a safe place at low speed can be performed. Further, there is also an effect of suppressing escape of a malicious driver.
  • the vehicle 1 may be gradually decelerated in step S8 and then stopped, and then may be shifted to the safe mode in step S9.
  • the process may directly shift to the safe mode in step S9.
  • the mode may be shifted to the safe mode with the detection of the collision of the vehicle 1 as a trigger.
  • the vehicle ECU 40 communicates with or communicates with the data center that manages the vehicle 1 via the communication unit 34, and confirms safety by, for example, collecting data on the accident situation of the vehicle 1 by an operator of the data center. (Step S10). Then, the operator sends the vehicle 1 from the data center to the vehicle 1 on the condition that the safety is confirmed, for example, when the collision of the vehicle 1 is an objective accident and is minor, or when the collision detection itself is erroneously recognized. A safe mode release signal is transmitted to the communication unit 34 (Yes in step S10). In addition, while communication unit 34 does not receive the release signal, vehicle ECU 40 suspends release of the safe mode (No in step S10).
  • step S9 the vehicle ECU 40 releases the safe mode executed in step S9 (step S11), and ends a series of automatic braking control procedures.
  • the release of the safe mode does not necessarily have to be performed by communication via the communication unit 34, and may be automatically performed, for example, a predetermined time after the shift to the safe mode.
  • the vehicle ECU 40 may be configured to include, for example, a timer (not shown) so as to be automatically released, for example, 10 minutes after the shift to the safe mode.
  • the braking control system monitors the surrounding objects by the object detection unit 31 when the collision detection unit 32 detects the collision of the vehicle 1, thereby further increasing the possibility of a collision. Predict. Then, the braking control system performs control to stop the vehicle 1 immediately when there is a possibility of re-collision, and performs control to gradually decelerate the vehicle 1 when there is no possibility of re-collision. As a result, the braking control system according to the present invention reduces the risk of a second collision occurring after the occurrence of a collision accident, and reduces the impact on the driver and other occupants when the second collision can be avoided. It is possible to safely slow down or stop the vehicle 1 and to suppress the spread of damage after a collision accident occurs.
  • the present invention is not limited to the above embodiment.
  • the mode is described in which the automatic deceleration control is performed based on the detection information of the object detection unit 31 even before the collision detection unit 32 detects a collision.
  • automatic braking control after a collision may be performed. That is, in this case, the braking control system executes the automatic braking control from step S3 in the flowchart of FIG.
  • the braking control system according to the present invention performs the automatic braking control after step S3 in the flowchart of FIG. 2 even if the prediction of the collision fails after performing the collision prediction before the collision. be able to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Regulating Braking Force (AREA)

Abstract

[Problem] To provide a braking control system that limits any further occurrence of damage after a collision accident has occurred. [Solution] A braking control system comprises: an object detection unit 31 that detects an object in the surroundings of a vehicle 1; a collision detection unit 32 that detects a collision of the vehicle 1; and a vehicle ECU 40 that controls the braking force of the vehicle 1 on the basis of the detection information from the object detection unit 31 and the collision detection unit 32. After the collision detection unit 32 has detected a collision, the vehicle ECU 40 performs a control that generates braking force to automatically cause the vehicle 1 to avoid collision when further collision is predicted, and performs a control that generates braking force to gradually reduce the speed of the vehicle 1 automatically when collision is not predicted.

Description

制動制御システムBraking control system
 本発明は、車両のブレーキを制御する制動制御システムに関する。 The present invention relates to a braking control system for controlling a vehicle brake.
 現在車両に搭載されている衝突被害軽減ブレーキ等の安全装置は、センサやカメラによって検出された物体に反応して自動ブレーキが作動するように構成されている。このような安全装置は、所定の条件を満たせば作動するが、誤作動を抑止する観点から適用される条件には制限が設けられ、また、自動ブレーキが作動してもドライバによるアクセル操作等があれば当該自動ブレーキを解除するオーバライド制御が行われることにより、ドライバ操作を優先するよう構成されている場合がある。 安全 Safety devices such as collision damage mitigation brakes currently installed in vehicles are configured so that automatic braking is activated in response to objects detected by sensors and cameras. Such a safety device operates when a predetermined condition is satisfied. However, conditions applied from the viewpoint of suppressing a malfunction are limited, and even when an automatic brake is operated, an accelerator operation by a driver or the like is not performed. In some cases, override control for releasing the automatic brake is performed, so that the driver's operation is prioritized.
 上記のような衝突被害軽減ブレーキ等の安全装置は、自動ブレーキの作動中においてドライバが誤ってアクセルを踏んでしまったときには、ドライバの意図に反して自動ブレーキの作動がオーバライドされてしまうことがある。この場合、車両は、たとえ人や物体との衝突が起こった後でさえも走行が継続されることになり、路上の負傷者を巻き込む可能性や、悪意のあるドライバに逃走を許してしまう可能性がある。このような問題への対策として、例えば特許文献1に開示された従来技術では、車両が物体に衝突したことを検知した場合には自動的に外部機関に通報すると共に、当該通報が完了するまではブレーキの作動状態を保持するよう構成されている。 In the safety devices such as the collision damage reduction brake described above, when the driver accidentally steps on the accelerator during the operation of the automatic brake, the operation of the automatic brake may be overridden against the driver's intention. . In this case, the vehicle will continue to run even after a collision with a person or object has occurred, potentially involving injured people on the road and allowing a malicious driver to escape. There is. As a countermeasure against such a problem, for example, in the related art disclosed in Patent Literature 1, when it is detected that the vehicle has collided with an object, the vehicle automatically notifies an external institution and waits until the notification is completed. Is configured to maintain the operating state of the brake.
国際公開第2016/152178号International Publication No. WO 2016/152178
 しかしながら、上記のような従来技術では、車両が物体に衝突した場合には無条件で車両を停止させるため、衝突後に路上に留まることにより後続車による新たな追突事故が発生する虞が生じる。 However, according to the above-described related art, when the vehicle collides with an object, the vehicle is unconditionally stopped. Therefore, if the vehicle stays on the road after the collision, a rear-end collision may occur due to a following vehicle.
 本発明は、このような状況に鑑みてなされたものであり、その目的とするところは、衝突事故が発生した後に更なる被害の拡大を抑制する制動制御システムを提供することにある。 The present invention has been made in view of such a situation, and an object of the present invention is to provide a braking control system that suppresses further increase in damage after a collision accident occurs.
<本発明の第1の態様>
 本発明の第1の態様は、車両の周辺の物体を検知する物体検知部と、前記車両の衝突を検知する衝突検知部と、前記物体検知部及び前記衝突検知部の検知情報に基づいて、前記車両の制動力を制御する制御部と、を備え、前記制御部は、前記衝突検知部が衝突を検知した後に、前記物体検知部からの情報により、更なる衝突が予測される場合には前記車両に自動で衝突を回避させる制動力を発生させる制御を行い、衝突が予測されない場合には前記車両を自動で徐々に減速させる制動力を発生させる制御を行う、制動制御システムである。
<First embodiment of the present invention>
A first aspect of the present invention is an object detection unit that detects an object around a vehicle, a collision detection unit that detects a collision of the vehicle, and based on detection information of the object detection unit and the collision detection unit, A control unit that controls a braking force of the vehicle, wherein the control unit detects, after the collision detection unit detects a collision, information from the object detection unit, when a further collision is predicted. A braking control system that performs control to automatically generate a braking force to avoid collision in the vehicle, and performs control to automatically generate a braking force to gradually decelerate the vehicle when a collision is not predicted.
 制動制御システムは、衝突検知部において車両の衝突が検知された場合に、物体検知部により周辺の物体を監視することで、更なる衝突の可能性を予測する。そして、制動制御システムは、再衝突の可能性がある場合には、例えば直ちに車両を停車させるなど、自動で衝突を回避させる制動力を発生させる制御を行い、再衝突の可能性がない場合には徐々に車両を減速させる制御を行う。これにより、本発明に係る制動制御システムは、衝突事故の発生後において再度の衝突が発生する虞を低減しつつ、再衝突を回避できる場合にはドライバ及び他の乗員に対する衝撃を緩和しながら車両を安全に減速させることができ、衝突事故が発生した後の二次被害を抑制することができる。 (4) When a collision of a vehicle is detected by the collision detection unit, the braking control system predicts the possibility of a further collision by monitoring surrounding objects by the object detection unit. Then, when there is a possibility of a re-collision, the braking control system performs control to automatically generate a braking force to avoid a collision, for example, by stopping the vehicle immediately. Performs control to gradually decelerate the vehicle. As a result, the braking control system according to the present invention reduces the risk of a second collision occurring after the occurrence of a collision accident, and reduces the impact on the driver and other occupants when the second collision can be avoided. Can be safely decelerated, and secondary damage after a collision accident occurs can be suppressed.
<本発明の第2の態様>
 本発明の第2の態様は、上記した本発明の第1の態様において、前記制御部は、前記車両に自動で制動力を発生させる制御を行うと共に、前記車両の最大速度を制限するセーフモードに移行する、前記車両の最大速度を制限するセーフモードに移行する、制動制御システムである。
<Second embodiment of the present invention>
According to a second aspect of the present invention, in the above-described first aspect of the present invention, the control unit performs a control for automatically generating a braking force on the vehicle and sets a safe mode in which a maximum speed of the vehicle is limited. A braking control system that shifts to a safe mode that limits a maximum speed of the vehicle.
 制動制御システムは、車両の衝突を検知して当該車両を減速させると共に、車両の走行速度に上限を設けることによって、再び衝突事故を起こす可能性があるような速度にまで加速できないように車速を制限する。また、制動制御システムは、衝突事故の発生後の制御により、万が一危険な場所で停車した場合であっても、少なくとも徐行による移動を許可することにより、安全な場所への緊急避難を行うことができる。これにより、制動制御システムは、衝突事故の発生後における再衝突を抑制しつつ、例えば後続車による追突などの二次被害の可能性をも低減することができる。 The braking control system detects the collision of the vehicle, decelerates the vehicle, and sets an upper limit on the traveling speed of the vehicle so that the vehicle speed cannot be accelerated to a speed that may cause a collision accident again. Restrict. In addition, the braking control system can perform emergency evacuation to a safe place by controlling at least slowing down even if the vehicle stops in a dangerous place by control after the occurrence of a collision accident. it can. Thus, the braking control system can reduce the possibility of secondary damage such as a rear-end collision caused by a following vehicle, while suppressing re-collision after the occurrence of a collision accident.
<本発明の第3の態様>
 本発明の第3の態様は、上記した本発明の第2の態様において、前記制御部は、前記セーフモードに移行してから所定時間後に前記セーフモードを解除する、制動制御システムである。
<Third embodiment of the present invention>
A third aspect of the present invention is the braking control system according to the above-described second aspect of the present invention, wherein the control unit cancels the safe mode a predetermined time after the shift to the safe mode.
 制動制御システムは、衝突事故の発生後において、車両の最大速度が制限されるセーフモードに移行することで二次被害の可能性を低減し、安全を確保するための時間が経過した後に当該セーフモードを自動的に解除する。これにより、制動制御システムは、衝突事故の発生後における事故処理が完了した後に、セーフモードを解除するための操作を不要とすることができる。 After the occurrence of a collision accident, the braking control system reduces the possibility of secondary damage by shifting to the safe mode in which the maximum speed of the vehicle is limited, and switches to the safe mode after the time for ensuring safety has elapsed. Cancel automatically. Thus, the braking control system can eliminate the need for an operation for canceling the safe mode after the accident processing after the occurrence of the collision accident is completed.
<本発明の第4の態様>
 本発明の第4の態様は、上記した本発明の第2の態様において、前記制御部は、車両外部との通信により前記車両の安全を確認した場合に、前記セーフモードを解除する、制動制御システムである。
<Fourth aspect of the present invention>
A fourth aspect of the present invention is the brake control system according to the second aspect of the present invention, wherein the control unit cancels the safe mode when the safety of the vehicle is confirmed by communication with the outside of the vehicle. It is.
 制動制御システムは、衝突事故の発生後において、車両の最大速度が制限されるセーフモードに移行することで二次被害の可能性を低減し、例えば車両を管理するデータセンタにより当該車両の安全が確認されたことを条件として、セーフモードの解除を許可してもらう構成としてもよい。これにより、制動制御システムは、車両のドライバの判断だけではセーフモードの解除を許可しないため、例えば、悪意のあるドライバが衝突後に逃走を図ろうとした場合であっても、逃走を阻止することができる。また、データセンタは、管理対象の車両の事故発生を把握することができる。 The braking control system reduces the possibility of secondary damage by shifting to a safe mode in which the maximum speed of the vehicle is limited after the occurrence of a collision accident. For example, the safety of the vehicle is confirmed by the data center that manages the vehicle It is also possible to have a configuration in which the cancellation of the safe mode is permitted on condition that the operation is performed. Thus, the braking control system does not permit the safe mode to be released only by the judgment of the driver of the vehicle, so that, for example, even if a malicious driver attempts to escape after a collision, the escape can be prevented. . Further, the data center can grasp the occurrence of the accident of the managed vehicle.
<本発明の第5の態様>
 本発明の第5の態様は、上記した本発明の第1乃至4のいずれかの態様において、前記制御部は、前記車両に自動で衝突を回避させる制動力を発生させる制御を行う場合に、前記車両の周辺に警告を発する制御を行う、制動制御システムである。
<Fifth aspect of the present invention>
According to a fifth aspect of the present invention, in any one of the first to fourth aspects of the present invention described above, when the control unit performs control for generating a braking force for automatically avoiding a collision in the vehicle, This is a braking control system that performs control to issue a warning around the vehicle.
 制動制御システムは、衝突事故の発生後において、再衝突の可能性がある場合には、衝突を回避するための制御を行いながら周辺に警告を発することで、周辺の歩行者及び他車両に対して退避行動を促し、再衝突の可能性をさらに低減することができる。 After a collision accident occurs, if there is a possibility of a re-collision, the braking control system issues a warning to the surroundings while performing control to avoid the collision, and provides a warning to pedestrians and other vehicles in the vicinity. To encourage evacuation behavior, further reducing the possibility of a re-collision.
<本発明の第6の態様>
 本発明の第6の態様は、上記した本発明の第1乃至5のいずれかの態様において、前記制御部は、衝突が予測される場合に前記車両を自動的に減速させる自動減速制御を行うと共に、前記車両にドライバによる所定の操作が行われた場合には前記自動減速制御を解除するオーバライド制御を行い、前記衝突検知部が衝突を検知した後においては前記オーバライド制御を無効化する、制動制御システムである。
<Sixth aspect of the present invention>
According to a sixth aspect of the present invention, in any one of the first to fifth aspects of the present invention, the control unit performs automatic deceleration control for automatically decelerating the vehicle when a collision is predicted. In addition, when a predetermined operation is performed by the driver on the vehicle, an override control for canceling the automatic deceleration control is performed, and after the collision detection unit detects a collision, the override control is invalidated. It is a control system.
 制動制御システムは、車両に衝突の可能性があると予測される場合には当該車両を自動的に減速させる自動減速制御を行うと共に、自動減速制御の作動中にドライバによるアクセル操作等の所定の操作が行われた場合にはオーバライド制御により自動減速制御を解除する。これにより、制動制御システムは、ドライバのブレーキ操作が検出されない場合であっても、車両に衝突の可能性がある場合には自動的に車両を減速させて衝突を回避し、また、誤作動等による自動減速制御をキャンセルすることができるように、自動減速制御の作動中における所定の操作によってドライバの運転操作を優先する。一方、衝突事故の発生後においては、制動制御システムは、オーバライド制御を無効にすることにより、自動減速制御中においてドライバが所定の操作をした場合、例えば誤ってアクセルを踏んでしまった場合であっても、自動減速制御が解除されてしまうことを防止することができる。 The brake control system performs automatic deceleration control for automatically decelerating the vehicle when it is predicted that there is a possibility of collision with the vehicle, and performs a predetermined operation such as accelerator operation by a driver during the operation of the automatic deceleration control. When the operation is performed, the automatic deceleration control is released by the override control. With this, even if the driver's braking operation is not detected, the braking control system automatically decelerates the vehicle to avoid collision if there is a possibility of collision, Therefore, the driver's driving operation is prioritized by a predetermined operation during the operation of the automatic deceleration control so that the automatic deceleration control can be canceled. On the other hand, after the occurrence of a collision accident, the braking control system disables the override control so that the driver performs a predetermined operation during the automatic deceleration control, for example, when the driver accidentally steps on the accelerator. However, it is possible to prevent the automatic deceleration control from being released.
本発明に係る制動制御システムを備える車両のシステム構成図である。1 is a system configuration diagram of a vehicle including a braking control system according to the present invention. 本発明に係る自動制動制御のフローチャートである。4 is a flowchart of automatic braking control according to the present invention. 車両の物体検知部が周辺を監視する状態の一例を模式的に表す模式図である。FIG. 4 is a schematic diagram schematically illustrating an example of a state in which an object detection unit of a vehicle monitors surroundings. 車両の衝突検知部が衝突を検知した状態の一例を模式的に表す模式図である。FIG. 3 is a schematic diagram schematically illustrating an example of a state in which a collision detection unit of a vehicle has detected a collision. 衝突検知部が衝突を検知した後に、物体検知部が再衝突を予測した状態の一例を模式的に表す模式図である。FIG. 7 is a schematic diagram schematically illustrating an example of a state in which an object detection unit predicts a re-collision after a collision detection unit detects a collision. 衝突検知部が衝突を検知した後に、物体検知部において再衝突が予測されない状態の一例を模式的に表す模式図である。FIG. 9 is a schematic diagram schematically illustrating an example of a state in which a re-collision is not predicted in the object detection unit after the collision detection unit detects a collision.
 以下、図面を参照し、本発明の実施の形態について詳細に説明する。なお、本発明は以下に説明する内容に限定されるものではなく、その要旨を変更しない範囲において任意に変更して実施することが可能である。また、実施の形態の説明に用いる図面は、いずれも構成部材を模式的に示すものであって、理解を深めるべく部分的な強調、拡大、縮小、または省略などを行っており、構成部材の縮尺や形状等を正確に表すものとはなっていない場合がある。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The present invention is not limited to the contents described below, and can be arbitrarily changed and implemented without changing the gist. In addition, the drawings used in the description of the embodiments each schematically show constituent members, and partial emphasis, enlargement, reduction, or omission is performed for better understanding. In some cases, the scale or shape is not accurately represented.
 図1は、本発明に係る制動制御システムを備える車両1のシステム構成図である。本実施形態において、車両1は、エンジントラックとして構成されているが、電動機(モータ)を備える電動トラックや、内燃機関及び電動機を両方備えるハイブリッドトラックであってもよい。また、車両1はトラックに限定されることなく、バスや作業車両などの他の種類の車両であってもよい。 FIG. 1 is a system configuration diagram of a vehicle 1 including a braking control system according to the present invention. In the present embodiment, the vehicle 1 is configured as an engine truck, but may be an electric truck including an electric motor (motor) or a hybrid truck including both an internal combustion engine and an electric motor. Further, the vehicle 1 is not limited to a truck, and may be another type of vehicle such as a bus or a work vehicle.
 車両1は、走行駆動システム10、走行操作システム20、自動制動用周辺機器30、及び「制御部」としての車両ECU40を備える。尚、車両1は、当該構成以外にも、従来のトラックが備える図示しないコンポーネントを適宜備えている。 The vehicle 1 includes the traveling drive system 10, the traveling operation system 20, the peripheral device 30 for automatic braking, and the vehicle ECU 40 as a “control unit”. In addition, the vehicle 1 appropriately includes components (not shown) included in the conventional truck in addition to the above configuration.
 走行駆動システム10は、エンジン11、クラッチ12、変速機13、プロペラシャフト14、差動装置15、駆動軸16、駆動輪17、ブレーキ装置18、及びエンジンECU19を備える。 The traveling drive system 10 includes an engine 11, a clutch 12, a transmission 13, a propeller shaft 14, a differential device 15, a drive shaft 16, a drive wheel 17, a brake device 18, and an engine ECU 19.
 エンジン11の出力軸にはクラッチ12が連結され、クラッチ12には変速機13の入力側が連結されている。変速機13の出力側にはプロペラシャフト14を介して差動装置15が連結され、差動装置15には駆動軸16を介して左右の駆動輪17が連結されている。そして、エンジン11が発生させた駆動力は、変速機13で変速された後に一対の駆動輪17に伝達されて車両1を走行させる。 The clutch 12 is connected to the output shaft of the engine 11, and the input side of the transmission 13 is connected to the clutch 12. A differential device 15 is connected to an output side of the transmission 13 via a propeller shaft 14, and left and right drive wheels 17 are connected to the differential device 15 via a drive shaft 16. Then, the driving force generated by the engine 11 is transmitted to a pair of driving wheels 17 after being shifted by the transmission 13 to cause the vehicle 1 to travel.
 ブレーキ装置18は、車両1のドライバがブレーキ操作を行うことにより、車両1を減速させるための制動力を発生させる。また、ブレーキ装置18は、詳細を後述する自動制動制御が行われる場合には、ドライバがブレーキ操作を行わなくても車両ECU40からの制御に基づいて、車両1を減速させるための制動力を発生させる。 The brake device 18 generates a braking force for decelerating the vehicle 1 when the driver of the vehicle 1 performs a brake operation. Further, when automatic braking control, which will be described in detail later, is performed, the braking device 18 generates a braking force for decelerating the vehicle 1 based on control from the vehicle ECU 40 without the driver performing a braking operation. Let it.
 エンジンECU19は、車両1のドライバによるアクセル操作や車両ECU40からトルク指令値が入力されると共に、正側のトルク指令値に対してはエンジン11に駆動力を発生させ、負側のトルク指令値に対してはエンジンブレーキを発生させる。 The engine ECU 19 receives an accelerator operation by the driver of the vehicle 1 and a torque command value from the vehicle ECU 40, generates a driving force for the engine 11 with respect to the positive torque command value, and changes the torque to a negative torque command value. On the other hand, an engine brake is generated.
 走行操作システム20は、アクセルペダル21、アクセルセンサ22、ブレーキペダル23、及びブレーキスイッチ24を備える。 The traveling operation system 20 includes an accelerator pedal 21, an accelerator sensor 22, a brake pedal 23, and a brake switch 24.
 車両1のドライバがアクセルペダル21を踏込み操作すると、アクセルセンサ22は、アクセルペダル21の操作量を検出し、後述する車両ECU40へ伝達する。これにより、車両ECU40は、アクセル操作量等に基づいて必要な要求トルクを算出し、エンジンECU19を介してエンジン11を制御することにより、ドライバのアクセルペダル21に対する踏込み操作に応じた加速度で車両1を加速させる。 When the driver of the vehicle 1 depresses the accelerator pedal 21, the accelerator sensor 22 detects the operation amount of the accelerator pedal 21 and transmits the detected operation amount to the vehicle ECU 40 described later. Thus, the vehicle ECU 40 calculates a required torque based on the accelerator operation amount and the like, and controls the engine 11 via the engine ECU 19, thereby controlling the vehicle 1 at an acceleration corresponding to the driver's depression operation on the accelerator pedal 21. Accelerate.
 車両1のドライバがブレーキペダル23を踏込み操作すると、ブレーキスイッチ24は、ブレーキペダル23の操作量を検出し、車両ECU40へ伝達する。これにより、車両ECU40は、ブレーキ操作量等に基づいてブレーキ装置18を制御することにより、ドライバのブレーキペダル23に対する踏込み操作に応じた負の加速度で車両1を減速させる。 When the driver of the vehicle 1 depresses the brake pedal 23, the brake switch 24 detects the operation amount of the brake pedal 23 and transmits the detected operation amount to the vehicle ECU 40. As a result, the vehicle ECU 40 controls the brake device 18 based on the brake operation amount and the like, thereby decelerating the vehicle 1 at a negative acceleration corresponding to the driver's depression operation on the brake pedal 23.
 自動制動用周辺機器30は、物体検知部31、衝突検知部32、警告出力部33、通信部34を含む。 The automatic braking peripheral device 30 includes an object detection unit 31, a collision detection unit 32, a warning output unit 33, and a communication unit 34.
 物体検知部31は、車両1の周辺の物体を検知するセンサであり、例えば本実施形態においてはカメラ及びレーダーからなる所謂フュージョンセンサである。物体検知部31は、歩行者、他の車両、ガードレール、及び建物等、車両1の周辺の障害物を監視し、特に車両1の前方において衝突の可能性がある物体を検知するために使用される。また、物体検知部31は、車両1の後方を監視するセンサを適宜含むことができ、追突される可能性がある後続車を検知してもよい。 The object detection unit 31 is a sensor that detects an object around the vehicle 1, and is, for example, a so-called fusion sensor including a camera and a radar in the present embodiment. The object detection unit 31 is used to monitor obstacles around the vehicle 1 such as pedestrians, other vehicles, guardrails, and buildings, and particularly to detect an object that may collide in front of the vehicle 1. You. In addition, the object detection unit 31 may appropriately include a sensor that monitors the rear of the vehicle 1, and may detect a following vehicle that may be hit by a collision.
 衝突検知部32は、車両1と他の物体との衝突を検知するセンサであり、車両1のフロントバンパーに設置される。衝突検知部32は、例えば圧力センサを備えたゴムチューブをフロントバンパーに張り巡らせて構成することができ、物体との接触により受ける圧力で変形したゴムチューブの内圧を測定することにより、物体との衝突を検知することができる。尚、車両1の衝突を検知するセンサは、ここで例示した態様に限られるものではなく、種々の変更が可能である。 The collision detection unit 32 is a sensor that detects a collision between the vehicle 1 and another object, and is installed on a front bumper of the vehicle 1. The collision detection unit 32 can be configured by, for example, stretching a rubber tube provided with a pressure sensor around a front bumper, and measuring the internal pressure of the rubber tube deformed by the pressure received by contact with the object to thereby collide with the object. Can be detected. Note that the sensor for detecting the collision of the vehicle 1 is not limited to the mode illustrated here, and various changes can be made.
 警告出力部33は、緊急時に音や光を発することで、車両1の周辺に危険を知らせるための装置である。警告出力部33は、例えば従来の自動車に搭載されるヘッドライトやクラクションであってもよく、この場合にはヘッドライトを連続的に点滅させたり、クラクションを連続的に鳴動させたりすることで、車両1の周辺の歩行者及び他車両に対して退避行動を促す。 The warning output unit 33 is a device for notifying the vicinity of the vehicle 1 of danger by emitting a sound or light in an emergency. The warning output unit 33 may be, for example, a headlight or a horn mounted on a conventional automobile. In this case, the headlight is continuously blinked or the horn is continuously sounded. It urges pedestrians and other vehicles around the vehicle 1 to perform an evacuation action.
 通信部34は、所謂テレマティクスのように、車両1を管理するデータセンタとの間で双方向の通信及び通話を確立するための無線通信端末である。また、通信部34は、路側に適宜設置されている路側通信システムなどを介して車両外部との通信を行なってもよい。 The communication unit 34 is a wireless communication terminal for establishing two-way communication and communication with a data center that manages the vehicle 1 like so-called telematics. Further, the communication unit 34 may communicate with the outside of the vehicle via a roadside communication system or the like that is appropriately installed on the roadside.
 車両ECU40は、車両1の全体を統合制御するための制御装置である。車両ECU40は、物体検知部31及び衝突検知部32の検知情報や、上記した各種センサからの情報以外にも、例えば車両1の速度やエンジン11の回転数などを取得する。そして、物体検知部31、衝突検知部32、及び車両ECU40により構成される「制動制御システム」によって、車両1の衝突を抑制する自動制動制御が行われる。以下、自動制動制御の流れについて説明する。 The vehicle ECU 40 is a control device for integrally controlling the entire vehicle 1. The vehicle ECU 40 acquires, for example, the speed of the vehicle 1 and the number of revolutions of the engine 11 in addition to the detection information of the object detection unit 31 and the collision detection unit 32 and the information from the various sensors described above. Then, an automatic braking control for suppressing the collision of the vehicle 1 is performed by a “braking control system” including the object detection unit 31, the collision detection unit 32, and the vehicle ECU 40. Hereinafter, the flow of the automatic braking control will be described.
 図2は、本発明に係る自動制動制御のフローチャートである。より詳しくは、図2は、車両ECU40を中心として実行される車両1の自動制動制御を示しており、車両1の運行中においてドライバによる運転操作と並行して実行される制御手順である。 FIG. 2 is a flowchart of the automatic braking control according to the present invention. More specifically, FIG. 2 shows the automatic braking control of the vehicle 1 executed mainly by the vehicle ECU 40, and is a control procedure executed in parallel with the driving operation by the driver during the operation of the vehicle 1.
 自動制動制御がスタートすると、車両ECU40は、物体検知部31としてのカメラ及びレーダーにより車両1の周辺を監視し、検出される物体と自車との相対配置や車速との関係等から、衝突の虞がある物体があるか否かを判定する(ステップS1)。 When the automatic braking control starts, the vehicle ECU 40 monitors the periphery of the vehicle 1 with a camera and a radar serving as the object detection unit 31, and determines a collision between the detected object and the vehicle based on the relative arrangement of the detected object and the vehicle speed and the like. It is determined whether there is a feared object (step S1).
 図3は、車両1の物体検知部31が周辺を監視する状態の一例を模式的に表す模式図である。図3においては、車両1は、物体検知部31によるカメラの検知エリアAc及びレーダーの検知エリアArにおいて、周辺の物体としての第1歩行者P1を検出している。ここで、周辺の物体は、歩行者に限られるものではなく、車両1と衝突し得るあらゆる障害物を指す。 FIG. 3 is a schematic diagram schematically illustrating an example of a state where the object detection unit 31 of the vehicle 1 monitors the surroundings. In FIG. 3, the vehicle 1 detects the first pedestrian P1 as a surrounding object in the detection area Ac of the camera and the detection area Ar of the radar by the object detection unit 31. Here, the surrounding objects are not limited to pedestrians, but refer to any obstacles that can collide with the vehicle 1.
 車両ECU40は、衝突の虞がある物体が検出されない間は、周辺の監視を継続する(ステップS1でNo)。すなわち、車両ECU40は、周辺の物体が検出されない場合、及び検出されても衝突の可能性が低い場合には、引き続きドライバの運転操作を優先した制御を行う。 Vehicle ECU 40 continues to monitor the surroundings as long as no object that may cause a collision is detected (No in step S1). That is, the vehicle ECU 40 continues to give priority to the driving operation of the driver when the surrounding object is not detected, or when the possibility of collision is low even if it is detected.
 一方、車両ECU40は、車両1の周辺の監視において衝突の可能性があると予測された場合には(ステップS1でYes)、衝突リスクを低減させるべく、自動減速制御を行う(ステップS2)。つまり、車両ECU40は、ドライバによるブレーキペダル23の操作が検出されない場合であっても、自動減速制御を実行することにより、ブレーキ装置18に制動力を発生させて自動的に車両1を減速させる。 On the other hand, when it is predicted that there is a possibility of collision in monitoring the vicinity of the vehicle 1 (Yes in step S1), the vehicle ECU 40 performs automatic deceleration control to reduce the collision risk (step S2). That is, even when the operation of the brake pedal 23 by the driver is not detected, the vehicle ECU 40 causes the brake device 18 to generate a braking force and automatically decelerate the vehicle 1 by executing the automatic deceleration control.
 衝突リスクを低減させる自動減速制御が実行されると、車両ECU40は、衝突検知部32により車両1と物体との衝突が検知されたか否かを判定する(ステップS3)。 When the automatic deceleration control for reducing the collision risk is executed, the vehicle ECU 40 determines whether or not the collision detection unit 32 detects a collision between the vehicle 1 and an object (Step S3).
 衝突検知部32が車両1の衝突を検知しなかった場合には(ステップS3でNo)、車両ECU40は、ステップS1の状態に戻ることにより、車両1の走行継続を許可する。ここで、車両ECU40は、ステップS2において自動減速制御に基づく自動ブレーキが作動した状態となっているが、ドライバによるオーバライド条件を満たす所定の操作、例えばアクセルペダル21が操作された場合には、オーバライド制御により当該自動ブレーキを解除することで通常の走行モードに復帰する。なお、所定の操作には、その他にも、ドライバによる自動減速制御自体のスイッチオフ、衝突回避のためのハンドル操作、方向指示器の操作等が含まれ得る。 If the collision detection unit 32 does not detect a collision of the vehicle 1 (No in step S3), the vehicle ECU 40 permits the vehicle 1 to continue running by returning to the state of step S1. Here, the vehicle ECU 40 is in a state where the automatic brake based on the automatic deceleration control has been activated in step S2. However, when a predetermined operation that satisfies the override condition by the driver, for example, when the accelerator pedal 21 is operated, the override is performed. By releasing the automatic brake by the control, the vehicle returns to the normal traveling mode. In addition, the predetermined operation may include, in addition, switch-off of the automatic deceleration control itself by the driver, operation of a steering wheel for collision avoidance, operation of a direction indicator, and the like.
 これに対し、自動減速制御に基づく自動ブレーキが作動したにも拘らず、あるいは自動減速制御に基づく自動ブレーキがオーバライド制御により解除されてしまい、衝突検知部32において車両1の衝突が検知された場合には(ステップS3でYes)、車両ECU40は、オーバライド制御を無効化することにより自動減速制御に基づく自動ブレーキの解除を禁止する(ステップS4)。 On the other hand, when the automatic braking based on the automatic deceleration control is activated, or the automatic braking based on the automatic deceleration control is released by the override control, and the collision detection unit 32 detects the collision of the vehicle 1. (Yes in Step S3), the vehicle ECU 40 disables the override control to prohibit the release of the automatic brake based on the automatic deceleration control (Step S4).
 図4は、車両1の衝突検知部32が衝突を検知した状態の一例を模式的に表す模式図である。ここでは、車両ECU40は、車両1のフロントバンパーに設けられた衝突検知部32が第1歩行者P1との接触を検知したものとしている。ただし、衝突検知部32は、衝突した対象が人か否かを識別していなくてもかまわない。 FIG. 4 is a schematic diagram schematically illustrating an example of a state in which the collision detection unit 32 of the vehicle 1 has detected a collision. Here, the vehicle ECU 40 assumes that the collision detection unit 32 provided in the front bumper of the vehicle 1 has detected contact with the first pedestrian P1. However, the collision detection unit 32 does not have to identify whether or not the collision target is a person.
 そして、車両ECU40は、車両1の衝突が検知された場合に、再衝突の可能性を判定する(ステップS5)。すなわち、車両ECU40は、物体検知部31からの情報によって車両1の周辺の状況を確認し、再び衝突する虞のある物体があるか否かを判定する。 {Circle around (4)} When the collision of the vehicle 1 is detected, the vehicle ECU 40 determines the possibility of a re-collision (step S5). That is, the vehicle ECU 40 checks the situation around the vehicle 1 based on the information from the object detection unit 31 and determines whether there is an object that may collide again.
 ここで、車両ECU40は、車両1の再衝突が予測される場合には(ステップS5でYes)、再衝突を回避するために、例えば車両1を直ちに停車させるなど、自動で衝突を回避させる制動力を発生させる制御を行う(ステップS6)。 Here, if a re-collision of the vehicle 1 is predicted (Yes in step S5), the vehicle ECU 40 automatically avoids the collision by, for example, immediately stopping the vehicle 1 to avoid the re-collision. Control for generating power is performed (step S6).
 図5は、衝突検知部32が衝突を検知した後に、物体検知部31が再衝突を予測した状態の一例を模式的に表す模式図である。より具体的には、図5の状態においては、車両1が第1歩行者P1に衝突したことを衝突検知部32が検知しており、また、このとき車両1の前方における第2歩行者P2~第4歩行者P4を、再衝突が予測される物体として物体検知部31が検知している。 FIG. 5 is a schematic diagram schematically illustrating an example of a state in which the object detection unit 31 predicts a re-collision after the collision detection unit 32 detects a collision. More specifically, in the state of FIG. 5, the collision detection unit 32 detects that the vehicle 1 has collided with the first pedestrian P1, and at this time, the second pedestrian P2 in front of the vehicle 1 The object detection unit 31 detects the fourth to fourth pedestrians P4 as objects for which re-collision is predicted.
 このような状態においては、車両ECU40は、ブレーキ装置18に対して比較的強い制動力を発生させ、物体との衝突を回避すべく可能な限り速やかに車両1を停車させる。また、車両ECU40は、警告出力部33を介して車両1の周辺に警告を発し、歩行者及び他車両に対して退避行動を促す(ステップS7)。これにより車両1は、物体に衝突した後に、再び衝突事故を引き起こす虞を低減することができる。なお、ステップS6とステップS7は同時に行われてもよいし、いずれかが先に行われてもかまわない。 In such a state, the vehicle ECU 40 generates a relatively strong braking force on the brake device 18 and stops the vehicle 1 as soon as possible to avoid collision with an object. In addition, the vehicle ECU 40 issues a warning around the vehicle 1 via the warning output unit 33, and urges the pedestrian and other vehicles to perform an evacuation action (step S7). Thereby, the vehicle 1 can reduce the possibility of causing a collision accident again after colliding with the object. Steps S6 and S7 may be performed at the same time, or one of them may be performed first.
 一方、車両1の再衝突の可能性が低いと予想される場合には(ステップS5でNo)、車両ECU40は、ブレーキ装置18に対して比較的弱い制動力を発生させ、車両1を自動で徐々に減速させる(ステップS8)。尚、車両1は、ドライバによるアクセル操作が継続されていない限り、やがては停車することになる。 On the other hand, when it is expected that the possibility of re-collision of the vehicle 1 is low (No in step S5), the vehicle ECU 40 generates a relatively weak braking force on the brake device 18 and automatically controls the vehicle 1 The speed is gradually reduced (step S8). The vehicle 1 will eventually stop unless the accelerator operation by the driver is continued.
 図6は、衝突検知部32が衝突を検知した後に、物体検知部31において再衝突が予測されない状態の一例を模式的に表す模式図である。より具体的には、図6の状態においては、車両1が第1歩行者P1に衝突したことを衝突検知部32が検知しているが、このとき車両1の周辺に再衝突の虞がある物体が検知されていない。 FIG. 6 is a schematic diagram schematically illustrating an example of a state in which a re-collision is not predicted in the object detection unit 31 after the collision detection unit 32 detects a collision. More specifically, in the state of FIG. 6, the collision detection unit 32 detects that the vehicle 1 has collided with the first pedestrian P <b> 1. No object is detected.
 このような状態においては、車両ECU40は、ブレーキ装置18に対して比較的弱い制動力を発生させることで、急激な減速を抑制しながら車両1を徐行させることができ、停車させることもできる。これにより車両1は、物体に衝突した後に、後続車に追突される虞のない場所に移動することができると共に、いわゆる急ブレーキによるドライバ又は他の乗員への衝撃力を緩和することができる。 In such a state, the vehicle ECU 40 can cause the vehicle 1 to slow down while suppressing rapid deceleration by generating a relatively weak braking force on the brake device 18, and can also stop the vehicle. Thus, after colliding with the object, the vehicle 1 can move to a place where there is no risk of being hit by a following vehicle, and can reduce the impact force on a driver or another occupant due to so-called sudden braking.
 そして、車両ECU40は、車両1を自動で減速させる制御を行なった後、車両1の最大速度を制限するセーフモードに移行する(ステップS9)。セーフモードは、衝突後の車両1の徐行による移動を許可するものであり、本実施形態においては車速を例えば5km/h以下に抑制する。これにより、車両1は、物体との衝突後に新たな衝突事故が発生する虞を低減することができる。また、車両1は、ステップS6又はステップS8で作動する自動ブレーキにより万が一危険な状態で停車してしまった場合であっても、低速で安全な場所への緊急避難を行うことができる。さらに、悪意のあるドライバの逃走を抑制する効果もある。尚、セーフモードへの移行の態様については、ステップS8において車両1を徐々に減速させて、停止させた後にステップS9のセーフモードに移行させてもよいし、車両1を徐々に減速させて、セーフモードで制限された最大速度になったらそのままステップS9のセーフモードに移行させてもよい。また、車両1の衝突を検知したことをトリガに、セーフモードに移行させてもよい。 Then, after performing control to automatically decelerate the vehicle 1, the vehicle ECU 40 shifts to a safe mode in which the maximum speed of the vehicle 1 is limited (step S9). The safe mode permits the vehicle 1 to move slowly after a collision, and in the present embodiment, the vehicle speed is suppressed to, for example, 5 km / h or less. Thereby, the vehicle 1 can reduce the possibility that a new collision accident will occur after the collision with the object. Further, even if the vehicle 1 is stopped in a dangerous state by the automatic brake operated in step S6 or step S8, emergency evacuation to a safe place at low speed can be performed. Further, there is also an effect of suppressing escape of a malicious driver. As to the mode of shifting to the safe mode, the vehicle 1 may be gradually decelerated in step S8 and then stopped, and then may be shifted to the safe mode in step S9. When the speed reaches the limited maximum speed, the process may directly shift to the safe mode in step S9. Alternatively, the mode may be shifted to the safe mode with the detection of the collision of the vehicle 1 as a trigger.
 また、車両ECU40は、通信部34を介して車両1を管理するデータセンタとの間で通信又は通話を行い、例えばデータセンタのオペレータが車両1の事故状況の情報収集を行うことで安全を確認する(ステップS10)。そして、オペレータは、例えば、車両1の衝突が対物事故で且つ軽微である場合や、衝突検知自体が誤認識であった場合などにより安全が確認されたことを条件として、データセンタから車両1の通信部34へセーフモードの解除信号を送信する(ステップS10でYes)。また、通信部34が当該解除信号を受信しない間は、車両ECU40は、セーフモードの解除を保留する(ステップS10でNo)。 The vehicle ECU 40 communicates with or communicates with the data center that manages the vehicle 1 via the communication unit 34, and confirms safety by, for example, collecting data on the accident situation of the vehicle 1 by an operator of the data center. (Step S10). Then, the operator sends the vehicle 1 from the data center to the vehicle 1 on the condition that the safety is confirmed, for example, when the collision of the vehicle 1 is an objective accident and is minor, or when the collision detection itself is erroneously recognized. A safe mode release signal is transmitted to the communication unit 34 (Yes in step S10). In addition, while communication unit 34 does not receive the release signal, vehicle ECU 40 suspends release of the safe mode (No in step S10).
 通信部34がデータセンタからセーフモードの解除信号を受信すると、車両ECU40は、ステップS9で実行したセーフモードを解除し(ステップS11)、一連の自動制動制御の手順を終了する。 (4) When the communication unit 34 receives the safe mode release signal from the data center, the vehicle ECU 40 releases the safe mode executed in step S9 (step S11), and ends a series of automatic braking control procedures.
 ここで、セーフモードの解除は、必ずしも通信部34を介した通信により行う必要はなく、例えばセーフモードへの移行時から所定時間後に自動で行われてもよい。より具体的には、車両ECU40は、例えば図示しないタイマを含むことにより、セーフモードへの移行時から例えば10分後に自動で解除されるように構成することもできる。 Here, the release of the safe mode does not necessarily have to be performed by communication via the communication unit 34, and may be automatically performed, for example, a predetermined time after the shift to the safe mode. More specifically, the vehicle ECU 40 may be configured to include, for example, a timer (not shown) so as to be automatically released, for example, 10 minutes after the shift to the safe mode.
 以上のように、本発明に係る制動制御システムは、衝突検知部32において車両1の衝突が検知された場合に、物体検知部31により周辺の物体を監視することで、更なる衝突の可能性を予測する。そして、制動制御システムは、再衝突の可能性がある場合には直ちに車両1を停車させる制御を行い、再衝突の可能性がない場合には徐々に車両1を減速させる制御を行う。これにより、本発明に係る制動制御システムは、衝突事故の発生後において再度の衝突が発生する虞を低減しつつ、再衝突を回避できる場合にはドライバ及び他の乗員に対する衝撃を緩和しながら車両1を安全に徐行や停車させることができ、衝突事故が発生した後の被害の拡大を抑制することができる。 As described above, the braking control system according to the present invention monitors the surrounding objects by the object detection unit 31 when the collision detection unit 32 detects the collision of the vehicle 1, thereby further increasing the possibility of a collision. Predict. Then, the braking control system performs control to stop the vehicle 1 immediately when there is a possibility of re-collision, and performs control to gradually decelerate the vehicle 1 when there is no possibility of re-collision. As a result, the braking control system according to the present invention reduces the risk of a second collision occurring after the occurrence of a collision accident, and reduces the impact on the driver and other occupants when the second collision can be avoided. It is possible to safely slow down or stop the vehicle 1 and to suppress the spread of damage after a collision accident occurs.
 以上で実施形態の説明を終えるが、本発明は上記した実施形態に限定されるものではない。例えば、上記の実施形態では、衝突検知部32が衝突を検知する前においても、物体検知部31の検知情報に基づいて自動減速制御を行う態様を例示したが、衝突前の衝突予測を行うことなく衝突後の自動制動制御を行なってもよい。すなわち、この場合には、制動制御システムは、図2のフローチャートのステップS3から自動制動制御を実行することになる。また、本発明に係る制動制御システムは、衝突前の衝突予測を行なった上で、万が一衝突の予測に失敗した場合であっても、図2のフローチャートのステップS3以降の自動制動制御を実行することができる。 Although the embodiment has been described above, the present invention is not limited to the above embodiment. For example, in the above-described embodiment, the mode is described in which the automatic deceleration control is performed based on the detection information of the object detection unit 31 even before the collision detection unit 32 detects a collision. Alternatively, automatic braking control after a collision may be performed. That is, in this case, the braking control system executes the automatic braking control from step S3 in the flowchart of FIG. In addition, the braking control system according to the present invention performs the automatic braking control after step S3 in the flowchart of FIG. 2 even if the prediction of the collision fails after performing the collision prediction before the collision. be able to.
  1 車両
 18 ブレーキ装置
 21 アクセルペダル
 23 ブレーキペダル
 31 物体検知部
 32 衝突検知部
 40 車両ECU
Reference Signs List 1 vehicle 18 brake device 21 accelerator pedal 23 brake pedal 31 object detection unit 32 collision detection unit 40 vehicle ECU

Claims (6)

  1.  車両の周辺の物体を検知する物体検知部と、
     前記車両の衝突を検知する衝突検知部と、
     前記物体検知部及び前記衝突検知部の検知情報に基づいて、前記車両の制動力を制御する制御部と、を備え、
     前記制御部は、前記衝突検知部が衝突を検知した後に、前記物体検知部からの情報により、更なる衝突が予測される場合には前記車両に自動で衝突を回避させる制動力を発生させる制御を行い、衝突が予測されない場合には前記車両を自動で徐々に減速させる制動力を発生させる制御を行う、制動制御システム。
    An object detection unit that detects an object around the vehicle,
    A collision detection unit that detects the collision of the vehicle,
    A control unit that controls a braking force of the vehicle based on the detection information of the object detection unit and the collision detection unit,
    After the collision detecting unit detects the collision, the control unit controls the vehicle to automatically generate a braking force to avoid the collision when a further collision is predicted based on information from the object detecting unit. And controlling the vehicle to automatically generate a braking force to gradually decelerate the vehicle if a collision is not predicted.
  2.  前記制御部は、前記車両に自動で制動力を発生させる制御を行うと共に、前記車両の最大速度を制限するセーフモードに移行する、請求項1に記載の制動制御システム。 The brake control system according to claim 1, wherein the control unit performs control for automatically generating a braking force on the vehicle, and shifts to a safe mode for limiting a maximum speed of the vehicle.
  3.  前記制御部は、前記セーフモードに移行してから所定時間後に前記セーフモードを解除する、請求項2に記載の制動制御システム。 The braking control system according to claim 2, wherein the control unit releases the safe mode a predetermined time after the shift to the safe mode.
  4.  前記制御部は、車両外部との通信により前記車両の安全を確認した場合に、前記セーフモードを解除する、請求項2に記載の制動制御システム。 The braking control system according to claim 2, wherein the control unit releases the safe mode when the safety of the vehicle is confirmed by communication with the outside of the vehicle.
  5.  前記制御部は、前記車両に自動で衝突を回避させる制動力を発生させる制御を行う場合に、前記車両の周辺に警告を発する制御を行う、請求項1乃至4のいずれかに記載の制動制御システム。 The braking control according to any one of claims 1 to 4, wherein the control unit performs control to issue a warning around the vehicle when performing control to automatically generate a braking force for avoiding a collision in the vehicle. system.
  6.  前記制御部は、衝突が予測される場合に前記車両を自動的に減速させる自動減速制御を行うと共に、前記車両にドライバによる所定の操作が行われた場合には前記自動減速制御を解除するオーバライド制御を行い、前記衝突検知部が衝突を検知した後においては前記オーバライド制御を無効化する、請求項1乃至5のいずれかに記載の制動制御システム。 The controller performs an automatic deceleration control that automatically decelerates the vehicle when a collision is predicted, and cancels the automatic deceleration control when a predetermined operation is performed on the vehicle by a driver. The braking control system according to any one of claims 1 to 5, wherein control is performed, and the override control is invalidated after the collision detection unit detects a collision.
PCT/JP2019/023007 2018-07-31 2019-06-11 Braking control system WO2020026596A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-143157 2018-07-31
JP2018143157A JP2020019319A (en) 2018-07-31 2018-07-31 Braking control system

Publications (1)

Publication Number Publication Date
WO2020026596A1 true WO2020026596A1 (en) 2020-02-06

Family

ID=69232447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023007 WO2020026596A1 (en) 2018-07-31 2019-06-11 Braking control system

Country Status (2)

Country Link
JP (1) JP2020019319A (en)
WO (1) WO2020026596A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6933330B1 (en) * 2021-01-25 2021-09-08 山内 和博 Self-driving car

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003081074A (en) * 2001-09-13 2003-03-19 Hitachi Ltd Control method for automotive brake and its device
JP2005104320A (en) * 2003-09-30 2005-04-21 Advics:Kk Vehicle control device
JP2016020106A (en) * 2014-07-11 2016-02-04 トヨタ自動車株式会社 Vehicle control apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003081074A (en) * 2001-09-13 2003-03-19 Hitachi Ltd Control method for automotive brake and its device
JP2005104320A (en) * 2003-09-30 2005-04-21 Advics:Kk Vehicle control device
JP2016020106A (en) * 2014-07-11 2016-02-04 トヨタ自動車株式会社 Vehicle control apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6933330B1 (en) * 2021-01-25 2021-09-08 山内 和博 Self-driving car
JP2022113370A (en) * 2021-01-25 2022-08-04 和博 山内 Automatically driven vehicle

Also Published As

Publication number Publication date
JP2020019319A (en) 2020-02-06

Similar Documents

Publication Publication Date Title
KR101775856B1 (en) Vehicle control system and vehicle control method
CN102030006B (en) System for vehicle control to mitigate intersection collisions
JP2019167115A5 (en) Automatic operation control device and vehicle
JP6032220B2 (en) Vehicle control apparatus and vehicle control system
JP3814050B2 (en) Emergency automatic brake device
JP2010072969A (en) Peripheral vehicle monitoring device and peripheral vehicle monitoring method
JP2008121583A (en) Vehicle control device
JP2015140088A (en) Vehicle controller
JP2014091380A (en) Driving support device
US11433862B2 (en) Driver assistance system for a transportation vehicle, transportation vehicle, and method for operating a driver assistance system or transportation vehicle
JP4084318B2 (en) Emergency brake equipment
WO2018188860A1 (en) A safety control system and method for use in vehicles
CN103144597B (en) For running method and the motor vehicles of motor vehicles
WO2020026596A1 (en) Braking control system
JP2016117319A (en) Drive assistance device
KR20130013997A (en) Apparatus for preventing car collision and method thereof
JP3918190B2 (en) Reliable tire emergency driving operation in a car
JP2014189136A (en) Vehicle high voltage system controller
US11958478B2 (en) Method for automatically avoiding or mitigating collision, and control system, storage medium and motor vehicle
JP2014118048A (en) Driving support system
JP2013133072A (en) Vehicular emergency stop maintaining device
KR200489951Y1 (en) Safety distance warning device for a car
CN116137848A (en) Method and system for handling situations involving a vehicle and/or a third party
JP6848478B2 (en) Secondary collision suppression device
JP2006240554A (en) Safety device for vehicle having automatic fire extinguishing function

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19845129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19845129

Country of ref document: EP

Kind code of ref document: A1