WO2020026528A1 - 共役ジエン製造用触媒、前記触媒の製造方法、及び共役ジエンの製造方法 - Google Patents

共役ジエン製造用触媒、前記触媒の製造方法、及び共役ジエンの製造方法 Download PDF

Info

Publication number
WO2020026528A1
WO2020026528A1 PCT/JP2019/015183 JP2019015183W WO2020026528A1 WO 2020026528 A1 WO2020026528 A1 WO 2020026528A1 JP 2019015183 W JP2019015183 W JP 2019015183W WO 2020026528 A1 WO2020026528 A1 WO 2020026528A1
Authority
WO
WIPO (PCT)
Prior art keywords
conjugated diene
catalyst
producing
butanediol
zirconium oxide
Prior art date
Application number
PCT/JP2019/015183
Other languages
English (en)
French (fr)
Inventor
健人 栗田
宇超 汪
佐藤 智司
充司 沖田
一規 本田
Original Assignee
国立大学法人千葉大学
日揮グローバル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人千葉大学, 日揮グローバル株式会社 filed Critical 国立大学法人千葉大学
Priority to EP19844039.8A priority Critical patent/EP3831475B1/en
Priority to US17/260,704 priority patent/US20210275991A1/en
Publication of WO2020026528A1 publication Critical patent/WO2020026528A1/ja
Priority to US17/845,858 priority patent/US11717807B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/24Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by elimination of water
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium

Definitions

  • the present invention relates to a technique for producing isoprene or 1,3-butadiene.
  • the main production method of isoprene and 1,3-butadiene (hereinafter collectively referred to as "conjugated diene”) used as raw materials for synthetic rubber is naphtha cracking, which is produced as a co-product of ethylene by pyrolysis of naphtha. It is.
  • 1,3-butadiene a single-product process such as a process for oxidative dehydrogenation of butene and a process for dimerizing ethanol or acetaldehyde is also known.
  • Patent Documents 1 to 4 disclose techniques using a catalyst combining zirconium oxide and calcium as a catalyst for producing an unsaturated alcohol having one double bond from various diol compounds of C4. ing. However, these patent documents do not disclose a technique for producing a conjugated diene from a diol type compound by a simple process.
  • Patent Document 5 discloses that an unsaturated alcohol is obtained by advancing a dehydration reaction of a 1,3-diol-type raw material using zirconia containing, as a dopant, an element selected from an alkaline earth element and a rare earth element as a catalyst. Subsequently, a technique is described in which a dehydration reaction of an unsaturated alcohol is advanced using a dehydration catalyst such as a silica alumina catalyst to obtain a diene compound such as 1,3-butadiene.
  • a dehydration catalyst such as a silica alumina catalyst
  • the present invention has been made under such a background, and produces isoprene from 3-methyl-1,3-butanediol or 1,3-butadiene from 1,3-butanediol with a single catalyst. Provide technology.
  • the present invention relates to a catalyst for producing a conjugated diene, which promotes a reaction of dehydrating two molecules of water from one molecule of 3-methyl-1,3-butanediol to produce isoprene, or one molecule of 1,3-butanediol
  • a catalyst for producing a conjugated diene which promotes a reaction of dehydrating two molecules of water to produce 1,3-butadiene, characterized by containing zirconium oxide and calcium oxide.
  • the mass flow rate (WHSV: Weight Hourly Space) of the 3-methyl-1,3-butanediol or 1,3-butanediol per unit time is based on the weight of the conjugated diene production catalyst.
  • the content ratio may be adjusted so that the content of calcium atoms in the calcium oxide is in the range of 0.01 mol to 0.3 mol per 1 mol of zirconium atoms of zirconium oxide.
  • the calcium oxide may be supported on the zirconium oxide.
  • zirconium oxide is a tetragonal type or a cubic type can be exemplified.
  • the zirconium oxide may be composed of yttria-stabilized zirconia (YSZ).
  • the method for producing a catalyst for producing a conjugated diene includes a step of calcining zirconium oxide or a precursor containing zirconium at a temperature in the range of 700 ° C to 1200 ° C.
  • a fluid containing 3-methyl-1,3-butanediol is brought into contact with a catalyst for producing a conjugated diene to convert one molecule of 3-methyl-1,3-butanediol.
  • the step of obtaining the fluid containing the conjugated diene includes the step of mass-flowing the 3-methyl-1,3-butanediol or 1,3-butanediol per unit time with respect to the weight of the catalyst for producing the conjugated diene ( (WHSV) is preferably 1.5 h ⁇ 1 or less.
  • the step is preferably performed at a reaction temperature in the range of 250 ° C. or more and 400 ° C. or less.
  • the method may include a step of calcining the catalyst for producing a conjugated diene at a temperature in the range of 700 ° C to 1200 ° C.
  • the conjugated diene production catalyst dehydrates two molecules of water from one molecule of 3-methyl-1,3-butanediol to produce isoprene, or two molecules of water from one molecule of 1,3-butanediol. Can be dehydrated to advance 1,3-butadiene, and a conjugated diene can be efficiently produced from these raw materials by a simple process.
  • the catalyst for producing a conjugated diene of this example contains zirconium oxide and calcium oxide and dehydrates two molecules of water from one molecule of 3-methyl-1,3-butanediol (hereinafter also referred to as “3M1,3BDO”).
  • 3M1,3BDO 3-methyl-1,3-butanediol
  • the catalyst for producing a conjugated diene described in the following (2) which produces 1,3-butadiene by dehydrating two molecules of water from one molecule of 1,3-butanediol (hereinafter also referred to as “1,3BDO”).
  • the dehydration reaction of the formula is allowed to proceed.
  • the catalyst for producing a conjugated diene of this example can realize a process for producing a conjugated diene by promoting a dehydration reaction from 3M1,3BDO or 1,3BDO with a single catalyst, which was conventionally considered to be difficult. I do.
  • zirconium oxide contained in the catalyst for producing a conjugated diene and the method for preparing the same.
  • Commercially available zirconium oxide may be used, or a precursor obtained by firing a zirconium-containing precursor such as zirconium chloride in an oxygen atmosphere may be used.
  • the zirconium oxide may be a tetragonal type or a cubic type.
  • the tetragonal or cubic zirconium oxide may be yttria-stabilized zirconia (YSZ) stabilized by yttria.
  • composition of calcium oxide contained in the catalyst for producing a conjugated diene there is no particular limitation on the composition of calcium oxide contained in the catalyst for producing a conjugated diene or on the method for preparing the same.
  • Commercially available calcium oxide may be used, or one obtained by calcining a precursor containing calcium such as calcium nitrate or calcium hydroxide in an oxygen atmosphere may be used.
  • calcia-stabilized zirconia stabilized by calcia Calcia-Stabilized Zirconia, CSZ
  • Zirconium oxide contained in the catalyst for producing a conjugated diene causes a dehydration reaction of 3M1,3BDO or 1,3BDO to proceed.
  • calcium oxide acts as a base and suppresses the acidity of zirconium oxide.
  • the reaction activity is improved by the concerted action of the acid point of zirconium oxide and the base point of calcium oxide as compared with the case where zirconium oxide is used alone.
  • zirconium oxide or calcium oxide is contained in the catalyst for producing a conjugated diene in the form of, for example, nanometer-order to micrometer-order fine particles. Is also good. Further, like the above-described calcia-stabilized zirconia or the like, it may be constituted as a composite oxide containing a calcium atom in the skeleton structure of zirconium oxide.
  • the catalyst for producing a conjugated diene may be constituted by supporting fine zirconium oxide or calcium oxide or a composite oxide thereof on a carrier.
  • a carrier having no 3M1,3BDO or 1,3BDO reaction activity or a carrier having a small specific surface area and substantially not affecting the reaction.
  • Examples of such a carrier include a carrier containing at least one carrier material selected from a carrier material group consisting of silica, ⁇ -alumina, carbon, and silicon carbide.
  • the catalyst for producing a conjugated diene may have a configuration in which zirconium oxide, calcium oxide, or a composite oxide thereof is dispersed and supported on the surface of a powdery carrier having a diameter larger than the fine particles. Further, for example, a configuration may be employed in which zirconium oxide, calcium oxide, or a composite oxide thereof is dispersed and supported on the surface of a granular or ring-shaped carrier.
  • a known supporting method such as an impregnation method, a precipitation method, and a kneading method can be used.
  • zirconium oxide or calcium oxide, or a precursor of a composite oxide thereof is supported on the surface of the carrier using these methods, and then calcined to be dispersed and supported on the surface of the carrier.
  • Each of the obtained precursors may be converted to zirconium oxide, calcium oxide, or a composite oxide thereof.
  • the catalyst for producing conjugated diene after supporting zirconium oxide or calcium oxide, or a composite oxide thereof is in a powder form, depending on the use mode in the production process of the conjugated diene, it may be in the form of granules or rings. It may be molded.
  • the catalyst for producing a conjugated diene is composed of zirconium oxide and calcium oxide
  • calcium oxide is dispersed and supported on the surface of powdery zirconium oxide having a diameter larger than the fine particles of calcium oxide. Is also good.
  • a configuration may be employed in which calcium oxide is dispersed and supported on the surface of zirconium oxide formed in a granular or ring shape.
  • a known supporting method such as an impregnation method, a precipitation method, and a kneading method can be used.
  • the zirconium oxide contained in the catalyst for producing a conjugated diene is, for example, calcined at a temperature in the range of 700 ° C or more and 1200 ° C or less, preferably 800 ° C or more and 1000 ° C or less. Preferably, there is.
  • zirconium oxide having a specific crystal face for example, tetragonal crystal
  • a surface effective for this reaction can be formed.
  • the catalyst for producing a conjugated diene fired at 700 ° C. or less a desired crystal plane cannot be sufficiently obtained, and the conversion may be low.
  • the catalyst is calcined at a temperature of 1200 ° C. or higher, the conversion may decrease due to a decrease in the surface area of the catalyst for producing a conjugated diene.
  • a commercially available zirconium oxide or a zirconium oxide having a low firing temperature when forming zirconium oxide from a precursor can exhibit higher dehydration reaction activity by firing in the above temperature range. Further, the firing temperature at the time of performing the firing for obtaining zirconium oxide from the precursor is set to a temperature in the range of 700 ° C. or more and 1200 ° C. or less, and the formation of zirconium oxide and the process of obtaining a predetermined crystal plane are performed together. Is also good.
  • the firing atmosphere may be, for example, an air atmosphere or an inert gas atmosphere such as a nitrogen gas.
  • the firing of zirconium oxide may be carried out at any time before the reaction, and may be carried out at the time of the production of the catalyst or at the timing after charging the conjugated diene to the reactor for the production process.
  • the above conjugated diene production catalyst has a mass flow rate (WHSV: Weight Hourly Space Velocity) of 3M1,3BDO or 1,3BDO per unit time with respect to the weight of the conjugated diene production catalyst charged in the reactor. It is preferably used under conditions of not more than 0.5 h ⁇ 1 .
  • the content ratio of zirconium oxide to calcium oxide is such that the content of calcium atoms in calcium oxide is 0.01 mol or more and 0.3 mol per 1 mol of zirconium atoms in zirconium oxide. It is preferable to be within the following range. More preferably, the content of the calcium atom is in the range of 0.05 mol or more and 0.3 mol or less. When the content of the calcium atom is less than 0.01 mol, the action of suppressing the progress of the decomposition reaction of 3M1,3BDO or 1,3BDO, or the concerted action between the acid site of zirconium oxide and the base site of calcium oxide May not be obtained sufficiently. If the content of calcium atoms exceeds 0.3 mol, the dehydration reaction of 3M1,3BDO or 1,3BDO on the zirconium oxide side may be inhibited.
  • a method for producing a conjugated diene that produces isoprene from 3M1,3BDO or 1,3-butadiene from 1,3BDO using the conjugated diene production catalyst described above will be described.
  • a catalyst for producing a conjugated diene in powder form can be used in a reactor such as a fluidized bed type, a suspension bed type, and a moving bed type.
  • the catalyst can be used in a fixed bed reactor.
  • the reactor accommodating the catalyst for producing a conjugated diene has sufficient heat resistance, for example, the above-mentioned temperature in the range of 700 ° C or more and 1200 ° C or less, preferably 800 ° C or more
  • the step of calcining the catalyst for producing a conjugated diene at a temperature within the range of 1000 ° C. or less may be performed as a pretreatment before starting the production of the conjugated diene.
  • a 3M1,3BDO fluid or a 1,3BDO fluid is heated to a predetermined temperature and supplied to the reactor containing a conjugated diene production catalyst having a shape corresponding to the reaction process.
  • the raw material fluid is brought into contact with the zirconium oxide and calcium oxide contained in the catalyst for producing a conjugated diene in the reactor, and the dehydration reaction from the 3M1,3BDO fluid or 1,3BDO is advanced. Therefore, in the reaction process of the present example, isoprene can be produced from a 3M1,3BDO fluid, or 1,3-butadiene can be produced from a 1,3BDO fluid.
  • 3M1,3BDO contained in the raw material fluid may be obtained from a process of reacting 4,4-dimethyldioxane with methanol or a process of hydrating 3-methyl-3-buten-1-ol. it can.
  • 1,3BDO contained in the raw material fluid one produced from a sugar as a raw material by, for example, a fermentation method using a smart cell can be used.
  • the 1,3BDO contained in the raw material fluid is not limited to biomass-derived one, and may be one produced by, for example, an industrial process of reacting acetylene and formaldehyde.
  • the raw material fluid has a temperature in the reactor within a range of, for example, 250 ° C or more and 400 ° C or less, preferably 325 ° C or more and 400 ° C or less, more preferably 340 ° C or more and 380 ° C or less. It may be maintained. By setting the reaction temperature to 340 ° C. or higher, a relatively high conversion and a conjugated diene yield can be obtained.
  • WHSV is by contacting a conjugated diene production catalyst and 3M1,3BDO and 1,3BDO under the conditions of 1.5 h -1 or less, it is possible to sufficiently proceed the dehydration reaction, and 1.0 h -1 or less By doing so, the dehydration reaction can be further advanced.
  • a part of the fluid flowing out of the reactor may be extracted, combined with the raw material fluid, and recycled to be supplied to the reactor again.
  • the fluid flowing out of the reactor is shipped as a product conjugated diene after impurities are separated by distillation or the like.
  • Conjugated diene production catalysts dehydrate two molecules of water from one molecule of 3M1,3BDO to produce isoprene, or dehydrate two molecules of water from one molecule of 1,3BDO to produce 1,3-butadiene Since the dehydration reaction can proceed, a conjugated diene can be efficiently produced from these raw materials by a simple process.
  • the conjugated diene production catalyst of the present example has a 3M1,3BDO, 1,3BDO mass flow rate (WHSV: Weight Hourly Space Velocity) of 1.5 h -1 or less per unit time with respect to the weight of the conjugated diene production catalyst.
  • WHSV Weight Hourly Space Velocity
  • Use under certain conditions increases the conversion and the selectivity of the conjugated diene.
  • a raw material unit indicating the ratio of the weight of the conjugated diene produced from the raw material per unit weight is preferable.
  • a conjugated diene can be produced from 3M1,3BDO, 1,3BDO using a single catalyst, a simple conjugated diene production apparatus having a simple reactor configuration and a small number of auxiliary facilities is provided. be able to.
  • Table 1 shows the conversion ratio of 3M1,3BDO and the selectivity of isoprene as a target conjugated diene, isobutene as a decomposition by-product, and unsaturated alcohol as an intermediate of isoprene.
  • Example 1 An aqueous solution prepared by adding distilled water to 718.1 mg of calcium nitrate tetrahydrate (Wako Pure Chemical Industries, Ltd., purity 98.5% or more) was mixed with 5.6 mol% yttrium-containing tetragonal stabilized zirconia (Daiichi Pure Chemical Co., Ltd.). It was added little by little to 4.98 g of Rare Element Chemical Industry Co., Ltd., YSZ, specific surface area: 79.3 m 2 / g) every 10 minutes, and dried at 110 ° C. overnight. Thereafter, the mixture was calcined at 800 ° C.
  • Example 1 The loading amount of calcium oxide in Example 1 was 7 mol%. The following formula was used to calculate the amount of calcium oxide carried. Using this catalyst, a dehydration reaction was carried out under the same conditions as in Comparative Example 1, and the catalytic activity (3M1,3BDO conversion) was confirmed. Table 2 shows the results. In Tables 2, 3, 5, and 7 shown below, the content of calcium atoms in calcium oxide with respect to 1 mol of zirconium atoms in zirconium oxide is also described as "calcium content". In this example, the content of calcium atoms in calcium oxide is 0.08 moles per mole of zirconium atoms in zirconium oxide.
  • Example 2 A catalyst for producing a conjugated diene was prepared under the same conditions as in Example 1 except that the firing temperature was changed, and a dehydration reaction was performed. Table 2 shows the results. The respective firing temperatures are as follows. [Example 2] 600 ° C [Example 3] 700 ° C Example 4 900 ° C. [Example 5] 1000 ° C
  • Example 6 to 10 The same conditions as in Example 1 above, except that the amount of calcium nitrate tetrahydrate was changed so that the supported amount of calcium oxide was 15 mol% (calcium content 0.18) and the reaction temperature was changed.
  • the dehydration reaction was carried out using the conjugated diene production catalyst prepared in the above.
  • Table 3 shows the results of confirming the catalytic activities (conversion rates of 3M1, 3BDO) of these catalysts.
  • the respective reaction temperatures are as follows. [Example 6] 275 ° C [Example 7] 300 ° C [Example 8] 325 ° C [Example 9] 350 ° C [Example 10] 375 ° C
  • Example 9 was carried out in the same manner as in Example 9 except that the amount of calcium oxide carried was the same as in Example 9 and that the WHSV was changed by changing the amount of the catalyst using the catalyst for producing a conjugated diene prepared under the same conditions as in Example 1 above. A dehydration reaction was performed under the same conditions. The catalytic activity (conversion rate of 3M1,3BDO) of the reaction and the selectivity of isoprene, isobutene and unsaturated alcohol are shown in Table 4 (hereinafter the same in Tables 5 to 7). The amount of each catalyst is as follows. The values in parentheses indicate the values of WHSV.
  • Example 11 1.0 g (1.7 h ⁇ 1 )
  • Example 12 1.5 g (1.1 h ⁇ 1 )
  • Example 13 2.0 g (0.85 h ⁇ 1 )
  • Example 14 3.0 g (0.57 h ⁇ 1 )
  • Example 15 4.0 g (0.43 h ⁇ 1 )
  • Example 16 The dehydration reaction was performed under the same conditions as in Example 11 except that the amount of the catalyst was 4.0 g (WHSV: 0.43 h ⁇ 1 ) and the reaction temperature was 340 ° C. Table 4 shows the results.
  • Example 17 A dehydration reaction was performed under the same conditions as in Example 16 except that the amount of the catalyst was 5.0 g (WHSV: 0.34 h ⁇ 1 ). Table 4 shows the results.
  • Example 18 A dehydration reaction was performed under the same conditions as in Example 11 except that the amount of the catalyst was 3.0 g (WHSV: 0.57 h ⁇ 1 ) and the reaction temperature was 360 ° C. Table 4 shows the results.
  • Example 19 A catalyst for producing a conjugated diene prepared under the same conditions as in Example 1 above except that the amount of calcium nitrate tetrahydrate was changed so that the amount of calcium oxide carried was 5 mol% (calcium content 0.05). Using. A dehydration reaction was performed under the same conditions as in Example 11 except that the amount of the catalyst was 5.0 g (WHSV: 0.34 h -1 ) and the reaction temperature was 340 ° C. Table 5 shows the results. [Example 20] A catalyst for producing a conjugated diene prepared under the same conditions as in Example 1 above except that the amount of calcium nitrate tetrahydrate was changed to 10 mol% (calcium content 0.11) to carry calcium oxide. Using.
  • Example 21 A catalyst for producing a conjugated diene prepared under the same conditions as in Example 1 above except that the amount of calcium nitrate tetrahydrate was changed to 20 mol% (calcium content 0.25) of calcium oxide. Using. A dehydration reaction was performed under the same conditions as in Example 11 except that the amount of the catalyst was 4.0 g (WHSV: 0.43 h ⁇ 1 ). Table 5 shows the results.
  • Example 22 and 23 A catalyst for producing a conjugated diene prepared under the same conditions as in Example 1 except that the firing temperature was changed was used. A dehydration reaction was performed under the same conditions as in Example 11 except that the amount of the catalyst was 4.0 g (WHSV: 0.43 h ⁇ 1 ). Table 6 shows the results. The respective firing temperatures are as follows. Example 22 700 ° C. [Example 23] 900 ° C
  • Example 24 A dehydration reaction was performed under the same conditions as in Example 17 except that the raw material fluid was changed to 1,3-butanediol. Table 7 shows the results. In Table 7, “MEK + MVK” indicates the selectivity of methyl ethyl ketone and methyl vinyl ketone.
  • the experimental conditions of Example 24 satisfy the requirements of a WHSV of 1.5 h ⁇ 1 or less and a firing temperature of 700 ° C. or more and 1200 ° C. or less. The reaction temperature satisfies the requirement of 250 ° C. or more and 400 ° C. or less.
  • Example 25 A dehydration reaction was performed under the same conditions as in Example 24 except that the reaction temperature was changed to 360 ° C.
  • Example 25 shows the results.
  • the experimental conditions of Example 25 satisfy the requirements of a WHSV of 1.5 h ⁇ 1 or less and a firing temperature of 700 ° C. or more and 1200 ° C. or less. Further, the reaction temperature satisfies the requirement of 250 ° C. or more and 400 ° C. or less.
  • Example 26 A dehydration reaction was performed under the same conditions as in Example 24 except that the reaction temperature was changed to 380 ° C. Table 7 shows the results.
  • the experimental conditions of Example 26 satisfy the requirements of a WHSV of 1.5 h ⁇ 1 or less and a firing temperature of 700 ° C. or more and 1200 ° C. or less. Further, the reaction temperature satisfies the requirement of 250 ° C. or more and 400 ° C. or less.
  • Table 6 shows that the catalyst calcined at 700 ° C. or higher mainly produces isoprene, and the catalyst calcined at a higher temperature has a higher isoprene selectivity.
  • a catalyst calcined at 700 ° C. or lower may have a low conversion.
  • the surface area of the catalyst may decrease, and the conversion may decrease.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

【課題】単一触媒で3-メチル-1,3-ブタンジオールからイソプレン、または1,3-ブタンジオールから1,3-ブタジエンを製造する技術を提供する。 【解決手段】共役ジエン製造用触媒は、1分子の3-メチル-1,3-ブタンジオールから2分子の水分子を脱水してイソプレンを生成するため、または1分子の1,3-ブタンジオールから2分子の水分子を脱水して1,3-ブタジエンを生成するために、酸化ジルコニウム及び酸化カルシウムを含む。また、共役ジエンの製造方法は、単一触媒として、前記共役ジエン製造用触媒に、3-メチル-1,3-ブタンジオールを含む流体、または1,3-ブタンジオールを含む流体を接触させて、脱水反応を進行させ、イソプレンまたは1,3-ブタジエンである共役ジエンを含む流体を得る工程を含む。

Description

共役ジエン製造用触媒、前記触媒の製造方法、及び共役ジエンの製造方法
 本発明は、イソプレンまたは1,3-ブタジエンを製造する技術に関する。
 合成ゴムの原料などに用いられるイソプレンや1,3-ブタジエン(以下、これらをまとめて「共役ジエン」ともいう)は、ナフサの熱分解によりエチレンの併産品として製造するナフサクラッキングが主要な製造方法である。また、1,3-ブタジエンについては、ブテンの酸化脱水素プロセスや、エタノールまたはアセトアルデヒドの二量化プロセスといった単産プロセスも知られている。
 この他、石油化学原料に限らず、バイオマス由来の原料から発酵法などにより製造可能なアルコールから1,3-ブタジエンを製造するプロセスは、環境負荷の小さな単産プロセスとして開発の取り組みが種々成されている。
 その中でも特に、単一触媒で共役ジエンを生成する反応を進行させることが可能な触媒、及びこの触媒に適した簡素なプロセスの開発が重要となっている。
 例えば、特許文献1~4には、C4の各種ジオール型の化合物から、1つの二重結合を有する不飽和アルコールを製造する触媒として、酸化ジルコニウムとカルシウムとを組み合わせた触媒を用いる技術が記載されている。 
 しかしながら、これらの特許文献には、ジオール型の化合物から、シンプルなプロセスで共役ジエンを製造する技術は開示されていない。
 また、特許文献5には、アルカリ土類元素や希土類元素から選択された元素をドーパントとして含むジルコニアを触媒として、1,3-ジオール型の原料の脱水反応を進行させ、不飽和アルコールを得た後、シリカアルミナ触媒などの脱水触媒を用いて不飽和アルコールの脱水反応を進行させて1,3-ブタジエンなどのジエン化合物を得る技術が記載されている。 
 しかしながら特許文献5に記載の手法は、複数種類の触媒を必要としており、ジエン化合物を得るプロセスが複雑になる。
特開2015-54819号公報 特開2017-1975号公報 特開2017-14133号公報 特開2017-61429号公報 特開2017-186272号公報
 本発明は、このような背景の下になされたものであり、3-メチル-1,3-ブタンジオールからイソプレン、または1,3-ブタンジオールから1,3-ブタジエンを単一触媒で製造する技術を提供する。
 本発明は、1分子の3-メチル-1,3-ブタンジオールから2分子の水を脱水してイソプレンを生成する反応を進行させる共役ジエン製造用触媒、または1分子の1,3-ブタンジオールから2分子の水を脱水して1,3-ブタジエンを生成する反応を進行させる共役ジエン製造用触媒であって、酸化ジルコニウム及び酸化カルシウムを含むことを特徴とする。
 前記共役ジエン製造用触媒は、当該共役ジエン製造用触媒の重量に対する、単位時間当たりの前記3-メチル-1,3-ブタンジオール、または1,3-ブタンジオールの質量流量(WHSV:Weight Hourly Space Velocity)が1.5h-1以下である条件下で使用されるものである。
 このとき酸化ジルコニウムのジルコニウム原子1モルに対し、前記酸化カルシウムのカルシウム原子の含有量が0.01モル以上、0.3モル以下の範囲内となるように含有割合を調節してもよい。
 前記酸化カルシウムは、前記酸化ジルコニウムに担持してもよい。 
 酸化ジルコニウムは正方晶型または立方晶型である場合を例示できる。このとき、酸化ジルコニウムは、イットリア安定化ジルコニア(YSZ)により構成してもよい。
 また、前記共役ジエン製造用触媒の製造方法は、酸化ジルコニウム、もしくは、ジルコニウムを含む前駆体を700℃以上、1200℃以下の範囲内の温度下で焼成する工程を含むことを特徴とする。
 さらに、本発明の共役ジエンの製造方法は、共役ジエン製造用触媒に、3-メチル-1,3-ブタンジオールを含む流体を接触させて1分子の3-メチル-1,3-ブタンジオールから2分子の水を脱水してイソプレンである共役ジエンを含む流体を得る工程を含むこと、または共役ジエン製造用触媒に、1,3-ブタンジオールを含む流体を接触させて1分子の1,3-ブタンジオールから2分子の水を脱水して1,3-ブタジエンである共役ジエンを含む流体を得る工程を含むことを特徴とする。 
 ここで前記共役ジエンを含む流体を得る工程は、前記共役ジエン製造用触媒の重量に対する、単位時間当たりの前記3-メチル-1,3-ブタンジオール、または1,3-ブタンジオールの質量流量(WHSV)が1.5h-1以下であることが好適である。そして当該工程は、250℃以上、400℃以下の範囲内の反応温度下で行われることが好ましい。この他、前記共役ジエンを含む流体を得る工程を実施する前に、前記共役ジエン製造用触媒を700℃以上、1200℃以下の範囲内の温度下で焼成する工程を含んでもよい。
 本共役ジエン製造用触媒は、1分子の3-メチル-1,3-ブタンジオールから2分子の水を脱水してイソプレンを生成し、または1分子の1,3-ブタンジオールから2分子の水を脱水して1,3-ブタジエンを生成する脱水反応を進行させることができるので、これらの原料からシンプルなプロセスで効率よく共役ジエンを製造することができる。
<共役ジエン製造用触媒、及びその製造方法>
 本例の共役ジエン製造用触媒は、酸化ジルコニウム及び酸化カルシウムを含み、1分子の3-メチル-1,3-ブタンジオール(以下、「3M1,3BDO」とも記す)から2分子の水を脱水させてイソプレンを生成する下記(1)式の脱水反応を進行させる。 
Figure JPOXMLDOC01-appb-C000001
 または、前記共役ジエン製造用触媒は、1分子の1,3-ブタンジオール(以下、「1,3BDO」とも記す)から2分子の水を脱水させて1,3―ブタジエンを生成する下記(2)式の脱水反応を進行させる。 
Figure JPOXMLDOC01-appb-I000002
 本例の共役ジエン製造用触媒は、従来、困難と考えられていた、単一触媒で3M1,3BDO、または1,3BDOからの脱水反応を進行させ、共役ジエンを製造するプロセスの実現を可能とする。
 共役ジエン製造用触媒に含まれる酸化ジルコニウムの構成やその調製方法に特段の限定はない。市販の酸化ジルコニウムを用いてもよいし、塩化ジルコニウムなどのジルコニウムを含む前駆体を、酸素雰囲気下で焼成して得たものなどを用いてもよい。また、酸化ジルコニウムは、正方晶型のものを用いてもよいし、立方晶型のものを用いてもよい。
 正方晶型や立方晶型の酸化ジルコニウムとしては、イットリアにより安定化されたイットリア安定化ジルコニア(Yttria-Stabilized Zirconia、YSZ)であってもよい。
 共役ジエン製造用触媒に含まれる酸化カルシウムの構成やその調製方法についても特段の限定はない。市販の酸化カルシウムを用いてもよいし、硝酸カルシウムや水酸化カルシウムなどのカルシウムを含む前駆体を、酸素雰囲気下で焼成して得たものなどを用いてもよい。また、カルシアにより安定化されたカルシア安定化ジルコニア(Calcia-Stabilized Zirconia、CSZ)であってもよい。
 共役ジエン製造用触媒に含まれる酸化ジルコニウムは、3M1,3BDOや1,3BDOの脱水反応を進行させる。一方、酸化カルシウムは塩基として作用し、酸化ジルコニウムの酸性を抑制する。その結果、3M1,3BDOや1,3BDOの分解反応の進行を抑制し、結果的に目的物の選択率を高める。また、酸化ジルコニウムの酸点と、酸化カルシウムの塩基点が協奏的に作用することにより、酸化ジルコニウムを単独で用いた場合と比べて反応活性が向上するものと考えられる。
 3M1,3BDOや1,3BDOを含む原料流体と効率的に接触させる観点では、酸化ジルコニウムや酸化カルシウムは、例えばナノメートルオーダーからマイクロメートルオーダーの微粒子の状態で共役ジエン製造用触媒に含まれていてもよい。
 また、既述のカルシア安定化ジルコニアなどのように、酸化ジルコニウムの骨格構造中にカルシウム原子を含む複合酸化物として構成されていてもよい。
 共役ジエン製造用触媒は、担体に微粒子状の酸化ジルコニウムや酸化カルシウム、またはその複合酸化物を担持して構成してもよい。副生物の生成を抑えるため、担体は3M1,3BDOや1,3BDOに対する反応活性を持たないもの、あるいは比表面積が小さく実質的に反応に影響がない担体を用いることが好ましい。 
 このような担体として、シリカ、α-アルミナ、炭素、シリコンカーバイドからなる担体原料群から少なくとも一つ選択される担体原料を含む担体を例示することができる。
 共役ジエン製造用触媒は、前記微粒子よりも直径の大きな粉体状の担体の表面に、酸化ジルコニウム、酸化カルシウム、またはその複合酸化物を分散担持した構成としてもよい。また、例えば粒状やリング状に成形された担体の表面上に、酸化ジルコニウム、酸化カルシウム、またはその複合酸化物を分散担持した構成としてもよい。 
 担体に酸化ジルコニウム、酸化カルシウム、またはその複合酸化物を分散担持する手法には特段の限定はない。例えば含浸法、沈殿法、混練法などの公知の担持法を用いることができる。
 上述の各種担持法を実施するにあたり、これらの手法を用いて担体の表面に酸化ジルコニウムや酸化カルシウム、またはその複合酸化物の前駆体を担持した後、焼成を行って、担体の表面に分散担持された各前駆体を酸化ジルコニウムや酸化カルシウム、またはその複合酸化物に変換してもよい。
 また、酸化ジルコニウムや酸化カルシウム、またはその複合酸化物を担持した後の共役ジエン製造用触媒が粉体状である場合には、共役ジエンの製造プロセスにおける使用態様に応じ、粒状やリング状などに成形してもよい。
 さらにまた、共役ジエン製造用触媒が酸化ジルコニウムと酸化カルシウムとにより構成される場合には、酸化カルシウムの微粒子よりも直径の大きな粉体状の酸化ジルコニウムの表面に、酸化カルシウムを分散担持した構成としてもよい。また、例えば粒状やリング状に成形された酸化ジルコニウムの表面上に、酸化カルシウムを分散担持した構成としてもよい。 
 酸化ジルコニウムに酸化カルシウムを分散担持する手法についても特段の限定はない。例えば含浸法、沈殿法、混練法などの公知の担持法を用いることができる。
 上述の酸化ジルコニウムへの酸化カルシウムの担持を実施するにあたり、これらの手法を用いて酸化ジルコニウムの前駆体の表面に酸化カルシウムの前駆体を担持した後、焼成を行って、各前駆体を酸化ジルコニウム及び酸化カルシウムに変換してもよい。この結果、表面に酸化カルシウムが分散担持された酸化ジルコニウムを得ることができる。 
 また、酸化カルシウムを担持した酸化ジルコニウムである共役ジエン製造用触媒が粉体状である場合には、共役ジエンの製造プロセスにおける使用態様に応じ、粒状やリング状などに成形してもよい。
 ここで共役ジエン製造用触媒に含まれる酸化ジルコニウムは、例えば700℃以上、1200℃以下の範囲内の温度、好適には800℃以上、1000℃以下の範囲内の温度にて焼成されたものであることが好ましい。焼成を行うことにより特定の結晶面(例えば正方晶)の酸化ジルコニウムが得られ、本反応に有効な表面を形成することができる。このとき、700℃以下で焼成した共役ジエン製造用触媒は、所望の結晶面が十分に得られず、転化率が低くなるおそれがある。一方で1200℃以上の温度で触媒を焼成すると、共役ジエン製造用触媒の表面積が低下することにより、転化率が低下する場合がある。
 市販の酸化ジルコニウムや、前駆体から酸化ジルコニウムを形成する際の焼成温度が低い酸化ジルコニウムなどは、上記温度範囲にて焼成を行うことにより、より高い脱水反応活性を発揮させることができる。また、前駆体から酸化ジルコニウムを得る焼成を行う際の焼成温度を700℃以上、1200℃以下の範囲内の温度とし、酸化ジルコニウムの形成と、所定の結晶面を得る処理とを併せて行ってもよい。
 焼成雰囲気は、例えば空気雰囲気でもよいし、窒素ガスなどの不活性ガス雰囲気でもよい。 
 また酸化ジルコニウムの焼成は、反応前であればいつでもよく、触媒の製造時や共役ジエンの製造プロセス用反応器へ充填した後のタイミングにて実施してもよい。
 上述の共役ジエン製造用触媒は、前記反応器に充填された共役ジエン製造用触媒の重量に対する、単位時間当たりの3M1,3BDO、または1,3BDOの質量流量(WHSV:Weight Hourly Space Velocity)が1.5h-1以下である条件下で使用されることが好ましい。
 本例の共役ジエン製造用触媒における、酸化ジルコニウムと酸化カルシウムとの含有比は、酸化ジルコニウムのジルコニウム原子1モルに対し、酸化カルシウムのカルシウム原子の含有量が0.01モル以上、0.3モル以下の範囲内であることが好ましい。より好適には、同カルシウム原子の含有量は0.05モル以上、0.3モル以下の範囲内であるとよい。 
 カルシウム原子の含有量が0.01モル未満の場合には、3M1,3BDOや1,3BDOの分解反応の進行を抑制する作用や、酸化ジルコニウムの酸点と、酸化カルシウムの塩基点との協奏作用が十分に得られなくなるおそれがある。また、カルシウム原子の含有量が0.3モルを超える場合には、酸化ジルコニウム側における3M1,3BDOや1,3BDOの脱水反応が阻害されるおそれが生じる。
<共役ジエンの製造方法> 
 以上に説明した共役ジエン製造用触媒を用いて、3M1,3BDOからイソプレンを生成し、または1,3BDOから1,3―ブタジエンを生成する共役ジエンの製造方法について説明する。 
 例えば粉末状の共役ジエン製造用触媒は、流動床型、懸濁床型、移動床型などの反応器に使用することが可能であり、さらに粒状やリング状などに成形された共役ジエン製造用触媒は、固定床型の反応器に使用することができる。
 ここで、共役ジエン製造用触媒を収容する反応器が十分な耐熱性を備えている場合などには、既述の700℃以上、1200℃以下の範囲内の温度、好適には800℃以上、1000℃以下の範囲内の温度で共役ジエン製造用触媒を焼成する工程を、共役ジエンの製造を開始する前の前処理として実施してもよい。
 そして、反応プロセスに応じた形状の共役ジエン製造用触媒が収容された反応器に対し、3M1,3BDOの流体、または1,3BDOの流体を、所定の温度まで加熱し反応器に供給する。この結果、反応器内で原料流体と共役ジエン製造用触媒に含まれる酸化ジルコニウム及び酸化カルシウムとを接触させて、3M1,3BDOの流体、または1,3BDOからの脱水反応を進行させる。従って、本例の反応プロセスでは、3M1,3BDOの流体からイソプレンを生成し、または1,3BDOの流体から1,3―ブタジエンを生成することができる。
 ここで、原料流体に含まれる3M1,3BDOは、4,4―ジメチルジオキサンとメタノールを反応させるプロセスや3-メチル―3-ブテン―1-オールを水和するプロセスから得たものを用いることができる。 
 また、原料流体に含まれる1,3BDOは、糖を原料にして例えばスマートセルを用いた発酵法により製造されたものを用いることができる。または、原料流体に含まれる1,3BDOは、バイオマス由来のものに限定されず、例えばアセチレンとホルムアルデヒドとを反応させる工業プロセスにて製造されたものであってもよい。
 原料流体は、反応器内の温度が例えば250℃以上、400℃以下の範囲内の温度、好適には325℃以上、400℃以下、より好適には340℃以上、380℃以下の範囲内に維持されるようにしてもよい。340℃以上の反応温度とすることにより、比較的高い転化率、及び共役ジエン収率が得られる。
 また、反応器に収容された触媒重量に対する、原料流体に含まれる3M1,3BDOや1,3BDOの質量流量の比(WHSV=F/W、W:触媒重量、F:3M1,3BDOや1,3BDOの質量流量)は、1.5h-1以下であることが好ましい。WHSVが1.5h-1以下の条件下で共役ジエン製造用触媒と3M1,3BDOや1,3BDOとを接触させることにより、脱水反応を十分に進行させることができ、1.0h-1以下とすることにより、脱水反応を更に進行させることができる。
 また、3M1,3BDOや1,3BDOの転化率を向上させるため、反応器から流出した流体の一部を抜き出して原料流体に合流させ、再度、反応器に供給するリサイクルを行ってもよい。 
 反応器から流出した流体は、蒸留などにより不純物が分離された後、製品共役ジエンとして出荷される。
 本実施の形態の共役ジエン製造用触媒、及びこれを用いた共役ジエンの製造方法によれば以下の効果がある。共役ジエン製造用触媒は、1分子の3M1,3BDOから2分子の水を脱水してイソプレンを生成し、または1分子の1,3BDOから2分子の水を脱水して1,3―ブタジエンを生成する脱水反応を進行させることができるので、これらの原料からシンプルなプロセスで効率よく共役ジエンを製造することができる。
 特に、本例の共役ジエン製造用触媒は、共役ジエン製造用触媒の重量に対する、単位時間当たりの3M1,3BDO、1,3BDO質量流量(WHSV:Weight Hourly Space Velocity)が1.5h-1以下である条件下で用いることにより、高転化率且つ、共役ジエンの選択率が高くなる。この結果、単位重量当たりの原料から製造される共役ジエンの重量の比を示す原料原単位がよい。 
 そして、単一触媒を用いた3M1,3BDO、1,3BDOからの共役ジエンの生成が可能であることに伴い、反応器の構成が簡素で、付帯設備の少ないシンプルな共役ジエン製造装置を構成することができる。
 以下、実施例により上述の実施形態の具体例を説明するが、本発明はこれらの実施例により限定されるものではない。
[反応装置]
 以下の実施例及び比較例で示す脱水反応には、いずれも固定床の常圧気相流通反応装置を使用した。反応管(パイレックス(登録商標)ガラス製)として内径18mm、全長300mmのものを用いた。反応管の上部に希釈ガスの導入口、及び原料を蒸発させるための気化器が直列に接続され、下部には冷却器、及び気液分離器が設置されている。反応によって生じたガス及び液体はそれぞれ別々に回収し、キャピラリカラム(TC-WAX、30m、0.53mmφ)を接続したガスクロマトグラフ装置(株式会社島津製作所製、GC-8A)にて測定し、検量線補正後、目的物の収量及び原料残量を求め、これらより転化率及び選択率を求めた。
 転化率及び選択率の計算には、以下の計算式を用いた。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
[比較例1]
 共役ジエン製造用触媒として5.6モル%イットリウムを含有した正方晶安定化ジルコニア(第一稀元素化学工業株式会社、YSZ、比表面積79.3m/g)0.5g(焼成温度800℃)を前記常圧気相流通反応装置の反応管に充填し、希釈ガスとして窒素ガスを30mL/分の速度で供給しながら、原料流体である3M1,3BDO(和光純薬工業株式会社)を1.7g/hの速度で供給した(WHSV:3.4h-1)。脱水反応は325℃で行った。反応は合計5時間行い、1時間おきにサンプリングを行い、その平均値より反応成績を求めた。このときの3M1,3BDOの転化率と、目的の共役ジエンであるイソプレン、および分解副生成物であるイソブテン、並びにイソプレンの中間体である不飽和アルコールの選択率とを表1に示す。
[比較例2]
 触媒量を5.0g(WHSV:0.34h-1)とし、反応温度を340℃にした点以外は、前記比較例1と同様の条件で脱水反応を行った。結果を表1に示す。 
[比較例3]
 触媒として単斜晶の酸化ジルコニウム(m-ZrO)(第一稀元素化学工業株式会社、HP、ペレット品粉砕、比表面積100m/g)0.5g(焼成温度800℃、WHSV:3.4h-1)を用いて、比較例1と同様の条件で脱水反応を行った。結果を表1に示す。 
[比較例4]
 触媒として酸化セリウム(第一稀元素化学工業株式会社、HS)0.5g(焼成温度800℃、WHSV:3.4h-1)を用いて、比較例1と同様の条件で脱水反応を行った。結果を表1に示す。 
[比較例5]
 触媒量を4.0g(WHSV:0.43h-1)とし、反応温度350℃で前記比較例4と同様の条件で脱水反応を行った。結果を表1に示す。
[実施例1]
 硝酸カルシウム四水和物(和光純薬工業株式会社、純度98.5%以上)718.1mgに蒸留水を加えて調製した水溶液を、5.6モル%イットリウム含有正方晶安定化ジルコニア(第一稀元素化学工業株式会社、YSZ、比表面積79.3m/g)4.98gに対して10分おきに少量ずつ添加し、110℃で一晩乾燥させた。その後、空気雰囲気中、800℃で3時間焼成し、酸化ジルコニウムに酸化カルシウムを担持した共役ジエン製造用触媒を調製した。実施例1における酸化カルシウムの担持量は7モル%であった。酸化カルシウムの担持量の計算には以下の計算式を用いた。この触媒を用いて前記比較例1と同様の条件で脱水反応を行い、その触媒活性(3M1,3BDOの転化率)を確認した。結果を表2に示す。なお、以下に示す表2、3、5、7中には酸化ジルコニウムのジルコニウム原子1モルに対する、酸化カルシウムのカルシウム原子の含有量を「カルシウム含有量」と記して併記してある。本例では、酸化ジルコニウムのジルコニウム原子1モルに対し、酸化カルシウムのカルシウム原子の含有量0.08モルに相当する。
Figure JPOXMLDOC01-appb-M000005
[実施例2~5]
 焼成温度を変えた点以外は、上記実施例1と同様の条件で共役ジエン製造用触媒を調製し、脱水反応を行った。結果を表2に示す。それぞれの焼成温度は以下の通りとなる。
 [実施例2] 600℃
 [実施例3] 700℃
 [実施例4] 900℃
 [実施例5] 1000℃
[実施例6~10]
 硝酸カルシウム四水和物の量を変更し酸化カルシウムの担持量を15モル%(カルシウム含有量0.18)とした点、及び反応温度を変えた点以外は、上記実施例1と同様の条件で調製した共役ジエン製造用触媒を用いて脱水反応を行った。これらの触媒の触媒活性(3M1,3BDOの転化率)を確認した結果を表3に示す。それぞれの反応温度は以下の通りとなる。
 [実施例6] 275℃
 [実施例7] 300℃
 [実施例8] 325℃
 [実施例9] 350℃
 [実施例10]375℃
[実施例11~15]
 酸化カルシウムの担持量を実施例9と同じ量とし、上記実施例1と同様の条件で調製した共役ジエン製造用触媒を用いて触媒量を変えてWHSVを変えた点以外は、実施例9と同じ条件で脱水反応を行った。反応の触媒活性(3M1,3BDOの転化率)、イソプレン、イソブテン、不飽和アルコールの選択率を表4に示す(以下、表5~7において同じ)。それぞれの触媒量は以下の通りとなる。括弧内はWHSVの値を示している。
 [実施例11] 1.0g(1.7h-1
 [実施例12] 1.5g(1.1h-1
 [実施例13] 2.0g(0.85h-1
 [実施例14] 3.0g(0.57h-1
 [実施例15] 4.0g(0.43h-1
[実施例16]
 触媒量を4.0g(WHSV:0.43h-1)、反応温度を340℃にした点以外は、上記実施例11と同様の条件で脱水反応を行った。結果を表4に示す。 
[実施例17]
 触媒量を5.0g(WHSV:0.34h-1)にした点以外は、上記実施例16と同様の条件で脱水反応を行った。結果を表4に示す。 
[実施例18]
 触媒量を3.0g(WHSV:0.57h-1)、反応温度を360℃にした点以外は、上記実施例11と同様の条件で脱水反応を行った。結果を表4に示す。 
[実施例19]
 硝酸カルシウム四水和物の量を変更し酸化カルシウムの担持量を5モル%(カルシウム含有量0.05)とした点以外、上記実施例1と同様の条件で調製した共役ジエン製造用触媒を用いた。触媒量を5.0g(WHSV:0.34h-1)、反応温度を340℃にした点以外は、上記実施例11と同様の条件で脱水反応を行った。結果を表5に示す。 
[実施例20]
 硝酸カルシウム四水和物の量を変更し酸化カルシウムの担持量を10モル%(カルシウム含有量0.11)とした点以外、上記実施例1と同様の条件で調製した共役ジエン製造用触媒を用いた。触媒量を4.0g(WHSV:0.43h-1)にした点以外は、上記実施例11と同様の条件で脱水反応を行った。結果を表5に示す。
[実施例21]
 硝酸カルシウム四水和物の量を変更し酸化カルシウムの担持量を20モル%(カルシウム含有量0.25)とした点以外、上記実施例1と同様の条件で調製した共役ジエン製造用触媒を用いた。触媒量を4.0g(WHSV:0.43h-1)にした点以外は、上記実施例11と同様の条件で脱水反応を行った。結果を表5に示す。
[実施例22、23]
 焼成温度を変えた点以外は、上記実施例1と同様の条件で調製した共役ジエン製造用触媒を用いた。触媒量を4.0g(WHSV:0.43h-1)にした点以外は、上記実施例11と同様の条件で脱水反応を行った。結果を表6に示す。それぞれの焼成温度は以下の通りとなる。
 [実施例22] 700℃
 [実施例23] 900℃
 [実施例24]
 原料流体を1,3-ブタンジオールに変えた点以外は上記実施例17と同様の条件で脱水反応を行った。結果を表7に示す。表7中、「MEK+MVK」は、メチルエチルケトン及びメチルビニルケトンの選択率を示している。実施例24の実験条件は、WHSVが1.5h-1以下、焼成温度が700℃以上、1200℃以下の範囲内の要件を満たしている。また、反応温度が250℃以上、400℃以下の要件を満たしている。 
[実施例25]
反応温度を360℃にした点以外は、上記実施例24と同様の条件で脱水反応を行った。結果を表7に示す。実施例25の実験条件は、WHSVが1.5h-1以下、焼成温度が700℃以上、1200℃以下の範囲内の要件を満たしている。また、反応温度が250℃以上、400℃以下の要件を満たしている 
[実施例26]
 反応温度を380℃にした点以外は、上記実施例24と同様の条件で脱水反応を行った。結果を表7に示す。実施例26の実験条件は、WHSVが1.5h-1以下、焼成温度が700℃以上、1200℃以下の範囲内の要件を満たしている。また、反応温度が250℃以上、400℃以下の要件を満たしている。
[比較例6]
 焼成温度が800℃の酸化セリウム(第一稀元素化学工業株式会社、HS)0.5g(WHSV:3.4h-1)を用いて、実施例25と同様の条件で脱水反応を行った。結果を表7に示す。 
[比較例7]
 触媒量を5.0g(WHSV:0.34h-1)にした点以外は、上記比較例6と同様の条件で脱水反応を行った。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 表3によれば、250℃以上の反応温度で反応させると、3M1,3BDOの転化率が7.5%以上となり触媒活性があることが確認できる。高温で反応させるほど転化率が高く、触媒活性が高くなることがわかる。一方で400℃以上の温度で反応させると触媒上にコークが析出し、触媒が劣化するため不利となるおそれがある。
 表4よりWHSVが1.7h-1では100%近い転化率が得られているが、不飽和アルコールが主生成物となり、さらに脱水反応を進行させる余地がある。一方でWHSVが1.1h-1以下では共役ジエン化合物であるイソプレンが主生成物となる。以上のように、WHSVが小さいほど(触媒量が多いほど)共役ジエン化合物の選択率が上がることが分かり、WHSVが1.5h-1以下であれば共役ジエン化合物の選択率としては十分であると考えられる。WHSVが0.1h-1以下になると単位触媒量当たりの生産速度が低下するため、好ましくない。
 表5よりカルシウム含有量が5モル%ではイソプレンの選択率が77.0%と比較的高く、カルシウムが含有されていない比較例2のYSZを触媒とするとイソプレンの選択率が33.6%と低い。そのため、カルシウム含有量が少なくとも1モル%(0.01モル)以上であれば、イソプレンが主生成物となり、1モル%未満では、カルシウム担持による過分解抑制効果が十分に発現しないため、イソプレンよりも、分解生成物のイソブテンが主生成物となる。 
 一方、表5よりカルシウム含有量が15モル%から20モル%に増加すると、イソプレンの選択率は高く維持されているものの若干低下する。カルシウム含有量が20モル%以上であっても高いイソプレン選択率を示すと考えられるが、カルシウム含有量が30モル%を超えると、ジルコニウムの活性点が過剰に抑制され、触媒活性が低下し、好ましくないと考えられる。
 表6より700℃以上で焼成した触媒はイソプレンが主に生成し、高温で焼成した触媒ほどイソプレン選択率が高いことがわかる。700℃以下で焼成した触媒は転化率が低くなるおそれがある。一方で1200℃以上の温度で触媒を焼成すると、触媒の表面積が低下し転化率が低下するおそれがある。
 表7より1,3BDOを原料にすると1,3-ブタジエンが主に生成することがわかり、本触媒はイソプレンだけでなく、1,3-ブタジエンの製造用触媒としての活性も有している。

 

Claims (15)

  1.  1分子の3-メチル-1,3-ブタンジオールから2分子の水を脱水してイソプレンを生成する反応を進行させる共役ジエン製造用触媒であって、酸化ジルコニウム及び酸化カルシウムを含むことを特徴とする共役ジエン製造用触媒。
  2.  前記共役ジエン製造用触媒は、当該共役ジエン製造用触媒の重量に対する、単位時間当たりの前記3-メチル-1,3-ブタンジオールの質量流量(WHSV:Weight Hourly Space Velocity)が1.5h-1以下である条件下で使用されるものであることを特徴とする請求項1に記載の共役ジエン製造用触媒。
  3.  1分子の1,3-ブタンジオールから2分子の水を脱水して1,3-ブタジエンを生成する反応を進行させる共役ジエン製造用触媒であって、酸化ジルコニウム及び酸化カルシウムを含むことを特徴とする共役ジエン製造用触媒
  4.  前記共役ジエン製造用触媒は、当該共役ジエン製造用触媒の重量に対する、単位時間当たりの前記1,3-ブタンジオールの質量流量(WHSV)が1.5h-1以下である条件下で使用されるものであることを特徴とする請求項3に記載の共役ジエン製造用触媒。
  5.  前記酸化ジルコニウムのジルコニウム原子1モルに対し、前記酸化カルシウムのカルシウム原子の含有量が0.01モル以上、0.3モル以下の範囲内であることを特徴とする請求項1または3に記載の共役ジエン製造用触媒。
  6.  前記酸化カルシウムは、前記酸化ジルコニウムに担持されていることを特徴とする請求項1または3に記載の共役ジエン製造用触媒。
  7.  前記酸化ジルコニウムが正方晶型または立方晶型であることを特徴とする請求項1または3に記載の共役ジエン製造用触媒。
  8.  前記酸化ジルコニウムは、イットリア安定化ジルコニア(YSZ)であることを特徴とする請求項1または3に記載の共役ジエン製造用触媒。
  9.  請求項1または3に記載の共役ジエン製造用触媒の製造方法であって、前記酸化ジルコニウム、もしくは、ジルコニウムを含む前駆体を700℃以上、1200℃以下の範囲内の温度下で焼成する工程を含むことを特徴とする共役ジエン製造用触媒の製造方法。
  10.  共役ジエンの製造方法において、請求項1に記載の共役ジエン製造用触媒に、3-メチル-1,3-ブタンジオールを含む流体を接触させて1分子の3-メチル-1,3-ブタンジオールから2分子の水を脱水してイソプレンである共役ジエンを含む流体を得る工程を含むことを特徴とする共役ジエンの製造方法。
  11.  前記共役ジエンを含む流体を得る工程は、前記共役ジエン製造用触媒の重量に対する、単位時間当たりの前記3-メチル-1,3-ブタンジオールの質量流量(WHSV)が1.5h-1以下であることを特徴とする請求項10に記載の共役ジエンの製造方法。
  12.  共役ジエンの製造方法において、請求項3に記載の共役ジエン製造用触媒に、1,3-ブタンジオールを含む流体を接触させて1分子の1,3-ブタンジオールから2分子の水を脱水して1,3-ブタジエンである共役ジエンを含む流体を得る工程を含むことを特徴とする共役ジエンの製造方法。
  13.  前記共役ジエンを含む流体を得る工程は、前記共役ジエン製造用触媒の重量に対する、単位時間当たりの前記1,3-ブタンジオールの質量流量(WHSV)が1.5h-1以下であることを特徴とする請求項12に記載の共役ジエンの製造方法。
  14.  前記共役ジエンを含む流体を得る工程は、250℃以上、400℃以下の範囲内の反応温度下で行われることを特徴とする請求項10または12に記載の共役ジエンの製造方法。
  15.  前記共役ジエンを含む流体を得る工程を実施する前に、前記共役ジエン製造用触媒を700℃以上、1200℃以下の範囲内の温度下で焼成する工程を含むことを特徴とする請求項10または12に記載の共役ジエンの製造方法。
PCT/JP2019/015183 2018-08-03 2019-04-05 共役ジエン製造用触媒、前記触媒の製造方法、及び共役ジエンの製造方法 WO2020026528A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19844039.8A EP3831475B1 (en) 2018-08-03 2019-04-05 Use of a catalyst for producing conjugated diene and production method for conjugated diene
US17/260,704 US20210275991A1 (en) 2018-08-03 2019-04-05 Catalyst for producing conjugated diene, production method for said catalyst, and production method for conjugated diene
US17/845,858 US11717807B2 (en) 2018-08-03 2022-06-21 Method for producing conjugated diene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018147062A JP7262189B2 (ja) 2018-08-03 2018-08-03 共役ジエン製造用触媒、前記触媒の製造方法、及び共役ジエンの製造方法
JP2018-147062 2018-08-03

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/260,704 A-371-Of-International US20210275991A1 (en) 2018-08-03 2019-04-05 Catalyst for producing conjugated diene, production method for said catalyst, and production method for conjugated diene
US17/845,858 Division US11717807B2 (en) 2018-08-03 2022-06-21 Method for producing conjugated diene

Publications (1)

Publication Number Publication Date
WO2020026528A1 true WO2020026528A1 (ja) 2020-02-06

Family

ID=69231643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015183 WO2020026528A1 (ja) 2018-08-03 2019-04-05 共役ジエン製造用触媒、前記触媒の製造方法、及び共役ジエンの製造方法

Country Status (4)

Country Link
US (2) US20210275991A1 (ja)
EP (1) EP3831475B1 (ja)
JP (1) JP7262189B2 (ja)
WO (1) WO2020026528A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR102021018172A2 (pt) * 2021-09-13 2023-03-28 Petróleo Brasileiro S.A. - Petrobras Método de preparo do catalisador para produção de butadieno a partir do etanol em uma etapa, catalisador e uso

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011063519A (ja) * 2009-09-15 2011-03-31 Takasago Internatl Corp ω−アルケン−1−オールの製造方法
JP2015054819A (ja) 2013-09-10 2015-03-23 東レ株式会社 3−ブテン−2−オール及び1,3−ブタジエンの製造方法
JP2017001975A (ja) 2015-06-08 2017-01-05 国立大学法人 千葉大学 不飽和アルコールの製造方法及び触媒
JP2017014133A (ja) 2015-06-30 2017-01-19 国立大学法人 千葉大学 ホモアリルアルコールの製造方法
JP2017061429A (ja) 2015-09-25 2017-03-30 国立大学法人 千葉大学 不飽和アルコールの製造方法及び触媒
JP2017508717A (ja) * 2014-02-03 2017-03-30 バテル メモリアル インスティチュート 2,3−ブタンジオールのブタジエンへの変換
JP2017186272A (ja) 2016-04-05 2017-10-12 国立大学法人 千葉大学 ジエン化合物の製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4005048A (en) * 1971-04-27 1977-01-25 Imperial Chemical Industries Limited Treating hydrocarbons
US4028424A (en) 1974-11-15 1977-06-07 Japan Synthetic Rubber Co., Ltd. Process for preparing unsaturated alcohols
US4593145A (en) 1984-03-12 1986-06-03 Kuraray Company Limited Process for producing isoprene
CA1262813A (en) 1986-06-26 1989-11-14 Corning Glass Works Preparation of high purity, homogeneous zirconia mixtures
US20050124840A1 (en) 2003-12-05 2005-06-09 Conocophillips Company Process for the production of olefins from alkanes with carbon monoxide co-feed and/or recycle
US20090325791A1 (en) 2008-06-27 2009-12-31 Wei Pan Hydrocarbon Dehydrogenation with Zirconia
JP5317593B2 (ja) 2008-09-03 2013-10-16 株式会社ブリヂストン 触媒担体
US20120115709A1 (en) * 2010-11-09 2012-05-10 Sienna Technologies, Inc. High Temperature Catalysts for Decomposition of Liquid Monopropellants and Methods for Producing the Same
US8703455B2 (en) * 2012-08-29 2014-04-22 Scientist of Fourtune, S.A. Production of volatile dienes by enzymatic dehydration of light alkenols
WO2015130451A1 (en) * 2014-02-27 2015-09-03 Cobalt Technologies, Inc. Regioselective dehydration of terminal alcohols
WO2016007196A1 (en) * 2014-07-07 2016-01-14 Cobalt Technologies, Inc. Biomass conversion to butadiene
EP3170554B1 (en) 2014-07-19 2019-12-11 Hitachi Zosen Corporation Catalyst for methanation reaction, method for producing catalyst for methanation reaction, and method for producing methane
MX2017003891A (es) 2014-12-12 2017-08-07 Versalis Spa Proceso para la produccion de 1,3 butadieno a partir de 1,3 butanodiol.
US20160184810A1 (en) * 2014-12-29 2016-06-30 White Dog Labs, Inc. Dehydration catalyst and method of making and using the same
JP6674860B2 (ja) 2016-08-02 2020-04-01 日立造船株式会社 メタン化反応用触媒、メタン化反応用触媒の製造方法およびメタンの製造方法
EP3396801B1 (en) 2017-04-24 2020-10-21 Fujikura Ltd. High voltage terminal cooling structure
CN107382645B (zh) * 2017-07-03 2023-04-11 湖北三里枫香科技有限公司 一种异戊二烯的合成工艺方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011063519A (ja) * 2009-09-15 2011-03-31 Takasago Internatl Corp ω−アルケン−1−オールの製造方法
JP2015054819A (ja) 2013-09-10 2015-03-23 東レ株式会社 3−ブテン−2−オール及び1,3−ブタジエンの製造方法
JP2017508717A (ja) * 2014-02-03 2017-03-30 バテル メモリアル インスティチュート 2,3−ブタンジオールのブタジエンへの変換
JP2017001975A (ja) 2015-06-08 2017-01-05 国立大学法人 千葉大学 不飽和アルコールの製造方法及び触媒
JP2017014133A (ja) 2015-06-30 2017-01-19 国立大学法人 千葉大学 ホモアリルアルコールの製造方法
JP2017061429A (ja) 2015-09-25 2017-03-30 国立大学法人 千葉大学 不飽和アルコールの製造方法及び触媒
JP2017186272A (ja) 2016-04-05 2017-10-12 国立大学法人 千葉大学 ジエン化合物の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RIKAKO SHIMOTO; YASUHIRO YAMADA; SATOSHI SATO: "1G27 Dehydration reaction of 1, 3-butanediol by zirconia supported calcium oxide", PROCEEDINGS OF THE FORUM A OF 118TH CATALYSIS SOCIETY OF JAPAN , vol. 118, no. A1, 14 September 2016 (2016-09-14), pages 394 - 395, XP009525180, ISSN: 1343-9936 *
See also references of EP3831475A4

Also Published As

Publication number Publication date
EP3831475A4 (en) 2021-09-22
US11717807B2 (en) 2023-08-08
EP3831475B1 (en) 2024-04-24
US20210275991A1 (en) 2021-09-09
US20220323939A1 (en) 2022-10-13
JP2020018994A (ja) 2020-02-06
JP7262189B2 (ja) 2023-04-21
EP3831475A1 (en) 2021-06-09

Similar Documents

Publication Publication Date Title
US7285685B2 (en) Method for dehydrogenation of carbonyl compounds
JP5371692B2 (ja) 共役ジオレフィンの製造方法
WO2009136537A1 (ja) グリセリンの脱水反応によるアクロレイン及びアクリル酸の製造用触媒と、その製造方法
JP2017520511A (ja) アルケノールの製造方法および1,3−ブタジエンの製造のためのその使用
US20140206527A1 (en) Catalyst For Preparing Acrolein And Acrylic Acid By Dehydration Of Glycerin, And Its Production Process
JP2013508127A (ja) グリセリンの脱水反応によって不飽和アルデヒドおよび/または不飽和カルボン酸を製造するのに使用する触媒の製造方法と、この方法で得られる触媒
WO2012005348A1 (ja) 新規なグリセリン脱水用触媒とその製造方法
KR20160143272A (ko) 페라이트 금속 산화물 촉매의 제조방법
JP2007137785A (ja) 多価アルコールの脱水方法
JP5906167B2 (ja) 金属酸化物触媒、その製造方法及びアルカジエンの製造方法
US11717807B2 (en) Method for producing conjugated diene
JP2010099596A (ja) グリセリンの脱水反応によるアクロレイン及びアクリル酸の製造用触媒と、その製造法
JP6091310B2 (ja) ブタジエンの製造方法
CN108976183B (zh) 一种由糠醛气相加氢制备γ-戊内酯的方法
KR20140068606A (ko) 아이소부틸렌의 제조 방법
JP6815594B2 (ja) ジエン化合物の製造方法
JP2012067048A (ja) ブタジエンの製造方法
TW201914688A (zh) 由乙醇原料製造乙烯的方法
EP3315194B1 (en) Catalyst for glycerin dehydration reaction, preparation method therefor, and method for preparing acrolein by using catalyst
JP2017014133A (ja) ホモアリルアルコールの製造方法
WO2014024782A2 (ja) グリセリンからアクリル酸を製造するための触媒とその製造方法
KR20150129566A (ko) 천연가스의 복합 개질반응용 니켈계 촉매
US20160030929A1 (en) Method for preparing catalyst for glycerin dehydration, and method for preparing acrolein
WO2024028336A1 (en) Catalyst for the production of 1,3-butadiene giving a high yield based on a support comprising aluminium and sodium
RU2421441C1 (ru) Одностадийный способ получения изопрена

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19844039

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019844039

Country of ref document: EP

Effective date: 20210303