WO2020026001A1 - Vacunación con microvesículas derivadas de células tumorales para tratamiento de cáncer - Google Patents

Vacunación con microvesículas derivadas de células tumorales para tratamiento de cáncer Download PDF

Info

Publication number
WO2020026001A1
WO2020026001A1 PCT/IB2018/055740 IB2018055740W WO2020026001A1 WO 2020026001 A1 WO2020026001 A1 WO 2020026001A1 IB 2018055740 W IB2018055740 W IB 2018055740W WO 2020026001 A1 WO2020026001 A1 WO 2020026001A1
Authority
WO
WIPO (PCT)
Prior art keywords
microvesicles
cells
tumor
irradiated
cancer
Prior art date
Application number
PCT/IB2018/055740
Other languages
English (en)
French (fr)
Inventor
Benjamín PINEDA OLVERA
Verónica PÉREZ DE LA CRUZ
Original Assignee
Pineda Olvera Benjamin
Perez De La Cruz Veronica
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pineda Olvera Benjamin, Perez De La Cruz Veronica filed Critical Pineda Olvera Benjamin
Priority to PCT/IB2018/055740 priority Critical patent/WO2020026001A1/es
Priority to MX2021001288A priority patent/MX2021001288A/es
Priority to US17/264,551 priority patent/US20220008524A1/en
Priority to CN201880098319.9A priority patent/CN113164568A/zh
Priority to EP18928855.8A priority patent/EP3884958A4/en
Priority to CA3145514A priority patent/CA3145514A1/en
Publication of WO2020026001A1 publication Critical patent/WO2020026001A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/13Tumour cells, irrespective of tissue of origin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0693Tumour cells; Cancer cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5076Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving cell organelles, e.g. Golgi complex, endoplasmic reticulum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/515Animal cells
    • A61K2039/5152Tumor cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55555Liposomes; Vesicles, e.g. nanoparticles; Spheres, e.g. nanospheres; Polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/64Medicinal preparations containing antigens or antibodies characterised by the architecture of the carrier-antigen complex, e.g. repetition of carrier-antigen units

Definitions

  • the present invention relates to the field of health, specifically with the area of brain cancer and other neoplasms with the potential for treatment with microvesicles from tumor cells.
  • Gliomas are the most frequent primary brain tumors in adults and the second cause of cancer in children after leukemia with an incidence of 22 cases per 100,000 inhabitants (1), causing more than 15,000 deaths each year in the United States alone. (two) .
  • the World Health Organization (WHO) classifies them as astrocytomas, oligoastrocytomas, oligodendrogliomas, according to their histological similarity with the cells of the tour. Based on their biological behavior and degree of malignancy they are divided into 4 degrees (I to IV), with glioblastoma (GBM) being the most severe (3) and the most common among all malignant tumors of the brain and the Central Nervous System ( 4 ) .
  • WHO World Health Organization
  • the GBM represents 9% of all brain tumors and 45.7% of primary gliomas, with a mean age of 51 years and a higher frequency in men than in women (1.8: 1) (5, 6).
  • the current reference treatment for GBM consists of extensive surgical resection, followed by radiotherapy and chemotherapy, the latter based on the use of Temozolamide; however, the average survival is 14.6 months and only 5.1% of patients survive more than 5 years, a perspective that has not changed in the last two decades
  • vesicles are lipid bilayer membrane particles that release from most cells, including tumor cells, constitutively or in response to stress, and can be isolated from various body fluids such as: blood, urine, saliva, milk maternal, amniotic fluid, ascites, semen and cerebrospinal fluid
  • VE vascular endothelial fibroblasts
  • Microvesicles (also referred to as microparticles or ectosomes) represent a specific subtype of VE. They are heterogeneous particles in size, ranging from 200 nm to more than 1 pm and are released into the extracellular space by fission to the outside of the membrane plasma (14,15). The exact mechanism by which MVs are generated has not been fully understood, but it is known that a loss of membrane lipid asymmetry occurs (16). At the site where the microvesicles are released, the phosphatidylserine amiophospholipid, normally found on the cytoplasmic side of the membrane, is relocated to the outer layer while the membrane protein topology remains intact (17).
  • MVs lie in their ability to transfer their content to other cells locally or systemically.
  • the MVs can: 1) bind via receptors to the surface of a white cell; 2) fuse with the white cell membrane and discharge its content in the cytosol; or 3) be taken by the cell by endocytosis, which after being endocytosed, can remain isolated within the endosomes and, ultimately, fuse with lysosomes. Alternatively, they can fuse their membrane with that of the endosome and subsequently discharge their contents to the cytosol (horizontal transfer) or be expelled intact outside (transcytosis) (14).
  • the composition of the microvesicles depends largely on the type of cell from which they originated, although the composition of the microvesicles membrane is different from the parental cell, with a significant remodeling (15).
  • the molecules present in the MVs involved in cancer contain a plethora of bioactive molecules that include antigens involved in immunomodulation, transmembrane receptors and ligands, oncoproteins and tumor suppressor proteins, lipids, messenger RNA, microRNA, and genomic and mitochondrial DNA (18 ). These MVs can be fused and interact with multiple cell types by modifying and establishing pre niches metastatic, cell invasion, angiogenesis (19) and innate immune modulation (20).
  • DAMPs damage-associated molecular patterns
  • PAMPs pathogens
  • PRRs pattern recognition receptors
  • VE derived from neoplastic cells have been used.
  • phase I study conducted in 15 patients with stage III / IV metastatic melanoma, the viability of the production of VE from autologous dendritic cells derived from monocytes loaded with the MAGE3 peptide, as well as the safety of its subcutaneous administration; no significant toxicity was observed (> grade II) (24).
  • microvesicles produced by in vitro irradiated neoplastic cells can be used effectively as a therapeutic vaccine for cancer.
  • the present invention relates to said microvesicles that come from neoplastic cells irradiated in vitro.
  • the present invention relates to microvesicles produced by in vitro irradiated tumor cells for use, alone or in combination with one or more antineoplastic treatments, in the treatment or prophylaxis of malignant neoplasms, in response modulation anti-tumor immune, and as prognostic or diagnostic markers in any type of neoplasms.
  • the invention in a third aspect, relates to a therapeutic vaccine for cancer comprising microvesicles produced by in vitro irradiated tumor cells and pharmaceutically acceptable additives.
  • the present invention relates to a process for preparing the microvesicles of the present invention or the therapeutic vaccine of the present invention, wherein said process comprises the step of irradiating neoplastic cells.
  • the present invention is one of many attempts, seeking to create a simple immunotherapeutic alternative and of low cost that improves the expectation of current treatment as an adjuvant or as a single therapy allowing a better expectation and quality of life for patients with various neoplasms.
  • Figure 1 shows the results of the determination of the size of the microvesicles.
  • Figure 2 shows the results of the microscopy of irradiated and non-irradiated C6 glioma cells, as well as microvesicles thereof.
  • A light-field microscopy images of C6 glioma cells (N) and irradiated C6 glioma cells (I) with radiation dose of 50Gy (20X) can be observed.
  • B images of transmission electron microscopy of microvesicles of non-irradiated C6 cells (N) and microvesicles of irradiated C6 cells (I) labeled with annexin V-gold are observed.
  • the bar in the image represents 200 nm.
  • Figure 3 shows the results of the 15% polyacrylamide gel denaturing electrophoresis of proteins obtained from C6 (C6) cells, C6 cell microvesicles non-irradiated (N) and microvesicles of irradiated C6 cells (I).
  • KDa represents the molecular weight marker.
  • Figure 4 shows the results of tumor growth kinetics.
  • Figure 5 shows the results of an evaluation of apoptosis and tumor necrosis.
  • flow cytometry was evaluated: (A) live cells (negative for annexin V and negative for propidium iodide), (B) cells in early apoptosis (positive only for annexin V), (C) late apoptosis ( positive for annexin V and propidium iodide), (D) total cells in apoptosis and (E) necrosis (positive for propidium iodide), in tumors of rats with subcutaneous glioblastoma, 21 after treatment with MV of non-irradiated C6 , Irradiated C6 MV (50 Gy) or PBS (control group).
  • Figure 7 shows a comparative study of cytotoxic T lymphocytes.
  • Flow cytometry analysis of CD8 + cells was performed in (A) blood, (B) spleen and (C) tumor of rats with subcutaneous glioblastoma, 21 after treatment with non-irradiated C6 MV, irradiated C6 MV (50 Gy ) or PBS (control group).
  • Figure 8 shows a comparative study of regulatory T lymphocytes.
  • Flow cytometry analysis of CD4 + / CD25 + / FoxP3 + cells was performed in (A) blood and (B) tumor of rats with subcutaneous glioblastoma, 21 after treatment with non-irradiated C6 MV, irradiated C6 MV (50 Gy) or PBS (control group).
  • Figure 9 shows a comparative study of natural killer cells (NK).
  • NKR-P1 + cells Flow cytometry analysis of NKR-P1 + cells in (A) blood, (B) spleen and (C) tumor of rats with subcutaneous glioblastoma was performed, 21 after treatment with non-irradiated MV of C6, MV of C6 irradiated (50 Gy) or PBS (control group).
  • a representative histogram of NK cells in blood (D) is presented. The results are expressed as the mean + SEM, no significant differences were observed.
  • Figure 10 shows a comparative study of macrophages.
  • Flow cytometry analysis of CD68 + cells in (A) blood, (B) spleen and (C) tumor of rats with subcutaneous glioblastoma was performed, 21 after treatment with non-irradiated C6 MV, irradiated C6 MV (50 Gy ) or PBS (control group).
  • the results are expressed as the mean + SEM, no significant differences were observed.
  • the invention relates to microvesicles that come from in vitro irradiated neoplastic cells, which are formed by a lipid bilayer and on their surface membrane proteins can be found, such as growth factor receptors, integrin receptors and MHC class I molecules. Inside you can find soluble proteins such as proteases and cytokines, as well as various nucleic acids. In addition, they may contain a plethora of bioactive molecules present in microvesicles derived from cancer cells, including antigens involved in immunomodulation, transmembrane receptors and ligands, oncoproteins and tumor suppressor proteins, lipids, mRNA, microRNA and genomic and mitochondrial DNA.
  • microvesicles according to the present invention have an average size between 200 and 400 nm and, preferably, the average size is approximately 340 nm, taking into account the data obtained from a nanoparticle scan analysis (Nanosight).
  • the radiation dose that can be applied to obtain the microvesicles of the present invention is in the range between 45 and 55 Gy, and preferably the radiation dose is 50 Gy.
  • microvesicles of the present invention can be further characterized in that they comprise HSP70 and / or HSP90 heat shock proteins, since the radiation applied induces the production of thermal shock proteins that will be contained only in the microvesicles coming from radiated cells and not so in microvesicles. radiated
  • the HSP70 heat shock protein is overexpressed, from doses as low as 2Gy and even passes from the cytoplasm to the membrane.
  • the microvesicles of the present invention may contain HSP70 (HSP70 +) and / or HSP90 (HSP90 +), and also have phosphatidylserine in the outer membrane, so they are annexin V positive (annexin V +), but are negative to NFATC4 (NFATC4-) .
  • the microvesicles according to the first aspect of the invention can be characterized alternatively because the outer membrane of the microvesicles contains phosphatidylserine, because they are annexin V positive and / or because they do not contain Nuclear Factor of Activated T Cells 4 (NFATC4).
  • phosphatidylserine because they are annexin V positive and / or because they do not contain Nuclear Factor of Activated T Cells 4 (NFATC4).
  • the present invention relates to the use of microvesicles that come from cells Neoplastic irradiated in vitro according to the first aspect of the present invention, alone or in combination with one or more antineoplastic treatments, for the preparation of a therapeutic vaccine for the treatment or prophylaxis of malignant neoplasms, or for the modulation of the immune response antitumor
  • the microvesicles according to the second aspect of the invention can also be characterized by an average size between 200 and 400 nm, and more preferably the average size is approximately 340 nm.
  • the radiation dose applied to in vitro irradiated neoplastic cells can be between 45 and 55 Gy, and more preferably 50 Gy.
  • the microvesicles can be further characterized in that they do not contain Nuclear Factor of Activated T Cells 4 (NFATC4), because they comprise HSP70 and / or HSP90 heat shock proteins, because the outer membrane of the microvesicles contains phosphatidylserine and / or because they are annexin V positive.
  • NFATC4 Nuclear Factor of Activated T Cells 4
  • the invention relates to the microvesicles of the present invention, for use alone or in combination with one or more antineoplastic treatments, in the treatment or prophylaxis of malignant neoplasms, or in response modulation.
  • Immune antitumor in yet another embodiment of the present aspect, relates to the microvesicles of the present invention, for use alone or in combination with one or more antineoplastic treatments, in the treatment or prophylaxis of malignant neoplasms, or in response modulation.
  • the one or more antineoplastic treatments mentioned above may be selected from the group that includes chemotherapy, radiotherapy, immunotherapy or combinations thereof.
  • the invention also relates to the microvesicles of the invention for use. as prognostic or diagnostic markers in any type of neoplasms.
  • the microvesicles of the invention can be obtained from tumor cells from cell lines or from autologous primary cultures (of the same type of cancer to be treated, for example, human glioblastoma cells in culture for the treatment of patients diagnosed with glioblastoma) may irradiate previously be administered to patients with solid or liquid tumors subcutaneously or intradermally, preferably in a region near the site of the tumor.
  • They may also be administered intranodally, preferably in lymphoid nodules that drain the tumor, in order to increase the antitumor immune response of cancer patients.
  • microvesicles according to the present invention can be administered alone or in combination with radiotherapy, chemotherapy or with other immune response modifiers, for example adjuvants, dendritic cells loaded with microvesicles, anti-tumor monoclonal antibodies or immunotoxins, anti-tumor immune response modifiers ; as well as, with antitumor immune cells such as, helper, cytotoxic T lymphocytes, NK cells, dendritic cells, expanded in vitro with or without modification, among others; Similarly, it may be used in combination with other biological therapies such as oncolytic viruses or transgenes.
  • immune response modifiers for example adjuvants, dendritic cells loaded with microvesicles, anti-tumor monoclonal antibodies or immunotoxins, anti-tumor immune response modifiers ; as well as, with antitumor immune cells such as, helper, cytotoxic T lymphocytes, NK cells, dendritic cells, expanded in vitro with or without modification, among others; Similarly, it may be used in combination
  • the invention relates to a therapeutic vaccine for cancer comprising the microvesicles produced by irradiated tumor cells according to the first aspect of the invention, together with pharmaceutically acceptable additives.
  • additives refers to any substance that is included in the formulation of the medication and that acts as a vehicle, preservative or modifier of any of its characteristics to favor its efficacy, safety, stability, appearance or acceptability. This term indiscriminately includes pharmaceutically acceptable excipients, vehicles or carriers that may be contained in the therapeutic vaccine of the present invention.
  • the therapeutic vaccine of the present invention may contain elatin, albumin, acarosa, lactose, sodium glutamate and glycine. They may also contain diluents, for example water or saline; preservatives or preservatives, such as thimerosal, phenoxyethanol and formaldehyde; stabilizers, for example monosodium glutamate (MSG), 2-phenoxyethanol, partially hydrolyzed gelatin and generally bovine or porcine collagen; antibiotics and / or adjuvants, such as aluminum salts: aluminum hydroxide, potassium aluminum sulfate and aluminum phosphate.
  • diluents for example water or saline
  • preservatives or preservatives such as thimerosal, phenoxyethanol and formaldehyde
  • stabilizers for example monosodium glutamate (MSG), 2-phenoxyethanol, partially hydrolyzed gelatin and generally bovine or porcine collagen
  • antibiotics and / or adjuvants
  • the invention relates to a process for preparing the microvesicles according to the first aspect of the invention comprising the step of irradiating neoplastic cells in vitro, preferably, at a radiation dose of between 45 and 55 Gy, and more preferably the radiation dose is 50 Gy.
  • the process of the present invention also includes the preparation of the therapeutic vaccine according to the second aspect of the invention.
  • microvesicles of the present invention can be obtained from neoplastic cells from cultured cell lines, primary cultures, serum, urine or any other fluid from which they can be isolated. They can be produced and released naturally by the neoplastic cells into the extracellular space or by stressors according to the process of the fourth aspect of the present invention, or together with chemical agents or other physical factors and, subsequently, isolated by centrifugation at 14,000 x g .
  • microvesicles of the present invention can be isolated by the use of phosphatidylserine recognition substances such as Annexin V attached to magnetic beads and subsequent capture by a magnetic field or by flow cytometry or any other microvesicle isolation system, in accordance with the standard methods known in the state of the art.
  • phosphatidylserine recognition substances such as Annexin V attached to magnetic beads and subsequent capture by a magnetic field or by flow cytometry or any other microvesicle isolation system, in accordance with the standard methods known in the state of the art.
  • the inventors of the present patent application decided to experimentally test the effect of microvesicles from in vitro rat glioblastoma cells not radiated and irradiated with 50 Gy in a subcutaneous model of rat glioblastoma for the induction of an antitumor immune response.
  • Rat C6 glioma cells were obtained from the American Culture and Tissue Collection (Rockville, MD, USES) . Cells were grown in sterility at 37 ° C in a humid atmosphere controlled with 5% CO2 in Dulbecco's modified Eagle's medium (DMEM) (GIBCO BRL) supplemented with 10% fetal bovine serum (GIBCO, BRL.), 4 mM glutamine, 100 units / ml penicillin, and 100 mg / ml streptomycin. Before being used, the supplemented medium was filtered with a 0.22 pm GSWP membrane (Millipore) to eliminate possible contaminant MVs.
  • DMEM Dulbecco's modified Eagle's medium
  • the general cell culture procedure can be used for any tumor line from which the microvesicles are intended to be obtained or can be modified depending on the specifications of the provider or the type of primary culture to be used. Isolation of the microvesicles
  • MVs were obtained from cultures of C6 cells and irradiated C6 cells with a dose of 50 Grays (Gy) using a Novalis linear accelerator (Varian and Brainlab) that generates a 6 mega volt X-ray beam, other equipment can be used that allow us to reach a radiation dose of 50 Gy. After 72 h of the radiation, the culture medium was collected and centrifuged twice at a speed of 500 x g for 10 minutes at 4 ° C to remove viable cells and cell debris.
  • the microvesicles were stained with Annexin V-FITC (Annexin-V-FLUOS Staining Kit, Roche) which has a high affinity for phosphatidylserine, and were analyzed by flow cytometry (FACSCalibur, BD
  • the microvesicles were stained with the Annexin V-gold conjugate (15 nm, Biorbyt) for 30 minutes, centrifuged at 14,000 xg for 20 minutes at 4 ° C and the pellet resuspended in PBS. Subsequently, 10 m ⁇ of the suspension were placed in nickel gratings coated with coal and formvar for 20 minutes. The grid was dried with filter paper, stained with 2% uranyl acetate for 5 minutes. The uranyl acetate grid was removed and washed with distilled water for one minute. The microvesicles were observed with a JEOL 1010 transmission microscope. Nanoparticle Tracking Analysis
  • the size of the microvesicles was examined by scanning nanoparticles with a NanoSight (NanoSight Ltd Amesbury, UK) equipped with a blue laser (488 nm) and an sCMOS camera.
  • the preparations were measured in triplicate (temperature 22.0 ° C; viscosity 0.95 cP) for 10 s.
  • the software used for data capture and analysis was the NTA 3.2 Dev Build 3.2.16. The following results were obtained :
  • Protein was extracted from C6 cells, C6 microvesicles and irradiated C6 microvesicles using the ProteoJET TM Cytoplasmic and Nuclear Protein Extraction Kit (Fermentas), and subsequently quantified using the Lowry method. Protein electrophoresis (30 mg) was performed under denaturing conditions on a 15% polyacrylamide gel. PRECISION n Plus Protein Standards (Bio-Rad) was used as molecular weight marker. Once the electrophoresis was finished, the gel was stained with Coomassie blue.
  • Tumor volume (cm 3 ) was calculated for each rat and time using the following formula described by Tomayko & Reynolds, 1989 (26):
  • Tumor volume p / 6 long width height.
  • CD4 + The percentages of cooperative T lymphocytes (CD4 +), cytotoxic T (CD8 +) and regulatory T (CD4 + / CD25 + / FoxP3 +), as well as natural killer cells (NKR-P1 +) and macrophages (CD68 +) in blood, spleen samples were determined and tumor by flow cytometry using rat anti-CD4-PE, rat antiCD8-PE, rat anti-NKR-Pl-FITC, rat anti-CD25-FITC, rat anti-Foxp3-APC monoclonal antibodies and rat anti-CD68, the latter together with a secondary antibody coupled to APC.
  • the cells were washed with PBS and stained with Annexin V and propidium iodide (Annexin-VFLUOS Staining Kit, Roche) in 100 pL of binding buffer for 15 minutes in the dark at room temperature. Subsequently 200 pL more of binding buffer were added and analyzed by flow cytometry (FACSCalibur, BD Biosciences) with Cell QuestPro (BD Biosciences) and Flow Jo version 10.
  • Annexin V and propidium iodide Annexin V and propidium iodide
  • Barcinski MA Tumor-derived microvesicles modulate the establishment of metastatic melanoma in a phosphatidylserine-dependent manner. C to cancer Lett.
  • Limoli CL Irradiation of primary human gliomas triggers dynamic and aggressive survival responses involving microvesicle signaling. Environmental and molecular mutagenesis. 2016; 57 (5): 405-15.
  • Radioresistance is associated to increased Hsp70 content in human glioblastoma cell Unes. Int J Oncol. 2004

Abstract

La presente invención se refiere a microvesículas provenientes de células tumorales naturales y producidas in vitro bajo un estímulo estresor, tal como la radiación, las cuales pueden ser usadas de manera efectiva como vacuna terapéutica para cáncer. También la invención se relaciona con una formulación de vacuna terapéutica que contiene las microvesículas, los procesos para su preparación y a su uso médico como vacuna terapéutica para estimular el sistema inmune antitumoral y tratar el cáncer.

Description

VACUNACIÓN CON MICROVESÍCULAS DERIVADAS DE CÉLULAS
TUMORALES PARA TRATAMIENTO DE CÁNCER
CAMPO TÉCNICO DE LA INVENCIÓN
La presente invención se relaciona con el campo de la salud, específicamente con el área de cáncer cerebral y otras neoplasias con potencial de tratamiento con microvesiculas provenientes de células tumorales .
ANTECEDENTES
Los gliomas son los tumores cerebrales primarios más frecuentes en adultos y la segunda causa de cáncer en niños después de la leucemia con una incidencia de 22 casos por cada 100,000 habitantes (1), ocasionando más de 15,000 muertes cada año tan solo en los Estados Unidos (2) . La Organización Mundial de la Salud (OMS) los clasifica en astrocitomas , oligoastrocitomas , oligodendrogliomas , de acuerdo con su similitud histológica con las células de la gira. Con base en su comportamiento biológico y grado de malignidad se dividen en 4 grados (I a IV), siendo el glioblastoma (GBM) el más severo (3) y el más común entre todos los tumores malignos del cerebro y el Sistema Nervioso Central ( 4 ) . En el Instituto Nacional de Neurología y Neurocirugia de México (INNN), el GBM representa el 9% de todos los tumores cerebrales y el 45.7% de gliomas primarios, con una media de edad de 51 años y una mayor frecuencia en hombres que en mujeres (1.8:1) (5, 6).
El tratamiento de referencia actual para el GBM consiste en resección quirúrgica extensa, seguida de radioterapia y quimioterapia, esta última basada en el uso de Temozolamida; sin embargo, la media de supervivencia es de 14.6 meses y solo el 5.1% de pacientes sobreviven más de 5 años, perspectiva que no ha cambiado en las últimas dos décadas
(4, 7). Actualmente nuevas estrategias terapéuticas se han enfocado a comprender de una mejor manera la biología de los tumores cerebrales, en donde un área poco estudiada en neuro- oncologia es el tráfico vesicular extracelular en la forma de vesículas extracelulares (VE) (8).
Durante la última década, la investigación de vesículas extracelulares se ha incrementado de manera importante y se ha considerado su aplicación en la vacunación antitumoral
(9) . Estas vesículas son partículas de membrana de bicapa lipidica que liberan de la mayoría de las células, incluyendo las células tumorales, de forma constitutiva o como respuesta al estrés, y pueden ser aisladas de diversos fluidos corporales tales como: sangre, orina, saliva, leche materna, fluido amniótico, ascitis, semen y liquido cefalorraquídeo
(10) .
La liberación de VE fue reportada originalmente por Chargaff and West en 1946 como partículas pro-coagulante derivadas de plaquetas en el plasma normal (11) y denominadas posteriormente como "polvo de plaquetas" por Wolf en 1967, quien notó material coagulante en forma de partículas pequeñas, sedimentables por centrifugación a alta velocidad y que rodeaban plaquetas activadas (12) . En 1978, las VE fueron por primera vez documentadas en un paciente con cáncer cuando se identificaron mediante microscopía electrónica en cultivos de nodulos del bazo y nodulos linfáticos de una persona con enfermedad de Hodgkin (13) .
Las microvesiculas (MV) (también referidas como microparticulas o ectosomas) representan un subtipo especifico de VE. Son partículas heterogéneas en tamaño, que van desde 200 nm hasta más de 1 pm y son liberadas al espacio extracelular mediante fisión hacia el exterior de la membrana plasmática (14, 15) . El mecanismo exacto por el cual se generan las MV no ha sido entendido totalmente, pero se sabe que ocurre una pérdida de asimetría de lipidos de membrana (16) . En el sitio donde se liberan las microvesiculas , el amiofosfolipido fosfatidilserina, normalmente encontrado en la cara citoplasmática de la membrana, es relocalizado a la capa externa mientras que la topología de las proteínas de membrana permanece intacta (17) .
La importancia de las MVs reside en su capacidad para transferir su contenido a otras células a nivel local o sistémicamente . Una vez producidas por la célula donadora, las MVs pueden: 1) unirse via receptores a la superficie de una célula blanco; 2) fusionarse con la membrana de la célula blanco y descargar su contenido en el citosol; o 3) ser tomadas por la célula mediante endocitosis, que luego de ser endocitadas, pueden permanecer aisladas dentro de los endosomas y, en última instancia, fusionarse con los lisosomas. Alternativamente, pueden fusionar su membrana con la del endosoma y subsecuentemente descargar su contenido al citosol (trasferencia horizontal) o ser expulsadas intactas al exterior (transcitosis ) (14) .
La composición de las microvesiculas, depende ampliamente del tipo de célula de la cual se originaron, aunque la composición de la membrana de las microvesiculas es distinta de la célula parental, con una remodelación significativa (15). Las moléculas presentes en las MVs implicadas en cáncer contienen una plétora de moléculas bio- activas que incluye antigenos involucrados en inmunomodulación, receptores y ligandos transmembranales, oncoproteinas y proteínas supresoras de tumor, lipidos, ARN mensajero, microRNA, y ADN genómico y mitocondrial (18) . Estas MVs pueden fusionarse e interactuar con múltiples tipos celulares modificando y estableciendo nichos pre- metastásicos , invasión celular, angiogénesis (19) y modulación inmune innata (20) .
Por otra parte, se ha observado que la irradiación de gliomas altera la abundancia y composición de las MVs promoviendo un fenotipo migratorio (19). Recientemente Baulch y cois. (21) demostraron que la radiación dispara un fenotipo pro-oxidante que favorece cambios marcados en la expresión de genes implicados en regular la reprogramación celular y las interacciones paracrinas mediadas por MVs que promueven la sobrevivencia y la invasividad mediada por metaloproteinasa 2 (MMP-2) .
Además, se ha demostrado que la radiación ionizante induce la liberación de MVs y contribuye a la formación de patrones moleculares asociados a daño, denominados patrones moleculares asociados al daño (DAMPs) (22) . Los DAMPs pueden ser liberados tanto pasivamente por células necróticas como ser secretados o expuestos por células vivas cuando se someten a estrés que amenaza su supervivencia lo que conlleva a estimular a las células del sistema inmune innato que es responsable de censar patrones moleculares asociados a patógenos (PAMPs) o DAMPs a través de receptores de reconocimiento de patrones (PRRs) (23) .
En la actualidad se han llevado a cabo estudios clínicos en pacientes con cáncer donde se han empleado VE derivadas de células neoplásicas, En un estudio fase I, realizado en 15 pacientes con melanoma metastásico etapa III/ IV, se demostró la viabilidad de la producción de VE a partir de células dendríticas autólogas derivadas de monocitos cargadas con el péptido MAGE3, asi como la seguridad de su administración subcutánea; sin que se observara toxicidad importante (>grado II) (24) . En otro estudio Fase I, se emplearon VE de células dendríticas derivadas de monocitos cargadas con péptidos administradas de manera subcutánea e intradérmica en 13 pacientes con cáncer de pulmón avanzado de células no pequeñas; la terapia fue bien tolerada (toxicidad grado I-II) y algunos pacientes experimentaron estabilidad de la enfermedad a largo plazo y activación de efectores inmunes (25) . Dai y cois, realizaron un estudio clinico Fase I con 40 pacientes con cáncer de colón etapa III y IV que fueron tratados con VE autólogas derivadas de liquido de ascitis via subcutánea solas o acompañadas de GM- CSF, donde se demostró su seguridad e inducción de respuestas especificas T citotóxicas contra el tumor.
Por otra parte, Graner y cois. (8) demostraron en un modelo de glioblastoma murino que la vacunación profiláctica con exosomas (que contenian MVs) inducia la activación del sistema inmune estimulando la inmunidad humoral y celular por células T, evitando asi la implantación del tumor y favoreciendo una respuesta de memoria de largo plazo; sin embargo, al usar estos exosomas en vacunación terapéutica estos no fueron capaces de modificar la sobrevida de los ratones implantados de manera intracerebral, a pesar de inducir una respuesta inmune celular y humoral.
El tratamiento convencional en cáncer consiste en cirugia, radiación y quimioterapia; sin embargo, el pronóstico tan desfavorable en muchas de estas neoplasias deja ver la necesidad de desarrollar nuevas terapias, tales como las estrategias inmunoterapéuticas . Las microvesiculas son producidas por casi todas las células, incluyendo las tumorales y tienen un papel preponderante en la transferencia de información intercelular teniendo capacidad de suprimir el sistema inmune, incrementar la progresión tumoral, promoviendo la invasividad, metástasis y confiriendo multidrogoresistencia a las células neoplásicas vecinas. Dada la plétora de antigenos bioactivos contenidos en ellas permite aumentar la posibilidad de que estas entreguen un mayor repertorio antigénico tumoral lo cual las hace candidatas a ser usadas como vacunas terapéuticas contra el cáncer . BREVE DESCRIPCIÓN DE LA INVENCIÓN
Como resultado de un extenso trabajo de investigación y desarrollo, los inventores de la presente solicitud de patente han encontrado de manera inesperada que las microvesiculas producidas por células neoplásicas irradiadas in vitro pueden ser usadas de manera efectiva como vacuna terapéutica para cáncer.
En un primer aspecto, la presente invención se refiere dichas microvesiculas que provienen de células neoplásicas irradiadas in vitro.
En un segundo aspecto, la presente invención se refiere a las microvesiculas producidas por células tumorales irradiadas in vitro para su uso, solas o en combinación con uno o más tratamientos antineoplásicos , en el tratamiento o profilaxis de neoplasias malignas, en la modulación de la respuesta inmune antitumoral, y como marcadores de pronóstico o diagnóstico en cualquier tipo de neoplasias .
En un tercer aspecto, la invención se refiere a una vacuna terapéutica para cáncer que comprende las microvesiculas producidas por células tumorales irradiadas in vitro y aditivos farmacéuticamente aceptables.
Finalmente, en un cuarto aspecto, la presente invención se refiere a un proceso para preparar las microvesiculas de la presente invención o la vacuna terapéutica de la presente invención, en donde dicho proceso comprende el paso de irradiar células neoplásicas.
La presente invención es uno de muchos intentos, buscando crear una alternativa inmunoterapéutica sencilla y de bajo costo que mejore la expectativa de tratamiento actual como adyuvante o como terapia única permitiendo una mejor expectativa y calidad de vida a pacientes con diversas neoplasias .
DESCRIPCIÓN DE LAS FIGURAS
La Figura 1 muestra los resultados de la determinación del tamaño de las microvesiculas . Se muestran imágenes representativas de la distribución del tamaño de las microvesiculas de C6 (no irradiadas) (A) y de C6 irradiadas (C) , obtenidas a partir de videos del análisis de rastreo de nanoparticulas de NANOSIGHT (panel izquierdo), y el análisis de la distribución del tamaño de las microvesiculas de C6 (B) y de C6 irradiadas (D) (por triplicado) mediante el software NTA 3.2 Dev Build 3.2.16 de NANOSIGHT (panel derecho) .
La Figura 2 muestra los resultados de la microscopía de células de glioma C6 irradiadas y no irradiadas, asi como de microvesiculas de las mismas. En el lado izquierdo (A) de la figura, pueden observarse las imágenes de microscopía de campo claro de células de glioma C6 (N) y de células de glioma C6 irradiadas (I) con dosis de radiación de 50Gy (20X) . En el lado derecho (B) , se observan las imágenes de microscopía electrónica de transmisión de microvesiculas de células C6 no irradiadas (N) y microvesiculas de células C6 irradiadas (I) marcadas con anexina V-oro. La barra en la imagen representa 200 nm.
La Figura 3 muestra los resultados de la electroforesis desnaturalizante en gel de poliacrilamida al 15% de proteínas obtenidas de células C6 (C6), microvesiculas de células C6 no irradiadas (N) y microvesiculas de células C6 irradiadas (I) . KDa representa el marcador de peso molecular.
La Figura 4 muestra los resultados de la Cinética de crecimiento tumoral . Se implantaron un millón de células C6 viables de manera subcutánea en ratas Wistar. Una vez desarrollados los tumores (³ 2 cm de diámetro) , a las ratas se les administró por via subcutánea MV de C6, MV de C6 irradiadas (50 Gy) o PBS los dias 0 y 7. Luego, se determinó el volumen tumoral los dias 0, 7, 14, 18 y 21. Los resultados se expresan como la media + SEM. *p=0.031 irradiadas vs control .
La Figura 5 muestra los resultados de una evaluación de apoptosis y necrosis en tumor. Para este fin, se evaluaron mediante citometria de flujo: (A) células vivas (negativas para anexina V y negativas para yoduro de propidio), (B) células en apoptosis temprana (positivas solo para anexina V) , (C) apoptosis tardía (positivas para anexina V y yoduro de propidio), (D) el total de células en apoptosis y (E) necrosis (positivas para yoduro de propidio) , en tumores de ratas con glioblastoma subcutáneo, 21 después del tratamiento con MV de C6 no irradiadas, MV de C6 irradiadas (50 Gy) o PBS (grupo control) . Se presenta un gráfico de puntos representativo de las poblaciones (F). Los resultados se expresan como la media + SEM, apoptosis temprana *p=0.027, apoptosis tardía *p=0.022, apoptosis total *p=0.038, para irradiadas vs control . La Figura 6 muestra los resultados de un estudio comparativo de los linfocitos T cooperadores. Se realizó el análisis por citometria de flujo de células CD4+ en (A) sangre, (B) bazo y (C) tumor de ratas con glioblastoma subcutáneo, 21 después del tratamiento con MV de C6 no irradiadas, MV de C6 irradiadas (50 Gy) o PBS (grupo control) . Se presenta un histograma representativo de linfocitos T CD4+ en sangre (D) . Los resultados se expresan como la media + SEM. *p= 0.036 irradiadas vs control.
La Figura 7 muestra un estudio comparativo de los linfocitos T citotóxicos. Se realizó el análisis por citometria de flujo de células CD8+ en (A) sangre, (B) bazo y (C) tumor de ratas con glioblastoma subcutáneo, 21 después del tratamiento con MV de C6 no irradiadas, MV de C6 irradiadas (50 Gy) o PBS (grupo control) . Se presenta un histograma representativo de linfocitos T CD8+ en sangre (D) . Los resultados se expresan como la media + SEM. *p=0.04 irradiadas vs control .
La Figura 8 muestra un estudio comparativo de los linfocitos T reguladores. Se realizó el análisis por citometria de flujo de células CD4+/ CD25+/ FoxP3+ en (A) sangre y (B) tumor de ratas con glioblastoma subcutáneo, 21 después del tratamiento con MV de C6 no irradiadas, MV de C6 irradiadas (50 Gy) o PBS (grupo control) . Se presenta un gráfico de puntos representativo para la selección de la población de linfocitos CD4+/CD25+ en sangre (D) , a partir de la cual se determinó la cantidad de linfocitos T reguladores (FoxP3+) (E) . Los resultados se expresan como la media + SEM. *p= 0.037 irradiadas vs control.
La Figura 9 muestra un estudio comparativo de las células asesinas naturales (NK) . Se realizó el análisis por citometria de flujo de células NKR-P1+ en (A) sangre, (B) bazo y (C) tumor de ratas con glioblastoma subcutáneo, 21 después del tratamiento con MV de C6 no irradiadas, MV de C6 irradiadas (50 Gy) o PBS (grupo control) . Se presenta un histograma representativo de células NK en sangre (D) . Los resultados se expresan como la media + SEM, no se observaron diferencias significativas .
La Figura 10 muestra un estudio comparativo de los macrófagos . Se realizó el análisis por citometria de flujo de células CD68+ en (A) sangre, (B) bazo y (C) tumor de ratas con glioblastoma subcutáneo, 21 después del tratamiento con MV de C6 no irradiadas, MV de C6 irradiadas (50 Gy) o PBS (grupo control) . Los resultados se expresan como la media + SEM, no se observaron diferencias significativas.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
En un primer aspecto, la invención se refiere a microvesiculas que provienen de células neoplásicas irradiadas in vitro, las cuales están formadas por una bicapa lipidica y en su superficie se pueden encontrar proteínas membranales, tales como receptores de factores de crecimiento, receptores de integrinas y moléculas del MHC de clase I . En su interior pueden encontrarse proteínas solubles como proteasas y citocinas, asi como diversos ácidos nucleicos. Además, pueden contener una plétora de moléculas bioactivas presentes en microvesiculas derivadas de células cancerosas, incluyendo antigenos involucrados en inmunomodulación, receptores y ligandos transmembranales, oncoproteinas y proteínas supresoras de tumor, lipidos, mRNA, microRNA y DNA genómico y mitocondrial .
Las microvesiculas de acuerdo con la presente invención tienen un tamaño promedio de entre 200 y 400 nm y, preferentemente, el tamaño promedio es de aproximadamente 340 nm, tomando en cuenta los datos obtenidos de un análisis de rastreo de nanoparticulas (Nanosight) .
La dosis de radiación que puede aplicarse para obtener las microvesiculas de la presente invención se encuentra en el rango de entre 45 y 55 Gy, y preferentemente la dosis de radiación es de 50 Gy.
Las microvesiculas de la presente invención pueden caracterizarse adicionalmente porque comprenden proteínas de choque térmico HSP70 y/o HSP90, pues la radiación aplicada induce la producción de proteínas de choque térmico que estarán contenidas solamente en las microvesiculas provenientes de células radiadas y no asi en microvesiculas no radiadas .
Diversas publicaciones (27, 28, 29, 30 y 31) han confirmado que después de radiar células tumorales
(particularmente de glioblastoma, incluyendo las células C6) se sobreexpresa la proteina de choque térmico HSP70, desde dosis tan bajas como 2Gy e incluso pasa del citoplasma a la membrana .
Las microvesiculas de la presente invención pueden contener HSP70 (HSP70+) y/o HSP90 (HSP90+), y además presentan en la membrana externa fosfatidilserina, por lo que son anexina V positivas (anexina V+) , pero resultan negativas a NFATC4 (NFATC4-) .
Por lo anterior, las microvesiculas de acuerdo con el primer aspecto de la invención pueden caracterizarse alternativamente porque la membrana externa de las microvesiculas contiene fosfatidilserina, porque son anexina V positivas y/o porque no contienen Factor Nuclear de Células T activadas 4 (NFATC4 ) .
En un segundo aspecto, la presente invención se refiere al uso de las microvesiculas que provienen de células neoplásicas irradiadas in vitro de acuerdo con el primer aspecto de la presente invención, solas o en combinación con uno o más tratamientos antineoplásicos , para la preparación de una vacuna terapéutica para el tratamiento o profilaxis de neoplasias malignas, o para la modulación de la respuesta inmune antitumoral.
Las microvesiculas de conformidad con el segundo aspecto de la invención, también pueden caracterizarse por un tamaño promedio de entre 200 y 400 nm, y más preferentemente el tamaño promedio es de aproximadamente 340 nm. La dosis de radiación aplicada a las células neoplásicas irradiadas in vitro puede ser de entre 45 y 55 Gy, y más preferentemente es de 50 Gy.
De acuerdo con esta segunda modalidad, las microvesiculas pueden caracterizarse adicionalmente porque no contienen Factor Nuclear de Células T activadas 4 (NFATC4), porque comprenden proteínas de choque térmico HSP70 y/o HSP90, porque la membrana externa de las microvesiculas contiene fosfatidilserina y/o porque son anexina V positivas .
Aun en otra modalidad del presente aspecto, la invención se refiere a las microvesiculas de la presente invención, para su uso solas o en combinación con uno o más tratamientos antineoplásicos, en el tratamiento o profilaxis de neoplasias malignas, o en la modulación de la respuesta inmune antitumoral.
Los uno o más tratamientos antineoplásicos antes mencionados pueden seleccionarse del grupo que incluye quimioterapia, radioterapia, inmunoterapia o combinaciones de los mismos.
En una modalidad adicional, la invención también se refiere a las microvesiculas de la invención para su uso como marcadores de pronóstico o diagnóstico en cualquier tipo de neoplasias.
Las microvesiculas de la invención puede ser obtenidas de las células tumorales provenientes de lineas celulares o de cultivos primarios autólogos (del mismo tipo de cáncer a tratar, por ejemplo células de glioblastoma humano en cultivo para tratamiento de pacientes con diagnóstico de glioblastoma) previamente irradias podrán ser administradas a pacientes con tumores sólidos o líquidos por via subcutánea o intradérmica, preferentemente en una región cercana al sitio del tumor.
También podrán ser administradas por via intranodal preferentemente en nodulos linfoides que drenen el tumor, con el fin de incrementar la respuesta inmune antitumoral de pacientes con cáncer.
Las microvesiculas de acuerdo con la presente invención pueden ser administrada solas o en combinación con radioterapia, quimioterapia o con otros modificadores de la respuesta inmune, por ejemplo adyuvantes, células dendriticas cargadas con microvesiculas, anticuerpos monoclonales antitumorales o inmunotoxinas , modificadores de la respuesta inmune antitumoral; asi como, con células inmunes antitumorales tales como, linfocitos T cooperadores, citotóxicos, células NK, células dendriticas, expandidas in vitro con o sin modificación alguna, entre otras; de igual manera, se podrá utilizar en combinación con otras terapias biológicas tales como virus oncoliticos o transgenes .
En el tercer aspecto, la invención se refiere a una vacuna terapéutica para cáncer que comprende las microvesiculas producidas por células tumorales irradiadas de acuerdo con el primer aspecto de la invención, junto con aditivos farmacéuticamente aceptables. Para fines de la presente solicitud de patente, el término "aditivos" se refiere toda substancia que incluya en la formulación de los medicamento y que actúe como vehículo, conservador o modificador de alguna de sus características para favorecer su eficacia, seguridad, estabilidad, apariencia o aceptabilidad. Este término incluye indistintamente los excipientes, vehículos o portadores farmacéuticamente aceptables que puedan estar- contenidos en la vacuna terapéutica de la presente invención.
Por lo anterior, la vacuna terapéutica de la presente invención puede contener elatina, albúmina, acarosa, lactosa, glutamato sódico y glicina. También pueden contener diluyentes, por ejemplo agua o solución salina; conservantes o preservativos, tales como timerosal , fenoxietanol y formaldehído; estabilizadores, por ejemplo glutamato monosódico (MSG) , 2-fenoxietanol, gelatina parcialmente hidrolizada y colágeno generalmente de bovino o de origen porcino; antibióticos y/o adyuvantes, como las sales de aluminio: hidróxido de aluminio, sulfato de aluminio potasio y fosfato de aluminio.
En el cuarto aspecto, la invención se refiere a un proceso para preparar las microvesículas de acuerdo con el primer aspecto de la invención que comprende el paso de irradiar células neoplásicas in vitro, preferentemente, a una dosis de radiación de entre 45 y 55 Gy, y más preferentemente la dosis de radiación es de 50 Gy.
El proceso de la presente invención también incluye la preparación de la vacuna terapéutica de acuerdo con el segundo aspecto de la invención.
Las microvesículas de la presente invención pueden ser obtenidas a partir de células neoplásicas provenientes de líneas celulares en cultivo, cultivos primarios, suero, orina o cualquier otro fluido a partir del cual puedan ser aisladas. Pueden ser producidas y liberadas naturalmente por las células neoplásicas al espacio extracelular o mediante factores estresores de acuerdo con el proceso del cuarto aspecto de la presente invención, o junto con agentes químicos u otros factores físicos y, posteriormente, aislarse mediante centrifugación a 14,000 x g.
También las microvesiculas de la presente invención pueden aislarse mediante el uso de sustancias con reconocimiento de fosfatidilserina tal como Anexina V unida a perlas magnéticas y posterior captura mediante un campo magnético o por citometria de flujo o cualquier otro sistema de aislamiento de microvesiculas, de acuerdo con los métodos estándares conocidos en el estado de la técnica.
El siguiente ejemplo ilustra el mejor método conocido por el solicitante para llevar a la práctica la invención. Además, ejemplifica la aplicación industrial del invento y es proporcionado con el fin de ilustrar la invención y no asi para limitar el alcance de las reivindicaciones.
Figure imgf000016_0001
Los inventores de la presente solicitud de patente decidieron probar experimentalmente el efecto de las microvesiculas provenientes de células de glioblastoma C6 de rata in vitro no radiadas e irradiadas con 50 Gy en un modelo subcutáneo de glioblastoma de rata para la inducción de una respuesta inmune antitumoral.
Cultivos celulares
Las células de glioma C6 de rata fueron obtenidas de la Colección Americana de Cultivos y Tejidos (Rockville, MD, USA) . Las células se cultivaron en esterilidad a 37 °C en una atmósfera húmeda controlada con C02 al 5% en medio de Eagle modificado de Dulbecco (DMEM) (GIBCO BRL) suplementado con 10 % de suero fetal bovino (GIBCO, BRL.), 4 mM de glutamina, 100 unidades/ml de penicilina, y 100 mg/ml de estreptomicina. Antes de ser usado, el medio suplementado fue filtrado con una membrana GSWP de 0.22 pm (Millipore) para eliminar posibles MV contaminantes.
EL procedimiento general de cultivo celular se puede usar para cualquier linea tumoral a partir de la cual se pretendan obtener las microvesiculas o se puede modificar dependiendo de las especificaciones del proveedor o del tipo de cultivo primario a utilizar. Aislamiento de las microvesiculas
Las MVs se obtuvieron de cultivos de células C6 y de células C6 irradiadas con una dosis de 50 Grays (Gy) empleando un acelerador lineal Novalis (Varian y Brainlab) que genera un haz de rayos X de 6 mega voltios, se pueden utilizar otros equipos que nos permitan alcanzar una dosis de radiación de 50 Gy. Después de 72 h de la radiación, el medio de cultivo fue colectado y centrifugado dos veces a una velocidad de 500 x g por 10 minutos a 4°C para eliminar las células viables y restos celulares .
Posteriormente, el sobrenadante se centrifugó a 14,000 x g por 20 minutos a 4°C para sedimentar las microvesiculas, que inmediatamente fueron lavadas, resuspendidas en PBS y congeladas a -70°C hasta su uso, de igual manera estas MVs pueden ser conservadas fijándolas en paraformaldehido al 1% en PBS por 20 minutos y posteriormente lavándolas con PBS y centrifugándolas nuevamente a 14,000 x g por 20 minutos a 4°C para sedimentarlas. Cuantificación de microvesículas
Para su cuantificación, las microvesículas se tiñeron con Anexina V-FITC (Annexin-V- FLUOS Staining Kit, Roche) que presenta gran afinidad por la fosfatidilserina, y se analizaron por citometría de flujo ( FACSCalibur, BD
Bioscience) tomando en cuenta la velocidad de adquisición, (volumen adquirido/tiempo) , adquiriendo 30 segundos por muestra y el número de eventos adquiridos durante ese tiempo y porcentaje de eventos positivos a anexina V-FITC. Para el análisis de datos se emplearon los programas Cell QuestPro (BD Bioscience) y Flow Jo versión 10.
Caracterización de las microvesículas.
Para la caracterización se utilizó microscopía electrónica de transmisión, análisis de rastreo de nanopartículas y electroforesis en geles de poliacrilamida para determinar el contenido proteico de la siguiente manera.
Microscopía electrónica de transmisión
Una vez colectadas, las microvesículas fueron teñidas con el conjugado Anexina V-oro (15 nm, Biorbyt) durante 30 minutos, se centrifugaron a 14,000 x g durante 20 minutos a 4°C y el pellet se resuspendió en PBS. Posteriormente, se colocaron 10 mΐ de la suspensión en rejillas de níquel revestidas de carbón y formvar por 20 minutos. La rejilla se secó con papel filtro se tiñó con acetato de uranilo al 2% durante 5 minutos. Se retiró la rejilla del acetato de uranilo y se lavó con agua destilada por un minuto. Las microvesículas se observaron con un microscopio de transmisión JEOL 1010. Análisis de rastreo de nanoparticulas
El tamaño de las microvesiculas se examinó mediante un análisis de rastreo de nanoparticulas con un NanoSight (NanoSight Ltd Amesbury, UK) equipado con un láser azul (488 nm) y una cámara sCMOS. Las preparaciones fueron medidas por triplicado (temperatura 22.0°C; viscosidad 0.95 cP) durante 10 s. El software usado para la captura y análisis de datos fue el NTA 3.2 Dev Build 3.2.16. Se obtuvieron los siguientes resultados :
Figure imgf000019_0001
Análisis de contenido proteico
Se realizó la extracción de proteinas a partir de células C6, microvesiculas de C6 y microvesiculas de C6 irradiadas empleando el ProteoJET™ Cytoplasmic and Nuclear Protein Extraction Kit (Fermentas), y posteriormente fueron cuantificadas mediante el método de Lowry. Se realizó la electroforesis de las proteinas (30 mg) en condiciones desnaturalizantes en un gel de poliacrilamida al 15 %. Se empleó Precisión Plus Protein Standards (Bio-Rad) como marcador de peso molecular. Una vez terminada la electroforesis , el gel fue teñido con azul de Coomassie.
Para la verificación de la efectividad se realizó el siguiente diseño experimental:
Treinta ratas, a las que se les inocularon células C6 y cuyo tumor tuviera un diámetro no menor de 2 cm, fueron separadas en tres grupos (n=10) : el primero fue administrado con PBS (grupo control), el segundo grupo fue tratado con microvesículas de células C6 y el tercer grupo con microvesiculas de células C6 irradiadas (1 x 10 microvesiculas ) . Los tratamientos y el PBS fueron emulsionados con adyuvante completo de Freund a una proporción de 1:1 y se administraron de manera subcutánea en el muslo contralateral al tumor en las ratas. Se realizó una segunda administración (refuerzo) 7 dias posteriores a la primera. Se registró el volumen tumoral inicial y se evaluó a los 7, 14, 18 y 21 dias midiendo los tres diámetros del tumor con un vernier calibrado. Los animales fueron sacrificados 21 dias posteriores al tratamiento por exanguinación (previa anestesia con Ketamina/Xilacina) y se colectó el tumor, la sangre y el bazo para su análisis.
Determinación del volumen tumoral
El volumen tumoral (cm3) se calculó para cada rata y tiempo mediante la siguiente fórmula descrita por Tomayko & Reynolds, 1989 (26) :
Volumen tumoral= p/6 largo ancho altura .
Evaluación de las poblaciones de macrófagos, células NK y linfocitos T
Se determinaron los porcentajes de linfocitos T cooperadores (CD4+) , T citotóxicos (CD8+) y T reguladores (CD4+/CD25+/FoxP3+) , asi como de células asesinas naturales (NKR-P1+) y macrófagos (CD68+) en muestras de sangre, bazo y tumor mediante citometria de flujo empleando los anticuerpos monoclonales anti-CD4-PE de rata, antiCD8-PE de rata, anti-NKR-Pl-FITC de rata, anti-CD25-FITC de rata, anti-Foxp3-APC de rata y anti-CD68 de rata, este último junto con un anticuerpo secundario acoplado a APC.
Brevemente, se incubaron 30 pL de sangre o de homogenado de bazo o tumor con 5 pL del anticuerpo monoclonal correspondiente (dilución 1:100) durante 30 minutos. Posteriormente, se añadieron 200 pL de solución de lisis de glóbulos rojos (BD Bioscience) , se incubaron las muestras durante 10 minutos y fueron lavadas con PBS. Para los linfocitos T reguladores, además se adicionaron 200 pL de solución de permeabilización (BD Bioscience) , se incubaron durante 10 minutos, se lavaron e incubaron con anti-FoxP3- APC durante 30 min. Todas las células, después de ser lavadas con PBS, fueron fijadas con paraformaldehido al 1% en PBS. Las células fueron analizadas con un equipo FACSCalibur (BD Biosciences) usando los programas CellQuest Pro (BD Bioscience) y Flow Jo versión 10.
Determinación de apoptosis y necrosis
Una parte del homogenado de tumor fue tomado para evaluar apoptosis y necrosis. Las células se lavaron con PBS y se tiñeron con Anexina V y yoduro de propidio (Annexin-VFLUOS Staining Kit, Roche) en 100 pL de buffer de unión durante 15 minutos en la oscuridad a temperatura ambiente. Posteriormente se añadieron 200 pL más de buffer de unión y se analizaron por citometria de flujo (FACSCalibur, BD Biosciences) con Cell QuestPro (BD Biosciences) y Flow Jo versión 10. Análisis estadístico
Se realizó la prueba de normalidad de Shapiro-Wilk a los datos . Posteriormente se comparó cada tratamiento con el control mediante t-student o U-Mann, según el caso. Un valor de p £ 0.05 fue considerado como significativo. Para este análisis se empleó el programa SPSS Statistic 23.0 (IBM SPSS Statistics para Windows, Versión 23.0. Armonk, NY : IBM Corp . ) . Referencias
1. Ostrom QT, Gittleman H, Fulop J, Liu M, Blanda R, Kromer C, et al. CBTRUS Statistical Report : Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2008-2012. Neuro-oncology . 2015;17 Suppl 4:ivl- iv62.
2. Deorah S, Lynch CF, Sibenaller ZA, Ryken TC . Trends in brain cáncer incidence and survival in the United States : Surveillance , Epidemiology, and End Results Program, 1973 to 2001. Neurosurgical focus. 2006; 20 ( 4 ) : El .
3. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol . 2016; 131 ( 6 ) : 803-20.
4. Ostrom QT, Gittleman H, Fulop J, Liu M, Blanda R,
Kromer C, et al. CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2008-2012. Neuro-Oncology . 2015 ; 17 ( suppl 4):ivl- iv62.
5. Lopez-Gonzalez MA, Sotelo J. Brain tumors in
México: characteristics and prognosis of glioblastoma .
Surgical neurology. 2000; 53 (2 ): 157-62.
6. Velásquez-Pérez L, Jiménez-Marcial ME. Clinical- histopathologic concordance of tumors of the nervous system at the Manuel Velasco Suárez National Institute of Neurology and Neurosurgery in México City. Arch Pathol Lab Med. 2003; 127 (2) :187-92.
7. Stupp R, Masón WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJB, et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. New England Journal of Medicine. 2005 ; 352 ( 10 ): 987-96.
8. Graner MW, Alzate O, Dechkovskaia AM, Keene JD, Sampson JH, Mitchell DA, et al. Proteomic and immunologic analyses of brain tumor exosomes . FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2009; 23 (5 ): 1541-57.
9. Vader P, Breakefield XO, Wood MJ. Extracellular vesicles: emerging targets for cáncer therapy. Trends Mol
Med . 2014; 20 (7) :385-93.
10. Lee Y, El Andaloussi S, Wood MJ. Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum Mol Genet. 2012 ; 21 ( R1 ) :R125-34.
11. CHARGAFF E, WEST R. The biological significance of the thromboplastic protein of blood. J Biol Chem. 1946; 166 (1) : 189-97. PubMed PMID: 20273687.
12. Wolf P. The nature and significance of platelet products in human plasma. Br J Haematol. 1967 ; 13 (3 ): 269-88.
13. Friend C, Marovitz W, Henie G, Henie W, Tsuei D,
Hirschhorn K, et al. Observations on cell lines derived from a patient with Hodgkin's disease. Cáncer Res. 1978; 38 (8) :2581-91.
14. Cocucci E, Racchetti G, Meldolesi J. Shedding microvesicles: artefacts no more. Trends Cell Biol.
2009; 19 (2) :43-51.
15. Muralidharan-Chari V, Clancy J, Plou C, Romao M, Chavrier P, Raposo G, et al. ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr Biol. 2009; 19(22) : 1875-85.
16. Zwaal RF, Schroit AJ. Pathophysiologic implications of membrane phospholipid asymmetry in blood cells . Blood. 1997 ; 89 ( 4 ) : 1121-32.
17. Lima LG, Chammas R, Monteiro RQ, Moreira ME,
Barcinski MA. Tumor-derived microvesicles modulate the establishment of metastatic melanoma in a phosphatidylserine-dependent manner. Cáncer Lett .
2009; 283 (2) :168-75.
18. Lee TH, D'Asti E, Magnus N, Al-Nedawi K, Meehan B, Rak J. Microvesicles as mediators of intercellular communication in cáncer—the emerging Science of cellular ' debris ' . Semin Immunopathol . 2011 ; 33 ( 5 ) : 455-67.
19. Arscott WT, Tandle AT, Zhao S, Shabason JE, Gordon IK, Schlaff CD, et al. Ionizing radiation and glioblastoma exosomes : implications in tumor biology and cell migration. Translational oncology. 2013; 6 ( 6) : 638-48.
20. Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R,
Dvorak P, et al . Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors : evidence for horizontal transfer of mRNA and protein delivery. Leukemia. 2006; 20 (5) :847-56.
21. Baulch JE, Geidzinski E, Tran KK, Yu L, Zhou YH,
Limoli CL. Irradiation of primary human gliomas triggers dynamic and aggressive survival responses involving microvesicle signaling. Environmental and molecular mutagenesis. 2016 ; 57 ( 5 ) : 405-15.
22. Sologuren I, Rodriguez-Gallego C, Lara PC. Immune effects of high dose radiation treatment : implications of ionizing radiation on the development of bystander and abscopal effects. Translational Cáncer Research. 2014 ; 3 ( 1 ) :18-31.
23. Vénéreau E, Ceriotti C, Bianchi ME. DAMPs from Cell Death to New Life. Front Immunol. 2015; 6: 422.
24. Escudier B, Dorval T, Chaput N, André F, Caby MP, Novault S, et al. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes : results of thefirst phase I clinical trial . J Transí Med. 2005; 3(1) : 10. 25. Morse MA, Garst J, Osada T, Khan S, Hobeika A, Clay TM, et al . A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cáncer. J Transí
Med . 2005; 3(1) : 9.
26. Tomayko, M. M. , & Reynolds, C. P. (1989).
Determination of subcutaneous tumor size in athymic (nude) mice. Cáncer Chemother Pharmacol, 24(3), 148-154.
27. Brondani Da Rocha A, Regner A, Grivicich I, Pretto
Schunemann D, Diel C, Kovaleski G, Brunetto De Farras C, Mondadori E, Almeida L, Braga Filho A, Schwartsmann G.
Radioresistance is associated to increased Hsp70 content in human glioblastoma cell Unes. Int J Oncol . 2004
Sep; 25 (3) :777-85.
28. Paolini A, Pasi F, Facoetti A, Mazzini G, Corbella F, Di Liberto R, Nano R. Cell death forms and HSP70 expression in U87 cells after ionizing radiation and/or chemotherapy . Anticancer Res. 2011 Nov; 31 ( 11 ): 3727-31.
29. Francesca Pasi, Alessandro Paolini, Rosanna Nano, Riccardo Di Liberto, and Enrica Capelli. Effects of Single or Combined Treatments with Radiation and Chemotherapy on Survival and Danger Signáis Expression in Glioblastoma Cell Lines. BioMed Research International, Volume 2014, Article ID 453497, 9 pages.
30. Rubner Y, Muth C, Strnad A, Derer A, Sieber R, Buslei R, Frey B, Fietkau R, Gaipl U. Fractionated radiotherapy is the main stimulus for the induction of cell death and of Hsp70 release of p53 mutated glioblastoma cell Unes. Radiat Oncol. 2014 Mar 30;9(1):89.
31. Shevtsov MA, Nikolaev BP, Ryzhov VA, Yakovleva LY, Marchenko YY, Parr MA, Rolich VI, Mikhrina AL, Dobrodumov
AV, Pitkin E, Multhoff G. Ionizing radiation improves glioma- specific targeting of superparamagnetic iron oxide nanoparticles conjugated with cmHsp70.1 monoclonal antibodies ( SPION-cmHsp70.1 ) . Nanoscale. 2015 Dec
28 ; 7 (48) :20652-64.

Claims

REIVINDICACIONES
1.- Microvesiculas que provienen de células neoplásicas irradiadas in vitro, caracterizadas porque tienen un tamaño promedio de entre 200 y 400 nm.
2.- Las microvesiculas de conformidad con la reivindicación 1, en donde el tamaño promedio es de aproximadamente 340 nm.
3.- Las microvesiculas de conformidad con las reivindicaciones 1 y 2, en donde la dosis de radiación aplicada para obtener las microvesiculas es de entre 45 y 55 Gy.
4.- Las microvesiculas de conformidad con cualquiera de las reivindicaciones 1 a 3, en donde la dosis de radiación aplicada para obtener las microvesiculas es de 50 Gy.
5.- Las microvesiculas de conformidad con cualquiera de las reivindicaciones 1 a 4, caracterizadas adicionalmente porque no contienen Factor Nuclear de Células T activadas 4 (NFATC4 ) .
6.- Las microvesiculas de conformidad con cualquiera de las reivindicaciones 1 a 5, caracterizadas adicionalmente porque comprenden proteínas de choque térmico HSP70 y/o HSP90.
7.- Las microvesiculas de conformidad con cualquiera de las reivindicaciones 1 a 6, caracterizadas adicionalmente porque la membrana externa de las microvesiculas contiene fosfatidilserina.
8.- Las microvesículas de conformidad con cualquiera de las reivindicaciones 1 a 7, caracterizadas adicionalmente porque son anexina V positivas.
9.- Las microvesículas de conformidad con cualquiera de las reivindicaciones anteriores, para su uso solas o en combinación con uno o más tratamientos antineoplásicos , en el tratamiento o profilaxis de neoplasias malignas, o en la modulación de la respuesta inmune antitumoral .
10.- Las microvesículas para su uso de conformidad con la reivindicación 9, en donde los uno o más tratamientos antineoplásicos se seleccionan del grupo que consiste en: quimioterapia, radioterapia, inmunoterapia, o combinaciones de los mismos.
12.- Las microvesículas de conformidad con cualquiera de las reivindicaciones 1 a 8, para su uso como marcadores de pronóstico o diagnóstico de neoplasias.
13.- Una vacuna terapéutica para cáncer, caracterizada porque comprende las microvesículas de conformidad con cualquiera de las reivindicaciones 1 a 8, junto con aditivos farmacéuticamente aceptables.
14.- Un proceso para preparar las microvesículas de conformidad con la reivindicación 1 o para preparar la vacuna terapéutica de conformidad con la reivindicación 13, en donde dicho proceso comprende el paso de irradiar células neoplásicas a una dosis de radiación de entre 45 y 55 Gy.
15. E1 proceso de conformidad con la reivindicación anterior en donde la dosis de radiación es de 50 Gy.
PCT/IB2018/055740 2018-07-31 2018-07-31 Vacunación con microvesículas derivadas de células tumorales para tratamiento de cáncer WO2020026001A1 (es)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/IB2018/055740 WO2020026001A1 (es) 2018-07-31 2018-07-31 Vacunación con microvesículas derivadas de células tumorales para tratamiento de cáncer
MX2021001288A MX2021001288A (es) 2018-07-31 2018-07-31 Vacunacion con microvesiculas derivadas de celulas tumorales para tratamiento de cancer.
US17/264,551 US20220008524A1 (en) 2018-07-31 2018-07-31 Vaccination with microvesicles derived from tumour cells for cancer treatment
CN201880098319.9A CN113164568A (zh) 2018-07-31 2018-07-31 用衍生自肿瘤细胞的微囊泡进行疫苗接种以治疗癌症
EP18928855.8A EP3884958A4 (en) 2018-07-31 2018-07-31 VACCINATION WITH MICROVESICLES DERIVED FROM TUMOR CELLS FOR THE TREATMENT OF CANCER
CA3145514A CA3145514A1 (en) 2018-07-31 2018-07-31 Vaccination with microvesicles derived from tumour cells for cancer treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2018/055740 WO2020026001A1 (es) 2018-07-31 2018-07-31 Vacunación con microvesículas derivadas de células tumorales para tratamiento de cáncer

Publications (1)

Publication Number Publication Date
WO2020026001A1 true WO2020026001A1 (es) 2020-02-06

Family

ID=69231505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2018/055740 WO2020026001A1 (es) 2018-07-31 2018-07-31 Vacunación con microvesículas derivadas de células tumorales para tratamiento de cáncer

Country Status (6)

Country Link
US (1) US20220008524A1 (es)
EP (1) EP3884958A4 (es)
CN (1) CN113164568A (es)
CA (1) CA3145514A1 (es)
MX (1) MX2021001288A (es)
WO (1) WO2020026001A1 (es)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113134083B (zh) * 2021-03-09 2023-07-07 深圳市人民医院(深圳市呼吸疾病研究所) 声敏剂及其应用
CN114376986B (zh) * 2022-02-25 2023-03-28 南京中医药大学 一种同源重组外泌体多药递送的仿生纳米粒及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6703016B1 (en) * 1998-05-11 2004-03-09 Inserm Institut National De La Sante Et De La Recherche Medicale Apoptotic bodies, monocyte derived cells containing the same, a process for their preparation and their uses as vaccines
US20150086639A1 (en) * 2012-05-31 2015-03-26 Hubei Soundny Biotechnology Co., Ltd. Tumor vaccine and method for producing the same
US20160310531A1 (en) * 2015-04-21 2016-10-27 Hubei Soundny Biotechnology Co., Ltd. Combination of pharmaceutical preparations for tumor chemotherapy
WO2017145162A1 (en) * 2016-02-23 2017-08-31 Chaya Brodie Generation of cancer stem cells and use thereof
WO2018085275A1 (en) * 2016-11-02 2018-05-11 The Regents Of The University Of California Targeting lats1/2 and the hippo intracellular signaling pathway for cancer immunotherapy

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201121070D0 (en) * 2011-12-07 2012-01-18 Isis Innovation composition for delivery of biotherapeutics
US9649309B2 (en) * 2014-04-11 2017-05-16 The University Of North Carolina At Chapel Hill Therapeutic uses of selected pyrimidine compounds with anti-Mer tyrosine kinase activity

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6703016B1 (en) * 1998-05-11 2004-03-09 Inserm Institut National De La Sante Et De La Recherche Medicale Apoptotic bodies, monocyte derived cells containing the same, a process for their preparation and their uses as vaccines
US20150086639A1 (en) * 2012-05-31 2015-03-26 Hubei Soundny Biotechnology Co., Ltd. Tumor vaccine and method for producing the same
US20160310531A1 (en) * 2015-04-21 2016-10-27 Hubei Soundny Biotechnology Co., Ltd. Combination of pharmaceutical preparations for tumor chemotherapy
WO2017145162A1 (en) * 2016-02-23 2017-08-31 Chaya Brodie Generation of cancer stem cells and use thereof
WO2018085275A1 (en) * 2016-11-02 2018-05-11 The Regents Of The University Of California Targeting lats1/2 and the hippo intracellular signaling pathway for cancer immunotherapy

Non-Patent Citations (34)

* Cited by examiner, † Cited by third party
Title
ARSCOTT WTTANDLE ATZHAO SSHABASON JEGORDON IKSCHLAFF CD ET AL.: "Ionizing radiation and glioblastoma exosomes: implications in tumor biology and cell migration", TRANSLATIONAL ONCOLOGY, vol. 6, no. 6, 2013, pages 638 - 48
BAULCH JEGEIDZINSKI ETRAN KKYU LZHOU YHLIMOLI CL: "Irradiation of primary human gliomas triggers dynamic and aggressive survival responses involving microvesicle signaling", ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, vol. 57, no. 5, 2016, pages 405 - 15
BRONDANI DA ROCHA AREGNER AGRIVICICH IPRETTO SCHUNEMANN DDIEL CKOVALESKI GBRUNETTO DE FARIAS CMONDADORI EALMEIDA LBRAGA FILHO A: "Radioresistance is associated to increased Hsp70 content in human glioblastoma cell lines", INT J ONCOL, vol. 25, no. 3, September 2004 (2004-09-01), pages 777 - 85
CHARGAFF EWEST R: "The biological significance of the thromboplastic protein of blood", J BIOL CHEM, vol. 166, no. 1, 1946, pages 189 - 97
COCUCCI ERACCHETTI GMELDOLESI J: "Shedding microvesicles: artefacts no more", TRENDS CELL BIOL, vol. 19, no. 2, 2009, pages 43 - 51, XP025913007, DOI: 10.1016/j.tcb.2008.11.003
DEORAH SLYNCH CFSIBENALLER ZARYKEN TC: "Trends in brain cancer incidence and survival in the United States: Surveillance, Epidemiology, and End Results Program, 1973 to 2001", NEUROSURGICAL FOCUS, vol. 20, no. 4, 2006, pages E1
ESCUDIER BDORVAL TCHAPUT NANDRE FCABY MPNOVAULT S ET AL.: "Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of thefirst phase I clinical trial", J TRANSL MED, vol. 3, no. 1, 2005, pages 10, XP021009856, DOI: 10.1186/1479-5876-3-10
FRANCESCA PASIALESSANDRO PAOLINIROSANNA NANORICCARDO DI LIBERTO: "Enrica Capelli. Effects of Single or Combined Treatments with Radiation and Chemotherapy on Survival and Danger Signals Expression in Glioblastoma Cell Lines", BIOMED RESEARCH INTERNATIONAL, vol. 2014, pages 9
FRIEND CMAROVITZ WHENIE GHENIE WTSUEI DHIRSCHHORN K ET AL.: "Observations on cell lines derived from a patient with Hodgkin's disease", CANCER RES, vol. 38, no. 8, 1978, pages 2581 - 91
GIUSTI ILARIA ET AL.: "Microvesicles as potential ovarian cancer biomarkers", BIOMED RESEARCH INTERNATIONAL, vol. 2013, 703048, 2013, pages 1 - 12, XP055683862, ISSN: 2314-6141, DOI: 10.1155/2013/703048 *
GRANER MWALZATE ODECHKOVSKAIA AMKEENE JDSAMPSON JHMITCHELL DA ET AL.: "Proteomic and immunologic analyses of brain tumor exosomes", FASEB JOURNAL : OFFICIAL PUBLICATION OF THE FEDERATION OF AMERICAN SOCIETIES FOR EXPERIMENTAL BIOLOGY, vol. 23, no. 5, 2009, pages 1541 - 57, XP055416153, DOI: 10.1096/fj.08-122184
LEE THD'ASTI EMAGNUS NAL-NEDAWI KMEEHAN BRAK J: "Microvesicles as mediators of intercellular communication in cancer--the emerging science of cellular 'debris", SEMIN IMMUNOPATHOL, vol. 33, no. 5, 2011, pages 455 - 67, XP019955361, DOI: 10.1007/s00281-011-0250-3
LEE YEL ANDALOUSSI SWOOD MJ: "Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy", HUM MOL GENET, vol. 21, no. R1, 2012, pages R125 - 34, XP055094171, DOI: 10.1093/hmg/dds317
LENER THOMAS ET AL.: "Applying extracellular vesicles based therapeutics in clinical trials - an ISEV position paper", JOURNAL OF EXTRACELLULAR VESICLES, vol. 4, 1 January 2015 (2015-01-01), pages 1 - 31, XP055336989, DOI: 10.3402/jev.v4.30087 *
LIMA LGCHAMMAS RMONTEIRO RQMOREIRA MEBARCINSKI MA: "Tumor-derived microvesicles modulate the establishment of metastatic melanoma in a phosphatidylserine-dependent manner", CANCER LETT, vol. 283, no. 2, 2009, pages 168 - 75, XP026421122
LOPEZ-GONZALEZ MASOTELO J: "Brain tumors in Mexico: characteristics and prognosis of glioblastoma", SURGICAL NEUROLOGY, vol. 53, no. 2, 2000, pages 157 - 62
LOUIS DNPERRY AREIFENBERGER GVON DEIMLING AFIGARELLA-BRANGER DCAVENEE WK ET AL.: "The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary", ACTA NEUROPATHOL, vol. 131, no. 6, 2016, pages 803 - 20, XP035878676, DOI: 10.1007/s00401-016-1545-1
MORSE MAGARST JOSADA TKHAN SHOBEIKA ACLAY TM ET AL.: "A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer", J TRANSL MED, vol. 3, no. 1, 2005, pages 9, XP021009899, DOI: 10.1186/1479-5876-3-9
MURALIDHARAN-CHARI VCLANCY JPLOU CROMAO MCHAVRIER PRAPOSO G ET AL.: "ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles", CURR BIOL, vol. 19, no. 22, 2009, pages 1875 - 85, XP026920881, DOI: 10.1016/j.cub.2009.09.059
OSTROM QTGITTLEMAN HFULOP JLIU MBLANDA RKROMER C ET AL.: "CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2008-2012", NEURO-ONCOLOGY, vol. 17, 2015, pages iv1 - iv62
OSTROM QTGITTLEMAN HFULOP JLIU MBLANDA RKROMER C ET AL.: "CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2008-2012", NEURO-ONCOLOGY, vol. 4, 2015, pages iv1 - iv62
PAOLINI APASI FFACOETTI AMAZZINI GCORBELLA FDI LIBERTO RNANO R: "Cell death forms and HSP70 expression in U87 cells after ionizing radiation and/or chemotherapy", ANTICANCER RES, vol. 31, no. 11, November 2011 (2011-11-01), pages 3727 - 31
RATAJCZAK JMIEKUS KKUCIA MZHANG JRECA RDVORAK P ET AL.: "Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery", LEUKEMIA, vol. 20, no. 5, 2006, pages 847 - 56, XP002531347, DOI: 10.1038/sj.leu.2404132
RUBNER YMUTH CSTRNAD ADERER ASIEBER RBUSLEI RFREY BFIETKAU RGAIPL U: "Fractionated radiotherapy is the main stimulus for the induction of cell death and of Hsp70 release of p53 mutated glioblastoma cell lines", RADIAT ONCOL, vol. 9, no. 1, 30 March 2014 (2014-03-30), pages 89, XP021182225, DOI: 10.1186/1748-717X-9-89
See also references of EP3884958A4
SHEVTSOV MANIKOLAEV BPRYZHOV VAYAKOVLEVA LYMARCHENKO YYPARR MAROLICH VIMIKHRINA ALDOBRODUMOV AVPITKIN E: "Ionizing radiation improves glioma-specific targeting of superparamagnetic iron oxide nanoparticles conjugated with cmHsp70.1 monoclonal antibodies (SPION-cmHsp70.1", NANOSCALE, vol. 7, no. 48, 28 December 2015 (2015-12-28), pages 20652 - 64
SOLOGUREN IRODRIGUEZ-GALLEGO CLARA PC: "Immune effects of high dose radiation treatment: implications of ionizing radiation on the development of bystander and abscopal effects", TRANSLATIONAL CANCER RESEARCH, vol. 3, no. 1, 2014, pages 18 - 31
STUPP RMASON WPVAN DEN BENT MJWELLER MFISHER BTAPHOORN MJB ET AL.: "Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma", NEW ENGLAND JOURNAL OF MEDICINE, vol. 352, no. 10, 2005, pages 987 - 96, XP002439490, DOI: 10.1056/NEJMoa043330
TOMAYKO, M. M.REYNOLDS, C. P.: "Determination of subcutaneous tumor size in athymic (nude) mice", CANCER CHEMOTHER PHARMACOL, vol. 24, no. 3, 1989, pages 148 - 154
VADER PBREAKEFIELD XOWOOD MJ: "Extracellular vesicles: emerging targets for cancer therapy", TRENDS MOL MED, vol. 20, no. 7, 2014, pages 385 - 93
VELASQUEZ-PEREZ LJIMENEZ-MARCIAL ME: "Clinical-histopathologic concordance of tumors of the nervous system at the Manuel Velasco Suarez National Institute of Neurology and Neurosurgery in Mexico City", ARCH PATHOL LAB MED, vol. 127, no. 2, 2003, pages 187 - 92
VENEREAU ECERIOTTI CBIANCHI ME: "DAMPs from Cell Death to New Life", FRONT IMMUNOL, vol. 6, 2015, pages 422
WOLF P: "The nature and significance of platelet products in human plasma", BR J HAEMATOL, vol. 13, no. 3, 1967, pages 269 - 88
ZWAAL RFSCHROIT AJ: "Pathophysiologic implications of membrane phospholipid asymmetry in blood cells", BLOOD, vol. 89, no. 4, 1997, pages 1121 - 32

Also Published As

Publication number Publication date
MX2021001288A (es) 2021-07-15
CA3145514A1 (en) 2020-02-06
CN113164568A (zh) 2021-07-23
EP3884958A4 (en) 2023-01-25
EP3884958A1 (en) 2021-09-29
US20220008524A1 (en) 2022-01-13

Similar Documents

Publication Publication Date Title
Guo et al. Magnetic-responsive and targeted cancer nanotheranostics by PA/MR bimodal imaging-guided photothermally triggered immunotherapy
Liu et al. Polyethylenimine hybrid thin-shell hollow mesoporous silica nanoparticles as vaccine self-adjuvants for cancer immunotherapy
Ren et al. From structures to functions: insights into exosomes as promising drug delivery vehicles
Tian et al. Tumor exosome mimicking nanoparticles for tumor combinatorial chemo-photothermal therapy
Cai et al. Hybrid cell membrane-functionalized biomimetic nanoparticles for targeted therapy of osteosarcoma
Hu et al. The next-generation nicotine vaccine: a novel and potent hybrid nanoparticle-based nicotine vaccine
Nasirmoghadas et al. Nanoparticles in cancer immunotherapies: An innovative strategy
Ruan et al. Advanced biomaterials for cell‐specific modulation and restore of cancer immunotherapy
KR20120132183A (ko) 종양 조직에서 유래한 나노소포체 및 이를 이용한 암 백신
US20220249656A1 (en) Nanoparticles for use in redirection against the tumour of a non-tumour specific immune response, based on a pre-existing immunity
Wei et al. ApoE-mediated systemic nanodelivery of granzyme B and CpG for enhanced glioma immunotherapy
WO2020026001A1 (es) Vacunación con microvesículas derivadas de células tumorales para tratamiento de cáncer
BR112016015810B1 (pt) Nanopartículas magnéticas funcionalizadas com catecol, produção e uso das mesmas
Jin et al. Transfection of difficult-to-transfect rat primary cortical neurons with magnetic nanoparticles
Chen et al. Extracellular vesicle-based macromolecule delivery systems in cancer immunotherapy
JP2021003551A (ja) 凍結療法による個体の身体部分の処置のためにナノ粒子を含む凍結システム
KR20150046709A (ko) 세포막결합성 리포좀에 의한 세포변형을 통하여 세포막성 소포에 약물을 포접하는 방법 및 이를 이용한 약물의 전달 방법
Mbugua et al. Beyond DNA-targeting in cancer chemotherapy. emerging frontiers-a review
Desai et al. Biomaterial-based platforms for modulating immune components against cancer and cancer stem cells
Kou et al. Erythrocyte membrane-camouflaged DNA-functionalized upconversion nanoparticles for tumor-targeted chemotherapy and immunotherapy
Wang et al. Bio-fabricated nanodrugs with chemo-immunotherapy to inhibit glioma proliferation and recurrence
Zhang et al. Targeting inorganic nanoparticles to tumors using biological membrane‐coated technology
Zeb et al. Recent progress and drug delivery applications of surface-functionalized inorganic nanoparticles in cancer therapy
Lin et al. Self-contained nanocapsules carrying anticancer peptides for magnetically activated and enzyme-cleaved drug delivery
Li et al. Treatment of Dutch rat models of glioma using EphrinA1-PE38/GM-CSF chitosan nanoparticles by in situ activation of dendritic cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18928855

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018928855

Country of ref document: EP

Effective date: 20210301

ENP Entry into the national phase

Ref document number: 3145514

Country of ref document: CA