WO2020024867A1 - 时间同步偏差调整方法、装置、终端以及接入层设备 - Google Patents

时间同步偏差调整方法、装置、终端以及接入层设备 Download PDF

Info

Publication number
WO2020024867A1
WO2020024867A1 PCT/CN2019/097683 CN2019097683W WO2020024867A1 WO 2020024867 A1 WO2020024867 A1 WO 2020024867A1 CN 2019097683 W CN2019097683 W CN 2019097683W WO 2020024867 A1 WO2020024867 A1 WO 2020024867A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
terminal
access layer
layer device
gps
Prior art date
Application number
PCT/CN2019/097683
Other languages
English (en)
French (fr)
Inventor
尹照根
李继红
窦道祥
***
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19844219.6A priority Critical patent/EP3820061A4/en
Priority to BR112021001658-9A priority patent/BR112021001658A2/pt
Publication of WO2020024867A1 publication Critical patent/WO2020024867A1/zh
Priority to US17/160,558 priority patent/US11503560B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/005Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by adjustment in the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0658Clock or time synchronisation among packet nodes
    • H04J3/0661Clock or time synchronisation among packet nodes using timestamps
    • H04J3/0667Bidirectional timestamps, e.g. NTP or PTP for compensation of clock drift and for compensation of propagation delays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/25Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS
    • G01S19/256Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS relating to timing, e.g. time of week, code phase, timing offset
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0644External master-clock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0682Clock or time synchronisation in a network by delay compensation, e.g. by compensation of propagation delay or variations thereof, by ranging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0055Synchronisation arrangements determining timing error of reception due to propagation delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0055Synchronisation arrangements determining timing error of reception due to propagation delay
    • H04W56/0065Synchronisation arrangements determining timing error of reception due to propagation delay using measurement of signal travel time
    • H04W56/009Closed loop measurements

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a time synchronization deviation adjustment method, device, terminal, and access layer device.
  • LTE long term evolution
  • 5G 5th generation mobile communication technology
  • IEEE 1588 protocol Or 1588 protocol
  • IEEE1588 version (v, 2) protocol or 1588v2 protocol for short.
  • the content of the IEEE1588v2 protocol is mainly a clock distribution technology.
  • the clock source of the IEEE1588v2 protocol may be a satellite system, and the satellite system may include a global positioning system (GPS), a Beidou navigation system, or a global navigation satellite system (GLONASS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • the time accuracy of the time synchronization scheme based on the 1588 protocol is in the microsecond level, or even less than the microsecond level, while the basic accuracy of emerging basic services such as LTE or 5G is +/- 1.5 microseconds, and the synchronization accuracy of collaborative services It is even in the nanosecond range.
  • the embodiments of the present application provide a time synchronization deviation adjustment method, device, terminal, and access layer device.
  • the 1588 time synchronization deviation can be adjusted to improve the 1588 time accuracy.
  • a 1588 time offset adjustment method includes compensating the 1588 time synchronized at the 1588 terminal, so as to reduce the error caused by the asymmetry of the delay of the receiving and transmitting link and improve the accuracy of the 1588 time synchronized.
  • the method may be implemented by the following steps: the first 1588 terminal obtains a first 1588 time by synchronizing with a 1588 device superior to the first 1588 terminal; the first 1588 terminal determines a 1588 time offset value ; The first 1588 terminal compensates for the first 1588 time according to the 1588 time deviation value. Therefore, the first terminal can compensate for the 1588 time deviation on the terminal side, so as to compensate for the 1588 time at the edge of the synchronous network, that is, the end-to-end (E2E) fiber misalignment deviation is realized, and The fixed deviation compensation in the synchronous network equipment is eliminated, thereby eliminating the need for point-to-point measurement and compensation, which greatly saves labor costs and improves the accuracy of 1588 time.
  • E2E end-to-end
  • the method further includes: the first 1588 terminal receives the first GPS time from the GPS clock source; the 1588 time deviation value is a difference between the first 1588 time and the first GPS time.
  • the method further includes: the first 1588 terminal sends a 1588 time deviation value to the second 1588 terminal, the 1588 time deviation value is used to compensate for the second 1588 time, and the second 1588 time is the second The 1588 synchronization time obtained by the 1588 terminal by synchronizing with the 1588 device at the upper level of the first 1588 terminal.
  • the method further includes: the first 1588 terminal receives first instruction information from the 1588 terminal management device, the first instruction information is used to instruct the first 1588 terminal to send a 1588 time offset value to the second 1588 terminal .
  • the 1588 terminal shares the 1588 time offset value under the control of the 1588 terminal management device, thereby improving resource utilization and avoiding information confusion.
  • the foregoing first 1588 terminal sending the 1588 time offset value to the second 1588 terminal may specifically include: the first 1588 terminal sends the 1588 time offset value to the second 1588 terminal through the 1588 terminal management device.
  • the determining the 1588 time deviation value by the first 1588 terminal includes: the first 1588 terminal receives the 1588 time deviation value from the third 1588 terminal, and the 1588 time deviation value is the third 1588 time and the third GPS The difference between the time, the third 1588 time is the 1588 time obtained by the third 1588 terminal by synchronizing with the 1588 device above the first 1588 terminal, and the third GPS time is the third 1588 terminal received from the GPS clock source GPS time.
  • a 1588 terminal determines the 1588 time offset value through other 1588 terminals under the same access layer device, and further realizes the sharing of the 1588 time offset value between 1588 terminals under the same access layer device, so that there is no
  • a 1588 terminal capable of acquiring a reference time can also perform 1588 time compensation, reducing the difficulty of network deployment.
  • the receiving of the 1588 time offset value by the first 1588 terminal from the third 1588 terminal includes: the first 1588 terminal receives the 1588 time offset value from the third 1588 terminal through the 1588 terminal management device.
  • a 1588 time offset adjustment method is provided. This method can compensate the synchronized 1588 time at the edge bearer device, so as to reduce the error caused by the asymmetry of the delay of the transmission and reception link and improve the accuracy of the synchronized 1588 time.
  • the method may be specifically implemented as follows: a first 1588 terminal obtains a first 1588 time by synchronizing with a superior 1588 device; the first 1588 terminal receives the first GPS from a GPS clock source Time; the first 1588 terminal determines a 1588 time deviation value, and the 1588 time deviation value is a difference between the first 1588 time and the first GPS time; the first 1588 terminal makes a connection to the first The incoming layer device sends the 1588 time deviation value, and the 1588 time deviation value is used to compensate a fourth 1588 time, where the first 1588 time is the time when the first access layer device passes the first access layer device. The 1588 time of the 1588 device on the upper level.
  • the first access layer device can compensate for the 1588 time deviation at the end of the bearer network, so as to compensate for the 1588 time at the edge of the synchronous network, that is, end-to-end (E2E) fiber misalignment is achieved.
  • E2E end-to-end
  • the fixed deviation compensation in the synchronous network equipment is realized, which eliminates the need for point-by-point measurement and compensation, which greatly saves labor costs and improves the accuracy of 1588 time.
  • the method may also be specifically implemented as follows: the first access layer device obtains a fourth 1588 time by synchronizing with the 1588 device of the upper level of the first access layer device; The incoming device receives the 1588 time offset value; the first access layer device compensates the fourth 1588 time according to the 1588 time offset value. Therefore, the first access layer device can compensate for the 1588 time deviation at the end of the bearer network, so as to compensate for the 1588 time at the edge of the synchronous network, that is, end-to-end (E2E) fiber misalignment is achieved.
  • E2E end-to-end
  • the fixed deviation compensation in the synchronous network equipment is realized, which eliminates the need for point-by-point measurement and compensation, which greatly saves labor costs and improves the accuracy of 1588 time.
  • the aforesaid first access layer device to compensate the fourth 1588 time according to the 1588 time offset value includes: the first access layer device according to the 1588 time offset value at The port between the first access layer device and the upper-level 1588 device of the first access layer device compensates for the fourth 1588 time; or, the first access layer device is based on the 1588 time.
  • the port whose offset value is between the first access layer device and the 1588 terminal compensates for the fourth 1588 time; or, after the first access layer device obtains the fourth 1588 time, the first access layer device
  • the system time of the layer device is updated to the fourth 1588 time, and the first access layer device compensates the internal system time.
  • the method further includes: the first access layer device sends a 1588 time offset value to the bearer network management device.
  • the bearer network management device can manage the bearer network device according to the 1588 time offset value, for example, in combination with network topology for fault monitoring and the like.
  • the bearer network management device can also serve as an intermediate device that shares the 1588 time offset value between the access layer devices.
  • the method further includes: the first access layer device receives instruction information from a bearer network management device, and the instruction information is used to instruct the first access layer device to perform the fourth 1588 time according to the 1588 time offset value. Compensation.
  • the access layer device can perform time compensation under the instruction of the bearer network management device, which facilitates unified management and increases the consistency of the system.
  • receiving the 1588 time offset value by the foregoing first access layer device includes: the first access layer device receives the 1588 time offset value from the first 1588 terminal, and the 1588 time offset value is the first 1588 time and The difference between the first GPS time.
  • the first 1588 time is the 1588 time obtained by the first 1588 terminal through synchronization with the first access layer device.
  • the first GPS time is the GPS time received by the first 1588 terminal from the GPS clock source. .
  • the method further includes: the first access layer device sends a 1588 time offset value to the second access layer device, and the 1588 time offset value is used to pass the second access layer device through the second access layer device to the second access layer device.
  • the fifth 1588 time synchronously acquired by the upper level 1588 device of the access layer device is compensated; both the first access layer device and the second access layer device are located on the first access ring, and the receiving and transmitting link of the first access ring is delayed.
  • 1588 time sharing between the access layer devices in the access ring can be achieved, which further reduces the difficulty of network deployment.
  • the difference sent by the first access layer device to the second access layer device includes: the first access layer device sends 1588 time to the second access layer device through the bearer network management device Deviation.
  • the bearer network management device can be used as an intermediate device to transmit the difference, and the bearer network management device can manage the transmission of the 1588 time offset value.
  • receiving the 1588 time offset value by the first access layer device includes: the first access layer device receives the 1588 time offset value from the third access layer device, and the 1588 time offset value is the sixth 1588 The difference between the time and the sixth GPS time.
  • the sixth 1588 time is the 1588 time obtained by the fourth 1588 terminal through synchronization with the third access layer device 1588 device.
  • the sixth GPS time is the fourth 1588 terminal from the GPS clock source. Received GPS time; both the first access layer device and the third access layer device are located on the first access ring, and the transmit and receive link delays of the first access ring are symmetrical.
  • receiving the 1588 time offset value from the third access layer device by the first access layer device includes: receiving the 1588 time from the third access layer device by the first access layer device through the bearer network management device Deviation.
  • a 1588 time deviation adjusting device which includes: a synchronization unit configured to obtain a first 1588 time by synchronizing with a 1588 device above the device, and a determining unit configured to determine a 1588 time. Time deviation value; a compensation unit, configured to compensate the first 1588 time according to the 1588 time deviation value.
  • the apparatus further includes: a first receiving unit configured to receive a first GPS time from a GPS clock source of the Global Positioning System; a 1588 time offset value between the first 1588 time and the first GPS time Difference.
  • the apparatus further includes: a first sending unit, configured to send a 1588 time deviation value to the second 1588 terminal, the 1588 time deviation value is used to compensate the second 1588 time, and the second 1588 time The 1588 synchronization time obtained by the second 1588 terminal by synchronizing with the upper-level 1588 device of the device.
  • a first sending unit configured to send a 1588 time deviation value to the second 1588 terminal, the 1588 time deviation value is used to compensate the second 1588 time, and the second 1588 time The 1588 synchronization time obtained by the second 1588 terminal by synchronizing with the upper-level 1588 device of the device.
  • the apparatus further includes: a second receiving unit, configured to receive the first instruction information from the 1588 terminal management device, and the first instruction information is used to instruct the first 1588 terminal to send the 1588 to the second 1588 terminal. Time offset value.
  • the apparatus further includes:
  • the second sending unit is configured to send the 1588 time offset value to the second 1588 terminal through the 1588 terminal management device.
  • the foregoing determining unit is specifically configured to:
  • the 1588 time deviation value is the difference between the third 1588 time and the third GPS time
  • the third 1588 time is the third 1588 terminal passing the 1588 device from the upper level of the device
  • the third GPS time is the GPS time received by the third 1588 terminal from the GPS clock source.
  • the foregoing determining unit is specifically configured to:
  • the 1588 terminal management device receives the 1588 time offset value from the third 1588 terminal.
  • a 1588 time deviation adjusting device which is characterized in that the device includes: a synchronization unit configured to obtain the first 1588 time by synchronizing with a first access layer device; and a receiving unit configured to obtain a GPS clock from the GPS clock.
  • the source receives the first GPS time; the determining unit is configured to determine the 1588 time deviation value, and the 1588 time deviation value is the difference between the first 1588 time and the first GPS time; the sending unit is used to send 1588 to the first access layer device The time offset value, the 1588 time offset value is used to compensate for the fourth 1588 time.
  • the fourth 1588 time is the 1588 time obtained by the first access layer device by synchronizing with the upper level 1588 device of the first access layer device.
  • a 1588 time offset adjusting device includes: an obtaining unit for obtaining a fourth 1588 time by synchronizing with a 1588 device above the device, and a receiving unit for receiving a 1588 time offset.
  • the compensation unit is configured to compensate the fourth 1588 time according to the 1588 time deviation value.
  • the compensation unit is specifically configured to: compensate the fourth 1588 time according to the 1588 time offset value at a port with the upper-level 1588 device; or, based on the The port between the 1588 time deviation value and the 1588 terminal compensates the fourth 1588 time; or, after obtaining the fourth 1588 time, the system time is updated to the fourth 1588 time, and the system time is adjusted. make up.
  • the apparatus further includes: a sending unit, configured to send a 1588 time offset value to a bearer network management device.
  • the foregoing receiving unit is further configured to receive instruction information from a bearer network management device, and the instruction information is used to instruct the compensation unit to compensate the fourth 1588 time according to the 1588 time deviation value.
  • the foregoing receiving unit is specifically configured to receive the 1588 time deviation value from the first 1588 terminal, the 1588 time deviation value being a difference between the first 1588 time and the first GPS time, and the first 1588 The time is the 1588 time obtained by the first 1588 terminal in synchronization with the first access layer device, and the first GPS time is the GPS time received by the first 1588 terminal from the GPS clock source.
  • the foregoing sending unit is further configured to send a 1588 time offset value to the second access layer device, and the 1588 time offset value is used to pass the second access layer device to the second access layer device.
  • the fifth 1588 time acquired by the upper-level 1588 device synchronously is compensated; the first access layer device and the second access layer device are located on the first access ring, and the delay of the receiving and transmitting link of the first access ring is symmetrical.
  • the foregoing sending unit is further configured to send the 1588 time offset value to a second access layer device through a bearer network management device.
  • the foregoing receiving unit is further configured to receive a 1588 time offset value from a third access layer device, and the 1588 time offset value is a difference between the sixth 1588 time and the sixth GPS time.
  • the six 1588 time is the 1588 time obtained by the fourth 1588 terminal through synchronization with the third access layer, and the sixth GPS time is the GPS time received by the fourth 1588 terminal from the GPS clock source; the first access layer device and the third access The layer devices are all located on the first access ring, and the delay of the receiving and transmitting links of the first access ring is symmetrical.
  • the receiving unit is specifically configured to receive the 1588 time offset value from the third access layer device through the bearer network management device.
  • a 1588 terminal in a sixth aspect, includes a communication module, a processor, and a memory.
  • the memory is used to store programs.
  • the communication module is used to interact with the access layer device or the 1588 terminal.
  • the processor is used to execute the program stored in the memory to control the 1588 terminal to execute the foregoing first aspect. Or the method performed by the 1588 terminal in the second aspect.
  • another 1588 terminal is provided.
  • the memory is used to store the program;
  • the communication module is used to interact with the access layer device, 1588 terminal or 1588 terminal management device;
  • the GPS transceiver is used to receive GPS time, and the processor is used to
  • the program stored in the memory is executed to control the 1588 terminal to execute the method performed by the 1588 terminal in the foregoing first aspect or the second aspect.
  • an access layer device Including communication module, processor and memory, the memory is used to store programs; the communication module is used to interact with the 1588 terminal, the bearer network device or the bearer network management device; the processor is used to execute the programs stored in the memory to control the access layer device to execute The method performed by the access layer device in the foregoing second aspect.
  • a computer-readable storage medium including computer-readable instructions.
  • the computer instructions when executed by a processor, implement a method of any one or more of the first aspect, the second aspect, and the third aspect. .
  • a computer program product containing instructions.
  • the computer-readable storage medium stores a computer program, and when the program runs on the computer, the computer causes the computer to execute the first aspect, the second aspect, and the first aspect. Any one or more of the three methods.
  • FIG. 1 is a schematic diagram of a mobile communication system architecture
  • FIG. 2 is a schematic diagram of a bearer network architecture
  • FIG. 4 is a signaling interaction diagram of a 1588 time synchronization deviation adjustment method according to an embodiment of the present application.
  • 5 is a signaling interaction diagram of another 1588 time synchronization deviation adjustment method according to an embodiment of the present application.
  • FIG. 6 is a signaling interaction diagram of another 1588 time synchronization deviation adjustment method according to an embodiment of the present application.
  • FIG. 7 is a signaling interaction diagram of another 1588 time synchronization deviation adjustment method according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a 1588 time deviation adjustment device according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another 1588 time deviation adjustment device according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another 1588 time deviation adjustment device according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a 1588 terminal according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of another 1588 terminal according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of an access layer device according to an embodiment of the present application.
  • first 1588 terminal and the “second 1588 terminal” are only used to distinguish different 1588 terminals.
  • first 1588 terminal can also be referred to as a "second 1588 terminal”
  • second 1588 terminal also It can be called “the first 1588 terminal”
  • first "second” here does not constitute a limitation on the 1588 terminal.
  • the communication system includes a bearer network 100, a 1588 terminal 200, and a clock server 500.
  • the 1588 terminal 200 is connected to the bearer network 100
  • the bearer network 100 is connected to the clock server 500.
  • the bearer network 100 is located between the 1588 terminal 200 and the clock server 500, so that the 1588 terminal can obtain the 1588 time through the bearer network.
  • the communication system supports the 1588 protocol.
  • the 1588 protocol can refer to any version of the 1588 protocol, or an protocol evolved according to the IEEE 1588v2 protocol or the 1588v2 protocol, such as the G.827x series of standards developed by the International Telecommunication Union Telecommunication Standardization Bureau (telecommunication standardization sector). Including G.8271, G.8272, G.8273, G.8273.1, G.8273.2, G.8275, G.8275.1 and G.8275.2.
  • the G.827x series of standards and 1588v2 high-precision time synchronization network architecture, networking model, network level and network element level index requirements, time server index requirements, protection switching, etc.
  • the 1588 terminal in the communication system may be a device supporting the 1588 protocol.
  • the 1588 terminal may be a base station or a PTN terminal transmission device, etc.
  • the base station may include a small base station, a macro base station, or a room division base station.
  • the clock server 500 in the communication system may refer to a server that provides a clock during time synchronization based on the 1588 protocol.
  • the clock source of the clock server may be a satellite system or a ground system.
  • the satellite system may be GPS, Beidou satellite navigation system or GLONASS, etc.
  • the ground system may be a building integrated timing supply system (BITS) of a communication building.
  • BITS building integrated timing supply system
  • the communication system shown in FIG. 1 may further include other network devices, and the other network devices may be connected to the core layer 130.
  • the other network devices may include core network devices (for example, a mobility management entity (mobility management entity (MME), core network service gateway (SGW) or core network gateway (PGW, etc.) in an evolved packet core network (evolved packet core (EPC)).
  • MME mobility management entity
  • SGW core network service gateway
  • PGW core network gateway
  • EPC evolved packet core network
  • the communication system may further include one or more 1588 terminal management devices 300 and a bearer network management device 400.
  • the 1588 terminal management device 300 is connected to the 1588 terminal through the bearer network 100 to implement management and bearer of the 1588 terminal.
  • the network management device 400 is connected to the bearer network 100 and manages the bearer network 100.
  • the bearer network 100 in the communication system may be designed according to a standard three-layer structure, and the three-layer structure is an access layer 110, an aggregation layer 120, and a core layer 130, respectively.
  • the core layer 130 mainly provides high-bandwidth service bearers and transmissions, and completes interconnection with other networks.
  • the main function of the aggregation layer 120 is to provide the service access node with the aggregation and distribution processing of user service data, and at the same time, the service level classification of the service must be realized.
  • the access layer 110 utilizes multiple access technologies to perform bandwidth and service allocation, realize user access, and complete multiplexing and transmission of multiple services.
  • the access layer 110 may be composed of one or more devices
  • the devices in the access layer 110 may be referred to as access layer devices
  • the convergence layer 120 may be composed of one or more devices
  • the devices in the aggregation layer 120 may be called
  • the core layer 130 may be composed of one or more devices.
  • the devices in the core layer 130 may be referred to as core layer devices
  • the access layer device, the aggregation layer device, and the core layer device may all be called bearer network devices.
  • the access layer 110 and the convergence layer 120 may adopt a ring structure to form a system.
  • the access layer 110 may include multiple access rings.
  • Each access ring may include multiple access layer devices.
  • the convergence layer 120 may include multiple convergence rings, and each convergence ring may include multiple convergence layer devices.
  • the access layer 110 may include an access ring 112 and an access ring 114 and the like, and the convergence layer may include a convergence ring 121 and the like.
  • the access ring 112 may include access layer devices 1121, 1122, 1123, 1124, and the like.
  • the access ring 114 may include access layer devices 1141, 1142, 1143, 1144, and the like.
  • the aggregation layer may include aggregation layer devices 1221, 1222, 1223, 1224, and the like.
  • PTN packet transport network
  • the access layer uses the Gigabit Ethernet (GE) rate
  • the aggregation layer uses the 10 Gigabit Ethernet.
  • Rate group ring and adopt the structure of two-node hanging ring to prevent single node failure risk of convergence point and backbone node.
  • each backbone layer node is directly connected to the relevant core layer node through a GE or ten Gigabit Ethernet link provided by an optical transport network (OTN).
  • OTN optical transport network
  • the bearer network 100 is optional.
  • the 1588 terminal can be directly connected to the clock server.
  • a 1588 terminal can obtain time from a clock server based on the 1588 protocol.
  • the 1588 terminal may obtain the time of the clock server through the bearer network in a hop-by-hop synchronization manner.
  • the clock server synchronizes the time to the bearer network device
  • the bearer network device synchronizes the time to the 1588 terminal.
  • the 1588 device can directly synchronize time with the clock server, and the clock server directly synchronizes the time to the 1588 terminal.
  • the intermediate bearer network The device can transparently transmit information during the time synchronization between the 1588 device and the clock server.
  • the first embodiment is further described below with reference to FIG. 2.
  • the core layer device 131 may obtain the 1588 time from the clock server 500.
  • the core layer device 131 may include a GPS module, and the GPS time may be received through the GPS module; or, the clock server 500 may be integrated in the core layer device.
  • the core layer device 131 can serve as a clock server.
  • the time synchronization process of the 1588 terminal 211 is taken as an example for description below.
  • the core layer device 131 obtains GPS time (it may also be other satellite system time, here GPS time is taken as an example).
  • the core layer device 131 is synchronized to the core layer device 132 as the upper-level 1588 device.
  • the port of the core layer device 131 in the 1588 main working mode (M port shown in FIG. 2) synchronizes the 1588 time.
  • the core layer device 132 in the slave mode S port shown in FIG. 2
  • the core layer device 132 can send the 1588 time to the core layer device 132 in the 1588 master mode Port, the 1588 time synchronization process between the following devices can be understood by referring to:
  • the core layer device 132 acts as an upper level 1588 device and then synchronizes to the aggregation layer device 1213;
  • the aggregation layer device 1213 is then synchronized to the aggregation layer device 1212 as a higher-level 1588 device;
  • the aggregation layer device 1212 then synchronizes to the aggregation layer device 1211 as a higher-level 1588 device;
  • the aggregation layer device 1211 is then synchronized to the aggregation layer device 1214 as a higher-level 1588 device;
  • the convergence layer device 1214 then synchronizes to the access layer device 1124 as the upper level 1588 device;
  • the access layer device 1124 then synchronizes to the access layer device 1123 as the upper level 1588 device;
  • the access layer device 1123 then synchronizes to the 1588 terminal 211 as the upper-level 1588 device.
  • the device supporting the 1588 protocol may be referred to as a 1588 device, and the 1588 device may include a clock server, a core layer device, an aggregation layer device, an access layer device, a 1588 terminal, and the like.
  • the other 1588 devices in FIG. 2 also perform time synchronization in the same manner. For details, refer to the foregoing.
  • a 1588 device can include one or more clocks, such as the internal system clock, M-port clock, and S-port clock.
  • the system clock is at S310.
  • the upper-level 1588 device sends a synchronization (sync) message at t 1 .
  • the 1 timestamp is carried in the message.
  • the upper-level 1588 device may carry the t 1 timestamp of the clock of the M port in the message.
  • the 1588 device receives the sync message at time t 2 and generates a time stamp t 2 and extracts the time stamp t 1 from the message;
  • a 1588 device can generate a t 2 timestamp from the clock of the S port and extract a t 1 timestamp from the message.
  • S330,1588 device sends a request delay (delay request, Delay_Req) packet at time t 3, t 3 and generates a timestamp.
  • a 1588 device can generate a t 3 timestamp of the clock of the S port.
  • the upper-level 1588 device receives a Delay_Req message at time t 4 and generates a time stamp t 4 , and then carries the time stamp t 4 in a delay response (Delay_Resp) message and returns it to the next Class 1588 device.
  • the upper-level 1588 device may carry the t 1 timestamp of the clock of the M port in the message.
  • the 1588 device receives the Delay_Resp message, and extracts the t 4 timestamp from the message.
  • a 1588 device can extract a t 4 timestamp, and a 1588 device can calculate the time offset O between itself and the superior 1588 device through t 1 , t 2 , t 3, and t 4 .
  • the transmission path delay from the upper 1588 device to the 1588 device is D ms
  • the transmission path delay from the 1588 device to the upper 1588 device is D sm
  • the time deviation between the 1588 device and the upper 1588 device is O.
  • the 1588 device can calculate the time offset O between the device and the 1588 device at the upper level according to the four timestamps t 1 , t 2 , t 3 , and t 4 , and adjust its time according to O to pass the 1588 with the previous level.
  • the device time is synchronized to obtain the 1588 time.
  • the 1588 device can increase or decrease the time offset O based on its own time to obtain the 1588 time.
  • the self time can be the internal system time of the 1588 device, and the 1588 device will obtain the
  • the 1588 time is synchronized to the clocks of the ports of the 1588 device, such as the clock of the M port and the clock of the S port.
  • T-GM telecommunication master clock
  • T-GM telecommunications border clock
  • T-BC Telecom Slave Clock
  • T-GM is the root clock in an area, that is, a tree with the master clock as the root is established, where the master clock is the best clock source for the entire network.
  • the internal system and port of the 1588 device may include clocks respectively, the internal system time may refer to the time of the internal system clock, the port time may refer to the time of the port clock, and the port clock may be used to generate a time stamp.
  • the working mode of the 1588 device port may include at least a 1588 master mode and a 1588 slave mode.
  • the clock of the port is used as the slave clock to synchronize the clock of the port in the master mode of the upper-level device.
  • the clock of the port is used as the master clock to provide external clocks.
  • the port of the 1588 terminal works in the 1588 Slave mode
  • the port of the upper level 1588 device works in the master mode
  • the port of the 1588 device is obtained from the port of the upper level 1588 device.
  • the 1588 timestamp is sent to the internal system of the 1588 device. After the internal time of the 1588 device is calculated based on the timestamp, the time offset O can be synchronized to the internal system clock according to the time offset O. After the internal system clock is synchronized, the internal system clock can be synchronized. Synchronize to the port clock of the 1588 device.
  • a 1588 device may include an ordinary clock (OC) device and a boundary clock (BC) device.
  • An OC device generally has only one physical interface to communicate with the network. The working mode of the physical interface can be used as either a master or a slave.
  • BC device There are multiple physical interfaces to communicate with the network. Each physical port behaves like a port of an OC device and can connect multiple subdomains.
  • the 1588 terminal 200 is an OC device, and the bearer network device in the bearer network 10 (the bearer network device includes the upper-level device of the 1588 terminal) is a BC device.
  • a 1588 device may be a T-GM device, a T-BC device, and a T-TSC device.
  • the T-GM device can be regarded as an OC device that can only execute the main mode (always one GM and one port executes the main mode), and the T-GM device can also be regarded as a BC device that can only execute the main mode (total It is a GM, and multiple ports can perform the master mode);
  • T-BC device can be a GM, or perform slave mode to synchronize another 1588 clock;
  • T-TSC device can be regarded as an OC device that can only execute slave mode (total Is execute slave mode).
  • the time synchronization based on the 1588 protocol is based on the symmetry of the transmission and reception link delay between the 1588 device and the clock server, and if the transmission and reception link delay between the 1588 device and the clock server is delayed Asymmetry exists, synchronization deviation will be introduced, and the magnitude of the deviation is one half of the asymmetry of the link delay. Because there is still a device-fixed deviation between the 1588 device and the clock server, the more intermediate devices there are, the greater the accumulated device-fixed deviation.
  • the receiving and transmitting links are generally not single-fiber and bidirectional, especially for the links at the aggregation and core layers, they are mostly two-way. Fiber bidirectional, this makes the time difference between the receiving link and the sending link very large when the link length is very large, resulting in the 1588 time accuracy obtained through the 1588 protocol synchronization is low. This makes the time synchronization solution based on the 1588 protocol unable to meet the needs of some services with high time accuracy requirements. For example, the synchronization accuracy of 5G basic services is +/- 1.5 microseconds; the synchronization accuracy of 5G collaborative services is even more than 100 Nanoseconds.
  • the first embodiment is described above, that is, the 1588 terminal can obtain the time of the clock server in a hop-by-hop synchronization manner through the bearer network.
  • the second embodiment it is similar to the first embodiment, that is, the 1588 device
  • the upper-level 1588 device is a clock server.
  • a GPS receiver can also be deployed through each terminal, and each acquires a high-precision GPS time source from the GPS to achieve the purpose of time synchronization.
  • the terminal is directly connected to the GPS antenna, and there is no need to travel through the bearer network.
  • GPS receivers need to be deployed on all terminals, and the hardware cost is high.
  • the obtained GPS time is not accurate.
  • the service of the terminal will be affected, and it will also interfere with the surrounding terminals, which will amplify the fault.
  • GPS is vulnerable to interference.
  • an embodiment of the present application proposes a 1588 time synchronization deviation adjustment scheme. You can determine the 1588 time deviation value and compensate the 1588 time at the edge of the synchronization network according to the 1588 time deviation value to improve the synchronization precision and system stability of the 1588 time.
  • a 1588 device may refer to a device supporting the 1588 protocol.
  • it may include a 1588 terminal, a bearer network device supporting the 1588 protocol, a clock server, and the like.
  • the bearer network device may be an access layer device, an aggregation layer device, or Core layer equipment and so on.
  • the upper-level device of a certain device is a device that synchronizes the 1588 time to the certain device.
  • the upper-level 1588 device of a 1588 terminal may be an access layer device or a clock server.
  • a level 1588 device can be an access layer device or an aggregation layer device.
  • a level 1588 device at the aggregation layer device can be an aggregation layer device or a core layer device.
  • the level 1588 device at the core layer device can be a clock server.
  • the delay of the receiving and sending links is symmetrical, which means that the delay of the receiving link is equal to the delay of the sending link.
  • the delay of the receiving link and the sending chain The delays of the channels are equal.
  • the 1588 terminal can compensate for the synchronized 1588 time at the 1588 terminal, so as to reduce errors due to the asymmetry of the transmission and reception link delay and the deviation in the intermediate device, and improve the accuracy of the synchronized 1588 time.
  • FIG. 4 is a signaling interaction diagram of a 1588 time synchronization deviation adjustment method according to an embodiment of the present application.
  • the method shown in FIG. 4 is an example in which the 1588 terminal compensates for the synchronized 1588 time.
  • the method specifically includes:
  • the first 1588 terminal obtains the first 1588 time by synchronizing with the upper-level 1588 device.
  • the first 1588 terminal may be any 1588 terminal in FIG. 2.
  • the first 1588 time acquisition method may be the foregoing time synchronization method shown in FIG. 3, where the upper-level 1588 device may include a clock server or an access layer device.
  • the first 1588 terminal determines a 1588 time offset value.
  • the 1588 time deviation value may be a deviation between the 1588 time and the reference time.
  • the reference time can be other time than 1588, for example, a time with higher accuracy than 1588 time.
  • it can be the time received from the satellite system, or it can be obtained by other time synchronization methods.
  • the satellite system can For GPS, Beidou satellite navigation system or GLONASS, etc.
  • the 1588 time deviation may be the difference between the reference time at the same time and the 1588 time of the internal system of the first 1588 terminal, or the difference between the reference time at the same time and the port 1588 time of the first 1588 terminal.
  • the 1588 time deviation value may be determined before the first 1588 time is obtained, or may be determined after the first 1588 time is obtained.
  • the 1588 time deviation value can be updated periodically.
  • the update frequency can be determined according to the actual needs of the service and the system.
  • the first 1588 terminal may be a 1588 terminal capable of acquiring a reference time or a 1588 terminal not capable of acquiring a reference time.
  • the first 1588 terminal can directly acquire the reference time and determine a difference between the acquired reference time at the same time and the synchronized to 1588 time. For example, reference may be made to related content of S510 and S512 shown in FIG. 5.
  • the first 1588 terminal can directly receive the 1588 time deviation value, and the 1588 time deviation value can have the ability to obtain the reference time from the first access layer device 1588 terminals can also receive from 1588 terminals that have the ability to obtain the reference time under the first access layer device through the 1588 terminal management device. Since the upper-level devices of the 1588 terminal under the first access layer device can all be the first access layer device, the time synchronization between the 1588 terminals under the first access layer device and the error phase of each other Compared with the error between the core layer device and the 1588 terminal, the error can be ignored, especially the error caused by the asymmetry of the transmission and reception link delay. Therefore, the 1588 time offset value can be shared between the 1588 terminals under the same access layer device. . For example, reference may be made to the embodiment shown in FIG. 6 to take the reference time as the GPS time as an example for detailed description.
  • the first 1588 terminal compensates for the first 1588 time according to the 1588 time deviation value.
  • the so-called compensation refers to the compensation of ⁇ t based on the synchronized 1588 time.
  • This ⁇ t is the 1588 time deviation value.
  • the synchronized 1588 time is consistent with the current reference time, so as to achieve the same synchronization accuracy as the reference time.
  • ⁇ t can be compensated for the 1588 time synchronized on the port of the first 1588 terminal, and the 1588 time synchronized from the port of the internal system of the first 1588 terminal is the compensated 1588 time. It can also be synchronized on the internal system of the first 1588 terminal.
  • the internal system of the first 1588 terminal synchronizes the compensated 1588 time to the port.
  • the compensated 1588 time deviation value is the cumulative value of the static deviation of the E2E path of the synchronous network.
  • the static deviation of the synchronous network includes the fixed deviation within the equipment of the bearer network (which will change after reset) and the deviation outside the equipment (fiber misalignment deviation). )
  • the 1588 time is compensated according to the 1588 time deviation value of the 1588 time and the reference time with higher time accuracy, which realizes the E2E fiber misalignment deviation and the fixed deviation in the device. Compensation, so there is no need to step down to measure and compensate point by point, which greatly saves labor costs, and makes the 1588 time after compensation reach or close to the accuracy of the reference time.
  • the synchronization scheme obtained by superimposing the 1588 time synchronization scheme with the GPS time synchronization scheme has high reliability: the geographical location of the 1588 standard clock source is different from the location of the 1588 equipment, providing a stable and reliable clock source for the base station, providing remote disaster tolerance, and effectively resisting GPS Interference issues.
  • FIG. 5 is a signaling interaction diagram of another 1588 time synchronization deviation adjustment method according to an embodiment of the present application.
  • the method shown in FIG. 5 is an example of the embodiment shown in FIG. 4.
  • S520 is an example of S420.
  • S410 and S430 in FIG. 5 refer to related content in S410 and S430 in FIG. 4.
  • the first 1588 terminal has the ability to obtain a reference time
  • the reference time is GPS time
  • the upper layer 1588 device is an access layer device.
  • the reference time may be other time, such as Beidou satellite navigation system time, GLONASS time, or time obtained through other time synchronization protocols.
  • the upper layer 1588 device may also be another 1588 device, such as a clock server. This embodiment does not make this reference. limited.
  • the method may further include:
  • the first 1588 terminal receives a first GPS time from a GPS clock source.
  • the first 1588 terminal can receive GPS time locally.
  • the first 1588 terminal may be a 1588 terminal 211, a 1588 terminal 221, or a 1588 terminal 222, etc.
  • the 1588 terminal 211, 1588 terminal 221, or 1588 terminal 222 may directly receive Satellite system 500GPS time.
  • the determination of the 1588 time offset value may be performed irregularly or periodically. Based on this, the first 1588 terminal may receive GPS time from a GPS clock source irregularly or periodically.
  • the 1588 time offset value may be determined according to the instruction of the 1588 terminal management device. Based on this, before step S510, the method may further include: S530.
  • the first 1588 terminal receives the first instruction information from the 1588 terminal management device. An indication information is used to instruct the first 1588 terminal to send the 1588 time offset value to the second 1588 terminal.
  • the second 1588 terminal may refer to any 1588 terminal except the first 1588 terminal under the first access layer device.
  • Step S420 may specifically be: S520, the first 1588 terminal determines the 1588 time deviation value according to the first GPS time.
  • the 1588 time deviation value may be a difference between the first 1588 time and the first GPS time. At this time, the first 1588 time is received at the same time as the first GPS time.
  • the 1588 time deviation value may also be a deviation value between the first GPS time and the 1588 time before the first 1588 time is obtained. At this time, the time when the first GPS time is received is before the time when the first 1588 time is obtained.
  • the 1588 time deviation value may also be a time deviation value between the first GPS time and the 1588 time after the first 1588 time is obtained. At this time, the time to receive the first GPS time is after the first 1588 time is obtained.
  • 1588 time and GPS time may use two different time scales.
  • 1588 time adopts precise time synchronization protocol (PTP) time scale
  • GPS time uses GPS time scale.
  • PTP precise time synchronization protocol
  • the 1588 time deviation value determines the 1588 time deviation value for a period of time. If the 1588 time deviation value determined based on the currently received GPS time, and Compared with the multiple 1588 time deviation values determined according to the GPS time received at other times during the observation period, which are relatively stable, it is considered that the 1588 time determined according to the GPS time received at the current time (that is, the first GPS time) The deviation value is credible. If the 1588 time deviation value determined according to the GPS time received at the current time is relatively large compared to multiple 1588 time deviation values determined based on the GPS time received at other times, it is considered that the GPS time received according to the current time The determined 1588 time deviation value is not credible. The first 1588 terminal needs to continue to receive GPS time from the GPS clock source, and judge whether the 1588 time deviation value determined by the newly received GPS time is credible until it is determined that a reliable 1588 time is obtained. Deviation.
  • the first 1588 terminal when the first 1588 terminal has the ability to obtain the reference time, the first 1588 terminal can send the 1588 time offset value to other 1588 terminals under the first access layer device, so that other 1588 under the first access layer device
  • the terminal compensates for the synchronized 1588 time, so that a 1588 terminal that does not have the ability to obtain a reference time can also compensate for the synchronized 1588 time.
  • the method may further include: S540, the first terminal may send a 1588 time deviation value to the second 1588 terminal, the 1588 time deviation value is used to compensate for the second 1588 time, and the second 1588 time is the second 1588
  • the 1588 time deviation value may be sent to the 1588 terminal 212 or the 1588 terminal 213 connected to the access layer device 1123.
  • the first access layer device can send its own 1588 identity (ID) to the first 1588 terminal.
  • ID 1588 identity
  • the first Other 1588 terminals under an access layer device will also obtain the 1588 ID of the access layer device sent by the first access layer device when the first access layer device performs 1588 time synchronization based on the 1588 protocol.
  • the 1588 terminal can summarize the received 1588 ID to the 1588 terminal management device.
  • the 1588 terminal can determine that the 1588 ID of the same access layer device is located under the same access layer device, and the 1588 terminal management device can notify the 1588 device and the identity or communication address of other 1588 terminals under the same access layer device ( For example, media access control layer (MAC address).
  • MAC address media access control layer
  • the first 1588 terminal may directly send its determined 1588 time offset value to other 1588 terminals under the same access layer.
  • the first 1588 terminal may send the 1588 time offset value to other 1588 terminals through the X2 interface.
  • the first 1588 terminal may also send the 1588 time offset value to other 1588 terminals through the 1588 terminal management device. Specifically, the first 1588 terminal may send the 1588 time offset value to the 1588 terminal management device.
  • the 1588 terminal management device determines that the first 1588 terminal is connected to the same access according to the identity of the first 1588 terminal and the network topology relationship.
  • the second 1588 terminal under the layer device, the 1588 terminal management device sends the 1588 time offset value to the second 1588 terminal, and may also mean that the second 1588 terminal performs 1588 time synchronization according to the 1588 time offset value.
  • the 1588 terminal can be designated by the 1588 terminal management device to determine the 1588 time offset value, and the designated 1588 terminal can transfer and share the offset value, and then other 1588 terminals under the access layer device use the shared 1588 time. The deviation value is compensated. It can also be that 1588 terminals that have the ability to obtain GPS time from the GPS clock source all share their determined 1588 time deviation values.
  • the 1588 terminal capable of obtaining the GPS time from the GPS clock source uses the average value of the 1588 time deviation value shared by the 1588 terminals having the ability to obtain the GPS time from the GPS clock source under the same access layer device to compensate.
  • the 1588 terminal connected to the access layer device 1144 includes a 1588 terminal 221, a 1588 terminal 222, and a 1588 terminal 223.
  • 1588 terminal 221 and 1588 terminal 222 have the ability to obtain GPS time.
  • 1588 terminal 221 and 1588 terminal 222 can be designated by the 1588 terminal management device to determine the 1588 time offset value, and the 1588 terminal 221, 1588 terminal. 222 and 1588 terminal 223 share the 1588 terminal time offset value.
  • both the 1588 terminal 221 and the 1588 terminal 222 determine the 1588 time offset value and share it among the 1588 terminal 221, the 1588 terminal 222, and the 1588 terminal 223.
  • the 1588 terminal 221 and the 1588 terminal 222 preferentially use the 1588 time deviation value determined by themselves to compensate; the 1588 terminal 223 uses the average of the two 588 time deviation values determined by the 588 terminal 221 and the 1588 terminal 222 to compensate.
  • the determination of the 1588 time deviation value, the compensation of the 1588 time, and the transmission of the 1588 time deviation value may be performed irregularly or periodically, or according to instructions.
  • a 1588 terminal capable of acquiring GPS time acquires GPS time. Since the accuracy of GPS time is higher than 1588 time, GPS time can be used as the reference time, and the deviation between GPS time and 1588 time can be determined, that is, 1588 time deviation value. In this way, the 1588 time can be compensated from the end, so that the 1588 time can reach or approach the accuracy of the GPS time. In addition, the 1588 terminal can send the obtained 1588 time offset value to other 1588 devices, and other 1588 devices without GPS can also compensate for the 1588 time.
  • FIG. 6 is a signaling interaction diagram of another 1588 time synchronization deviation adjustment method according to an embodiment of the present application.
  • the method shown in FIG. 6 is an example of the embodiment shown in FIG. 4.
  • S610 is an example of S420.
  • S430 in FIG. 6 refer to related content in S410 and S430 in FIG. 4.
  • the first 1588 does not have the ability to acquire a reference time
  • the reference time is GPS time
  • the upper layer 1588 device is an access layer device.
  • the reference time may be other time, such as Beidou satellite navigation system time, GLONASS time, or time obtained through other time synchronization protocols.
  • the upper layer 1588 device may also be another 1588 device, such as a clock server. This embodiment does not make this reference. limited.
  • the method may specifically include:
  • the first 1588 terminal receives a 1588 time offset value from a third 1588 terminal.
  • the 1588 time deviation value is the difference between the third 1588 time and the third GPS time.
  • the third 1588 time is the 1588 time obtained by the third 1588 terminal by synchronizing with the upper level 1588 device.
  • the third GPS The time is the GPS time received by the third 1588 terminal from a GPS clock source.
  • the first 1588 terminal may be the 1588 terminal 212 or the 1588 terminal 213.
  • the third 1588 terminal may be the 1588 terminal 211.
  • the first 1588 terminal may directly receive the 1588 time offset value from the third 1588 terminal.
  • the first 1588 terminal may receive the 1588 time offset value through the X2 interface.
  • the first 1588 terminal may also receive the 1588 time offset value from the third 1588 terminal through the 1588 terminal management device.
  • the edge-bearing device may compensate the 1588 time synchronized, so as to reduce the error caused by the asymmetry of the transmission and reception link delay, and improve the accuracy of the 1588 time synchronized.
  • FIG. 7 is a signaling interaction diagram of another 1588 time synchronization deviation adjustment method according to an embodiment of the present application.
  • the method shown in FIG. 7 is an example in which the edge bearer device compensates for the 1588 time synchronized, and the edge bearer device is an access layer device. As shown in FIG. 7, the method specifically includes:
  • the first 1588 terminal obtains the first 1588 time by synchronizing with the first access layer device.
  • the first access layer device may be an upper 1588 device in the first 1588
  • the first 1588 terminal may be a 1588 terminal 211, a 1588 terminal 221, or a 1588 terminal 222, etc.
  • the incoming device can be an upper-layer 1588 device of the 1588 terminal 211, that is, access layer device 1123, or the first access layer device can be an upper-layer 1588 device of the 1588 terminal 221 and 1588 terminal 222, that is, access Layer equipment 1144.
  • the first 1588 time acquisition manner may be the foregoing time synchronization manner as shown in conjunction with FIG. 3. No longer.
  • the first 1588 terminal receives a first GPS time from a GPS clock source.
  • step S720 reference may be made to the description related to S510 in the embodiment shown in FIG. 5, and details are not described herein again.
  • the first 1588 terminal determines a 1588 time offset value.
  • the 1588 time deviation value is the difference between the first 1588 time and the first GPS time.
  • step S730 reference may be made to the description related to S520 in the foregoing embodiment shown in FIG. 5, and details are not described herein again.
  • the first 1588 terminal sends a 1588 time offset value to the first access layer device.
  • the first 1588 terminal may report the 1588 time offset value through a dedicated interface or message.
  • the first 1588 terminal may report irregularly or periodically, and may also report according to an instruction of the 1588 terminal management device.
  • the first 1588 terminal may be a 1588 terminal 211, a 1588 terminal 221, and a 1588 terminal 222.
  • the first access layer device may be an access layer device 1123 or an access layer device 1144.
  • the first access layer device obtains the second 1588 time by synchronizing with the upper-level 1588 device.
  • the upper-layer bearer network device is the upper-layer device of the first access layer device.
  • the upper level 1588 device of the first access layer device may be an access layer device or an aggregation layer device.
  • an upper-layer 1588 device of the access layer device 1123 is an access-layer device
  • an upper-layer 1588 device of the access layer device 1144 is an aggregation-layer device.
  • the method for acquiring the second 1588 time may be the same as the time synchronization method shown in FIG. 3 described above, and details are not described herein again.
  • the second 1588 time since the first access layer device includes a port clock and an internal system clock, the second 1588 time may be the 1588 time synchronized to the port clock or the 1588 time synchronized to the internal system clock.
  • step S750 may be performed after the first access layer device receives the 1588 time offset value, or may be performed before receiving the 1588 time offset value.
  • the first access layer device compensates for the second 1588 time according to the 1588 time deviation value.
  • the first access layer device may compensate in the internal system of the first access layer device according to the 1588 time offset value, or may perform compensation at the port.
  • the ports of the access layer device can be divided into client-side ports and line-side ports.
  • the client-side ports are connected to the 1588 device and the line-side ports are connected to the bearer network device.
  • the bearer network device can be an access layer device or an aggregation layer device. .
  • the first access layer device may perform time compensation on the 1588 time synchronized to the internal system clock of the first access layer device. After the first access layer device compensates for the synchronized 1588 time, the compensated 1588 time can be synchronized to the clock of the first access layer device port, so that the 1588 terminal synchronizes from the port of the first access layer device. The 1588 time arrived is the 1588 time after compensation.
  • the first access device can time compensate the 1588 time synchronized to the client-side port clock. At this time, the 1588 terminal connected to the client-side interface of the first access layer device synchronizes to the 1588 through this port. The time is the 1588 time after compensation.
  • the first access device may also compensate the 1588 time offset value on the time stamp sent to the 1588 terminal when performing time synchronization with the 1588 terminal.
  • any one or more of the t 1 timestamp and the t 4 timestamp received by the 1588 terminal is a value after compensating for the 1588 time deviation value, and according to the client side of the first access device,
  • the time stamp at time t 1 of the port and the time deviation value of 1588 are used to obtain a time stamp at t 1
  • the time stamp at time t 4 of the client side port of the first access device and the time deviation value of 1588 are used to obtain time stamp t 4 .
  • the first access device may compensate the 1588 time offset value of the 1588 time synchronized to the clock of the line-side port, and synchronize the 1588 time compensated by the line-side port to the internal system clock and the client-side port clock. Further synchronization to the 1588 terminal.
  • the first access device can compensate the 1588 time offset value on the timestamp received by the upper-layer bearer device when synchronizing with the upper-layer bearer device according to the 1588 time.
  • a t an arbitrary time stamp and time stamp. 4 t or more and then compensate for the time offset value 1588 is calculated time offset O, wherein, t 1 is the time stamp on the carrier device one at time t 1 The timestamp of the client-side port.
  • the timestamp t 4 is the timestamp of the line-side port of the upper-layer bearer at time t 4 .
  • time stamp t 3 and t 2 are the time stamp for the one or more after 1588 time offset compensation value calculating time offset O, wherein, t 2 to time t 2, the time stamp of the first access device-side line The timestamp of the port.
  • the timestamp t 4 is the timestamp of the line-side port of the first access device at time t 4 .
  • the first access device may be an access layer device 1123
  • the first 1588 terminal may be a 1588 terminal 211.
  • the 1588 terminal 211 may perform 1588 time synchronization with the access layer device 1123 to obtain the first 1588 time.
  • the 1588 terminal 211 may obtain the first GPS time through the satellite system 500, and may determine the 1588 time deviation value according to the first 1588 time and the first GPS time.
  • the 1588 terminal 211 may send the 1588 time offset value to the access layer device 1123.
  • the access layer device 1123 can compensate the 1588 time synchronized from the access layer device 1124, or the access layer device can also compensate the 1588 time synchronized to the 1588 terminal 211, 1588 terminal 212, and 1588 terminal 213.
  • the access layer device 1123 may also synchronize the 1588 time offset value to the access layer device 1122, the access layer device 1124, and the access layer device 1121.
  • the first access layer device may include multiple 1588 terminals capable of acquiring GPS time.
  • the 1588 terminal may be designated by the 1588 terminal management device to determine the 1588 time offset value, and the designated 1588 terminal sends the 1588 time offset value to the first access layer device for the offset value. It can also be that 1588 terminals that have the ability to obtain GPS time from a GPS clock source all determine the 1588 time deviation value and upload it.
  • the port connected to the time-capable 1588 terminal is preferentially compensated at the port with the 1588 time deviation value determined by the 1588 terminal connected to the port; for the port connected to the 1588 terminal that does not have the ability to obtain GPS time from the GPS clock source, use this first
  • the average value of the 1588 time deviation value uploaded by all 1588 terminals that have the ability to obtain GPS time from the GPS clock source under an access layer device is compensated at this port.
  • the first access layer device may send a 1588 time offset value to the bearer network management device for the bearer network management device to monitor the bearer network device according to the 1588 time offset value.
  • the first access layer device may directly compensate for the second 1588 time according to the 1588 time offset value, or may perform compensation according to the instruction of the bearer network management device.
  • the bearer network management device will have the identification of each access layer device. After receiving the 1588 time deviation value reported by an access layer device, it can notify the access layer device to perform a compensation operation by way of a command trigger. Based on this, it may include the following steps: the first access layer device receives instruction information from the bearer network management device, and the instruction information is used to instruct the first access layer device to compensate the second 1588 synchronization time according to the 1588 time offset value .
  • the embodiments of the present application may further include the following steps:
  • the first access layer device sends a 1588 time offset value to the second access layer device; both the first access layer device and the second access layer device are located on the first access ring, and the first access ring receives and sends Symmetric link delay.
  • the delay symmetry of the access ring receiving and sending link can mean that the delays on the sending link and the receiving link of the access ring are the same.
  • single-fiber bidirectional deployment can be used between the access layer devices in the access ring.
  • whether the receiving and sending links of the access ring are symmetrical can be determined by a bearer network management device, which can be calculated by measurement, or can be predefined.
  • the access ring 112 or the access ring 114 has a symmetrical transmission and reception link delay.
  • the first access layer device may be an access layer device 1123
  • the second access layer device may be an access layer device. 1124.
  • the first access layer device is an access layer device 1144
  • the second access layer device is an access layer device 1143, an access layer device 1142, or an access layer device 1141.
  • the first access layer device may send the 1588 time offset value to the second access layer device through the bearer network management device.
  • the bearer network management device will have the identification of each access layer device, and after receiving the 1588 time offset value reported by the first access layer device, it may send the second layer in the same access ring as the first access layer device.
  • the access layer device sends a 1588 time offset value.
  • the second access layer device obtains the third 1588 time by synchronizing with the upper level 1588 device.
  • the upper-level 1588 device of the second access layer device may be an access layer device or an aggregation layer device.
  • the upper layer 1588 device of the access layer device 1124 is an aggregation layer device
  • the upper layer device of the access layer device 1142 is an access layer device.
  • the third 1588 time acquisition method may be the same as the time synchronization method shown in FIG. 3 described above, and details are not described herein again.
  • the upper-level 1588 device is a core layer device or a clock server.
  • step S780 may be before the second access layer device receives the 1588 time offset value, or may be after the second access device receives the 1588 time offset value.
  • the second access layer device compensates the third 1588 time according to the 1588 time deviation value.
  • the second access layer device may perform compensation within the second access layer device according to the 1588 time offset value, or may perform compensation at the port. This process is similar to the process of performing the 1588 time compensation by the first access device in the foregoing step S760, and can be understood by referring to each other.
  • the second access layer device can use the 1588 time sent by all the first access ring access layer devices.
  • the mean of the deviations compensates for the third 1588 time.
  • the bearer network may cause synchronization time deviation when the primary and backup links change due to fault switching, etc.
  • the following scheme can be used to implement the embodiment shown in FIG. 7 above. Complementary functions to improve overall program stability.
  • the bearer network will sense the change of the primary and backup links at the first time, so the equipment of the bearer network can measure and compensate the relative deviation between the primary and backup paths, which can ensure that the relative deviation can be compensated on the backup path before and after the link is switched.
  • the path (absolute) deviation from the end device is consistent after the link changes.
  • a passive port may be configured on the standby path to measure the offset deviation of the active and standby paths.
  • the relative deviation of the active and standby paths before and after the switch is automatically compensated on the port.
  • the port is divided into a master port (M port in FIG. 2), a slave port (S port in FIG. 2) and a passive port (P port in FIG. 2).
  • the slave port synchronizes the 1588 time of the master port based on the 1588 protocol.
  • passive ports can be configured on 1588 broken nodes (including backup ports that may be enabled due to path switching) at the core layer, aggregation layer, and access layer; as shown in FIG. 2, the aggregation layer device 1215 and the aggregation layer
  • a passive port can be configured on the port connected to the aggregation layer device 1213 on the aggregation layer device 1215.
  • the link between the aggregation layer device 1213 and the aggregation layer device 1212 fails, the link between the aggregation layer device 1213 and the aggregation layer 1215 is enabled, and the offset of the primary and backup paths is compensated on the passive port.
  • each passive port can report the measured offset deviation (that is, the deviation from the port on the standby path) to the transmission network control device.
  • the path is automatically reselected, and the transmission network control device compensates the passive port offset deviation before the fault to the passive local port or its docking port.
  • the passive local port becomes a slave port after the path is switched, the passive port is compensated to offset the offset.
  • the opposite port of the passive port becomes a slave port after the path is switched, the negative value of offset is compensated on the passive peer port.
  • the passive port is defined based on the 1588 protocol, and can play a role in measuring the delay deviation of the active and standby paths.
  • the first access layer device can compensate for the 1588 time deviation at the end of the bearer network, so as to compensate for the 1588 time at the edge of the synchronous network, that is, end-to-end (E2E) )
  • the misalignment of the optical fiber has realized the compensation of the fixed deviation in the synchronous network equipment, which eliminates the need for point-by-point measurement and compensation, which greatly saves labor costs and improves the accuracy of 1588 time.
  • FIG. 8 is a schematic structural diagram of a 1588 time deviation adjustment device according to an embodiment of the present application.
  • the apparatus may be used to execute the method performed by the 1588 terminal in FIG. 4, FIG. 5, or FIG.
  • the device specifically includes:
  • a synchronization unit 801 configured to obtain the first 1588 time by synchronizing with a 1588 device at a higher level of the device
  • a determining unit 802 configured to determine a 1588 time offset value
  • a compensation unit 803 is configured to compensate the first 1588 time according to the 1588 time deviation value.
  • the device further includes:
  • a first receiving unit is configured to receive a first GPS time from a GPS clock source of the global positioning system; the 1588 time deviation value is a difference between the first 1588 time and the first GPS time.
  • the device further includes:
  • a first sending unit configured to send the 1588 time deviation value to a second 1588 terminal, where the 1588 time deviation value is used to compensate for a second 1588 time, and the second 1588 time is passed by the second 1588 terminal
  • the 1588 synchronization time obtained by synchronizing with the 1588 device at the upper level of the device.
  • the device further includes:
  • a second receiving unit is configured to receive first instruction information from a 1588 terminal management device, where the first instruction information is used to instruct the first 1588 terminal to send the 1588 time offset value to the second 1588 terminal.
  • the device further includes:
  • a second sending unit configured to send the 1588 time offset value to the second 1588 terminal through the 1588 terminal management device.
  • the determining unit 802 is specifically configured to:
  • the 1588 time deviation value being a difference between a third 1588 time and a third GPS time
  • the third 1588 time is the time when the third 1588 terminal passes through and The 1588 time synchronously acquired by the upper-level 1588 device of the device
  • the third GPS time is the GPS time received by the third 1588 terminal from a GPS clock source.
  • the determining unit 802 is specifically configured to:
  • FIG. 9 is a schematic structural diagram of another 1588 time deviation adjustment device according to an embodiment of the present application.
  • the apparatus may be used to execute the method performed by the 1588 terminal in FIG. 7.
  • the device specifically includes:
  • a synchronization unit 901 configured to obtain a first 1588 time by synchronizing with a first access layer device
  • a receiving unit 902 configured to receive a first GPS time from a GPS clock source
  • a determining unit 903 configured to determine a 1588 time deviation value, where the 1588 time deviation value is a difference between the first 1588 time and the first GPS time;
  • a sending unit 904 is configured to send the 1588 time offset value to the first access layer device, where the 1588 time offset value is used to compensate a fourth 1588 time, where the fourth 1588 time is the first The 1588 time obtained by the access layer device by synchronizing with the 1588 device of the upper level of the first access layer device.
  • FIG. 10 is a schematic structural diagram of another 1588 time deviation adjustment device according to an embodiment of the present application.
  • This apparatus may be used to execute the method performed by the access layer device in FIG. 7.
  • the device specifically includes:
  • An obtaining unit 1001 configured to obtain a fourth 1588 time by synchronizing with a device 1588 of a higher level of the device;
  • a receiving unit 1002 configured to receive a 1588 time offset value
  • a compensation unit 1003 is configured to compensate the fourth 1588 time according to the 1588 time deviation value.
  • the compensation unit 1003 is specifically configured to:
  • the system time is updated to the fourth 1588 time, and the system time (for example, the internal system time in the foregoing embodiment) is compensated.
  • the device further includes:
  • a sending unit is configured to send the 1588 time offset value to a bearer network management device.
  • the receiving unit 1002 is further configured to receive instruction information from the bearer network management device, where the instruction information is used to instruct the compensation unit 1003 to compensate the fourth 1588 time according to the 1588 time deviation value.
  • the receiving unit 1002 is specifically configured to:
  • the 1588 time deviation value being a difference between the first 1588 time and the first GPS time
  • the first 1588 time is the first 1588 terminal
  • the 1588 time obtained by synchronizing with the first access layer device, the first GPS time is the GPS time received by the first 1588 terminal from a GPS clock source.
  • the sending unit is further configured to send the 1588 time offset value to the second access layer device, where the 1588 time offset value is used to pass the second access layer device through the second access The fifth 1588 time acquired by the upper-level 1588 device of the layer device synchronously to compensate;
  • the first access layer device and the second access layer device are both located on a first access ring, and the receiving and transmitting link delays of the first access ring are symmetrical.
  • the sending unit is further configured to send the 1588 time offset value to the second access layer device through a bearer network management device.
  • the receiving unit 1002 is further configured to receive the 1588 time offset value from a third access layer device, where the 1588 time offset value is a difference between a sixth 1588 time and the sixth GPS time,
  • the sixth 1588 time is the 1588 time obtained by the fourth 1588 terminal in synchronization with the third access layer device, and the sixth GPS time is the GPS time received by the fourth 1588 terminal from a GPS clock source;
  • the first access layer device and the third access layer device are both located on a first access ring, and the first access ring is symmetrical in terms of delay in receiving and transmitting links.
  • FIG. 11 is a schematic structural diagram of a 1588 terminal according to an embodiment of the present application.
  • the 1588 terminal includes a communication module 1101, a processor 1102, and a memory 1103, where the memory 1102 is used to store programs; the communication module 1101 is used to interact with an access layer device or a 1588 terminal, and the processor 1102 It is used to execute the stored program of the memory storage 1103 to control the method performed by the 1588 terminal in the foregoing FIG. 4, FIG. 5, or FIG. 6 that does not have the ability to acquire a reference time.
  • FIG. 12 is a schematic structural diagram of another 1588 terminal according to an embodiment of the present application.
  • the 1588 terminal includes a communication module 1201, a GPS transceiver 1202, a processor 1203, and a memory 1204.
  • the memory 1204 is used to store programs; the communication module 1201 is used to interact with an access layer device, a 1588 terminal, or a 1588 terminal management device; GPS transceiver
  • the processor 1202 is configured to receive GPS time, and the processor 1203 is configured to execute the program stored in the memory 1204 to control the 1588 terminal to execute the 1588 terminal illustrated in FIG. 4, FIG. 5, FIG. 6, or FIG. Methods.
  • FIG. 13 is a schematic structural diagram of an access layer device according to an embodiment of the present application.
  • the access layer device includes a communication module 1301, a processor 1302, and a memory 1303.
  • the memory 1303 is used to store programs; the communication module 1301 is used to interact with a 1588 terminal, a bearer network device, or a bearer network management device.
  • the communication module 1301 It can include multiple ports to communicate with the 1588 terminal and the bearer network device.
  • the working mode of the port that the communication module 1301 communicates with the 1588 terminal can be the 1588 main mode.
  • the communication module 1301 works with the port that communicates with the bearer network device.
  • the mode can be 1588 slave mode or 1588 master mode.
  • the bearer network device includes an access layer device, and the processor 1302 is configured to execute the program stored in the memory 1303, and execute the access layer device to execute the foregoing steps in FIG. 4, FIG. 5, FIG. 6, or FIG. Methods.
  • all or part of the embodiments may be implemented by software, hardware, firmware, or any combination thereof.
  • software When implemented in software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions according to the embodiments of the present application are generated.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable medium to another computer-readable medium, for example, the computer instructions may be transmitted from a website site, computer, server, or data center through a cable (Such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) for transmission to another website site, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, and the like that includes one or more available medium integration.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)), and the like.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a DVD
  • a semiconductor medium for example, a solid state disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Electric Clocks (AREA)

Abstract

本申请实施例提供了一种时间同步偏差调整方法、装置、终端以及接入层设备。该方法包括,根据1588时间偏差值在1588终端或接入层设备对同步到的1588时间进行补偿,以此来降低由于收发链路延时不对称造成的误差,提高了同步到的1588时间的精度。

Description

时间同步偏差调整方法、装置、终端以及接入层设备 技术领域
本发明涉及通信技术领域,尤其涉及一种时间同步偏差调整方法、装置、终端以及接入层设备。
背景技术
移动通信技术需要确保各个设备的时间同步,以满足数据的正确收发。例如,长期演进(long term evolution,LTE)***和第五代移动通信技术(the 5th generation mobile communication technology,5G)***均是需要严格的时间同步,以满足业务正常运行。时间同步精度越高,数据收发的正确率越高,通信效率也就越高。
目前,由于通过电气和电子工程师协会(institute of electrical and electronics engineers,IEEE)制定的网络测量和控制***的精密时钟同步协议标准(IEEE standard for a precision clock synchronization protocol for networked measurement and control systems,IEEE1588协议或1588协议)进行精确的时间同步的方案得到了广泛的应用,现已发展到第二个版本,简称为IEEE1588版本(version,v)2协议或1588v2协议。
IEEE1588v2协议的内容主要是一种时钟分发技术。该IEEE1588v2协议的时钟源可以是卫星***,该卫星***可以包括全球卫星定位***(global positioning system,GPS)、北斗卫星导航***或全球导航卫星***(global navigation satellite system,GLONASS)等多种。
然而,由于承载网设备本身误差、抖动误差以及收发光纤不对称等的原因造成通过1588协议来进行时间同步的精度存在一定的误差。使得,基于1588协议同步得到的时间无法满足随着技术的不断进步以及人们需求日益的增加造成的移动通信***业务的同步时间精度不断增加的需要。其中,基于1588协议的时间同步方案的时间精度在微秒级,甚至不到微秒级,而新兴的LTE或5G等的基本业务的同步精度为+/-1.5微秒,协同业务的同步精度更是在百纳秒级。
发明内容
本申请实施例提供了一种时间同步偏差调整方法、装置、终端以及接入层设备。可以对1588时间同步偏差进行调整,以提高1588时间精度。
第一方面,提供了一种1588时间偏差调整方法。该方法包括在1588终端可以对同步到的1588时间进行补偿,以此来降低由于收发链路延时不对称造成的误差,提高了同步到的1588时间的精度。
在一个可选地实现中,该方法可以由如下步骤实现:第一1588终端通过与该第一1588终端的上一级1588设备同步,获取第一1588时间;第一1588终端确定1588时 间偏差值;第一1588终端根据1588时间偏差值对第一1588时间进行补偿。由此,第一终端可以在终端侧对1588时间的偏差进行补偿,以便在同步网络的边缘对1588时间进行补偿,即实现了端到端(end to end,E2E)光纤不对性偏差,又实现了同步网络设备内固定偏差补偿,从而无需逐点下站测量和补偿,大大节约了人力成本,且提高了1588时间时间的精度。
在另一个可选地实现中,该方法还包括:第一1588终端从GPS时钟源接收第一GPS时间;1588时间偏差值为第一1588时间与第一GPS时间之间的差值。通过本申请实施例可以实现,1588终端基于GPS时间进行补偿,使得补偿后的1588时间的精度接近或达到GPS时间的精度,大大高了1588时间时间的精度。
在另一个可选地实现中,该方法还包括:第一1588终端向第二1588终端发送1588时间偏差值,1588时间偏差值用于对第二1588时间进行补偿,第二1588时间为第二1588终端通过与第一1588终端的上一级1588设备同步获取的1588同步时间。通过本申请实施例可以实现,同一接入层设备下的1588终端的1588时间偏差值的共享,从而使得一些无法自己获取基准时间的基站,对1588时间进行补偿,降低了网络部署难度。
在另一个可选地实现中,该方法还包括:第一1588终端从1588终端管理设备接收第一指示信息,第一指示信息用于指示第一1588终端向第二1588终端发送1588时间偏差值。通过本申请实施例可以实现,1588终端在1588终端管理设备的控制下,进行1588时间偏差值的共享,提高资源利用率,避免造成信息混乱。
在另一个可选地实现中,前述第一1588终端向第二1588终端发送1588时间偏差值具体可以包括:第一1588终端通过1588终端管理设备向第二1588终端发送1588时间偏差值。通过本申请实施例可以实现,通过1588终端管理设备作为中间设备实现1588终端之间的1588时间偏差的共享以及传递,以及便于1588终端管理设备进行统一管理。
在另一个可选地实现中,前述第一1588终端确定1588时间偏差值包括:第一1588终端从第三1588终端接收1588时间偏差值,该1588时间偏差值为第三1588时间与第三GPS时间之间的差值,该第三1588时间为第三1588终端通过与第一1588终端的上一级1588设备同步获取的1588时间,该第三GPS时间为第三1588终端从GPS时钟源接收的GPS时间。通过本申请实施例可以实现,1588终端通过同一接入层设备下的其他1588终端确定1588时间偏差值,进而实现同一接入层设备下的1588终端之间的1588时间偏差值的共享,使得没有能力获取基准时间的1588终端设备也能够进行1588时间补偿,降低网络部署难度。
在另一个可选地实现中,前述第一1588终端从第三1588终端接收1588时间偏差值包括:第一1588终端通过1588终端管理设备从第三1588终端接收1588时间偏差值。
第二方面,提供了一种1588时间偏差调整方法。该方法可以在边缘承载设备对同步到的1588时间进行补偿,以此来降低由于收发链路延时不对称造成的误差,提高了同步到的1588时间的精度。
在一个可选地实现中,该方法可以具体实现为如下步骤:第一1588终端通过与上 一级1588设备同步,获取第一1588时间;所述第一1588终端从GPS时钟源接收第一GPS时间;所述第一1588终端确定1588时间偏差值,所述1588时间偏差值为所述第一1588时间和所述第一GPS时间的差值;所述第一1588终端向所述第一接入层设备发送所述1588时间偏差值,所述1588时间偏差值用于对第四1588时间进行补偿,所述第四1588时间为所述第一接入层设备通过与第一接入层设备的上一级1588设备同步获取的1588时间。由此,第一接入层设备可以在承载网的末端对1588时间的偏差进行补偿,以便在同步网络的边缘对1588时间进行补偿,即实现了端到端(end to end,E2E)光纤不对性偏差,又实现了同步网络设备内固定偏差补偿,从而无需逐点下站测量和补偿,大大节约了人力成本,且提高了1588时间时间的精度。
在另一个可选地实现中,该方法还可以具体实现为如下步骤:第一接入层设备通过与第一接入层设备的上一级1588设备同步,获取第四1588时间;第一接入层设备接收1588时间偏差值;第一接入层设备根据1588时间偏差值对第四1588时间进行补偿。由此,第一接入层设备可以在承载网的末端对1588时间的偏差进行补偿,以便在同步网络的边缘对1588时间进行补偿,即实现了端到端(end to end,E2E)光纤不对性偏差,又实现了同步网络设备内固定偏差补偿,从而无需逐点下站测量和补偿,大大节约了人力成本,且提高了1588时间时间的精度。
在另一个可选地实现中,前述第一接入层设备根据所述1588时间偏差值对所述第四1588时间进行补偿包括:所述第一接入层设备根据所述1588时间偏差值在所述第一接入层设备与第一接入层设备的上一级1588设备之间的端口对所述第四1588时间进行补偿;或者,所述第一接入层设备根据所述1588时间偏差值在所述第一接入层设备与1588终端之间的端口对所述第四1588时间进行补偿;或者,所述第一接入层设备获取第四1588时间后,所述第一接入层设备的***时间更新为所述第四1588时间,所述第一接入层设备对所述内部***时间进行补偿。
在另一个可选地实现中,该方法还包括:第一接入层设备向承载网管理设备发送1588时间偏差值。通过本申请实施例,承载网管理设备可以根据1588时间偏差值对承载网设备进行管理,例如,结合网络拓扑进行故障监控等等。该承载网管理设备还可以作为接入层设备之间共享1588时间偏差值的中间设备。
在另一个可选地实现中,该方法还包括:第一接入层设备从承载网管理设备接收指示信息,指示信息用于指示第一接入层设备根据1588时间偏差值对第四1588时间进行补偿。通过本申请实施例,接入层设备可以在承载网管理设备的指示下进行时间补偿,便于统一管理,增加***的一致性。
在另一个可选地实现中,前述第一接入层设备接收1588时间偏差值包括:第一接入层设备从第一1588终端接收1588时间偏差值,1588时间偏差值为第一1588时间与第一GPS时间之间的差值,第一1588时间为第一1588终端通过与第一接入层设备同步获取的1588时间,第一GPS时间为第一1588终端从GPS时钟源接收的GPS时间。通过本申请实施例可以实现,接入层设备可以从其管理的1588终端获取1588时间偏差,进而实现在接入层设备处进行1588时间补偿,末端测量末端进行补偿。
在另一个可选地实现中,该方法还包括:第一接入层设备向第二接入层设备发送1588时间偏差值,1588时间偏差值用于对第二接入层设备通过与第二接入层设备的上 一级1588设备同步获取的第五1588时间进行补偿;第一接入层设备与第二接入层设备均位于第一接入环,第一接入环收发链路延时对称。通过本申请实施例可以实现,接入环内的接入层设备之间的1588时间共享,进一步降低了网络部署的难度。
在另一个可选地实现中,该第一接入层设备向第二接入层设备发送的差值包括:第一接入层设备通过承载网管理设备向第二接入层设备发送1588时间偏差值。以此可以实现由承载网管理设备作为中间设备来传输差值,且承载网管理设备可以对1588时间偏差值传的进行管理。
在另一个可选地实现中,前述第一接入层设备接收1588时间偏差值包括:第一接入层设备从第三接入层设备接收1588时间偏差值,1588时间偏差值为第六1588时间与第六GPS时间之间的差值,第六1588时间为第四1588终端通过与第三接入层设备1588设备同步获取的1588时间,第六GPS时间为第四1588终端从GPS时钟源接收的GPS时间;第一接入层设备与第三接入层设备均位于第一接入环,第一接入环收发链路延时对称。
在另一个可选地实现中,第一接入层设备从第三接入层设备接收1588时间偏差值包括:第一接入层设备通过承载网管理设备从第三接入层设备接收1588时间偏差值。
第三方面,提供了一种1588时间偏差调整装置,其特征在于,包括:同步单元,用于通过与该装置的上一级1588设备同步,获取第一1588时间;确定单元,用于确定1588时间偏差值;补偿单元,用于根据1588时间偏差值对第一1588时间进行补偿。
在一个可选地实现中,该装置还包括:第一接收单元,用于从全球定位***GPS时钟源接收第一GPS时间;1588时间偏差值为第一1588时间与第一GPS时间之间的差值。
在另一个可选地实现中,该装置还包括:第一发送单元,用于向第二1588终端发送1588时间偏差值,1588时间偏差值用于对第二1588时间进行补偿,第二1588时间为第二1588终端通过与该装置的上一级1588设备同步获取的1588同步时间。
在另一个可选地实现中,该装置还包括:第二接收单元,用于从1588终端管理设备接收第一指示信息,第一指示信息用于指示第一1588终端向第二1588终端发送1588时间偏差值。
在另一个可选地实现中,该装置还包括:
第二发送单元,用于通过1588终端管理设备向第二1588终端发送1588时间偏差值。
在另一个可选地实现中,前述确定单元具体用于:
从第三1588终端接收1588时间偏差值,1588时间偏差值为第三1588时间与第三GPS时间之间的差值,第三1588时间为第三1588终端通过与该装置的上一级1588设备同步获取的1588时间,第三GPS时间为第三1588终端从GPS时钟源接收的GPS时间。
在另一个可选地实现中,前述确定单元具体用于:
通过1588终端管理设备从第三1588终端接收1588时间偏差值。
第四方面,提供了一种1588时间偏差调整装置,其特征在于,装置包括:同步单元,用于通过与第一接入层设备同步,获取第一1588时间;接收单元,用于从GPS 时钟源接收第一GPS时间;确定单元,用于确定1588时间偏差值,1588时间偏差值为第一1588时间和第一GPS时间的差值;发送单元,用于向第一接入层设备发送1588时间偏差值,1588时间偏差值用于对第四1588时间进行补偿,第四1588时间为第一接入层设备通过与第一接入层设备的上一级1588设备同步获取的1588时间。
第五方面,提供了一种1588时间偏差调整装置,该装置包括:获取单元,用于通过与该装置的上一级1588设备同步,获取第四1588时间;接收单元用于,接收1588时间偏差值;补偿单元用于,根据1588时间偏差值对第四1588时间进行补偿。
在一个可选地实现中,所述补偿单元具体用于:根据所述1588时间偏差值在与所述上一级1588设备之间的端口对所述第四1588时间进行补偿;或者,根据所述1588时间偏差值在与1588终端之间的端口对所述第四1588时间进行补偿;或者,获取第四1588时间后,将***时间更新为所述第四1588时间,对所述***时间进行补偿。
在另一个可选地实现中,该装置还包括:发送单元,用于向承载网管理设备发送1588时间偏差值。
在另一个可选地实现中,前述接收单元,还用于从承载网管理设备接收指示信息,指示信息用于指示补偿单元根据1588时间偏差值对第四1588时间进行补偿。
在另一个可选地实现中,前述接收单元具体用于:从第一1588终端接收1588时间偏差值,1588时间偏差值为第一1588时间与第一GPS时间之间的差值,第一1588时间为第一1588终端通过与第一接入层设备同步获取的1588时间,第一GPS时间为第一1588终端从GPS时钟源接收的GPS时间。
在另一个可选地实现中,前述发送单元还用于,向第二接入层设备发送1588时间偏差值,1588时间偏差值用于对第二接入层设备通过与第二接入层设备上一级1588设备同步获取的第五1588时间进行补偿;第一接入层设备与第二接入层设备均位于第一接入环,第一接入环收发链路延时对称。
在另一个可选地实现中,前述发送单元还用于,通过承载网管理设备向第二接入层设备发送所述1588时间偏差值。
在另一个可选地实现中,前述接收单元还用于,从第三接入层设备接收1588时间偏差值,1588时间偏差值为第六1588时间与第六GPS时间之间的差值,第六1588时间为第四1588终端通过与第三接入层同步获取的1588时间,第六GPS时间为第四1588终端从GPS时钟源接收的GPS时间;第一接入层设备与第三接入层设备均位于第一接入环,第一接入环收发链路延时对称。
在另一个可选地实现中,接收单元具体用于通过承载网管理设备从第三接入层设备接收1588时间偏差值。
第六方面,提供了一种1588终端。该终端包括通信模块、处理器以及存储器,存储器用于存放程序;通信模块用于与接入层设备或者1588终端进行交互,处理器用于执行存储器存储的程序,以控制1588终端执行前述第一方面或第二方面中1588终端执行的方法。
第七方面,提供了另一种1588终端。包括通信模块、GPS收发器、处理器以及存储器,存储器用于存放程序;通信模块用于与接入层设备、1588终端或者1588终端管理设备进行交互;GPS收发器用于接收GPS时间,处理器用于执行存储器存储的程 序,以控制1588终端执行前述第一方面或第二方面中1588终端执行的方法。
第八方面,提供了一种接入层设备。包括通信模块、处理器以及存储器,存储器用于存放程序;通信模块用于与1588终端、承载网设备或者承载网管理设备进行交互,处理器用于执行存储器存储的程序,以控制接入层设备执行前述第二方面中接入层设备执行的方法。
第九方面,提供了一种计算机可读存储介质,包括计算机可读指令该,计算机指令被处理器执行时实现上述第一方面、第二方面和第三方面中任意一方面或多方面的方法。
第十方面,提供了一种包含指令的计算机程序产品,该计算机可读存储介质上存储有计算机程序,当所述程序在计算机上运行时,使得计算机执行上述第一方面、第二方面和第三方面中任意一方面或多方面的方法。
附图说明
图1为移动通信***架构示意图;
图2为承载网络架构示意图;
图3为根据1588协议进行时间同步的流程图;
图4为本申请实施例提供的一种1588时间同步偏差调整方法的信令交互图;
图5为本申请实施例提供的另一种1588时间同步偏差调整方法的信令交互图;
图6为本申请实施例提供的另一种1588时间同步偏差调整方法的信令交互图;
图7为本申请实施例提供的另一种1588时间同步偏差调整方法的信令交互图;
图8为本申请实施例提供的一种1588时间偏差调整装置的结构示意图;
图9为本申请实施例提供的另一种1588时间偏差调整装置的结构示意图;
图10为本申请实施例提供的另一种1588时间偏差调整装置的结构示意图;
图11为本申请实施例提供的一种1588终端结构示意图;
图12为本申请实施例提供的另一种1588终端结构示意图;
图13为本申请实施例提供的一种接入层设备结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
在本申请实施例中,诸如“第一”或者“第二”等的描述,仅是为了描述上清楚,并不构成限定,在一些情况下。例如“第一1588终端”和“第二1588终端”仅是为了区分不同的1588终端,在具体实现中,第一1588终端”也可称以为“第二1588终端”,第二1588终端”也可称以为“第一1588终端”,这里的第一”“第二”并不构成对1588终端的限定。
本申请实施例提供的技术方案适用于图1所示的移动通信***中。结合图1所示,该通信***包括承载网100、1588终端200和时钟服务器500,1588终端200与承载网100连接,承载网100与时钟服务器500连接。承载网100处于1588终端200与时钟服务器500之间,以实现1588终端通过承载网来获取1588时间。
该通信***支持1588协议。1588协议可以是指任意版本的1588协议,或者根据 IEEE1588v2协议或1588v2协议演变而来的协议,例如国际电信联盟电信标准分局(international telecommunication union telecommunication standardization sector,ITU-T)制定的G.827x系列标准,包括G.8271,G.8272,G.8273,G.8273.1,G.8273.2,G.8275,G.8275.1和G.8275.2。该G.827x系列标准及1588v2高精度时间同步的网络架构、组网模型、网络级和网元级的指标要求、时间服务器的指标要求、保护倒换等方面。
该通信***中的1588终端可以为支持1588协议的设备,例如,1588终端可以是基站或PTN末端传输设备等等,该基站可以包括小基站、宏基站或者室分基站等等。
该通信***中的时钟服务器500可以指在基于1588协议进行时间同步过程中提供时钟的服务器。该时钟服务器的时钟源可以是卫星***或地面***。该卫星***可以为GPS、北斗卫星导航***或GLONASS等,该地面***可以为通信楼综合定时供给***(building integrated timing supply system,BITS)等。
可选的,图1所示的通信***中的还可以包括其他网络设备,该其他网络设备可以与核心层130连接,该其他网络设备可以包括核心网设备(例如,移动性管理实体(mobility management entity,MME)、演进型分组核心网(evolved packet core,EPC)中的核心网业务网关(service gateway,SGW)或核心网互联网网关(packet gateway,PGW)等等)。
可选的,该通信***中还可以包括一个或多个1588终端管理设备300以及承载网管理设备400,1588终端管理设备300通过承载网100与1588终端连接,以实现对1588终端进行管理,承载网管理设备400与承载网100连接并对承载网100进行管理。
可选的,该通信***中的承载网100可以按照标准的三层结构设计,该三层结构分别为接入层110、汇聚层120和核心层130。
例如,核心层130主要提供高带宽的业务承载和传输,完成和其他网络之间的互联互通。汇聚层120的主要功能是给业务接入节点提供用户业务数据的汇聚和分发处理,同时要实现业务的服务等级分类。接入层110利用多种接入技术,进行带宽和业务分配,实现用户的接入,完成多业务的复用和传输。
其中,接入层110可以由一个或者多个设备组成,接入层110中的设备可以称为接入层设备,汇聚层120可以由一个或者多个设备组成,汇聚层120中的设备可以称为汇聚层设备,核心层130可以由一个或者多个设备组成,核心层130中的设备可以称为核心层设备,接入层设备、汇聚层设备和核心层设备均可以称为承载网设备。
如图2所示,接入层110和汇聚层120可以采用环型结构组建***,接入层110可以包括多个接入环,每个接入环可以包括多个接入层设备,汇聚层120可以包括多个汇聚环,每个汇聚环可以包括多个汇聚层设备。
在图2中,接入层110可以包括接入环112和接入环114等等,汇聚层可以包括汇聚环121等等。其中,接入环112可以包括接入层设备1121、1122、1123和1124等。接入环114可以包括接入层设备1141、1142、1143和1144等。汇聚层可以包括汇聚层设备1221、1222、1223和1224等。
以承载网应用分组传送网(packet transport network,PTN)设备进行组网为例,在组网时,接入层采用千兆以太网(gigabit ethernet,GE)速率,汇聚层采用十吉比 特以太网速率组环,并采用双节点挂环的结构预防汇聚点和骨干节点单节点失效风险。在骨干层通过光传送网(optical transport network,OTN)提供的GE或十吉比特以太网链路将每个骨干层节点与相关核心层节点直接相连。本领域技术人员可以理解的是,本申请不限于PTN设备组网,例如还可以采用任意的路由器等网络设备进行组网,本申请对此不作具体限定。
需要说明的是,在图1所示的***中,承载网100是可选的,当承载网100不存在时,1588终端可以直接与时钟服务器相连。
在图1和图2所示的通信***中,1588终端可以基于1588协议从时钟服务器获取时间。在第一种实现方式中,1588终端可以通过承载网采用逐跳同步的方式获取时钟服务器的时间,例如,时钟服务器将时间同步给承载网设备,承载网设备将时间同步给1588终端。在第二种实现方式中,1588设备可以直接与时钟服务器进行时间同步,由时钟服务器直接将时间同步给1588终端,该过程中,1588终端和时钟服务器中间若存在承载网设备,该中间承载网设备可以透传1588设备和时钟服务器时间同步过程中的信息。
下面结合图2对第一种实施方式进一步介绍。
如图2所示,核心层设备131可以从时钟服务器500获取1588时间,例如,核心层设备131上可以包括GPS模块,通过GPS模块可以接收GPS时间;或者,时钟服务器500可以集成在核心层设备中,此时核心层设备131可以作为时钟服务器。。下面以1588终端211的时间同步过程为例进行说明。
首先,,核心层设备131获取GPS时间(也可以是其他卫星***时间,这里以GPS时间为例)。
然后核心层设备131作为上一级1588设备同步给核心层设备132,该过程中具体可以为,核心层设备131处于1588主工作模式的端口(图2中所示的M端口)将1588时间同步给核心层设备132处于从工作模式的端口(图2中所示的S端口),核心层设备132在获得1588时间后,可以将该1588时间发送给该核心层设备132的处于1588主工作模式的端口,下述设备之间的1588时间同步过程可参照理解:;
核心层设备132作为上一级1588设备再同步给汇聚层设备1213;
汇聚层设备1213再作为上一级1588设备同步给汇聚层设备1212;
汇聚层设备1212再作为上一级1588设备同步给汇聚层设备1211;
汇聚层设备1211再作为上一级1588设备同步给汇聚层设备1214;
汇聚层设备1214再作为上一级1588设备同步给接入层设备1124;
接入层设备1124再作为上一级1588设备同步给接入层设备1123;
接入层设备1123再作为上一级1588设备同步给1588终端211。
本申请实施例中,上述支持1588协议的设备可以称为1588设备,1588设备可以包括时钟服务器、核心层设备、汇聚层设备、接入层设备和1588终端等。图2中其他1588设备也通过相同的方式进行时间同步,可以参考上述内容。
下面对1588设备和上一级1588设备之间同步过程进行进一步的解释。1588设备可以包括一个或者多个时钟,例如内部***时钟,M端口时钟和S端口时钟,***时钟在S310,上一级1588设备在t 1时刻发送同步(synchronization,sync)报文,并将 t 1时间戳携带在报文中。
例如,上一级1588设备可以将M端口的时钟的t 1时间戳携带在报文中。
S320,1588设备在t 2时刻接收到sync报文,产生t 2时间戳,并从报文中提取t 1时间戳;
例如,1588设备可以产生S端口的时钟的t 2时间戳,并从报文中提取t 1时间戳。
S330,1588设备在t 3时刻发送延时请求(delay request,Delay_Req)报文,并产生t 3时间戳。
例如,1588设备可以产生S端口的时钟的t 3时间戳。
S340,上一级1588设备在t 4时刻接收到Delay_Req报文,并产生t 4时间戳,然后将t 4时间戳携带在延时响应(delay response,Delay_Resp)报文中,回传给下一级1588设备。
例如,上一级1588设备可以将M端口的时钟的t 1时间戳携带在报文中。
S350,1588设备接收到Delay_Resp报文,从报文中提取t 4时间戳。
例如,1588设备可以提取t 4时间戳,1588设备可以通过t 1、t 2、t 3和t 4计算出自己和上一级1588设备之间的时间偏差O。
假设上一级1588设备到1588设备的发送路径延时是D ms,1588设备到上一级1588设备的发送路径延时是D sm,1588设备和上一级1588设备之间的时间偏差为O。那么:
t 2-t 1=D ms+O
t 4-t 3=D sm-O
O=[(t 2-t 1)-(t 4-t 3)-(D ms-D sm)]/2
若D ms=D sm,即1588设备和上一级1588设备间的收发链路延时对称,则:
O=[(t 2-t 1)-(t 4-t 3)]/2
这样1588设备就可以根据t 1,t 2,t 3,t 4四个时间戳,计算出自己和上一级1588设备之间的时间偏差O,根据O调整自身时间从而通过与上一级1588设备时间同步获取1588时间,例如,1588设备可以在自身时间的基础上增加或者减少时间偏差O从而获取1588时间,该自身时间可以是1588设备的内部***时间,进而1588设备将根据内部***获取的1588时间同步给该1588设备的各个端口的时钟,例如M端口的时钟和S端口的时钟。
再例如,1588设备和上一级1588设备之间通过ITU-T G.8275.1协议同步时间时,定义了3种网络节点模型:电信主时钟(telecommunication grandmaster clock,T-GM)、电信边界时钟(T-BC)、电信从时钟(T-TSC)。T-GM为一个区域内的的根时钟,即建立一棵以主时钟为根的树,其中主时钟为全网最佳的时钟源,具体设备间时间同步的计算方式可以参见图3所示的描述。
其中,1588设备的内部***和端口可以分别包括时钟,该内部***时间可以指内部***的时钟的时间,端口的时间可以指端口的时钟的时间,端口时钟可以用于生成时间戳。在基于1588协议的时间同步方案中,1588设备端口的工作模式至少可以包括1588主(master)模式和1588从(slave)模式。在1588从(slave)模式下,端口的时钟作为从时钟同步上一级设备主模式下端口的时钟;工作在1588主(master)模式下,端口的时钟作为主时钟对外提供时钟。在1588设备与上一级1588设备连接的 端口中,1588终端的端口工作在1588Slave模式下,上一级1588设备的端口工作在Master模式下,1588设备的端口从上一级1588设备的端口获取到1588时间戳发送给1588设备内部***,由1588设备内部***根据该时间戳计算得到时间偏差O后,可以根据该时间偏差O对内部***时钟同步,内部***时钟同步后,可以将内部***时钟同步给1588设备的端口时钟。例如,在1588版本(version,v)2协议中,1588设备可以包括普通时钟(ordinary clock,OC)设备和边界时钟(boundary clock,BC)设备。OC设备一般仅有一个物理接口同网络通信,该物理接口的工作模式既可作为主(master),也可作为从(slave)。BC设备:有多个物理接口同网络通信,每个物理端口行为都类似于OC设备的端口,可连接多个子域。
1588终端200是OC设备,承载网10中的承载网设备(该承载网设备包括1588终端的上一级设备)是BC设备。
再例如,在ITU-T G.8275.1协议中,1588设备可以是T-GM设备、T-BC设备和T-TSC设备。其中,T-GM设备可以看做是仅能执行主模式的OC设备(总是一个GM,一个端口执行主模式),T-GM设备还可以看做是仅能执行主模式的BC设备(总是一个GM,可多个端口执行主模式);T-BC设备可以是一个GM,或者执行从模式同步另一个1588时钟;T-TSC设备可以看做是仅能执行从模式的OC设备(总是执行从模式)。
从上述原理可以看出,基于1588协议的时间同步是建立在1588设备和时钟服务器之间的收发链路延时对称的基础上的,而如果1588设备和时钟服务器之间的收发链路延时存在不对称,将引入同步偏差,偏差的大小为链路延时不对称的二分之一。由于1588设备与时钟服务器之间还存在设备内固定偏差,该中间设备越多,累加的设备内固定偏差越大。
由于400米的收发光纤不对称(即收发链路延时不对称)将引入1微秒的时间同步误差,考虑到还存在着多级网络设备内偏差等其它偏差,但是,在1588终端与承载网络进行时间同步过程中,从时钟服务器到1588设备(1588终端,或末端接入设备)其跨越了接入层、汇聚层以及核心层,累加的设备内固定偏差很大,末端到时钟服务器的接收链路和发送链路都非常长,从而收发链路的时延非常大,由于接收链路和发送链路一般不是单纤双向,尤其是对于处于汇聚层和核心层的链路大多为双纤双向,这就使得在链路长度非常大时,接收链路和发送链路的时延差别很大,从而造成通过1588协议同步得到的1588时间精度偏低。这就使得,基于1588协议的时间同步方案无法满足一些时间精度要求较高的业务的需要,例如,5G基本业务的同步精度为+/-1.5微秒;5G协同业务的同步精度更是在百纳秒级。
上面对第一种实施方式,即1588终端可以通过承载网采用逐跳同步的方式获取时钟服务器的时间进行了介绍,在第二种实施方式,与第一种实施方式类似,即1588设备的上级1588设备是时钟服务器,具体同步方式可以参考上述图3的内容。
另外,在上述通信***中,还可以通过每个终端都部署GPS接收机,各自从GPS获取高精度GPS时间源,达到时间同步的目的。该方案下,终端直连GPS天线,不需要走承载网。
但是,直接通过GPS同步时间,需要在所有的终端上都部署GPS接收机,硬件 成本较高。另外,在本终端的GPS受到干扰时,获得的GPS时间不准确,在进行收发信息时,本终端的业务会受影响,同时也会干扰周边终端,故障有放大作用。另外,GPS很容易受到干扰。
基于此,本申请实施例提出了一种1588时间同步偏差调整方案。可以通过确定1588时间偏差值,并根据该1588时间偏差值在同步网络边缘对1588时间进行补偿,以提高1588时间的同步精度以及***稳定。
本申请实施例中,1588设备可以指支持1588协议的设备,例如,可以包括1588终端、支持1588协议的承载网设备、时钟服务器等等,该承载网设备可以接入层设备、汇聚层设备或者核心层设备等等。
本申请实施例中,某设备的上一级设备是向该某设备同步1588时间的设备,例如1588终端的上一级1588设备可以是接入层设备或者时钟服务器;接入层设备的上一级1588设备可以是接入层设备或者汇聚层设备,汇聚层设备的上一级1588设备可以是汇聚层设备或者核心层设备,核心层设备的上一级1588设备可以是时钟服务器。
在本申请实施例中,收发链路延时对称,是指接收链路的延时与发送链路的延时相等,例如,在单纤双向的情况下,接收链路的延时与发送链路的延时相等。
为便于对本申请实施例的理解,下面将结合附图以具体实施例做进一步的解释说明,实施例并不构成对本申请实施例的限定。
在一个实施例中,在1588终端可以对同步到的1588时间进行补偿,以此来降低由于收发链路延时不对称以及中间设备内偏差造成的误差,提高了同步到的1588时间的精度。
图4为本申请实施例提供的一种1588时间同步偏差调整方法的信令交互图。其中,图4所示的方法为1588终端对同步到的1588时间进行补偿的一个示例。如图4所示,所述方法具体包括:
S410,第一1588终端通过与上一级1588设备同步,获取第一1588时间。
例如,结合图2所示,该第一1588终端可以为图2中任意1588终端。
该第一1588时间的获取方式可以如前述结合图3所示的时间同步方式,其中,上一级1588设备可以包括时钟服务器或接入层设备。
S420,第一1588终端确定1588时间偏差值。
其中,1588时间偏差值可以为1588时间与基准时间的偏差。基准时间可以为不同于1588的其他时间,例如相比于1588时间精度更高的时间,例如,可以为从卫星***接收的时间,也可以通过其他时间同步方式获得的同步时间,该卫星***可以为GPS、北斗卫星导航***或GLONASS等。
另外,该1588时间偏差时可以为同一时刻的基准时间与第一1588终端内部***1588时间的差值,也可以为同一时刻的基准时间与第一1588终端的端口1588时间的差值。
该1588时间偏差值可以在获取第一1588时间之前确定,也可以在获取第一1588时间之后确定。
该1588时间偏差值可以周期性进行更新。更新的频率可以根据业务以及***的实际需要确定。
另外,第一1588终端可以为具有获取基准时间能力的1588终端或者不具有获取基准时间能力的1588终端。
对于第一1588终端为具有获取基准时间能力的1588终端这一情况,该第一1588终端可以直接获取基准时间,并确定同一时刻的获取的基准时间与同步的到1588时间之间的差值。例如,可参见结合图5所示的S510和S512的相关内容。
对于第一1588为不具有获取基准时间能力的1588终端这一情况,该第一1588终端可以直接接收1588时间偏差值,该1588时间偏差值可以从第一接入层设备下具有获取基准时间能力的1588终端接收,也可以通过1588终端管理设备从第一接入层设备下具有获取基准时间能力的1588终端接收。由于第一接入层设备下的1588终端的上一级设备都可以为该第一接入层设备,所以,该第一接入层设备下的1588终端同步到的时间相互之间的误差相比于核心层设备到1588终端之间的误差可以忽略不计,尤其是由于收发链路延时不对称造成的误差,因此,1588时间偏差值可以在同一接入层设备下的1588终端之间共享。例如,可参见结合图6所示的实施例,以基准时间为GPS时间为例进行详细说明。
S430,第一1588终端根据1588时间偏差值对第一1588时间进行补偿。
所谓补偿是指在同步到的1588时间基础上补偿Δt,该Δt即为1588时间偏差值,使得补偿过后,同步到的1588时间与当前基准时间保持一致,从而达到与基准时间相同的同步精度,例如,可以在第一1588终端的端口同步的1588时间补偿Δt,第一1588终端的内部***从端口同步到的1588时间即为补偿后的1588时间;也可以在第一1588终端的内部***同步到的1588时间补偿Δt,第一1588终端的内部***在将补偿后的1588时间同步给端口。
本申请实施例,补偿的1588时间偏差值为同步网络E2E路径的静态偏差的累积值,同步网络的静态偏差包含承载网设备内固定偏差(复位后会变)和设备外偏差(光纤不对性偏差),在1588终端获取到1588时间时,根据1588时间与时间精度更高的基准时间的1588时间偏差值对该1588时间进行补偿,即实现了E2E光纤不对性偏差,又实现了设备内固定偏差补偿,从而无需再逐点下站测量和补偿,大大节约了人力成本,且使得补偿后的1588时间达到或接近基准时间的精度。
通过GPS时间同步方案叠加1588时间同步方案得到的同步方案可靠性高:1588标准的时钟源地理位置与1588设备所在位置不同,为基站提供稳定可靠的时钟源,可以提供异地容灾,有效抵抗GPS干扰问题。
图5为本申请实施例提供的另一种1588时间同步偏差调整方法的信令交互图。其中,图5所示的方法为图4所示的实施例的一个示例,例如S520为S420的一个示例,图5中S410和S430中的相关内容可以参考图4中S410和S430中的相关内容。具体的,在本申请实施例中,第一1588终端为具有获取基准时间能力,且以该基准时间为GPS时间、上一层1588设备为接入层设备为例进行说明,需要说明的是,基准时间可以是其他时间,例如北斗卫星导航***时间、GLONASS时间,或者通过其他时间同步协议获取的时间,上一层1588设备也可以为其他1588设备、例如时钟服务器,本申请实施例对此不作限定。该方法还可以包括:
S510,第一1588终端从GPS时钟源接收第一GPS时间。
第一1588终端可以在本地接收GPS时间。例如,结合图2所示,在本申请实施例中,第一1588终端可以为1588终端211、1588终端221或1588终端222等等,该1588终端211、1588终端221或1588终端222可以直接接收卫星***500GPS时间。
在一个示例中,1588时间偏差值的确定可以是不定期的或周期性的进行。基于此,第一1588终端可以不定期的或周期性的从GPS时钟源接收GPS时间。
在另一个示例中,可以根据1588终端管理设备的指令确定1588时间偏差值,基于此,在步骤S510之前还可以包括:S530,第一1588终端从1588终端管理设备接收第一指示信息,该第一指示信息用于指示第一1588终端向第二1588终端发送1588时间偏差值。其中,该第二1588终端可以是指第一接入层设备下的除第一1588终端以外的任意1588终端。
步骤S420具体可以为:S520,第一1588终端根据第一GPS时间确定1588时间偏差值。
其中,1588时间偏差值可以为第一1588时间与第一GPS时间之间的差值,此时,第一1588时间与第一GPS时间同一时刻接收。该1588时间偏差值也可以为第一GPS时间与在获取第一1588时间之前的1588时间的偏差值,此时,接收第一GPS时间的时刻在获取第一1588时间的时刻之前。该1588时间偏差值也可以为第一GPS时间与在获取第一1588时间之后的1588时间的时间偏差值,此时,接收第一GPS时间的时刻在获取第一1588时间之后。
1588时间与GPS时间可能采用两个不同的时标。例如,1588时间采用精确时间同步协议(precision time synchronization protocol,PTP)时标,GPS时间采用GPS时标。此时,在获取这两个时标的时间后,需要消除两个时标间的固定差异,例如转化到同一时标下,然后通过比对得出两者差值。
考虑到GPS信号可能受到干扰,在确定1588时间偏差值时,可以在一段时间内观察接收到的GPS时间和1588时间的偏差值,若根据当前接收到的GPS时间确定的1588时间偏差值,与观察期内的相近的根据其他时刻接收到的GPS时间确定的多个1588时间偏差值相比,趋于稳定,则认为根据当前时刻接收的GPS时间(即为第一GPS时间)确定的1588时间偏差值是可信的。若,根据当前时刻接收的GPS时间确定的1588时间偏差值,相近的根据其他时刻接收到的GPS时间确定的多个1588时间偏差值相比,变化较大,则认为根据当前时刻接收的GPS时间确定的1588时间偏差值是不可信的,第一1588终端需要继续从GPS时钟源接收GPS时间,并判断新接收的GPS时间确定的1588时间偏差值是否可信,直至确定得到可信的1588时间偏差值。
另外,在第一1588终端具有获得基准时间的能力时,该第一1588终端可以向第一接入层设备下的其他1588终端发送1588时间偏差值,以便第一接入层设备下的其他1588终端对同步到的1588时间进行补偿,这样可以使得不具有获取基准时间能力的1588终端也能对同步的1588时间进行补偿。具体地,该方法还可以包括:S540,第一终端可以向第二1588终端发送1588时间偏差值,该1588时间偏差值用于对第二1588时间进行补偿,该第二1588时间为第二1588终端基于1588协议通过与上一级1588设备同步获取的1588同步时间。
例如,结合图2所示,在1588终端211根据GPS时间确定1588时间偏差值后, 可以将该1588时间偏差值发送给与接入层设备1123连接的1588终端212或1588终端213。
在第一1588终端通过1588协议与第一接入层设备进行1588时间同步过程中,第一接入层设备可以将自己的1588标识(identity,ID)发送给第一1588终端,同样的,第一接入层设备下的其他1588终端在于第一接入层设备基于1588协议进行1588时间同步时,也会获得第一接入层设备发送接入层设备的1588ID。1588终端可以将收到的1588ID汇总给1588终端管理设备。该1588终端便可以确定获得相同接入层设备的1588ID1588终端处在同一接入层设备下,1588终端管理设备可以通知1588设备与其处于同一接入层设备下的其他1588终端的标识或通信地址(例如,媒体介入控制层(media access control,MAC)地址)。
其中,第一1588终端可以直接向同一接入层下的其他1588终端发送其确定的1588时间偏差值,例如,第一1588终端可以通过X2接口,向其他1588终端发送1588时间偏差值。
第一1588终端也可以通过1588终端管理设备向其他1588终端发送1588时间偏差值。具体地,第一1588终端可以将1588时间偏差值发送给1588终端管理设备,1588终端管理设备根据该第一1588终端的标识,以及网络拓扑关系,确定与该第一1588终端连接在同一接入层设备下的第二1588终端,1588终端管理设备将该1588时间偏差值发送给该第二1588终端,还可以是指该第二1588终端根据该1588时间偏差值进行1588时间同步。
如果同一个接入层设备下有多个具有从GPS时钟源获取GPS时间能力的1588终端。此时,可以通过1588终端管理设备指定一个1588终端来确定1588时间偏差值,以及由该指定的1588终端对该偏差值进行传递共享,然后该接入层设备下其他1588终端使用共享的1588时间偏差值进行补偿。还可以是具有从GPS时钟源获取GPS时间能力的1588终端均传递共享其确定的1588时间偏差值,具有从GPS时钟源获取GPS时间能力的1588终端优先用自己确定的值进行补偿,不具有从GPS时钟源获取GPS时间能力的1588终端使用同一接入层设备下全部具有从GPS时钟源获取GPS时间能力的1588终端共享的1588时间偏差值的均值进行补偿。
例如,结合图2所示,与接入层设备1144连接的1588终端包括1588终端221、1588终端222和1588终端223。其中,1588终端221和1588终端222具有获取GPS时间的能力,那么,可以通过1588终端管理设备指定1588终端221和1588终端222中的一个来确定1588时间偏差值,以及在1588终端221、1588终端222和1588终端223中共享该1588终端时间偏差值。或者,1588终端221和1588终端222都确定1588时间偏差值以及在1588终端221、1588终端222和1588终端223中共享。此时,1588终端221和1588终端222优先使用自己确定的1588时间偏差值进行补偿;1588终端223使用588终端221和1588终端222确定的的两个588时间偏差值的均值进行补偿。
其中,1588时间偏差值的确定、1588时间的补偿和1588时间偏差值传递可以是不定期的或周期性的进行,也可以是根据指令进行。
通过本申请实施例,具有获取GPS时间能力的1588终端获取GPS时间,由于GPS时间的精度要高于1588时间,所以可以将GPS时间作为基准时间,进而确定GPS时 间与1588时间的偏差,也即1588时间偏差值。以此,可以从末端对1588时间进行补偿,使得1588时间可以达到或接近GPS时间的精度。另外,将1588终端可以将获取的1588时间偏差值发送给其他1588设备,其他不具有GPS的1588设备也可以对1588时间进行补偿。
图6为本申请实施例提供的另一种1588时间同步偏差调整方法的信令交互图。其中,图6所示的方法为图4所示的实施例的一个示例,例如S610为S420的一个示例,图6中S410和S430中的相关内容可以参考图4中S410和S430中的相关内容。具体的,在本申请实施例中,第一1588为不具有获取基准时间能力,且以该基准时间为GPS时间、上一层1588设备为接入层设备为例进行说明,需要说明的是,基准时间可以是其他时间,例如北斗卫星导航***时间、GLONASS时间,或者通过其他时间同步协议获取的时间,上一层1588设备也可以为其他1588设备、例如时钟服务器,本申请实施例对此不作限定。该方法具体可以包括:
S610,第一1588终端从第三1588终端接收1588时间偏差值。其中,该1588时间偏差值为第三1588时间与第三GPS时间之间的差值,该第三1588时间为第三1588终端通过与上一级1588设备同步获取的1588时间,该第三GPS时间为所述第三1588终端从GPS时钟源接收的GPS时间。
例如,结合图2所示,第一1588终端可以为1588终端212或者1588终端213,此时,第三1588终端可以为1588终端211。
其中,第一1588终端可以直接从第三1588终端接收1588时间偏差值,例如,可以通过X2接口,接收1588时间偏差值。
第一1588终端还可以通过1588终端管理设备从第三1588终端接收1588时间偏差值。
第三1588终端确定1588时间偏差值可以参考图5中第一1588终端确定1588时间偏差值的相关内容,在此不再赘述。
在另一个实施例中,可以在边缘承载设备对同步到的1588时间进行补偿,以此来降低由于收发链路延时不对称造成的误差,提高了同步到的1588时间的精度。
图7为本申请实施例提供的另一种1588时间同步偏差调整方法的信令交互图。其中,图7所示的方法为边缘承载设备对同步到的1588时间进行补偿的一个示例,该边缘承载设备为接入层设备。如图7所示,所述方法具体包括:
S710,第一1588终端通过与第一接入层设备设备同步,获取第一1588时间。
例如,结合图2所示,第一接入层设备可以是第一1588中的上一级1588设备,第一1588终端可以为1588终端211、1588终端221或1588终端222等等,第一接入层设备可以为该1588终端211的上一级1588设备,即接入层设备1123,或者,第一接入层设备可以为1588终端221和1588终端222的上一级1588设备,即接入层设备1144。
该第一1588时间的获取方式可以如前述结合图3所示的时间同步方式。不再赘述。
S720,第一1588终端从GPS时钟源接收第一GPS时间。
该步骤S720可参见前述图5所示的实施例中与S510相关的描述,不再赘述。
S730,第一1588终端确定1588时间偏差值。该1588时间偏差值为第一1588时 间和第一GPS时间的差值。
该步骤S730可参见前述图5所示的实施例中与S520中相关的描述,不再赘述。
S740,第一1588终端向第一接入层设备发送1588时间偏差值。
第一1588终端可以通过专用的接口或消息上报1588时间偏差值。
该第一1588终端可以不定期或周期性上报,也可以根据1588终端管理设备的指令进行上报。
例如,结合图2所示,第一1588终端可以为1588终端211、1588终端221和1588终端222。第一接入层设备可以为接入层设备1123或接入层设备1144。
S750,第一接入层设备通过与上一级1588设备同步,获取第二1588时间。该上一级承载网设备即为第一接入层设备的上一级设备。
该第一接入层设备的上一级1588设备可以为接入层设备、汇聚层设备。例如,结合图2所示,接入层设备1123的上一级1588设备为接入层设备,接入层设备1144的上一级1588设备为汇聚层设备。
该第二1588时间的获取方式可以如前述结合图3所示的时间同步方式,不再赘述。在本申请实施例中,由于第一接入层设备包括端口时钟和内部***时钟,该第二1588时间可以为端口时钟同步到的1588时间,也可以为内部***时钟同步到的1588时间。
另外,该步骤S750可以在第一接入层设备接收到1588时间偏差值之后执行,也可以在接收到1588时间偏差值之前执行。
S760,第一接入层设备根据1588时间偏差值对第二1588时间进行补偿。
其中,第一接入层设备可以根据1588时间偏差值在第一接入层设备的内部***进行补偿,也可以在端口进行补偿。其中,接入层设备的端口可以分为客户侧端口和线路侧端口,客户侧端口与1588设备连接,线路侧端口与承载网设备连接,该承载网设备可以为接入层设备或汇聚层设备。
在一个示例中,第一接入层设备在接收到1588时间偏差后,可以对第一接入层设备的内部***时钟同步到的1588时间进行时间补偿。在第一接入层设备对同步的1588时间补偿后,可以将该补偿后的1588时间同步给该第一接入层设备端口的时钟,这样1588终端从第一接入层设备的端口上同步到的1588时间即为补偿后的1588时间。
在另一个示例中,第一接入设备可以对客户侧端口时钟同步到的1588时间进行时间补偿,此时,与第一接入层设备客户侧接口连接的1588终端通过该端口同步到的1588时间即为补偿后的1588时间。
另外,第一接入设备还可以在与1588终端进行时间同步时,在发送给1588终端的时间戳上补偿该1588时间偏差值。此时,结合图3所示,1588终端接收到的t 1时间戳和t 4时间戳中的任意一个或多个为补偿1588时间偏差值后的值,其中,根据第一接入设备客户侧端口的t 1时刻的时间戳和1588时间偏差值得到t 1时间戳,根据第一接入设备客户侧端口的t 4时刻的时间戳和1588时间偏差值得到t 4时间戳。
在另一个示例中,第一接入设备可以对线路侧端口的时钟同步到的1588时间补偿1588时间偏差值,在将线路侧端口补偿后的1588时间同步给内部***时钟、客户侧端口时钟,进一步同步给1588终端。
另外,第一接入设备可以在与上一级承载设备根据1588时间同步时,对接收到上 级承载设备发送的时间戳上补偿该1588时间偏差值,此时,结合图3所示,在计算时间偏差O时,对t 1时间戳和t 4时间戳中的任意一个或多个为补偿1588时间偏差值后再计算时间偏差O,其中,t 1时间戳为t 1时刻上一级承载设备客户侧端口的时间戳,t 4时间戳为t 4时刻上一级承载设备线路侧端口的时间戳。也可以是对时间戳t 3和t 2时间戳中的任意一个或多个为补偿1588时间偏差值后再计算时间偏差O,其中,t 2时间戳为t 2时刻第一接入设备线路侧端口的时间戳,t 4时间戳为t 4时刻第一接入设备线路侧端口的时间戳。
例如,结合图2所示,第一接入设备可以为接入层设备1123,第一1588终端可以为1588终端211。其中,1588终端211可以与接入层设备1123进行1588时间同步,获得第一1588时间。1588终端211可以通过卫星***500获取第一GPS时间,根据第一1588时间和第一GPS时间可以确定1588时间偏差值。1588终端211可以将该1588时间偏差值发送给接入层设备1123。接入层设备1123可以对从接入层设备1124同步来的1588时间进行补偿,或者,接入层设备还可以对同步给1588终端211、1588终端212和1588终端213的1588时间进行补偿。还可以对接入层设备内部的时间进行补偿。当接入环112内部收发链路延时对称时,接入层设备1123还可以将1588时间偏差值同步给接入层设备1122、接入层设备1124和接入层设备1121。
另外,第一接入层设备下可能包括多个具有获取GPS时间能力的1588终端。此时,可以通过1588终端管理设备指定一个1588终端来确定1588时间偏差值,以及由该指定的1588终端对该偏差值向第一接入层设备发送1588时间偏差值。还可以是具有从GPS时钟源获取GPS时间能力的1588终端均确定1588时间偏差值并上传,基于此,当第一接入层设备在进行1588时间补偿时,对于与具有从GPS时钟源获取GPS时间能力的1588终端连接的端口优先用该端口连接的1588终端确定的1588时间偏差值在该端口进行补偿;对于与不具有从GPS时钟源获取GPS时间能力的1588终端连接的端口,使用该第一接入层设备下全部具有从GPS时钟源获取GPS时间能力的1588终端上传的1588时间偏差值的均值,在该端口进行补偿。
接下来,第一接入层设备可以向承载网管理设备发送1588时间偏差值以用于承载网管理设备根据1588时间偏差值监控承载网设备。另外,第一接入层设备可以直接根据1588时间偏差值对第二1588时间进行补偿,也可以根据承载网管理设备的指示进行补偿。承载网管理设备会有各接入层设备的标识,收到某接入层设备上报的1588时间偏差值后,可以通过指令触发的方式,通知接入层设备进行补偿操作。基于此,可以包括如下步骤:第一接入层设备从承载网管理设备接收指示信息,该指示信息用于指示第一接入层设备根据1588时间偏差值对所述第二1588同步时间进行补偿。
在另一个实施例中,在接入环收发链路延时对称时,同一接入环中的接入层设备可以共享1588时间偏差值。基于上述步骤,本申请实施例还可以包括如下步骤:
S770,第一接入层设备向第二接入层设备发送1588时间偏差值;第一接入层设备与第二接入层设备均位于第一接入环,且该第一接入环收发链路延时对称。
其中,接入环收发链路延时对称可以指接入环的发送链路和接收链路上的时延是相同的。例如,可以接入环中接入层设备之间采用单纤双向的部署。又例如,该接入环收发链路是否对称可以由承载网管理设备确定,该承载网管理设备可以通过测量计 算得到,也可以预定义。
例如,结合图2所示,接入环112或接入环114收发链路延时对称,第一接入层设备可以为接入层设备1123,第二接入层设备可以为接入层设备1124、接入层设备1121或接入层设备1122。第一接入层设备为接入层设备1144,第二接入层设备为接入层设备1143、接入层设备1142或接入层设备1141。
另外,第一接入层设备可以通过承载网管理设备向第二接入层设备发送1588时间偏差值。其中,承载网管理设备会有各接入层设备的标识,收到第一接入层设备上报的1588时间偏差值后,可以向与该第一接入层设备处于同一接入环的第二接入层设备发送1588时间偏差值。
S780,第二接入层设备通过与上一级1588设备同步,获取第三1588时间。
该第二接入层设备的上一级1588设备可以为接入层设备、汇聚层设备。例如,结合图2所示,接入层设备1124的上一级1588设备为汇聚层设备,接入层设备1142的上一级设备为接入层设备。
该第三1588时间的获取方式可以如前述结合图3所示的时间同步方式,不再赘述。
其中,上一级1588设备为核心层设备或时钟服务器。
另外,步骤S780可以在第二接入层设备接收到1588时间偏差值之前,也可以是在第二接入设备接收到1588时间偏差值之后。
S790,第二接入层设备根据1588时间偏差值对第三1588时间进行补偿。
其中,第二接入层设备可以根据1588时间偏差值在第二接入层设备的内部进行补偿,也可以在端口进行补偿。该过程与前述步骤S760中第一接入设备进行1588时间补偿的过程类似,可相互参照理解。
第二接入层设备如果接收到同一接入环中多个接入层设备发送的1588时间偏差值,该第二接入层设备可以根据所有第一接入环接入层设备发送的1588时间偏差值的均值对第三1588时间进行补偿。
另外,承载网由于故障倒换等产生主备链路变化时,可能会造成同步时间偏差,当1588时间的补偿并无法实时处理时,通过下述方案可以对前述图7所示的实施例起到补充作用,以此提升整体方案稳定性,。
承载网会第一时间感知主备链路变化,由此承载网设备可以测量和补偿主备路径之间的相对偏差值,可以保障链路切换前后,可以在备用路径上补偿该相对偏差值,从而从末端设备的路径(绝对)偏差在链路变化之后为一致的。
具体地,可以在备用路径上配置被动(passive)端口,测量出主备路径的补偿(offset)偏差,当承载网发生倒换时,在该端口上自动补偿倒换前后主备路径的相对偏差。
其中,端口分为master端口(图2中的M端口)、slave端口(图2中的S端口)和passive端口(图2中的P端口)三种。slave端口基于1588协议同步上一级master端口的1588时间。
进一步的,可以在核心层、汇聚层、接入层的1588破环节点(包括可能因出现路径切换,而启用的备用端口)配置passive端口;结合图2所示,汇聚层设备1215上与汇聚层设备1213之间的链路备用链路,可以在汇聚层设备1215上与汇聚层设备 1213连接的端口配置passive端口。当汇聚层设备1213与汇聚层设备1212之间的链路出现故障时,启用汇聚层设备1213与汇聚层1215之间的链路,passive端口上补偿主备路径的补偿(offset)偏差。
另外,每个passive端口可以将测量的offset偏差(即与备路径端口间的偏差)上报传输网控制设备。在故障发生后,自动重新选路径,传输网控制设备将故障前的passive端口offset偏差补偿到passive本端端口或其对接端口。另外,如果路径倒换后,passive本端端口变成slave端口,则在passive端口补偿,补偿offset。如果路径倒换后,passive端口的对端端口变成Slave端口,则在passive对端端口补偿offset的负值。经上述补偿后,倒换前后从基站看到的路径偏差一致。
其中,passive端口是基于1588协议定义的,可以起到主备路径延时偏差测量的作用。
通过本申请实施例,第一接入层设备可以在承载网的末端对1588时间的偏差进行补偿,以便在同步网络的边缘对1588时间进行补偿,即实现了端到端(end to end,E2E)光纤不对性偏差,又实现了同步网络设备内固定偏差补偿,从而无需逐点下站测量和补偿,大大节约了人力成本,且提高了1588时间时间的精度。
图8为本申请实施例提供的一种1588时间偏差调整装置的结构示意图。该装置可以用于执行图4、图5或图6中1588终端所执行的方法。该装置具体包括:
同步单元801,用于通过与该装置的上一级1588设备同步,获取第一1588时间;
确定单元802,用于确定1588时间偏差值;
补偿单元803,用于根据所述1588时间偏差值对所述第一1588时间进行补偿。
可选地,该装置还包括:
第一接收单元,用于从全球定位***GPS时钟源接收第一GPS时间;所述1588时间偏差值为所述第一1588时间与所述第一GPS时间之间的差值。
可选地,该装置还包括:
第一发送单元,用于向第二1588终端发送所述1588时间偏差值,所述1588时间偏差值用于对第二1588时间进行补偿,所述第二1588时间为所述第二1588终端通过与该装置的上一级1588设备同步获取的1588同步时间。
可选地,该装置还包括:
第二接收单元,用于从1588终端管理设备接收第一指示信息,所述第一指示信息用于指示所述第一1588终端向所述第二1588终端发送所述1588时间偏差值。
可选地,该装置还包括:
第二发送单元,用于通过所述1588终端管理设备向所述第二1588终端发送所述1588时间偏差值。
可选地,确定单元802具体用于:
从第三1588终端接收所述1588时间偏差值,所述1588时间偏差值为第三1588时间与第三GPS时间之间的差值,所述第三1588时间为所述第三1588终端通过与该装置的上一级1588设备同步获取的1588时间,所述第三GPS时间为所述第三1588终端从GPS时钟源接收的GPS时间。
可选地,确定单元802具体用于:
通过1588终端管理设备从所述第三1588终端接收所述1588时间偏差值。
图9为本申请实施例提供的另一种1588时间偏差调整装置的结构示意图。该装置可以用于执行图7中1588终端所执行的方法。该装置具体包括:
同步单元901,用于通过与第一接入层设备同步,获取第一1588时间;
接收单元902,用于从GPS时钟源接收第一GPS时间;
确定单元903,用于确定1588时间偏差值,所述1588时间偏差值为所述第一1588时间和所述第一GPS时间的差值;
发送单元904,用于向所述第一接入层设备发送所述1588时间偏差值,所述1588时间偏差值用于对第四1588时间进行补偿,所述第四1588时间为所述第一接入层设备通过与第一接入层设备的上一级1588设备同步获取的1588时间。
图10为本申请实施例提供的另一种1588时间偏差调整装置的结构示意图。该装置可以用于执行图7中接入层设备所执行的方法。该装置具体包括:
获取单元1001,用于通过与该装置的上一级1588设备同步,获取第四1588时间;
接收单元1002,用于接收1588时间偏差值;
补偿单元1003,用于根据所述1588时间偏差值对所述第四1588时间进行补偿。
可选地,所述补偿单元1003具体用于:
根据所述1588时间偏差值在与所述上一级1588设备之间的端口对所述第四1588时间进行补偿;或者,
根据所述1588时间偏差值在与1588终端之间的端口对所述第四1588时间进行补偿;或者,
获取第四1588时间后,将***时间更新为所述第四1588时间,对所述***时间(例如,前述实施例中的内部***时间)进行补偿。
可选地,该装置还包括:
发送单元,用于向承载网管理设备发送所述1588时间偏差值。
可选地,接收单元1002,还用于从所述承载网管理设备接收指示信息,所述指示信息用于指示补偿单元1003根据所述1588时间偏差值对所述第四1588时间进行补偿。
可选地,接收单元1002具体用于:
从第一1588终端接收所述1588时间偏差值,所述1588时间偏差值为第一1588时间与所述第一GPS时间之间的差值,所述第一1588时间为所述第一1588终端通过与第一接入层设备同步获取的1588时间,所述第一GPS时间为所述第一1588终端从GPS时钟源接收的GPS时间。
可选地,发送单元还用于,向所述第二接入层设备发送所述1588时间偏差值,所述1588时间偏差值用于对所述第二接入层设备通过与第二接入层设备的上一级1588设备同步获取的第五1588时间进行补偿;
所述第一接入层设备与所述第二接入层设备均位于第一接入环,所述第一接入环收发链路延时对称。
可选地,发送单元还用于,通过承载网管理设备向所述第二接入层设备发送所述1588时间偏差值。
可选地,接收单元1002还用于,从第三接入层设备接收所述1588时间偏差值,所述1588时间偏差值为第六1588时间与所述第六GPS时间之间的差值,所述第六1588时间为第四1588终端通过与第三接入层设备同步获取的1588时间,所述第六GPS时间为所述第四1588终端从GPS时钟源接收的GPS时间;
所述第一接入层设备与第三接入层设备均位于第一接入环,所述第一接入环收发链路延时对称。
图11为本申请实施例提供的一种1588终端结构示意图。如图11所示,该1588终端包括通信模块1101、处理器1102以及存储器1103,该存储器1102用于存放程序;该通信模块1101用于与接入层设备或1588终端进行交互,该处理器1102用于执行存储器存储1103的存储的程序,以控制1588终端前述图4、图5或图6中,未具有获取基准时间能力的1588终端所执行的方法。
图12为本申请实施例提供的另一种1588终端结构示意图。该1588终端包括通信模块1201、GPS收发器1202、处理器1203以及存储器1204,存储器1204用于存放程序;通信模块1201用于与接入层设备、1588终端或者1588终端管理设备进行交互;GPS收发器1202用于接收GPS时间,处理器1203用于执行存储器1204存储的所述程序,以控制1588终端前述图4、图5、图6或图7中,具有获取基准时间能力的1588终端所执行的方法。
图13为本申请实施例提供的一种接入层设备结构示意图。该接入层设备包括通信模块1301、处理器1302以及存储器1303,存储器1303用于存放程序;通信模块1301用于与1588终端、承载网设备或者承载网管理设备进行交互,其中,该通信模块1301可以包括多个端口,分别与1588终端和承载网设备进行通信,该通信模块1301与1588终端通信的端口的工作模式可以为1588主模式,该通信模块1301与承载网设备进行通信的端口的工作模式可以为1588从模式,还可以为1588主模式。该承载网设备包括接入层设备,处理器1302用于执行存储器1303存储的所述程序,以接入层设备执行前述图4、图5、图6或图7中,接入层设备所执行的方法。
在上述各个本申请实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读介质向另一个计算机可读介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任 何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (30)

  1. 一种1588时间偏差调整方法,其特征在于,包括:
    第一1588终端通过与所述第一1588终端的上一级1588设备同步,获取第一1588时间;
    所述第一1588终端确定1588时间偏差值;
    所述第一1588终端根据所述1588时间偏差值对所述第一1588时间进行补偿。
  2. 根据权利要求1所述的方法,所述方法还包括:
    所述第一1588终端从全球定位***GPS时钟源接收第一GPS时间;
    所述1588时间偏差值为所述第一1588时间与所述第一GPS时间之间的差值。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    所述第一1588终端向第二1588终端发送所述1588时间偏差值,所述1588时间偏差值用于对第二1588时间进行补偿,所述第二1588时间为所述第二1588终端通过与所述第一1588终端的上一级1588设备同步获取的1588同步时间。
  4. 根据权利要求3所述的方法,其特征在于,该方法还包括:
    所述第一1588终端从1588终端管理设备接收第一指示信息,所述第一指示信息用于指示所述第一1588终端向所述第二1588终端发送所述1588时间偏差值。
  5. 根据权利要求1所述的方法,其特征在于,所述第一1588终端确定所述1588时间偏差值包括:
    所述第一1588终端从第三1588终端接收所述1588时间偏差值,所述1588时间偏差值为第三1588时间与第三GPS时间之间的差值,所述第三1588时间为所述第三1588终端通过与所述第一1588终端的上一级1588设备同步获取的1588时间,所述第三GPS时间为所述第三1588终端从GPS时钟源接收的GPS时间。
  6. 一种1588时间偏差调整方法,其特征在于,所述方法包括:
    第一1588终端通过与第一接入层设备同步,获取第一1588时间;
    所述第一1588终端从GPS时钟源接收第一GPS时间;
    所述第一1588终端确定1588时间偏差值,所述1588时间偏差值为所述第一1588时间和所述第一GPS时间的差值;
    所述第一1588终端向所述第一接入层设备发送所述1588时间偏差值,所述1588时间偏差值用于对第四1588时间进行补偿,所述第四1588时间为所述第一接入层设备通过与所述第一接入层设备的上一级1588设备同步获取的1588时间。
  7. 一种1588时间偏差调整方法,其特征在于,包括:
    第一接入层设备通过与所述第一接入层设备的上一级1588设备同步,获取第四1588时间;
    所述第一接入层设备接收1588时间偏差值;
    所述第一接入层设备根据所述1588时间偏差值对所述第四1588时间进行补偿。
  8. 根据权利要求7所述的方法,其特征在于,所述第一接入层设备根据所述1588时间偏差值对所述第四1588时间进行补偿包括:
    所述第一接入层设备根据所述1588时间偏差值在所述第一接入层设备与所述第一接入层设备的上一级1588设备之间的端口对所述第四1588时间进行补偿;或者,
    所述第一接入层设备根据所述1588时间偏差值在所述第一接入层设备与1588终端之间的端口对所述第四1588时间进行补偿;或者,
    所述第一接入层设备获取第四1588时间后,所述第一接入层设备的***时间更新为所述第四1588时间,所述第一接入层设备对所述***时间进行补偿。
  9. 根据权利要求7或8所述的方法,其特征在于,所述方法还包括:
    所述第一接入层设备向承载网管理设备发送所述1588时间偏差值。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    所述第一接入层设备从所述承载网管理设备接收指示信息,所述指示信息用于指示所述第一接入层设备根据所述1588时间偏差值对所述第四1588时间进行补偿。
  11. 根据权利要求7或8所述的方法,其特征在于,所述第一接入层设备接收所述1588时间偏差值包括:
    所述第一接入层设备从第一1588终端接收所述1588时间偏差值,所述1588时间偏差值为第一1588时间与第一GPS时间之间的差值,所述第一1588时间为所述第一1588终端通过与所述第一接入层设备同步获取的1588时间,所述第一GPS时间为所述第一1588终端从GPS时钟源接收的GPS时间。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    所述第一接入层设备向第二接入层设备发送所述1588时间偏差值,所述1588时间偏差值用于对所述第二接入层设备通过与所述第二接入层设备的上一级1588设备同步获取的第五1588时间进行补偿;
    所述第一接入层设备与所述第二接入层设备均位于第一接入环,所述第一接入环收发链路延时对称。
  13. 根据权利要求7或8所述的方法,其特征在于,所述第一接入层设备接收所述1588时间偏差值包括:
    所述第一接入层设备从第三接入层设备接收所述1588时间偏差值,所述1588时间偏差值为第六1588时间与第六GPS时间之间的差值,所述第六1588时间为第四1588终端通过与所述第三接入层设备同步获取的1588时间,所述第六GPS时间为所述第四1588终端从GPS时钟源接收的GPS时间;
    所述第一接入层设备与第三接入层设备均位于第一接入环,所述第一接入环收发链路延时对称。
  14. 一种1588时间偏差调整装置,其特征在于,包括:
    同步单元,用于通过与所述装置的上一级1588设备同步,获取第一1588时间;
    确定单元,用于确定1588时间偏差值;
    补偿单元,用于根据所述1588时间偏差值对所述第一1588时间进行补偿。
  15. 根据权利要求14所述的装置,所述装置还包括:
    第一接收单元,用于从全球定位***GPS时钟源接收第一GPS时间;所述1588时间偏差值为所述第一1588时间与所述第一GPS时间之间的差值。
  16. 根据权利要求15所述的装置,其特征在于,所述装置还包括:
    第一发送单元,用于向第二1588终端发送所述1588时间偏差值,所述1588时间 偏差值用于对第二1588时间进行补偿,所述第二1588时间为所述第二1588终端通过与所述装置的所述上一级1588设备同步获取的1588同步时间。
  17. 根据权利要求16所述的装置,其特征在于,该装置还包括:
    第二接收单元,用于从1588终端管理设备接收第一指示信息,所述第一指示信息用于指示所述第一1588终端向所述第二1588终端发送所述1588时间偏差值。
  18. 根据权利要求14所述的装置,其特征在于,所述确定单元具体用于:
    从第三1588终端接收所述1588时间偏差值,所述1588时间偏差值为第三1588时间与第三GPS时间之间的差值,所述第三1588时间为所述第三1588终端通过与所述装置的所述上一级1588同步获取的1588时间,所述第三GPS时间为所述第三1588终端从GPS时钟源接收的GPS时间。
  19. 一种1588时间偏差调整装置,其特征在于,所述装置包括:
    同步单元,用于通过与第一接入层设备同步,获取第一1588时间;
    接收单元,用于从GPS时钟源接收第一GPS时间;
    确定单元,用于确定1588时间偏差值,所述1588时间偏差值为所述第一1588时间和所述第一GPS时间的差值;
    发送单元,用于向所述第一接入层设备发送所述1588时间偏差值,所述1588时间偏差值用于对第四1588时间进行补偿,所述第四1588时间为所述第一接入层设备通过与所述第一接入层设备的上一级1588设备同步获取的1588时间。
  20. 一种1588时间偏差调整装置,其特征在于,包括:
    获取单元,用于通过与所述装置的上一级1588设备同步,获取第四1588时间;
    接收单元,用于接收1588时间偏差值;
    补偿单元,用于根据所述1588时间偏差值对所述第四1588时间进行补偿。
  21. 根据权利要求20所述的装置,其特征在于,所述补偿单元具体用于:
    根据所述1588时间偏差值在与所述上一级1588设备之间的端口对所述第四1588时间进行补偿;或者,
    根据所述1588时间偏差值在与1588终端之间的端口对所述第四1588时间进行补偿;或者,
    获取第四1588时间后,将***时间更新为所述第四1588时间,对所述***时间进行补偿。
  22. 根据权利要求20或21所述的装置,其特征在于,所述装置还包括:
    发送单元,用于向承载网管理设备发送所述1588时间偏差值。
  23. 根据权利要求22所述的装置,其特征在于,所述接收单元,还用于从所述承载网管理设备接收指示信息,所述指示信息用于指示所述补偿单元根据所述1588时间偏差值对所述第四1588时间进行补偿。
  24. 根据权利要求20或21所述的装置,其特征在于,所述接收单元具体用于:
    从第一1588终端接收所述1588时间偏差值,所述1588时间偏差值为第一1588时间与所述第一GPS时间之间的差值,所述第一1588时间为所述第一1588终端通过 与所述第一接入层设备同步获取的1588时间,所述第一GPS时间为所述第一1588终端从GPS时钟源接收的GPS时间。
  25. 根据权利要求24所述的装置,其特征在于,所述发送单元还用于,向所述第二接入层设备发送所述1588时间偏差值,所述1588时间偏差值用于对所述第二接入层设备通过与所述第二接入层设备的上一级1588设备同步获取的第五1588时间进行补偿;
    所述第一接入层设备与所述第二接入层设备均位于第一接入环,所述第一接入环收发链路延时对称。
  26. 根据权利要求20或21所述的装置,其特征在于,所述接收单元还用于,从第三接入层设备接收所述1588时间偏差值,所述1588时间偏差值为第六1588时间与所述第六GPS时间之间的差值,所述第六1588时间为第四1588终端通过与所述第三接入层设备同步获取的1588时间,所述第六GPS时间为所述第四1588终端从GPS时钟源接收的GPS时间;
    所述第一接入层设备与第三接入层设备均位于第一接入环,所述第一接入环收发链路延时对称。
  27. 一种1588终端,其特征在于,包括通信模块、处理器以及存储器,所述存储器用于存放程序;所述通信模块用于与接入层设备或者1588终端进行交互,所述处理器用于执行所述存储器存储的所述程序,以控制所述1588终端执行权利要求1或5所述的方法。
  28. 一种1588终端,其特征在于,包括通信模块、GPS收发器、处理器以及存储器,所述存储器用于存放程序;所述通信模块用于与接入层设备、1588终端或者1588终端管理设备进行交互;所述GPS收发器用于接收GPS时间,所述处理器用于执行所述存储器存储的所述程序,以控制所述1588终端执行权利要求2-4或6任意一项所述的方法。
  29. 一种接入层设备,其特征在于,包括通信模块、处理器以及存储器,所述存储器用于存放程序;所述通信模块用于与1588终端、承载网设备或者承载网管理设备进行交互,所述承载网设备包括接入层设备,所述处理器用于执行所述存储器存储的所述程序,以控制所述接入层设备执行权利要求7-13任意一项所述的方法。
  30. 一种计算机可读存储介质,包括计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机执行如权利要求1-13任意一项所述的方法。
PCT/CN2019/097683 2018-07-29 2019-07-25 时间同步偏差调整方法、装置、终端以及接入层设备 WO2020024867A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19844219.6A EP3820061A4 (en) 2018-07-29 2019-07-25 METHOD AND APPARATUS FOR CORRECTION OF TIME SYNCHRONIZATION GAP, TERMINAL AND ACCESS LAYER DEVICE
BR112021001658-9A BR112021001658A2 (pt) 2018-07-29 2019-07-25 método de ajuste de deslocamento de sincronização de tempo de 1588, aparelho de ajuste de deslocamento de tempo de 1588, terminal de 1588, dispositivo de camada de acesso, e meio de armazenamento legível por computador
US17/160,558 US11503560B2 (en) 2018-07-29 2021-01-28 Time synchronization offset adjustment method and apparatus, terminal, and access layer device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810850897.5 2018-07-29
CN201810850897.5A CN110784275B (zh) 2018-07-29 2018-07-29 时间同步偏差调整方法、装置、终端以及接入层设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/160,558 Continuation US11503560B2 (en) 2018-07-29 2021-01-28 Time synchronization offset adjustment method and apparatus, terminal, and access layer device

Publications (1)

Publication Number Publication Date
WO2020024867A1 true WO2020024867A1 (zh) 2020-02-06

Family

ID=69230980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/097683 WO2020024867A1 (zh) 2018-07-29 2019-07-25 时间同步偏差调整方法、装置、终端以及接入层设备

Country Status (5)

Country Link
US (1) US11503560B2 (zh)
EP (1) EP3820061A4 (zh)
CN (1) CN110784275B (zh)
BR (1) BR112021001658A2 (zh)
WO (1) WO2020024867A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019159134A1 (en) * 2018-02-16 2019-08-22 Telefonaktiebolaget Lm Ericsson (Publ) Optimized time synchronization for a ue
US11191052B2 (en) 2018-08-13 2021-11-30 Samsung Electronics Co., Ltd. Wireless communication network in wireless communication system
US11184097B2 (en) * 2019-08-16 2021-11-23 Arista Networks, Inc. VLAN-aware clock hierarchy
CN113193932B (zh) * 2019-09-27 2022-08-23 腾讯科技(深圳)有限公司 网络节点执行的方法以及相应的网络节点
RU2738446C1 (ru) * 2020-05-18 2020-12-14 федеральное государственное бюджетное образовательное учреждение высшего образования "МИРЭА-Российский технологический университет" Синхронизация сетевого устройства для беспроводной связи, в частности сетевого терминала, в беспроводной сети
CN112261715B (zh) * 2020-10-16 2023-04-07 锐迪科(重庆)微电子科技有限公司 室分通信***的同步方法、装置及***
US20220132448A1 (en) * 2020-10-27 2022-04-28 Electronics And Telecommunications Research Institute Method and apparatus for synchronization in wireless communication system
CN113485524B (zh) * 2021-07-12 2022-11-11 上海瓶钵信息科技有限公司 基于可信执行环境的时钟同步方法及***
CN114501604B (zh) * 2021-12-28 2024-07-05 华为技术有限公司 获取(或提供)时钟同步信息的方法以及通信装置
CN115334008B (zh) * 2022-10-18 2023-03-21 中国电子科技集团公司第三十研究所 Ptn网1588报文抖动处理方法、***、设备及介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101834712A (zh) * 2010-04-19 2010-09-15 浙江大学 利用ieee1588协议实现精确时间同步的方法
CN102263629A (zh) * 2010-05-24 2011-11-30 华为技术有限公司 一种板间时间同步的方法、时钟板及网元设备
CN103138863A (zh) * 2011-12-01 2013-06-05 中兴通讯股份有限公司 时间同步方法及装置
CN103812595A (zh) * 2014-03-11 2014-05-21 重庆邮电大学 一种基于ieee1588同步机制的tps时间同步改进算法
US20150092793A1 (en) * 2013-10-01 2015-04-02 Khalifa University of Science, Technology, and Research Method and devices for synchronization
CN106911414A (zh) * 2015-12-22 2017-06-30 中兴通讯股份有限公司 时钟同步方法和装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8064484B2 (en) * 2006-02-01 2011-11-22 Symmetricom, Inc. Enhanced clock control in packet networks
CN101247169A (zh) * 2007-02-15 2008-08-20 华为技术有限公司 一种在通信网络中实现时间同步的方法和***以及设备
US7724780B2 (en) * 2007-04-19 2010-05-25 Cisco Technology, Ink. Synchronization of one or more source RTP streams at multiple receiver destinations
CN101075848B (zh) * 2007-07-05 2011-07-20 华为技术有限公司 一种微蜂窝网络基站同步的方法、***和基站
CN101932092B (zh) * 2009-06-23 2013-04-24 ***通信集团公司 实现宏基站时钟同步的方法、***及宏基站设备
KR101242419B1 (ko) * 2009-07-20 2013-03-12 한국전자통신연구원 병렬처리 기반의 시각 동기화 장치
US20110035511A1 (en) * 2009-08-07 2011-02-10 Cisco Technology, Inc. Remote Hardware Timestamp-Based Clock Synchronization
US8630315B2 (en) * 2010-02-17 2014-01-14 Ciena Corporation Ethernet network synchronization systems and methods
CN102378350B (zh) * 2010-08-23 2014-09-10 ***通信集团公司 时间同步方法、服务器及***
CN102056285A (zh) * 2011-01-18 2011-05-11 大唐移动通信设备有限公司 时钟同步方法、***和设备
CN103856360B (zh) * 2012-11-28 2019-01-25 中兴通讯股份有限公司 一种同步链路故障检测方法及装置
EP2944039B1 (en) * 2013-01-08 2023-12-06 Aviat Networks, Inc. Systems and methods for transporting a clock signal over a network
US9635501B2 (en) * 2013-12-23 2017-04-25 Microsemi Frequency And Time Corporation Method and system for synchronizing base station and establishing location
CN104981010B (zh) * 2014-04-03 2019-03-15 ***通信集团广东有限公司 时间同步信号、频率同步信号的提供方法与装置
EP3002896B1 (en) 2014-09-30 2018-05-30 Semtech Corporation Synchronization apparatus and method
CN106464656B (zh) * 2014-12-16 2020-02-21 华为技术有限公司 一种时间同步方法及装置
US10772055B2 (en) * 2015-04-08 2020-09-08 Alcatel Lucent Base station synchronization
CN105429725B (zh) * 2015-11-17 2018-06-12 中南大学 一种基于sopc组网的亚微秒级时钟同步方法及***
EP3270531B1 (en) * 2016-07-11 2022-07-06 ADVA Optical Networking SE System and method of synchronizing a distributed clock in a packet-compatible network
US10718870B2 (en) * 2017-05-12 2020-07-21 Iposi, Inc. Internet-based time and frequency recovery for position fixing of GNSS receiver

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101834712A (zh) * 2010-04-19 2010-09-15 浙江大学 利用ieee1588协议实现精确时间同步的方法
CN102263629A (zh) * 2010-05-24 2011-11-30 华为技术有限公司 一种板间时间同步的方法、时钟板及网元设备
CN103138863A (zh) * 2011-12-01 2013-06-05 中兴通讯股份有限公司 时间同步方法及装置
US20150092793A1 (en) * 2013-10-01 2015-04-02 Khalifa University of Science, Technology, and Research Method and devices for synchronization
CN103812595A (zh) * 2014-03-11 2014-05-21 重庆邮电大学 一种基于ieee1588同步机制的tps时间同步改进算法
CN106911414A (zh) * 2015-12-22 2017-06-30 中兴通讯股份有限公司 时钟同步方法和装置

Also Published As

Publication number Publication date
CN110784275B (zh) 2021-02-05
US11503560B2 (en) 2022-11-15
EP3820061A1 (en) 2021-05-12
EP3820061A4 (en) 2021-09-01
US20210153151A1 (en) 2021-05-20
CN110784275A (zh) 2020-02-11
BR112021001658A2 (pt) 2021-05-04

Similar Documents

Publication Publication Date Title
WO2020024867A1 (zh) 时间同步偏差调整方法、装置、终端以及接入层设备
US11811634B2 (en) Method and apparatus for latency monitoring
CN102237941B (zh) 时间同步***及方法
US9973292B2 (en) Methods and systems for estimating offset and skew using linear programming
US9154292B2 (en) Communication apparatus, communication system, and time synchronization method
US8582606B2 (en) Network system with synchronization and method of operation thereof
CN102237996B (zh) 一种同步时钟的方法和时钟同步装置
US20220038252A1 (en) Methods, Apparatus and Computer-Readable Media for Synchronization Over an Optical Network
US10057867B2 (en) Method and apparatus for synchronising a plurality of distributed devices with a network
CN103259640B (zh) 一种同步时间的方法和设备
CN110225544A (zh) 一种基于光纤网络的移动通信基站高精度时间同步方法
US20230232347A1 (en) Data processing method and apparatus therefor
WO2022151993A1 (zh) 检测时间同步性能的方法、装置及***
CN103532230A (zh) 基于工业以太网相切接入环的智能配电网ieee1588校时同步***
US20240146566A1 (en) Systems and methods for supporting phase adjustments over docsis
CN117579207A (zh) 一种时钟同步保证方法及装置
Qin PTN clock synchronization technology and its applications
JP5597679B2 (ja) 通信システム、マスター装置、スレーブ装置及びクロック信号品質監視方法
CN114745070A (zh) 非对称性线路时延计算方法与***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19844219

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021001658

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112021001658

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210128