WO2020024631A1 - 光学成像*** - Google Patents

光学成像*** Download PDF

Info

Publication number
WO2020024631A1
WO2020024631A1 PCT/CN2019/084360 CN2019084360W WO2020024631A1 WO 2020024631 A1 WO2020024631 A1 WO 2020024631A1 CN 2019084360 W CN2019084360 W CN 2019084360W WO 2020024631 A1 WO2020024631 A1 WO 2020024631A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging system
optical imaging
image side
focal length
Prior art date
Application number
PCT/CN2019/084360
Other languages
English (en)
French (fr)
Inventor
叶丽慧
李明
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Priority to US17/264,303 priority Critical patent/US20220026681A1/en
Publication of WO2020024631A1 publication Critical patent/WO2020024631A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0012Optical design, e.g. procedures, algorithms, optimisation routines
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components

Definitions

  • the present application relates to the field of optics, and in particular, to an optical imaging system.
  • the photosensitive elements of commonly used imaging lenses are generally CCD (Charge-Coupled Device) or CMOS (Complementary Metal-Oxide Semiconductor).
  • CCD Charge-Coupled Device
  • CMOS Complementary Metal-Oxide Semiconductor
  • the main purpose of this application is to provide an optical imaging system to solve the problem of low imaging quality of the optical imaging system in the prior art.
  • an optical imaging system which includes a first lens, a second lens, a third lens, a fourth lens, and a fifth lens in order from the object side to the image side along the optical axis.
  • a sixth lens and a seventh lens wherein the first lens has power; the second lens has power; the object side of the second lens is concave, and the image side of the second lens is convex;
  • the third lens has a power;
  • the fourth lens has a negative power;
  • the fifth lens has a positive power;
  • the object side of the fifth lens is convex;
  • the sixth lens has a negative power;
  • the seventh lens has a negative power;
  • the lens has optical power; 44 ° ⁇ HFOV ⁇ 55 °, HFOV is half of the maximum field angle of the optical imaging system.
  • the effective focal length of the fifth lens is f5
  • the effective focal length of the sixth lens is f6, and -1.5 ⁇ f5 / f6 ⁇ 0.
  • the effective focal length of the fourth lens is f4
  • the effective focal length of the optical imaging system is f, -3.5 ⁇ f4 / f ⁇ -0.5.
  • the effective focal length of the combination formed by the first lens, the second lens, and the third lens is f123
  • the effective focal length of the seventh lens is f7, and -0.5 ⁇ f123 / f7 ⁇ 3.
  • the curvature radius of the image side of the first lens is R2
  • the curvature radius of the image side of the third lens is R6, 0 ⁇
  • the curvature radius of the object side of the sixth lens is R11
  • the curvature radius of the image side of the sixth lens is R12, 0.4 ⁇ R11 / R12 ⁇ 1.
  • the curvature radius of the image side of the fifth lens is R10
  • the curvature radius of the object side of the seventh lens is R13, -1 ⁇ R13 / R10 ⁇ -0.5.
  • the maximum value and the minimum value are CTmax and CTmin, respectively, 1 ⁇ CTmax / (3 ⁇ CTmin) ⁇ 2.
  • the center thicknesses of the fourth lens, the fifth lens, and the sixth lens on the optical axis are CT4, CT5, and CT6, respectively, and 1 ⁇ CT5 / (CT6 + CT4) ⁇ 3.
  • half of the diagonal length of the effective pixel area on the imaging surface of the optical imaging system is ImgH, and the intersection point of the image side of the seventh lens and the optical axis to the effective radius vertex of the image side of the seventh lens
  • the distance on the axis is SAG72, 0.5 ⁇ ImgH /
  • the maximum effective radius of the object side of the second lens is DT21
  • the maximum effective radius of the object side of the seventh lens is DT71, 0.3 ⁇ DT21 / DT71 ⁇ 0.7.
  • an optical imaging system which includes a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a sixth lens in order from the object side to the image side along the optical axis.
  • a seventh lens wherein the first lens has power; the second lens has power; the object side of the second lens is concave; the image side of the second lens is convex; and the third lens has power Power; the fourth lens has negative power; the fifth lens has positive power; the object side of the fifth lens is convex; the sixth lens has negative power; the seventh lens has power degree.
  • the effective focal length of the fifth lens is f5
  • the effective focal length of the sixth lens is f6, and -1.5 ⁇ f5 / f6 ⁇ 0.
  • the effective focal length of the fourth lens is f4
  • the effective focal length of the optical imaging system is f, -3.5 ⁇ f4 / f ⁇ -0.5.
  • the effective focal length of the combination formed by the first lens, the second lens, and the third lens is f123
  • the effective focal length of the seventh lens is f7, and -0.5 ⁇ f123 / f7 ⁇ 3.
  • the curvature radius of the image side of the first lens is R2
  • the curvature radius of the image side of the third lens is R6, 0 ⁇
  • the curvature radius of the object side of the sixth lens is R11
  • the curvature radius of the image side of the sixth lens is R12, 0.4 ⁇ R11 / R12 ⁇ 1.
  • the curvature radius of the image side of the fifth lens is R10
  • the curvature radius of the object side of the seventh lens is R13, -1 ⁇ R13 / R10 ⁇ -0.5.
  • the center thicknesses of the fourth lens, the fifth lens, and the sixth lens on the optical axis are CT4, CT5, and CT6, respectively, and 1 ⁇ CT5 / (CT6 + CT4) ⁇ 3.
  • the axial distance from the intersection of the image side of the fifth lens and the optical axis to the effective radius vertex of the image side of the fifth lens is SAG52, and the center thickness of the fifth lens on the optical axis is CT5. 0.5 ⁇
  • half of the diagonal length of the effective pixel area on the imaging surface of the optical imaging system is ImgH, and the intersection point of the image side of the seventh lens and the optical axis to the effective radius vertex of the image side of the seventh lens
  • the distance on the axis is SAG72, 0.5 ⁇ ImgH /
  • the maximum effective radius of the object side of the second lens is DT21
  • the maximum effective radius of the object side of the seventh lens is DT71, 0.3 ⁇ DT21 / DT71 ⁇ 0.7.
  • the low-order aberration of the optical imaging system is effectively balanced by controlling the positive and negative distributions of the optical power of each lens in the system and the amount of light entering, so that the optical The imaging quality of the imaging system of the imaging system is high; at the same time, controlling the HFOV to be greater than or equal to 44 ° and less than 55 °, that is, by controlling the full field of view, to effectively control the imaging range of the optical imaging system, further ensuring the optical imaging system The imaging quality is higher.
  • FIG. 1 is a schematic structural diagram of an optical imaging system according to Embodiment 1 of the present application.
  • 2A to 2D respectively show the on-axis chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration curve of the optical imaging system of Embodiment 1;
  • FIG. 3 is a schematic structural diagram of an optical imaging system according to Embodiment 2 of the present application.
  • 4A to 4D respectively show the on-axis chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration curve of the optical imaging system of Embodiment 2;
  • FIG. 5 is a schematic structural diagram of an optical imaging system according to Embodiment 3 of the present application.
  • FIGS. 6A to 6D respectively show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberration curves of the optical imaging system of Embodiment 3;
  • FIG. 7 is a schematic structural diagram of an optical imaging system according to Embodiment 4 of the present application.
  • FIG. 9 is a schematic structural diagram of an optical imaging system according to Embodiment 5 of the present application.
  • FIG. 10A to FIG. 10D respectively show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberration curves of the optical imaging system of Embodiment 5;
  • FIG. 11 is a schematic structural diagram of an optical imaging system according to Embodiment 6 of the present application.
  • 12A to 12D respectively show an on-axis chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging system of Embodiment 6;
  • FIG. 13 is a schematic structural diagram of an optical imaging system according to Embodiment 7 of the present application.
  • 14A to 14D respectively show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberration curves of the optical imaging system of Embodiment 7;
  • 16A to 16D respectively show the on-axis chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration curve of the optical imaging system of Embodiment 8;
  • FIG. 17 is a schematic structural diagram of an optical imaging system according to Embodiment 9 of the present application.
  • 18A to 18D respectively show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberration curves of the optical imaging system of Embodiment 9;
  • FIG. 19 is a schematic structural diagram of an optical imaging system according to Embodiment 10 of the present application.
  • 20A to 20D show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberration curves of the optical imaging system of Example 10.
  • this application proposes a Optical imaging system.
  • an optical imaging system is provided, as shown in FIGS. 1, 3, 5, 7, 9, 11, 13, 15, 17, and 19.
  • the optical imaging system includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens E6 in this order. And seventh lens E7.
  • the seventh lens has optical power; 44 ° ⁇ HFOV ⁇ 55 °, and HFOV is half of the maximum field angle of the optical imaging system.
  • the low-order aberration of the optical imaging system is effectively balanced by appropriately controlling the positive and negative distribution of the power of each lens in the system and the amount of light entering, so that the imaging of the imaging system of the optical imaging system The quality is high; at the same time, controlling the HFOV to be greater than or equal to 44 ° and less than 55 °, that is, by controlling the full field of view, to effectively control the imaging range of the optical imaging system, further ensuring that the imaging quality of the optical imaging system is high.
  • the effective focal length of the fifth lens is f5
  • the effective focal length of the sixth lens is f6, -1.5 ⁇ f5 / f6 ⁇ 0.
  • the power of the rear section of the optical imaging system is controlled within a smaller range, and the deflection angle of the light can be reduced, thereby reducing the optical imaging system's Sensitivity.
  • the negative power of the fourth lens is controlled within a reasonable range.
  • the effective focal length is f4
  • the effective focal length of the optical imaging system is f, -3.5 ⁇ f4 / f ⁇ -0.5.
  • the effective focal length of the combination of the first lens, the second lens, and the third lens is f123
  • the effective focal length of the seventh lens is f7, -0.5 ⁇ f123 / f7 ⁇ 3.
  • the curvature radius of the image side of the first lens is R2, and the image side of the third lens is The radius of curvature is R6, 0 ⁇
  • the curvature radius of the object side of the sixth lens is R11
  • the curvature radius of the image side of the sixth lens is R12, 0.4 ⁇ R11 / R12 ⁇ 1.
  • the bending direction effectively controls the field curvature of the optical imaging system, thereby improving the imaging quality of the optical imaging system.
  • the curvature radius of the object side of the fifth lens and the curvature radius of the image side of the seventh lens are controlled.
  • the curvature radius of the image side of the fifth lens is R10.
  • the curvature radius of the object side of the seventh lens is R13, -1 ⁇ R13 / R10 ⁇ -0.5.
  • the maximum and minimum values are CTmax and CTmin, respectively, that is, the center thickness of the first lens, the center thickness of the second lens.
  • the maximum value is CTmax
  • the minimum value is CTmin
  • the maximum and minimum center thicknesses of the first lens to the sixth lens in the optical imaging system are effectively controlled, that is, the maximum center thickness and the minimum center thickness are controlled, so that the edge thickness and the center thickness of each lens are reduced. It is more balanced and stable, which improves space utilization, reduces the difficulty of processing and assembly of the lens, ensures the miniaturization of the optical imaging system, and enhances the aberration correction capability of the optical imaging system.
  • the fourth The center thickness of the lens on the optical axis, the center thickness of the fifth lens on the optical axis, and the center thickness of the sixth lens on the optical axis are controlled within a certain range.
  • the above The center thicknesses of the fourth lens, the fifth lens, and the sixth lens on the optical axis are CT4, CT5, and CT6, respectively, 1 ⁇ CT5 / (CT6 + CT4) ⁇ 3.
  • the fifth lens In order to make the fifth lens have a large refractive power for the off-axis field of view, which is beneficial to shorten the overall length of the lens; at the same time, reduce the aberration of the optical imaging system and improve the resolution of the optical imaging system.
  • the axial distance from the intersection of the image side of the fifth lens and the optical axis to the effective radius vertex of the image side of the fifth lens is SAG52
  • the center thickness of the fifth lens on the optical axis is CT5, 0.5 ⁇
  • half of the diagonal length of the effective pixel area on the imaging surface of the optical imaging system is ImgH
  • the axial distance from the intersection of the image side of the seventh lens and the optical axis to the effective radius vertex of the image side of the seventh lens is SAG72, 0.5 ⁇ ImgH /
  • the maximum effective radius of the object side of the second lens is DT21.
  • the maximum effective radius of the object side of the seven lenses is DT71, 0.3 ⁇ DT21 / DT71 ⁇ 0.7.
  • the filter E8 is located on a side of the seventh lens E7 far from the sixth lens E6.
  • the filter E8 can filter stray light and further improve the imaging quality of the optical imaging system.
  • an optical imaging system is provided, as shown in FIGS. 1, 3, 5, 7, 9, 11, 13, 15, 17, and 19
  • the optical imaging system includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens in this order.
  • E6 and seventh lens E7 are shown in FIGS. 1, 3, 5, 7, 9, 11, 13, 15, 17, and 19
  • the seventh lens has a power.
  • the low-order aberration of the optical imaging system is effectively balanced by appropriately controlling the positive and negative distribution of the power of each lens in the system and the amount of light entering, so that the imaging of the imaging system of the optical imaging system Higher quality.
  • 44 ° ⁇ HFOV ⁇ 55 ° that is, the HFOV is controlled to be greater than or equal to 44 ° and less than 55 °.
  • the effective focal length of the fifth lens is f5
  • the effective focal length of the sixth lens is f6, -1.5 ⁇ f5 / f6 ⁇ 0.
  • the power of the rear section of the optical imaging system is controlled within a smaller range, and the deflection angle of the light can be reduced, thereby reducing the optical imaging system's Sensitivity.
  • the negative power of the fourth lens is controlled within a reasonable range.
  • the effective focal length is f4
  • the effective focal length of the optical imaging system is f, -3.5 ⁇ f4 / f ⁇ -0.5.
  • the effective focal length of the combination of the first lens, the second lens, and the third lens is f123
  • the effective focal length of the seventh lens is f7, -0.5 ⁇ f123 / f7 ⁇ 3.
  • the curvature radius of the image side of the first lens is R2, and the image side of the third lens is The radius of curvature is R6, 0 ⁇
  • the curvature radius of the object side of the sixth lens is R11
  • the curvature radius of the image side of the sixth lens is R12, 0.4 ⁇ R11 / R12 ⁇ 1.
  • the bending direction effectively controls the field curvature of the optical imaging system, thereby improving the imaging quality of the optical imaging system.
  • the curvature radius of the object side of the fifth lens and the curvature radius of the image side of the seventh lens are controlled.
  • the curvature radius of the image side of the fifth lens is R10.
  • the curvature radius of the object side of the seventh lens is R13, -1 ⁇ R13 / R10 ⁇ -0.5.
  • the maximum and minimum values are CTmax and CTmin, respectively, that is, the center thickness of the first lens, the center thickness of the second lens.
  • the maximum value is CTmax
  • the minimum value is CTmin
  • the maximum and minimum center thicknesses of the first lens to the sixth lens in the optical imaging system are effectively controlled, that is, the maximum center thickness and the minimum center thickness are controlled, so that the edge thickness and the center thickness of each lens are reduced. It is more balanced and stable, which improves space utilization, reduces the difficulty of processing and assembly of the lens, ensures the miniaturization of the optical imaging system, and enhances the aberration correction capability of the optical imaging system.
  • the fourth The center thickness of the lens on the optical axis, the center thickness of the fifth lens on the optical axis, and the center thickness of the sixth lens on the optical axis are controlled within a certain range.
  • the above The center thicknesses of the fourth lens, the fifth lens, and the sixth lens on the optical axis are CT4, CT5, and CT6, respectively, 1 ⁇ CT5 / (CT6 + CT4) ⁇ 3.
  • the fifth lens In order to make the fifth lens have a large refractive power for the off-axis field of view, which is beneficial to shorten the overall length of the lens; at the same time, reduce the aberration of the optical imaging system and improve the resolution of the optical imaging system.
  • the axial distance from the intersection of the image side of the fifth lens and the optical axis to the effective radius vertex of the image side of the fifth lens is SAG52
  • the center thickness of the fifth lens on the optical axis is CT5, 0.5 ⁇
  • half of the diagonal length of the effective pixel area on the imaging surface of the optical imaging system is ImgH
  • the axial distance from the intersection of the image side of the seventh lens and the optical axis to the effective radius vertex of the image side of the seventh lens is SAG72, 0.5 ⁇ ImgH /
  • the maximum effective radius of the object side of the second lens is DT21.
  • the maximum effective radius of the object side of the seven lenses is DT71, 0.3 ⁇ DT21 / DT71 ⁇ 0.7.
  • the filter E8 is located on a side of the seventh lens E7 far from the sixth lens E6.
  • the filter E8 can filter stray light and further improve the imaging quality of the optical imaging system.
  • the paraxial region refers to a region near the optical axis. If the lens surface is convex and the convex position is not defined, it means that the lens surface is convex at least in the paraxial area; if the lens surface is concave and the concave position is not defined, it means that the lens surface is at least in the paraxial area Concave.
  • the surface closest to the object in each lens is called the object side, and the surface closest to the imaging surface in each lens is called the image side.
  • the optical imaging system includes a diaphragm STO, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, and a first lens.
  • the first lens has positive power, and the object side of the first lens is convex and aspherical, and the image side is convex and spherical;
  • the second lens has positive power, and the object side of the second lens is concave, and Is spherical, the image side is convex, and is aspheric;
  • the third lens has positive power, and the object side of the third lens is concave and aspherical, and the image side is convex and aspheric;
  • the fourth lens has Negative power, and the object side of the fourth lens is convex and aspherical, and the image side is concave and aspheric;
  • the fifth lens has positive power, and the object side of the fifth lens is convex, and is Aspheric, the image side is convex and aspheric;
  • the sixth lens has negative power, and the object side of the sixth lens is concave and aspheric, and the image side is convex and aspheric;
  • the optical imaging system further includes a filter having an object side S15 and an image side S16.
  • the light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • Table 1 shows the surface type, the radius of curvature, the thickness, the material, and the conic coefficient of each lens of the optical imaging system of Example 1.
  • the units of the radius of curvature and thickness are mm.
  • each aspheric lens can be defined using, but not limited to, the following aspheric formula:
  • x is the distance vector from the vertex of the aspheric surface when the aspheric surface is at the height h along the optical axis;
  • k is the conic coefficient (given in Table 1);
  • Ai is the correction coefficient of the aspherical i-th order.
  • Table 2 shows the higher-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 for each aspherical mirror surface S1, S3, S5, S7, and S8.
  • a 20 shows the higher-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 for each aspherical mirror surface S1, S3, S5, S7, and S8.
  • the effective focal length f1 of the first lens is 9.05mm
  • the effective focal length f2 of the second lens is 2.73mm
  • optical imaging system meets:
  • FIG. 2A shows an on-axis chromatic aberration curve of the optical imaging system of Embodiment 1, which indicates that the focal points of light with different wavelengths deviate after passing through the system.
  • FIG. 2B shows an astigmatism curve of the optical imaging system of Example 1, which represents a meridional image plane curvature and a sagittal image plane curvature.
  • FIG. 2C shows a distortion curve of the optical imaging system of Embodiment 1, which represents the magnitude of distortion at different viewing angles.
  • FIG. 2D shows the magnification chromatic aberration curve of the optical imaging system of Example 1, which represents the deviation of different image heights on the imaging plane after the light passes through the system. It can be known from FIG. 2A to FIG. 2D that the optical imaging system provided in Embodiment 1 can achieve good imaging quality.
  • the optical imaging system in the direction from the object side to the image side along the optical axis, includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, The sixth lens E6, the seventh lens E7, the filter E8, and the imaging surface S17.
  • the first lens has positive power, and the object side of the first lens is concave and aspherical, and the image side is convex and spherical;
  • the second lens has positive power, and the object side of the second lens is concave, and Is spherical, the image side is convex, and is aspheric;
  • the third lens has positive power, and the object side of the third lens is concave and aspherical, and the image side is convex and aspheric;
  • the fourth lens has Negative power, and the object side of the fourth lens is convex and aspherical, and the image side is concave and aspheric;
  • the fifth lens has positive power, and the object side of the fifth lens is convex, and is Aspheric, the image side is convex and aspheric;
  • the sixth lens has negative power, and the object side of the sixth lens is concave and aspheric, and the image side is convex and aspheric;
  • the optical imaging system further includes a filter having an object side S15 and an image side S16.
  • the light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • Table 3 shows the surface type, the radius of curvature, the thickness, the material, and the conic coefficient of each lens of the optical imaging system of Example 2.
  • the units of the radius of curvature and the thickness are mm.
  • the calculation formula of the surface type x of each aspheric lens is the same as that of the first embodiment.
  • Table 4 below shows the higher-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 for each aspherical mirror surface S1, S3, S5, S7, and S8. And A 20 .
  • the effective focal length f1 of the first lens is 5.86 mm
  • the effective focal length of the second lens f2 5.73 mm
  • the effective focal length of the third lens f3 4.68 mm
  • the effective focal length of the fourth lens f4 -2.02 mm.
  • the effective focal length f5 of the fifth lens is 1.38mm
  • optical imaging system meets:
  • 0.59, ImgH /
  • FIG. 4A shows an on-axis chromatic aberration curve of the optical imaging system of Embodiment 2, which indicates that the focal points of light with different wavelengths deviate after passing through the system.
  • FIG. 4B shows an astigmatism curve of the optical imaging system of Example 2, which represents a meridional image plane curvature and a sagittal image plane curvature.
  • FIG. 4C shows a distortion curve of the optical imaging system of Embodiment 2, which represents the value of the distortion magnitude at different viewing angles.
  • FIG. 4D shows a magnification chromatic aberration curve of the optical imaging system of Example 2, which represents deviations of different image heights on the imaging plane after light passes through the system. According to FIG. 4A to FIG. 4D, it can be known that the optical imaging system provided in Embodiment 2 can achieve good imaging quality.
  • the optical imaging system includes a first lens E1, a second lens E2, a diaphragm STO, a third lens E3, a fourth lens E4, and a first lens in a direction from the object side to the image side along the optical axis.
  • the first lens has positive power, and the object side of the first lens is concave and aspherical, and the image side is convex and spherical;
  • the second lens has positive power, and the object side of the second lens is concave, and Is spherical, the image side is convex, and is aspherical;
  • the third lens has positive power, and the object side of the third lens is convex and aspherical, and the image side is convex and aspheric;
  • the fourth lens has Negative power, and the object side of the fourth lens is convex and aspherical, and the image side is concave and aspheric;
  • the fifth lens has positive power, and the object side of the fifth lens is convex, and is Aspheric, the image side is convex and aspheric;
  • the sixth lens has negative power, and the object side of the sixth lens is concave and aspheric, and the image side is convex and aspheric;
  • the optical imaging system further includes a filter having an object side S15 and an image side S16.
  • the light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • Table 5 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging system of Example 3.
  • the units of the radius of curvature and thickness are mm.
  • the calculation formula of the surface type x of each aspheric lens is the same as that of the first embodiment.
  • Table 6 shows the higher-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 for each aspherical mirror surface S1, S3, S5, S7, and S8. And A 20 .
  • the effective focal length f1 of the first lens is 7.23mm
  • the effective focal length f2 of the second lens is 5.79mm
  • the effective focal length of the third lens f3 is 4.14mm
  • the distance, ImgH is half the length of the diagonal of the effective pixel area on the imaging surface S17. See Table 21 for details.
  • optical imaging system meets:
  • FIG. 6A shows an on-axis chromatic aberration curve of the optical imaging system of Embodiment 3, which indicates that the focal points of light with different wavelengths deviate after passing through the system.
  • FIG. 6B shows an astigmatism curve of the optical imaging system of Example 3, which represents a meridional image plane curvature and a sagittal image plane curvature.
  • FIG. 6C shows a distortion curve of the optical imaging system of Embodiment 3, which represents the magnitude of the distortion at different viewing angles.
  • FIG. 6D shows the magnification chromatic aberration curve of the optical imaging system of Example 3, which represents the deviation of different image heights on the imaging plane after the light passes through the system. According to FIG. 6A to FIG. 6D, it can be known that the optical imaging system provided in Embodiment 3 can achieve good imaging quality.
  • the optical imaging system in the direction from the object side to the image side along the optical axis, includes a first lens E1, a second lens E2, a third lens E3, an aperture STO, a fourth lens E4, and a first lens.
  • the first lens has negative power, and the object side of the first lens is concave and aspherical, and the image side is convex and aspheric;
  • the second lens has positive power, and the object side of the second lens is concave And is aspheric, the image side is convex and aspheric;
  • the third lens has positive power, and the object side of the third lens is convex and aspheric, and the image side is convex and aspheric;
  • Four lenses have negative power, and the object side of the fourth lens is convex and aspherical, and the image side is concave and aspheric;
  • the fifth lens has positive power and the object side of the fifth lens is convex And is aspheric, the image side is convex and aspheric;
  • the sixth lens has negative power, and the object side of the sixth lens is concave and aspherical, and the image side is convex and aspheric;
  • the seventh lens has positive power, and the object
  • the optical imaging system further includes a filter having an object side S15 and an image side S16.
  • the light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • Table 7 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging system of Example 4, where the units of the radius of curvature and thickness are mm.
  • the calculation formula of the surface type x of each aspheric lens is the same as that of the first embodiment.
  • Table 8 shows the higher-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 for each aspherical mirror surface S1, S3, S5, S7, and S8. And A 20 .
  • optical imaging system meets:
  • FIG. 8A shows an on-axis chromatic aberration curve of the optical imaging system of Example 4, which indicates that the focal points of light rays with different wavelengths deviate after passing through the system.
  • FIG. 8B shows an astigmatism curve of the optical imaging system of Example 4, which represents a meridional image plane curvature and a sagittal image plane curvature.
  • FIG. 8C shows a distortion curve of the optical imaging system of Embodiment 4, which represents the magnitude of the distortion at different viewing angles.
  • FIG. 8D shows a magnification chromatic aberration curve of the optical imaging system of Example 4, which represents deviations of different image heights on the imaging plane after light passes through the system. According to FIG. 8A to FIG. 8D, it can be known that the optical imaging system provided in Embodiment 4 can achieve good imaging quality.
  • the first lens has a positive power, and the object side of the first lens is concave and aspherical, and the image side is convex and aspheric;
  • the second lens has negative power, and the object side of the second lens is concave And is aspheric, the image side is convex and aspheric;
  • the third lens has positive power, and the object side of the third lens is convex and aspheric, and the image side is convex and aspheric;
  • Four lenses have negative power, and the object side of the fourth lens is convex and aspherical, and the image side is concave and aspheric;
  • the fifth lens has positive power and the object side of the fifth lens is convex And is aspheric, the image side is convex and aspheric;
  • the sixth lens has negative power, and the object side of the sixth lens is concave and aspherical, and the image side is convex and aspheric;
  • the seventh lens has positive power, and
  • Table 9 shows the surface type, the radius of curvature, the thickness, the material, and the conic coefficient of each lens of the optical imaging system of Example 5, where the units of the radius of curvature and thickness are mm.
  • the calculation formula of the surface type x of each aspheric lens is the same as that of the first embodiment.
  • Table 10 shows the higher-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 for each aspherical mirror surface S1, S3, S5, S7, and S8. And A 20 .
  • the effective focal length f5 of the fifth lens is 1.63 mm
  • the distance, ImgH is half the length of the diagonal of the effective pixel area on the imaging surface S17. See Table 21 for details.
  • optical imaging system meets:
  • the optical imaging system in the direction from the object side to the image side along the optical axis, includes a first lens E1, a second lens E2, a third lens E3, an aperture STO, a fourth lens E4, and a first lens.
  • the first lens has positive power, and the object side of the first lens is concave and aspherical, and the image side is convex and aspherical;
  • the second lens has positive power, and the object side of the second lens is concave, And is aspheric, the image side is convex and aspherical;
  • the third lens has positive power, and the object side of the third lens is convex and aspherical, and the image side is convex and aspheric;
  • fourth The lens has a negative power, and the object side of the fourth lens is convex and aspherical, and the image side is concave and aspheric.
  • the fifth lens has positive power and the object side of the fifth lens is convex.
  • the image side is convex and aspherical;
  • the sixth lens has negative power, and the object side of the sixth lens is concave and aspherical, and the image side is convex and aspheric;
  • the seventh lens has positive power, and the object side of the seventh lens is convex and aspherical, and the image side is concave and spherical.
  • the optical imaging system further includes a filter having an object side S15 and an image side S16.
  • the light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • Table 11 shows the surface type, the radius of curvature, the thickness, the material, and the conic coefficient of each lens of the optical imaging system of Example 6, where the units of the radius of curvature and thickness are mm.
  • the calculation formula of the surface type x of each aspheric lens is the same as that of the first embodiment.
  • Table 12 shows the higher-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 for each aspherical mirror surface S1, S3, S5, S7, and S8. And A 20 .
  • the effective focal length f1 of the first lens is 17.71 mm
  • the effective focal length of the second lens f2 12.01 mm
  • the effective focal length of the third lens f3 4.20 mm
  • the effective focal length of the fourth lens f4 -2.94 mm.
  • the effective focal length of the fifth lens f5 1.50
  • the effective focal length of the sixth lens f6 1.44
  • the effective focal length of the seventh lens f7 1.84.
  • the distance, ImgH is half the length of the diagonal of the effective pixel area on the imaging surface S17. See Table 21 for details.
  • optical imaging system meets:
  • 0.52, ImgH /
  • FIG. 12A shows an on-axis chromatic aberration curve of the optical imaging system of Embodiment 6, which indicates that the focal points of light rays with different wavelengths are deviated after passing through the system.
  • FIG. 12B shows an astigmatism curve of the optical imaging system of Example 6, which represents a meridional image plane curvature and a sagittal image plane curvature.
  • FIG. 12C shows a distortion curve of the optical imaging system of Embodiment 6, which represents the magnitude of the distortion at different viewing angles.
  • FIG. 12D shows a magnification chromatic aberration curve of the optical imaging system of Example 6, which represents the deviation of different image heights on the imaging plane after the light passes through the system. According to FIG. 12A to FIG. 12D, it can be known that the optical imaging system provided in Embodiment 6 can achieve good imaging quality.
  • the optical imaging system includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and The sixth lens E6, the seventh lens E7, the filter E8, and the imaging surface S17.
  • the first lens has positive power, and the object side of the first lens is concave and aspherical, and the image side is convex and aspherical;
  • the second lens has positive power, and the object side of the second lens is concave, And is aspheric, the image side is convex and aspherical;
  • the third lens has positive power, and the object side of the third lens is convex and aspherical, and the image side is convex and aspheric;
  • fourth The lens has a negative power, and the object side of the fourth lens is convex and aspherical, and the image side is concave and aspheric.
  • the fifth lens has positive power and the object side of the fifth lens is convex.
  • the image side is convex and aspherical
  • the sixth lens has negative power, and the object side of the sixth lens is concave and aspherical, and the image side is convex and aspheric
  • the seventh lens has positive power, and the object side of the seventh lens is convex and aspherical, and the image side is concave and aspheric.
  • the optical imaging system further includes a filter having an object side S15 and an image side S16.
  • the light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • Table 13 shows the surface type, the radius of curvature, the thickness, the material, and the conic coefficient of each lens of the optical imaging system of Example 7, where the unit of the radius of curvature and thickness is mm.
  • the calculation formula of the surface type x of each aspheric lens is the same as that of the first embodiment.
  • Table 14 shows the higher-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 for each aspherical mirror surface S1, S3, S5, S7, and S8. And A 20 .
  • the effective focal length f1 of the first lens is 14.53mm
  • the effective focal length of the second lens f2 10.29mm
  • the effective focal length of the third lens f3 5.54mm
  • the effective focal length of the fourth lens f4 -3.37mm
  • the distance, ImgH is half the length of the diagonal of the effective pixel area on the imaging surface S17. See Table 21 for details.
  • optical imaging system meets:
  • FIG. 14A shows an on-axis chromatic aberration curve of the optical imaging system of Embodiment 7, which indicates that the focal points of light rays with different wavelengths are deviated after passing through the system.
  • FIG. 14B shows an astigmatism curve of the optical imaging system of Example 7, which represents a meridional image plane curvature and a sagittal image plane curvature.
  • FIG. 14C shows a distortion curve of the optical imaging system of Embodiment 7, which represents the magnitude of the distortion at different viewing angles.
  • FIG. 14D shows the magnification chromatic aberration curve of the optical imaging system of Example 7, which represents the deviation of different image heights on the imaging plane after the light passes through the system.
  • the optical imaging system given in Embodiment 7 can achieve good imaging quality.
  • the optical imaging system in the direction from the object side to the image side along the optical axis, includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, The sixth lens E6, the seventh lens E7, the filter E8, and the imaging surface S17.
  • the first lens has positive power, and the object side of the first lens is concave and aspherical, and the image side is convex and aspherical;
  • the second lens has positive power, and the object side of the second lens is concave, And is aspheric, the image side is convex and aspherical;
  • the third lens has positive power, and the object side of the third lens is convex and aspherical, and the image side is convex and aspheric;
  • fourth The lens has a negative power, and the object side of the fourth lens is convex and aspherical, and the image side is concave and aspheric.
  • the fifth lens has positive power and the object side of the fifth lens is convex.
  • the image side is convex and aspherical
  • the sixth lens has negative power, and the object side of the sixth lens is concave and aspherical, and the image side is convex and aspheric
  • the seventh lens has positive power, and the object side of the seventh lens is convex and aspherical, and the image side is concave and aspheric.
  • the optical imaging system further includes a filter having an object side S15 and an image side S16.
  • the light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • Table 15 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging system of Example 8, where the units of the radius of curvature and thickness are mm.
  • the calculation formula of the surface type x of each aspheric lens is the same as that of the first embodiment.
  • Table 16 shows the higher-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 for each aspherical mirror surface S1, S3, S5, S7, and S8. And A 20 .
  • the effective focal length f1 of the first lens is 15.67 mm
  • the effective focal length of the second lens f2 10.08 mm
  • the effective focal length of the third lens f3 5.41 mm
  • the effective focal length of the fourth lens f4 -3.45 mm.
  • the distance, ImgH is half the length of the diagonal of the effective pixel area on the imaging surface S17. See Table 21 for details.
  • optical imaging system meets:
  • FIG. 16A shows an on-axis chromatic aberration curve of the optical imaging system of Embodiment 8, which indicates that the focal points of light with different wavelengths deviate after passing through the system.
  • FIG. 16B shows an astigmatism curve of the optical imaging system of Example 8, which represents a meridional image plane curvature and a sagittal image plane curvature.
  • FIG. 16C shows a distortion curve of the optical imaging system of Embodiment 8, which represents the value of the distortion magnitude at different viewing angles.
  • FIG. 16D shows the magnification chromatic aberration curve of the optical imaging system of Example 8, which represents the deviation of different image heights on the imaging plane after the light passes through the system. According to FIG. 16A to FIG. 16D, it can be known that the optical imaging system provided in Embodiment 8 can achieve good imaging quality.
  • the optical imaging system in the direction from the object side to the image side along the optical axis, includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, The sixth lens E6, the seventh lens E7, the filter E8, and the imaging surface S17.
  • the first lens has positive power, and the object side of the first lens is concave and aspherical, and the image side is convex and spherical;
  • the second lens has positive power, and the object side of the second lens is concave, and Is spherical, the image side is convex, and is aspheric;
  • the third lens has positive power, and the object side of the third lens is concave and aspherical, and the image side is convex and aspheric;
  • the fourth lens has Negative power, and the object side of the fourth lens is concave and aspherical, and the image side is concave and aspheric;
  • the fifth lens has positive power, and the object side of the fifth lens is convex, and is Aspheric, the image side is convex and aspheric;
  • the sixth lens has negative power, and the object side of the sixth lens is concave and aspheric, and the image side is convex and aspheric;
  • the optical imaging system further includes a filter having an object side S15 and an image side S16.
  • the light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • Table 17 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging system of Example 9, where the units of the radius of curvature and thickness are mm.
  • the calculation formula of the surface type x of each aspheric lens is the same as that of the first embodiment.
  • Table 18 shows the higher-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 for each aspherical mirror surface S1, S3, S5, S7, and S8. And A 20 .
  • the effective focal length f1 of the first lens is 7.19 mm
  • the effective focal length of the second lens f2 5.84 mm
  • the effective focal length of the third lens f3 3.34 mm
  • the effective focal length of the fourth lens f4 -1.81 mm.
  • the effective focal length f5 of the fifth lens is 1.16mm
  • the distance, ImgH is half the length of the diagonal of the effective pixel area on the imaging surface S17. See Table 21 for details.
  • optical imaging system meets:
  • FIG. 18A shows an on-axis chromatic aberration curve of the optical imaging system of Example 9, which indicates that the focal points of light rays with different wavelengths are deviated after passing through the system.
  • FIG. 18B shows an astigmatism curve of the optical imaging system of Example 9, which represents a meridional image plane curvature and a sagittal image plane curvature.
  • FIG. 18C shows a distortion curve of the optical imaging system of Embodiment 9, which represents the magnitude of the distortion at different viewing angles.
  • FIG. 18D shows a magnification chromatic aberration curve of the optical imaging system of Example 9, which represents deviations of different image heights on the imaging plane after light passes through the system.
  • the optical imaging system given in Embodiment 9 can achieve good imaging quality.
  • the optical imaging system in the direction from the object side to the image side along the optical axis, includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and The sixth lens E6, the seventh lens E7, the filter E8, and the imaging surface S17.
  • the first lens has positive power, and the object side of the first lens is concave and aspherical, and the image side is convex and aspherical;
  • the second lens has positive power, and the object side of the second lens is concave, And is aspheric, the image side is convex and aspherical;
  • the third lens has positive power, and the object side of the third lens is convex and aspherical, and the image side is convex and aspheric;
  • fourth The lens has negative power, and the object side of the fourth lens is concave and aspherical, and the image side is convex and aspheric;
  • the fifth lens has positive power, and the object side of the fifth lens is convex, And is aspheric, the image side is convex and aspherical;
  • the sixth lens has negative power, and the object side of the sixth lens is concave and aspherical, and the image side is convex and aspheric;
  • the seventh lens has positive power
  • the optical imaging system further includes a filter having an object side S15 and an image side S16.
  • the light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • Table 19 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging system of Example 9, where the units of the radius of curvature and thickness are mm.
  • the calculation formula of the surface type x of each aspheric lens is the same as that of the first embodiment.
  • Table 20 below shows the higher-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 used for each aspherical mirror surface S1, S3, S5, S7, and S8 in Example 10. And A 20 .
  • the effective focal length f1 of the first lens is 8.62mm
  • the effective focal length f5 of the fifth lens is 1.76 mm
  • the distance, ImgH is half the length of the diagonal of the effective pixel area on the imaging surface S17. See Table 21 for details.
  • optical imaging system meets:
  • , and the specific values of DT21 / DT71 are shown in Table 22.
  • the low-order aberrations of the optical imaging system are effectively balanced by controlling the positive and negative distributions of the power of each lens in the system and the amount of incoming light, so that the optical imaging system's
  • the imaging quality of the imaging system is high; at the same time, controlling the HFOV to be greater than or equal to 44 ° and less than 55 °, that is, by controlling the full field of view to effectively control the imaging range of the optical imaging system, further ensuring the imaging quality of the optical imaging system Higher.
  • the low-order aberrations of the optical imaging system are effectively balanced by properly controlling the positive and negative distributions of the power of each lens in the system and the amount of light entering, so that the optical imaging system's The imaging system has higher imaging quality.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学成像***,沿光轴从物侧至像侧依次包括第一透镜(E1)、第二透镜(E2)、第三透镜(E3)、第四透镜(E4)、第五透镜(E5)、第六透镜(E6)和第七透镜(E7),第一透镜具有光焦度,第二透镜具有光焦度,第二透镜的物侧面为凹面,第二透镜的像侧面为凸面,第三透镜具有光焦度,第四透镜具有负光焦度,第五透镜具有正光焦度,第五透镜的物侧面为凸面,第六透镜具有负光焦度,第七透镜具有光焦度;44°≤HFOV﹤55°,HFOV为光学成像***的最大视场角的一半。本光学成像***的成像质量较高。

Description

光学成像*** 技术领域
本申请涉及光学领域,具体而言,涉及一种光学成像***。
背景技术
近些年,随着具备摄影功能的可携带电子产品的快速发展,对小型化光学***的要求也日益提高。
目前,常用的成像镜头的感光元件一般为CCD(Charge-Coupled Device,感光耦合元件)或CMOS(Complementary Metal-Oxide Semiconductor,互补性氧化金属半导体元件)。随着CCD与COMS元件性能的提高及尺寸的减小,对相配套的成像镜头的成像品质及小型化提出了更高的要求,随着对小型化成像镜头的成像品质的要求的提升,成像镜头逐渐朝大光圈、大视角以及高分辨率发展。
因此,一种同时兼具小型化以及高成像品质的光学成像***是目前的预研方向。
发明内容
本申请的主要目的在于提供一种光学成像***,以解决现有技术中的光学成像***的成像质量不高的问题。
为了实现上述目的,根据本申请的一个方面,提供了一种光学成像***,沿光轴从物侧至像侧依次包括第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜,其中,上述第一透镜具有光焦度;上述第二透镜具有光焦度,上述第二透镜的物侧面为凹面,上述第二透镜的像侧面为凸面;上述第三透镜具有光焦度;上述第四透镜具有负光焦度;上述第五透镜具有正光焦度,上述第五透镜的物侧面为凸面;上述第六透镜具有负光焦度;上述第七透镜具有光焦度;44°≤HFOV<55°,HFOV为光学成像***的最大视场角的一半。
进一步地,上述第五透镜的有效焦距为f5,上述第六透镜的有效焦距为f6,-1.5<f5/f6<0。
进一步地,上述第四透镜的有效焦距为f4,上述光学成像***的有效焦距为f,-3.5<f4/f<-0.5。
进一步地,上述第一透镜、上述第二透镜和上述第三透镜形成的组合的有效焦距为f123,上述第七透镜的有效焦距为f7,-0.5<f123/f7<3。
进一步地,上述第一透镜的像侧面的曲率半径为R2,上述第三透镜的像侧面的曲率半径为R6,0<|R2-R6|/|R2+R6|<1。
进一步地,上述第六透镜的物侧面的曲率半径为R11,上述第六透镜的像侧面的曲率半径为R12,0.4<R11/R12<1。
进一步地,上述第五透镜的像侧面的曲率半径为R10,上述第七透镜的物侧面的曲率半径为R13,-1<R13/R10<-0.5。
进一步地,上述第一透镜至上述第六透镜的中心厚度中,最大值和最小值分别为CTmax和CTmin,1<CTmax/(3×CTmin)<2。
进一步地,上述第四透镜、上述第五透镜以及上述第六透镜在上述光轴上的中心厚度分别为CT4、CT5和CT6,1<CT5/(CT6+CT4)<3。
进一步地,上述第五透镜的像侧面和上述光轴的交点至上述第五透镜的像侧面的有效半径顶点的轴上距离为SAG52,上述第五透镜在上述光轴上的中心厚度为CT5,0.5≤|SAG52/CT5|<0.8。
进一步地,上述光学成像***的成像面上的有效像素区域的对角线长度的一半为ImgH,上述第七透镜的像侧面和上述光轴的交点至上述第七透镜的像侧面的有效半径顶点的轴上距离为SAG72,0.5<ImgH/|SAG72×10|<2。
进一步地,上述第二透镜的物侧面的最大有效半径为DT21,上述第七透镜的物侧面的最大有效半径为DT71,0.3≤DT21/DT71<0.7。
根据本申请的另一方面,提供了一种光学成像***,沿光轴从物侧至像侧依次包括第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜,其中,上述第一透镜具有光焦度;上述第二透镜具有光焦度,上述第二透镜的物侧面为凹面,上述第二透镜的像侧面为凸面;上述第三透镜具有光焦度;上述第四透镜具有负光焦度;上述第五透镜具有正光焦度,上述第五透镜的物侧面为凸面;上述第六透镜具有负光焦度;上述第七透镜具有光焦度。
进一步地,HFOV为光学成像***的最大视场角的一半,44°≤HFOV<55°。
进一步地,上述第五透镜的有效焦距为f5,上述第六透镜的有效焦距为f6,-1.5<f5/f6<0。
进一步地,上述第四透镜的有效焦距为f4,上述光学成像***的有效焦距为f,-3.5<f4/f<-0.5。
进一步地,上述第一透镜、上述第二透镜和上述第三透镜形成的组合的有效焦距为f123,上述第七透镜的有效焦距为f7,-0.5<f123/f7<3。
进一步地,上述第一透镜的像侧面的曲率半径为R2,上述第三透镜的像侧面的曲率半径为R6,0<|R2-R6|/|R2+R6|<1。
进一步地,上述第六透镜的物侧面的曲率半径为R11,上述第六透镜的像侧面的曲率半径为R12,0.4<R11/R12<1。
进一步地,上述第五透镜的像侧面的曲率半径为R10,上述第七透镜的物侧面的曲率半径为R13,-1<R13/R10<-0.5。
进一步地,上述第一透镜至上述第六透镜的中心厚度中,最大值和最小值分别为CTmax和CTmin,1<CTmax/(3×CTmin)<2。
进一步地,上述第四透镜、上述第五透镜以及上述第六透镜在上述光轴上的中心厚度分别为CT4、CT5和CT6,1<CT5/(CT6+CT4)<3。
进一步地,上述第五透镜的像侧面和上述光轴的交点至上述第五透镜的像侧面的有效半径顶点的轴上距离为SAG52,上述第五透镜在上述光轴上的中心厚度为CT5,0.5≤|SAG52/CT5|<0.8。
进一步地,上述光学成像***的成像面上的有效像素区域的对角线长度的一半为ImgH,上述第七透镜的像侧面和上述光轴的交点至上述第七透镜的像侧面的有效半径顶点的轴上距离为SAG72,0.5<ImgH/|SAG72×10|<2。
进一步地,上述第二透镜的物侧面的最大有效半径为DT21,上述第七透镜的物侧面的最大有效半径为DT71,0.3≤DT21/DT71<0.7。
应用本申请的技术方案,上述的光学成像***中,通过合理的控制***中的各个透镜的光焦度的正负分配和进光量,来有效地平衡光学成像***的低阶像差,使得光学成像***的成像***的成像质量较高;同时,控制HFOV大于或者等于44°且小于55°,即通过控制全视场角,来有效地控制光学成像***的成像范围,进一步保证该光学成像***的成像质量较高。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1示出了根据本申请实施例1的光学成像***的结构示意图;
图2A至图2D分别示出了实施例1的光学成像***的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图3示出了根据本申请实施例2的光学成像***的结构示意图;
图4A至图4D分别示出了实施例2的光学成像***的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图5示出了根据本申请实施例3的光学成像***的结构示意图;
图6A至图6D分别示出了实施例3的光学成像***的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图7示出了根据本申请实施例4的光学成像***的结构示意图;
图8A至图8D分别示出了实施例4的光学成像***的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图9示出了根据本申请实施例5的光学成像***的结构示意图;
图10A至图10D分别示出了实施例5的光学成像***的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图11示出了根据本申请实施例6的光学成像***的结构示意图;
图12A至图12D分别示出了实施例6的光学成像***的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图13示出了根据本申请实施例7的光学成像***的结构示意图;
图14A至图14D分别示出了实施例7的光学成像***的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图15示出了根据本申请实施例8的光学成像***的结构示意图;
图16A至图16D分别示出了实施例8的光学成像***的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图17示出了根据本申请实施例9的光学成像***的结构示意图;
图18A至图18D分别示出了实施例9的光学成像***的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图19示出了根据本申请实施例10的光学成像***的结构示意图;
图20A至图20D分别示出了实施例10的光学成像***的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
正如背景技术所介绍的,现有技术中,对成像***的成像品质及小型化提出了更高的要求,为了提升成像***的成像品质和/或进一步满足小型化的需求,本申请提出了一种光学成像***。
本申请的一种典型的实施方式中,提供了一种光学成像***,如图1、图3、图5、图7、图9、图11、图13、图15、图17以及图19所示,沿光轴从物侧至像侧的方向上,该光学成像***依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6和第七透镜E7。
其中,上述第一透镜E1具有光焦度;上述第二透镜E2具有光焦度,上述第二透镜E2的物侧面S3为凹面,上述第二透镜E2的像侧面S4为凸面;上述第三透镜E3具有光焦度;上述第四透镜E4具有负光焦度;上述第五透镜E5具有正光焦度,上述第五透镜E5的物侧面S9为凸面;上述第六透镜具有负光焦度;上述第七透镜具有光焦度;44°≤HFOV<55°,HFOV为光学成像***的最大视场角的一半。
上述的光学成像***中,通过合理的控制***中的各个透镜的光焦度的正负分配和进光量,来有效地平衡光学成像***的低阶像差,使得光学成像***的成像***的成像质量较高;同时,控制HFOV大于或者等于44°且小于55°,即通过控制全视场角,来有效地控制光学成像***的成像范围,进一步保证该光学成像***的成像质量较高。
本申请的一种实施例中,上述第五透镜的有效焦距为f5,上述第六透镜的有效焦距为f6,-1.5<f5/f6<0。该实施例中,通过合理分配第五透镜和第六透镜的有效焦距,将光学成像***后段的光焦度控制在较小范围内,可以减小光线的偏转角,从而降低光学成像***的敏感性。
为了增加光学成像***的焦距,同时平衡该光学成像***的场曲,本申请的一种实施例中,将第四透镜的负光焦度控制在合理范围内,具体地,上述第四透镜的有效焦距为f4,上述光学成像***的有效焦距为f,-3.5<f4/f<-0.5。
本申请的另一种实施例中,上述第一透镜、上述第二透镜和上述第三透镜形成的组合的有效焦距为f123,上述第七透镜的有效焦距为f7,-0.5<f123/f7<3。该实施例中,通过将第一透镜、第二透镜和第三透镜的组合的有效焦距与第七透镜的有效焦距的比值控制在上述范围内,可以有效校正像面近轴范围的畸变,从而提高***的成像质量。
为了使得光学成像***具有更大的光圈,从而提高该光学成像***的整体亮度,本申请的一种实施例中,上述第一透镜的像侧面的曲率半径为R2,上述第三透镜的像侧面的曲率半径为R6,0<|R2-R6|/|R2+R6|<1。
本申请的再一种实施例中,上述第六透镜的物侧面的曲率半径为R11,上述第六透镜的像侧面的曲率半径为R12,0.4<R11/R12<1,通过控制第六透镜的弯折方向,进而有效地控制该光学成像***的场曲,从而提升该光学成像***的成像质量。
为了矫正该光学成像***的色差,且能够实现各种相差的平衡。本申请的一种实施例中,通过控制第五透镜的物侧面的曲率半径与第七透镜的像侧面的曲率半径来实现,具体地,上述第五透镜的像侧面的曲率半径为R10,上述第七透镜的物侧面的曲率半径为R13,-1<R13/R10<-0.5。
本申请的又一种实施例中,上述第一透镜至上述第六透镜的中心厚度中,最大值和最小值分别为CTmax和CTmin,即第一透镜的中心厚度、第二透镜的中心厚度、第三透镜的中心厚度、第四透镜的中心厚度、第五透镜的中心厚度以及第六透镜的中心厚度中,最大值为CTmax,最小值为CTmin,并且,1<CTmax/(3×CTmin)<2。该 实施例中,通过有效控制该光学成像***中第一透镜到第六透镜的中心厚度的最大值和最小值,即控制最大中心厚度和最小中心厚度,使得各透镜的边缘厚度和中心厚度之间较平衡稳定,提升了空间利用率,降低了透镜的加工和组装难度,保证了该光学成像***小型化的同时,增强了该光学成像***的像差校正能力。
为了使得透镜的尺寸分布均匀,且能有效降低光学成像***的尺寸,避免光学成像***的体积过大,同时,降低透镜的组装难度并实现该***的较大的空间利用率,可以将第四透镜在光轴上的中心厚度、第五透镜在光轴上的中心厚度以及第六透镜在光轴上的中心厚度控制在一定的范围内,具体地,本申请的一种实施例中,上述第四透镜、上述第五透镜以及上述第六透镜在光轴上的中心厚度分别为CT4、CT5和CT6,1<CT5/(CT6+CT4)<3。
为了使得第五透镜对轴外视场具有较大的折光能力,从而有利于缩短镜头的整体长度;同时,降低该光学成像***的像差,提升该光学成像***的解像力,本申请的一种实施例中,上述第五透镜的像侧面和光轴的交点至上述第五透镜的像侧面的有效半径顶点的轴上距离为SAG52,上述第五透镜在上述光轴上的中心厚度为CT5,0.5≤|SAG52/CT5|<0.8。
为了有效地压缩光学成像***的总尺寸,以进一步实现光学成像***的小型化,本申请的一种实施例中,上述光学成像***的成像面上的有效像素区域的对角线长度的一半为ImgH,上述第七透镜的像侧面和光轴的交点至上述第七透镜的像侧面的有效半径顶点的轴上距离为SAG72,0.5<ImgH/|SAG72×10|<2。
为了方便本申请的光学成像***的组装,同时,使得该光学成像***满足小尺寸的结构特性,本申请的一种实施例中,上述第二透镜的物侧面的最大有效半径为DT21,上述第七透镜的物侧面的最大有效半径为DT71,0.3≤DT21/DT71<0.7。
本申请的一种实施例中,如图1、图3、图5、图7、图9、图11、图13、图15、图17以及图19所示,上述光学成像***还包括滤光片E8,该滤光片E8位于上述第七透镜E7的远离第六透镜E6的一侧,该滤光片E8可以滤除杂散光,进一步提升该光学成像***的成像质量。
本申请的另一种典型的实施方式中,提供了一种光学成像***,如图1、图3、图5、图7、图9、图11、图13、图15、图17以及图19所示,沿光轴从物侧至像侧的方向上,该光学成像***依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6和第七透镜E7。
其中,上述第一透镜E1具有光焦度;上述第二透镜E2具有光焦度,上述第二透镜E2的物侧面S3为凹面,上述第二透镜E2的像侧面S4为凸面;上述第三透镜E3具有光焦度;上述第四透镜E4具有负光焦度;上述第五透镜E5具有正光焦度,上述第五透镜E5的物侧面S9为凸面;上述第六透镜具有负光焦度;上述第七透镜具有光焦度。
上述的光学成像***中,通过合理的控制***中的各个透镜的光焦度的正负分配和进光量,来有效地平衡光学成像***的低阶像差,使得光学成像***的成像***的成像质量较高。
为了有效地控制光学成像***的成像范围,提升该光学成像***的成像质量,本申请的一种实施例中,44°≤HFOV<55°,即控制HFOV大于或者等于44°且小于55°。
本申请的一种实施例中,上述第五透镜的有效焦距为f5,上述第六透镜的有效焦距为f6,-1.5<f5/f6<0。该实施例中,通过合理分配第五透镜和第六透镜的有效焦距,将光学成像***后段的光焦度控制在较小范围内,可以减小光线的偏转角,从而降低光学成像***的敏感性。
为了增加光学成像***的焦距,同时平衡该光学成像***的场曲,本申请的一种实施例中,将第四透镜的负光焦度控制在合理范围内,具体地,上述第四透镜的有效焦距为f4,上述光学成像***的有效焦距为f,-3.5<f4/f<-0.5。
本申请的另一种实施例中,上述第一透镜、上述第二透镜和上述第三透镜形成的组合的有效焦距为f123,上述第七透镜的有效焦距为f7,-0.5<f123/f7<3。该实施例中,通过将第一透镜、第二透镜和第三透镜的组合的有效焦距与第七透镜的有效焦距的比值控制在上述范围内,可以有效校正像面近轴范围的畸变,从而提高***的成像质量。
为了使得光学成像***具有更大的光圈,从而提高该光学成像***的整体亮度,本申请的一种实施例中,上述第一透镜的像侧面的曲率半径为R2,上述第三透镜的像侧面的曲率半径为R6,0<|R2-R6|/|R2+R6|<1。
本申请的再一种实施例中,上述第六透镜的物侧面的曲率半径为R11,上述第六透镜的像侧面的曲率半径为R12,0.4<R11/R12<1,通过控制第六透镜的弯折方向,进而有效地控制该光学成像***的场曲,从而提升该光学成像***的成像质量。
为了矫正该光学成像***的色差,且能够实现各种相差的平衡。本申请的一种实施例中,通过控制第五透镜的物侧面的曲率半径与第七透镜的像侧面的曲率半径来实现,具体地,上述第五透镜的像侧面的曲率半径为R10,上述第七透镜的物侧面的曲率半径为R13,-1<R13/R10<-0.5。
本申请的又一种实施例中,上述第一透镜至上述第六透镜的中心厚度中,最大值和最小值分别为CTmax和CTmin,即第一透镜的中心厚度、第二透镜的中心厚度、第三透镜的中心厚度、第四透镜的中心厚度、第五透镜的中心厚度以及第六透镜的中心厚度中,最大值为CTmax,最小值为CTmin,并且,1<CTmax/(3×CTmin)<2。该实施例中,通过有效控制该光学成像***中第一透镜到第六透镜的中心厚度的最大值和最小值,即控制最大中心厚度和最小中心厚度,使得各透镜的边缘厚度和中心厚度之间较平衡稳定,提升了空间利用率,降低了透镜的加工和组装难度,保证了该光学成像***小型化的同时,增强了该光学成像***的像差校正能力。
为了使得透镜的尺寸分布均匀,且能有效降低光学成像***的尺寸,避免光学成像***的体积过大,同时,降低透镜的组装难度并实现该***的较大的空间利用率,可以将第四透镜在光轴上的中心厚度、第五透镜在光轴上的中心厚度以及第六透镜在光轴上的中心厚度控制在一定的范围内,具体地,本申请的一种实施例中,上述第四透镜、上述第五透镜以及上述第六透镜在光轴上的中心厚度分别为CT4、CT5和CT6,1<CT5/(CT6+CT4)<3。
为了使得第五透镜对轴外视场具有较大的折光能力,从而有利于缩短镜头的整体长度;同时,降低该光学成像***的像差,提升该光学成像***的解像力,本申请的一种实施例中,上述第五透镜的像侧面和光轴的交点至上述第五透镜的像侧面的有效半径顶点的轴上距离为SAG52,上述第五透镜在上述光轴上的中心厚度为CT5,0.5≤|SAG52/CT5|<0.8。
为了有效地压缩光学成像***的总尺寸,以进一步实现光学成像***的小型化,本申请的一种实施例中,上述光学成像***的成像面上的有效像素区域的对角线长度的一半为ImgH,上述第七透镜的像侧面和光轴的交点至上述第七透镜的像侧面的有效半径顶点的轴上距离为SAG72,0.5<ImgH/|SAG72×10|<2。
为了方便本申请的光学成像***的组装,同时,使得该光学成像***满足小尺寸的结构特性,本申请的一种实施例中,上述第二透镜的物侧面的最大有效半径为DT21,上述第七透镜的物侧面的最大有效半径为DT71,0.3≤DT21/DT71<0.7。
本申请的一种实施例中,如图1、图3、图5、图7、图9、图11、图13、图15、图17以及图19所示,上述光学成像***还包括滤光片E8,该滤光片E8位于上述第七透镜E7的远离第六透镜E6的一侧,该滤光片E8可以滤除杂散光,进一步提升该光学成像***的成像质量。
在本申请中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜中最靠近物体的表面称为物侧面,每个透镜中最靠近成像面的表面称为像侧面。
为了使得本领域技术人员能够更加清楚地了解本申请的技术方案以及技术效果,以下将结合具体的实施例来详细说明。
实施例1
如图1所示,沿光轴从物侧至像侧的方向上,该光学成像***依次包括光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜具有正光焦度,且第一透镜的物侧面为凸面,且为非球面,像侧面为凸面,且为球面;第二透镜具有正光焦度,且第二透镜的物侧面凹面,且为球面,像侧面为凸面,且为非球面;第三透镜具有正光焦度,且第三透镜的物侧面为凹面,且为非球面,像侧面为凸面,且为非球面;第四透镜具有负光焦度,且第四透镜的物侧面为凸面,且为非球面,像侧面为凹面,且为非球面;第五透镜具有正光焦度,且第五透镜的物侧面为凸面,且为非球面,像侧面为凸面,且为非球面;第六透镜具有负光焦度,且第六透镜的物侧面为凹面,且为非球面,像侧面为凸面,且为非球面;第七透镜具有负光焦度,且第七透镜的物侧面为凸面,且为非球面,像侧面为凹面,且为非球面。
该光学成像***中还包括具有物侧面S15和像侧面S16的滤光片。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表1示出了实施例1的光学成像***的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为mm。
表1
Figure PCTCN2019084360-appb-000001
在本实施例中,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
Figure PCTCN2019084360-appb-000002
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数(在表1中已给出);Ai是非球面第i-th阶的修正系数。下表2给出了用于实施例1中各非球面镜面S1、S3、S5、S7和S8的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16和A 20
表2
Figure PCTCN2019084360-appb-000003
Figure PCTCN2019084360-appb-000004
实施例1中,第一透镜的有效焦距f1=9.05mm,第二透镜的有效焦距f2=2.73mm,第三透镜的有效焦距f3=185.27mm,第四透镜的有效焦距f4=-2.48mm,第五透镜的有效焦距f5=1.42mm,第六透镜的有效焦距f6=-8.32mm,第七透镜的有效焦距f7=-7.96mm。该光学成像***的有效焦距f=1.83,TTL=3.27mm,HFOV=45.1°,ImgH=1.86mm,其中,TTL为第一透镜E1的物侧面S1的中心至成像面S17在光轴上的距离,ImgH为成像面S17上有效像素区域的对角线长的一半。具体可以参见表21。
且该光学成像***满足:
f5/f6=-0.17,f4/f=-1.35,f123/f7=-0.28,|R2-R6|/R2+R6|=0.64,R11/R12=0.80,R13/R10=-0.65,CTmax/(3×CTmin)=1.06,CT5/(CT6+CT4)=1.59,|SAG52/CT5|=0.64,ImgH/|SAG72×10|=0.68,DT21/DT71=0.41。具体可以参见表22。
另外,图2A示出了实施例1的光学成像***的轴上色差曲线,其表示不同波长的光线经由***后的会聚焦点偏离。图2B示出了实施例1的光学成像***的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2C示出了实施例1的光学成像***的畸变曲线,其表示不同视角情况下的畸变大小值。图2D示出了实施例1的光学成像***的倍率色差曲线,其表示光线经由***后在成像面上的不同的像高的偏差。根据图2A至图2D可知,实施例1所给出的光学成像***能够实现良好的成像品质。
实施例2
如图3所示,沿光轴从物侧至像侧的方向上,该光学成像***依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜具有正光焦度,且第一透镜的物侧面为凹面,且为非球面,像侧面为凸面,且为球面;第二透镜具有正光焦度,且第二透镜的物侧面凹面,且为球面,像侧面为凸面,且为非球面;第三透镜具有正光焦度,且第三透镜的物侧面为凹面,且为非球面,像侧面为凸面,且为非球面;第四透镜具有负光焦度,且第四透镜的物侧面为凸面,且为非球面,像侧面为凹面,且为非球面;第五透镜具有正光焦度,且第五透镜的物侧面为凸面,且为非球面,像侧面为凸面,且为非球面;第六透镜具有负光焦度,且第六透镜的物侧面为凹面,且为非球面,像侧面为凸面,且为非球面;第七透镜具有负光焦度,且第七透镜的物侧面为凸面,且为非球面,像侧面为凹面,且为非球面。
该光学成像***中还包括具有物侧面S15和像侧面S16的滤光片。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表3示出了实施例2的光学成像***的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为mm。
表3
Figure PCTCN2019084360-appb-000005
Figure PCTCN2019084360-appb-000006
在本实施例中,各非球面透镜的面型x的计算公式与实施例1的相同。下表4给出了用于实施例2中各非球面镜面S1、S3、S5、S7和S8的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16和A 20
表4
Figure PCTCN2019084360-appb-000007
实施例2中,第一透镜的有效焦距f1=5.86mm,第二透镜的有效焦距f2=5.73mm,第三透镜的有效焦距f3=4.68mm,第四透镜的有效焦距f4=-2.02mm,第五透镜的有效焦距f5=1.38mm,第六透镜的有效焦距f6=-2.23mm,第七透镜的有效焦距f7=4.75mm。该光学成像***的有效焦距f=1.83mm,TTL=3.34mm,HFOV=45.1°,ImgH=1.86mm,其中,TTL为第一透镜E1的物侧面S1的中心至成像面S17在光轴上的距离,ImgH为成像面S17上有效像素区域的对角线长的一半。具体可以参见表21。
且该光学成像***满足:
f5/f6=-0.62,f4/f=-1.10,f123/f7=0.39,|R2-R6|/|R2+R6|=0.14,R11/R12=0.62,R13/R10=-0.58,CTmax/(3×CTmin)=1.05,CT5/(CT6+CT4)=1.58,|SAG52/CT5|=0.59,ImgH/|SAG72×10|=1.78,DT21/DT71=0.33。具体可以参见表22。
另外,图4A示出了实施例2的光学成像***的轴上色差曲线,其表示不同波长的光线经由***后的会聚焦点偏离。图4B示出了实施例2的光学成像***的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4C示出了实施例2的光学成像***的畸变曲线,其表示不同视角情况下的畸变大小值。图4D示出了实施例2的光学成像***的倍率色差曲线,其表示光线经由***后在成像面上的不同的像高的偏差。根据图4A至图4D可知,实施例2所给出的光学成像***能够实现良好的成像品质。
实施例3
如图5所示,沿光轴从物侧至像侧的方向上,该光学成像***依次包括第一透镜E1、第二透镜E2、光阑STO、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜具有正光焦度,且第一透镜的物侧面为凹面,且为非球面,像侧面为凸面,且为球面;第二透镜具有正光焦度,且第二透镜的物侧面凹面,且为球面,像侧面为凸面,且为非球面;第三透镜具有正光焦度,且第三透镜的物侧面为凸面,且为非球面,像侧面为凸面,且为非球面;第四透镜具有负光焦度,且第四透镜的物侧面为凸面,且为非球面,像侧面为凹面,且为非球面;第五透镜具有正光焦度,且第五透镜的物侧面为凸面,且为非球面,像侧面为凸面,且为非球面;第六透镜具有负光焦度,且第六透镜的物侧面为凹面,且为非球面,像侧面为凸面,且为非球面;第七透镜具有负光焦度,且第七透镜的物侧面为凸面,且为非球面,像侧面为凹面,且为非球面。
该光学成像***中还包括具有物侧面S15和像侧面S16的滤光片。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表5示出了实施例3的光学成像***的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为mm。
表5
Figure PCTCN2019084360-appb-000008
Figure PCTCN2019084360-appb-000009
在本实施例中,各非球面透镜的面型x的计算公式与实施例1的相同。
下表6给出了用于实施例3中各非球面镜面S1、S3、S5、S7和S8的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16和A 20
表6
Figure PCTCN2019084360-appb-000010
实施例3中,第一透镜的有效焦距f1=7.23mm,第二透镜的有效焦距f2=5.79mm,第三透镜的有效焦距f3=4.14mm,第四透镜的有效焦距f4=-2.05mm,第五透镜的有效焦距f5=1.33mm,第六透镜的有效焦距f6=-1.88mm,第七透镜的有效焦距f7=3.66mm。该光学成像***的有效焦距f=1.84mm,TTL=3.37mm,HFOV=44.6°,ImgH=1.86mm,其中,TTL为第一透镜E1的物侧面S1的中心至成像面S17在光轴上的距离,ImgH为成像面S17上有效像素区域的对角线长的一半。具体可以参见表21。
且该光学成像***满足:
f5/f6=-0.71,f4/f=-1.11,f123/f7=0.50,|R2-R6|/|R2+R6|=0.20,R11/R12=0.59,R13/R10=-0.63,CTmax/(3×CTmin)=1.12,CT5/(CT6+CT4)=1.64,|SAG52/CT5|=0.56,ImgH/|SAG72×10|=1.13,DT21/DT71=0.34。具体可以参见表22。
另外,图6A示出了实施例3的光学成像***的轴上色差曲线,其表示不同波长的光线经由***后的会聚焦点偏离。图6B示出了实施例3的光学成像***的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6C示出了实施例3的光学成像***的畸变曲线,其表示不同视角情况下的畸变大小值。图6D示出了实施例3的光学成像***的倍率色差曲线,其表示光线经由***后在成像面上的不同的像高的偏差。根据图6A至图6D可知,实施例3所给出的光学成像***能够实现良好的成像品质。
实施例4
如图7所示,沿光轴从物侧至像侧的方向上,该光学成像***依次包括第一透镜E1、第二透镜E2、第三透镜E3、光阑STO、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜具有负光焦度,且第一透镜的物侧面为凹面,且为非球面,像侧面为凸面,且为非球面;第二透镜具有正光焦度,且第二透镜的物侧面凹面,且为非球面,像侧面为凸面,且为非球面;第三透镜具有正光焦度,且第三透镜的物侧面为凸面,且为非球面,像侧面为凸面,且为非球面;第四透镜具有负光焦度,且第四透镜的物侧面为凸面,且为非球面,像侧面为凹面,且为非球面;第五透镜具有正光焦度,且第五透镜的物侧面为凸面, 且为非球面,像侧面为凸面,且为非球面;第六透镜具有负光焦度,且第六透镜的物侧面为凹面,且为非球面,像侧面为凸面,且为非球面;第七透镜具有正光焦度,且第七透镜的物侧面为凸面,且为非球面,像侧面为凹面,且为非球面。
该光学成像***中还包括具有物侧面S15和像侧面S16的滤光片。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表7示出了实施例4的光学成像***的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为mm。
表7
Figure PCTCN2019084360-appb-000011
在本实施例中,各非球面透镜的面型x的计算公式与实施例1的相同。
下表8给出了用于实施例4中各非球面镜面S1、S3、S5、S7和S8的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16和A 20
表8
Figure PCTCN2019084360-appb-000012
Figure PCTCN2019084360-appb-000013
实施例4中,第一透镜的有效焦距f1=-700.00mm,第二透镜的有效焦距f2=7.14mm,第三透镜的有效焦距f3=3.58mm,第四透镜的有效焦距f4=-2.60mm,第五透镜的有效焦距f5=1.46mm,第六透镜的有效焦距f6=-1.54mm,第七透镜的有效焦距f7=2.02mm。该光学成像***的有效焦距f=1.84mm,TTL=3.85mm,HFOV=49.0°,ImgH=2.15mm,其中,TTL为第一透镜E1的物侧面S1的中心至成像面S17在光轴上的距离,ImgH为成像面S17上有效像素区域的对角线长的一半。具体可以参见表21。
且该光学成像***满足:
f5/f6=-0.95,f4/f=-1.41,f123/f7=1.15,|R2-R6|/|R2+R6|=0.09,R11/R12=0.53,R13/R10=-0.62,CTmax/(3×CTmin)=1.33,CT5/(CT6+CT4)=1.77,|SAG52/CT5|=0.52,ImgH/|SAG72×10|=1.35,DT21/DT71=0.39。具体可以参见表22。
另外,图8A示出了实施例4的光学成像***的轴上色差曲线,其表示不同波长的光线经由***后的会聚焦点偏离。图8B示出了实施例4的光学成像***的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8C示出了实施例4的光学成像***的畸变曲线,其表示不同视角情况下的畸变大小值。图8D示出了实施例4的光学成像***的倍率色差曲线,其表示光线经由***后在成像面上的不同的像高的偏差。根据图8A至图8D可知,实施例4所给出的光学成像***能够实现良好的成像品质。
实施例5
如图9所示,沿光轴从物侧至像侧的方向上,该光学成像***依次包括第一透镜E1、第二透镜E2、第三透镜E3、光阑STO、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜具有正光焦度,且第一透镜的物侧面为凹面,且为非球面,像侧面为凸面,且为非球面;第二透镜具有负光焦度,且第二透镜的物侧面凹面,且为非球面,像侧面为凸面,且为非球面;第三透镜具有正光焦度,且第三透镜的物侧面为凸面,且为非球面,像侧面为凸面,且为非球面;第四透镜具有负光焦度,且第四透镜的物侧面为凸面,且为非球面,像侧面为凹面,且为非球面;第五透镜具有正光焦度,且第五透镜的物侧面为凸面,且为非球面,像侧面为凸面,且为非球面;第六透镜具有负光焦度,且第六透镜的物侧面为凹面,且为非球面,像侧面为凸面,且为非球面;第七透镜具有正光焦度,且第七透镜的物侧面为凸面,且为非球面,像侧面为凸面,且为球面。
该光学成像***中还包括具有物侧面S15和像侧面S16的滤光片。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表9示出了实施例5的光学成像***的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为mm。
表9
Figure PCTCN2019084360-appb-000014
在本实施例中,各非球面透镜的面型x的计算公式与实施例1的相同。
下表10给出了用于实施例5中各非球面镜面S1、S3、S5、S7和S8的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16和A 20
表10
Figure PCTCN2019084360-appb-000015
Figure PCTCN2019084360-appb-000016
实施例5中,第一透镜的有效焦距f1=13.04mm,第二透镜的有效焦距f2=-200.00mm,第三透镜的有效焦距f3=4.56mm,第四透镜的有效焦距f4=-3.71mm,第五透镜的有效焦距f5=1.63mm,第六透镜的有效焦距f6=-1.09mm,第七透镜的有效焦距f7=1.24mm。该光学成像***的有效焦距f=1.84mm,TTL=3.85mm,HFOV=49.1°,ImgH=2.15mm,其中,TTL为第一透镜E1的物侧面S1的中心至成像面S17在光轴上的距离,ImgH为成像面S17上有效像素区域的对角线长的一半。具体可以参见表21。
且该光学成像***满足:
f5/f6=-1.49,f4/f=-2.02,f123/f7=2.71,|R2-R6|/|R2+R6|=0.93,R11/R12=0.45,R13/R10=-0.64,CTmax/(3×CTmin)=1.09,CT5/(CT6+CT4)=1.30,|SAG52/CT5|=0.50,ImgH/|SAG72×10|=1.91,DT21/DT71=0.40。具体可以参见表22。
另外,图10A示出了实施例5的光学成像***的轴上色差曲线,其表示不同波长的光线经由***后的会聚焦点偏离。图10B示出了实施例5的光学成像***的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10C示出了实施例5的光学成像***的畸变曲线,其表示不同视角情况下的畸变大小值。图10D示出了实施例5的光学成像***的倍率色差曲线,其表示光线经由***后在成像面上的不同的像高的偏差。根据图10A至图10D可知,实施例5所给出的光学成像***能够实现良好的成像品质。
实施例6
如图11所示,沿光轴从物侧至像侧的方向上,该光学成像***依次包括第一透镜E1、第二透镜E2、第三透镜E3、光阑STO、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜具有正光焦度,且第一透镜的物侧面为凹面,且为非球面,像侧面为凸面,且为非球面;第二透镜具有正光焦度,且第二透镜的物侧面凹面,且为非球面,像侧面为凸面,且为非球面;第三透镜具有正光焦度,且第三透镜的物侧面为凸面,且为非球面,像侧面为凸面,且为非球面;第四透镜具有负光焦度,且第四透镜的物侧面为凸面,且为非球面,像侧面为凹面,且为非球面;第五透镜具有正光焦度,且第五透镜的物侧面为凸面,且为非球面,像侧面为凸面,且为非球面;第六透镜具有负光焦度,且第六透镜的物侧面为凹面,且为非球面,像侧面为凸面,且为非球面;第七透镜具有正光焦度,且第七透镜的物侧面为凸面,且为非球面,像侧面为凹面,且为球面。
该光学成像***中还包括具有物侧面S15和像侧面S16的滤光片。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表11示出了实施例6的光学成像***的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为mm。
表11
Figure PCTCN2019084360-appb-000017
Figure PCTCN2019084360-appb-000018
在本实施例中,各非球面透镜的面型x的计算公式与实施例1的相同。
下表12给出了用于实施例6中各非球面镜面S1、S3、S5、S7和S8的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16和A 20
表12
Figure PCTCN2019084360-appb-000019
实施例6中,第一透镜的有效焦距f1=17.71mm,第二透镜的有效焦距f2=12.01mm,第三透镜的有效焦距f3=4.20mm,第四透镜的有效焦距f4=-2.94mm,第五透镜的有效焦距f5=1.50,第六透镜的有效焦距f6=-1.44,第七透镜的有效焦距f7=1.84。该光学成像***的有效焦距f=1.87mm,TTL=4.23mm,HFOV=51.3°,ImgH=2.36mm,其中,TTL为第一透镜E1的物侧面S1的中心至成像面S17在光轴上的距离,ImgH为成像面S17上有效像素区域的对角线长的一半。具体可以参见表21。
且该光学成像***满足:
f5/f6=-1.04,f4/f=-1.57,f123/f7=1.41,|R2-R6|/|R2+R6|=0.20,R11/R12=0.51,R13/R10=-0.65,CTmax/(3×CTmin)=1.61,CT5/(CT6+CT4)=2.08,|SAG52/CT5|=0.52,ImgH/|SAG72×10|=0.93,DT21/DT71=0.39。具体可以参见表22。
另外,图12A示出了实施例6的光学成像***的轴上色差曲线,其表示不同波长的光线经由***后的会聚焦点偏离。图12B示出了实施例6的光学成像***的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12C示出了实施例6的光学成像***的畸变曲线,其表示不同视角情况下的畸变大小值。图12D示出了实施例6的光学成像***的倍率色差曲线,其表示光线经由***后在成像面上的不同的像高的偏差。根据图12A至图12D可知,实施例6所给出的光学成像***能够实现良好的成像品质。
实施例7
如图13所示,沿光轴从物侧至像侧的方向上,该光学成像***依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜具有正光焦度,且第一透镜的物侧面为凹面,且为非球面,像侧面为凸面,且为非球面;第二透镜具有正光焦度,且第二透镜的物侧面凹面,且为非球面,像侧面为凸面,且为非球面;第三透镜具有正光焦度,且第三透镜的物侧面为凸面,且为非球面,像侧面为凸面,且为非球面;第四透镜具有负光焦度,且第四透镜的物侧面为凸面,且为非球面,像侧面为凹面,且为非球面;第五透镜具有正光焦度,且第五透镜的物侧面为凸面,且为非球面,像侧面为凸面,且为非球面;第六透镜具有负光焦度,且第六透镜的物侧面为凹面,且为非球面,像侧面为凸面,且为非球面;第七透镜具有正光焦度,且第七透镜的物侧面为凸面,且为非球面,像侧面为凹面,且为非球面。
该光学成像***中还包括具有物侧面S15和像侧面S16的滤光片。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表13示出了实施例7的光学成像***的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为mm。
表13
Figure PCTCN2019084360-appb-000020
在本实施例中,各非球面透镜的面型x的计算公式与实施例1的相同。
下表14给出了用于实施例7中各非球面镜面S1、S3、S5、S7和S8的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16和A 20
表14
Figure PCTCN2019084360-appb-000021
实施例7中,第一透镜的有效焦距f1=14.53mm,第二透镜的有效焦距f2=10.29mm,第三透镜的有效焦距f3=5.54mm,第四透镜的有效焦距f4=-3.37mm,第五透镜的有效焦距f5=1.62mm,第六透镜的有效焦距f6=-1.34mm,第七透镜的有效焦距f7=1.60mm。该光学成像***的有效焦距f=1.90mm,TTL=4.43mm,HFOV=52.1°, ImgH=2.48mm,其中,TTL为第一透镜E1的物侧面S1的中心至成像面S17在光轴上的距离,ImgH为成像面S17上有效像素区域的对角线长的一半。具体可以参见表21。
且该光学成像***满足:
f5/f6=-1.21,f4/f=-1.78,f123/f7=1.80,|R2-R6|/|R2+R6|=0.26,R11/R12=0.54,R13/R10=-0.60,CTmax/(3×CTmin)=1.82,CT5/(CT6+CT4)=2.56,|SAG52/CT5|=0.57,ImgH/|SAG72×10|=1.29,DT21/DT71=0.41。具体可以参见表22。
另外,图14A示出了实施例7的光学成像***的轴上色差曲线,其表示不同波长的光线经由***后的会聚焦点偏离。图14B示出了实施例7的光学成像***的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14C示出了实施例7的光学成像***的畸变曲线,其表示不同视角情况下的畸变大小值。图14D示出了实施例7的光学成像***的倍率色差曲线,其表示光线经由***后在成像面上的不同的像高的偏差。根据图14A至图14D可知,实施例7所给出的光学成像***能够实现良好的成像品质。
实施例8
如图15所示,沿光轴从物侧至像侧的方向上,该光学成像***依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜具有正光焦度,且第一透镜的物侧面为凹面,且为非球面,像侧面为凸面,且为非球面;第二透镜具有正光焦度,且第二透镜的物侧面凹面,且为非球面,像侧面为凸面,且为非球面;第三透镜具有正光焦度,且第三透镜的物侧面为凸面,且为非球面,像侧面为凸面,且为非球面;第四透镜具有负光焦度,且第四透镜的物侧面为凸面,且为非球面,像侧面为凹面,且为非球面;第五透镜具有正光焦度,且第五透镜的物侧面为凸面,且为非球面,像侧面为凸面,且为非球面;第六透镜具有负光焦度,且第六透镜的物侧面为凹面,且为非球面,像侧面为凸面,且为非球面;第七透镜具有正光焦度,且第七透镜的物侧面为凸面,且为非球面,像侧面为凹面,且为非球面。
该光学成像***中还包括具有物侧面S15和像侧面S16的滤光片。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表15示出了实施例8的光学成像***的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为mm。
表15
Figure PCTCN2019084360-appb-000022
在本实施例中,各非球面透镜的面型x的计算公式与实施例1的相同。
下表16给出了用于实施例8中各非球面镜面S1、S3、S5、S7和S8的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16和A 20
表16
Figure PCTCN2019084360-appb-000023
Figure PCTCN2019084360-appb-000024
实施例8中,第一透镜的有效焦距f1=15.67mm,第二透镜的有效焦距f2=10.08mm,第三透镜的有效焦距f3=5.41mm,第四透镜的有效焦距f4=-3.45mm,第五透镜的有效焦距f5=1.58mm,第六透镜的有效焦距f6=-1.31mm,第七透镜的有效焦距f7=1.62mm。该光学成像***的有效焦距f=1.90mm,TTL=4.43mm,HFOV=52.1°,ImgH=2.48mm,其中,TTL为第一透镜E1的物侧面S1的中心至成像面S17在光轴上的距离,ImgH为成像面S17上有效像素区域的对角线长的一半。具体可以参见表21。
且该光学成像***满足:
f5/f6=-1.21,f4/f=-1.82,f123/f7=1.76,|R2-R6|/|R2+R6|=0.25,R11/R12=0.53,R13/R10=-0.63,CTmax/(3×CTmin)=1.74,CT5/(CT6+CT4)=2.43,|SAG52/CT5|=0.56,ImgH/|SAG72×10|=1.41,DT21/DT71=0.41。具体可以参见表22。
另外,图16A示出了实施例8的光学成像***的轴上色差曲线,其表示不同波长的光线经由***后的会聚焦点偏离。图16B示出了实施例8的光学成像***的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图16C示出了实施例8的光学成像***的畸变曲线,其表示不同视角情况下的畸变大小值。图16D示出了实施例8的光学成像***的倍率色差曲线,其表示光线经由***后在成像面上的不同的像高的偏差。根据图16A至图16D可知,实施例8所给出的光学成像***能够实现良好的成像品质。
实施例9
如图17所示,沿光轴从物侧至像侧的方向上,该光学成像***依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜具有正光焦度,且第一透镜的物侧面为凹面,且为非球面,像侧面为凸面,且为球面;第二透镜具有正光焦度,且第二透镜的物侧面凹面,且为球面,像侧面为凸面,且为非球面;第三透镜具有正光焦度,且第三透镜的物侧面为凹面,且为非球面,像侧面为凸面,且为非球面;第四透镜具有负光焦度,且第四透镜的物侧面为凹面,且为非球面,像侧面为凹面,且为非球面;第五透镜具有正光焦度,且第五透镜的物侧面为凸面,且为非球面,像侧面为凸面,且为非球面;第六透镜具有负光焦度,且第六透镜的物侧面为凹面,且为非球面,像侧面为凸面,且为非球面;第七透镜具有负光焦度,且第七透镜的物侧面为凸面,且为非球面,像侧面为凹面,且为非球面。
该光学成像***中还包括具有物侧面S15和像侧面S16的滤光片。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表17示出了实施例9的光学成像***的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为mm。
表17
Figure PCTCN2019084360-appb-000025
Figure PCTCN2019084360-appb-000026
在本实施例中,各非球面透镜的面型x的计算公式与实施例1的相同。
下表18给出了用于实施例9中各非球面镜面S1、S3、S5、S7和S8的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16和A 20
表18
Figure PCTCN2019084360-appb-000027
实施例9中,第一透镜的有效焦距f1=7.19mm,第二透镜的有效焦距f2=5.84mm,第三透镜的有效焦距f3=3.34mm,第四透镜的有效焦距f4=-1.81mm,第五透镜的有效焦距f5=1.16mm,第六透镜的有效焦距f6=-4.80mm,第七透镜的有效焦距f7=-4.72mm。该光学成像***的有效焦距f=1.83mm,TTL=3.35mm,HFOV=44.6°,ImgH=1.86mm,其中,TTL为第一透镜E1的物侧面S1的中心至成像面S17在光轴上的距离,ImgH为成像面S17上有效像素区域的对角线长的一半。具体可以参见表21。
且该光学成像***满足:
f5/f6=-0.24,f4/f=-0.99,f123/f7=-0.36,|R2-R6|/R2+R6|=0.29,R11/R12=0.72,R13/R10=-0.72,CTmax/(3×CTmin)=1.15,CT5/(CT6+CT4)=1.72,|SAG52/CT5|=0.52,ImgH/|SAG72×10|=0.93,DT21/DT71=0.60。具体可以参见表22。
另外,图18A示出了实施例9的光学成像***的轴上色差曲线,其表示不同波长的光线经由***后的会聚焦点偏离。图18B示出了实施例9的光学成像***的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图18C示出了实施例9的光学成像***的畸变曲线,其表示不同视角情况下的畸变大小值。图18D示出了实施例9的光学成像***的倍率色差曲线,其表示光线经由***后在成像面上的不同的像高的偏差。根据图18A至图18D可知,实施例9所给出的光学成像***能够实现良好的成像品质。
实施例10
如图19所示,沿光轴从物侧至像侧的方向上,该光学成像***依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜具有正光焦度,且第一透镜的物侧面为凹面,且为非球面,像侧面为凸面,且为非球面;第二透镜具有正光焦度,且第二透镜的物侧面凹面,且为非球面,像侧面为凸面,且为非球面;第三透镜具有正光焦度,且第三透镜的物侧面为凸面,且为非球面,像侧面为凸面,且为非球面;第四透镜具有负光焦度,且第四透镜的物侧面为凹面,且为非球面,像侧面为凸面,且为非球面;第五透镜具有正光焦度,且第五透镜的物侧面为凸面,且为非球面,像侧面为凸面,且为非球面;第六透镜具有负光焦度,且第六透镜的物侧面为凹面,且为非球面,像侧面为凸面,且为非球面;第七透镜具有正光焦度,且第七透镜的物侧面为凸面,且为非球面,像侧面为凹面,且为非球面。
该光学成像***中还包括具有物侧面S15和像侧面S16的滤光片。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表19示出了实施例9的光学成像***的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为mm。
表19
Figure PCTCN2019084360-appb-000028
Figure PCTCN2019084360-appb-000029
在本实施例中,各非球面透镜的面型x的计算公式与实施例1的相同。
下表20给出了用于实施例10中各非球面镜面S1、S3、S5、S7和S8的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16和A 20
表20
Figure PCTCN2019084360-appb-000030
实施例10中,第一透镜的有效焦距f1=8.62mm,第二透镜的有效焦距f2=25.96mm,第三透镜的有效焦距f3=8.53mm,第四透镜的有效焦距f4=-6.16mm,第五透镜的有效焦距f5=1.76mm,第六透镜的有效焦距f6=-1.40mm,第七透镜的有效焦距f7=1.72mm。该光学成像***的有效焦距f=1.98mm,TTL=4.43mm,HFOV=50.6°,ImgH=2.48mm,其中,TTL为第一透镜E1的物侧面S1的中心至成像面S17在光轴上的距离,ImgH为成像面S17上有效像素区域的对角线长的一半。具体可以参见表21。
且该光学成像***满足:
f5/f6=-1.25,f4/f=-3.10,f123/f7=2.18,|R2-R6|/|R2+R6|=0.52,R11/R12=0.50,R13/R10=-0.69,CTmax/(3×CTmin)=1.29,CT5/(CT6+CT4)=1.73,|SAG52/CT5|=0.64,ImgH/|SAG72×10|=0.68,DT21/DT71=0.38。具体可以参见表22。
另外,图20A示出了实施例10的光学成像***的轴上色差曲线,其表示不同波长的光线经由***后的会聚焦点偏离。图20B示出了实施例10的光学成像***的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图20C示出了实施例10的光学成像***的畸变曲线,其表示不同视角情况下的畸变大小值。图20D示出了实施例10的光学成像***的倍率色差曲线,其表示光线经由***后在成像面上的不同的像高的偏差。根据图20A至图20D可知,实施例10所给出的光学成像***能够实现良好的成像品质。
实施例1-10的光学成像***中,各个透镜的有效焦距、***的有效焦距、TTL、HFOV以及ImgH的具体数值见表21所示。
表21
Figure PCTCN2019084360-appb-000031
实施例1-10中的光学成像***中,f5/f6、f4/f、f123/f7、|R2-R6|/|R2+R6|、R11/R12、R13/R10、CTmax/(3×CTmin)、CT5/(CT6+CT4)、|SAG52/CT5|、ImgH/|SAG72×10|以及DT21/DT71的具体数值见表22。
表22
Figure PCTCN2019084360-appb-000032
从以上的描述中,可以看出,本申请上述的实施例实现了如下技术效果:
1)、本申请的光学成像***中,通过合理的控制***中的各个透镜的光焦度的正负分配和进光量,来有效地平衡光学成像***的低阶像差,使得光学成像***的成像***的成像质量较高;同时,控制HFOV大于或者等于44°且小于55°,即通过控制全视场角,以有效地控制光学成像***的成像范围,进一步保证该光学成像***的成像质量较高。
2)、本申请的光学成像***中,通过合理的控制***中的各个透镜的光焦度的正负分配和进光量,来有效地平衡光学成像***的低阶像差,使得光学成像***的成像***的成像质量较高。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (25)

  1. 一种光学成像***,沿光轴从物侧至像侧依次包括第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜,其特征在于,
    所述第一透镜具有光焦度;
    所述第二透镜具有光焦度,所述第二透镜的物侧面为凹面,所述第二透镜的像侧面为凸面;
    所述第三透镜具有光焦度;
    所述第四透镜具有负光焦度;
    所述第五透镜具有正光焦度,所述第五透镜的物侧面为凸面;
    所述第六透镜具有负光焦度;
    所述第七透镜具有光焦度;
    其中,44°≤HFOV<55°,HFOV为光学成像***的最大视场角的一半。
  2. 根据权利要求1所述的光学成像***,其特征在于,所述第五透镜的有效焦距为f5,所述第六透镜的有效焦距为f6,-1.5<f5/f6<0。
  3. 根据权利要求1所述的光学成像***,其特征在于,所述第四透镜的有效焦距为f4,所述光学成像***的有效焦距为f,-3.5<f4/f<-0.5。
  4. 根据权利要求1所述的光学成像***,其特征在于,所述第一透镜、所述第二透镜和所述第三透镜形成的组合的有效焦距为f123,所述第七透镜的有效焦距为f7,-0.5<f123/f7<3。
  5. 根据权利要求1至4中任一项所述的光学成像***,其特征在于,所述第一透镜的像侧面的曲率半径为R2,所述第三透镜的像侧面的曲率半径为R6,0<|R2-R6|/|R2+R6|<1。
  6. 根据权利要求1至4中任一项所述的光学成像***,其特征在于,所述第六透镜的物侧面的曲率半径为R11,所述第六透镜的像侧面的曲率半径为R12,0.4<R11/R12<1。
  7. 根据权利要求1至4中任一项所述的光学成像***,其特征在于,所述第五透镜的像侧面的曲率半径为R10,所述第七透镜的物侧面的曲率半径为R13,-1<R13/R10<-0.5。
  8. 根据权利要求1至4中任一项所述的光学成像***,其特征在于,所述第一透镜至所述第六透镜的中心厚度中,最大值和最小值分别为CTmax和CTmin,1<CTmax/(3×CTmin)<2。
  9. 根据权利要求1至4中任一项所述的光学成像***,其特征在于,所述第四透镜、所述第五透镜以及所述第六透镜在所述光轴上的中心厚度分别为CT4、CT5和CT6,1<CT5/(CT6+CT4)<3。
  10. 根据权利要求1至4中任一项所述的光学成像***,其特征在于,所述第五透镜的像侧面和所述光轴的交点至所述第五透镜的像侧面的有效半径顶点的轴上距离为SAG52,所述第五透镜在所述光轴上的中心厚度为CT5,0.5≤|SAG52/CT5|<0.8。
  11. 根据权利要求1至4中任一项所述的光学成像***,其特征在于,所述光学成像***的成像面上的有效像素区域的对角线长度的一半为ImgH,所述第七透镜的像侧面和所述光轴的交点至所述第七透镜的像侧面的有效半径顶点的轴上距离为SAG72,0.5<ImgH/|SAG72×10|<2。
  12. 根据权利要求1至4中任一项所述的光学成像***,其特征在于,所述第二透镜的物侧面的最大有效半径为DT21,所述第七透镜的物侧面的最大有效半径为DT71,0.3≤DT21/DT71<0.7。
  13. 一种光学成像***,沿光轴从物侧至像侧依次包括第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜,其特征在于,
    所述第一透镜具有光焦度;
    所述第二透镜具有光焦度,所述第二透镜的物侧面为凹面,所述第二透镜的像侧面为凸面;
    所述第三透镜具有光焦度;
    所述第四透镜具有负光焦度;
    所述第五透镜具有正光焦度,所述第五透镜的物侧面为凸面;
    所述第六透镜具有负光焦度;
    所述第七透镜具有光焦度。
  14. 根据权利要求13所述的光学成像***,其特征在于,HFOV为光学成像***的最大视场角的一半,44°≤HFOV<55°。
  15. 根据权利要求13所述的光学成像***,其特征在于,所述第五透镜的有效焦距为f5,所述第六透镜的有效焦距为f6,-1.5<f5/f6<0。
  16. 根据权利要求13所述的光学成像***,其特征在于,所述第四透镜的有效焦距为f4,所述光学成像***的有效焦距为f,-3.5<f4/f<-0.5。
  17. 根据权利要求13所述的光学成像***,其特征在于,所述第一透镜、所述第二透镜和所述第三透镜形成的组合的有效焦距为f123,所述第七透镜的有效焦距为f7,-0.5<f123/f7<3。
  18. 根据权利要求13至17中任一项所述的光学成像***,其特征在于,所述第一透镜的像侧面的曲率半径为R2,所述第三透镜的像侧面的曲率半径为R6,0<|R2-R6|/|R2+R6|<1。
  19. 根据权利要求13至17中任一项所述的光学成像***,其特征在于,所述第六透镜的物侧面的曲率半径为R11,所述第六透镜的像侧面的曲率半径为R12,0.4<R11/R12<1。
  20. 根据权利要求13至17中任一项所述的光学成像***,其特征在于,所述第五透镜的像侧面的曲率半径为R10,所述第七透镜的物侧面的曲率半径为R13,-1<R13/R10<-0.5。
  21. 根据权利要求13至17中任一项所述的光学成像***,其特征在于,所述第一透镜至所述第六透镜的中心厚度中,最大值和最小值分别为CTmax和CTmin,1<CTmax/(3×CTmin)<2。
  22. 根据权利要求13至17中任一项所述的光学成像***,其特征在于,所述第四透镜、所述第五透镜以及所述第六透镜在所述光轴上的中心厚度分别为CT4、CT5和CT6,1<CT5/(CT6+CT4)<3。
  23. 根据权利要求13至17中任一项所述的光学成像***,其特征在于,所述第五透镜的像侧面和所述光轴的交点至所述第五透镜的像侧面的有效半径顶点的轴上距离为SAG52,所述第五透镜在所述光轴上的中心厚度为CT5,0.5≤|SAG52/CT5|<0.8。
  24. 根据权利要求13至17中任一项所述的光学成像***,其特征在于,所述光学成像***的成像面上的有效像素区域的对角线长度的一半为ImgH,所述第七透镜的像侧面和所述光轴的交点至和所述第七透镜的像侧面的有效半径顶点的轴上距离为SAG72,0.5<ImgH/|SAG72×10|<2。
  25. 根据权利要求13至17中任一项所述的光学成像***,其特征在于,所述第二透镜的物侧面的最大有效半径为DT21,所述第七透镜的物侧面的最大有效半径为DT71,0.3≤DT21/DT71<0.7。
PCT/CN2019/084360 2018-08-03 2019-04-25 光学成像*** WO2020024631A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/264,303 US20220026681A1 (en) 2018-08-03 2019-04-25 Optical imaging system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810878358.2 2018-08-03
CN201810878358.2A CN108732727B (zh) 2018-08-03 2018-08-03 光学成像***

Publications (1)

Publication Number Publication Date
WO2020024631A1 true WO2020024631A1 (zh) 2020-02-06

Family

ID=63942333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/084360 WO2020024631A1 (zh) 2018-08-03 2019-04-25 光学成像***

Country Status (3)

Country Link
US (1) US20220026681A1 (zh)
CN (1) CN108732727B (zh)
WO (1) WO2020024631A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210364745A1 (en) * 2020-05-22 2021-11-25 Genius Electronic Optical (Xiamen) Co., Ltd. Optical imaging lens
US20220107481A1 (en) * 2020-02-24 2022-04-07 Aac Optics (Changzhou) Co., Ltd. Camera optical lens

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108732727B (zh) * 2018-08-03 2024-01-23 浙江舜宇光学有限公司 光学成像***
TWI665488B (zh) 2018-12-26 2019-07-11 大立光電股份有限公司 攝影光學系統、取像裝置及電子裝置
CN114047607B (zh) * 2019-03-26 2023-11-21 浙江舜宇光学有限公司 光学成像镜头
CN111025563B (zh) * 2019-12-26 2021-10-19 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN110955028B (zh) * 2019-12-26 2022-04-26 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN115315653B (zh) * 2021-03-05 2023-10-03 北京小米移动软件有限公司 摄像光学***、以及光学摄像装置
CN116466478B (zh) * 2023-06-20 2023-10-03 江西联益光学有限公司 光学镜头

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105278074A (zh) * 2014-07-22 2016-01-27 三星电机株式会社 光学***
CN107015347A (zh) * 2017-06-08 2017-08-04 浙江舜宇光学有限公司 摄像镜头
CN206946079U (zh) * 2017-06-08 2018-01-30 浙江舜宇光学有限公司 摄像镜头
CN108254887A (zh) * 2017-12-18 2018-07-06 瑞声科技(新加坡)有限公司 摄像光学镜头
CN108732727A (zh) * 2018-08-03 2018-11-02 浙江舜宇光学有限公司 光学成像***

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014115456A (ja) * 2012-12-10 2014-06-26 Fujifilm Corp 撮像レンズおよび撮像レンズを備えた撮像装置
KR101627133B1 (ko) * 2014-03-28 2016-06-03 삼성전기주식회사 렌즈 모듈
JP6376561B2 (ja) * 2014-10-29 2018-08-22 カンタツ株式会社 撮像レンズ
CN106597642B (zh) * 2017-01-22 2022-04-22 东莞市宇瞳光学科技股份有限公司 小型超高清定焦镜头
CN108051898B (zh) * 2017-12-12 2023-06-16 浙江舜宇光学有限公司 光学成像镜头

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105278074A (zh) * 2014-07-22 2016-01-27 三星电机株式会社 光学***
CN107015347A (zh) * 2017-06-08 2017-08-04 浙江舜宇光学有限公司 摄像镜头
CN206946079U (zh) * 2017-06-08 2018-01-30 浙江舜宇光学有限公司 摄像镜头
CN108254887A (zh) * 2017-12-18 2018-07-06 瑞声科技(新加坡)有限公司 摄像光学镜头
CN108732727A (zh) * 2018-08-03 2018-11-02 浙江舜宇光学有限公司 光学成像***

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220107481A1 (en) * 2020-02-24 2022-04-07 Aac Optics (Changzhou) Co., Ltd. Camera optical lens
US11782236B2 (en) * 2020-02-24 2023-10-10 Aac Optics (Changzhou) Co., Ltd. Camera optical lens
US20210364745A1 (en) * 2020-05-22 2021-11-25 Genius Electronic Optical (Xiamen) Co., Ltd. Optical imaging lens
US11933946B2 (en) * 2020-05-22 2024-03-19 Genius Electronic Optical (Xiamen) Co., Ltd. Optical imaging lens

Also Published As

Publication number Publication date
US20220026681A1 (en) 2022-01-27
CN108732727A (zh) 2018-11-02
CN108732727B (zh) 2024-01-23

Similar Documents

Publication Publication Date Title
WO2020024631A1 (zh) 光学成像***
WO2021073275A1 (zh) 光学成像镜头
WO2020024633A1 (zh) 光学成像镜头
WO2019101052A1 (zh) 光学成像镜头
WO2019105139A1 (zh) 光学成像镜头
WO2019192180A1 (zh) 光学成像镜头
WO2020019794A1 (zh) 光学成像镜头
WO2020001066A1 (zh) 摄像镜头
WO2019134602A1 (zh) 光学成像镜头
WO2020029620A1 (zh) 光学成像镜片组
WO2020010879A1 (zh) 光学成像***
WO2019091170A1 (zh) 摄像透镜组
WO2020010878A1 (zh) 光学成像***
WO2020007069A1 (zh) 光学成像镜片组
WO2019196572A1 (zh) 光学成像***
WO2019114366A1 (zh) 光学成像镜头
WO2020119171A1 (zh) 光学成像镜头
WO2020001119A1 (zh) 摄像镜头
WO2020007081A1 (zh) 光学成像镜头
WO2018192126A1 (zh) 摄像镜头
WO2019095865A1 (zh) 光学成像镜头
WO2019056758A1 (zh) 摄像透镜组
WO2019056776A1 (zh) 光学成像镜头
WO2020134140A1 (zh) 光学成像***
WO2005119326A1 (ja) 撮像レンズ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19843142

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19843142

Country of ref document: EP

Kind code of ref document: A1