WO2020024143A1 - 用于无人机的飞行高度调整、飞行控制的方法和装置 - Google Patents

用于无人机的飞行高度调整、飞行控制的方法和装置 Download PDF

Info

Publication number
WO2020024143A1
WO2020024143A1 PCT/CN2018/098011 CN2018098011W WO2020024143A1 WO 2020024143 A1 WO2020024143 A1 WO 2020024143A1 CN 2018098011 W CN2018098011 W CN 2018098011W WO 2020024143 A1 WO2020024143 A1 WO 2020024143A1
Authority
WO
WIPO (PCT)
Prior art keywords
flight
height
planned
position point
drone
Prior art date
Application number
PCT/CN2018/098011
Other languages
English (en)
French (fr)
Inventor
陈有生
Original Assignee
广州极飞科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州极飞科技有限公司 filed Critical 广州极飞科技有限公司
Priority to CN201880034869.4A priority Critical patent/CN110709791B/zh
Priority to PCT/CN2018/098011 priority patent/WO2020024143A1/zh
Priority to EP18928560.4A priority patent/EP3832425A4/en
Priority to US17/261,981 priority patent/US20210264796A1/en
Priority to AU2018435033A priority patent/AU2018435033A1/en
Publication of WO2020024143A1 publication Critical patent/WO2020024143A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/003Flight plan management
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/04Control of altitude or depth
    • G05D1/06Rate of change of altitude or depth
    • G05D1/0607Rate of change of altitude or depth specially adapted for aircraft
    • G05D1/0646Rate of change of altitude or depth specially adapted for aircraft to follow the profile of undulating ground
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/04Control of altitude or depth
    • G05D1/042Control of altitude or depth specially adapted for aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/106Change initiated in response to external conditions, e.g. avoidance of elevated terrain or of no-fly zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls

Definitions

  • the present application relates to the technical field of drones, and in particular, to a method and a device for adjusting flight height and flight control of a drone.
  • drones have been widely used in a variety of industries, including plant protection operations.
  • fixed-altitude flight and ground-flight flight are usually used.
  • fixed-height flight refers to flying along a set altitude
  • ground-flight flying refers to setting. Flying from the ground.
  • the related technology has a problem that fixed-altitude flight is generally applicable to environments with low terrain fluctuations, such as rice fields or plains, and simulated flight can be applied to environments with slightly uneven terrain, such as hills or terraces.
  • Some plants or trees with higher economic value generally have higher plant heights, such as seven to eight meters, and even some crops can reach tens of meters in height. Therefore, neither of the above two flight modes can adapt to plant height fluctuations. Large plant work area.
  • the first purpose of this application is to propose a method for adjusting the flying height of a drone, so as to realize the planning of the flight path of the drone.
  • a second object of the present application is to propose a flying height adjustment device for a drone.
  • a third object of the present application is to propose a flight control method for a drone.
  • a fourth object of the present application is to propose a flight control device for a drone.
  • a fifth object of the present application is to propose a computer device.
  • a sixth object of the present application is to propose a non-transitory computer-readable storage medium.
  • a seventh object of the present application is to propose a computer program product.
  • an embodiment of the first aspect of the present application proposes a flying height adjustment method for a drone, including the following steps: obtaining a planned flying height of the drone at each flying position point; The planned flight heights of the flight position points are adjusted until the difference between the adjusted flight heights between any two adjacent flight position points is less than or equal to a preset value.
  • the flying height adjustment method for a drone firstly, the planned flying height of the drone at each flying position point is obtained, and then the planned flying height of the flying position point is adjusted until any two phases
  • the difference in the adjusted flying height between the neighboring flying position points is less than or equal to a preset value. Therefore, the method for adjusting the flying height of the embodiment of the present application can determine the planned flying height of the drone at the flying position point, and then adjust the planned flying height by adjusting the planned flying height of any two connected flying position points. The difference is less than or equal to the preset value.
  • the adjusting the planned flight height of the flight position point includes: acquiring the flight position point, and acquiring adjacent flight position points within a preset range of the flight position point; and acquiring the flight position An altitude difference between an object above the position point and an object above the adjacent flying position point; when the altitude difference is greater than the limit altitude of the drone to climb or descend, adjust the drone The planned flight altitude at the flight location point or the adjacent flight location point.
  • obtaining the planned flying height of the drone at each flight location point includes: obtaining a two-dimensional route of the drone within a target flight area and a flight location point in the two-dimensional route; obtaining An altitude of an object at a flight position point in the two-dimensional route; a planned three-dimensional route is generated according to the two-dimensional route and the altitude of an object at the flight position point in the two-dimensional route, wherein the planned three-dimensional route
  • the planned flight height of each flight position point in the route is the altitude of the object above the flight position point.
  • adjusting the planned flying height of the drone at the flying position point or the adjacent flying position point includes: obtaining the planned flying height of the drone at the flying position point And the planned flight height on the adjacent flight position point; identifying a flight position point with a low planned flight height among the flight position point and the adjacent flight position point, and a flight position with a low planned flight height The planned flight height of the point is adjusted.
  • the adjusting the planned flight height of the flight position point with a low planned flight height includes determining whether a difference in the planned flight height between the flight position point and the adjacent flight position point is greater than the The preset value; if yes, subtract the preset value from the planned flight height of the location where the planned flight height is high to generate an adjusted altitude.
  • the adjacent flight position points within the preset range of the flight position point include: a first adjacent position point preceding or following the flight position point; and the planned flight to the flight position point
  • the height adjustment includes: acquiring the flight position point, and acquiring a first adjacent position point before or after the flight position point; and acquiring an object above the flight position point that is adjacent to the first A first altitude difference between objects above the flight location point; when the first altitude difference is greater than a limit altitude for the drone to climb or descend, the flight location point or the first phase
  • the planned flight height of the flight position point where the planned flight height is low in the adjacent flight position point is increased.
  • the adjacent flight position points within the preset range of the flight position point include: a second adjacent position point preceding and following the flight position point; and the planned flight to the flight position point
  • the height adjustment includes: acquiring the flight position point, and acquiring a second adjacent flight position point before and after the flight position point; acquiring an object above the flight position point and two of the second A second altitude difference between objects above adjacent flight position points; when both of the second altitude differences are greater than the limit altitude for the drone to climb or descend, the flight position point or The planned flight height of the flight position point where the planned flight height is low among the second adjacent flight position points is increased.
  • the adjacent flight position points with the flight position points within a preset range include: the continuous flight position points; and the adjustment of the planned flight height of the flight position points includes continuously acquiring the flight position points Flying position points, and obtaining the planned flight heights of the continuous flight position points; determining the overall law of the planned flight heights of the continuous flight position points; identifying flights in the continuous flight position points that do not conform to the law Position point; adjusting the planned flight height of the flight position point that does not conform to the rule to a higher level.
  • the adjacent flight position points with the flight position points within a preset range include: the continuous flight position points; and the adjustment of the planned flight height of the flight position points includes continuously acquiring the flight position points Flying position points, and acquiring planned flight heights of the continuous flying position points; acquiring a third altitude difference between an object above any of the flying position points and an object above an adjacent flying position point; The flight position points whose altitude difference is less than the preset third altitude difference are grouped; the two adjacent flight position point groups are obtained, and the planned flight height of the last flight position point in the previous flight position point group and the next flight position point are determined The fourth altitude difference between the flight position altitudes of the first flight location points in the group; when the fourth altitude difference is greater than the limit altitude for the drone to climb or descend, adjust the drone at The planned flight altitude of the previous flight position point group or the next flight position point group.
  • obtaining the planned flying height of the drone at each flight location point includes: obtaining a two-dimensional route of the drone within a target flight area and a flight location point in the two-dimensional route; obtaining The altitude of the object at the flight position point in the two-dimensional route; and the planned three-dimensional route is generated according to the two-dimensional route, the altitude of the object at the flight position point in the two-dimensional route, and a preset safety distance, where The planned flight height of each flight position point in the planned three-dimensional route is the sum of the altitude of the object above the flight position point and the preset safety distance.
  • the adjusting the planned flight height of the flight position point includes: acquiring the flight position point, and acquiring adjacent flight position points within a preset range of the flight position point; and acquiring the flight position The altitude difference between the planned flight altitude of the location point and the planned flight altitude of the adjacent flight location point; when the altitude difference is greater than the limit altitude for the drone to climb or descend, The planned flight height of the position point and the flight position point with a higher planned flight height among the adjacent flight position points is adjusted lower, wherein the lowered distance is less than the preset safety distance.
  • the flying height adjustment method for a drone further includes: when the planned flight height of a flight position point with a high planned flight height among the flight position point and the adjacent flight position point is adjusted to be lowered to When the altitude of an object thereon is determined, the altitude difference between the current planned flight altitude of the flight location point and the adjacent flight location point is determined. When the altitude difference between the planned flight altitudes is still greater than the limit altitude of the drone's climb or descent, the Plan flight height.
  • the acquiring the altitude of an object on a flight position point in the two-dimensional route includes: acquiring each flight position point on the two-dimensional route and a search area corresponding to each flight position point; identifying the each The maximum altitude of the object in the search area corresponding to the flight location point, and the maximum altitude is taken as the altitude of each of the flight location points.
  • adjusting the planned flight height of the flight position point until the difference between the adjusted flight heights between any two adjacent flight position points is less than or equal to a preset value includes determining any Whether the difference in adjusted flight height between two adjacent flight position points is less than or equal to a preset value; the difference in adjusted flight height between any two adjacent flight position points is greater than a preset value When the value is set, the adjustment returns to the planned flight height of the flight position point.
  • an embodiment of the second aspect of the present application proposes a flying height adjustment device for a drone, including: an acquisition module for obtaining a planned flying height of the drone at each flying position point An adjustment module configured to adjust a planned flight height of the flight position point until a difference between the adjusted flight heights between any two adjacent flight position points is less than or equal to a preset value.
  • the planned flying height of the unmanned aerial vehicle at each flying position point is obtained through an acquisition module, and then the planned flying height of the flying position point is adjusted by the adjusting module. , Until the difference in the adjusted flying height between any two adjacent flying position points is less than or equal to a preset value. Therefore, the method for adjusting the flying height of the embodiment of the present application can determine the planned flying height of the drone at the flying position point, and then adjust the planned flying height by adjusting the planned flying height of any two connected flying position points. The difference is less than or equal to the preset value.
  • a method for flight control of a drone includes: obtaining a planned flight height of each flying position point of the drone; The planned flight heights of the points are adjusted until the difference between the adjusted flight heights between any two adjacent flight position points is less than or equal to a preset value; an adjusted 3D route is generated based on the adjusted flight heights, and the control unit is controlled.
  • the UAV performs flight according to the adjusted three-dimensional route.
  • the planned flying height of the unmanned aerial vehicle at each flying position point is first obtained, and then the planned flying height of the flying position point is adjusted until any two adjacent
  • the difference between the adjusted flight heights of the flight position points is less than or equal to a preset value, and then an adjusted 3D airmail is generated based on the adjusted flight height, and the drone is controlled to fly according to the adjusted 3D course. Therefore, the control method in the embodiment of the present application can control the drone to fly according to the adjusted three-dimensional air route.
  • controlling the drone to fly according to the adjusted three-dimensional route includes controlling the drone to fly at a variable altitude according to the adjusted three-dimensional route.
  • controlling the drone to fly at a variable altitude according to the adjusted three-dimensional route includes: controlling the drone to fly along a flight position point on the adjusted three-dimensional route; During the human-machine flight, the distance between the flying height of the drone at the next flying position point and the object at the next flying position point is detected; if the distance is less than a preset minimum flight separation distance, The flight height of the next flight position point is adjusted so that the distance is greater than the preset minimum flight separation distance.
  • controlling the drone to fly at a variable altitude according to the adjusted three-dimensional route includes: controlling the drone to fly along a flight position point on the adjusted three-dimensional route; During the human-machine flight, the flying heights of the plurality of flying position points where the drone is about to fly in the adjusted three-dimensional route are detected; and based on the flying heights of the multiple flying position points, the next flying position point of the drone The flight height is adjusted.
  • an embodiment of the fourth aspect of the present application proposes a flight control device for an unmanned aerial vehicle, an acquisition module for acquiring a planned flight height of each flight position point of the unmanned aerial vehicle; an adjustment module For adjusting the planned flight height of the flight position point until the difference in the adjusted flight height between any two adjacent flight position points is less than or equal to a preset value; a control module is configured to The adjusted flying height generates an adjusted three-dimensional course, and controls the drone to fly according to the adjusted three-dimensional course.
  • a computer device includes a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein the processor executes all When the procedure is described, the aforementioned flying height adjustment method for a drone or the aforementioned flying control method for a drone is implemented.
  • a non-transitory computer-readable storage medium provided by an embodiment of the sixth aspect of the present application stores a computer program thereon, and when the program is executed by a processor, the foregoing flight altitude for a drone is realized. Adjustment methods or flight control methods for drones as previously described.
  • a computer program product is implemented when the instructions in the computer program product are executed by a processor to implement the foregoing flying height adjustment method for a drone or as described above. Flight control method for drones.
  • FIG. 1 is a flowchart of a flying height adjustment method for a drone according to an embodiment of the present application
  • FIG. 2 is a flowchart of a flying height adjustment method for a drone according to an embodiment of the present application
  • FIG. 3 is a flowchart of a flying height adjustment method for a drone according to another embodiment of the present application.
  • FIG. 4 is a flowchart of a flying height adjustment method for a drone according to another embodiment of the present application.
  • FIG. 5 is a flowchart of a flying height adjustment method for a drone according to still another embodiment of the present application.
  • FIG. 6 is a flowchart of a flying height adjustment method for a drone according to still another embodiment of the present application.
  • FIG. 7 is a flowchart of a flying height adjustment method for a drone according to still another embodiment of the present application.
  • FIG. 8 is a flowchart of a flying height adjustment method for a drone according to still another embodiment of the present application.
  • FIG. 9 is a flowchart of a flying height adjustment method for a drone according to still another embodiment of the present application.
  • FIG. 10 is a flowchart of a flying height adjustment method for a drone according to still another embodiment of the present application.
  • FIG. 11 is a flowchart of a flying height adjustment method for a drone according to still another embodiment of the present application.
  • FIG. 12 is a flowchart of a flying height adjustment method for a drone according to still another embodiment of the present application.
  • FIG. 13 is a flowchart of a flying height adjustment method for a drone according to still another embodiment of the present application.
  • FIG. 14 is a flowchart of a flying height adjustment method for a drone according to still another embodiment of the present application.
  • 15 is a flowchart of a flight control method for a drone according to an embodiment of the present application.
  • 16 is a flowchart of a flight control method for a drone according to an embodiment of the present application.
  • FIG. 17 is a flowchart of a flight control method for a drone according to another embodiment of the present application.
  • FIG. 18 is a schematic block diagram of a flying height adjusting device for a drone according to an embodiment of the present application.
  • FIG. 19 is a schematic block diagram of a flight control device for a drone according to an embodiment of the present application.
  • the ground-flight flight in the related technology is a technical solution for flying along the ground surface altitude.
  • a drone can be controlled to fly at the ground surface altitude on the map, but the ground-flight flight is applied to plant protection operations.
  • the imitation flight mostly uses resources such as Google Maps or Baidu Maps, and its data update speed is low, and it cannot meet the needs of plant protection operations.
  • the imitation flight also includes another technical solution, that is, a detection device is provided on the drone to detect the vertical distance between the drone and the work area, and then control the drone and the work area to maintain a preset Flight distance, for example, you can set the preset distance between the drone and the work area to 2 meters, then control the drone to climb to a distance when the vertical distance between the drone and the work area is less than 2 meters When the distance reaches 2 meters, or when the vertical distance between the drone and the working area is greater than 2 meters, the drone is controlled to descend to a distance of 2 meters.
  • a detection device is provided on the drone to detect the vertical distance between the drone and the work area, and then control the drone and the work area to maintain a preset Flight distance, for example, you can set the preset distance between the drone and the work area to 2 meters, then control the drone to climb to a distance when the vertical distance between the drone and the work area is less than 2 meters When the distance reaches 2 meters, or when the vertical distance between the drone and the working area is greater than 2 meters,
  • the present application proposes a method and device for flying height adjustment and flight control of a drone.
  • FIG. 1 is a flowchart of a flying height adjustment method for a drone according to an embodiment of the present application. As shown in FIG. 1, the flying height adjustment method for a drone according to an embodiment of the present application includes the following steps:
  • the planned altitude of each flying position point of the drone can be determined by planning a three-dimensional route, and the planned flying height of each flying position point can also be directly obtained through point cloud data and the like. .
  • the planned flight height may be an initial flight height, such as an altitude of an object apex at a flight location point, or may be a set flight altitude, such as a height that increases a safe distance from the altitude of the aforementioned object apex.
  • the planned flight height of the flight position point is adjusted until the adjusted flight height between any two adjacent flight position points.
  • the difference is less than or equal to a preset threshold.
  • step S2 may specifically include steps S101 to S103.
  • S101 Acquire a flight position point, and acquire an adjacent flight position point within a preset range of the flight position point.
  • the adjacent flight position points within the preset range may be the previous or next flight position points of the current flight position point, or may be the previous and next flight position points of the current flight position point. Multiple consecutive flight position points.
  • S102 Obtain an altitude difference between a planned flight altitude of a flight location point and a planned flight altitude of an adjacent flight location point.
  • adjacent flight position points can include points before the current flight position point and points after the current flight position point. All flight position points can use three information: longitude, latitude, and altitude information.
  • the altitude difference between the planned flight heights mainly refers to the difference between the altitude information of adjacent flight position points.
  • the planned flight height of the previous flight position point is 3 meters
  • the planned flight height of the next flight position point It is 8 meters
  • the altitude difference between the planned flight heights of the front and rear flight positions is 5 meters.
  • the adjacent flight position points within a preset range of the flight position points are acquired, and then the altitude difference between the planned flight height of the flight position point and the planned flight height of the adjacent flight position point is obtained.
  • the planned flight height on the flight position point or the adjacent flight position point so that the adjusted flight height between the flight position point and the adjacent flight position point can meet the limit of climbing or descent of the drone, thereby ensuring unmanned During flight, it can reach any flight position according to the adjusted flight height.
  • the flying height adjustment method in the embodiment of the present application can adjust the planned flying height of the drone at the flight position point, thereby ensuring that the drone can effectively fly between any two flight position points and effectively prevent A drone caused a flight accident because the flight height between two adjacent flight positions exceeded its climb or descent limits.
  • obtaining the planned flight altitude of the drone at each flight location point includes:
  • S111 Obtain a two-dimensional route of the drone within the target flight area and the flight position points in the two-dimensional route.
  • the target flight area includes the operation area, and it can also include the buffer area reserved for the operation boundary.
  • the target flight area can be planned in advance, for example, the area can be surveyed and mapped by surveying and mapping; it can also be identified in real time. For example, a field target area can be determined by image recognition.
  • the two-dimensional route can be identified by latitude and longitude
  • the flight position can be characterized by latitude and longitude
  • the altitude value can be obtained through a three-dimensional map such as a DSM map, or it can be obtained through a sensor, such as ultrasonic, radar, or visual sensors. .
  • S113 Generate a planned three-dimensional route according to the altitude of the object on the two-dimensional route and the flight position point in the two-dimensional route.
  • the planned flight height of each flight position point in the planned three-dimensional route is the altitude of the object above the flight position point.
  • the above-mentioned step S112 may specifically include S121-S124.
  • S121 Control the drone to fly within the target flight area.
  • the flying height of the control drone in the flight area should be a higher altitude, for example, higher than the altitude of any object in the target flight area.
  • the target flight height should be higher than the tree flight height, and it also includes a safe distance to ensure that the UAV does not touch the highest target.
  • S122 Obtain the flying height of the drone at the current moment.
  • the way to obtain the altitude may be obtained by means of an ultrasonic sensor or a vision sensor, or may be a method pre-stored in a storage device, and the flight height data is obtained by reading the storage device.
  • the drone should be provided with detection equipment to detect the first distance between the drone and the object at the current flight position when the drone is flying in the flight area.
  • the detection device may be a laser radar, a vision acquisition device, or a measurement device based on radar.
  • the first distance between the drone and the object at the current flight position point may be the distance between the drone and the top of the plant in the plant protection operation, or the distance between the drone and the top of other objects, such as a telephone pole.
  • S124 Obtain the altitude of the object at the current flying position according to the flying height and the first distance, and use the altitude of the object at the current position as the planned flying height of the flying position.
  • the flying height H2 of the drone at the current moment, and then the laser sensor provided on the drone is used to detect the first distance H1 between the position of the work object and the drone, and the current height is obtained according to the flying height H2 and the first distance H1.
  • the altitude h H2-H1 of the object at the location, and the altitude of the object at the current location is taken as the planned flight altitude of the flight location.
  • the point cloud diagram or the list can be used to record the recording method that can indicate the correspondence between the flight location point and its altitude.
  • a two-dimensional route can also be planned according to the altitude of each flight location point in the flight area, as shown in FIG. 5 , Including the following steps:
  • S131 Group all the position points in the target flight area, and identify the position points in each group as a position block.
  • the position points in the target flying area are clustered to form a position block.
  • the location information of the location point may include the latitude and longitude of the location point, that is, clustering the locations within the operation area according to the latitude and longitude.
  • step S131 may specifically include the following steps S141-S144.
  • S141 Select a position point from all the position points as the starting position point. For example, select the take-off point of the drone as the starting point. For example, the point closest to the drone may be selected as the starting point, and it is learned that the edge point of a series of flight position points is selected as the starting point.
  • S142 Starting from the starting position point, the coverage of the current position point is obtained one by one, and other position points within the coverage area are identified.
  • the coverage range may be the size of a preset location block, that is, the coverage range of the location block size is selected with the current location point as the center, and other location points within the coverage range are identified.
  • S143 Obtain the number of position points in the coverage area. If the number exceeds the preset number, the position points in the coverage area are regarded as a group to form a position block.
  • clustering can be performed according to the density of the position points.
  • clustering is not performed, and when the number of position points within the coverage of the position block reaches the expected number, clustering is performed to form the position block.
  • step S131 may further include the following steps S151-S152.
  • S152 Mesh the point cloud image to form a position block of the flight area. Each grid corresponds to a position block.
  • the point cloud image is divided according to the mesh size set in advance, where the preset mesh size can be 1 meter ⁇ 1 meter, and each grid formed corresponds to a position block.
  • S132 According to all position blocks in the flight area, plan the horizontal course of the drone in the flight area.
  • the horizontal route of the drone in the flight area can be planned according to the location block, which can be planned according to the size of the location block or the type of plant, such as a serpentine route and a zigzag route.
  • S133 According to the position points on the planned horizontal route, select the flight position points that the UAV needs to fly during actual flight.
  • the flying height adjustment method in the embodiment of the present application can generate a planned three-dimensional route of the drone in the flying area according to the altitude of the object in the flying area of the drone.
  • the altitude effectively improves the accuracy of planning 3D routes, provides data guarantee for generating adjusted 3D routes, and improves the safety of drone flight.
  • adjusting the planned flight altitude of the drone at the flight location point or an adjacent flight location point includes :
  • S162 Identify a flight position point with a low planned flight height among the flight position points and adjacent flight position points, and adjust the planned flight height of a flight position point with a low planned flight height.
  • the planned flight altitude is the altitude of the object at the flight location point
  • the altitude of the flight location point with the higher planned flight height is lowered, it may cause drone
  • a collision that is, when the altitude difference is greater than the limit of the climb or descent of the drone, it is necessary to adjust the flight height of the flight location point with a low planned flight height.
  • step S162 may specifically include steps S171-S172.
  • S171 Determine whether the difference in planned flight height between the flight position point and an adjacent flight position point is greater than a preset value.
  • the altitude of the previous flight position point is prone to appear
  • the difference between the altitude and the altitude of the next position is large.
  • the flying speed of the drone has a limit, and it is easy to appear that the large flight cannot be achieved during the flight time from the previous flight position to the next flight position.
  • the phenomenon of altitude climbing or descent requires adjustment of the flying height of the flying position point in the flying area.
  • the flying height of the flying position points with a low flying height needs to be adjusted.
  • each flight position point obtain its adjacent flight position points, and then obtain the altitude difference between the flight position point and its adjacent flight position points, if the absolute value of the difference is greater than the drone's climb Or lowering the extreme height, then adjust the flight height of the flight position point with a low flight position and the adjacent flight position point, and adjust each flight position point cyclically until each flight position point and its adjacent flight position
  • the altitude difference between points stops within a preset range.
  • the adjacent flying position points whose flight position points are within a preset range include: a first adjacent position point immediately before or after the flying position point.
  • adjusting the planned flight height of the flight location point includes:
  • S181 Acquire a flight position point, and acquire a first adjacent position point before or after the flight position point.
  • S182 Obtain a first altitude difference between an object above the flight position point and an object above the first adjacent flight position point.
  • a position point is selected as the starting position point a1, and the planned flight height A1 of the starting position point and the planned flight height A2 of the subsequent position point a2 of the starting position point are obtained to determine the starting position point a1.
  • a preset threshold T if the planned flight height A1 of the starting position point a1 and the starting position point The absolute value of the difference between the planned flight height A2 of the latter position point a2 is greater than the preset threshold T, that is, A1-A2>
  • A1- A2 ⁇ -T it means that the difference between the planned flight height A1 of the starting position point a1 and the planned flight height A2 of the starting position point a2 is large, and the drone flies from the starting position point a1 When reaching the next position point a2 of the starting position point, it is not possible to rise from flight altitude A1 to flight altitude A2.
  • A1 A2-T, that is, increase the lower altitude, so that the drone can start from When flying from the starting position point a1 to the following position point a2, it is only necessary to rise from the flying height A1 to the flying height A2.
  • -T ⁇ A1-A2 ⁇ T it indicates the planned flight of the starting position point a1.
  • the planned flight altitude of the planned three-dimensional route is 25, 10, 18, and 40 in sequence.
  • the first drone flight height adjustment is performed in the order of the first position to the fourth position to obtain the first adjusted
  • the flight height is 25, 20, 35, and 40 in that order, that is, because the difference between the flight height A1 of the first position point a1 and the flight height A2 of the second position point a2 is greater than a preset threshold T, the The flying height A2 is increased to the difference between the flying height A1 of the first position point a1 and the preset threshold T.
  • the difference between the flying height A3 of the third position point a3 and the flying height A4 of the fourth position point a4 is larger than the preset value. If the threshold T is set, the flying height A3 of the third position point a3 is adjusted to the difference between the flying height A4 of the fourth position point a4 and the preset threshold T.
  • the second adjustment of the flying height is performed.
  • the adjusted flying height of the drone is 25, 30, 35, and 40 in order. So far, the differences between the flying heights of the four positions are not greater than the preset threshold T. Then, set the flying height at this time. It is determined as the adjusted flying height of each flying position point in the three-dimensional route after the drone course adjustment.
  • the flight height of the flight position point when adjusting the flight height of the flight position point, generally lower elevations are selected to increase, but higher flight heights cannot be lowered because the flight position points with lower flight heights may be ground Or the altitude of the lower plants, and the higher flight position must be the altitude of the higher plants. If the flight height of the higher drone is adjusted to a lower flight altitude, it may affect Human-machine flight safety, easy to make the drone collide with higher plants, and unable to carry out plant protection operations on higher plants. Of course, when the flying height is higher from the top of the plant, the point of higher flying height can be lowered. The preset distance, but it is guaranteed not to touch the top of the plant, so the distance between the flight height and the height of the top of the plant after adjustment cannot be less than the safe distance, so it cannot be adjusted at will.
  • the preset threshold T can also be set according to the horizontal flying speed and the maximum vertical speed of the drone. Specifically, the preset threshold T is not greater than the distance D between two adjacent target position points and The product of the quotient of the horizontal velocity V1 and the maximum vertical velocity V2, that is, T ⁇ D / V1 ⁇ V2.
  • the adjacent flight position points with the flight position points within a preset range include: the second adjacent position points before and after the flight position point.
  • adjusting the planned flight height of the flight position point includes: acquiring a flight position point, and acquiring a second adjacent flight position point preceding and following the flight position point; acquiring an object above the flight position point and two The second altitude difference between objects above the second adjacent flight location point; when the two second altitude differences are greater than the limit of the climb or descent of the drone, the flight location point or the second adjacent flight location Among the flight position points, the planned flight height of the flight position point with a low planned flight height is increased.
  • the center can be set.
  • the flying height of the flying position is raised.
  • adjacent flight position points whose flight position points are within a preset range include: continuous flight position points.
  • adjusting the planned flight height of the flight position includes: continuously acquiring the flight position and obtaining the planned flight height of the continuous flight position; determining the overall rule of the planned flight height of the continuous flight position; and identifying the continuous flight position Among the points, the planned flight heights at which the planned flight heights do not conform to the rules; the planned flight heights at which the planned flight heights do not conform to the rules are increased.
  • the planned flight height of the continuous flight position point when continuously obtaining the planned flight height of the flight position point, if the planned flight height of the continuous flight position point has an overall rule, for example, when the geographical environment such as uphill, downhill, etc., If the planned flight height of any one or more of the flight position points is lower than the planned flight height that the flight position point should have in the overall rule, the planned flight height of the flight position point is adjusted.
  • the specific adjustment process can refer to The above embodiments are not described again here.
  • adjacent flight position points whose flight position points are within a preset range include: continuous flight position points.
  • adjusting the planned flight height of the flight position point includes: continuously acquiring the flight position point, and acquiring the planned flight height of the continuous flight position point; acquiring objects above any arbitrary flight position point and objects above its adjacent flight position point The third altitude difference between the two; grouping the flight position points whose third altitude difference is less than the preset third altitude difference; obtaining two adjacent flight position point groups to determine the last flight in the previous flight position point group The fourth altitude difference between the planned flight altitude of the location point and the flight location altitude of the first flight location point in the next flight location point group; when the fourth altitude difference is greater than the limit altitude for the drone to climb or descend , Adjust the planned flight altitude of the drone in the previous flight position point group or the next flight position point group.
  • the planned flight height of the continuous flight position point when continuously obtaining the planned flight height of the flight position point, if the planned flight height of the continuous flight position point has an overall rule, for example, when the geographical environment such as uphill, downhill, etc., but the overall uphill (or downhill) ) In the geographical environment, there may be a difference between a gentle slope and a steep slope. Therefore, when it is recognized that the planned flight height of the two adjacent flight positions at the junction of the gentle slope and the steep slope cannot meet the limit altitude for the drone to climb or descend, the entire The planned flight height of the flight position point in the gentle slope area is increased.
  • the specific adjustment process refer to the foregoing embodiment, and details are not described herein again.
  • obtaining the planned flight height of the drone at each flight position point includes:
  • S203 Generate a planned three-dimensional route according to the altitude of the object on the two-dimensional route, the flight position point in the two-dimensional route, and a preset safety distance.
  • the planned flight height of each flight position point in the planned three-dimensional route is the sum of the altitude of the object above the flight position point and the preset safety distance.
  • the embodiment of the present application is basically the same as the aforementioned process of planning the flight altitude to be the altitude of the object at the flight location point, the only difference is that in the embodiment of the application, the planned flight height of each flight location point in the three-dimensional route is planned Is the sum of the altitude of the object above the flight location point and the preset safety distance.
  • the planned flight height of the flight position point is adjusted, as shown in FIG. 12, including:
  • S211 Acquire a flight position point, and acquire an adjacent flight position point within a preset range of the flight position point.
  • S212 Obtain an altitude difference between a planned flight height of a flight location point and a planned flight height of an adjacent flight location point.
  • the planned flight altitude of the flight location point is the sum of the altitude of the object above the flight location point and the preset safety distance
  • the difference in altitude between two adjacent planned flight altitudes exceeds the drone climb or descend
  • the planned flight height of the flight position point with a higher planned flight height can also be lowered, but the planned flight height of the flight position point with a higher planned flight height can only be lowered to the flight position point
  • the altitude of the object above that is, reducing the preset safety distance in the planned flight height
  • the preset distance can be lowered for the point with a higher flight height, but the top of the plant cannot be touched, so the adjusted flight height is guaranteed
  • the distance from the top of the plant cannot be less than the safety distance, so it cannot be adjusted at will.
  • the current position of the flight position point and the adjacent flight position point is determined.
  • the altitude difference between the planned flight altitudes If the altitude difference between the current planned flight altitude of the flight location point and the adjacent flight location point is still greater than the limit altitude of the drone's climb or descent, The current planned flight height of a flight position point with a low currently planned flight height among adjacent position points is increased.
  • the method for adjusting the flying height of the drone according to the embodiment of the present application further includes the following steps:
  • S301 Acquire each flight position point on a two-dimensional route and a search area corresponding to each flight position point.
  • the search area may be an area that is larger than the size of the drone's fuselage and expands the safety distance, that is, a region slightly larger than the drone's fuselage at each location on the horizontal route is obtained as the search area.
  • S302 Identify the maximum altitude of the object in the search area corresponding to each flight location, and use the maximum altitude as the altitude of each flight location.
  • obtain the altitude of the search area of each location on the horizontal route and then select a location to compare its altitude with the altitude of its adjacent location, and choose the larger altitude as the new one.
  • the altitude is further compared with the altitude of the next location until the location in the search area is traversed to obtain the location with the highest altitude in the search area, and the maximum altitude is used as the altitude of the flight location.
  • the size of the search area setting should be an effective area for the UAV to perform plant protection operations and an area that does not collide with other drones, that is, by setting the search area to the size of the drone body
  • the area of the safe distance is extended to ensure that the size of the drone's fuselage can effectively complete the plant protection operation.
  • the safe distance is used to create a distance between the drone and other operating drones to prevent flying accidents.
  • the flying height adjustment method for a drone further includes:
  • S311 Determine whether the difference in the adjusted flying height between any two adjacent flying position points is less than or equal to a preset value.
  • the flying height adjustment method for a drone first obtain the planned flying height of the drone at each flying position point, and then adjust the planned flying height of the flying position point, Until the difference in the adjusted flying height between any two adjacent flying position points is less than or equal to a preset value. Therefore, the method for adjusting the flying height of the embodiment of the present application can determine the planned flying height of the drone at the flying position point, and then adjust the planned flying height by adjusting the planned flying height of any two connected flying position points. The difference is less than or equal to the preset value.
  • FIG. 15 is a flowchart of a flight control method for a drone according to an embodiment of the present application. As shown in FIG. 15, the flight control method for a drone according to an embodiment of the present application includes the following steps:
  • S402 Adjust the planned flight height of the flight position point until the difference in the adjusted flight height between any two adjacent flight position points is less than or equal to a preset value.
  • S403 Generate an adjusted 3D route based on the adjusted flight height, and control the drone to fly according to the adjusted 3D route.
  • the drone is controlled to fly according to the adjusted three-dimensional route.
  • controlling the drone to fly according to the adjusted three-dimensional air route as shown in FIG. 16 may include:
  • S411 Control the UAV to fly along the adjusted flight position points on the adjusted three-dimensional air route.
  • S412 During the flight of the drone, detecting a distance between a flying height of the drone at a next flying position point and an object on the next flying position point.
  • the drone maintains a certain flight distance with the adjusted three-dimensional air route, which is convenient for the drone to perform plant protection operations. Moreover, it can also prevent the problem that the altitude of the drone flying affects the safe flight of the drone due to the foregoing detection process or the adjustment of the altitude, and effectively improve the safety of the drone flying.
  • controlling the drone to fly according to the adjusted three-dimensional air route as shown in FIG. 17 may further include:
  • S421 Control the drone to fly along the adjusted flight position on the three-dimensional route.
  • S423 Adjust the flying height of the next flying position of the drone according to the flying heights of multiple flying position points.
  • the flying height adjustment device for a drone for a drone according to the embodiment of the present application, the planned flying height of the drone at each flying position point is first obtained through the acquisition module, and then the position of the flying position point is adjusted by the adjusting module. Adjust the planned flight height until the difference between the adjusted flight heights between any two adjacent flight position points is less than or equal to a preset value. Therefore, the method for adjusting the flying height of the embodiment of the present application can determine the planned flying height of the drone at the flying position point, and then adjust the planned flying height by adjusting the planned flying height of any two connected flying position points. The difference is less than or equal to the preset value.
  • the present application also proposes a flying height adjustment device for a drone.
  • FIG. 18 is a schematic block diagram of a flying height adjustment device for a drone according to an embodiment of the present application.
  • the flying height adjustment device 100 for an unmanned aerial vehicle includes an acquisition module 11 and an adjustment module 12.
  • the acquisition module 10 is used to acquire the planned flight height of the drone at each flight position point; the adjustment module 20 is used to adjust the planned flight height of the flight position point until between any two adjacent flight position points The difference in the adjusted flying height is less than or equal to the preset value.
  • the adjustment module 20 is further configured to: acquire a flight position point, and acquire an adjacent flight position point within a preset range of the flight position point; acquire a planned flight height of the flight position point and a planned flight height of an adjacent flight position point When the altitude difference is greater than the extreme altitude of the drone's climb or descent, adjust the planned flight altitude of the drone at the flight location point or adjacent flight location points.
  • the acquisition module 10 is further configured to: acquire a two-dimensional flight path of the drone within the target flight area and a flight position point in the two-dimensional flight path; acquire an altitude of an object on the flight position point in the two-dimensional flight path; The altitude of the object at the flight location point in the two-dimensional route and the two-dimensional route generates a planned three-dimensional route.
  • the planned flight height of each flight location point in the planned three-dimensional route is the altitude of the object above the flight location point.
  • the adjustment module 20 is further configured to: obtain the planned flight height of the drone at the flight position point and the planned flight height of the adjacent flight position point; identify the flight position point and the planned flight height of the adjacent flight position point Low flight position points, and adjust the planned flight heights for flight position points with low planned flight heights.
  • the adjustment module 20 is further configured to: determine whether a difference in planned flight height between a flight location point and an adjacent flight location point is greater than a preset value; if so, the planned flight height of a location point with a high planned flight height Subtract the preset value to generate the adjusted altitude; use the adjusted altitude to update the flight altitude at the location where the planned flight altitude is low.
  • the adjustment module 20 is further configured to: adjacent flight position points within a preset range of the flight position point include: a first adjacent position point immediately before or after the flight position point; a planned flight height of the flight position point Make adjustments, including: acquiring a flight position point, and acquiring a first adjacent position point before or after the flight position point; acquiring a distance between an object above the flight position point and an object above the first adjacent flight position point.
  • First altitude difference when the first altitude difference is greater than the climb or descent limit altitude of the drone, the planned flight altitude of the flight location point at which the planned flight altitude is low at the flight location point or the first adjacent flight location point Turn up.
  • the adjustment module 20 is further configured to: adjacent flight position points within a preset range of the flight position point include: a second adjacent position point before and after the flight position point; a planned flight height of the flight position point Make adjustments, including: acquiring flight position points, and acquiring second and adjacent adjacent flight position points before and after the flight position point; acquiring objects above the flight position point and objects above two second adjacent flight position points When the difference between the two second altitudes is greater than the limit of the climb or descent of the drone, the flight position with the planned flight altitude at the flight position point or the second adjacent flight position point is lowered The planned flight height of the point is increased.
  • the adjustment module 20 is further configured to: adjacent flight position points within a preset range of flight position points include: continuous flight position points; adjusting a planned flight height of the flight position points includes continuously acquiring flight position points And obtain the planned flight heights of the continuous flight position points; determine the overall rules of the planned flight heights of the continuous flight position points; identify the flight position points where the planned flight heights do not conform to the rules in the continuous flight position points; Increase the planned flight height at the flight location.
  • the adjustment module 20 is further configured to: adjacent flight position points within a preset range of flight position points include: continuous flight position points; adjusting a planned flight height of the flight position points includes continuously acquiring flight position points , And obtain the planned flight altitudes of continuous flight locations; obtain the third altitude difference between an object above any flight location and an object above its adjacent flight location; reduce the third altitude difference to less than a preset third altitude
  • the flight position points of the height difference are grouped; two adjacent flight position point groups are obtained, and the planned flight height of the last flight position point in the previous flight position point group and the flight of the first flight position point in the next flight position point group are determined
  • the fourth altitude difference between the position altitudes when the fourth altitude difference is greater than the drone's climb or descent limit, adjust the drone's plan at the previous flight position point group or the next flight position point group Flying altitude.
  • the adjustment module 20 is further configured to: obtain the planned flying height of the drone at each flight position point, including: obtaining a two-dimensional flight path of the drone in the target flight area and a flight position point in the two-dimensional flight path; Obtain the altitude of the object on the flight location point in the two-dimensional route; generate the planned three-dimensional route based on the altitude of the object on the two-dimensional route, the flight location point in the two-dimensional route, and the preset safety distance.
  • the planned flight height of each flight location is the sum of the altitude of the object above the flight location and the preset safety distance.
  • the adjustment module 20 is further configured to adjust the planned flight height of the flight position point, including: acquiring the flight position point, and acquiring adjacent flight position points within a preset range of the flight position point; and acquiring the flight position point.
  • the planned flight height of the high-altitude flight position point is adjusted downward, wherein the lowered distance is less than a preset safety distance.
  • the adjustment module 20 is further used for: a method for adjusting the flying height of the drone, and further includes: when the flight position point and the adjacent flight position point have a higher planned flight position, the planned flight height of the flight position point is reduced to When the altitude of the object on it, determine the altitude difference between the current planned flight altitude of the flight location point and the adjacent flight location point, if the altitude between the flight location point and the current planned flight altitude of the adjacent flight location point When the difference is still greater than the limit altitude of the drone's climb or descent, the current planned flight height of the flight location point at which the current planned flight height of the flight location point and the adjacent location point is low is adjusted up.
  • the adjustment module 20 is further configured to: obtain an altitude of an object on a flight position point in a two-dimensional flight path, including: acquiring each flight position point on a two-dimensional flight path and a search area corresponding to each flight position point; identifying each flight The maximum altitude of the object in the search area corresponding to the location point, and the maximum altitude is taken as the altitude of each flight location point.
  • the adjustment module 20 is further configured to adjust the planned flight height of the flight position point until the difference in the adjusted flight height between any two adjacent flight position points is less than or equal to a preset value, and specifically includes : Determine whether the difference in adjusted flight height between any two adjacent flight position points is less than or equal to a preset value; the difference in adjusted flight height between any two adjacent flight position points is greater than When the value is preset, it returns to the adjustment of the planned flight height of the flight position point.
  • FIG. 19 is a schematic block diagram of a flight control device for a drone according to an embodiment of the present application.
  • the flight control device 200 for an unmanned aerial vehicle according to an embodiment of the present application includes an acquisition module 21, an adjustment module 22, and a control module 23.
  • the acquisition module 21 is used to acquire the planned flight height of each flying position point of the drone;
  • the adjustment module 22 is used to adjust the planned flight height of the flight position point until between any two adjacent flight position points The difference in the adjusted flying height is less than or equal to a preset value;
  • the control module 23 is configured to generate an adjusted three-dimensional route according to the adjusted flying height, and control the drone to fly according to the adjusted three-dimensional route.
  • control module 30 is further configured to control the drone to fly at a variable altitude according to the adjusted three-dimensional route.
  • control module 30 is further configured to: control the drone to fly along the adjusted flight position point on the three-dimensional route; during the flight of the drone, detect the flight height and the lower position of the drone at the next flight position point; The distance between objects at one flight position point; if the distance is less than the preset minimum flight distance, the flight height of the next flight position point is adjusted so that the distance is greater than the preset minimum flight distance.
  • control module 30 is further configured to: control the drone to fly along the adjusted flight position points on the adjusted three-dimensional route; during the drone flight, detect a plurality of upcoming drones in the adjusted three-dimensional route The flying height of the flying position point; the flying height of the next flying position point of the drone is adjusted according to the flying height of multiple flying position points.
  • the present application also proposes a computer device including a memory, a processor, and a computer program stored on the memory and executable on the processor.
  • a computer program stored on the memory and executable on the processor.
  • the processor executes the program, the foregoing implementation for unmanned persons is implemented. Flight height adjustment methods for aircraft or flight control methods for drones.
  • the present application also proposes a non-transitory computer-readable storage medium having stored thereon a computer program that, when executed by a processor, implements the aforementioned method for adjusting the flying height of an unmanned aerial vehicle or an application thereof. Control method for drones.
  • the present application also proposes a computer program product that implements the foregoing method for adjusting the flying height of an unmanned aerial vehicle or for an unmanned aerial vehicle when instructions in the computer program product are executed by a processor.
  • Aircraft flight control method Aircraft flight control method.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present application, the meaning of "a plurality” is at least two, for example, two, three, etc., unless it is specifically and specifically defined otherwise.
  • Any process or method description in a flowchart or otherwise described herein can be understood as representing a module, fragment, or portion of code that includes one or more executable instructions for implementing steps of a custom logic function or process
  • the scope of the preferred embodiments of this application includes additional implementations in which the functions may be performed out of the order shown or discussed, including performing the functions in a substantially simultaneous manner or in the reverse order according to the functions involved, which should It is understood by those skilled in the art to which the embodiments of the present application pertain.
  • Logic and / or steps represented in a flowchart or otherwise described herein, for example, a sequenced list of executable instructions that may be considered to implement a logical function, may be embodied in any computer-readable medium, For use by, or in combination with, an instruction execution system, device, or device (such as a computer-based system, a system that includes a processor, or another system that can fetch and execute instructions from an instruction execution system, device, or device) Or equipment.
  • a "computer-readable medium” may be any device that can contain, store, communicate, propagate, or transmit a program for use by or in connection with an instruction execution system, apparatus, or device.
  • computer-readable media include the following: electrical connections (electronic devices) with one or more wirings, portable computer disk cartridges (magnetic devices), random access memory (RAM), Read-only memory (ROM), erasable and editable read-only memory (EPROM or flash memory), fiber optic devices, and portable optical disk read-only memory (CDROM).
  • the computer-readable medium may even be paper or other suitable medium on which the program can be printed, because, for example, by optically scanning the paper or other medium, followed by editing, interpretation, or other suitable Processing to obtain the program electronically and then store it in computer memory.
  • each part of the application may be implemented by hardware, software, firmware, or a combination thereof.
  • multiple steps or methods may be implemented by software or firmware stored in a memory and executed by a suitable instruction execution system.
  • Discrete logic circuits with logic gates for implementing logic functions on data signals Logic circuits, ASICs with suitable combinational logic gate circuits, programmable gate arrays (PGA), field programmable gate arrays (FPGA), etc.
  • a person of ordinary skill in the art can understand that all or part of the steps carried by the methods in the foregoing embodiments can be implemented by a program instructing related hardware.
  • the program can be stored in a computer-readable storage medium.
  • the program is When executed, one or a combination of the steps of the method embodiment is included.
  • each functional unit in each embodiment of the present application may be integrated into one processing module, or each unit may exist separately physically, or two or more units may be integrated into one module.
  • the above integrated modules may be implemented in the form of hardware or software functional modules. If the integrated module is implemented in the form of a software functional module and sold or used as an independent product, it may also be stored in a computer-readable storage medium.
  • the aforementioned storage medium may be a read-only memory, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种用于无人机的飞行高度调整、飞行控制方法和装置,飞行高度调整方法包括:获取无人机在每个飞行位置点的规划飞行高度;对飞行位置点的规划飞行高度进行调整,直至任意两个相邻的飞行位置点之间的调整后飞行高度的差值小于或等于预设值。

Description

用于无人机的飞行高度调整、飞行控制的方法和装置 技术领域
本申请涉及无人机技术领域,尤其涉及一种用于无人机的飞行高度调整、飞行控制的方法和装置。
背景技术
随着无人机技术的发展,无人机已广泛应用于多种行业,其中包括植保作业领域。相关技术中,使用无人机进行植保作业时,通常采用定高飞行和仿地飞行两种方式,其中,定高飞行是指沿着设定的海拔高度飞行,仿地飞行是指按照设定的离地面的距离飞行。
但是,相关技术存在的问题是,定高度飞行通常可适用地形起伏不大的环境,例如稻田或平原等环境,仿地飞行可适用于地形略有起伏的环境,例如丘陵或梯田等环境,然而,部分经济价值较高的植物或树木,其植株高度一般较高,例如七到八米,甚至有部分作物的高度可达数十米,因此,上述两种飞行方式均无法适应植株高度起伏较大的植物作业区域。
发明内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本申请的第一个目的在于提出一种用于无人机的飞行高度调整方法,以实现对无人机飞行航线的规划。
本申请的第二个目的在于提出一种用于无人机的飞行高度调整装置。
本申请的第三个目的在于提出一种用于无人机的飞行控制方法。
本申请的第四个目的在于提出一种用于无人机的飞行控制装置。
本申请的第五个目的在于提出一种计算机设备。
本申请的第六个目的在于提出一种非临时性计算机可读存储介质。
本申请的第七个目的在于提出一种计算机程序产品。
为达上述目的,本申请第一方面实施例提出了一种用于无人机的飞行高度调整方法,包括以下步骤:获取所述无人机在每个飞行位置点的规划飞行高度;对所述飞行位置点的规划飞行高度进行调整,直至任意两个相邻的飞行位置点之间的调整后飞行高度的差值小于或等于预设值。
根据本申请实施例的用于无人机的飞行高度调整方法,先获取无人机在每个飞行位置点的规划飞行高度,然后对飞行位置点的规划飞行高度进行调整,直至任意两个相邻的飞 行位置点之间的调整后飞行高度的差值小于或等于预设值。由此,本申请实施例的飞行高度调整方法能够在确定无人机在飞行位置点的规划飞行高度后,通过对规划飞行高度进行调整,使得任意两个相连的飞行位置点的调整后飞行高度的差值小于或等于预设值。
进一步地,所述对所述飞行位置点的规划飞行高度进行调整,包括:获取所述飞行位置点,并获取所述飞行位置点在预设范围内的相邻飞行位置点;获取所述飞行位置点之上物体与所述相邻飞行位置点之上物体之间的海拔高度差;在所述海拔高度差大于所述无人机的爬升或者下降的极限高度时,调整所述无人机在所述飞行位置点或所述相邻飞行位置点上的规划飞行高度。
进一步地,所述获取所述无人机在每个飞行位置点的规划飞行高度,包括:获取所述无人机在目标飞行区域内的二维航线以及二维航线中的飞行位置点;获取所述二维航线中的飞行位置点上物体的海拔高度;根据所述二维航线、所述二维航线中的飞行位置点上物体的海拔高度,生成规划三维航线,其中,所述规划三维航线中每个飞行位置点的规划飞行高度为所述飞行位置点之上物体的海拔高度。
进一步地,所述调整所述无人机在所述飞行位置点或所述相邻飞行位置点上的规划飞行高度,包括:获取所述无人机在所述飞行位置点上的规划飞行高度和所述相邻飞行位置点上的规划飞行高度;识别出所述飞行位置点和所述相邻飞行位置点中规划飞行高度低的飞行位置点,并对所述规划飞行高度低的飞行位置点的规划飞行高度进行调整。
进一步地,所述对所述规划飞行高度低的飞行位置点的规划飞行高度进行调整,包括:判断所述飞行位置点与所述相邻飞行位置点之间的规划飞行高度之差是否大于所述预设值;如果是,则将所述规划飞行高度高的位置点的规划飞行高度减去所述预设值以生成调整高度。
进一步地,所述飞行位置点在预设范围内的相邻飞行位置点包括:所述飞行位置点前一或后一的第一相邻位置点;所述对所述飞行位置点的规划飞行高度进行调整,包括:获取所述飞行位置点,并获取所述飞行位置点的前一或后一的第一相邻位置点;获取所述飞行位置点之上物体与所述第一相邻飞行位置点之上物体之间的第一海拔高度差;在所述第一海拔高度差大于所述无人机的爬升或者下降的极限高度时,将所述飞行位置点或所述第一相邻飞行位置点中所述规划飞行高度低的飞行位置点的规划飞行高度调高。
进一步地,所述飞行位置点在预设范围内的相邻飞行位置点包括:所述飞行位置点前一个和后一个的第二相邻位置点;所述对所述飞行位置点的规划飞行高度进行调整,包括:获取所述飞行位置点,并获取所述飞行位置点前一个和后一个的第二相邻飞行位置点;获取所述飞行位置点之上物体与两个所述第二相邻飞行位置点之上物体之间的第二海拔高度差;在两个所述第二海拔高度差均大于所述无人机的爬升或者下降的极限高度时,将所述 飞行位置点或所述第二相邻飞行位置点中所述规划飞行高度低的飞行位置点的规划飞行高度调高。
进一步地,所述飞行位置点在预设范围内的相邻飞行位置点包括:连续的所述飞行位置点;所述对所述飞行位置点的规划飞行高度进行调整,包括:连续获取所述飞行位置点,并获取所述连续飞行位置点的规划飞行高度;确定所述连续飞行位置点的规划飞行高度的整体规律;识别所述连续飞行位置点中规划飞行高度不符合所述规律的飞行位置点;将所述规划飞行高度不符合所述规律的飞行位置点的规划飞行高度调高。
进一步地,所述飞行位置点在预设范围内的相邻飞行位置点包括:连续的所述飞行位置点;所述对所述飞行位置点的规划飞行高度进行调整,包括:连续获取所述飞行位置点,并获取所述连续飞行位置点的规划飞行高度;获取任意所述飞行位置点之上物体与其相邻飞行位置点之上物体之间的第三海拔高度差;将所述第三海拔高度差小于预设第三海拔高度差的飞行位置点进行分组;获取相邻两飞行位置点组,确定前一飞行位置点组中最后一个飞行位置点的规划飞行高度与后一飞行位置点组中第一飞行位置点的飞行位置高度之间的第四海拔高度差;在所述第四海拔高度差大于所述无人机的爬升或者下降的极限高度时,调整所述无人机在所述前一飞行位置点组或后一飞行位置点组的规划飞行高度。
进一步地,所述获取所述无人机在每个飞行位置点的规划飞行高度,包括:获取所述无人机在目标飞行区域内的二维航线以及二维航线中的飞行位置点;获取所述二维航线中的飞行位置点上物体的海拔高度;根据所述二维航线、所述二维航线中的飞行位置点上物体的海拔高度以及预设安全距离,生成规划三维航线,其中,所述规划三维航线中每个飞行位置点的规划飞行高度为所述飞行位置点之上物体的海拔高度与所述预设安全距离之和。
进一步地,所述对所述飞行位置点的规划飞行高度进行调整,包括:获取所述飞行位置点,并获取所述飞行位置点在预设范围内的相邻飞行位置点;获取所述飞行位置点的规划飞行高度与所述相邻飞行位置点的规划飞行高度之间的海拔高度差;在所述海拔高度差大于所述无人机的爬升或者下降的极限高度时,将所述飞行位置点和所述相邻飞行位置点中规划飞行高度高的飞行位置点的规划飞行高度调低,其中,所述调低的距离小于所述预设安全距离。
进一步地,所述的用于无人机的飞行高度调整方法,还包括:当所述飞行位置点和所述相邻飞行位置点中规划飞行高度高的飞行位置点的规划飞行高度调低至其上物体的海拔高度时,判断所述飞行位置点和所述相邻飞行位置点的当前规划飞行高度之间的海拔高度差,如果所述飞行位置点与所述相邻飞行位置点的当前规划飞行高度之间的海拔高度差仍大于所述无人机的爬升或者下降的极限高度时,对所述飞行位置点和所述相邻位置点中当 前规划飞行高度低的飞行位置点的当前规划飞行高度调高。
进一步地,所述获取所述二维航线中的飞行位置点上物体的海拔高度,包括:获取所述二维航线上的各个飞行位置点以及各个飞行位置点对应的搜索区域;识别所述各个飞行位置点对应的搜索区域中物体的最大海拔高度,并将所述最大海拔高度作为所述各个飞行位置点的海拔高度。
进一步地,所述对所述飞行位置点的规划飞行高度进行调整,直至任意两个相邻的飞行位置点之间的调整后飞行高度的差值小于或等于预设值,具体包括:判断任意两个相邻的飞行位置点之间的调整后飞行高度的差值是否小于或等于预设值;在所述任意两个相邻的飞行位置点之间的调整后飞行高度的差值大于预设值时,则返回执行对所述飞行位置点的规划飞行高度进行调整。
为达到上述目的,本申请第二方面实施例提出了一种用于无人机的飞行高调整装置,包括:获取模块,用于获取所述无人机在每个飞行位置点的规划飞行高度;调整模块,用于对所述飞行位置点的规划飞行高度进行调整,直至任意两个相邻的飞行位置点之间的调整后飞行高度的差值小于或等于预设值。
根据本申请实施例的用于无人机的飞行高度调整装置,先通过获取模块获取无人机在每个飞行位置点的规划飞行高度,然后通过调整模块对飞行位置点的规划飞行高度进行调整,直至任意两个相邻的飞行位置点之间的调整后飞行高度的差值小于或等于预设值。由此,本申请实施例的飞行高度调整方法能够在确定无人机在飞行位置点的规划飞行高度后,通过对规划飞行高度进行调整,使得任意两个相连的飞行位置点的调整后飞行高度的差值小于或等于预设值。
为达到上述目的,本申请第三方面实施例提出的一种用于无人机的飞行控制方法,包括:获取所述无人机的每个飞行位置点的规划飞行高度;对所述飞行位置点的规划飞行高度进行调整,直至任意两个相邻的飞行位置点之间的调整后飞行高度的差值小于或等于预设值;根据所述调整后飞行高度生成调整后三维航线,控制所述无人机按照所述调整后三维航线进行飞行。
根据本申请实施例的用于无人机的飞行控制方法,先获取无人机在每个飞行位置点的规划飞行高度,然后对飞行位置点的规划飞行高度进行调整,直至任意两个相邻的飞行位置点之间的调整后飞行高度的差值小于或等于预设值,再根据调整后飞行高度生成调整后三维航信,控制无人机按照调整后三维航线进行飞行。由此,本申请实施例的控制方法能够控制无人机按照调整后三维航线进行飞行。
进一步地,所述的控制所述无人机按照所述调整后三维航线进行飞行包括:控制所述无人机根据所述调整后三维航线变高度飞行。
进一步地,所述控制所述无人机根据所述调整后三维航线变高度飞行,包括:控制所述无人机沿着所述调整后三维航线上的飞行位置点进行飞行;在所述无人机飞行过程中,检测所述无人机在下一个飞行位置点的飞行高度与下一个飞行位置点上物体之间的距离;如果所述距离小于预设的飞行最小间隔距离,则对所述下一个飞行位置点的飞行高度进行调整,以使所述距离大于所述预设的飞行最小间隔距离。
进一步地,所述控制所述无人机根据所述调整后三维航线变高度飞行,包括:控制所述无人机沿着所述调整后三维航线上的飞行位置点进行飞行;在所述无人机飞行过程中,检测所述调整后三维航线中无人机即将飞行的多个飞行位置点的飞行高度;根据所述多个飞行位置点的飞行高度,对无人机下一个飞行位置点的飞行高度进行调整。
为达到上述目的,本申请第四方面实施例提出了一种用于无人机的飞行控制装置,获取模块,用于获取所述无人机的每个飞行位置点的规划飞行高度;调整模块,用于对所述飞行位置点的规划飞行高度进行调整,直至任意两个相邻的飞行位置点之间的调整后飞行高度的差值小于或等于预设值;控制模块,用于根据所述调整后飞行高度生成调整后三维航线,控制所述无人机按照所述调整后三维航线进行飞行。
为达到上述目的,本申请第五方面实施例提出的一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时,实现前述的用于无人机的飞行高度调整方法或如前述的用于无人机的飞行控制方法。
为达到上述目的,本申请第六方面实施例提出的一种非临时性计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现前述的用于无人机的飞行高度调整方法或如前述的用于无人机的飞行控制方法。
为达到上述目的,本申请第七方面实施例提出的一种计算机程序产品,当所述计算机程序产品中的指令由处理器执行时实现前述的用于无人机的飞行高度调整方法或如前述的用于无人机的飞行控制方法。
本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本申请实施例的用于无人机的飞行高度调整方法的流程图;
图2为本申请一个实施例的用于无人机的飞行高度调整方法的流程图;
图3为本申请另一个实施例的用于无人机的飞行高度调整方法的流程图;
图4为本申请又一个实施例的用于无人机的飞行高度调整方法的流程图;
图5为本申请再一个实施例的用于无人机的飞行高度调整方法的流程图;
图6为本申请再一个实施例的用于无人机的飞行高度调整方法的流程图;
图7为本申请再一个实施例的用于无人机的飞行高度调整方法的流程图;
图8为本申请再一个实施例的用于无人机的飞行高度调整方法的流程图;
图9为本申请再一个实施例的用于无人机的飞行高度调整方法的流程图;
图10为本申请再一个实施例的用于无人机的飞行高度调整方法的流程图;
图11为本申请再一个实施例的用于无人机的飞行高度调整方法的流程图;
图12为本申请再一个实施例的用于无人机的飞行高度调整方法的流程图;
图13为本申请再一个实施例的用于无人机的飞行高度调整方法的流程图;
图14为本申请再一个实施例的用于无人机的飞行高度调整方法的流程图;
图15为本申请实施例的用于无人机的飞行控制方法的流程图;
图16为本申请一个实施例的用于无人机的飞行控制方法的流程图;
图17为本申请另一个实施例的用于无人机的飞行控制方法的流程图;
图18为本申请实施例的用于无人机的飞行高度调整装置的方框示意图;
图19为本申请实施例的用于无人机的飞行控制装置的方框示意图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
需要说明的是,相关技术中的仿地飞行,是一种沿着地表海拔飞行的技术方案,例如,可控制无人机按照地图中地表海拔进行飞行,但是,将仿地飞行运用到植保作业中时,会因为地图中的地势海拔高度不准确,以及无法准确分辨地表植被和植被高度的问题,致使无人机飞行时容易发生撞机故障,或者飞行线路中无需要植保的作物。其中,仿地飞行大多采用谷歌地图或百度地图等资源,其数据更新速度较低,也无法满足植保作业的需求。另外,仿地飞行中还包括另一种技术方案,即在无人机上设置有探测装置,用于探测无人机与作业区域之间的垂直距离,然后控制无人机与作业区域保持预设距离进行飞行,例如,可设定无人机与作业区域之间的预设距离为2米,则在无人机与作业区域之间的垂直距离小于2米时,控制无人机爬升至距离达到2米,或者在无人机与作业区域之间的垂直距离大于2米时,控制无人机下降至距离达到2米。但是,将此技术方案应用于植保作业时, 会出现当植物与植物之间的距离较小,而植物较高时,无人机自身的爬升或下降性能可能无法满足无人机在植物-地面-植物之间进行正常飞行的问题,例如,无人机在地面-植物间飞行时,由于无法从地面及时爬升至植物顶端,容易发生撞机故障,或者无法从低的植物顶端迅速飞到高的植物顶端。
基于此,本申请提出了一种用于无人机的飞行高度调整、飞行控制的方法和装置。
下面参考附图描述本申请实施例的用于无人机的飞行控制方法和装置。
图1为本申请实施例的用于无人机的飞行高度调整方法的流程图。如图1所示,本申请实施例的用于无人机的飞行高度调整方法,包括以下步骤:
S1:获取无人机在每个飞行位置点的规划飞行高度。
需要说明的是,在本申请实施例中,可通过规划三维航线确定无人机的每个飞行位置点的规划海拔高度,也可通过点云图数据等直接获取每个飞行位置点的规划飞行高度。
进一步地,规划飞行高度可为初始的飞行高度,例如飞行位置点上物体顶点的海拔高度,也可为经过设定的飞行高度,例如在前述物体顶点的海拔高度上增加安全距离的高度。
S2:对飞行位置点的规划飞行高度进行调整,直至任意两个相邻的飞行位置点之间的调整后飞行高度的差值小于或等于预设值。
也就是说,在获取到无人机在每个飞行位置点的规划飞行高度之后,对飞行位置点的规划飞行高度进行调整,直至任意两个相邻的飞行位置点之间的调整后飞行高度的差值小于或等于预设阈值。
作为一种可行实施例,如图2所示,上述步骤S2具体可包括步骤S101-S103。
S101:获取飞行位置点,并获取飞行位置点在预设范围内的相邻飞行位置点。
其中,飞行位置点在预设范围内的相邻飞行位置点可为当前飞行位置点的前一或后一飞行位置点,也可为当前飞行位置点前一和后一飞行位置点,还可为连续多个飞行位置点。
S102:获取飞行位置点的规划飞行高度与相邻飞行位置点的规划飞行高度的海拔高度差。
需要说明的是,相邻飞行位置点既可以包括在当前飞行位置点之前的点,也包括在当前飞行位置点之后的点,所有的飞行位置点都可以采用经度,纬度、高度信息三个信息来表示,规划飞行高度的海拔高度差主要是指相邻飞行位置点的高度信息之间的差值,例如前一个飞行位置点的规划飞行高度是3米,后一个飞行位置点的规划飞行高度是8米,则前后两个飞行位置点规划飞行高度的海拔高度差则为5米。
S103:在海拔高度差大于无人机的爬升或者下降的极限高度时,调整无人机在飞行位置点或相邻飞行位置点上的规划飞行高度。
具体而言,在获取飞行位置点之后,获取飞行位置点在预设范围内的相邻飞行位置点, 然后根据飞行位置点的规划飞行高度与相邻飞行位置点的规划飞行高度的海拔高度差,对飞行位置点或相邻飞行位置点上的规划飞行高度,以使飞行位置点与相邻飞行位置点之间调整后飞行高度能够满足无人机的爬升或者下降的极限,从而保证无人飞行过程中能够按照调整后的飞行高度到达任意飞行位置点。
由此,本申请实施例的飞行高度调整方法,能够在确定无人机在飞行位置点的规划飞行高度进行调整,从而保证无人机在任意两个飞行位置点之间进行有效飞行,有效防止无人机因相邻两个飞行位置点之间的飞行高度超过其爬升或下降限度,造成的飞行事故。
当规划飞行高度为飞行位置点上物体的海拔高度时,获取所述无人机在每个飞行位置点的规划飞行高度,如图3所示,包括:
S111:获取无人机在目标飞行区域内的二维航线以及二维航线中的飞行位置点。
其中,目标飞行区域包括作业区域,也可以包括作业边界预留的缓冲区域,目标飞行区域可以是预先规划出来的,例如可以通过测绘打点的方式对区域进行测绘;也可以是实时识别出来的,例如可以通过图像识别的方式确定一块田地目标区域。
S112:获取二维航线中的飞行位置点上物体的海拔高度。
具体地,二维航线可以由经纬度进行标识,飞行位置点可以采用经纬度来表征,海拔高度值可以通过DSM地图等三维地图获取,也可以通过传感器来获取,如通过超声波、雷达、视觉传感器的方式。
S113:根据二维航线、二维航线中的飞行位置点上物体的海拔高度,生成规划三维航线。其中,规划三维航线中每个飞行位置点的规划飞行高度为飞行位置点之上物体的海拔高度。
具体地,作为一种可行实施例,如图4所示,上述步骤S112具体可包括S121-S124。
S121:控制无人机在目标飞行区域内进行飞行。
应当说明的是,控制无人机在飞行区域内的飞行高度应为较高的海拔高度,例如高于目标飞行区域内任意物体的海拔高度。例如目标飞行区域中含有障碍物大树,则目标飞行高度应高于树的飞行高度,且还包括安全距离,保证无人机不碰触到最高的目标物上。
S122:获取当前时刻无人机的飞行高度。本领域内技术人员可以理解,获取高度的方式可以通过超声波传感器、视觉传感器的方式获取,也可以是预存在存储设备中的方法,通过读取存储设备而获得飞行高度数据。
S123:探测当前时刻无人机与当前飞行位置点上物体之间的第一距离。
需要说明的是,无人机上应当设置有探测设备,以在无人机在飞行区域内飞行时探测当前时刻无人机与当前飞行位置点上物体之间的第一距离。其中,探测设备可为激光雷达、视觉采集设备或者基于雷达等方式的测量装置。
其中,无人机与当前飞行位置点上物体之间的第一距离可为无人机与植保作业中植株的顶端的距离,或无人机与其他物体顶端的距离,例如,电线杆等。
S124:根据飞行高度和第一距离,得到当前飞行位置点上物体的海拔高度,将当前位置点上物体的海拔高度作为飞行位置点的规划飞行高度。
也就是说,在进行植保作业以前,可以先控制无人机以较高的海拔高度在飞行区域内进行飞行,获取当前时刻无人机的飞行高度,例如通过无人机机载GPS定位设备获取当前时刻无人机的飞行高度H2,然后利用设置于无人机上的激光传感器探测作业对象所在位置点与无人机之间的第一距离H1,根据飞行高度H2和第一距离H1,得到当前位置点上物体的海拔高度h=H2-H1,将当前位置点上物体的海拔高度作为飞行位置点的规划飞行高度。
其中,可通过点云图或列表等,能够表示飞行位置点及其海拔高度对应关系的记录方式进行记录即可。
根据本申请的一个实施例,在获取到无人机飞行区域各飞行位置点的海拔高度后,还可根据飞行区域内各飞行位置点的海拔高度对二维航线进行规划,如图5所示,具体包括以下步骤:
S131:对目标飞行区域内所有位置点进行分组,将每个组内的位置点识别为一个位置块。
其中,根据位置点的位置信息,对目标飞行区域内的位置点进行聚簇,形成位置块。
需要说明的是,位置点的位置信息可包括位置点的经纬度,即根据经纬度对作业区域内的位置进行聚簇。
作为一个可行实施例,如图6所示,上述步骤S131具体可包括以下步骤S141-S144。
S141:从所有位置点中选取一个位置点作为起始位置点。例如,选择无人机的起飞地点为起始位置点。例如可以选取距离无人机最近的点为起始点,获知选取一系列飞行位置点最边缘的点为起始点。
S142:从起始位置点开始,逐个获取当前位置点的覆盖范围,识别处于覆盖范围内的其他位置点。
需要说明的是,覆盖范围可为预设的位置块的大小,也就是说,以当前位置点为中心选择位置块大小的覆盖范围,并识别处于覆盖范围内的其他位置点。
S143:获取覆盖范围内位置点的数量,如果数量超过预设的数量,则将处于覆盖范围内的位置点作为一个分组,形成位置块。
S144:如果数量未超过预设的数量,则将距离当前位置点最近的下一个位置点更新为当前位置点返回获取覆盖范围及后续操作,直到最后一个位置点被划分到一个位置块内。
也就是说,可根据位置点的密集程度进行聚簇。在位置块覆盖范围内的位置点的数量 未达到预计的数量时,则不进行聚簇,在位置块覆盖范围内的位置点的数量达到预计的数量时,进行聚簇形成位置块。
作为另一个可行实施例,如图7所示,步骤S131具体还可包括以下步骤S151-S152。
S151:利用位置点和位置点的海拔高度,形成飞行区域的点云图。
S152:对点云图进行网格化划分,形成飞行区域的位置块。其中,每个网格对应一个位置块。
具体地,根据提前设置的网格化大小对点云图进行划分,其中,预设的网格化大小可为1米×1米,形成的每个网格对应一个位置块。
S132:根据飞行区域内的所有位置块,对无人机在飞行区域内的水平航线进行规划。
需要说明的是,根据位置块对无人机在飞行区域内的水平航线进行规划可根据位置块的大小或植物种类等因素进行规划,例如蛇形航线、回字形航线等。
S133:根据规划出的水平航线上的位置点,选取无人机实际飞行时需要飞行的飞行位置点。
S134:根据飞行位置点和飞行位置点的海拔高度,形成无人机的规划三维飞行航线。
由此,本申请实施例的飞行高度调整方法,能够根据无人机飞行区域上物体的海拔高度生成无人机在飞行区域内的规划三维航线,因通过无人机飞行获取飞行区域上物体的海拔高度,有效提高了规划三维航线的准确性,为生成调整后三维航线,提供数据保障,提升无人机飞行的安全性。
根据本申请的一个实施例,在规划飞行高度为飞行位置点上物体的海拔高度时,调整无人机在飞行位置点或相邻飞行位置点上的规划飞行高度,如图8所示,包括:
S161:获取无人机在飞行位置点上的规划飞行高度和相邻飞行位置点上的规划飞行高度。
S162:识别出飞行位置点和相邻飞行位置点中规划飞行高度低的飞行位置点,并对规划飞行高度低的飞行位置点的规划飞行高度进行调整。
应当理解的是,在本申请实施例中,由于规划飞行高度为飞行位置点上物体的海拔高度,因此,若将规划飞行高度高的飞行位置点的海拔高度调低,则可能造成无人机撞机的事故,即言,在海拔高度差大于无人机的爬升或下降的极限高度时,需要调整规划飞行高度低的飞行位置点的飞行高度。
具体地,如图9所示,上述步骤S162具体可包括步骤S171-S172。
S171:判断飞行位置点与相邻飞行位置点之间的规划飞行高度之差是否大于预设值。
S172:如果是,则将规划飞行高度高的位置点的规划飞行高度减去预设值以生成调整高度。
应当理解的是,当无人机飞行区域内各位置点上物体的高度相差较大时,例如,植物穿插种植或者探测设备将地面等信息采集为位置点,容易出现前一飞行位置点的海拔高度与后一位置点的海拔高度相差较大的问题,但是,无人机的飞行速度具有极限,在前一飞行位置点到后一飞行位置点的飞行时间内很容易出现无法实现较大飞行高度的爬升或下降的现象,因此需要对飞行区域内飞行位置点的飞行高度进行调节。
换言之,为了防止无人机在飞行位置点飞行过程中相邻飞行位置点的距离超过无人机的爬升或下降极限高度,需要对飞行高度低的飞行位置点的飞行高度进行调整。
也就是说,对每个飞行位置点,获取其相邻飞行位置点,然后获取飞行位置点与其相邻飞行位置点之间的海拔高度差值,如果差值的绝对值大于无人机的爬升或者下降极限高度,则调整飞行位置点与相邻飞行位置点中的飞行高度低的飞行位置点的飞行高度,对每个飞行位置点进行循环调整,直至每个飞行位置点与其相邻飞行位置点之间的海拔高度差距在预设的范围内停止。
根据本申请的一个具体实施例,飞行位置点在预设范围内的相邻飞行位置点包括:飞行位置点前一或后一的第一相邻位置点。
具体地,如图10所示,对飞行位置点的规划飞行高度进行调整,包括:
S181:获取飞行位置点,并获取飞行位置点的前一或后一的第一相邻位置点。
S182:获取飞行位置点之上物体与第一相邻飞行位置点之上物体之间的第一海拔高度差。
S183:在第一海拔高度差大于无人机的爬升或者下降的极限高度时,将飞行位置点或第一相邻飞行位置点中规划飞行高度低的飞行位置点的规划飞行高度调高。
具体而言,选取一个位置点作为起始位置点a1,获取该起始位置点的规划飞行高度A1,以及起始位置点的后一位置点a2的规划飞行高度A2,判断起始位置点a1的规划飞行高度A1与起始位置点的后一位置点a2的规划飞行高度A2的差值的绝对值是否大于预设阈值T,如果起始位置点a1的规划飞行高度A1与起始位置点的后一位置点a2的规划飞行高度A2的差值的绝对值大于预设阈值T,即A1-A2>|T|,则说明起始位置点a1的规划飞行高度A1与起始位置点的后一位置点a2的规划飞行高度A2的差值超过了无人机的爬升或下降极限高度,进一步地,如果A1-A2>T,则说明起始位置点a1的规划飞行高度A1与起始位置点的后一位置点a2的规划飞行高度A2之间的落差较大,无人机从起始位置点a1飞至起始位置点的后一位置点a2时,无法从规划飞行高度A1下降到规划飞行高度A2,此时,令A2=A1-T,即将较低规划飞行高度进行提高,以使无人机能够从起始位置点a1飞至起始位置点的后一位置点a2时,仅需要从飞行高度A1下降到飞行高度A2,如果A1-A2<-T,则说明起始位置点a1的规划飞行高度A1与起始位置点的后一位置点a2的规划飞行 高度A2之间的落差较大,无人机从起始位置点a1飞至起始位置点的后一位置点a2时,无法从飞行高度A1上升到飞行高度A2,此时,令A1=A2-T,即将较低海拔高度进行提高,以使无人机能够从起始位置点a1飞至起始位置点的后一位置点a2时,仅需要从飞行高度A1上升到飞行高度A2,如果-T<A1-A2<T,则说明起始位置点a1的规划飞行高度A1与起始位置点的后一位置点a2的规划飞行高度A2之间的高度差,满足无人机从起始位置点a1飞至起始位置点的后一位置点a2的高度。如此往复,直至每个飞行位置点与其相邻飞行位置点之间的海拔高度差距在预设的范围内停止。
举例来说,假设航线上有四个位置点,分别为a1、a2、a3和a4,对应的飞行高度分别为A1=25,A2=10,A3=18和A4=40,预设阈值T=5。即言,规划三维航线的规划飞行高度依次为25、10、18、40,以第一位置点至第四位置点的顺序进行第一次无人机的飞行高度调整获得第一次调整后的飞行高度依次为25、20、35、40,即因为第一位置点a1的飞行高度A1与第二位置点a2的飞行高度A2的差值大于预设阈值T,则将第二位置点a2的飞行高度A2提高至第一位置点a1的飞行高度A1与预设阈值T的差值,同理,第三位置点a3的飞行高度A3与第四位置点a4的飞行高度A4的差值大于预设阈值T,则将第三位置点a3的飞行高度A3调整为第四位置点a4的飞行高度A4与预设阈值T的差值。
此时,调整后的第二位置点a2的飞行高度A2与第三位置点a3的飞行高度A3之间的差距仍大于预设阈值,则进行第二次飞行高度的调整,则,第二次无人机的飞行高度调整后的飞行高度依次为25、30、35、40,至此,四个位置点的飞行高度之间的差距均不大于预设阈值T,则将此时的飞行高度设定为无人机航线调整后三维航线中各飞行位置点的调整后飞行高度。
应当理解的是,在对飞行位置点的飞行高度进行调整时,一般选择将较低的海拔高度提高,而不能将较高的飞行高度降低,因为,飞行高度较低的飞行位置点可能是地面或植株较低植物的海拔高度,而飞行高度较高的飞行位置点一定是较高植株的海拔高度,若将较高无人机的飞行高度调整成较低的飞行高度,则可能会影响无人机的飞行安全,易使无人机与较高植株相撞,并且无法对较高植株进行植保作业,当然在飞行高度距离植株顶端高度较高时,可以对飞行高度较高的点调低预设距离,但保证不能碰触到植株顶端,因此因保证调整后飞行高度与植株顶端高度的距离不能小于安全距离,因此不能随意调整。
根据本申请的一个实施例,预设阈值T还可根据无人机的水平飞行速度和最大垂直速度进行设定,具体地,预设阈值T不大于相邻两目标位置点间的距离D与水平速度V1的商与最大垂直速度V2的积,即,T≤D/V1×V2。
根据本申请的一个具体实施例,飞行位置点在预设范围内的相邻飞行位置点包括:飞行位置点前一个和后一个的第二相邻位置点。
具体地,对飞行位置点的规划飞行高度进行调整,包括:获取飞行位置点,并获取飞行位置点前一个和后一个的第二相邻飞行位置点;获取飞行位置点之上物体与两个第二相邻飞行位置点之上物体之间的第二海拔高度差;在两个第二海拔高度差均大于无人机的爬升或者下降的极限高度时,将飞行位置点或第二相邻飞行位置点中规划飞行高度低的飞行位置点的规划飞行高度调高。
也就是说,可以一次选取三个飞行位置点,然后对三个飞行位置点的规划飞行高度进行比较,当三个飞行位置点中居中的飞行位置点的规划飞行高度比其前一个飞行位置点的飞行高度和后一个飞行位置点的飞行高度都低,且与其前一个飞行位置点的飞行高度或后一个飞行位置点的飞行高度无法满足无人机爬升或下降极限高度时,可将该居中飞行位置点的飞行高度调高,具体调整过程可参照上述实施例,在此不再赘述。
根据本申请的一个具体实施例,飞行位置点在预设范围内的相邻飞行位置点包括:连续的飞行位置点。
具体地,对飞行位置点的规划飞行高度进行调整,包括:连续获取飞行位置点,并获取连续飞行位置点的规划飞行高度;确定连续飞行位置点的规划飞行高度的整体规律;识别连续飞行位置点中规划飞行高度不符合规律的飞行位置点;将规划飞行高度不符合规律的飞行位置点的规划飞行高度调高。
也就是说,在连续获取飞行位置点的规划飞行高度时,若连续飞行位置点的规划飞行高度具有整体规律,例如,上坡、下坡等地理环境时,当连续飞行位置点的规划飞行高度中有任意一个或多个飞行位置点的规划飞行高度低于,在整体规律中该飞行位置点应当具有的规划飞行高度时,对该飞行位置点的规划飞行高度进行调整,具体调整过程可参照上述实施例,在此不再赘述。
根据本申请的一个具体实施例,飞行位置点在预设范围内的相邻飞行位置点包括:连续的飞行位置点。
具体地,对飞行位置点的规划飞行高度进行调整,包括:连续获取飞行位置点,并获取连续飞行位置点的规划飞行高度;获取任意飞行位置点之上物体与其相邻飞行位置点之上物体之间的第三海拔高度差;将第三海拔高度差小于预设第三海拔高度差的飞行位置点进行分组;获取相邻两飞行位置点组,确定前一飞行位置点组中最后一个飞行位置点的规划飞行高度与后一飞行位置点组中第一飞行位置点的飞行位置高度之间的第四海拔高度差;在第四海拔高度差大于无人机的爬升或者下降的极限高度时,调整无人机在前一飞行位置点组或后一飞行位置点组的规划飞行高度。
也就是说,在连续获取飞行位置点的规划飞行高度时,若连续飞行位置点的规划飞行高度具有整体规律,例如,上坡、下坡等地理环境时,但在整体上坡(或下坡)地理环境 时,可具有缓坡和陡坡的差别,因此,在识别到缓坡与陡坡衔接处两个相邻飞行位置点的规划飞行高度无法满足无人机爬升或下降的极限高度时,需要对整个缓坡区域的飞行位置点的规划飞行高度进行提高,具体调整过程可参照上述实施例,在此不再赘述。
当规划飞行高度为飞行位置点上物体的海拔高度与安全距离之和时,获取所述无人机在每个飞行位置点的规划飞行高度,如图11所示,包括:
S201:获取无人机在目标飞行区域内的二维航线以及二维航线中的飞行位置点。
S202:获取二维航线中的飞行位置点上物体的海拔高度。
S203:根据二维航线、二维航线中的飞行位置点上物体的海拔高度以及预设安全距离,生成规划三维航线。其中,规划三维航线中每个飞行位置点的规划飞行高度为飞行位置点之上物体的海拔高度与预设安全距离之和。
应当理解的是,本申请实施例与前述规划飞行高度为飞行位置点上物体的海拔高度的过程基本相同,区别仅在于,本申请实施例中规划三维航线中每个飞行位置点的规划飞行高度为飞行位置点之上物体的海拔高度与预设安全距离之和。
进一步地,对飞行位置点的规划飞行高度进行调整,如图12所示,包括:
S211:获取飞行位置点,并获取飞行位置点在预设范围内的相邻飞行位置点。
S212:获取飞行位置点的规划飞行高度与相邻飞行位置点的规划飞行高度之间的海拔高度差。
S213:在海拔高度差大于无人机的爬升或者下降的极限高度时,将飞行位置点和相邻飞行位置点中规划飞行高度高的飞行位置点的规划飞行高度调低。其中,调低的距离小于预设安全距离。
也就是说,当飞行位置点的规划飞行高度为飞行位置点之上物体的海拔高度与预设安全距离之和时,在相邻两个规划飞行高度的海拔高度差超过无人机爬升或下降的极限高度时,还可将具有较高规划飞行高度的飞行位置点的规划飞行高度进行调低,但只能将具有较高规划飞行高度的飞行位置点的规划飞行高度调低至飞行位置点上物体的海拔高度,即减小规划飞行高度中预设安全距离的大小,可以对飞行高度较高的点调低预设距离,但保证不能碰触到植株顶端,因此因保证调整后飞行高度与植株顶端高度的距离不能小于安全距离,因此不能随意调整。
更进一步地,当飞行位置点和相邻飞行位置点中规划飞行高度高的飞行位置点的规划飞行高度调低至其上物体的海拔高度时,判断飞行位置点和相邻飞行位置点的当前规划飞行高度之间的海拔高度差,如果飞行位置点与相邻飞行位置点的当前规划飞行高度之间的海拔高度差仍大于无人机的爬升或者下降的极限高度时,对飞行位置点和相邻位置点中当前规划飞行高度低的飞行位置点的当前规划飞行高度调高。
也就是说,在将具有较高规划飞行高度的飞行位置点的规划飞行高度调低至飞行位置点上物体的海拔高度之后,若相邻两个飞行位置点的规划飞行高度之间的海拔高度差仍然超过无人机飞行的爬升或下降的极限高度,则仍需要按照上述将具有较低规划飞行高度的飞行位置点的规划飞行高度调高的方式进行调整,在此不再赘述。
基于上述两种不同的规划飞行高度,本申请实施例的用于无人机的飞行高度调整方法,如图13所示,还包括以下步骤:
S301:获取二维航线上的各个飞行位置点以及各个飞行位置点对应的搜索区域。
需要说明的是,搜索区域可为大于无人机机身大小扩展安全距离的区域,即言,获取水平航线上的每个位置点的略大于无人机机身的区域作为搜索区域。
S302:识别各个飞行位置点对应的搜索区域中物体的最大海拔高度,并将最大海拔高度作为各个飞行位置点的海拔高度。
具体地,获取水平航线上每个位置点的搜索区域的海拔高度,然后选择一个位置点用其海拔高度与其相邻的位置点的海拔高度进行比较,选择二者中较大的海拔高度作为新的海拔高度,进一步与下一个位置点的海拔高度进行比较,直至遍历搜索区域内的位置点,获取搜索区域中海拔高度最大的位置点,并将最大海拔高度作为飞行位置点的海拔高度。
应当理解的是,搜索区域设定的大小应为保证无人机进行植保作业的有效面积以及不与其他无人机发生碰撞的区域,即,通过将搜索区域设定为无人机机身大小扩展安全距离的区域,使无人机机身大小保证植保作业的有效完成,安全距离用以与其他作业无人机产生距离间隔,防止放生飞行事故。而通过将搜索区域中海拔高度最大海拔高度作为飞行位置点的海拔高度,可以使无人机在植保作业时的飞行高度高于该搜索区域内任意一点,防止无人机与植株发生相撞事故。
进一步地,用于无人机的飞行高度调整方法,如图14所示,还包括:
S311:判断任意两个相邻的飞行位置点之间的调整后飞行高度的差值是否小于或等于预设值。
S312:在任意两个相邻的飞行位置点之间的调整后飞行高度的差值大于预设值时,则返回执行对飞行位置点的规划飞行高度进行调整。
综上所述,根据本申请实施例的用于无人机的飞行高度调整方法,先获取无人机在每个飞行位置点的规划飞行高度,然后对飞行位置点的规划飞行高度进行调整,直至任意两个相邻的飞行位置点之间的调整后飞行高度的差值小于或等于预设值。由此,本申请实施例的飞行高度调整方法能够在确定无人机在飞行位置点的规划飞行高度后,通过对规划飞行高度进行调整,使得任意两个相连的飞行位置点的调整后飞行高度的差值小于或等于预设值。
图15为本申请实施例的用于无人机的飞行控制方法的流程图。如图15所示,本申请实施例的用于无人机的飞行控制方法,包括以下步骤:
S401:获取无人机在每个飞行位置点的规划飞行高度。
S402:对飞行位置点的规划飞行高度进行调整,直至任意两个相邻的飞行位置点之间的调整后飞行高度的差值小于或等于预设值。
S403:根据调整后飞行高度生成调整后三维航线,控制无人机按照调整后三维航线进行飞行。
其中,控制无人机根据调整后三维航线变高度飞行。
具体地,控制无人机根据调整后三维航线变高度飞行,如图16所示,可包括:
S411:控制所述无人机沿着所述调整后三维航线上的飞行位置点进行飞行。
S412:在所述无人机飞行过程中,检测所述无人机在下一个飞行位置点的飞行高度与下一个飞行位置点上物体之间的距离。
S413:如果所述距离小于预设的飞行最小间隔距离,则对所述下一个飞行位置点的飞行高度进行调整,以使所述距离大于所述预设的飞行最小间隔距离。
由此,能够保证无人机与调整后三维航线保持一定的飞行距离,便于无人机进行植保作业。而且,还可以防止因前述探测过程或海拔高度调整的误差,造成无人机飞行的海拔高度影响无人机的安全飞行的问题,有效提高无人机飞行的安全性。
具体地,控制无人机根据调整后三维航线变高度飞行,如图17所示,还可包括:
S421:控制无人机沿着调整后三维航线上的飞行位置点进行飞行。
S422:在无人机飞行过程中,检测调整后三维航线中无人机即将飞行的多个飞行位置点的飞行高度。
S423:根据多个飞行位置点的飞行高度,对无人机下一个飞行位置点的飞行高度进行调整。
综上所述,根据本申请实施例的用于无人机的飞行高度调整装置,先通过获取模块获取无人机在每个飞行位置点的规划飞行高度,然后通过调整模块对飞行位置点的规划飞行高度进行调整,直至任意两个相邻的飞行位置点之间的调整后飞行高度的差值小于或等于预设值。由此,本申请实施例的飞行高度调整方法能够在确定无人机在飞行位置点的规划飞行高度后,通过对规划飞行高度进行调整,使得任意两个相连的飞行位置点的调整后飞行高度的差值小于或等于预设值。
为了实现上述实施例,本申请还提出一种用于无人机的飞行高度调整装置。
图18为本申请实施例的种用于无人机的飞行高度调整装置的方框示意图。
如图18所示,该用于无人机的飞行高度调整装置100包括:获取模块11和调整模块 12。
其中,获取模块10用于获取无人机在每个飞行位置点的规划飞行高度;调整模块20用于对飞行位置点的规划飞行高度进行调整,直至任意两个相邻的飞行位置点之间的调整后飞行高度的差值小于或等于预设值。
进一步地,调整模块20还用于:获取飞行位置点,并获取飞行位置点在预设范围内的相邻飞行位置点;获取飞行位置点的规划飞行高度与相邻飞行位置点的规划飞行高度的海拔高度差;在海拔高度差大于无人机的爬升或者下降的极限高度时,调整无人机在飞行位置点或相邻飞行位置点上的规划飞行高度。
进一步地,获取模块10还用于:获取无人机在目标飞行区域内的二维航线以及二维航线中的飞行位置点;获取二维航线中的飞行位置点上物体的海拔高度;根据二维航线、二维航线中的飞行位置点上物体的海拔高度,生成规划三维航线,其中,规划三维航线中每个飞行位置点的规划飞行高度为飞行位置点之上物体的海拔高度。
进一步地,调整模块20还用于:获取无人机在飞行位置点上的规划飞行高度和相邻飞行位置点上的规划飞行高度;识别出飞行位置点和相邻飞行位置点中规划飞行高度低的飞行位置点,并对规划飞行高度低的飞行位置点的规划飞行高度进行调整。
进一步地,调整模块20还用于:判断飞行位置点与相邻飞行位置点之间的规划飞行高度之差是否大于预设值;如果是,则将规划飞行高度高的位置点的规划飞行高度减去预设值以生成调整高度;利用调整高度,更新规划飞行高度低的位置点的飞行高度。
进一步地,调整模块20还用于:飞行位置点在预设范围内的相邻飞行位置点包括:飞行位置点前一或后一的第一相邻位置点;对飞行位置点的规划飞行高度进行调整,包括:获取飞行位置点,并获取飞行位置点的前一或后一的第一相邻位置点;获取飞行位置点之上物体与第一相邻飞行位置点之上物体之间的第一海拔高度差;在第一海拔高度差大于无人机的爬升或者下降的极限高度时,将飞行位置点或第一相邻飞行位置点中规划飞行高度低的飞行位置点的规划飞行高度调高。
进一步地,调整模块20还用于:飞行位置点在预设范围内的相邻飞行位置点包括:飞行位置点前一个和后一个的第二相邻位置点;对飞行位置点的规划飞行高度进行调整,包括:获取飞行位置点,并获取飞行位置点前一个和后一个的第二相邻飞行位置点;获取飞行位置点之上物体与两个第二相邻飞行位置点之上物体之间的第二海拔高度差;在两个第二海拔高度差均大于无人机的爬升或者下降的极限高度时,将飞行位置点或第二相邻飞行位置点中规划飞行高度低的飞行位置点的规划飞行高度调高。
进一步地,调整模块20还用于:飞行位置点在预设范围内的相邻飞行位置点包括:连续的飞行位置点;对飞行位置点的规划飞行高度进行调整,包括:连续获取飞行位置点, 并获取连续飞行位置点的规划飞行高度;确定连续飞行位置点的规划飞行高度的整体规律;识别连续飞行位置点中规划飞行高度不符合规律的飞行位置点;将规划飞行高度不符合规律的飞行位置点的规划飞行高度调高。
进一步地,调整模块20还用于:飞行位置点在预设范围内的相邻飞行位置点包括:连续的飞行位置点;对飞行位置点的规划飞行高度进行调整,包括:连续获取飞行位置点,并获取连续飞行位置点的规划飞行高度;获取任意飞行位置点之上物体与其相邻飞行位置点之上物体之间的第三海拔高度差;将第三海拔高度差小于预设第三海拔高度差的飞行位置点进行分组;获取相邻两飞行位置点组,确定前一飞行位置点组中最后一个飞行位置点的规划飞行高度与后一飞行位置点组中第一飞行位置点的飞行位置高度之间的第四海拔高度差;在第四海拔高度差大于无人机的爬升或者下降的极限高度时,调整无人机在前一飞行位置点组或后一飞行位置点组的规划飞行高度。
进一步地,调整模块20还用于:获取无人机在每个飞行位置点的规划飞行高度,包括:获取无人机在目标飞行区域内的二维航线以及二维航线中的飞行位置点;获取二维航线中的飞行位置点上物体的海拔高度;根据二维航线、二维航线中的飞行位置点上物体的海拔高度以及预设安全距离,生成规划三维航线,其中,规划三维航线中每个飞行位置点的规划飞行高度为飞行位置点之上物体的海拔高度与预设安全距离之和。
进一步地,调整模块20还用于:对飞行位置点的规划飞行高度进行调整,包括:获取飞行位置点,并获取飞行位置点在预设范围内的相邻飞行位置点;获取飞行位置点的规划飞行高度与相邻飞行位置点的规划飞行高度之间的海拔高度差;在海拔高度差大于无人机的爬升或者下降的极限高度时,将飞行位置点和相邻飞行位置点中规划飞行高度高的飞行位置点的规划飞行高度调低,其中,调低的距离小于预设安全距离。
进一步地,调整模块20还用于:用于无人机的飞行高度调整方法,还包括:当飞行位置点和相邻飞行位置点中规划飞行高度高的飞行位置点的规划飞行高度调低至其上物体的海拔高度时,判断飞行位置点和相邻飞行位置点的当前规划飞行高度之间的海拔高度差,如果飞行位置点与相邻飞行位置点的当前规划飞行高度之间的海拔高度差仍大于无人机的爬升或者下降的极限高度时,对飞行位置点和相邻位置点中当前规划飞行高度低的飞行位置点的当前规划飞行高度调高。
进一步地,调整模块20还用于:获取二维航线中的飞行位置点上物体的海拔高度,包括:获取二维航线上的各个飞行位置点以及各个飞行位置点对应的搜索区域;识别各个飞行位置点对应的搜索区域中物体的最大海拔高度,并将最大海拔高度作为各个飞行位置点的海拔高度。
进一步地,调整模块20还用于:对飞行位置点的规划飞行高度进行调整,直至任意两 个相邻的飞行位置点之间的调整后飞行高度的差值小于或等于预设值,具体包括:判断任意两个相邻的飞行位置点之间的调整后飞行高度的差值是否小于或等于预设值;在任意两个相邻的飞行位置点之间的调整后飞行高度的差值大于预设值时,则返回执行对飞行位置点的规划飞行高度进行调整。
需要说明的是,前述对用于无人机的飞行高度调整方法实施例的解释说明也适用于本实施例的用于无人机的飞行高度调整装置,此处不再赘述。
图19为本申请实施例的用于无人机的飞行控制装置的方框示意图。如图19所示,本申请实施例的用于无人机的飞行控制装置200,包括:获取模块21、调整模块22和控制模块23。
其中,获取模块21用于获取无人机的每个飞行位置点的规划飞行高度;调整模块22用于对飞行位置点的规划飞行高度进行调整,直至任意两个相邻的飞行位置点之间的调整后飞行高度的差值小于或等于预设值;控制模块23用于根据调整后飞行高度生成调整后三维航线,控制无人机按照调整后三维航线进行飞行。
进一步地,控制模块30还用于:控制无人机根据调整后三维航线变高度飞行。
进一步地,控制模块30还用于:控制无人机沿着调整后三维航线上的飞行位置点进行飞行;在无人机飞行过程中,检测无人机在下一个飞行位置点的飞行高度与下一个飞行位置点上物体之间的距离;如果距离小于预设的飞行最小间隔距离,则对下一个飞行位置点的飞行高度进行调整,以使距离大于预设的飞行最小间隔距离。
进一步地,控制模块30还用于:控制无人机沿着调整后三维航线上的飞行位置点进行飞行;在无人机飞行过程中,检测调整后三维航线中无人机即将飞行的多个飞行位置点的飞行高度;根据多个飞行位置点的飞行高度,对无人机下一个飞行位置点的飞行高度进行调整。
需要说明的是,前述对用于无人机的飞行控制方法实施例的解释说明也适用于本实施例的用于无人机的飞行控制装置,此处不再赘述。
为了实现上述实施例,本申请还提出了一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行程序时,实现前述的用于无人机的飞行高度调整方法或用于无人机的飞行控制方法。
为了实现上述实施例,本申请还提出一种非临时性计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现前述的用于无人机的飞行高度调整方法或用于无人机的飞行控制方法。
为达实现上述实施例,本申请还提出了一种计算机程序产品,当所述计算机程序产品中的指令由处理器执行时实现前述的用于无人机的飞行高度调整方法或用于无人机的飞行 控制方法。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本申请的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本申请的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行***、装置或设备(如基于计算机的***、包括处理器的***或其他可以从指令执行***、装置或设备取指令并执行指令的***)使用,或结合这些指令执行***、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行***、装置或设备或结合这些指令执行***、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本申请的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行***执行的软件或 固件来实现。如,如果用硬件来实现和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本申请各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (23)

  1. 一种用于无人机的飞行高度调整方法,其特征在于,包括以下步骤:
    获取所述无人机在每个飞行位置点的规划飞行高度;
    对所述飞行位置点的规划飞行高度进行调整,直至任意两个相邻的飞行位置点之间的调整后飞行高度的差值小于或等于预设值。
  2. 根据权利要求1所述的用于无人机的飞行高度调整方法,其特征在于,所述对所述飞行位置点的规划飞行高度进行调整,包括:
    获取所述飞行位置点,并获取所述飞行位置点在预设范围内的相邻飞行位置点;
    获取所述飞行位置点的规划飞行高度与所述相邻飞行位置点的规划飞行高度的海拔高度差;
    在所述海拔高度差大于所述无人机的爬升或者下降的极限高度时,调整所述无人机在所述飞行位置点或所述相邻飞行位置点上的规划飞行高度。
  3. 根据权利要求2所述的用于无人机的飞行高度调整方法,其特征在于,所述获取所述无人机在每个飞行位置点的规划飞行高度,包括:
    获取所述无人机在目标飞行区域内的二维航线以及二维航线中的飞行位置点;
    获取所述二维航线中的飞行位置点上物体的海拔高度;
    根据所述二维航线、所述二维航线中的飞行位置点上物体的海拔高度,生成规划三维航线,其中,所述规划三维航线中每个飞行位置点的规划飞行高度为所述飞行位置点之上物体的海拔高度。
  4. 根据权利要求3所述的用于无人机的飞行高度调整方法,其特征在于,所述调整所述无人机在所述飞行位置点或所述相邻飞行位置点上的规划飞行高度,包括:
    获取所述无人机在所述飞行位置点上的规划飞行高度和所述相邻飞行位置点上的规划飞行高度;
    识别出所述飞行位置点和所述相邻飞行位置点中规划飞行高度低的飞行位置点,并对所述规划飞行高度低的飞行位置点的规划飞行高度进行调整。
  5. 根据权利要求4所述的用于无人机的飞行高度调整方法,其特征在于,所述对所述规划飞行高度低的飞行位置点的规划飞行高度进行调整,包括:
    判断所述飞行位置点与所述相邻飞行位置点之间的规划飞行高度之差是否大于所述预设值;
    如果是,则将所述规划飞行高度高的位置点的规划飞行高度减去所述预设值以生成调整高度。
  6. 根据权利要求4或5所述的用于无人机的飞行高度调整方法,其特征在于,所述飞行位置点在预设范围内的相邻飞行位置点包括:所述飞行位置点前一或后一的第一相邻位置点;
    所述对所述飞行位置点的规划飞行高度进行调整,包括:
    获取所述飞行位置点,并获取所述飞行位置点的前一或后一的第一相邻位置点;
    获取所述飞行位置点之上物体与所述第一相邻飞行位置点之上物体之间的第一海拔高度差;
    在所述第一海拔高度差大于所述无人机的爬升或者下降的极限高度时,将所述飞行位置点或所述第一相邻飞行位置点中所述规划飞行高度低的飞行位置点的规划飞行高度调高。
  7. 根据权利要求4或5所述的用于无人机的飞行高度调整方法,其特征在于,所述飞行位置点在预设范围内的相邻飞行位置点包括:所述飞行位置点前一个和后一个的第二相邻位置点;
    所述对所述飞行位置点的规划飞行高度进行调整,包括:
    获取所述飞行位置点,并获取所述飞行位置点前一个和后一个的第二相邻飞行位置点;
    获取所述飞行位置点之上物体与两个所述第二相邻飞行位置点之上物体之间的第二海拔高度差;
    在两个所述第二海拔高度差均大于所述无人机的爬升或者下降的极限高度时,将所述飞行位置点或所述第二相邻飞行位置点中所述规划飞行高度低的飞行位置点的规划飞行高度调高。
  8. 根据权利要求4或5所述的用于无人机的飞行高度调整方法,其特征在于,所述飞行位置点在预设范围内的相邻飞行位置点包括:连续的所述飞行位置点;
    所述对所述飞行位置点的规划飞行高度进行调整,包括:
    连续获取所述飞行位置点,并获取所述连续飞行位置点的规划飞行高度;
    确定所述连续飞行位置点的规划飞行高度的整体规律;
    识别所述连续飞行位置点中规划飞行高度不符合所述规律的飞行位置点;
    将所述规划飞行高度不符合所述规律的飞行位置点的规划飞行高度调高。
  9. 根据权利要求4或5所述的用于无人机的飞行高度调整方法,其特征在于,所述飞行位置点在预设范围内的相邻飞行位置点包括:连续的所述飞行位置点;
    所述对所述飞行位置点的规划飞行高度进行调整,包括:
    连续获取所述飞行位置点,并获取所述连续飞行位置点的规划飞行高度;
    获取任意所述飞行位置点之上物体与其相邻飞行位置点之上物体之间的第三海拔高度 差;
    将所述第三海拔高度差小于预设第三海拔高度差的飞行位置点进行分组;
    获取相邻两飞行位置点组,确定前一飞行位置点组中最后一个飞行位置点的规划飞行高度与后一飞行位置点组中第一飞行位置点的飞行位置高度之间的第四海拔高度差;
    在所述第四海拔高度差大于所述无人机的爬升或者下降的极限高度时,调整所述无人机在所述前一飞行位置点组或后一飞行位置点组的规划飞行高度。
  10. 根据权利要求2所述的用于无人机的飞行高度调整方法,其特征在于,所述获取所述无人机在每个飞行位置点的规划飞行高度,包括:
    获取所述无人机在目标飞行区域内的二维航线以及二维航线中的飞行位置点;
    获取所述二维航线中的飞行位置点上物体的海拔高度;
    根据所述二维航线、所述二维航线中的飞行位置点上物体的海拔高度以及预设安全距离,生成规划三维航线,其中,所述规划三维航线中每个飞行位置点的规划飞行高度为所述飞行位置点之上物体的海拔高度与所述预设安全距离之和。
  11. 根据权利要求10所述的用于无人机的飞行高度调整方法,其特征在于,所述对所述飞行位置点的规划飞行高度进行调整,包括:
    获取所述飞行位置点,并获取所述飞行位置点在预设范围内的相邻飞行位置点;
    获取所述飞行位置点的规划飞行高度与所述相邻飞行位置点的规划飞行高度之间的海拔高度差;
    在所述海拔高度差大于所述无人机的爬升或者下降的极限高度时,将所述飞行位置点和所述相邻飞行位置点中规划飞行高度高的飞行位置点的规划飞行高度调低,其中,所述调低的距离小于所述预设安全距离。
  12. 根据权利要求11所述的用于无人机的飞行高度调整方法,其特征在于,还包括:
    当所述飞行位置点和所述相邻飞行位置点中规划飞行高度高的飞行位置点的规划飞行高度调低至其上物体的海拔高度时,
    判断所述飞行位置点和所述相邻飞行位置点的当前规划飞行高度之间的海拔高度差,
    如果所述飞行位置点与所述相邻飞行位置点的当前规划飞行高度之间的海拔高度差仍大于所述无人机的爬升或者下降的极限高度时,对所述飞行位置点和所述相邻位置点中当前规划飞行高度低的飞行位置点的当前规划飞行高度调高。
  13. 根据权利要求2或10所述的用于无人机的飞行高度调整方法,其特征在于,所述获取所述二维航线中的飞行位置点上物体的海拔高度,包括:
    获取所述二维航线上的各个飞行位置点以及各个飞行位置点对应的搜索区域;
    识别所述各个飞行位置点对应的搜索区域中物体的最大海拔高度,并将所述最大海拔 高度作为所述各个飞行位置点的海拔高度。
  14. 根据权利要求1所述的用于无人机的飞行高度调整方法,其特征在于,所述对所述飞行位置点的规划飞行高度进行调整,直至任意两个相邻的飞行位置点之间的调整后飞行高度的差值小于或等于预设值,具体包括:
    判断任意两个相邻的飞行位置点之间的调整后飞行高度的差值是否小于或等于预设值;
    在所述任意两个相邻的飞行位置点之间的调整后飞行高度的差值大于预设值时,则返回执行对所述飞行位置点的规划飞行高度进行调整。
  15. 一种用于无人机的飞行高度调整装置,其特征在于,包括:
    获取模块,用于获取所述无人机在每个飞行位置点的规划飞行高度;
    调整模块,用于对所述飞行位置点的规划飞行高度进行调整,直至任意两个相邻的飞行位置点之间的调整后飞行高度的差值小于或等于预设值。
  16. 一种用于无人机的飞行控制方法,其特征在于,包括:
    获取所述无人机在每个飞行位置点的规划飞行高度;
    对所述飞行位置点的规划飞行高度进行调整,直至任意两个相邻的飞行位置点之间的调整后飞行高度的差值小于或等于预设值;
    根据所述调整后飞行高度生成调整后三维航线,控制所述无人机按照所述调整后三维航线进行飞行。
  17. 根据权利要求16所述的用于无人机的飞行控制方法,其特征在于,所述的控制所述无人机按照所述调整后三维航线进行飞行包括:
    控制所述无人机根据所述调整后三维航线变高度飞行。
  18. 根据权利要求17所述的用于无人机的飞行控制方法,其特征在于,所述控制所述无人机根据所述调整后三维航线变高度飞行,包括:
    控制所述无人机沿着所述调整后三维航线上的飞行位置点进行飞行;
    在所述无人机飞行过程中,检测所述无人机在下一个飞行位置点的飞行高度与下一个飞行位置点上物体之间的距离;
    如果所述距离小于预设的飞行最小间隔距离,则对所述下一个飞行位置点的飞行高度进行调整,以使所述距离大于所述预设的飞行最小间隔距离。
  19. 根据权利要求17所述的用于无人机的飞行控制方法,其特征在于,所述控制所述无人机根据所述调整后三维航线变高度飞行,包括:
    控制所述无人机沿着所述调整后三维航线上的飞行位置点进行飞行;
    在所述无人机飞行过程中,检测所述调整后三维航线中无人机即将飞行的多个飞行位 置点的飞行高度;
    根据所述多个飞行位置点的飞行高度,对无人机下一个飞行位置点的飞行高度进行调整。
  20. 一种用于无人机的飞行控制装置,其特征在于,包括:
    获取模块,用于获取所述无人机的每个飞行位置点的规划飞行高度;
    调整模块,用于对所述飞行位置点的规划飞行高度进行调整,直至任意两个相邻的飞行位置点之间的调整后飞行高度的差值小于或等于预设值;
    控制模块,用于根据所述调整后飞行高度生成调整后三维航线,控制所述无人机按照所述调整后三维航线进行飞行。
  21. 一种计算机设备,其特征在于,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时,实现如权利要求1-14中任一所述的用于无人机的飞行高度调整方法或如权利要求16-19中任一所述的用于无人机的飞行控制方法。
  22. 一种非临时性计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求1-14中任一所述的用于无人机的飞行高度调整方法或如权利要求16-19中任一所述的用于无人机的飞行控制方法。
  23. 一种计算机程序产品,其特征在于,当所述计算机程序产品中的指令由处理器执行时实现如权利要求1-14中任一所述的用于无人机的飞行高度调整方法或如权利要求16-19中任一所述的用于无人机的飞行控制方法。
PCT/CN2018/098011 2018-08-01 2018-08-01 用于无人机的飞行高度调整、飞行控制的方法和装置 WO2020024143A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880034869.4A CN110709791B (zh) 2018-08-01 2018-08-01 用于无人机的飞行高度调整、飞行控制的方法和装置
PCT/CN2018/098011 WO2020024143A1 (zh) 2018-08-01 2018-08-01 用于无人机的飞行高度调整、飞行控制的方法和装置
EP18928560.4A EP3832425A4 (en) 2018-08-01 2018-08-01 METHOD AND DEVICE FOR FLIGHT HEIGHT ADJUSTMENT AND FLIGHT CONTROL OF UNPILED AERIAL VEHICLE
US17/261,981 US20210264796A1 (en) 2018-08-01 2018-08-01 Methods for adjusting flight height for unmanned aerial vehicle, methods for controlling flight of unmanned aerial vehicle, and computer devices
AU2018435033A AU2018435033A1 (en) 2018-08-01 2018-08-01 Methods and devices for adjusting flight height for unmanned aerial vehicle, and methods and devices for controlling flight of unmanned aerial vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/098011 WO2020024143A1 (zh) 2018-08-01 2018-08-01 用于无人机的飞行高度调整、飞行控制的方法和装置

Publications (1)

Publication Number Publication Date
WO2020024143A1 true WO2020024143A1 (zh) 2020-02-06

Family

ID=69192662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/098011 WO2020024143A1 (zh) 2018-08-01 2018-08-01 用于无人机的飞行高度调整、飞行控制的方法和装置

Country Status (5)

Country Link
US (1) US20210264796A1 (zh)
EP (1) EP3832425A4 (zh)
CN (1) CN110709791B (zh)
AU (1) AU2018435033A1 (zh)
WO (1) WO2020024143A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11644850B2 (en) * 2017-09-22 2023-05-09 Yamaha Hatsudoki Kabushiki Kaisha Aircraft
CN113433966A (zh) * 2020-03-23 2021-09-24 北京三快在线科技有限公司 无人机控制方法、装置、存储介质及电子设备
KR102656359B1 (ko) * 2020-05-19 2024-04-12 한국전자통신연구원 무인 배송 관리 장치 및 방법
WO2021232296A1 (zh) * 2020-05-20 2021-11-25 深圳市大疆创新科技有限公司 一种无人机的控制方法、设备、无人机及存储介质
CN113050691B (zh) * 2021-03-25 2023-03-24 成都纵横自动化技术股份有限公司 一种无人机避障方法、装置、设备及计算机可读存储介质
KR102381678B1 (ko) * 2021-03-31 2022-04-01 주식회사 클로버스튜디오 포인트 클라우드를 이용한 무인이동체의 4차원 경로 표출 방법
CN114115327A (zh) * 2021-09-28 2022-03-01 佛山中科云图智能科技有限公司 一种基于dsm模型的航线规划方法和规划装置
CN114842678B (zh) * 2022-03-28 2024-04-26 中国民用航空中南地区空中交通管理局广西分局 一种民航管制运行现场相似日度量***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106444825A (zh) * 2016-09-05 2017-02-22 重庆零度智控智能科技有限公司 飞行器、控制终端、飞行器的控制方法及控制装置
CN106873631A (zh) * 2017-04-21 2017-06-20 广州极飞科技有限公司 无人机控制方法、植保作业方法、无人机及地面站
US20170199528A1 (en) * 2015-09-04 2017-07-13 Nutech Ventures Crop height estimation with unmanned aerial vehicles
CN107544548A (zh) * 2017-10-20 2018-01-05 广州极飞科技有限公司 控制无人机作业的方法、装置及无人机

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205959073U (zh) * 2016-08-04 2017-02-15 安阳全丰航空植保科技股份有限公司 一种无人机飞行高度控制***
CN107977985B (zh) * 2017-11-29 2021-02-09 上海拓攻机器人有限公司 无人机悬停方法、装置、无人机及存储介质
CN107943099A (zh) * 2018-01-15 2018-04-20 四川尚航智能科技有限公司 一种无人机地形高度跟随控制方法及***
CN108332753B (zh) * 2018-01-30 2020-09-08 北京航空航天大学 一种无人机电力巡检路径规划方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170199528A1 (en) * 2015-09-04 2017-07-13 Nutech Ventures Crop height estimation with unmanned aerial vehicles
CN106444825A (zh) * 2016-09-05 2017-02-22 重庆零度智控智能科技有限公司 飞行器、控制终端、飞行器的控制方法及控制装置
CN106873631A (zh) * 2017-04-21 2017-06-20 广州极飞科技有限公司 无人机控制方法、植保作业方法、无人机及地面站
CN107544548A (zh) * 2017-10-20 2018-01-05 广州极飞科技有限公司 控制无人机作业的方法、装置及无人机

Also Published As

Publication number Publication date
CN110709791B (zh) 2022-12-27
EP3832425A4 (en) 2022-03-02
CN110709791A (zh) 2020-01-17
US20210264796A1 (en) 2021-08-26
EP3832425A1 (en) 2021-06-09
AU2018435033A1 (en) 2021-03-18

Similar Documents

Publication Publication Date Title
WO2020024143A1 (zh) 用于无人机的飞行高度调整、飞行控制的方法和装置
US11242144B2 (en) Aerial vehicle smart landing
US10347139B2 (en) Autonomous nap-of-the-earth (ANOE) flight path planning for manned and unmanned rotorcraft
US20200258400A1 (en) Ground-aware uav flight planning and operation system
US10029804B1 (en) On-board, computerized landing zone evaluation system for aircraft
EP3876070B1 (en) Method and device for planning path of unmanned aerial vehicle, and unmanned aerial vehicle
CN109375636A (zh) 无人机航线的生成方法、装置、无人机和存储介质
US9645581B1 (en) Method and apparatus for navigating unmanned aerial vehicle
US20180204469A1 (en) Unmanned aerial vehicle visual point cloud navigation
CN108803656B (zh) 一种基于复杂低空的飞行控制方法及***
CN109923589A (zh) 构建和更新高程地图
CN105549619A (zh) 一种用于无人机续航能力的多起降点航线规划方法
CN108427438A (zh) 飞行环境检测方法、装置、电子设备及存储介质
EP3128386A1 (en) Method and device for tracking a moving target from an air vehicle
CN110515390B (zh) 飞行器自主降落方法及装置、电子设备、存储介质
US10937325B2 (en) Collision avoidance system, depth imaging system, vehicle, obstacle map generator, and methods thereof
CN110291480A (zh) 一种无人机测试方法、设备及存储介质
EP3989034B1 (en) Automatic safe-landing-site selection for unmanned aerial systems
CN110109144A (zh) 基于多线激光雷达的路肩检测方法及装置
US20190005829A1 (en) Operation control apparatus of movable body, method of controlling operation of movable body, and computer readable medium
US20150279219A1 (en) Procedure for the detection and display of artificial obstacles for a rotary-wing aircraft
CN113448340B (zh) 一种无人机的路径规划方法、装置、无人机及存储介质
Zimmermann et al. Integration of a visibility graph based path planning method in the ACT/FHS rotorcraft
Veneruso et al. Analysis of ground infrastructure and sensing strategies for all-weather approach and landing in Urban Air Mobility
US20210327283A1 (en) Systems and Methods for Mobile Aerial Flight Planning and Image Capturing Based on Structure Footprints

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18928560

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018928560

Country of ref document: EP

Effective date: 20210301

ENP Entry into the national phase

Ref document number: 2018435033

Country of ref document: AU

Date of ref document: 20180801

Kind code of ref document: A